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Abstract 
The impact of parasitic elements on the overall circuit performance keeps increasing from 

one technology generation to the next. In advanced process nodes, the parasitic effects 

dominate the overall circuit performance. As a result, the accuracy requirements of 

parasitic extraction processes significantly increased, especially for parasitic capacitance 

extraction. Existing parasitic capacitance extraction tools face many challenges to cope 

with such new accuracy requirements that are set by semiconductor foundries (< 5% 

error). Although field-solver methods can meet such requirements, they are very slow 

and have a limited capacity. The other alternative is the rule-based parasitic capacitance 

extraction methods, which are faster and have a high capacity; however, they cannot 

consistently provide good accuracy as they use a pre-characterized library of capacitance 

formulas that cover a limited number of layout patterns. On the other hand, the new 

parasitic extraction accuracy requirements also added more challenges on existing 

parasitic-aware routing optimization methods, where simplified parasitic models are 

used to optimize layouts.  

This dissertation provides new solutions for interconnect parasitic capacitance 

extraction and parasitic-aware routing optimization methodologies in order to cope with 

the new accuracy requirements of advanced process nodes as follows. 

First, machine learning compact models are developed in rule-based extractors to 

predict parasitic capacitances of cross-section layout patterns efficiently. The developed 

models mitigate the problems of the pre-characterized library approach, where each 

compact model is designed to extract parasitic capacitances of cross-sections of arbitrary 

distributed metal polygons that belong to a specific set of metal layers (i.e., layer 

combination) efficiently. Therefore, the number of covered layout patterns significantly 

increased. 

Second, machine learning compact models are developed to predict parasitic 

capacitances of middle-end-of-line (MEOL) layers around FINFETs and MOSFETs. Each 

compact model extracts parasitic capacitances of 3D MEOL patterns of a specific device 
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type regardless of its metal polygons distribution. Therefore, the developed MEOL 

models can replace field-solvers in extracting MEOL patterns. 

Third, a novel accuracy-based hybrid parasitic capacitance extraction method is 

developed. The proposed hybrid flow divides a layout into windows and extracts the 

parasitic capacitances of each window using one of three parasitic capacitance extraction 

methods that include: 1) rule-based; 2) novel deep-neural-networks-based; and 3) field-

solver methods.  This hybrid methodology uses neural-networks classifiers to determine 

an appropriate extraction method for each window. Moreover, as an intermediate 

parasitic capacitance extraction method between rule-based and field-solver methods, a 

novel deep-neural-networks-based extraction method is developed. This intermediate 

level of accuracy and speed is needed since using only rule-based and field-solver 

methods (for hybrid extraction) results in using field-solver most of the time for any 

required high accuracy extraction.  

Eventually, a parasitic-aware layout routing optimization and analysis methodology 

is implemented based on an incremental parasitic extraction and a fast optimization 

methodology. Unlike existing flows that do not provide a mechanism to analyze the 

impact of modifying layout geometries on a circuit performance, the proposed 

methodology provides novel sensitivity circuit models to analyze the integrity of signals 

in layout routes. Such circuit models are based on an accurate matrix circuit 

representation, a cost function, and an accurate parasitic sensitivity extraction. The circuit 

models identify critical parasitic elements along with the corresponding layout 

geometries in a certain route, where they measure the sensitivity of a route’s performance 

to corresponding layout geometries very fast. Moreover, the proposed methodology uses 

a nonlinear programming technique to optimize problematic routes with pre-determined 

degrees of freedom using the proposed circuit models. Furthermore, it uses a novel 

incremental parasitic extraction method to extract parasitic elements of modified 

geometries efficiently, where the incremental extraction is used as a part of the routing 

optimization process to improve the optimization runtime and increase the optimization 

accuracy.   
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Introduction 
 

During the past decades, the semiconductor industry has developed considerably. There 

is a continuous increase in the market demand to integrate more functionalities together 

on a single chip at a much lower cost and higher speed. Such an increasing demand 

motivated process technology nodes to scale down in a continuous manner. Therefore, 

the density of integrated circuits keeps increasing, and the dimensions of metal wires (i.e., 

interconnect) keep decreasing from one technology generation to the next. This resulted 

in an increase in the impact of interconnect parasitic elements on chips performance, 

which is one of the major problems in advanced process technology nodes [1]–[4].  Fig. 

1.1 shows the main contributors on the total circuit delay across different process 

technology nodes highlighting that the RC parasitic effects became the main contributor 

in smaller process technology nodes. Such an increasing trend of the RC parasitic impact 

on the total delay has continued in more advanced nodes. As a result, more accurate 

parasitic extraction methods are required in order to 1) provide accurate post-layout 

circuit simulation results; 2) reduce the design turn-around time; and 3) improve the 

yield, especially for analog and mixed-signal designs. 

 
Fig. 1.1.  An illustrative graph that shows the increasing impact of interconnects delay on total circuit 
delay across different process technology nodes (based on [1]–[3], [5]). 
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1.1. Interconnect Parasitic Elements 

Interconnect parasitic elements represent the unintended passive circuit elements, 

such as resistors, capacitors, and inductors, that are not included in original circuit 

designs but exist in final chips. Such parasitic elements are associated with circuit routes 

(i.e., interconnect) that connect circuit devices together [6]–[8].  

The impact of parasitic inductances on a circuit performance is usually negligible, 

except for parasitic inductances that are associated with global interconnect in some very 

high frequency applications. Therefore, the extraction of parasitic inductances is not 

required for most of current applications.  

As for parasitic resistances, the number of resistance elements significantly increased 

in advanced nodes adding more challenges to circuit simulators to handle such a huge 

network. However, existing parasitic resistance extraction tools still can handle layout 

structures of advanced nodes as parasitic resistances are mainly correlated with 

interconnect’s dimensions, and foundries provide required resistance parameters such as 

resistivity and sheet resistance values for each metal layer in a process technology node 

throughout an interconnect technology format (ITF) specifications file. Therefore, 

parasitic extraction tools use the provided resistance parameters to calculate interconnect 

parasitic resistances. Once parasitic resistances are extracted, they are easily combined 

with parasitic capacitances in a single network [6]–[8].  

As for parasitic capacitances, the increasing complexities of layout designs and 

process stacks, in advanced process technology nodes, have a significant impact on the 

accuracy of current parasitic capacitance extraction tools, where layouts became denser, 

and the number of interactions and fringing coupling capacitances among interconnects 

significantly increased.  
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1.2. Layout Parasitic Extraction  

The layout parasitic extraction is an essential step in integrated circuit (IC) design 

flows as shown in Fig. 1.2. It is used to extract the parasitic elements of a given layout and 

associate them with the corresponding circuit network (i.e., netlist). The netlist is later 

used by a circuit simulator to perform a post-layout simulation in order to verify the 

performance of the corresponding layout. In case of any violation in post-layout 

simulation results, the layout designer would adjust his layout, re-extract its parasitic 

elements, and re-simulate it. Such a process is repeated until the simulation results meet 

the required circuit specifications [9].  

 

 

Fig. 1.2. VLSI design flow. 

 

In other words, the current IC design flow requires multiple parasitic extraction and 

simulation runs until the given layout meets the required circuit specifications. Any 

inaccuracy in the extracted parasitic elements would generate misleading post-layout 
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turn-around time of a circuit design. Moreover, in advanced process technology nodes, 

the accuracy requirements of the parasitic capacitance extraction significantly increased 

by semiconductor foundries (< 5% error) due to the increasing impact of parasitic 

elements on a circuit performance. This increase added more challenges on parasitic 

capacitance extraction tools in order to meet such new requirements [10]–[13].  

There are two main parasitic capacitance extraction methods including field-solver 

and rule-based extraction methods. Field-solvers provide very accurate parasitic 

capacitance results relative to measurements; however, they are very slow and have a 

limited capacity [14]. Field-solvers mainly use numerical methods to perform 

electrostatic (or electromagnetic) simulations over a given layout. This is done by solving 

Maxwell equations across the entire layout domain using any of computational methods 

such as finite difference (FDM), finite element (FEM), and boundary element (BEM) 

methods. On the other hand, rule-based extraction methods, also known as 2.5D 

extraction methods, are way faster than field-solvers, and they can handle full chips with 

a reasonable accuracy. Rule-based extraction methods use pattern matching operations 

to match every layout pattern with corresponding pre-characterized analytical or 

empirical parasitic capacitance formulas that are stored in a database (i.e., library) of pre-

characterized formulas [11], [15], [16]. To improve the accuracy of rule-based extraction 

methods, one solution is to extract the parasitic capacitances of complicated and 

problematic layout structures using a field-solver; however, this is not a sustainable 

solution because the efficiency of existing rule-based methods is decreasing from one 

technology generation to the next, and the size of layout designs keeps increasing. 

Therefore, more layout patterns would be extracted by field-solvers impacting the 

performance and the capacity of parasitic capacitance extraction processes. As a result, 

there is a strong need to either improve the accuracy of rule-based parasitic capacitance 

extraction models or create new accurate parasitic extraction methods that can cope with 

the new accuracy requirements and handle the complicated and denser layout designs in 

advanced process nodes [6], [11], [12], [17]. 
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There are two main uses of parasitic extraction tools that include: 1) a parasitic 

extraction for full chip verification (i.e., for sign-off) and 2) a parasitic extraction in 

optimization loops (i.e., implementation-level parasitic extraction tools) [18]. 

1.2.1. Parasitic Extraction for Verification 

The parasitic extraction for full chip verification uses sign-off parasitic extraction 

tools, such as Calibre PEX [19]. Such tools are mainly used to verify the performance of 

a final chip design before being manufactured by a foundry. They must be accurate and 

have high capacity in order to handle full chips efficiently. Moreover, they should 

provide an early and accurate understanding of the impact of parasitic elements on the 

overall circuit behavior. 

1.2.2. Parasitic Extraction in Optimization Loops 

The parasitic extraction methods that are used in layout generation and parasitic-

aware layout optimization flows are called implementation-level parasitic extraction 

methods. Such methods must provide fast and accurate parasitic extraction results in 

order to obtain (or generate) an optimized layout in a reasonable runtime. There are 

two extraction approaches for the implementation-level parasitic extraction that include 

1) simplified models and 2) incremental parasitic extraction approaches. 

As for the simplified models, each route, in a given layout, is represented by a 

simple lumped RC Π (i.e., PI) model. The RC values of the Π model are evaluated using 

simplified resistance and capacitance formulas. Such an approach provides a very fast 

optimization; however, its accuracy is poor as compared to the accuracy requirements 

of advanced process nodes. [20]. As for the incremental parasitic extraction approach, 

it may use a sign-off layout parasitic extraction tool to extract the parasitic elements of 

a whole layout design before the optimization process starts. After that, once the 

optimization process starts, the incremental extraction approach identifies the modified 

layout polygons, re-extracts the corresponding parasitic elements, and update the 

circuit and parasitic network (i.e., netlist) accordingly. Such an approach provides more 
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accurate layout optimization results (in case of using a sign-off extraction tool) with a 

minor impact on the optimization runtime [18]. 

1.3. Parasitic-Aware Layout Optimization 

Layouts are usually generated by using automatic layout generation and 

optimization tools. Such tools help layout designers in generating a layout that meets the 

required circuit specifications. The layout generation tools are commonly used for digital 

circuit designs, where cell-based tools are employed to cover circuit synthesis, mapping, 

and physical design steps [21]. However, layout generation tools do not provide a full 

automation environment for analog designs, where analog circuit designers still need to 

do many manual analysis and layout modifications until their analog design meets the 

required circuit specifications.  

In analog designs, the layout optimization tools are usually used to determine device 

sizes, circuit topologies, and routing paths. However, they still deal with the effects of 

interconnect (i.e., route) parasitic elements as second order effects ignoring that the 

interconnect parasitic effects became one of the dominant factors on a circuit performance 

in advanced process nodes. In order to control the effects of interconnect parasitic 

elements, the corresponding routes need to be routed in a way that reduces the associated 

parasitic elements [22], [23]. This step is called parasitic-aware routing optimization, and 

it is part of the routing process. 

The routing is the process of creating connections between devices. It is mainly divided 

into two stages that include global and detailed routing. The global routing is responsible 

for identifying general paths of each connection. It usually divides the routing region into 

windows and identifies the general window-to-window paths for all connections (i.e., 

routes) [24]. After that, the detailed routing is performed as it identifies exact paths, metal 

layers, and vias for each net in a given layout. The routing processes usually consider 

multiple constraints, such as maintaining net symmetry, minimizing wire lengths, having 

a maximum number of vias, complying with corresponding design rules, and minimizing 

parasitic elements [23], [25].  
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1.3.1. Net Symmetry Constraints  

In net symmetry constraints, the layout geometrical matching is no longer enough 

to achieve a net symmetry as it does not necessarily provide a performance matching 

across the required nets. This problem significantly increases in advanced process 

technology nodes because layouts became more complicated and the parasitic coupling 

interactions with the surrounding polygons significantly increased increasing the 

impact of parasitic elements on circuits performance. In order to achieve the 

performance matching, the parasitic elements of the target nets need to be considered 

while applying the net symmetry constraint.  

1.3.2. Parasitic Constraints  

Parasitic-aware routing processes aim to reduce the parasitic elements that are 

mainly associated with critical routes in order to meet the required circuit specifications. 

This is done by modifying layout geometries of critical routes in a way that reduces the 

effects of associated parasitic elements. However, modifying layout geometries will not 

only impact the associated parasitic elements, but it will also impact the parasitic 

interactions among surrounding and nearby metals. Therefore, a full layout parasitic 

extraction is required with every geometrical change in order to accurately measure the 

impact of modifying routes [23]. However, the use of a full layout parasitic extraction 

during the optimization process would significantly increase the optimization runtime. 

Therefore, an incremental parasitic extraction may be considered to reduce the 

optimization runtime. 

1.4. Problem Definition 

This work tackles three main problems that include: 1) the problems of existing rule-

based extraction methods; 2) the limitations of existing rule-based 2.5D extraction 

methods; and 3) the problems of existing parasitic-aware routing optimization methods. 

1.4.1. Problems of Rule-Based Extraction Methods 

The current rule-based extraction methods have three main problems that include 

1) a limited pattern coverage; 2) potential pattern mismatches; and 3) a limited handling 
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of systematic process variations. With regards to the limited pattern coverage, the 

current rule-based extraction tools rely on limited pre-characterized layout patterns. 

Such patterns are generated using a limited number of geometrical parameters, such as 

widths and spacings, that are used to create corresponding parasitic capacitance 

formulas. Such formulas cannot handle the complicated layout patterns in recent layout 

designs as they do not have enough geometrical parameters to accurately represent 

such patterns. Therefore, detailed and multi-dimensional models are required to 

capture all required geometrical parameters that impact parasitic capacitances in a 

certain layout pattern. Regarding the potential pattern mismatch, it means that parasitic 

capacitances of a certain layout pattern are extracted using inappropriate capacitance 

formulas. This results in extracting wrong parasitic capacitance values. There is a 

tradeoff between pattern coverages and pattern mismatches, where increasing the 

number of pre-characterized patterns increases the probability of pattern mismatches. 

As for systematic process variations, they represent physical variations in layout 

interconnects and devices. Such variations are layout-dependent, and they mainly 

occur during layout manufacturing processes. The most common systematic variations 

of interconnects include metal thickness variations, loading effects (i.e., inter layer 

dielectric thickness variations), metal width variations (e.g., etching), and trapezoidal 

variations (i.e., sidewall slope of metals). The impact of such variations on parasitic 

capacitances significantly increased in advanced process nodes, where the dimensions 

of metal wires are smaller, and systematic variations started to represent considerable 

portions of metal dimensions. Therefore, layout parasitic capacitance extraction 

processes must consider systematic process variations in order to provide accurate 

parasitic netlists [10], [26].  

The current rule-based extraction tools handle the impact of systematic process 

variations on parasitic capacitances independently using sensitivity formulas that 

represent the sensitivity of a certain capacitance component to a certain variation 

parameter. Such formulas are pre-characterized with limited geometrical parameters 

[27]–[29]. Therefore, they also suffer from potential pattern mismatch and limited 
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pattern coverage problems. To consider systematic process variations during the 

parasitic capacitance extraction, each capacitance component is calculated using a 

single capacitance formula and multiple sensitivity formulas. This way of handling 

systematic variations neglects the cross-dependency impact of different variation 

parameters on parasitic capacitances, where the capacitance sensitivity to each variation 

parameter is calculated independently while keeping other parameters fixed. 

Moreover, the computational runtime of capacitance calculations significantly 

increased due to using multiple pre-characterized formulas to calculate a single 

capacitance component. 

1.4.2. Limitations of Rule-Based 2.5D Extraction Methods 

The current extraction techniques cannot cope with the continuous scaling down 

and complexity of advanced technologies. While field-solvers can provide the required 

high accuracy levels, they are very slow and have a limited capacity. On the other hand, 

the errors of rule-based 2.5D extraction methods started to explode with the increase of 

accuracy requirements at newer nodes [11], [17], [30]. The main reason behind such 

inaccuracy is that the rule-based methods use simplified 2D vertical cross-section 

models to calculate parasitic capacitances. Such models have an incomplete view of the 

surrounding environment (e.g., metal wires). This results in errors in the extracted 

parasitic capacitances and negligence of many 3D fringing capacitance components. 

Such a problem is a limitation of the 2.5D extraction method. Most of the recent efforts 

only focused on improving the prediction accuracy of rule-based models, as in [31], and 

they did  not provide a solution to overcome the limitations of the 2.5D extraction 

method. Fig. 1.3 shows the error margin of rule-based 2.5D parasitic capacitance 

extraction methods, as compared to field-solvers, after performing many experiments 

across different real designs using 28nm process node. The results show that the errors 

are exceeding 15% at many data points. 
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Fig. 1.3.  Errors of parasitic capacitance extraction using typical rule-based 2.5D capacitance extraction 
tools as compared to a 3D field-solver, Calibre xACT3D [32], over many 28nm designs. 
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performance, which is a very time-consuming and error-prone operation. Nowadays, 

the time consumed in analyzing the post-layout simulation results is more critical than 

post-layout simulation runtime itself. Therefore, there is an increasing demand to 

provide algorithms that help circuit designers in understanding the impact of parasitic 

elements on post-layout simulation results and identifying the most problematic 

parasitic elements along with the corresponding layout geometries in a given layout. 

The problems of existing layout optimization (i.e., routing optimization) methods can 

be summarized as below:  

a. They do not provide debugging and analysis methodologies that help circuit 

designers in understanding the impact of parasitic elements on a system’s (i.e., 

route) performance, such as identifying the problematic parasitic elements along 

with the associated geometries. 

b. Most of existing efforts are customized to simple parasitic formulas that cannot 

cope with the accuracy requirements by semiconductor foundries in advanced 

process technology nodes (< 5% error). Also, they are not designed to use 

complicated parasitic networks that are generated from sign-off parasitic 

extraction tools, such as Calibre PEX [19] and STARC [33]. On the other hand, few 

methods perform a full layout extraction at each design iteration in order to 

improve the optimization accuracy; however, such methods consume a lot of time 

and are not suitable for large designs. 

c. Many of existing layout optimization flows rely on multiple circuit simulations in 

order to identify the parasitic bounds for each parasitic element; however, such 

methods consume a lot of time in circuit simulations, especially for large designs. 

d. Existing efforts do not help circuit designers in understanding the impact of 

parasitic elements on a system’s (e.g., route) performance. 

1.5. Contributions 

This work mainly focuses on providing innovative solutions to improve the accuracy 

of 1) the interconnect parasitic capacitance extraction and 2) the parasitic-aware layout 
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routing optimization method. The contributions of this work cover several parasitic 

capacitance extraction methods that include rule-based 2.5D, MEOL, and hybrid parasitic 

capacitance extraction methods. Moreover, the contributions include developing a new 

parasitic-aware routing optimization methodology that can cope with the increasing 

impact of parasitic elements in advanced process nodes. The contributions are as follows. 

1.5.1. Rule-Based 2.5D Capacitance Extraction Models 

The contributions of the rule-based 2.5D extraction focuses on implementing a new 

interconnect parasitic capacitance compact models for 2D cross-section layout patterns 

in rule-based 2.5D extraction tools. The new models use novel input pattern 

representations that considers systematic process variations efficiently. The new 

models are compact, have high pattern coverage, mitigate pattern mismatches, and 

provide a faster layout parasitic capacitance extraction process. Also, the proposed 

compact models can replace thousands of existing capacitance and sensitivity formulas, 

where each model can calculate a coupling capacitance between two certain polygons 

using a single computation instead of multiple computations (using multiple 

capacitance and sensitivity formulas) in traditional rule-based methods. The 

contributions of rule-based 2.5D extraction method are summarized below: 

a. Machine learning compact models that predict interconnect parasitic capacitances 

in layouts of a certain process node are proposed. Each model predicts parasitic 

coupling capacitances of cross-section patterns covering a certain set of metal 

layers with arbitrary distributed polygons considering systematic process 

variations. Unlike existing models that require multiple computations to calculate 

a capacitance component, the compact models can calculate a certain capacitance 

component using a single computation. Therefore, there is no need to invoke 

multiple capacitance formulas to calculate a certain capacitance component 

anymore. 

b. Three different representations of 2D cross-section layout patterns are proposed. 

The proposed representations include ratio-based, dimensions-based, and vertex-
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based 2D cross-section representations. The ratio-based and dimensions-based 

representations consider the impact of metal width variations, whereas the vertex-

based representation accounts for systematic process variations including metal 

thickness variations, loading effects, metal width variations, and trapezoidal 

variations. 

c. The compact models are generated using two different machine learning methods 

including Neural Networks (NN) and Support Vector Regression (SVR) methods.  

d. The proposed methodology is tested over test chips of 28nm, 14nm, and 7nm 

process nodes with more than 6.7M interconnect cross-section patterns. The results 

show that the proposed methodology provided outstanding accuracy as 

compared to field-solvers and rule-based models with an average error < 0.15% 

and a standard deviation < 3.3%, whereas the average errors and standard 

deviations of rule-based models exceed 6%, for the same test chips. Also, the 

computational runtimes of the proposed compact models are almost 2.5X faster 

than rule-based models. 

1.5.2. MEOL Rule-Based Capacitance Extraction Models 

The contributions of MEOL parasitic capacitance extraction focuses on developing 

a new modeling methodology that can generate machine learning compact models to 

predict parasitic capacitances of MEOL patterns as below: 

a. A new modeling methodology based on machine learning methods is developed 

to predict parasitic coupling capacitances for MEOL structures in rule-based 

extractors. The methodology provides accurate and compact parasitic capacitance 

models for MEOL around the devices for a certain process technology node. The 

generated models significantly improve the parasitic capacitance extraction 

accuracy of MEOL patterns by increasing the pattern coverage, considering metal 

connectivity, and mitigating pattern mismatches. The generated models are 

compact, where each model can handle many MEOL patterns with different 
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arrangements. Each compact model can replace thousands of pre-characterized 

patterns and provide more accurate results. 

b. A novel geometry-based pattern representation is proposed to represent the 

MEOL input patterns. 

c. Two machine learning approaches are used and tested to implement the MEOL 

parasitic capacitance models including Neural Networks (NN) and Support 

Vector Regressions (SVR).  

d. The testing covered more than 40M devices of several different real designs that 

belong to 28nm and 7nm process technology nodes. The proposed methodology 

managed to provide outstanding results as compared to field-solvers with an 

average error < 0.2%, a standard deviation < 3%, and a speedup of 100X. 

1.5.3. Accuracy-Based Hybrid Parasitic Capacitance Extraction Method 

As for the hybrid parasitic capacitance extraction, A novel hybrid parasitic 

capacitance extraction flow is developed. The proposed hybrid flow can alternate 

between three extraction methods: field-solver, rule-based, and novel Deep Neural-

Networks (DNN) based extraction methods. The novel DNN-based extraction is 

considered to be an intermediate method that is order of magnitudes faster than field-

solvers. Also, it provides high accuracy values as the hybrid extraction flow can find a 

faster alternative to field-solvers to extract most patterns. Moreover, an accuracy-based 

neural-networks classifier is introduced to efficiently assign each layout pattern to the 

fastest extraction method that meets the user predetermined accuracy requirements. 

The contributions are summarized as below: 

a. A novel DNN-based parasitic capacitance extraction method intended as an 

intermediate method between field-solver and rule-based methods in terms of 

performance and accuracy. This intermediate level of accuracy and speed is 

needed since using only rule-based and field-solver methods (for hybrid 

extraction) results in using field-solver most of the time for any required high 

accuracy extraction. 
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b. A novel accuracy-based hybrid parasitic capacitance extraction flow that allows 

the user to determine the required accuracy level. This flow divides the layouts 

into windows and extracts the parasitic capacitances of each window using one of 

three parasitic capacitance extraction methods that include: 1) rule-based; 2) novel 

neural-networks-based; and 3) field-solver methods. 

c. A smart layout patterns classifier that assigns layout patterns to the fastest 

extraction method (field-solver, new DNN-based method, or rule-based) that 

meets the required accuracy requirement. 

d. The testing covered four designs of 28nm and 7nm process nodes. The results 

show that the proposed DNN-based extraction method extracts capacitances of 

complicated structures with high accuracy (< 3% average error) and 100X faster 

than field-solvers. However, few outliers have an error exceeding 5% in extracted 

capacitances. Furthermore, the proposed hybrid flow managed to meet the 

required accuracy (< 5% error) with 99% accuracy and 70X faster than field-

solvers. 

1.5.4. Parasitic-Aware Layout Analysis and Routing Optimization Methodology  

A new parasitic-aware re-routing optimization method using circuit moments is 

proposed. The proposed methodology enables circuit designers to debug and analyze 

the impact of parasitic elements on a circuit performance. Also, the proposed method 

provides a mechanism to identify the problematic parasitic elements and correlate them 

with specific layout geometries. Moreover, it uses nonlinear programming to re-route 

the problematic paths (i.e., routes) in order to achieve the required specifications with 

full consideration of the surrounding environment. The proposed methodology is very 

efficient with net symmetry constraints and parasitic-aware re-routing. The 

contributions can be summarized as below: 

a. Circuit models to measure and analyze the impact of parasitic elements and 

corresponding layout geometries on a pre-defined cost function, such as net 



16 

 

symmetry and maximum delay cost functions. In other words, they measure the 

sensitivity of system’s performance cost function to layout geometries. 

b. The proposed models are used in an algorithm that identifies the geometries and 

parasitic elements that the system’s performance is most sensitive to without any 

circuit simulations. 

c. A parasitic-aware re-routing optimization algorithm that uses nonlinear 

programming to automatically modify the most critical routes in order to meet the 

required performance cost function. The proposed algorithm accepts pre-

determined degrees of freedom (e.g., route’s corners) and dynamic constraints.  

d. A novel incremental parasitic extraction methodology that considers second order 

parasitic capacitance effects efficiently. The proposed incremental methodology is 

applied on top of a full layout parasitic extraction tool, Calibre PEX [19]. It 

provides very accurate parasitic extraction results with a maximum error < 1% and 

a speedup of up to 40X as compared to a full layout extraction. 

e. The proposed methodology is tested on different designs of 7nm and 65nm 

process nodes.  

1.6. Organization 

This dissertation is organized as follows. Chapter 2 provides a background on 

different parasitic capacitance extraction methods, the impact of systematic process 

variations on parasitic capacitances, and the parasitic capacitance extraction in advanced 

process technology nodes, and the parasitic-aware template-based layout optimization 

method. Chapter 3 provides the related works. Chapter 4 describes the proposed 2D 

cross-section interconnect parasitic capacitance models. Chapter 5 describes the proposed 

MEOL parasitic capacitance models. Chapter 6 describes the proposed hybrid parasitic 

capacitance extraction method. Chapter 7 describes the proposed parasitic-aware layout 

routing optimization method. Chapter 8 provides the conclusion. Chapter 9 presents the 

future work. 
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Background 
 

This chapter provides background on relevant topics to parasitic capacitance extraction 

and parasitic-aware routing optimization methods. It is organized as follows. Section 2.1 

explains the rule-based 2.5D parasitic capacitance extraction method. Section 2.2 

discusses the systematic process variations. Section 2.3 illustrates the different field-

solver methods. Section 2.4 provides the main challenges of the parasitic capacitance 

extraction in advanced process nodes. Section 2.5 discusses the template-based layout 

optimization method and provides a brief discussion on system moments.  

2.1. Rule-Based 2.5D Capacitance Extraction 

Rule-based parasitic capacitance extraction methods are used in several commercial 

extraction tools, such as Calibre PEX [19] and StarRC [33], because they can handle full 

chips efficiently. Rule-based methods employ 2.5D extraction approaches in order to 

extract interconnect parasitic capacitances of a given layout. In 2.5D approaches, parasitic 

extraction tools scan a given layout in the x and y directions to obtain all corresponding 

2D cross-section layout patterns. For each cross-section pattern, plate and fringing 

coupling capacitances (per unit length) are calculated using pre-characterized 

capacitance formulas [11]. The mapping between cross-section patterns and the 

corresponding capacitance formulas is performed using pattern matching operations. 

Once all capacitances are calculated, they are multiplied by the corresponding projection 

length to get the total capacitance values.  

Fig. 2.1 provides an illustrative example of extracting a certain metal polygon using 

the 2.5D extraction approach. The figure shows a layout structure of three metal layers 

including metal1, metal2, and metal3 layers. The target metal polygon is the middle 

metal2 polygon. There are four cross-sections for the target metal polygon. Three cross-

sections are in the z-y plane, and one cross-section is in the z-x plane. Cross-section1 (C1) 
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and crosssection2 (C2) are identical, and each contains five capacitance components. 

Cross-section3 (C3) contains eight capacitance components. Cross-section4 (C4) contains 

six capacitance components. The fringing and lateral capacitances are calculated for each 

cross-section using corresponding capacitance formulas. Then, each capacitance 

component is multiplied by the corresponding projection length (i.e., L1 to L4). As for 

plate capacitances, they are calculated in one cross-section, either z-x or z-y cross-sections, 

and multiplied by the corresponding projection length. This is done to avoid duplicate 

calculations of the same plate capacitance.  

 
Fig. 2.1. An illustrative example of extracting a metal polygon using the 2.5D parasitic capacitance 
extraction method. 

The rule-based extraction method has two main steps: 1) a pre-characterization (i.e., 

calibration) step, as shown in Fig. 2.2 (a); and 2) a layout parasitic capacitance extraction 

step, as shown in Fig. 2.2 (b). The pre-characterization (i.e., calibration) step is responsible 

for generating a pre-characterized library of capacitance and sensitivity formulas, where 

each process technology node has a different pre-characterized library. On the other 
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hand, the layout parasitic extraction step is responsible for analyzing layouts and 

calculating corresponding parasitic elements using the corresponding pre-characterized 

library. 

 

                        (a)                                               (b) 

Fig. 2.2.  Rule-based parasitic capacitance extraction steps including (a) pre-characterization and (b) 
layout parasitic extraction steps. 

 

2.1.1. The Pre-Characterization Step 

In this step, a pre-characterized library of capacitance and sensitivity formulas are 

generated for a certain process technology node. The pre-characterization process starts 

with generating many 2D and 3D layout patterns based on the corresponding 

technology specifications. The structures of those patterns are pre-characterized. Then, 

a field-solver tool is used to extract reference parasitic capacitance values for each 

layout pattern. The reference capacitance numbers are either formatted in lookup tables 

or passed to a curve fitting tool. The curve fitting tool generates a capacitance formula 

for each capacitance component as below: 

𝐶 =  𝑓(𝑝1, 𝑝2, . . . ), (2.1) 

where C represents a certain capacitance component, f (p1,p2,..) represents the curve 

fitted capacitance formula, whereas p represents a certain geometrical parameter (e.g., 

width or spacing). Moreover, sensitivity formulas are generated to measure the impact 

of systematic process variations on each capacitance component, where each 
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capacitance component is calculated using a single capacitance formula and multiple 

sensitivity formulas as below: 

𝐶 =  𝑓(𝑝1, 𝑝2, . . . ) +  ∑ ∆𝑆𝑖 

𝑛

𝑖 = 0

 ∙  
𝜕𝐶

𝜕𝑆𝑖
, (2.2) 

where S represents a certain variation parameter (e.g., a metal thickness variation), 

𝜕𝐶 𝜕𝑆⁄  represents a sensitivity formula that measures a capacitance sensitivity to a 

certain variation parameter, whereas n represents the number of systematic process 

variation parameters. Eventually, the generated capacitance and sensitivity formulas 

are stored in a pre-characterized library in order to be later used by parasitic capacitance 

extraction tools [34].  

2.1.2. Layout Parasitic Capacitance Extraction Step 

The layout parasitic capacitance extraction step is responsible for extracting 

parasitic capacitances of a given layout and writing the extracted parasitic elements into 

a parasitic netlist. The extraction flow starts with analyzing and measuring the 

geometries of a layout. After that, layout geometries are fractured into 2D cross-section 

patterns as shown in Fig. 2.1. Then, a pattern matching operation is performed to match 

each 2D cross-section pattern with corresponding pre-characterized capacitance and 

sensitivity formulas. Eventually, the measured geometries are passed to the obtained 

pre-characterized formulas to calculate the corresponding capacitance values. Once all 

parasitic capacitances are extracted, a parasitic netlist is generated to be later used by 

circuit simulators to perform post-layout simulations [34]. 

2.2. Systematic Process Variations 

As process technology nodes scale down, the dimensions of metal wires continue to 

shrink, and the difficulty of controlling the variations of interconnect geometries and 

device parameters significantly increased [35]. There are two types of variations 

including random and systematic variations. Random variations represent the 

unpredictable and stochastic variations that cannot be associated with specific conditions 
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or layout patterns. They might change from time to time and from location to another. 

The random variations are usually modeled using statistical models as in [36]–[39]. 

On the other hand, systematic variations represent the predictable and deterministic 

variations that are associated with specific process conditions (e.g., chemical mechanical 

polishing) and layout patterns. In advanced process technology nodes, the impact of 

systematic variations on parasitic capacitances increases because systematic variations 

represent higher percentages of interconnect and device dimensions [26], [27], [40]. The 

main systematic process variations include metal thickness variations, inter layer 

dielectric thickness variations (i.e., loading effects), metal width variations (e.g., etching), 

and trapezoidal variations of metal layers as shown in Fig. 2.3. Fig. 2.3 (a) shows examples 

of metal thickness variations and inter layer dielectric thickness variations (i.e., loading 

effects). The loading effects mainly impact the thickness of inter layer dielectrics and the 

elevation of the corresponding upper metal layers, whereas the metal thickness variations 

mainly impact the top thickness of the corresponding metal layer. Fig. 2.3 (b) shows an 

example of trapezoidal variations in metal layers, where the sidewall slope of a certain 

metal layer changes. Fig. 2.3 (c) shows an example of a metal width variation that impacts 

the width of metals and the separation between them. Since systematic variations are 

pattern dependent, parasitic capacitance extraction tools usually model their effects using 

sensitivity formulas as in [27]–[29]. Such a modeling approach has three main problems 

that impact the extraction accuracy: 1) it neglects the cross-dependency impact among 

different variation parameters on parasitic capacitances; 2) it uses a limited number of 

patterns and parameters to model the impact of systematic variations on parasitic 

capacitances; and 3) it has a high potential of pattern mismatches similar to the case of 

capacitance calculations (i.e., formulas). Moreover, the current handling of systematic 

variations introduces extra computational runtime, where each capacitance component 

is calculated using a single capacitance formula and multiple sensitivity formulas as 

shown in (2.2).  Fig. 2.4 shows an example of the cross-dependency between the sidewall 

slope (θ°) of metal1 layer and metal1 lateral capacitance sensitivity to metal1 thickness 

(𝜕𝐶𝑙 𝜕𝑡⁄ ). The experiment used metal1 layer of 28nm process node. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 2.3. Examples of systematic process variations showing (a) metal thickness variation and loading 
effects, (b) trapezoidal variations, and (c) metal width variations. 

 

 

Fig. 2.4. An example of the cross-dependency between a sidewall slope (θ°) of a metal layer and a lateral 

capacitance sensitivity to a metal thickness (∂Cl ⁄ ∂t). The experiment used metal1 layer of 28nm process node. 

 

2.3. Field-Solvers 

Numerical methods (field-solvers) are the most accurate techniques to calculate the 

parasitic capacitances. They simulate electrostatic fields among different metal polygons 

in integrated circuits to capture the coupling capacitances among different metal 
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polygons. Assume M metal polygons arbitrarily distributed. The parasitic coupling 

capacitances among different polygons can be calculated by: 

𝑄𝑖 = ∑𝐶𝑖𝑗 ∗  𝑉𝑖 ,

𝑀

𝑗=1

 (2.3) 

where Qi is the electric charge on a certain metal polygon, Cij is the coupling capacitance 

between two different metal polygons, and Vi is the electric potential on a certain 

polygon; however, solving this formula is not trivial, especially with complicated 

structures and multiple dielectrics. Laplace equation helps in calculating the parasitic 

capacitances in multi-dimensional structures.  For each homogenous dielectric region, the 

electric potential V is governed by Laplace equation as below: 

∇2𝑉 = 
𝜕2𝑉

𝜕𝑥2
+ 

𝜕2𝑉

𝜕𝑦2
+ 

𝜕2𝑉

𝜕𝑧2
= 0, (2.4) 

There are several numerical methods that is used to solve Laplace equation. They can be 

classified into three main classes: discretization methods, integral methods, and 

stochastic methods. 

2.3.1. Discretization Methods 

The discretization methods include finite difference methods (FDM), finite element 

methods (FEM), and finite volume methods (FVM) [14]. The discretization methods are 

used to solve Laplace equation by discretizing the whole domain and generating a high 

order linear system. This provides very accurate results but with a very limited 

computational runtime. 

2.3.2. Integral Methods 

The integral methods include methods of moments (MOM), direct boundary 

element methods (DBEM), and indirect boundary element methods (IBEM) [14]. In the 

integral methods, only the boundaries of the domain are discretized.  
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2.3.3. Stochastic Methods 

The stochastic methods include floating random walk algorithms (FRW). Such 

methods are useful for very large size applications. The main idea behind the stochastic 

methods is to calculate conductor charges by Monte Carlo (MC) integrations using 

random walks [14], [41], [42]. 

2.4. Parasitic Capacitance Extraction in Advanced Process Technology Nodes 

With the continuous down scaling in advanced nodes, metal interconnects are 

shrunk, and more metal layers are introduced to provide more routing paths. This 

introduced three main challenges to the parasitic capacitance extraction accuracy. First, 

the accuracy requirements increased significantly due to the increasing impact of 

interconnect parasitic effects on circuit performances. Second, the mask misalignments 

(due to double and multi-patterning) and lithography effects cause more geometrical 

variations that impact parasitic capacitances. Third, the impact of surrounding metals on 

parasitic capacitances significantly increased due to the increased density and shrunk 

dimensions of interconnects (e.g., 3D fringing coupling capacitances [3], [5], [6], [10], [30]. 

Traditional 2.5D extraction methods cannot cope with the new accuracy requirements 

by semiconductor foundries (< 5% error) in advanced process nodes because they suffer 

from three main problems. First, the 2.5D extraction method only considers the 

capacitance interactions and arrangements of metal polygons in z-x and z-y planes. 

Therefore, many 3D fringing capacitance interactions are neglected as shown in Fig. 2.5. 

Moreover, many surrounding metal polygons that impact parasitic capacitances are not 

considered because they are not detected in either z-x or z-y planes. Second, the pattern 

mismatches, which occur when parasitic capacitances of a layout pattern are extracted 

using inappropriate capacitance formulas, increase due to the increased complexity of 

layout patterns. Third, the pattern coverage is limited, where the pre-characterized layout 

patterns and capacitance formulas are not enough to efficiently handle the more diverse 

layout patterns in advanced nodes. 
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Fig. 2.5. An illustrative example of the limitations of existing 2D cross-section models of 2.5D 
extraction method. 

 

The proposed DNN-based extraction method, in Chapter 6, can handle layout patterns 

of advanced process nodes efficiently because of four main reasons. First, the proposed 

method provides compact parasitic capacitance models that extract the 3D fringing 

capacitances efficiently. Second, the proposed method improves pattern coverage 

because each compact model handles many diverse layout patterns with arbitrary 

distributed polygons. Third, the proposed method mitigates pattern mismatches as 

patterns of a certain layer combination are extracted using a single compact model. 

Fourth, it considers different lithography effects, such as double and multi-patterning, as 

the inputs to DNN models use layout polygons of effective actual dimensions (not drawn 

dimensions) as shown in Fig. 2.6. However, some foundries prefer to model mask 

misalignments by changing dielectric constants of surrounding dielectrics [6]. In such a 

case, the proposed method handles that by representing each mask in a separate layer.  
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Fig. 2.6. An example of three metal polygons showing the impact of applying mask misalignments and 
effective line width variations on drawn dimensions. 

2.5. Layout Optimization and System Moments 

This section explains the template-based parasitic-aware layout optimization 

highlighting the importance of parasitic extraction during the optimization loops. 

Moreover, a brief discussion on system moments is introduced.  

2.5.1. Template-Based Parasitic-Aware Layout Optimization 

A layout optimization is the process of modifying and optimizing layout designs in 

order to meet the required circuit specifications. One of the most efficient layout 

optimization methods is the template-based method. The template-based method is 

used to either migrate a layout design from one process node to another or optimize an 

existing layout to meet the required constraints and specifications. It consists of two 

main steps that include symbolic template extraction and layout generation steps as 

shown in Fig. 2.7. The symbolic template extraction step is responsible for extracting a 

symbolic template of an existing layout design, whereas the layout generation step is 

responsible for generating and optimizing an existing layout by using the obtained 

symbolic template. 

2.5.1.1. Symbolic Template Extraction: 

This step is responsible for generating a set of geometrical and electrical 

constraints (i.e., symbolic template) of an existing layout considering the required 

circuit specifications. It starts with extracting transistors, devices, and nets from an 

existing (i.e., original) layout. Then, the constraints of an existing layout are extracted, 

translated into equations or inequalities, and included in the corresponding symbolic 
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template, for example, the connectivity of interconnects, corresponding design rules, 

proximity, and symmetry constraints [20], [22], [43], [44]. On the other hand, a corner 

stitching is used, as a data structuring technique [45], in order to help in performing 

the different geometry operations. It is worth mentioning that the symbolic template 

is usually represented by mathematical formulas (e.g., compaction formulas) such as 

in  Fig. 2.8. 

 

Fig. 2.7. Template-based layout optimization flow [20], [44]. 

 

2.5.1.2. Layout Generation and Optimization 

In this step, an existing layout is optimized using the obtained symbolic template 

constraints and the new design requirements in order to achieve the required 

specifications. The optimization constraints include geometrical (e.g., geometrical 

symmetry) and electrical (e.g., parasitic constraints) constraints [20], [22], [43], [44]. 

The layout optimization step starts with a device sizing followed by a routing 

optimization, where the routing optimization is performed in the horizontal and 

vertical directions separately.  

2.5.1.3. Geometrical Constraints 

The constraints that are used in the optimization processes, excluding the 

parasitic effects, can be expressed by compaction formulas and solved in the vertical 
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and horizontal directions separately [44], [46]. For example, let Xr represents the right 

most end of a target layout, whereas Xl represents the left most end of the same target 

layout. Therefore, the compaction formulas in the x-direction are expressed by:  

min(𝑋𝑟 − 𝑋𝑙)  

subject to      (𝑥𝑖 − 𝑥𝑗  )  ≥ LOB,  

(𝑥𝑖 − 𝑥𝑗  ) = EXB,  

(𝑥𝑖 − 𝑥𝑗  ) =  (𝑥𝑘 − 𝑥𝑙  ), (2.5) 

where LOB is a constraint that represents geometrical lower bounds (e.g., polygons 

minimum dimensions), EXB is a constraint that represents exact bounds, whereas x 

variables represent either the symmetry axes or the right and left edges of layout 

polygons. The constraints should include and describe the properties that are needed 

to meet the required specifications, such as design rules, new device size 

specifications, and crosstalk minimization [44].  

Fig. 2.8 shows an example of a simple layout with 13 horizontal coordinates (x1 to 

x13), given that x13 represents the symmetry axis. The formulas that are shown in Fig. 

2.8 represent the geometrical constraints that can be used in the corresponding routing 

optimization process. The highlighted constraints represent the corresponding design 

rules, a layout symmetry, and minimum dimensions. For example, (x12 – x11) ≥ 2 aims 

to set the minimum width of a certain polygon to 2µm, whereas (x4 – x3) = (x10 – x9) 

aims to maintain the geometrical symmetry of the given two structures.  
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Fig. 2.8. An Example of template geometrical constraints for a simply layout in the x-direction [44]. 

 

2.5.1.4. Parasitic Constraints 

The layout optimization processes must consider the impact of parasitic elements 

on a circuit performance in order to achieve more accurate optimization results. 

Therefore, layout parasitic elements must be extracted and reduced in order to meet 

the required circuit specifications efficiently. Since layout parasitic elements are 

highly correlated with the corresponding layout geometries, parasitic constraints can 

be converted into geometrical constraints. In other words, the parasitic constraints can 

be represented by functions of x and y coordinates of the corresponding metal 

polygons. This is usually performed in two steps. First, the bounds of parasitic 

elements that ensure the circuit performance are identified using circuit simulations. 

Therefore, the parasitic constraints as functions of the corresponding geometrical 

coordinates are given by: 
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𝑓(𝑥, 𝑦) ≤ UPB, (2.6) 

where UPB is an upper bound of a certain parasitic element. Second, the 

corresponding geometrical constraints are defined in both x and y directions as below: 

(𝑥𝑖 − 𝑥𝑗  )  ≥  𝐿𝐵, (𝑦𝑖 − 𝑦𝑗  )  ≥ 𝐿𝐵,  (2.7) 

(𝑥𝑖 − 𝑥𝑗  )  ≤ 𝑈𝐵, (𝑦𝑖 − 𝑦𝑗  )  ≤ 𝑈𝐵, (2.8) 

(𝑥𝑖 − 𝑥𝑗  ) =  (𝑥𝑘 − 𝑥𝑙 ), (𝑦𝑖 − 𝑦𝑗  ) =  (𝑦𝑘 − 𝑦𝑙 ), (2.9) 

where LB represents a geometrical lower bound, and UB represents a geometrical 

upper bound. Such geometrical bounds are obtained from the corresponding parasitic 

bounds as shown in (2.6). Therefore, (2.7) and (2.8) represent the lower and upper 

geometrical bounds in x and y directions, whereas (2.9) represents the matched 

interconnect that are required to achieve identical parasitic elements. Once all 

required geometrical and parasitic constraints are obtained, the optimization (i.e., 

searching) process is performed to achieve a layout that meets the required 

specifications. 

The main challenges of existing parasitic-aware layout optimization processes are: 

a. The calculations of parasitic bounds require multiple circuit simulations that 

consume a lot of time. Moreover, the optimization process requires the 

calculations of a circuit performance sensitivity to each parasitic element, which 

consume a lot of time as the sensitivities are usually calculated using multiple 

circuit simulations. 

b. The relationship between parasitic elements and layout geometries is nonlinear, 

which complicates the optimization process [22], [44].  

c. Usually, the compaction formula is solved in the x and y directions separately (one 

after another). Such a way of handling the compaction formula cannot provide 

efficient results when it comes to the nonlinearity of parasitic constraints. 

Moreover, it does not consistently provide the required solution, and it may 

require manual modifications afterwards. On the other hand, the efforts that solve 
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the compaction formulas in the x and y dimensions simultaneously did not handle 

the situations of non-Manhattan shapes such as in [22], [44].  

d. Most of existing efforts rely on simple and lumped parasitic formulas that cannot 

cope with the accuracy requirements of advanced process technology nodes. 

e. Existing efforts do not help circuit designers in understanding the impact of 

parasitic elements on system (e.g., route) performance. 

The impact of such problems in parasitic-aware optimization flows significantly 

increases in advanced process nodes, where the interconnect parasitic effects 

dominate the overall circuit performance.  

2.5.2. System Moments  

Assuming an RC linear circuit, the corresponding general nodal analysis equations 

are given by: 

𝐺 𝑉 + 𝐶 𝑉̇ = 𝑏, (2.10) 

where G is an n×n admittance matrix that is obtained from the interconnections among 

the resistive elements, C is an n×n capacitance matrix that is obtained from the 

interconnections among the capacitive elements, 𝑏 is a vector of size n that represent 

the inputs at each node, V is a vector with n state variables that represent the capacitor 

voltages (i.e., voltage response at each node), whereas n represent the number of nodes 

(or capacitor voltages) for a linear system with RC elements. The response, V(s), at any 

node in a given linear circuit can be expressed by a Taylor series expansion as below 

[47]: 

𝑉(𝑠) =  𝑚0 + 𝑚1 𝑠 +  𝑚2 𝑠
2 +  𝑚3 𝑠

3 + ⋯, (2.11) 

where mi represents the ith moment of a given linear system at a given node. 

Substitute (2.11) in (2.10), we get: 

𝐺[𝑚0 + 𝑚1 𝑠 +  𝑚2 𝑠
2 + ⋯ ] + 𝐶 𝑠[𝑚0 + 𝑚1 𝑠 +  𝑚2 𝑠

2 + ⋯ ] = 𝑏 . (2.12) 

Equating the coefficients of sn in both sides of (2.12), we get  [47]: 
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𝐺 𝑚0 = 𝑏 

𝑚0 = 𝐺−1 𝑏 

𝑚1 = 𝐺−1  𝐶 𝑚0 

𝑚2 = 𝐺−1  𝐶 𝑚1 

⋮ 

𝑚𝑛 = 𝐺−1  𝐶 𝑚𝑛−1. (2.13) 

Therefore, the moments of a linear system provide a detailed representation of its 

response (i.e., a system response) as shown in (2.11), and system moments can be 

obtained by (2.13) [47]. 

2.6. Summary 

This chapter provides backgrounds on 1) rule-based 2.5D parasitic capacitance 

extraction highlighting the main limitations of such an extraction method; 2) different 

field-solver methods; 3) the main systematic process variations; 4) the challenges of 

parasitic capacitance extraction in advanced process nodes; and 5) the template-based 

parasitic-aware layout optimization method.  
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Review of and Feature Comparison to 
Related Previous Work 

 

This chapter discusses state-of-the-art related work of parasitic capacitance extraction 

and parasitic-ware layout optimization methods. Moreover, it summarizes the main 

differences between our work and state-of-the-art related work. This chapter is organized 

as follows. Section 3.1 discusses related work of rule-based 2.5D capacitance extraction 

highlighting the main differences between our work and several state-of-the-art related 

work. Section 3.2 provides related work of MEOL parasitic capacitance extraction. Section 

3.3 explains the different extraction methods and compares them with the proposed 

hybrid extraction method. Section 3.4 presents several previous efforts of parasitic-aware 

routing optimization methods, and it provides a comparison among state-of-the-art 

related work including our work. 

3.1. Rule-Based 2.5D Capacitance Extraction 

Many efforts were done to improve the accuracy of rule-based 2.5D parasitic 

capacitance extraction methods [9], [15], [16], [27], [28], [31], [48]–[50]; however, most of 

them either use simplified models to improve pattern matching as in [9], [31], or tackle 

specific interconnect structures by using analytical models as in [15], [16], [50]. As for 

systematic process variations, all previous efforts of modeling the impact of systematic 

variations on parasitic capacitances, in rule-based methods, focused only on the accuracy 

of the capacitance and sensitivity formulas. They completely ignored other sources of 

inaccuracies such as pattern mismatches and pattern coverages. Also, they did not 

consider the impact on the extraction runtime after incorporating their formulas [27], [48]. 

In [27], a modeling methodology was developed to improve the accuracy of the 2.5D 

parasitic capacitance extraction method by considering reactive ion etching (RIE) 



34 

 

variations using sensitivity formulas. This effort used traditional sensitivity methods to 

handle interconnect thickness variations that are caused by RIE. Such an approach has 

three main problems. First, it has a limited pattern coverage as it only considers basic 

three wires patterns. Therefore, it cannot be generalized on complicated layout patterns. 

Second, it adds more computational runtime on parasitic extraction tools as it introduces 

additional sensitivity formulas to be computed on top of existing formulas. Third, it only 

considers RIE effects and completely ignores the cross-dependency impact of different 

variation parameters on parasitic capacitances. As a result, it is not suitable for advanced 

process nodes. 

In [48], a modeling methodology for interconnect parasitic capacitances considering 

lithography effects was developed. The methodology uses a lithography simulator across 

many 3D layout patterns to incorporate lithography effects, such as metal width 

variations, into the generated 3D layout patterns. Then, it passes the modified layout 

patterns to a 3D field-solver to extract their parasitic capacitances. After that, the modified 

patterns and their parasitic capacitances are stored in a pre-characterized library to be 

later used by parasitic extraction tools. This effort has several problems. First, it is not 

applicable for 2.5D extraction methods since it only considers 3D layout patterns. Second, 

the lithography simulator would generate a lot of curvilinear layout shapes that add a lot 

of complications on layout parasitic extraction processes. The complications include more 

pattern mismatches, more parasitic extraction runtime due to running a lithography 

simulator on layouts, and a huge pre-characterization runtime due to running a 3D field-

solver over many curvilinear shapes. Third, such a methodology has a very limited 

pattern coverage, and it cannot provide good accuracy on full chips. Moreover, the 

authors did not introduce any solution for the pattern coverage and pattern mismatch 

problems. 

In [15] and [16], field-based parasitic capacitance formulas for metal wires were 

developed. Such formulas consider the different 3D parasitic effects of a metal wire 

including fringing and corner coupling capacitances; however, those formulas are only 
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valid for isolated wires. They do not consider the impact of surrounding metals and 

systematic process variations. Hence, they are not efficient for full chip interconnect 

parasitic extraction in advanced process nodes. 

In [51], a neural-network model was developed for several 3DIC interconnect 

structures around through-silicon-vias (TSVs). This model uses a single dielectric 

structure, and it is only limited to certain interconnect structures around TSVs. Hence, 

such a model is not efficient for multi-dielectric environment and full chip extraction. 

In [31], a pattern matching classifier was developed using neural networks in order 

to assign each layout pattern to a corresponding capacitance model. Also, interconnect 

parasitic capacitance models using neural networks were developed for 2D cross-section 

layout patterns. Such an approach managed to reduce pattern mismatches and improve 

the accuracy of parasitic capacitance extraction results; however, it has three main 

problems. First, the proposed models use layout patterns with limited geometrical 

parameters. Second, the models completely ignore systematic process variations. Third, 

the proposed models were only verified on simple 2D cross-section patterns, and they 

were not verified on real layout patterns. 

Table 3.1 summarizes the contributions and limitations of our work and related 

works. Table 3.2 provides a comprehensive comparison among related works including 

our work. The comparison includes ten factors as below: 

a. The considered systematic process variations. 

b. The modeling methodology of systematic process variations, where the impact of 

systematic variations on parasitic capacitances can be implicitly considered while 

predicting parasitic capacitances by using the capacitance models (i.e., embedded 

inside the model), or it can be modeled using sensitivity formulas or lithography 

simulators. 

c. The pattern coverage, where some models may only cover a limited number of layout 

patterns. 

d. Type of input layout patterns (2D cross-section or 3D layout patterns). 
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e. The pattern matching mechanism, which is an essential step in 2.5D extraction flows. 

The pattern matching is used to match layout patterns with corresponding pre-

characterized capacitance formulas (or models) in order to calculate the 

corresponding parasitic capacitance numbers. There are two types of pattern 

matching that include geometry-based and layer-based. In the geometry based, the 

pattern matching is performed based on the geometrical structures of layout patterns, 

whereas in the layer-based, the pattern matching is performed based on the layer 

names, where each set of metal layers is handled by a specific model (regardless of its 

geometrical structure). 

f. The possibility of pattern mismatches that occur when parasitic capacitances of a 

layout pattern are calculated using inappropriate capacitance formulas. 

g. The support of multi-dielectric environment. 

h. The modeling method, which represents the method that is used to implement the 

models, such as analytical formulas, curve fitted formulas, lookup tables, neural 

networks, and support vector regressions. 

i. The testing and validation methodologies, which indicate whether the related work 

was verified on real process technology nodes or not. 

j. The overhead on the actual parasitic capacitance extraction runtime, where some 

models require additional computations in order to predict the impact of systematic 

process variations on parasitic capacitances. 
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Table 3.1. Contributions and limitations of the proposed 2D cross-section models and related works in 
rule-based capacitance extraction. 

Research  Contribution Limitation 

Karsilayan et 
al.  [27] 

• Sensitivity formulas were developed to model the 
impact of a reactive ion etching (RIE) on 
interconnect parasitic capacitances. 

• This effort used traditional sensitivity methods to 
handle interconnect thickness variations that are 
caused by RIE. 

• It has a limited pattern coverage as it only considers 
basic three wires patterns.  

• It adds more computational runtime on parasitic 
extraction tools. 

• It only considered reactive ion etching (RIE) effects and 
completely ignored the cross-dependency impact of 
different variation parameters on parasitic capacitances. 

Tsai et al. 
[48] 

• A modeling methodology for interconnect 
parasitic capacitances considering lithography 
effects was developed. 

• A lithography simulator was used to incorporate 
lithography effects into pre-characterized 3D 
layout patterns. Then, the parasitic capacitances of 
the modified patterns were extracted using a field-
solver and stored in a pre-characterized library. 

• In the extraction phase, a lithography simulator 
was used to incorporate lithography effects into a 
given layout. Then, a pattern matching operation 
was performed to match layout patterns with pre-
characterized patterns. 

• Limited pattern coverage as the method only supports 
3D layout patterns. 

• The lithography simulators would generate a lot of 
curvilinear layout shapes that add a lot of complications 
on layout parasitic extraction processes that include 
more pattern mismatches, more parasitic extraction 
runtime, and a huge pre-characterization runtime.  

• It only considered metal width variations. 

• It is neither suitable for advanced process nodes nor 
three-dimensional integrated circuits (3DIC) 
technologies. 

Zhang et al. 
[15], [16] 

• Analytical capacitance formulas were developed to 
calculate the different parasitic capacitance 
components of an isolated metal wire. 

• Such formulas consider the different 3D parasitic 
effects of a metal wire such as fringing and corner 
coupling capacitances. 

• The proposed formulas are only valid for isolated metal 
wires. 

• They are not efficient for full chip interconnect parasitic 
extraction in advanced process nodes. 

• The formulas do not consider systematic process 
variations. 

• They are neither suitable for advanced process nodes nor 
3DIC technologies. 

Li and Shi 
[31] 

• A pattern matching classifier was developed using 
neural networks in order to assign each layout 
pattern to a corresponding capacitance model.  

• Interconnect parasitic capacitance models using 
neural networks were developed for cross-section 
layout patterns. 

• This approach managed to reduce the pattern 
mismatches. 

• Limited pattern coverage as it used limited number of 
pre-characterized patterns. 

• The method did not mitigate pattern mismatches. 

• The method does not consider systematic process 
variations. 

• It is not suitable for 3DIC technologies. 

The 
proposed 
ratio-based 
and 
dimensions-
based 
models  

• Neural network models were developed for 28nm 
process node to predict interconnect parasitic 
capacitances of 2D cross-section layout patterns 
efficiently.  

• The proposed models use two different pattern 
representations that include: ratio-based and 
dimensions-based representations.   

• The proposed models managed to mitigate the 
pattern mismatches and improve the extraction 
accuracy. 

• The models only consider metal width variations, and 
they do not consider the different systematic process 
variations. 

• The models are slower than Calibre PEX, rule-based tool, 
by 1.3X.  

• The models were only verified on 28nm process 
technology node. 

• The models are not suitable for 3DIC technologies. 

The 
proposed 
vertex-based 
models 

• Machine learning compact models were developed 
to predict interconnect parasitic capacitances of 2D 
cross-section layout patterns efficiently.  

• The models can handle layout patterns of arbitrary 
distributed polygons and mitigate pattern 
mismatches. 

• The models use a new vertex-based layout 
representation to help in handling systematic 
process variations. 

• The models are almost 2.5X faster than existing 
rule-based models. 

• The models consider the cross-dependency impact 
of different variation parameters on parasitic 
capacitances. 

• The generated models are only valid for 2DIC 
technologies, where the die is mounted on a single plane 
inside the package. As for 3DIC technologies, multiple 
dies of different (or same) process nodes would be 
connected together by using either TSVs or interposers. 
This requires special modeling to predict the parasitic 
coupling interactions among TSVs and interconnects of 
different dies.  
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Table 3.2. A comparison among different parasitic rule-based capacitance extraction methods including 
the proposed 2D cross-section parasitic capacitance models. 

 Karsilayan 
et al.   

Tsai et al.  Zhang et 
al.  

Li and Shi  The proposed ratio-based 
and dimensions-based 
models 

The proposed vertex-
based models 

S
y

st
em

a
ti

c 
p

ro
ce

ss
 v

a
ri

a
ti

o
n

s Metal width 
variations 

No Yes 
(Supported) 

No No Yes (Supported) Yes (Supported) 

Metal 
Thickness 
Variations 

Yes 
(Supported) 

No No No No Yes (Supported) 

Loading 
effects 

No No No No No Yes (Supported) 

Trapezoidal 
variations 

No No No No No Yes (Supported) 

Modeling 
Method of 
variations 

Sensitivity 
models 

lithography 
simulator  

Not 
applicable  

Not 
applicable  

Embedded inside the 
model 

Embedded inside the 
model 

Pattern coverage It has a limited pattern coverage because their models 
cover a limited number of layout patterns. 

High pattern coverage as 
the proposed models can 
handle patterns with 
arbitrary distributed 
polygons. However, they 
cannot handle metal 
polygons that are vertically 
overlapped. 

High pattern coverage 
as the proposed 
models can handle 
patterns with arbitrary 
distributed polygons. 

Type of 
supported 
patterns 

2D cross-
section 
patterns of 
three 
parallel 
wires. 

3D patterns 
of parallel 
wires. 

3D 
patterns 
of isolated 
wires. 

2D cross-
section 
patterns of 
parallel 
wires. 

2D cross-section patterns of arbitrary distributed 
metal polygons (i.e., wires). 

Pattern matching 
mechanism 

Geometry-
based 

Geometry-
based 

Geometry
-based 

Geometry-
based 

Layer-based Layer-based 

Pattern 
mismatches 

High potential pattern mismatches as the pattern 
matching operations are performed based on the 
geometrical structures. 

No pattern mismatches as the pattern matching 
operations are performed based on the layer names. 
Therefore, each set of metal layers are handled using 
a single compact model. 

Multi-dielectric 
environment 

Yes Yes No Yes Yes Yes 

Modeling 
methods 

Curve fitted 
formulas. 

Lookup 
tables 

Analytical 
formulas 

Neural 
networks 

Neural networks Neural networks 
Support vector 
regressions 

Validation and 
testing 

Not Tested on real designs. Only tested on 28nm 
process node. 

Tested on 28nm, 14nm, 
and 7nm process 
nodes. 

Overhead on the 
actual parasitic 
capacitance 
extraction 
runtime 

It doubles 
the number 
of 
computatio
ns as 
sensitivity 
formulas 
are 
computed 
separately. 

 

Running a 
lithography 
simulator 
adds a lot of 
overhead on 
runtimes. 

It is fast as 
it uses 
analytical 
formulas 
with 
small 
number of 
variables. 

It adds extra 
runtime due 
to running a 
classifier to 
assign each 
layout 
pattern to a 
capacitance 
model. 

It is slower than existing 
commercial rule-based tool 
(i.e., Calibre PEX [19]) by 
1.3X when being tested on 
28nm process node. 

It is 2.5X faster than 
existing commercial 
rule-based tool (i.e., 
Calibre PEX [19]) when 
being tested on 28nm, 
14nm, and 7nm process 
nodes. 
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3.2. MEOL Parasitic Capacitance Extraction 

Several efforts were done to implement MEOL parasitic capacitance models [53]–[59]. 

However, most of these efforts did not provide a general methodology that can predict 

parasitic capacitances of MEOL patterns regardless of their geometrical structure. There 

are four main methods to extract MEOL patterns that include: 1) field-solvers; 2) 

analytical formulas [55], [56], [59], [60]; 3) pre-layout parasitic extraction models that do 

not consider layout geometries [53], [54]; and 4) a pre-characterized library of MEOL 

patterns  [57], [58], where the parasitic capacitances of those patterns are extracted by 

field- solvers and stored in a library to be later used by parasitic extraction tools.  

The methods that rely on field-solvers to extract MEOL patterns suffer from three 

main problems including: 1) capacity limitations, 2) excessive runtime, and 3) the 

consumption of many computational resources [11], [56], [59]. The methods that rely on 

analytical models are limited to specific MEOL patterns. On the other hand, the pattern 

matching methods that use a pre-characterized library of MEOL patterns suffer from 

three problems including: 1) potential pattern mismatches that impact the accuracy of 

extracted capacitances; 2) insufficient pattern coverage; and 3) the consumption of large 

diskspace. As a result, the pre-characterization approach results in a poor parasitic 

capacitance extraction accuracy with error percentages exceeding 10%  [57].  

In [53], a neural-network  model is developed to predict parasitic elements and device 

parameters (e.g., geometrical parameters) of devices. This is done by converting a circuit 

schematic into graphs that include: 1) the number of fanouts of each transistor terminal 

and 2) the device sizes. After that, the graphs as an input to the models in order to predict 

the parasitic elements and device parameters. In terms of MEOL parasitic capacitance 

extraction, this effort has three main problems. First, it predicts the parasitic elements as 

lumped capacitances. Second, it does not consider the interconnect layout geometries 

around the devices, which have a major impact on parasitic capacitances. Third, it can 

only handle the regular device structures of FINFETs with Manhattan geometries.  
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In [54], machine learning-based models were developed to predict parasitic elements 

around devices. They are pre-layout models that provide a very fast extraction runtime 

with reasonable accuracy. The inputs of those models are device parameters such as 

channel length and channel width. This effort has two main problems. First, it does not 

consider any layout geometries. Therefore, the post-layout simulation results might not 

be accurate especially for analog designs. Second, it only considers regular device 

structures with Manhattan geometries. Therefore, it cannot handle irregular MEOL 

structures. 

In [55], parasitic capacitance models that predict gate-around parasitic capacitances 

were developed based on SPICE models. Such models were mainly developed for 

MOSFET structures in 40nm process technology node. They can efficiently predict the 

parasitic capacitances around the gate; however, they have two main problems. First, this 

approach only considers MOSFET devices with regular structures. Second, it is only 

validated on 40nm process node. 

In [57], a parasitic capacitance extraction methodology for MEOL capacitances was 

developed. This methodology aims to identify the MEOL structures and extract their 

parasitic capacitances using a 3D field-solver tool. Such a methodology provides very 

accurate MEOL parasitic capacitance results; however, it is very slow and has a limited 

capacity as it uses a 3D field-solver tool. Therefore, it is not suitable for large designs. 

In this work, machine learning based MEOL parasitic capacitance models were 

developed. The developed models are suitable for MEOL around MOSFETs and 

FINFETs. The models can handle regular and irregular device structures with either 

Manhattan or non-Manhattan geometries. They are very fast and have high capacity as 

compared to field-solvers. 
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3.3. Hybrid and Intermediate Parasitic Capacitance Extraction Methods 

Hybrid parasitic capacitance extraction methods that combine rule-based and field-

solvers are considered in advanced nodes. Despite the accuracy improvements 

introduced by those methods, they suffer from two main problems. First, the proportion 

of patterns that have to go to field-solvers increases in advanced nodes (as technology 

scales down). With this proportion approaching 50%, using theses hybrid methods does 

not save much time as compared to field-solvers. Second, these hybrid methods do not 

eliminate all outliers because the layout patterns are assigned to extraction methods 

based on a pre-characterized library. Sometimes, in case of encountering a pattern that 

does not exist in the pre-characterized library, a field-solver is used, which results in more 

overhead to the runtime and capacity [8].  Table 3.3 summarizes the main differences 

among field-solver, rule-based, existing hybrid, the proposed intermediate extraction, 

and the proposed accuracy-based hybrid extraction methods. 

Table 3.3. Advantages and disadvantages of the different parasitic capacitance extraction methods. 
Method Advantages disadvantages 

Field-solvers • They are very accurate as compared to 

measurements. 

• They are slow with a limited capacity.  

• They cannot handle large designs 

Rule-based 

methods 

• They are very fast with reasonable 

accuracy. 

• They can handle full chips. 

• They are used for sign-off for many 

legacy nodes (>20nm) 

• They cannot cope with the increasing 

accuracy requirements in advanced 

process nodes. 

• They neglect many 3D fringing 

capacitances impacting the accuracy 

in advanced process nodes. 

Existing Hybrid 

method 

• It can provide very accurate results. 

• It can handle large designs. 

• It cannot cope with the accuracy 

requirements in advanced nodes as 

more patterns would be extracted 

using field-solvers. 

Proposed 

intermediate 

• It provides accurate results in a 

reasonable runtime. 

• It can predict all 3D fringing capacitances 

withing a pre-defined window. 

• It is suitable for advanced process nodes. 

• It is 2-3X slower than existing rule-

based method. 

• It requires a large characterization 

runtime. 

Proposed 

Hybrid 

• It provides very accurate results. 

• It can predict all 3D fringing capacitances 

withing a pre-defined window. 

• It is suitable for advanced process nodes. 

• It is faster than existing hybrid method. 

• It requires a large characterization 

runtime. 
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3.4. Parasitic-Aware Routing Optimization 

Most of existing parasitic-aware routing methods suffer from two problems. First, 

they use either simplified parasitic formulas or a full layout parasitic extraction in order 

to measure the parasitic elements for each layout modification in the design loop. The 

simplified parasitic models are not accurate and cannot cope with the increasing parasitic 

extraction accuracy requirements in advanced nodes leading to inaccurate layout 

optimization. On the other hand, the use of a full layout extraction is very time-

consuming and not suitable for optimizing large layout designs. Second, the existing 

routing optimization methods do not provide a systematic way to help circuit designers 

in understanding the impact of parasitic elements and the corresponding layout 

geometries on a system’s (i.e., route) performance. 

In [61], a parasitic-aware routing method was developed based on simplified 

parasitic formulas. This approach aims to reduce the delay and routing area considering 

the interconnect parasitic elements of a given layout. This method identifies multiple 

candidate routes for each connection. Then, it evaluates the performance of each 

candidate until the candidates that meet the required performance are achieved. This 

method has three main problems. First, it uses simplified parasitic formulas that cannot 

cope with the new accuracy requirements of advanced process nodes. Second, this 

method does not deal with the parasitic effects as dominant factors on a circuit’s 

performance. Third, this method relies on a pre-determined set of candidate routes that 

do not necessarily achieve the required performance.   

In [62], an automatic optimization-based sizing and routing methodology was 

developed for analog circuits. This methodology uses a layout generator that computes 

the optimal electrical current correct wire topology and global routing in loop for each 

different sizing solution. Such a methodology relies on simplified parasitic models in 

order to achieve reasonable optimization runtime as it requires many optimization loops 

(i.e., iterations). This methodology has three main problems. First, it requires many 

iterations to achieve good results. Second, it uses simplified parasitic formulas that 



43 

 

cannot cope with the new accuracy requirements of advanced process nodes. Third, it 

does not deal with the parasitic effects as dominant factors on circuit’s performance.  

In [63]–[65], parasitic-aware routing methodologies based on circuit moments were 

developed. The proposed methodologies aim to optimize layout routes by minimizing a 

cost function. The cost function considers parasitic resistance, capacitance, self-

inductance, and mutual coupling inductance effects (RLCK), and it provides a 

representation of the delay and ringing of the signals. Therefore, the minimization of the 

developed cost function helps in achieving a good balance between route’s delay and 

ringing. These efforts have five problems. First, they require a full layout parasitic 

extraction in order to evaluate the corresponding cost function with every optimization 

iteration. Second, the cost function is only valid for delay and ringing effects. Third, they 

are not suitable for both net symmetry constraints and analog designs. Fourth, they do 

not provide good understanding to the impact of parasitic effects on a route’s 

performance. Fifth, they do not correlate parasitic elements to certain geometries.  

In [20], a template-based parasitic-aware layout optimization method was developed. 

Traditional template-based methods optimize layout routes in x and y directions 

separately. This method aims to overcome this problem by optimizing layout routes in x 

and y directions simultaneously. Such a method uses a hybrid algorithm that consists of 

nonlinear programming and graph-based algorithms in order to achieve more accurate 

layout optimization. However, this method has three problems. First, it does not deal 

with the parasitic effects as dominant factors on a circuit’s performance as it uses very 

simple parasitic formulas to extract the parasitic elements of a given layout. Such 

formulas cannot cope with the new accuracy requirements of advanced process nodes. 

Second, it does not provide a mechanism to help circuit designers in understanding the 

impact of parasitic effects on a system’s (i.e., route) performance. Third, it only considers 

rectilinear and Manhattan geometries, and it cannot handle non-Manhattan geometries. 

In [22], [43], [44], [66], template-based parasitic-aware routing optimization 

methodologies were proposed. They are used for either retargeting or layout 
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optimizations. They aim to create a symbolic template with a set of constraints such as 

net symmetry, connectivity, parasitic bounds, and corresponding design rules. The 

calculations of parasitic bounds rely on multiple circuit simulations in order to identify a 

parasitic bound for each parasitic element. The parasitic model for each route is 

represented by a simple RC Π (i.e., pi) model in order to speed up the calculations of 

parasitic bounds. Such methodologies are fast; however, they are suffering from three 

problems. First, they use simplified parasitic formulas that cannot cope with the new 

accuracy requirements of advanced nodes. Second, they do not provide a mechanism to 

help circuit designers in understanding the impact of parasitic effects on a system’s (i.e., 

route) performance. Third, most of them cannot handle non-Manhattan geometries. 

In [67], analog layout design tool called LAYGEN II was developed. It uses a symbolic 

template (i.e., template-based) approach in order to perform placement and routing.  This 

approach is very efficient in achieving a good initial layout for a given circuit design; 

however, it requires a lot of computational resources in order to handle large layouts.  

In [68], an analog layout design tool was developed. It uses a combination of symbolic 

template (i.e., template-based) and optimization approaches in order to generate layouts. 

This method uses a template approach in order to reduce the search (i.e., solution) space. 

This method is efficient in achieving a good initial layout for a given circuit design; 

however, it requires a lot of computational resources in order to handle large layouts. 

Moreover, it is not designed to handle non-Manhattan geometries.  

In [69], a routing algorithm was developed using a discrete particle swarm 

optimization and multi-stage transformation methods. The proposed algorithm 

optimizes layout routes using two types of Steiner minimal tree models that include 

Manhattan and non-Manhattan Steiner minimal trees. Therefore, the selected route 

structure can contain Manhattan and non-Manhattan geometries. This flow has two 

problems. First, it does not consider the impact of parasitic elements except for a route’s 

delay. Second, it does not have a mechanism to help circuit designers in understanding 

the impact of parasitic elements on system’s performance.  
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The problems of existing layout routing optimization methods can be summarized as 

below:  

a. They do not provide a mechanism to help circuit designers in understanding the 

impact of parasitic elements on a system’s (i.e., route) performance, such as 

identifying the problematic parasitic elements along with the corresponding layout 

geometries. 

b. Most of existing efforts use either simplified parasitic formulas, such as in [9], [20], 

[22], [43], [66], [70], [71],  or a full layout extraction, such as in [63]–[65], [72], in order 

to extract the parasitic elements of a given layout.  The methods that use simplified 

parasitic formulas suffer from an accuracy problem as the accuracy of such parasitic 

formulas cannot cope with the increasing accuracy requirements in advanced process 

nodes, whereas the methods that use a full layout extraction suffer from a long 

runtime problem as they require a full layout extraction with every optimization 

iteration.  

c. Many of  existing layout optimization flows rely on circuit simulations with every 

optimization iteration as in [73], [74].  

This work focuses on overcoming these problems. First, it provides a routing 

optimization method that can be applied either after or within the detailed routing. 

Second, it provides sensitivity circuit models that help circuit designers in understanding 

the impact of parasitic elements and the corresponding layout geometries on a route’s 

performance. Third, it uses a novel incremental parasitic extraction method to extract the 

parasitic elements of modified layouts during the optimization process. Such an 

incremental method provides very accurate results (<1% error) with a speedup of up to 

40X as compared to a full layout extraction. Fourth, it does not require multiple circuit 

simulations.  Table 3.4 summarizes the contributions and limitations of related works 

including our work. Table 3.5 provides a functional comparison among related works 

and our work. 
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Table 3.4. Contributions and limitations of state-of-the-art layout routing optimization works including 
our work. 

 Contributions Limitations 

Smey et al., 

[61] 
• A routing optimization method that aims to 

reduce the area and delay was developed. 

• This method optimizes layout routes by 

identifying multiple candidate routes for each 

connection. Then, it selects the candidate route 

with minimum area and minimum delay. 

• It uses simplified RC parasitic formulas that cannot 

handle complicated layout structures in advanced 

nodes. Moreover, the accuracy of such formulas 

cannot cope with the increasing accuracy 

requirements in advanced nodes. 

• It does not consider inductance effects. 

• It relies on pre-determined candidate routes that 

do not necessarily achieve the required 

performance.   

• It does not handle non-Manhattan geometries. 

Lourenco et 
al., [62] 

• An automatic optimization-based sizing and 
routing methodology was developed for analog 
circuits.  

• It uses a layout generator that computes the 
optimal electrical current correct wire topology 
and global routing in-loop with each different 
sizing solution. 
It relies on simplified parasitic models in order 
to achieve reasonable runtime as it requires 
many optimization loops (i.e., iterations). 

• It requires many iterations to achieve good results. 

• It uses simplified RC parasitic formulas that cannot 

handle complicated layout structures in advanced 

nodes. Moreover, the accuracy of such formulas 

cannot cope with the increasing accuracy 

requirements in advanced nodes. 

• It does not consider inductance effects. 

• It does not handle non-Manhattan geometries. 

Bhaduri and 
Vemuri 
[63]–[65] 

• Parasitic-aware routing optimization 
methodologies based on circuit moments were 
developed. 

• The proposed optimization methodologies use a 
cost function that consider the different RLCK 
parasitic elements in a candidate route. The 
minimization of the cost function helps in 
achieving a good balance between route’s delay 
and ringing. 

• The proposed methodologies identify multiple 
candidate routes and select the route with a 
minimum cost value. 

• They use a full layout parasitic extraction to 
evaluate the cost function, which consumes a lot of 
time. 

• The developed cost function has limited 
applications as it only considers the delay and 
ringing effects. 

• The cost function is not suitable for net symmetry 
constraints and analog designs.  
These efforts do not provide a mechanism to help 
circuit designers in understanding the impact of 
parasitic effects on a route’s performance.  

Zhang et al., 
[44]. 
Liu and 
Zhang [22], 
[66]. 
Bhattacharya 
et al., [43]. 
Jangkrajarng 
et al., [20]. 

• Template-based parasitic-aware routing 

optimization methodologies were proposed. 

• They aim to create a symbolic template with a set 

of constraints such as design rules, connectivity, 

and net symmetry constraints.  Moreover, they 

identify the parasitic bounds of each parasitic 

element using circuit simulations. The symbolic 

template constraints and parasitic bounds are 

used as inputs to the routing optimization flow. 

• The calculations of parasitic elements use simple 

resistance and capacitance parasitic formulas.  

• They are efficient in achieving a good initial 

layout for a given circuit design in a reasonable 

time. 

• They use simple RC parasitic formulas that cannot 

handle complicated layout structures in advanced 

nodes. Moreover, the accuracy of such formulas 

cannot cope with the increasing accuracy 

requirements in advanced nodes 

• They do not deal with the parasitic effects as 

dominant factors on a circuit’s performance.  

• They do not consider inductance effects. 

• Most of them do not handle non-Manhattan 
geometries. 
They do not have a mechanism to help circuit 

designers in understanding the impact of parasitic 

elements on a system’s performance 

Naguib et al., 
[68] 

• An analog layout design tool was developed. 
This tool contains an automatic routing 
algorithm that uses symbolic template 
approaches.  

• The developed tool uses a template algorithm 
approach in order to reduce the routing search 
(i.e., solution) space. This approach is efficient in 
achieving a good initial layout for a given circuit 
design. 

• It requires a lot of computational resources in 
order to handle large layout designs.  

• It does not consider inductance effects. 

• It is not designed to handle non-Manhattan 
geometries. 

• It does not have a mechanism to help circuit 
designers in understanding the impact of parasitic 
elements on a system’s performance. 
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Table 3.4. Contributions and limitations of state-of-the-art layout routing optimization works 

including our work.-continued. 

 Contributions Limitations 

Liu et al., [69] • A routing algorithm was developed using a 
discrete particle swarm optimization and multi-
stage transformation methods.  

• The proposed flow optimizes the routes using 
two types of Steiner minimal tree models that 
include Manhattan and non-Manhattan Steiner 
minimal trees. Therefore, the selected route 
structure can contain Manhattan and non-
Manhattan geometries.  

• It does not consider the impact of parasitic 
elements except for a route’s delay. 

• It does not have a mechanism to help circuit 
designers in understanding the impact of parasitic 
elements on system’s performance. 

This work • Sensitivity circuit models were developed to 

measure and analyze the impact of parasitic 

elements and corresponding layout geometries on 

a circuit performance cost function.  

• A parasitic-aware re-routing optimization 

methodology that uses nonlinear programming 

was developed. The developed methodology 

automatically modifies the most critical routes to 

meet the required performance cost function 

without circuit simulations. Moreover, it handles 

Manhattan and non-Manhattan geometries. 

• The routing optimization methodology uses a 

novel incremental parasitic extraction method in 

order to provide an accurate parasitic extraction 

results very fast.  The proposed incremental 

extraction method considers second order 

parasitic capacitance effects efficiently.  

• It only considers the RC parasitic elements. Hence, 
this model is appropriate for local interconnect at 
any frequency and global interconnect at a lower 
frequency. For high frequency global interconnect, 
inductance and more complex models need to be 
included. 
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Table 3.5. A comparison among several state-of-the-art layout routing optimization works including our 
work. 

 Routing methodology Parasitic 
extraction 

Considered 
parasitic 
elements 

Requires 
circuit 
simulations  

Handling of 
Non-
Manhattan 
geometries 

Models to 
analyze the 
impact of 
layout 
geometries on 
a system’s 
performance 

Smey et al., [61] Minimize route’s area and 
delay. 

Simplified 2D 
cross-section 
models. 

RC Yes No No 

Lourenco et al., 
[62] 

Automatic 
electromigration-aware 
wire topology and global 
routing in-loop for each 
different sizing solution. 

Simplified 2D 
cross-section 
models. 

RC Yes No No 

Bhaduri and 
Vemuri 
[63]–[65] 

Minimize a cost function 
that provides a balance 
between the delay and 
ringing effects.  
It uses template-based 
approach to generate 
routing candidates. 

Full layout 
extraction 

RLCK No No No 

Zhang et al., 
[44]. 
Liu and Zhang 
[22], [66]. 
Bhattacharya et 
al., [43]. 
Jangkrajarng et 
al., [20]. 

A symbolic template 
approach that is used to 
minimize parasitic effects 
and a route’s area. 

Simplified 2D 
cross-section 
models. 

RC Yes No No 

Naguib et al., 
[68] 

A symbolic template 
approach that is used to 
minimize parasitic effects 
and a route’s area. 

Simplified 2D 
cross-section 
models. 

RC Yes No No 

Liu et al., [69] Swarm optimization 
algorithms that are used to 
minimize parasitic effects 
and a route’s area 

Full layout 
extraction 

RC No Yes No 

This work Nonlinear programming 
to minimize a performance 
cost function based on 
circuit moments and 
sensitivity models. 

Incremental 
layout 
parasitic 
extraction. 

RC No Yes Yes 
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3.5. Summary 

This chapter discusses previous related works of 1) rule-based 2.5D parasitic 

capacitance extraction methods; 2) MEOL parasitic capacitance extraction methods; 3) 

hybrid parasitic capacitance extraction methods; and 4) parasitic-aware routing 

optimization methods. Moreover, it provides a comprehensive comparison among state-

of-the-art related work including our work. 
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Machine Learning Compact Models for 
Rule-Based 2.5D Capacitance 
Extraction 

 

A novel modeling methodology of interconnect parasitic capacitance extraction is 

developed in rule-based extraction methods. The proposed methodology uses machine 

learning methods to create compact models that predict parasitic coupling capacitances 

between metal polygons in 2D cross-section layout patterns. Unlike existing models, the 

compact models handle patterns with arbitrary distributed polygons, consider connected 

polygons (i.e., polygons that hold the same potential), reduce pattern mismatches, 

increase pattern coverage, and consider systematic process variations. The compact 

models are technology-dependent, where each process technology node has a pre-

characterized set of compact models. The proposed compact models enabled the 

extraction of more complicated and multi-dimensional layout patterns. Moreover, each 

compact model can replace hundreds to thousands of existing capacitance and sensitivity 

formulas. Therefore, the compact models managed to provide a lower computational 

runtime, significant reduction in pattern mismatches, and significant accuracy 

improvements.  

The implementation process of the parasitic capacitance compact models consists of 

five main steps as follows: 1) identify the main characteristics of input patterns; 2) obtain 

training patterns; 3) generate reference parasitic capacitance numbers of training 

patterns; 4) extract features of cross-section patterns; and 5) train machine learning 

models. Fig. 4.1 shows the implementation process of interconnect parasitic capacitance 

compact models. 
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Fig. 4.1. The process of implementing 2D cross-section machine learning compact models for rule-based 
extraction methods. 

 

4.1. Identify Input Patterns Characteristics  

To create a compact model, we need to study several factors that identify the main 

characteristics of input patterns. The factors include: the surrounding multi-dielectrics, 

the window size of a cross-section pattern, the number of metal layers in a pattern 

window, the number of metal polygons in each layer, and systematic process variations.  

4.1.1. Surrounding Multi-Dielectrics 

Each process technology node (i.e., process stack) consists of multiple metal layers 

that are placed vertically and surrounded by dielectrics. Each metal layer has its own 

geometrical specifications such as minimum width, minimum spacing, thickness, 

elevation, and corresponding systematic process variation parameters. The metal layers 

are separated by dielectric structures. The dielectrics can be planar or conformal. Each 

dielectric has certain specifications such as a dielectric constant and thickness. Fig. 4.2 

shows an example of a typical process technology node stack (i.e., process stack) with 

multi-dielectric environment. The surrounding dielectrics have a direct impact on 

coupling capacitances between metal layers. So, they must be considered during 

parasitic capacitance extraction processes. However, including the surrounding 
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dielectrics into the input parameters to our parasitic models would complicate the 

models, require more training patterns, increase pattern mismatches, and add more 

overhead on training and prediction runtimes. Therefore, to avoid such complications 

and generate effective parasitic models, each process technology node (i.e., process 

stack) must have its own set of parasitic capacitance compact models. Also, each pre-

defined set of metal layers (i.e., metal collection), in a certain process technology node, 

must have a certain parasitic capacitance compact model as shown in Fig. 4.3, for 

example, metal1-metal2-metal3 collection has a compact model, whereas metal3-

metal4-metal5 collection has another compact model. In other words, each process 

technology node would have a separate pre-characterized library of machine learning 

compact models. 

 
Fig. 4.2. An example of a process technology node (i.e., process stack) with multi-dielectric environment. 
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Fig. 4.3. An example of machine learning compact models for cross-section patterns of two different 
metal collections. 

 

4.1.2. Window Size of Cross-Section Patterns 

The window size of a 2D cross-section pattern represents the width of the pattern 

in the horizontal direction as shown in Fig. 4.4.  When the size of a pattern window 

increases, the number of polygons that overlap with the window increases. Hence, 

more coupling capacitance components are extracted. However, this would trigger the 

extraction of minor capacitance components that do not have any observable impact on 

the extraction accuracy. Moreover, extracting such minor capacitance components 

would significantly increase the extraction runtime without any considerable gain. As 

a result, the pattern window should only consider the coupling capacitances that 

impact the extraction accuracy.  

As the separation between any two metal polygons increases, the coupling 

capacitance between them decreases as shown in Fig. 4.5. Hence, any metal polygon 

would have an effective coupling distance (i.e., range), where any coupling capacitance 

to a polygon that is outside of this range is negligible. 
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Fig. 4.4. An example of a 2D cross-section pattern of a certain metal collection showing the 
corresponding window size. 

A pattern window size is identified by using the maximum coupling range of a 

target metal layer. The maximum coupling range is the maximum distance where the 

lateral coupling capacitance between two polygons, which belong to the same target 

metal layer, represents 1% of their total capacitances. Therefore, all coupling 

capacitances to polygons that are outside of this range are ignored. For each metal layer, 

the maximum coupling range is calculated by constructing a 2D cross-section pattern 

of two adjacent polygons using minimum dimensions. The total and lateral coupling 

capacitances are calculated by Raphael2D, a 2D field-solver tool [75]. The separation 

(i.e., spacing) between the two polygons is increased until the lateral coupling 

capacitance between the two polygons is less than or equal to 1% of the total capacitance 

on one polygon. Fig. 4.5 shows an example of calculating the maximum interaction 

range for metal3 layer in 28nm process node. The capacitance unit is in femtofarad (fF), 

whereas the separation unit is in micrometer (µm). 

 

Fig. 4.5. An example of calculating the maximum coupling range using metal3 layer with minimum 
dimensions in 28nm process technology node. The capacitance unit is in femtofarad (fF), whereas the 
separation unit is in micrometer (µm). 
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4.1.3. The Number of Metal Layers in a Pattern 

Each cross-section layout pattern consists of arbitrary distributed metal polygons 

that belong to the same or different metal layers. Most of existing rule-based models 

handle cross-section layout patterns with one, two, and three metal layers [76]–[79]. 

This might be enough for high density layout designs; however, for low density 

designs, the capacitance models should consider more than three metal layers to 

provide a higher extraction accuracy. 

 The maximum number of layers in a pattern is identified by measuring the impact 

of adding multiple upper and lower metal layers on total and lateral capacitance of a 

target metal layer. The maximum number of upper metal layers (or lower layers) is 

identified by constructing multiple 2D cross-section patterns of two adjacent metal 

polygons. Each 2D cross-section pattern has a different numbers of upper metal layers 

(or lower) as shown in Fig. 4.6 (a). The lateral capacitance, of a target metal polygon, is 

measured using Raphael2D, a 2D field-solver tool [75], while adding more upper metal 

layers, until the impact of adding more upper metal layers on the lateral capacitance is 

negligible (< 1% difference in the lateral capacitance). It is worth mentioning that the 

patterns are constructed on a way that minimize the impact of intermediate upper metal 

layers and maximize the impact of the most upper metal layer on the lateral capacitance, 

where all intermediate upper metal layers are represented by a single polygon with 

minimum dimensions, whereas the most upper metal layer is represented by a plane. 

This process is applied on all metal layers on a process stack. Also, the same process is 

applied to the maximum number of lower metal layers. 

 Fig. 4.6 shows an example of identifying the maximum number of upper metal 

layers using metal1 as a target layer in 28nm process node. Fig. 4.6 (a) shows the 

constructed patterns, whereas Fig. 4.6 (b) shows the lateral coupling capacitance values 

with increasing the number of upper metal layers. The results show that adding more 

than two upper layers has a minor impact (< 1% difference in the lateral capacitance) 

on the lateral capacitances. This process is tested on different process nodes including 
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28nm, 14nm, and 7nm nodes to identify the maximum number of upper and lower 

metal layers. The experiments show that adding more than two upper or lower metal 

layers has a minor impact on the lateral capacitance of a target layer. As a result, the 

maximum number of metal layers in a pattern is five, i.e., two upper layers, two lower 

layers, and one target layer. 

 
(a) 

 
(b) 

Fig. 4.6. An example showing (a) 2D cross-section patterns that are created to identify the maximum 
number of upper metal layers for a target metal layer, and (b) the impact of adding upper metal layers 
on the lateral capacitance of a target metal layer. The results are generated using metal1 as a target layer 
in 28nm process node. 

 

4.1.4. Maximum Number of Polygons in a Pattern 

Each pattern may contain multiple polygons across different metal layers. It is not 

necessarily for all polygons to have considerable coupling capacitances to target 

polygons, where some of the capacitances are considerable and impact the extraction 

accuracy, whereas other capacitances may be minor and do not impact the extraction 

accuracy. As a result, surrounding polygons that only impact the parasitic extraction 

accuracy, of target metal polygons, should be considered by the corresponding model.  

The maximum possible number of polygons in a pattern is identified for each metal 

layer separately, where each metal layer in a pattern may have a different maximum 
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for a target metal layer and surrounding (i.e., secondary) metal layers in a cross-section 

pattern. As for a target metal layer, the maximum number of polygons is identified by 

constructing 2D cross-section patterns of 3, 5, and 7 adjacent polygons as shown in  Fig. 

4.7 (a). The lateral capacitance between the middle and right polygons is measured in 

each case, by using Raphael2D, a 2D field-solver tool [75], until the impact of adding 

more adjacent polygons on the lateral capacitance is negligible (< 1% difference in the 

lateral capacitance). This process is applied on all metal layers in a process stack.  

Fig. 4.7 shows an example of identifying the maximum number of target metal 

polygons using metal1 as a target layer in 28nm process node. Fig. 4.7  (a) shows the 

constructed patterns, whereas Fig. 4.7  (b) shows the lateral coupling capacitance values 

with increasing the number of adjacent polygons. This process is tested on different 

process nodes including 28nm, 14nm, and 7nm nodes. The experiments show that the 

appropriate maximum number of polygons for a target metal layer is 5. 

 

 
(a) 

 
(b) 

Fig. 4.7. An example of (a) 2D cross-section patterns that are used to identify the maximum number of 
target metal polygons in an input pattern, and (b) the impact of adding more adjacent polygons on a 
same layer lateral capacitance. The results are generated using metal1 as a target layer in 28nm process 
node. 
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As for upper and lower (i.e., secondary) metal layers, the maximum numbers of 

polygons are calculated by constructing 2D cross-section patterns of two metal layers 

(i.e., the target and secondary layers) as shown in  Fig. 4.8 (a). The target metal layer 

contains one polygon at the middle, whereas the secondary metal layer has a varying 

number of polygons (from 2 to 7). All polygons are constructed using the corresponding 

minimum dimensions. The total capacitance on the middle target polygon is measured, 

using Raphael2D, a 2D field-solver tool [75], in each case until the impact of adding 

more secondary layer polygons on the total capacitance is negligible (< 1% difference 

in the total capacitance). This process is applied on all metal layers in a process stack. 

Fig. 4.8 shows an example of identifying the maximum number of secondary metal 

layer polygons using metal1 as a target layer and metal2 as a secondary layer in 28nm 

process node. Fig. 4.8  (a) shows the constructed pattern, Fig. 4.8  (b) shows the total 

capacitance values with increasing the number of secondary metal layer polygons. This 

process is tested on different process nodes including 28nm, 14nm, and 7nm nodes. The 

experiments show that the appropriate maximum number of polygons for a secondary 

metal layer is 4. 

 
(a) 

 
(b) 

Fig. 4.8. An example of (a) 2D cross-section patterns that are used to identify the maximum number of 
secondary metal polygons in an input pattern, and (b) the impact of adding more secondary metal 
polygons on a target layer total capacitance. The results are generated using metal1 as a target layer and 
metal2 as a secondary layer in 28nm process node. 
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Eventually, the maximum number of polygons in a target metal layer is 5, whereas 

the maximum number of polygons in each secondary metal layer is 4. For example, the 

maximum number of polygons in metal1-metal2-metal3 cross-section pattern is 13, 

where metal1 may contain up to 4 polygons, metal2 may contain up to 5 polygons, and 

metal3 may contain up to 4 polygons. 

4.1.5. Systematic Process Variations 

Systematic process variations may have a major impact on parasitic capacitances in 

advanced process technology nodes. They do not only impact parasitic capacitances of 

associated polygons, but they also may impact parasitic capacitances of surrounding 

polygons [10], [26], [80]. Therefore, parasitic models must consider systematic process 

variations along with input patterns in order to improve the accuracy of parasitic 

capacitance extraction processes. In other words, the inputs to a parasitic model should 

be a 2D cross-section layout pattern along with the corresponding systematic process 

variations.  

Systematic process variations are pattern dependent. They are provided by 

foundries in the form of lookup tables through a technology specifications file such as 

interconnect technology file (ITF) [26]. Therefore, systematic variations can be 

processed by parasitic extraction tools. Fig. 4.9 shows an example of metal width 

variations using metal1 layer with minimum dimensions in 28nm process node. Fig. 4.9 

(a) show the impact of metal width variations on metal dimensions. The width 

variations impact both the width of metal wires and the separation between them, 

where increasing the width of metal wires decreases the separation between them. Fig. 

4.9 (b) shows the impact of width variations on lateral and total capacitances using 

metal1 layer with minimum dimensions in 28nm process node. The width variations 

may cause the lateral and total capacitances to change by more than 50%. 
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(a) 

 

 
(b) 

Fig. 4.9. An example of (a) width variations in cross-section interconnect patterns, and (b) the impact 
of metal width variations on same layer lateral and total capacitances. The results are generated using 
metal1 in 28nm process node. 

Fig. 4.10 (a) shows an example of metal thickness variations using metal1 layer with 

minimum dimensions in 28nm process node. Fig. 4.10 (b) shows the impact of metal 

thickness variations on lateral and total capacitances. The results show that the metal 

thickness variations may cause the lateral and total capacitances to change by more than 

20%.  

Fig. 4.11 (a) shows an example of inter layer dielectric (ILD) thickness variations 

below metal1 layer with minimum dimensions in 28nm process node. Fig. 4.11 (b) 

shows the impact of ILD thickness variations on the total capacitance. The results show 

that the ILD thickness variations may cause the total capacitances to change by more 

than 10%.  

Fig. 4.12 (a) shows an example of trapezoidal variations using metal1 layer with 

minimum dimensions in 28nm process node. Fig. 4.12 (b) shows the impact of 
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trapezoidal variations (i.e., sidewall slope) on the lateral and total capacitances. The 

results show that the trapezoidal variations may cause the total and lateral capacitances 

to change by more than 9%. Table 4.1 summarizes all required characteristics of input 

patterns. 

Eventually, the maximum number of models for a process stack with N metal layers 

is given by: 

Number of models = (NCk+ NCk-1 …+ NC1), (4.1) 

where C is the combination function, k is the maximum number of layers in a pattern 

of a certain layer collection. Usually, the number of models in a process stack ranges 

from tens to few hundreds, whereas the corresponding number of traditional rule-

based formulas is in the range of many thousands.  

 

 
(a) 

 

 
(b) 

Fig. 4.10. An example of (a) metal thickness variations in cross-section interconnect patterns, and (b) the 
impact of metal thickness variations on same layer lateral and total capacitances using metal1 with 
minimum dimensions in 28nm process technology node. 
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(a) 

 
(b) 

Fig. 4.11. An example of (a) ILD thickness variations in cross-section interconnect patterns, and (b) the 
impact of ILD thickness variations on total capacitances using metal1 with minimum dimensions in 
28nm process technology node. 

 

 
(a) 

 
(b) 

Fig. 4.12. An example of (a) trapezoidal variations in cross-section interconnect patterns, and (b) the 
impact of trapezoidal variations on total capacitances. The results are generated using metal1 with 
minimum dimensions in 28nm process technology node. 
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Table 4.1. A summary of input pattern characteristics. 

Characteristic The way of handling a certain characteristic 

Multi-dielectric stacks Multi-dielectric environments are handled by using a 

different pre-characterized library for each process 

stack. 

The size of cross-section pattern 

window (in the horizontal x-direction) 

The pattern size, in x-direction, equals to the 

maximum coupling range of the corresponding 

target metal layer. 
 

The maximum number of metal layers 

in a pattern 

5 metal layers 

The maximum number of metal 

polygons 

For a target metal layer: 5 polygons 
For a secondary metal layer: 4 polygons 

Systematic process variations Inputs patterns of parasitic models should include 

systematic variations. 

4.2. Generate 2D Cross-Section Patterns 

Once all input pattern characteristics are identified, they are used to generate input 

and training patterns for parasitic models. The training patterns are obtained from 

several real designs in order to increase the pattern coverage and make sure that training 

patterns reflect real design topologies. The generation process of training patterns starts 

with selecting several real designs, for example, ring oscillator (RO), static read access 

memory (SRAM), and digital to analog converter (DAC) layout designs. Then, the 

geometries and dimensions of all selected designs are modified by applying the 

corresponding systematic process variations. After that, the modified layouts are 

fractured into 2D cross-section patterns taking into considerations the corresponding 

characteristics of input patterns. In addition, more patterns are generated randomly for 

each metal collections covering the ranges from 1X to 10X of minimum dimensions. 

Eventually, the obtained 2D cross-section patterns are used as training patterns to 

machine learning models. The total number of obtained cross-section patterns for each 

model is 30K patterns, where each model handles patterns of a certain metal layer 

collection (e.g., metal1-metal2-metal3). 
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4.3. Field-Solver Execution 

Once all training patterns are obtained, their parasitic capacitances are extracted 

using Raphael2D, a 2D field-solver tool [75]. The extracted parasitic capacitances are used 

as reference numbers to train our machine learning models. 

4.4. Input Pattern Representation  

Layout patterns are represented by a set of parameters that are used as inputs to NN 

models to predict the corresponding parasitic capacitances. These parameters should 

represent the main features of each cross-section pattern that are required to predict a 

certain capacitance component. The required features include the pattern’s geometrical 

characteristics, polygons connectivity, and the required capacitance component. The 

proposed features consist of three feature vectors. The first vector provides geometrical 

characteristics of the whole pattern, the second vector provides geometrical 

characteristics of aggressor polygons, while the third vector provides geometrical 

characteristics of victim polygons. The three vectors are combined and used as an input 

to a NN model. 

Providing geometrical characteristics of aggressor and victim polygons helps in 

identifying the connectivity and the required coupling capacitance component, which is 

the coupling capacitance between the aggressor and victim polygons. Since the three 

vectors belong to the same layout pattern, they have the same size. Each vector consists 

of a number of metal layers (from 1 to 5) that varies based on the corresponding layers 

collection (i.e., layer combination), and each metal layer is represented by a vector of 

features (i.e., parameters). In other words, each pattern’s vector is represented by an array 

of vectors, where each vector in the array represents a metal layer’s feature vector, and 

the size of the array is the number of metal layers in the corresponding pattern. In order 

to represent the geometrical characteristics of each cross-section patterns, three different 

feature representations are proposed. The proposed representations include ratio-based 

and dimensions-based representations. 
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4.4.1. Ratio-Based Representation 

In this representation, each metal layer, in a certain cross-section pattern, is 

represented by an array of segments, and each segment contains a value that represents 

the ratio between the overlapping polygon width and the segment width (i.e., density). 

So, each metal layer is represented by a vector of densities as shown in Fig. 4.13. The 

experiments showed that the segment width should be less than half the minimum 

spacing of the corresponding metal layer to avoid having multiple polygons on the 

same segment. The number of segments is calculated based on the pattern’s size and 

the corresponding technology specifications as below: 

Number of segments per layer =  
Pattern size

segment width
. (4.2) 

Since  

segment width ≤ (0.5 × min spacing), 
(4.3) 

then  

number of segments per layer ≥  
Pattern size

0.5 × min spacing
. 

(4.4) 

Therefore, the input vector size for ratio-based representation is given by: 

Ratio-based input vector size = 3 × (number of layers × number of segments 

per layer), 
(4.5) 

 

 

Fig. 4.13. An example of the proposed width ratio-based pattern representation. 
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This representation does not consider the different systematic process variations, 

except for width variations. The rest of systematic process variations are handled using 

the traditional sensitivity formulas as in [27]–[29]. 

4.4.2. Dimensions-Based Representation 

In this representation, each metal layer is represented by a vector of widths and 

spacings that are measured from the middle of the corresponding pattern. The vector 

length is twice the maximum number of polygons in the corresponding pattern’s size 

as shown in Fig. 4.14. The number of parameters is different from a metal layer to 

another and from layers collection (i.e., layer combination) to another, given that the 

maximum number of target metal polygons is 5, and the maximum number of 

secondary metal polygons is 4. Therefore, the maximum number of target layer 

parameters is 10, and the maximum number of secondary layer parameters is 8. The 

maximum input vector size for dimensions-based representation is given by: 

Dimensions-based input vector size = 3 × (8 × number of secondary layers + 10). (4.6) 

This representation does not consider the different systematic process variations, 

except for width variations. The rest of systematic process variations are handled using 

the traditional sensitivity formulas as in [27]–[29]. 

 

Fig. 4.14. An example of the proposed dimensions-based representation. 

 

4.4.3. Vertex-Based Representation 

In this representation, the pattern’s geometries and systematic process variations 

are represented together by using a novel vertex-based feature representation. As 
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shown in Fig. 4.15, each metal layer in a pattern is represented by a vector of polygons. 

The number of polygons of each metal layer in a pattern is shown in Table 4.1, where 

the maximum number of polygons of a target metal layer is 5, whereas the maximum 

number of polygons of a secondary metal layer is 4. Each metal polygon in a vector is 

represented by the polygon’s vertices, where each vertex is measured from the center 

of the corresponding pattern. In other words, each polygon is represented by 8 

displacement parameters including (x1, y1), (x2, y2), (x3, y3), and (x4, y4) as shown in Fig. 

4.15. As a result, each polygon is represented by 8 values (vertices), and the vector size 

of each layer is estimated by (8 × maximum number of polygons in a metal layer). It is 

worth mentioning that the vertices of empty polygons are represented by zeros as 

shown in Fig. 4.15.  

 

Fig. 4.15. An example showing the novel vertex-based pattern representation using three polygons of 
the same metal layer in a cross-section pattern. 

Such a vertex-based representation considers metal thickness variations, loading 

effects, wire width variations, and trapezoidal variations of all polygons in a pattern 

simultaneously. In other words, it includes systematic process variations during 

capacitance calculations. Therefore, there is no need to invoke traditional sensitivity 

× 

(0,0) 

PL1(x1,y1) 

PL1(x2,y2) 

PL1(x3,y3) 

PL1(x4,y4) 

PL2(x1,y1) 

PL2(x4,y4) 

PL2(x2,y2) 

PL2(x3,y3) 

PL3(x1,y1) 

PL3(x4,y4) 

PL3(x2,y2) 

PL3(x3,y3) 

PL3 PL1 
PL2 

 Layer(i) vector  = [middle polygon, 1
st
 right, 1

st
 left, 2

nd
 right, 2

nd
 left] 

= [PL1(x1, y1, x2, y2, x3, y3, x4, y4),    // middle polygon 

    PL2(x1, y1, x2, y2, x3, y3, x4, y4),   // 1
st
 right polygon 

    PL3(x1, y1, x2, y2, x3, y3, x4, y4), // 1
st
 left polygon 

    0,0,0,0,0,0,0,0,               // 2
nd

 right polygon is empty 

    0,0,0,0,0,0,0,0                // 2
nd

 left polygon is empty 

] 

  

PL: metal polygon 

× × 

× × 

× × 

× × 

× × 

× × 



68 

 

formulas or any special modeling to handle systematic process variations. Also, such a 

representation considers the cross-dependency impact of different variation parameters 

on parasitic capacitances. This resulted in fewer computations, better performance, and 

more accurate parasitic extraction results. The next required input parameter by 

parasitic models is the required capacitance component, which informs the model 

about the capacitance components to be extracted. The required capacitance 

components are identified by including the geometries of aggressor and victim 

polygons to the input vector of parasitic models. Therefore, the input feature vector is 

represented by three internal vectors. The first vector contains geometries of all 

polygons, the second vector contains geometries of aggressor polygons, whereas the 

third vector contains geometries of victim polygons as shown in Fig. 4.16.  The three 

vectors have the same size. The novel vertex-based pattern representation is used to 

represent the polygons in the three vectors. The size of an internal vector is estimated 

by: 

Vertex-based internal vector size = 8 × (4 × number of secondary layers + 5 × 

number of target layers), 
(4.7) 

where the number of target layers is usually 1, whereas the input feature vector size of 

is estimated by: 

Vertex-based input feature vector size = 3 × Vertex-based internal vector size, (4.8) 

for example, the input vector size of a pattern with one target metal layer is 120, where 

the maximum number of polygons of a target metal layer is 5, each polygon is 

represented by 8 parameters (i.e., vertices), and there are three internal vectors with the 

same size (i.e., all polygons, aggressor polygons, and victim polygons). Table 4.2 shows 

the input vector sizes of different metal collections (i.e., models) using the proposed 

vertex-based, ratio-based, and dimensions-based pattern representations. 
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Fig. 4.16. An example showing the input vector of a parasitic model. 
 

Table 4.2. Input vector sizes of several metal collections and models. 

Collection 
Input vector sizes 

vertex-based Ratio-based Dimensions-based 

Metal1-

Metal2-

Metal3 

 

Target Metal: Metal2 
Secondary Metals: Metal1, Metal3 
Target Metal polygons: 5 
Secondary Metal polygons: 4 + 4 = 
8 
Number of Polygons: 8 + 5 = 13 
Vertex-based representation: 13 × 
8 = 104 
Input vector size: 104 × 3 = 312 

Assuming each metal is 
represented by 50 segments. 
 
Whole pattern: 3×50 
Aggressor: 3×50 
Victim: 3×50  
Input vector size: 3×3×50 = 

450 

Target and secondary metals 

are represented by 10 and 8 

parameters, respectively. 

Whole pattern: 10 + 8 + 8 = 26 
Aggressor: 10 + 8 + 8 = 26 
Victim: 10 + 8 + 8 = 26 
Input vector size: 3×26 = 78 

Metal2-

Metal3-

Metal5-

Metal6 

Target Metal: Metal3 
Secondary Metals: Metal2, Metal5, 
Metal6 
Target Metal polygons: 5 
Secondary Metal polygons: 4 + 4 + 
4 = 12 
Number of Polygons: 12 + 5 = 17 
Vertex-based representation: 17 × 
8 = 136 
Input vector size: 136 × 3 = 408 

Assuming each metal is 
represented by 50 segments. 
 
Whole pattern: 4×50 
Aggressor: 4×50 
Victim: 4×50  
 
Input vector size: 3×4×50 = 

600 

Target and secondary metals 

are represented by 10 and 8 

parameters, respectively. 

Whole pattern: 10+3×8 = 34 
Aggressor: 10+3×8 =34 
Victim: 10+3×8 =34 
Input vector size: 3×34 = 102 

 

Metal (i) 

Aggressor  

Metal (j) 

Metal (k) 

Victim 

Input patterns of a parasitic model 

Required pattern  

Vector1: All polygons Vector2: Aggressor 

polygon(s) 
Vector3:Victim 

polygon(s) 

Vector1 = all polygons of [Metal(i); Metal(j); Metal(k)] 

Vector2 = aggressor polygons in [Metal(i); Metal(j); Metal(k)] 

Vector3 = victim polygons in [Metal(i); Metal(j); Metal(k)] 

Input feature vector = [Vector1; Vector2; Vector3] 
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Table 4.2. Input vector sizes of several metal collections and models. continued. 

Collection 
Input vector sizes 

vertex-based Ratio-based Dimensions-based 

Metal3 Target Metal: Metal3 
Target Metal polygons: 5 
Number of Polygons:  5 
Vertex-based representation: 5 × 8 
= 40 
Input vector size: 40 × 3 = 120 

Assuming each metal is 
represented by 50 segments. 
 
Whole pattern: 1×50 
Aggressor: 1×50 
Victim: 1×50  
Input vector size: 3×1×50 = 

150 

Target metal is represented 

by 10 parameters. 

Whole pattern: 10 
Aggressor: 10 
Victim: 10 
Input vector size: 3×10 = 30 

Metal1-

Metal2 

Target Metal: Metal1 
Secondary Metals: Metal2 
Target Metal polygons: 5 
Secondary Metal polygons: 4  
Number of Polygons: 4 + 5 = 9 
Vertex-based representation: 9 × 8 
= 72 
Input vector size: 72 × 3 = 216 

Assuming each metal is 
represented by 50 segments. 
 
Whole pattern: 2×50 
Aggressor: 2×50 
Victim: 2×50  
 
Input vector size: 3×2×50 = 

300 

Target and secondary metals 

are represented by 10 and 8 

parameters, respectively. 

Whole pattern: 10 + 8 = 18 
Aggressor: 10 + 8 = 18 
Victim: 10 + 8 = 18 
Input vector size: 3×18 = 54 

 

4.5. Training Parasitic Models 

Two different machine learning methods are used to create parasitic capacitance 

models including Neural Networks (NN) and Support Vector Regressions (SVR). The 

models are used to predict parasitic coupling capacitances between metal polygons in 2D 

cross-section patterns. For a certain process technology node, there is a model for each 

metal collection, where metal1-metal2-metal3 has a model, whereas metal2-metal4-

metal5 has another model. The inputs of the models are the pattern representation of all 

polygons followed by aggressor and victim polygons as shown in Fig. 4.17.  

 
Fig. 4.17. An example showing the flow of generating an input feature vector of a parasitic capacitance 
model. 
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4.5.1. Neural-Networks Models 

A Neural Network (NN) model is implemented to predict parasitic capacitances in 

2D cross-section patterns. There is a NN model for each metal collection in a certain 

process technology node. The architecture and hyper-parameters of NN models are 

obtained using a grid search algorithm. The purpose of applying a grid search 

algorithm is to obtain appropriate NN architectures. The NN architectures are obtained 

based on the number of metal layers in the corresponding metal collection. For example, 

a metal collection with five metal layers has a NN architecture, whereas a metal 

collection with four metal layers has another NN architecture.  

The grid search algorithm is applied on fully connected neural networks. The 

search range of the grid search covers several parameters including the number of 

layers, number of neurons in each layer, activation functions, optimizer, batch size, 

learning rate, and initializations. Table 4.3 summarizes the search ranges of each 

parameter. The evaluation criteria of selecting a NN architecture are set based on the 

test set accuracy, where the grid search observes the accuracy of test sets across all 

architectures until a mean square error of 0.01% is achieved. Such a process is applied 

on 28nm, 16nm, and 7nm process nodes in order to obtain unified NN architectures 

for each metal collection model. Table 4.4 shows the obtained NN architectures for the 

different proposed pattern representations. 

As for hyper-parameters, the dataset is divided into 70% training data and 30% test 

data, validation set is 10%, the number of epochs is 1K, adaptive moment estimation 

(ADAM) optimizer is used, the learning rate is set to 1e-3, the batch size is set to 500, 

the cost function is set to a mean square error, and the batch normalization is applied. 

These parameters are obtained using a grid search. 
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Table 4.3. Search ranges of neural network architectures. 
Parameter Search range 

Number of layers From 1 to 7 with a step size of 1 

Number of neurons 

in each layer 

n/7, n/6, n/5, n/4, n/3, n/2, and n, 

where n is the input vector size. 

Activation function The rectified linear activation unit 

(RELU) and hyperbolic tangent 

function (tanh) 

Optimizer The adaptive moment estimation 

(ADAM) and stochastic gradient 

descent (SGD) 

Batch size 500, 1000, and 1500 

Learning rate 1e-2, 1e-3, and 1e-4 

 

Table 4.4. Neural network architectures of parasitic capacitance models. 

Input vector 
NN Architecture 

vertex-based Ratio-based Dimensions-based 

One metal layer  

 
Input vector size: 120 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 40 and 60, respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

[81] and Glorot’s normal [82] 

initializations, respectively. 

For input vector size: 50. 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 50 and 50, respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

[81] and Glorot’s normal [82] 

initializations, respectively. 

Input vector size: 30. 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 30 and 30, respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

[81] and Glorot’s normal [82] 

initializations, respectively. 

Two metal 

layers 

 

Input vector size: 216 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 72 and 108, 

respectively. 

Activation functions: RELU 

and tanh. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 

For input vector size: 100. 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 50 and 100, 

respectively. 

Activation functions: RELU 

and tanh. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 

Input vector size: 54. 

Number of neurons in hidden 

layers: 54 and 54, respectively. 

Activation functions: RELU 

and tanh. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 
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Table 4.4. Neural network architectures of parasitic capacitance models,-continued. 

Input vector 
NN Architecture 

vertex-based Ratio-based Dimensions-based 

Three metal 

layers 

 

Input vector size: 312 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 78 and 156, 

respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 

For input vector size: 150. 

Number of hidden layers: 2. 

Number of neurons in hidden 

layers: 75 and 150, 

respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 

Input vector size: 78. 

Number of neurons in hidden 

layers: 78 and 78, respectively. 

Activation functions: RELU 

and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal 

and Glorot’s normal 

initializations, respectively. 

Four metal 

layers 

 

Input vector size: 408 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 68, 102, and 204, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

For input vector size: 200. 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 67, 100, and 200, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

Input vector size: 102. 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 51, 102, and 102, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

Five metal 

layers 

 

Input vector size: 504 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 84, 126, and 252, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

For input vector size: 250. 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 84, 125, and 250, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

Input vector size: 126. 

Number of hidden layers: 3. 

Number of neurons hidden 

layers: 126, 63, and 126, 

respectively. 

Activation functions: RELU, 

tanh, and tanh, respectively. 

Cost function: mean square 

error. 

Initializations: He’s normal, 

Glorot’s normal, and Glorot’s 

normal initializations, 

respectively. 

 



74 

 

4.5.2. Support Vector Regressions 

Support vector regression (SVR) models are implemented to predict parasitic 

coupling capacitances of 2D cross-section patterns. There is a model for each metal 

collection in a certain process technology node. In order to obtain unified hyper 

parameters for all models, a grid search algorithm is applied across 28nm, 14nm, and 

7nm process nodes. The search range of SVR models includes kernel, regularization 

parameter (C), gamma, and epsilon parameters. The search ranges of these parameters 

are listed in Table 4.5. The cost function is set to a mean square error. The evaluation 

criteria are set based on the test set accuracy, where the grid search observes the 

accuracy of test sets across different combinations of hyper-parameters until a mean 

square error of 0.01% is achieved. Table 4.6 shows the obtained SVR hyper-parameters 

for each input vector size for the three pattern representations. 

Table 4.5. Search ranges of support vector regression hyper-parameters. 
Parameter The search range 

Kernel Radial Basis Function (RBF) and polynomial. 

Regularization parameter (C) From 1 to 20 with a step size of 1 

Epsilon  From 0.05 to 0.5 with a step size of 0.05 

Gamma From 0.1 to 1 with a step size of 0.1 

 

Table 4.6. SVR hyper-parameters of parasitic capacitance models for the proposed ratio-based, 
dimensions-based, and vertex-based pattern representations. 

Input vector of a model SVR Hyper-parameters  

One metal layer   Kernel: Radial Basis Function (RBF) 
Regularization parameter (C): 8 

Epsilon: 0.1 
Gamma: 0.3 

Two metal layers  Kernel: Radial Basis Function (RBF) 
Regularization parameter (C): 9 

Epsilon: 0.1 
Gamma: 0.4 

Three metal layers  Kernel: Radial Basis Function (RBF) 
Regularization parameter (C): 9 

Epsilon: 0.1 
Gamma: 0.4 

Four metal layers 
 

Kernel: Radial Basis Function (RBF) 
Regularization parameter (C): 10 

Epsilon: 0.1 
Gamma: 0.3 

Five metal layers 
 

Kernel: Radial Basis Function (RBF) 
Regularization parameter (C): 10 

Epsilon: 0.1 
Gamma: 0.3 
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4.6. Experimental Results 

The proposed modeling methodology was tested across three different process 

technology nodes including 28nm, 14nm, and 7nm process nodes. The testing covered 

several real designs for each node. The accuracy of the generated compact models was 

measured relative to Raphael, 2D field-solver. Also, the accuracy and runtime of the 

generated NN and SVR compact models were compared against Calibre PEX cross-

section models [19]. The proposed ratio-based and dimensions-based used the sensitivity 

formulas of Calibre PEX to handle systematic process variations, whereas the proposed 

vertex-based can handle the impact of systematic process variations without using 

external sensitivity formulas. The relative error was measured for each capacitance 

component in a layout pattern using the below formula: 

Relative error = (predicted – reference) / predicted, (4.9) 

where the predicted value represents the capacitance value that is obtained from the 

model, whereas the reference value represents the corresponding capacitance value that 

was obtained from Raphael, 2D field-solver. Moreover, nonparametric statistical tests 

were performed to test the significant difference in performance (i.e., accuracy) between 

each two models. 

For each process technology node, the proposed modeling methodology was used to 

generate NN and SVR models. The training data were obtained from real layouts 

including static read access memory (SRAM), digital to analog converter (DAC), and ring 

oscillator (RO) designs. Also, more training patterns were randomly generated covering 

the ranges from 1X to 10X of the minimum dimensions. The training and model’s 

generation used Tensor flow libraries, [83], and the implementation is done using Python 

[84]. The training used Intel Xeon(R) E5-2680, 4CPU, 2.50GHz, and 16G of RAM. The 

errors of extracted capacitances were measured relative to Raphael, 2D field-solver. There 

are six types of developed models that include NN using ratio-based, SVR using ratio-

based, NN using dimensions-based, SVR using dimensions-based, NN using vertex-



76 

 

based, and SVR using vertex-based. The six types were tested and compared to each 

other. 

4.6.1. Testing Designs of 28nm Process Nodes 

The total number of generated models for each modeling method is 130. The 

generated models cover 130 different metal collections each includes 1 to 5 different 

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section 

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%) 

were used for the test set. Table 4.7 shows the training runtime of NN and SVR models 

using the three different proposed pattern representations. 

Table 4.7. Training runtimes of the 2D cross-section parasitic models for 28nm process node. 
 Ratio-based Dimensions-based Vertex-based 

NN SVR NN SVR NN SVR 
Training runtime 18.9 hours 11.2 hours 18.2 hours 10.3 hours 19.3 hours 12.7 hours 

As for NN models, the total training runtime of all models for the ratio-based, 

dimensions-based, and vertex-based representations are 18.9, 18.2, and 19.3 hours, 

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 11.2, 10.3, and 12.7 

hours, respectively. The training (i.e., models generation) runtimes can significantly 

improve by multi-processing. It is worth mentioning that the models were generated 

only once for each process node. After that, the generated models are used numerous 

times by parasitic extraction tools. Table 4.8 shows the test sets accuracy the proposed 

models for the three different representations.  

Table 4.8. The accuracy and relative errors of test sets for all developed cross-section models of 28nm 
process node. 

 Ratio-based Dimensions-based Vertex-based 
NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

Mean of relative errors 0.051% 0.062% 0.049% 0.058% 0.031% 0.052% 
Standard deviation of 
relative errors 

2.61% 2.95% 2.93% 3.17% 2.13% 2.35% 

Outliers with relative 
error > 5% 

2.25% 2.37% 2.45% 2.71% 1.45% 1.67% 

Mean square error 0.00314 0.00335 0.00416 0.00422 0.00173 0.00216 
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The training and test sets accuracy comparison used four main criteria including 1) 

the mean of all relative errors, 2) the standard deviation of all relative errors, 3) the 

percentage of outliers that exceeds 5% relative error (i.e., the number of outliers to the 

total number of extracted capacitance components), and 4) the mean square error across 

all models. The accuracy results of test sets show that the proposed models provide a 

high accuracy, where almost 98% of the extracted capacitances have relative errors 

below 5%.  

As for testing the generated models on real design patterns of 28nm process node, 

the generated models were tested over cross-section patterns of three different test 

chips including dynamic read access memory (DRAM), static read access memory 

(SRAM), and voltage-controlled oscillator (VCO) designs that were not included during 

the training processes. The total numbers of extracted cross-section patterns in DRAM, 

SRAM, and VCO designs are 790K, 327K, and 953K patterns, respectively. The 

corresponding total number of capacitance components are 2.76M, 1.3M, and 4.2M 

capacitances, respectively. Therefore, the total number of extracted cross-section 

patterns across all designs is 2.07M patterns, and the total number of extracted 

capacitances across all designs is 8.26M.  

Fig. 4.18 shows histograms of relative errors covering all extracted capacitances 

across all tested 28nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based 

extraction cross-section models. The accuracy comparisons show that the proposed 

vertex-based NN and SVR models provide high accuracy results as compared to 

existing rule-based cross-section models and other proposed models. Table 4.9 shows 

the percentages of extracted capacitance components with relative errors above 5% 

using the different extraction methods.  

Table 4.9. Percentages of extracted capacitances with relative errors above 5% for 28nm designs. 

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR 

Outliers > 5% relative error 7.71% 7.84% 9.37% 10.13% 1.5% 1.9% 24.76% 
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It is worth mentioning that most of the outliers, with more than 5% relative error, 

that were generated using the proposed vertex-based NN and SVR models have very 

small capacitance values (<1e-4 fF). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Fig. 4.18. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D 
cross-patterns of 28nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based 
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based 
cross-section models. 
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Outliers with relative errors > |5%|: 7.84% 
STDEV of relative errors: 4.9% 

0

500K

1,000K

1,500K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

 

Relative error 

Outliers with relative errors > |5%|: 9.37% 
STDEV of relative errors: 5.32% 
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Outliers with relative errors > |5%|: 10.13% 
STDEV of relative errors: 5.47% 
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Outliers with relative errors > |5%|: 1.5% 
STDEV of relative errors: 2.31% 
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As for runtime comparisons, the total runtimes of extracting (i.e., computing) all 

cross-sections (i.e., 2.07M patterns) including the sensitivity formulas are shown in 

Table 4.10. The capacitance computations were done on a single CPU using Intel 

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes of the 

ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR, 

vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.2, 

1.09, 1.13, 1.06, 0.417, and 0.38, respectively.  Therefore, the corresponding speeding ups 

as relative to rule-based models are 0.833, 0.917, 0.88, 0.943, 2.398, and 2.634, 

respectively. As a result, proposed vertex-based models are almost 2.5X faster than 

existing rule-based and other proposed models. Such a speeding up is achieved because 

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to 

measure the impact of systematic process variations as in the other methods. 

Eventually, the vertex-based models (either NN or SVR models) managed to achieve 

high accuracy results as compared to existing rule-based cross-section models and other 

proposed models with an average speed up of 2.5X. 

Table 4.10. The computations runtime of the proposed extraction models and existing rule-based 
models when executed over several designs of 28nm process nodes. 

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR 

Computations runtime 19.27 
hours 

17.52 
hours 

18.23 
hours 

17.04 
hours 

6.7 
hours 

6.1 
hours 

16.07 
hours 

Relative runtime to rule-based 
models 

1.2 1.09 1.13 1.06 0.417 0.38 1 

 

4.6.2. Testing Designs of 14nm Process Nodes 

The total number of generated models for each modeling method is 175. The 

generated models cover 175 different metal collections each includes 1 to 5 different 

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section 

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%) 

were used for the test set. Table 4.11 shows the training runtime of NN and SVR models 

using the three different proposed pattern representations. 
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Table 4.11. Training runtimes of the 2D cross-section parasitic models of 14nm process node. 
 Ratio-based Dimensions-based Vertex-based 

NN SVR NN SVR NN SVR 

Training runtime 19.4 hours 12.9 hours 18.7 hours 12.1 hours 21.7 hours 13.9 hours 

 

As for NN models, the total training runtime of all models for the ratio-based, 

dimensions-based, and vertex-based representations are 19.4, 18.7, and 21.7 hours, 

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 12.9, 12.1, and 13.9 

hours, respectively. The training (i.e., models generation) runtimes can significantly 

improve by multi-processing.  

Table 4.12 shows the test sets accuracy of the proposed models. The results show 

that the proposed models provide high accuracy values, where almost 98% of the 

extracted capacitances have relative errors below 5%.  

Table 4.12. The accuracy and relative errors of test sets for the proposed models of 14nm process node. 

 Ratio-based Dimensions-based Vertex-based 
NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

Mean of relative errors 0.072% 0.074% 0.077% 0.081% 0.042% 0.061% 
Standard deviation of 
relative errors 

3.12% 3.55% 3.41% 3.65% 2.21% 2.75% 

Outliers with relative 
error > 5% 

2.07% 2.27% 2.21% 2.37% 1.77% 1.97% 

Mean square error 0.00351 0.00406 0.00397 0.00496 0.00237 0.00316 

 

As for testing the generated models on real design patterns of 14nm process node, 

the generated models were tested over cross-section patterns of three test chips 

including cache memory, DRAM, and VCO designs that were not included during the 

training processes. The total numbers of extracted cross-section patterns in cache 

memory, DRAM, and VCO designs are 630K, 915K, and 1.03M patterns, respectively. 

The corresponding total number of capacitance components are 2.8M, 4M, and 4.4M 

capacitances, respectively. Therefore, the total number of extracted cross-section 

patterns is 2.575M patterns, and the total number of extracted capacitances is 11.2M. 
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Fig. 4.19 shows histograms of relative errors covering all extracted capacitances 

across all tested 14nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based 

extraction cross-section models. The accuracy comparisons show that the proposed 

vertex-based models (either NN or SVR models) provide high accuracy results as 

compared to existing rule-based cross-section models and other proposed models. 

Table 4.13 shows the percentages of extracted capacitance components with relative 

errors above 5% using the different extraction methods. It is worth mentioning that 

most of the outliers, with more than 5% relative error, that were generated from the 

proposed vertex-based models have very small capacitance values (<1e-4 fF). 

Table 4.13. Percentages of extracted capacitance components with relative errors above 5% in 14nm 
designs. 

 Ratio-based Dimensions-based Vertex-based Rule-
based 

NN SVR NN SVR NN SVR 

Outliers > 5% relative error 12.6% 14.3% 12.4% 14.7% 1.97% 2.19% 25.7% 

 

As for runtime comparisons, the total runtimes of extracting (i.e., computing) all 

cross-section patterns (i.e., 2.575M patterns) including the sensitivity formulas are 

shown in Table 4.14. The capacitance computations were done on a single CPU using 

Intel Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes 

of the ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR, 

vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.2, 

1.093, 1.19, 1.068, 0.415, and 0.3914, respectively.  Therefore, the corresponding 

speeding ups as relative to rule-based models are 0.83, 0.91, 0.84, 0.936, 2.41, and 2.55, 

respectively. As a result, proposed vertex-based models are almost 2.45X faster than 

existing rule-based and other proposed models. Such a speeding up is achieved because 

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to 

measure the impact of systematic process variations as in the other methods.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

Fig. 4.19. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D 
cross-patterns of 14nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based 
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based 
cross-section models. 
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Outliers with relative errors > |5%|: 14.3% 
STDEV of relative errors: 5.96% 
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Outliers with relative errors > |5%|: 12.4% 
STDEV of relative errors: 5.47% 
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Outliers with relative errors > |5%|: 14.7% 
STDEV of relative errors: 5.98% 
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Table 4.14. The computations runtime of the proposed extraction models and existing rule-based models 
when executed over several designs of 14nm process nodes. 

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR 

Computations runtime 24.1 
hours 

21.9 
hours 

23.8 
hours 

21.4 
hours 

8.32 
hours 

7.84 
hours 

20.03 
hours 

Relative runtime to rule-based 
models 

1.2 1.093 1.19 1.068 0.415 0.3914 1 

4.6.3. Testing Designs of 7nm Process Nodes 

The total number of generated models for each modeling method is 231. The 

generated models cover 231 different metal collections each includes 1 to 5 different 

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section 

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%) 

were used for the test set. Table 4.15 shows the training runtime of NN and SVR models 

using the three different proposed pattern representations. 

Table 4.15. Training runtimes of the 2D cross-section parasitic models for 7nm process node. 
 Ratio-based Dimensions-based Vertex-based 

NN SVR NN SVR NN SVR 

Training runtime 22.7 hours 13.2 hours 21.5 hours 12.9 hours 23.01 hours 15.03 hours 

As for NN models, the total training runtime of all models for the ratio-based, 

dimensions-based, and vertex-based representations are 22.7, 21.5, and 23.01 hours, 

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 13.2, 12.9, and 15.03 

hours, respectively. The training (i.e., models generation) runtimes can significantly 

improve by multi-processing. It is worth mentioning that the models were generated 

only once for each process node. After that, the generated models are used numerous 

times by parasitic extraction tools. 

Table 4.16 shows the test sets accuracy of NN and SVR models. The results show 

that the proposed models provide high accuracy values, where almost 97% of the 

extracted capacitances have relative errors below 5%.  
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Table 4.16. The accuracy and relative errors of test sets for the proposed models of 7nm process node. 

 Ratio-based Dimensions-based Vertex-based 

NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

NN 
models 

SVR 
models 

Mean of relative errors 0.067% 0.091% 0.081% 0.089% 0.065% 0.083% 

Standard deviation of 
relative errors 

3.52% 3.67% 3.76% 3.9% 3.02% 3.17% 

Outliers with relative 
error > 5% 

2.71% 3.1% 3.01% 3.2% 2.31% 2.6% 

Mean square error 0.0059 0.0068 0.0062 0.0072 0.0052 0.0063 

As for testing the generated models on real design patterns of 7nm process node, 

the generated models were tested over cross-section patterns of two test chips including 

cache memory (CM) and VCO designs that were not included during the training 

processes. The total numbers of cross-section patterns of cache memory and VCO 

designs are 920K and 1.17M patterns, respectively. The corresponding total number of 

capacitance components are 4.1M and 5M capacitances, respectively. Therefore, the 

total number of extracted cross-section patterns is 2.09M patterns, and the total number 

of extracted capacitances is 9.1M. 

Fig. 4.20 shows histograms of relative errors covering all extracted capacitances 

across all tested 14nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based 

extraction cross-section models. The accuracy comparisons show that the proposed 

vertex-based models (either NN or SVR models) provide high accuracy results as 

compared to existing rule-based cross-section models and other proposed models. 

Table 4.17 shows the percentages of extracted capacitance components with relative 

errors above 5% using the different extraction methods. It is worth mentioning that 

most of the outliers, with more than 5% relative error, that were generated from the 

proposed vertex-based models have very small capacitance values (<1e-4 fF). 

Table 4.17. Percentages of extracted capacitance components with relative errors above 5% in 7nm 
designs. 

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR 

Outliers > 5% relative error 23.3% 23.9% 24.1% 24.7% 2.53% 3.2% 28.9% 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

Fig. 4.20. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D 
cross-patterns of 7nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based 
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based 
cross-section models. 

As for runtime comparisons, the total runtimes of extracting (i.e., computing) all 

cross-section patterns (i.e., 2.09M patterns) including the sensitivity formulas are shown 

in Table 4.18. The capacitance computations were done on a single CPU using Intel 

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes of the 

ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR, 
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vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.196, 

1.065, 1.162, 1.044, 0.426, and 0.419, respectively.  Therefore, the corresponding 

speeding ups as relative to rule-based models are 0.836, 0.94, 0.86, 0.958, 2.346, and 2.39, 

respectively. As a result, proposed vertex-based models are almost 2.35X faster than 

existing rule-based and other proposed models. Such a speeding up is achieved because 

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to 

measure the impact of systematic process variations as in the other methods.  

Table 4.18. The computations runtime of the proposed extraction models and existing rule-based 
models when executed over several designs of 14nm process nodes. 

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR 

Computations runtime 19.46 
hours 

17.31 
hours 

18.9 
hours 

16.98 
hours 

6.93 
hours 

6.81 
hours 

16.26 
hours 

Relative runtime to rule-
based models 

1.196 1.065 1.162 1.044 0.426 0.419 1 

4.6.4. Statistical Tests 

Nonparametric statistical tests were performed to test the significant difference in 

performance (i.e., accuracy) between each two models using Wilcoxon signed-ranks test 

[85]. Since the vertex-based NN models provided better accuracy results as compared to 

other models. The Wilcoxon signed-rank tests are performed to compared test the 

significant difference in accuracy between the vertex-based models and all other models. 

In our case, the null hypothesis indicates a lack of a significant difference between the 

two tested models. The null hypothesis will be rejected if the p-value is less than 0.05 (p-

value < 0.05). The mean square error (MSE) was used as a performance metric to help in 

performing statistical tests. MSE values were obtained for the four extraction models 

over 13 datasets using Raphael, 2D field-solver, as a reference, as shown in Table 4.19. 

Fig. 4.21 shows the differences in mean square errors between the rule-based model and 

each proposed model across different test designs. The figure shows that the vertex-

based models provide better results as compared to all other models. Moreover, the 

vertex-based models show outstanding results as compared to the other proposed 
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models when the impact of systematic process variations on parasitic capacitances 

increases, mainly in advanced nodes. 

Table 4.19.  Accuracy comparisons in terms of mean square errors for rule-based, ratio-based, the 
proposed SVR, and the proposed NN models. 

Dataset 

Mean square error (MSE) 

Calibre 
rule-based 

[19] 

Ratio-
based 

NN  

Ratio-
based 
SVR 

Dimensions-
based 

NN  

Dimensions-
based 
SVR 

Vertex-
based 
NN 

Vertex-
based 
SVR 

RO (28nm) 0.00710 0.00231 0.00320 0.00265 0.00337 0.00173 0.00141 

DRAM(28nm) 0.00930 0.00213 0.00260 0.00192 0.00221 0.00201 0.00219 

SRAM(28nm) 0.00120 0.00160 0.00115 0.00219 0.00223 0.00233 0.00173 

DAC(28nm) 0.00760 0.00432 0.00471 0.00417 0.00471 0.0019 0.00201 

VCO(28nm) 0.00314 0.00470 0.00530 0.00427 0.00527 0.00211 0.00379 

RO(14nm) 0.00301 0.00217 0.00207 0.00218 0.00209 0.00237 0.00296 

DAC(14nm) 0.00430 0.00523 0.00514 0.00596 0.00572 0.0019 0.00327 

DRAM(14nm) 0.00810 0.00455 0.00473 0.00512 0.00538 0.00385 0.00316 

VCO(14nm) 0.01300 0.00710 0.00722 0.00801 0.00891 0.0031 0.00411 

RO(7nm) 0.05010 0.10810 0.09370 0.10783 0.09730 0.00387 0.00510 

SRAM(7nm) 0.05230 0.05030 0.05410 0.0502 0.0532 0.0049 0.00471 

CM(7nm) 0.08150 0.07711 0.08132 0.07984 0.08041 0.0059 0.00720 

VCO(7nm) 0.10300 0.13800 0.13910 0.1337 0.1401 0.0061 0.00811 
 

 

Fig. 4.21. A graph showing the mean square errors of all proposed cross-section parasitic capacitance models 

across different designs taking the mean square errors of rule-based models as references. 
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Table 4.20 shows statistical comparisons using Wilcoxon signed-rank tests. The table 

shows the p-value and z-value for each paired comparison test. Also, the table shows the 

sum of positive ranks (SPR) and sum of negative ranks (SNR) for each paired 

comparison test. The comparisons show that there is no significant difference between 

the proposed vertex-based NN and vertex-based SVR models as the p-value is greater 

than 0.05. However, the results show significant differences (i.e., rejecting the null 

hypothesis) between the proposed models and each compared extraction model as the 

p-values are less than 0.05. 

Table 4.20. Paired comparisons using Wilcoxon signed-rank test (two-tailed) to test the significant 
difference between each two models, where the mean square error, against a field-solver, is used as a 
performance metric. 

Pairwise comparison 
SNR SPR z-value p-value Significance 

Model1 Model2 

Vertex-based NN Vertex-based 
SVR 

71 20 -1.7821 0.07508 No 

Vertex-based NN Calibre rule-
based [19] 

88 3 -2.9701 0.00298 Yes 

Vertex-based NN Ratio-based NN 84 7 -2.6906 0.00714 Yes 

Vertex-based NN Ratio-based SVR 86 5 -2.8304 0.00466 Yes 

Vertex-based NN Dim-based NN 85 6 -2.7605 0.00578 Yes 

Vertex-based NN Dim-based SVR 87 4 -2.9003 0.00374 Yes 

   SNR: Sum of negative ranks; SPR: Sum of positive ranks. 

4.7. Conclusion 

A novel modeling methodology for interconnect parasitic capacitances is 

developed for rule-based extraction tools using machine learning methods. The 

proposed methodology managed to overcome several problems in rule-based 

extraction tools such as handling systematic process variations, high pattern 

mismatches, and limited pattern coverages. The proposed methodology creates cross-

section compact models for a certain process technology node. Such compact models 

predict the parasitic coupling capacitances between metal polygons on a given 2D 

cross-section layout pattern considering the impact of systematic process variations. 

The modeling methodology process starts with processing process stack specifications 

to identify the main characteristics of layout input patterns, such as pattern’s size, the 

maximum number of metal layers in a pattern, handling multi-dielectric stacks, 
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systematic process variations, and the maximum number of polygons in a pattern. The 

input of the compact models is a given cross-section pattern including the required 

capacitances and the corresponding systematic process variations. Three different 

pattern representations are introduced. First, a ratio-based representation. Second, a 

dimensions-based representation. Third, a novel vertex-based pattern representation 

that considers systematic process variations as a part of the geometrical characteristics 

of a given pattern. The compact models are implemented using two different machine 

learning methods: neural networks and support vector regression methods. The 

proposed methodology is tested over thirteen real designs of 28nm, 14nm, and 7nm 

process nodes with more than 6.7M interconnect patterns. The generated compact 

models are faster than traditional rule-based models by 2.5X. Also, they managed to 

achieve outstanding results as compared to field-solvers and rule-based cross-section 

models, where the average relative error of the generated models is < 0.15% and the 

standard deviation of relative errors is < 3.31%. 
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Machine Learning Compact Models for 
Middle End of Line Parasitic 
Capacitances 

 

The massive improvement in the semiconductor industry enabled the integration of more 

systems and functionalities on the same chip. Such integrations are empowered by the 

feature scaling and the introduction of FINFETs. The continuous scaling down of 

technologies resulted in parasitic effects such as interconnect resistances and capacitances 

to dominate circuit performances, increasing the importance of interconnect parasitic 

extraction. The parasitic effects that are associated with the Middle-End-Of-Lines 

(MEOL), which are the interconnects connecting devices to upper metal layers, have a 

major impact on circuit performances in advanced process nodes as shown in [53]–[56], 

[60]. Fig. 5.1 shows some MEOL parasitic capacitances in case of FINFETs and MOSFETs, 

respectively. Usually, commercial parasitic extraction tools use field-solvers to extract the 

MEOL parasitic elements to achieve high accuracy levels. However, field-solvers are 

slow, have a limited capacity, and consume a lot of computational resources [11].  

 

 
(a) 

 
(b) 

Fig. 5.1. Some MEOL parasitic capacitances around (a) typical FINFET (Sun et al., 2015 [57]) and (b) 
MOSFET structures. 
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A novel MEOL parasitic capacitance modeling methodology using machine learning 

is introduced. The proposed modeling methodology aims to provide a compact multi-

dimensional model for each device (i.e., transistor) type (e.g., N-type and P-type) for a 

certain process node. Each compact model would replace thousands of pre-characterized 

patterns. The inputs of the compact model are MEOL geometrical properties, whereas 

the output is a certain pre-identified coupling capacitance component. The proposed 

methodology uses a novel geometry-based representation to represent the required 

features of MEOL patterns. Therefore, the geometry-based representations of MEOL 

patterns are used as inputs to the compact models. Unlike existing pre-characterized 

models, the proposed methodology can efficiently decrease pattern mismatches and 

handle many varieties of MEOL patterns. Hence, the accuracy and runtime of MEOL 

parasitic extraction processes are significantly improved.  

As shown in Fig. 5.2, the proposed modeling methodology consists of three main 

phases in order to create parasitic capacitance machine learning models for MEOL 

patterns. The first phase aims to prepare training data. This is done by generating many 

MEOL patterns, applying systematic process variations (e.g., etching), and extracting 

parasitic capacitances of MEOL patterns using a field-solver to obtain reference parasitic 

capacitance numbers. The second phase aims to extract features of MEOL patterns. This 

is done by representing each MEOL pattern using a novel geometry-based 

representation. Eventually, the third phase aims to train and create machine learning 

models for MEOL parasitic capacitances. 
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Fig. 5.2. The process of implementing MEOL parasitic capacitance models. 

 

5.1. Generate Training MEOL Patterns 

The training patterns consists of 25K MEOL patterns for each device (transistor) type 

in a certain process node. Each MEOL pattern consists of several metal layers that 

construct gate, source, and drain terminals of a certain device as shown in Fig. 5.1. They 

are created by scanning many real layout designs including cache memory, digital to 

analog converter, and voltage controlled oscillator layouts. Also, additional MEOL 

patterns were randomly generated covering different dimensions from 1X to 10X of the 

minimum technological dimensions. To obtain realistic and practical MEOL training 

patterns, two main factors need to be considered: the multi-dielectric environment and 

the multi finger devices. 

5.1.1. Multi-Dielectric Environment  

Multi-dielectric process stacks became very common in advanced process 

technology nodes, where each metal layer may overlap with multiple planar and 

conformal dielectrics each with a different dielectric constant (εr). The use of multi-
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dielectric characteristics as inputs to the capacitance models would significantly 

complicate the modeling process and generate less accurate models with a slow 

computational runtime. In order to consider the multi-dielectric characteristics without 

using them as inputs to the parasitic capacitance models, each process node (i.e., metal 

stack) should have its own models. Moreover, since each device type, in a certain 

process node, may overlap with different dielectrics, each device type must also have 

its own parasitic capacitance model. As a result, each device type per process node has 

a capacitance model. 

5.1.2. Multi-Finger Devices 

The multi-finger devices contain multiple gates and MEOL patterns. Therefore, the 

MEOL training patterns should consider the position of each gate within the 

corresponding multi-finger device as the spatial position of each gate may impact the 

calculations of MEOL parasitic coupling capacitances. Fig. 5.3 shows three identical 

gates with a different spatial position within a multi-finger device. Fig. 5.3 (a) shows a 

single gate MOSFET, Fig. 5.3 (b) shows a gate MOSFET on the edge of a multi-finger 

device, whereas Fig. 5.3 (c) shows an intermediate gate MOSFET as a part of a multi-

finger device. The results show that the coupling capacitance between the source and 

gate varies based on the location of the gate. Fig. 5.4 shows some examples of MEOL 

patterns for both FINFET and MOSFET technologies.  

 

                    (a)                                           (b)                                                               (c) 
Fig. 5.3. Examples of MEOL coupling capacitances in case of (a) a single MOSFET, (b) a gate at the edge 
of a multi-finger device, and (c) a gate in the middle of a multi-finger device. The experiment used 28nm 
node with minimum dimensions. Calibre xACT3D is used to extract MEOL parasitic capacitances. 
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(a) 

 
(b) 

Fig. 5.4. Examples of training MEOL patterns showing (a) MOSFETs and (b) FINFETs. 

5.2. Generate Reference Parasitic Capacitances 

After generating MEOL training patterns, their parasitic capacitance reference 

numbers are extracted using Calibre xACT3D, a 3D field-solver [32]. The reference 

numbers are used to train MEOL parasitic capacitance machine learning models. 

5.3. MEOL Pattern Representation 

In order to create an efficient MEOL parasitic capacitance model for each device type, 

the inputs of each model must provide sufficient information about the input MEOL 

pattern that help in describing the geometries and identifying the required capacitance 

component. Therefore, the inputs must include geometrical properties of the whole 

MEOL pattern, aggressor polygons, and victim polygons. The geometrical properties of 

the whole pattern help in determining the pattern structures, whereas the geometrical 

properties of aggressor and victim polygons help in identifying the required parasitic 

coupling capacitance component, which is between the aggressor and victim polygons. 

The geometrical properties are represented by feature vectors. Hence, there is a feature 

vector for the whole pattern, a feature vector for aggressor polygons, and a feature vector 

for victim polygons. All feature vectors have the same size.  Eventually, the three feature 
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vectors are combined together conforming a final feature vector that represents the given 

MEOL pattern and the required capacitance component. Fig. 5.5 shows an example of the 

proposed MEOL feature vector that is used to predict a coupling capacitance between 

gate and source nets.  

 

Fig. 5.5. An example of the proposed MEOL feature vector that is used to predict gate to source coupling 

capacitance in a MOSFET. 

A geometry-based feature representation is proposed to extract geometrical 

properties of MEOL patterns including a whole pattern, aggressor polygons, and victim 

polygons. The proposed geometry-based representation has four main steps. The first 

step aims to scan MEOL patterns and fracture their polygons into quadrilateral or 

triangular polygons, e.g., rectangles and triangles. The second step aims to represent each 

polygon (i.e., fractured polygon) by the spatial position of its vertices, where the spatial 

position is measured from the center of the corresponding gate. In other words, the 

spatial position of a vertex is its displacement from the center of the corresponding gate. 

The third step aims to represent vias and fins. As for vias, each set of symmetrical vias is 

grouped into a cluster. The spatial position (i.e., displacements from the center of the 

corresponding gate) and the dimensions of via clusters are used as a representation of 

vias. On the other hand, the fins are represented by fin width, fin spacing, and fins count. 
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Eventually, the fourth step aims to concatenate all feature vectors together creating a final 

input vector that is used as an input to the required machine learning model.  It is worth 

mentioning that such geometrical representation captures non-Manhattan geometries. 

The flow is described below. 

5.3.1. Fracturing Polygons 

In MEOL patterns, some polygons may have more than four vertices, e.g., T-shaped 

polygons. In such cases, the polygons are fractured into quadrilateral or triangular 

polygons. The fracturing is done by scanning the polygons in the x-direction (i.e., 

perpendicular to gate). In case of capturing any polygon with more than 4 vertices, the 

polygon is fractured vertically as shown in Fig. 5.6. Then, the polygons are scanned in 

the y-direction (i.e., parallel to gate). In case of capturing any polygon with more than 

4 vertices, the polygon is fractured horizontally.  

 

Fig. 5.6. An example of fracturing a polygon in x-direction. 

5.3.2. Creating a Feature Vector for Each MEOL Layer 

After fracturing all MEOL polygons for each layer in a certain MEOL pattern. Each 

polygon is represented by the spatial position of its four vertices, where the spatial 

position is measured from the center of the corresponding gate in a given MEOL 

pattern. Therefore, each polygon is represented by a vector of eight values that 

represent the x and y locations of each vertex. For example, an MEOL layer with 5 

polygons is represented by a vector of 40 indices as shown in Fig. 5.7. In case of 

triangular polygons, they are represented by 4 vertices, but the last two vertices have 

the same position.  

Fracturing in x-direction 

(perpendicular to gate) 

Fractured polygons: PL1, PL2, and PL3 Polygon 

Gate 

PL1 

PL2 PL3 
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Fig. 5.7. An Example of representing MEOL layer polygons using a vector of vertices. 

5.3.3. Representing Vias and Fins 

MEOL patterns may contain many vias. Representing all vias with their vertices 

would significantly increase the feature vector size. Hence, vias are grouped into 

clusters, where each set of symmetrical vias are clustered together conforming a matrix 

(or a vector) of vias. Each cluster is represented by six parameters: the spatial position 

of its center (in x and y axes), the number of vias in x-direction, the number of vias in y-

direction, the width of the corresponding vias, and the spacing between the 

corresponding vias as shown in Fig. 5.8. On the other hand, fins are represented by 

three parameters: fin width, fin spacing, and fins count. 

 

Fig. 5.8. An example showing the feature vector of MEOL vias. 
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5.3.4. Maximum Number of MEOL Polygons 

Obtaining the maximum number of polygons for each layer (e.g., diffusion, poly, 

and metal1) in MEOL patterns helps in identifying the input vector size of MEOL 

models. The maximum number of polygons for each MEOL layer is identified by 

checking the corresponding layout design rules and by observing many fractured 

MEOL training patterns. In case of MOSFETs (28nm process node), the maximum 

numbers of fractured polygons for gate, field-poly, diffusion (including raised source 

drain (RSD)), and metal1 layers are 7, 7, 6, and 6, respectively. As for vias, the maximum 

number of via clusters is 4. On the other hand, in case of FINFETs (7nm process node), 

the maximum numbers of fractured polygons for gate, field-poly, diffusion, raised 

source drain (RSD), device local interconnect, and field local interconnect layers are 3, 

6, 2, 2, 6, and 6, respectively. As for vias, the maximum number of via clusters is 4. All 

previous steps are performed for the whole MEOL pattern, aggressor polygons, and 

victim polygons. Eventually, the final input vector size is calculated by: 

input vector size of MEOL model =  3 (𝑉 + 𝐹 + ∑𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒(𝑖)

𝑛

𝑖=1

), (5.1) 

where n is the number of MEOL layers, V is the via vector size, whereas F is the fin 

vector size. Fig. 5.9 shows an example of the final input feature vector for a certain 

MEOL pattern. 

 

Fig. 5.9. An example showing the generating of the final input vector that is used for MEOL parasitic 
capacitance extraction. 
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5.4. MEOL Parasitic Capacitance Models 

Two modeling approaches are used to create MEOL parasitic capacitance models. 

The first approach uses Neural-Networks (NN) models, whereas the second approach 

uses Support Vector Regressions (SVR). There is a model for each device type in a certain 

process node. The inputs of both methods are the concatenated feature vectors that 

include geometrical representations of an MEOL pattern, aggressor polygons, and victim 

polygons as shown in Fig. 5.9. The models are implemented based on Google Tensor flow 

libraries, [83], using Python [84]. 

5.4.1. Neural Networks Model 

The NN architectures are obtained using neural architecture search [86]. As for the 

search space, the number of hidden layers varies from 1 to 4, the activation function of 

each layer alternates between RELU and tanh, the number of neurons per hidden layer 

varies from n/6 to n, where n is the input vector size, and the initialization parameter 

of each layer alternates between glorot_normal and he_normal. A fully connected NN 

is considered for MEOL models. A grid search is used as a search strategy. The lowest 

mean square error of test sets with smallest architecture is used as an evaluation 

method. Table 5.1 summarizes NN hyper-parameters.  Fig. 5.10 shows the most 

common NN architecture that is obtained for MEOL patterns in 28nm and 7nm process 

nodes. It consists of three hidden layers with n/4, n/4, and n/5 neurons, respectively. 

The activation function of each layer is tanh, tanh, and RELU, respectively. The 

initialization parameters of the layers are golort_normal, golort_normal, and 

he_normal, respectively. 

Table 5.1. Training hyper parameters of MEOL parasitic capacitances NN models. 
Parameter Value 
Training set 80% (20K patterns) 

Test set 20% (5K patterns) 
Batch size 500 
Validation set 10% (2K patterns) 

Loss function Mean square error 
Learning rate 1e-3 

Batch normalization YES 
Epochs 500 
Optimizer Adam 
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Fig. 5.10. An example of the most common NN architecture for MEOL parasitic capacitance extraction. 

5.4.2. Support Vector Regressions 

A grid search is used to obtain SVR hyper-parameters. The kernel is set to the 

radial basis function because MEOL parasitic capacitance extraction is a non-linear 

problem. As of the search space, the regularization parameter (C) varies from 1 to 20, 

gamma varies from 0.1 to 1, and epsilon varies from 0.05 to 0.5. The lowest mean square 

error of test sets is used as an evaluation method. The most common hyper parameters 

that are obtained for MEOL patterns in 28nm and 7nm process nodes are: 8 as a 

regularization parameter (C), 0.3 as a gamma, and 0.1 as an epsilon.  

5.5. Experimental Results 

The testing covered two process nodes that include 28nm and 7nm. The testing 

methodology aims to select MEOL patterns from several designs, which are not part of 

the training sets, and extract the selected devices using the proposed MEOL NN models, 

the proposed MEOL SVR models, Calibre xACT3D as a reference 3D field-solver [32], 

Calibre PEX as a rule-based extraction tool for 28nm process node [19], and Calibre xACT 

as a hybrid extraction tool [87], which is a hybrid extraction tool that extracts MEOL 

layers using a 3D field-solver, for 7nm process node. All errors are measured relative to 

Calibre xACT3D, 3D field-solver. 
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5.5.1. Testing Results on 28nm Process Node 

The proposed MEOL modeling methodology was tested over 28nm process node, 

which is a MOSFET technology.  The MEOL layers of 28nm process are diffusion, via 

(i.e., diffusion contact), gate, field poly, and metal1 layers. Two different MEOL models 

were implemented to cover two different device types (i.e., NMOS and PMOS). The 

total number of training MEOL patterns is 50K. They were obtained from different 

designs that include cache memory, digital to analog converters, and other MEOL 

patterns that were randomly generated. The parasitic capacitance reference numbers of 

the patterns were extracted using Calibre xACT3D, 3D field-solver, on Intel Xeon(R) 

E5-2680, 2.50GHz with 8 CPUs and 16G of RAM. The total runtime of extracting the 

patterns is 4.3 hours. The input vector size of the models is 696.  

As for the fully connected NN models architecture, the two models have the same 

architecture. The NN architecture consists of three hidden layers with 174, 174, and 140 

neurons, respectively. The activation functions are tanh, tanh, and RELU, respectively.  

The total training runtime of the two models is 3.6 hours using Intel Xeon(R) E5-2680, 

2.50GHz, and 16G of RAM. As for SVR models, the two SVR models have the same 

hyper-parameters which are: 8 as a regularization parameter (C), 0.3 as a gamma, and 

0.1 as an epsilon. The total training runtime of the two models is 1.7 hours using Intel 

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. 

The proposed models were tested over more than 15M devices across several 

designs that include ring oscillators, voltage-controlled oscillator, and digital to analog 

converter designs. Fig. 5.11 shows the error histograms across all designs using the 

proposed NN models, SVR models, and Calibre PEX as a rule-based tool with a pre-

characterized library. The results show that the proposed NN models have a superior 

accuracy as compared to Calibre PEX. Also, the prediction runtime of the NN and SVR 

models are faster than Calibre PEX by 1.057X and 1.23X, respectively. Moreover, the 

prediction runtime of the NN and SVR models are faster than Calibre xACT3D, 3D 

field-solver, by 97X and 112X, respectively. Table 5.2 summarizes the architectures of 
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the NN and SVR models, the accuracy results of training and test sets, and the training 

runtime. Table 5.3 summarizes the average prediction runtime of the different MEOL 

extraction models. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5.11. Error histograms, as compared to Calibre xACT3D, of 28nm process node using (a) the 
proposed NN models, (b) the proposed SVR models, and (c) Calibre rule-based extraction tool. 
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Table 5.2. The architectures and parameters of 28nm MEOL patterns. 

 NN models SVR models 

Input vector size (n) 696 

Test coverage 15M devices (RO, VCO, and DAC) 

Parameters Three hidden layers: 174, 174, 
and 140 neurons, respectively. 
Activations: tanh, tanh, and 
RELU, respectively. 

Kernel: RBF 
Regularization (C): 8 
Epsilon: 0.1 
Gamma: 0.3 

Training set accuracy (MSE) 3.7e-3 4.1e-3 

Test set accuracy (MSE) 5.2e-3 6.7e-3 

Total training runtime for all 
models 

3.6 hours (2 models) 1.7 hours (2 models) 

 

Table 5.3. The average prediction runtime of the different 28nm MEOL parasitic capacitance models. 

 MEOL NN MEOL SVR Rule-based Field-solver 

Average prediction runtime per MEOL 
pattern 

2.43ms 2.08ms 2.57ms 235ms 

 

5.5.2. Testing Results on 7nm Process Node 

The proposed MEOL modeling methodology was tested on 7nm process node, 

which is a FINFET technology.  The MEOL layers of 7nm process are diffusion, raised 

source drain (RSD), fins, gate, field poly, via, a local interconnect (e.g., Mb), and a field 

local interconnect. Six different MEOL models were implemented to cover six different 

device types, such as n-type high power (NHP), n-type low power (NLP), p-type high 

power (PHP), p-type low power (PLP), general n-type, and general p-type devices. The 

total number of training MEOL patterns are 150K patterns. They were obtained from 

different real designs including cache memory, digital to analog converters, and other 

MEOL patterns that were randomly generated. The parasitic capacitance reference 

numbers of the patterns were extracted using Calibre xACT3D, 3D field-solver, on Intel 

Xeon(R) E5-2680, 2.50GHz with 8 CPUs and 16G of RAM. The total runtime of 

extracting the patterns is 8.1 hours. The input vector size of the models is 681.  

As for the fully connected NN models architecture, the six models have the same 

architecture. The NN architecture consists of three hidden layers with 170, 170, and 136 

neurons, respectively. The activation functions are tanh, tanh, and RELU, respectively.  
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The total training runtime of the six models is 13.8 hours using Intel Xeon(R) E5-2680, 

2.50GHz, and 16G of RAM. As for SVR models, the SVR models have the same hyper-

parameters which are: 8 as a regularization parameter (C), 0.3 as a gamma, and 0.1 as 

an epsilon. The total training runtime of the six models is 6.18 hours using Intel Xeon(R) 

E5-2680, 2.50GHz, and 16G of RAM. 

The proposed models are tested over more than 20M devices from ring oscillators, 

SRAM, and PLL clock generator designs. Fig. 5.12 shows the error histograms across all 

designs using the proposed NN models, SVR models, and Calibre xACT as a hybrid 

tool that uses a field-solver to extract MEOL. The results show that the proposed NN 

models has a good accuracy relative to Calibre xACT. Also, the prediction runtime of 

the NN and SVR models are faster than Calibre xACT by 90X and 98X, respectively. 

Moreover, the prediction runtime of the NN and SVR models are faster than Calibre 

xACT3D, 3D field-solver, by 101X and 110X, respectively. 

Table 5.4 summarizes the architectures of the NN and SVR models, the accuracy 

results of training and test sets, and the training runtime. Table 5.5 summarizes the 

average prediction runtime of the different MEOL extraction models. 

Table 5.4. The architectures and parameters of 7nm MEOL patterns. 

 NN models SVR models 

Input vector size (n) 681 

Test coverage 20M devices (RO, SRAM, and PLL clock generators) 

Parameters Three hidden layers: 174, 174, 
and 140 neurons, respectively. 
Activations: tanh, tanh, and 
RELU, respectively. 

Kernel: RBF 
Regularization (C): 8 
Epsilon: 0.1 
Gamma: 0.3 

Training set accuracy (MSE) 4.3e-3 5.7e-3 

Test set accuracy (MSE) 5.8e-3 7.1e-3 

Total training runtime for all 
models 

13.8 hours (6 models) 6.18 hours (6 models) 

 

Table 5.5. The average prediction runtime of the different 7nm MEOL parasitic capacitance models. 

 MEOL NN MEOL SVR Hybrid Field-solver 

Average prediction runtime per MEOL 
pattern 

2.61ms 2.4ms 235ms 264ms 
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(a) 

 

(b) 

 

(c) 

Fig. 5.12. Error histograms, as compared to Calibre xACT3D, of 7nm process node using (a) the proposed 
NN models, (b) the proposed SVR models, and (c) a hybrid extraction tool. 
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5.6. Conclusion  

A parasitic capacitance extraction modeling methodology is developed for middle 

end of line patterns around FINFETs and MOSFETs using machine learning methods. 

The current extraction tools either rely on field-solvers or pre-characterized libraries to 

extract MEOL patterns. The pre-characterized libraries suffer from several issues that 

impact the extraction accuracy including pattern mismatches and insufficient pattern 

coverage. On the other hand, the field-solver methods have a limited capacity and 

consume a lot of time. The proposed modeling methodology provides compact models 

that predict MEOL parasitic capacitances accurately. This is done by selecting all devices 

in a certain layout, identifying their MEOL patterns, and representing MEOL patterns 

using a novel geometry-based representation to be used as inputs to the required machine 

learning models. Two different machine learning methods are used to create MEOL 

parasitic capacitance models: support vector regressions and neural networks. The 

proposed methodology is tested over two process nodes including: 28nm and 7nm. The 

testing covered devices in several real designs with more than 40M devices. The proposed 

methodology provided outstanding results as compared to field-solvers with an average 

error < 0.2%, a standard deviation < 3%, and a speed up of 100X. 
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Hybrid Parasitic Capacitance Extraction 
Using Machine Learning 

 

The increasing parasitic capacitance extraction accuracy requirements in advanced 

process nodes by semiconductor foundries (< 5% error) added many challenges to the 

models of existing parasitic extraction tools. Hybrid parasitic capacitance extraction 

methods that combine rule-based and field-solvers are considered in advanced nodes. 

Despite the accuracy improvements introduced by those methods, they suffer from two 

main problems. First, the proportion of patterns that have to go to field-solvers increases 

in advanced nodes (as technology scales down). With this proportion approaching 50%, 

using these hybrid methods does not save much time as compared to field-solvers. 

Second, these hybrid methods do not eliminate all outliers because the layout patterns 

are assigned to extraction methods based on a pre-characterized library.  

To improve the accuracy and runtime of the hybrid parasitic capacitance extraction, 

a new adaptive, accurate, and faster intermediate extraction method is required to replace 

field-solvers in extracting most of layout patterns. Furthermore, a smarter way to direct 

each layout pattern to an appropriate extraction method based on the required accuracy 

is needed. Therefore, an accuracy-based hybrid parasitic capacitance extraction method 

is proposed. The proposed hybrid flow divides a layout into windows (i.e., sliding 

window) and extract each window using one of three extraction methods, based on the 

required parasitic capacitance extraction accuracy level, that include field-solver, rule-

based, and novel deep neural-networks-based (i.e., intermediate) extraction methods. 

Fig. 6.1 shows an illustrative example of extraction windows that are used in the 

proposed hybrid flow. 
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Fig. 6.1. An illustrative example of a partial layout showing an extraction window that is used in the 
proposed hybrid parasitic capacitance extraction flow. 

6.1. Deep Neural-Networks Based Extraction 

Deep Neural-Networks (DNN) models are implemented to predict parasitic 

capacitances effeciently in VLSI layout patterns based on Google Tensor flow libraries, 

[83], using Python [84]. The proposed models extract the different parasitic capacitance 

components of layout polygons that are enclosed inside a certain window. The proposed 

models use a novel hybrid density-voltage map feature representaion to represent the 

input layout patterns. The proposed models can handle the multi-dielectric environment 

of process nodes, where each process node has its own set of parasitic models. Two DNN 

models are created for each metal layers combination in a certain process node (i.e., metal 

stack): one to predict total capacitances on certain polygons and the other to predict 

coupling capacitances among polygons. Each metal layers combination contains a 

collection of one to three metal layers, where each combination has the same set of metals 

and dielectrics specifications, for example, metal1-metal2-metal3 is a combination, 

whereas metal1-metal3-metal4 is a different combination. As a result, the total number of 

combinations of a metal stack with M layers is MC1 + MC2 + MC3, where MCn is the 

combinations function. It is worth mentioning that the proposed modeling methodology 

can handle combinations with more than three metal layers. However, three metal layers 

combinations are very common in parasitic capacitance extraction, and usually, they 

provide good parasitic extraction accuracy for real chips with high metal densities [50], 

[76], [88]–[90].  

A layout window that is extracted by one of three 

extraction methods: field-solver, rule-based, and  

novel intermediate extraction methods. 
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The process of implementing parasitic capacitance DNN is shown in Fig. 6.2. The 

process starts with generating real layout patterns based on drawn dimensions for a 

certain process node. After that, the drawn dimensions are converted into actual 

dimensions by applying the corresponding systematic process variations (e.g., etching). 

Then, a field-solver is used to extract reference parasitic capacitances for the patterns with 

actual dimensions.  Eventually, the input patterns and their parasitic capacitances are 

used to train the required DNN models. 

 

 

Fig. 6.2.  The process of implementing a deep neural-networks model for parasitic capacitance extraction. 

6.1.1. Input Patterns Generation 

A dataset of layout patterns is obtained from several real designs that belong to a 

certain process technology node. The designs include Op-Amp, Ring Oscillator, DRAM, 

PLL, and sense-amplifier circuits. Also, additional patterns are generated using layout 

schema generator (LSG) in [91]. The LSG aims to generate random realistic patterns 

using Monte Carlo methods. The patterns are generated by creating a grid of square 

segments and then injecting polygons into the created grid in a way that complies with 

the corresponding design rules. The dataset consists of 250K layout patterns. Each 

pattern contains one to three metal layers. Fig. 6.3 shows an example of a layout pattern 
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with 1µm × 1µm window size using 28nm node. The size of each pattern is technology 

dependent, and it represents the maximum interaction distance of the target metal 

layer. The maximum interaction distance is calculated by simulating 2D cross-section 

patterns of two adjacent polygons that belong to the same target metal layer using a 

field-solver. The simulation starts with minimum technological dimensions and sweeps 

over the spacing between these two polygons. The maximum interaction distance is the 

spacing where the coupling capacitance between the two polygons is less than or equal 

to 1% of the total capacitance as shown in Fig. 6.4. 

 

Fig. 6.3.  An example of a layout pattern of three metal layers (28nm). 

 

 
Fig. 6.4.  An example showing the impact of increasing the separation between two adjacent metal 
polygons on the lateral coupling capacitance. The experiment used metal1 in 28nm process node. 
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6.1.2. Running Field-solver 

Once all layout patterns are ready, they are passed to our field-solver, Calibre 

xACT3D [32], to extract all parasitic capacitance components that should be used as 

reference capacitance numbers. The field-solver generates a capacitance matrix of m×m 

dimensions for each layout pattern, where m represents the number of metal polygons 

in a layout pattern. In a typical pattern, there are around 10 to 15 metal polygons. Each 

off-diagonal entry in the matrix represents a coupling capacitance between two certain 

polygons, whereas each diagonal entry represents a total capacitance on each polygon.  

6.1.3. Dataset Pre-Processing 

To achieve high accuracy levels, two DNNs are created: one to predict the total 

capacitances on each polygon, and the other one to predict the coupling capacitances 

among polygons in a certain layout pattern. The total and coupling capacitances are 

pre-processed differently. The total capacitances are normalized to have a zero mean 

and unit standard deviation: 

𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐶−mean(∑𝐶)

stdev(∑𝐶)
, (6.1) 

where Cnormalized is the normalized capacitance, C represents a certain capacitance 

component, mean(∑C) is the mean of capacitances, whereas stdev(∑C) is the standard 

deviation of capacitances. The normalized capacitances are used as reference numbers 

to the total capacitance DNN model. On the other hand, the coupling capacitances are 

pre-processed using: 

Cln = ln(Ccoupling), (6.2) 

where Cln is the pre-processed (linearized) capacitance and (ln) is the natural logarithm. 

The natural logarithm provides some sort of linearization as coupling capacitances 

decrease exponentially with the separation (i.e., spacing), as shown in Fig. 6.4. By such 

a linearization, the linearized capacitance margins are increased, and the non-linearity 

of coupling capacitances against the separation is decreased as shown in Fig. 6.4. 

Therefore, the training of parasitic models would converge faster on better coefficients 



112 

 

(or neuron weights). As a result, the overall coupling capacitance extraction accuracy is 

improved. The linearized capacitances are used as reference numbers to the coupling 

capacitance DNN model.  

It is worth mentioning that the small coupling capacitance components that are less 

than 0.1% of the total capacitances are excluded as they do not impact the capacitance 

extraction accuracy and might disturb the training process.  In the extraction (i.e., 

prediction) phase, the subtractive approach is followed, where for each polygon, the 

extracted coupling capacitances are subtracted from the total capacitance until the 

subtraction reaches zero. In case of any remaining residuals, they are distributed across 

the nearby polygons. 

6.1.4. Hybrid Density-Voltage Map Feature Representation 

A novel hybrid density-voltage map feature representation is proposed to extract 

features of layout patterns. Those features are used as inputs to parasitic capacitance 

DNN models. The proposed feature representation is a combination of  density- map 

and voltage-map feature representations. The density-map feature representation is 

one of the most effective layout feature representations, where each layer in a given 

layout pattern is divided into segments, and the density of polygons is calculated in 

each segment creating a density matrix for each layer in a given layout pattern [92]. Fig. 

6.5 shows an example of the density-map feature representation of two polygons that 

belong to the same metal layer creating 6×6 density matrix [92]. To have a meaningful 

density matrix, each segment must include information of a single polygon at 

maximum. The expirements showed that the segment’s size must be less than half the 

minimum spacing of the corresponding metal layer. 
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Fig. 6.5.  An example of the density-map feature representation in a layout pattern using two polygons 
that belong to the same metal layer. 

On the other hand, in the voltage-map representation, 1V is assigned to aggressor 

polygons, whereas 0V is assigned everywhere else. To extract parasitic capacitances, 

the density-map feature representation is not enough to predict different parasitic 

capacitance components efficiently because each pattern contains several and different 

numbers of capacitance components. In order to overcome this problem, each 

capacitance component must be associated with a different input (i.e., a layout pattern 

matrix). 

A novel hybrid density-voltage map feature representation is proposed to provide 

a different input pattern (matrix) for each capacitance component as shown in Fig. 6.6. 

In the proposed representation, total capacitances are addressed by assigning 

(1V+density) on aggressor polygons and (0V+density) everywhere else, whereas 

coupling capacitances are addressed by assigning (1V+density) on aggressor polygons, 

(-1 × (1V+density)) on victim polygons, and (0V+density) everywhere else. Fig. 6.6 

shows an example of the proposed hybrid density-voltage map feature representation 

highlighting patterns of total and coupling capacitances.  
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Fig. 6.6.  The proposed hybrid density-voltage map feature representation for total and coupling 
parasitic capacitance extraction. 

The size of the map is obtained for each metal layer using the pattern window size 

and the number of segments (i.e., pixels) in each window. First, each layout pattern 

window has a square shape, where the width and length of each window equal the 

maximum interaction distance of the target metal layer. Second, each window is 

segmented into ns×ns segments, where the length and width of each segment equal half 

the minimum spacing of the corresponding metal layer. Therefore, ns is estimated by: 

ns = window width / (0.5 × minimum spacing). (6.3) 

As for the window width (i.e., size), it is set to the maximum interaction distance to 

ensure that only significant coupling capacitances are considered, and minor coupling 
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capacitances that do not impact the accuracy of capacitance extraction are neglected. 

This would help in avoiding unnecessarily capacitance computations. As for the 

segment width, it must be less than or equal to half the minimum spacing to ensure that 

every layout pattern has a unique density representation, where all polygons should be 

separated by empty (i.e., zero) segments. Fig. 6.7 shows three examples with different 

segment sizes, where the same density-map matrix may represent multiple layout 

patterns as long as the corresponding segment width is greater than half the minimum 

spacing, whereas the patterns that have segment widths less than or equal to half the 

minimum spacing would have unique density-map matrices. 

 
Fig. 6.7. An example of three layout patterns with different segment sizes. 

 

6.1.5. DNN Construction 

Two DNN models are implemented. One to predict total capacitances and the other 

one to predict coupling capacitances. The inputs of the DNNs are the flattened hybrid 

density-voltage matrices of a layout pattern as shown in Fig. 6.8. Since each layout 

pattern consists of three different metal layers, the input size is (M 2 + N 2 + Y 2), where 

M 2  is the density-voltage matrix size of the first metal layer, N2 is the density-voltage 

matrix size of the second metal layer, whereas Y2  is the density-voltage matrix size of 

the third metal layer. The output of the first DNN is the total capacitance on a certain 

polygon, whereas the output of the second DNN is the coupling capacitance between 

two selected polygons in a given layout pattern. 
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As for DNN architectures, a fully connected NN architecture is selected. A grid 

search algorithm is used to obtain NN architectures. The search range includes the 

number of NN layers that varies from 2 to 7, the number of neurons per layer that varies 

from n/9 to n, where n represents the input vector size, and the activation function of 

each layer that alternates between RELU and tanh. As for the evaluation method, the 

mean square error (MSE) of testsets is used where the smallest DNN architecture that 

reaches MSE of 0.05% is selected. Fig. 6.8 shows the most common fully connected DNN 

architecture that is used to predict total and coupling parasitic capacitances in layout 

patterns. For each hidden layer, the number of neurons depends on the input vector 

size. For example, layout patterns with an input vector size of 6075 segments use a DNN 

architecture that has 4 hidden layers with 675, 868, 760, and 868 neurons, respectively. 

 

Layer 1 (input) 2 3 4 5 6(output) 

Neurons = n n/9 n/7 n/8 n/7 1 

Activation = RELU RELU tanh RELU tanh Uniform 

Fig. 6.8.  A fully connected NN architecture to calculate total and coupling parasitic capacitances for a 
certain layout pattern. 

 

6.1.6. DNN Training 

In the training phase, the dataset is divided into training and test sets. They are 

randomly selected, where 70% of the dataset are used for training, whereas 30% of the 

dataset are used for testing. The training used Adam optimizer, 5K as a maximum 

number of epochs, 10% as a validation set, mean square error as a cost function, 1e-3 as 

a learning rate, and 1000 as a batch size. The input and four hidden layers initializations 

are: he_normal, he_normal, glorot_normal, he_normal, and glorot_normal, respectivily 
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[93]. These parameters are obtained using a grid search algorithm. An early stopping is 

used to stop the training epochs once the training converges. The convergence is 

achieved when the accuracy of the validation set starts to degrade, or after 50 epochs of 

not observing any further accuracy improvements in both the validation and training 

sets.  The average training runtime of a parasitic capacitance DNN model is 4.9 hours 

using Intel(R) Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM. 

6.1.7. Comparison to Other Layout Representations 

The most common layout representation methods include spectrum-based, 

concentric circle area sampling (CCAS), and density-based methods [92], [94]–[96]. In 

spectrum-based representation, a frequency domain transformation, such as Discrete 

Transform (DCT) and Discrete Fourier Transform (DFT), is applied on each layout 

pattern creating feature vectors of transformation coefficients (e.g., Fourier coefficients). 

After that, each feature vector is passed to a convolution step to be used as an input to 

the required models [92].   

On the other hand, the CCAS representation method creates a set of concentric 

circles for each layout pattern with radiuses of: 0, 4, 8, 12, …, rin, rin+8, rin+16, …, L/2 

pixels, where rin is a user controlled sampling density parameter, L is the pattern’s 

length, and the unit of a pixel is nm, as shown in Fig. 6.9. Each circle is sampled 

uniformly with x samples conforming x digits binary numbers, where 1 means that the 

sample point overlaps with a polygon and 0 means that the sample point does not 

overlap with a polygon. After that, the binary number of each circle is encoded into a 

more compact representation (e.g., decimal number).  The encoded numbers are 

combined into a feature vector and used as an input to the required models. 
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Fig. 6.9. An example of CCAS layout representation for capacitance extraction. 

In capacitance extraction, any layout modification may impact many coupling 

capacitances. So, its layout representation must consider many layout details. The 

convolutional methods, as in spectrum-based, may lose a lot of layout details as they 

mainly target limited layout features. Other methods like CCAS representation can 

provide detailed information about layout patterns by reducing the separation between 

concentric circles and increasing the number of samples per circle; however, this will 

result in a lot of redundant data that may disturb the training process and cause 

overfitting [92]. On the other hand, the density-based representation, which uses 

density-map features, is a rasterization method that can capture many layout details. 

Also, it is less complicated as compared to other methods and can easily be reverse 

engineered for any debugging purposes.  

The accuracy of the proposed hybrid density-voltage map is evaluated against the 

CCAS representation by comparing their results against Calibre xACT3D, field-solver. 

To extract the coupling capacitances using the CCAS representation, an additional 

feature vector that represents the target polygons is added to the input vector. Fig. 6.9 

shows an example of a coupling pattern that is used to extract the coupling capacitance 

between two certain polygons.  

The testing used 28nm process node and included 11M capacitance components 

across different 92 layers combinations that cover metal1 to metal8 layers. The training 
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process shown in Fig. 6.2 is followed to train CCAS NN models using the same hyper-

parameters, same hardware, and same settings.   The CCAS training used 0.5µm as a 

sampling density parameter, which approximately represents 0.5 × maximum 

interaction distance of most of the training patterns, and 8 sample points for each circle. 

This increased the number of concentric circles in the range of maximum interaction 

distance. Therefore, the sampling fidelity of layout patterns is increased providing more 

detailed representations.  The NN architecture of the CCAS contains two hidden layers, 

each with 185 neurons and tanh activations. The testing included two main factors: the 

mean of relative errors and the standard deviation (STDEV) of relative errors, where 

the relative error is calculated as below: 

Relative error =  
𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
, (6.4) 

where Cmodel represents a capacitance value that is calculated by a model, whereas 

Creference represents a reference capacitance value that is calculated by a field-solver. 

Table 6.1 shows the testing accuracy results of the proposed hybrid density-voltage 

map and CCAS layout representations. The results show that the hybrid density-

voltage map representation provides better accuracy numbers as compared to the 

CCAS representation.  

Table 6.1. Accuracy comparison between CCAS and the Proposed hybrid density-voltage map layout 
representations using 28nm process node. 

 Mean of errors STDEV of errors  

CCAS  1.2% 13.7% 

Hybrid density-voltage  0.021% 1.61% 

 

6.1.8. Comparison Against Other Machine Learning Methods 

The proposed DNN models are compared against Support Vector Regression 

(SVR), random forest regression (RFR), and Convolutional Neural Networks (CNN) 

models [97], [98]. The models use the proposed hybrid density-voltage map feature 

representation as inputs and the pre-processed capacitance values as outputs. Table 6.2 

shows the used hyper-parameters of SVR, RFR, and CNN models. These hyper 

parameters are obtained using a grid search algorithm. The testing used 28nm process 
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node and included 11M capacitance components across different 92 layers 

combinations that cover metal1 to metal8 layers. The testing included two main factors: 

the mean of relative errors and the standard deviation (STDEV) of relative errors. Table 

6.3 shows the test set accuracy results of the DNN-based, SVR, RFR, and CNN models. 

The results show that the DNN-based and CNN models provide outstanding accuracy 

results as compared to the other models. The accuracy of DNN-based models is better 

than CNN (LeNet5) models and very close to CNN (ResNet18) models. The training 

and prediction times of the DNN-based models are way faster than CNN models, 

where the average training times of DNN-based, CNN (LeNet5), and CNN (ResNet18) 

models are 4.9, 10.3, and 32.8 hours, respectively, whereas the corresponding average 

prediction times are 1.3, 4.7, and 15.8 ms, respectively. The training used Intel(R) 

Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM, whereas the prediction is 

done on the same machine using a single CPU. 

Table 6.2. A list of selected hyper-parameters of SVR, RFR, and CNN models for 28nm process node. 

Method Hyper-parameters 

Support Vector Regression 
(SVR) 

Kernel = polynomial 
Cost = 5 
order (d) = 6 

Support Vector Regression 
(SVR) 

Kernel = radial basis function (RBF) 
Cost = 9 
Gamma = 0.2 

Random Forest for Regression (RFR) Number of trees=2000 

Convolutional Neural-Network (CNN) 
(architecture = LeNet5) [97] 

Optimizer: Adam 
Learning rate: 1e-3 
Batch normalization: Yes 
Validation set: 10% 
Batch size: 1000 
Epochs: 500 or early stopping 

Convolutional Neural-Network (CNN) 
(architecture = ResNet18) [98] 

 
Table 6.3. Test sets accuracy results of DNN-based, SVR(Polynomial), SVR (RBF), RFR, and CNN 
Modeling methods using 28nm process node. 

Method Mean of errors STDEV of errors 

DNN-based 0.02% 1.61% 

SVR (kernel = polynomial) 1.6% 9.9% 

SVR (kernel = RBF) 0.9% 6.8% 

RFR 1.8% 8.5% 

CNN (LeNet5) [97] 0.141% 3.11% 

CNN (ResNet18) [98] 0.036% 1.63% 

 



121 

 

6.2. Hybrid Parasitic Extraction 

A hybrid parasitic capacitance extraction flow is proposed to achieve high accuracy 

levels with a very good performance, regardless of the process technology node or the 

layout complexity. Unlike existing hybrid flows that are pattern-based, the proposed flow 

is accuracy and performance based. Existing hybrid flows rely on pattern structures, if a 

given layout pattern is covered by rule-based models then it is extracted using a rule-

based extraction method, otherwise, it is extracted using a field-solver. Such flows do not 

necessarily provide good parasitic capacitance extraction accuracy because rule-based 

models do not consistently provide good accuracy levels on all covered and extracted 

patterns. There are several reasons for inaccuracy in rule-based extraction methods such 

as a curve fitting inaccuracy, insufficient samples, and pattern matching issues [11], [14], 

[34]. The proposed hybrid flow overcomes these issues by evaluating each layout pattern 

from the accuracy perspective not from the pattern perspective, and then assigning each 

layout pattern to the appropriate extraction method based on the pattern’s accuracy 

characteristics with each method. Also, the proposed hybrid flow gives the user the 

ability to determine the required accuracy level based on design and design phase 

requirements. As a result, the proposed flow managed to meet the required accuracy level 

with more than 99% accuracy when tested on several real designs. 

The proposed hybrid flow uses three extraction methods:  field-solver, rule-based, 

and novel DNN-based extraction methods. To mitigate accuracy outliers of the used 

extraction methods, the proposed flow identifies the accuracy limitations of each 

extraction method for each layout pattern and extracts parasitic capacitances using the 

fastest extraction method that meets the user pre-determined accuracy level. Fig. 6.10 

provides an illustration of accuracy limitations of the three extraction methods and their 

relative runtimes. Also, it shows the distribution of parasitic capacitance errors for each 

extraction method where the mean of parasitic capacitance errors of the proposed DNN-

based extraction method is below 5%, the mean of rule-based extraction methods is above 

5%, and the mean of field-solvers is close to zero. Moreover, the rule-based and DNN-

based extraction methods have outliers that exceed 10%.  
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Fig. 6.10.  Accuracy (i.e., relative error) and runtime distributions of rule-based extraction, DNN-based 
extraction, and field-solver methods. 

The proposed hybrid flow starts with a sliding window that scans a whole layout 

design and divides it into patterns (i.e., windows). All patterns are passed to a classifier 

(i.e., extraction selector) that assigns each pattern to an appropriate extraction method. 

Moreover, the extraction selector enables the user to pre-determine the accuracy level 

based on his preferences. 

In this work, Calibre xACT3D, [32], is used as a field-solver method, Calibre PEX,  

[19], is used as a rule-based method, and the novel DNN-based extraction is used as an 

intermediate extraction method. 

6.2.1. Multi-Class Extraction Selector 

A multi-class extraction selector is implemented to select an appropriate extraction 

method that meets the user pre-determined accuracy for each given layout pattern.  As 

shown in Fig. 6.11, the extraction selector consists of a classifier’s switch and five 

different classifiers each operates at a different accuracy level. Each classifier has three 

possible outputs (i.e., extraction method decision): rule-based, field-solver, and DNN-

based extraction methods. In this flow, each layout pattern is passed to a classifier’s 

switch that assigns each layout pattern to the appropriate extraction multi-class 

classifier based on the required accuracy level. After that, the chosen classifier predicts 

the appropriate extraction method for each given layout pattern. The multi-class 

classifiers are implemented using NNs. The layout density-map feature extraction, 
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shown in Fig. 6.5, is used to represent layout input patterns. Moreover, each 

combination of layers has a different extraction selector. 

The process of implementing a NN classifier is shown in Fig. 6.12. The process starts 

with generating real layout patterns based on drawn dimensions, converting them into 

actual dimensions by applying process variations (e.g., etching), running the three 

extraction methods over all patterns, labeling each pattern with an appropriate 

extraction method, extracting features for each pattern, and train NNs classifiers with 

different architectures until a high accuracy classifier is obtained. 

 

Fig. 6.11. The proposed multi-class parasitic capacitance extraction selector. 

 

 

Fig. 6.12. The implementation process of NN Classifiers. 
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6.2.2. Training Patterns of Classifiers 

The dataset of training layout patterns are obtained from several real designs that 

belong to a certain process node. the layout designs include Op-Amp, Ring Oscillator, 

DRAM, PLL, and sense-amplifier circuits. Also, to further increase the coverage of 

training patterns, additional patterns are generated using a layout schema generator 

(LSG) in [91]. The LSG aims to generate random realistic patterns that comply with the 

corresponding design rules. The dataset consists of 250K layout patterns. Each pattern 

contains one to three metal layers. The size of each pattern is technology dependent and 

it represents the maximum interaction distance of the target metal layer. To label layout 

patterns, each pattern is extracted by the three extraction methods using: Calibre 

xACT3D, Calibre PEX, and the proposed DNN-based extraction. After that, the worst 

parasitic capacitance error is recorded for each extraction method, using Calibre 

xACT3D as a reference. Then, each pattern is marked with all extraction methods that 

meet the required accuracy. However, since each layout pattern must be labeled only 

with one extraction method, each pattern is labeled with the fastest extraction method 

that meets the required accuracy, given that the rule-based method is faster than the 

DNN-based method, and both of them are faster than the used field-solver. Moreover, 

rule-based patterns must also be solvable using the DNN-based method, otherwise they 

will be labeled as field-solver patterns. Therefore, if a rule-based pattern is extracted 

using any of the three methods, it will still meet the required accuracy level. 

6.2.3. NNs Construction 

As for NN architectures, a fully connected NN architecture is selected. A grid search 

algorithm is used to obtain NN architectures. The search range includes the number of 

NN layers that varies from 2 to 7, the number of neurons per layer that varies from n/9 

to n, where n represents the input vector size, and the activation function of each layer 

that alternates between RELU and tanh. Moreover, the search range includes the weight 

and decision threshold of each class in order to handle the unbalanced training data. As 

for the evaluation method, the F1-score of testsets are used, where the architecture with 

the largest F1-score is selected. Fig. 6.13 shows the most common fully connected NN 
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architecture that is used to develop extraction selectors. In the NN architecture, the 

number of neurons for each hidden layer depends on the input vector size. For example, 

layout patterns with an input vector size of 6075 segments use a NN architecture that 

has 3 hidden layers with 760, 868, and 868 neurons, respectively. 

 

Layer 1 (input) 2 3 2 4 (output) 

Neurons = n n/8 n/7 n/7 3 

Activation = RELU RELU RELU RELU softmax 

Fig. 6.13.  A neural-networks architecture of the proposed multi-class classifier. 

 

6.2.4. Classifiers Training and Tuning 

The training dataset is divided into training and test sets that are randomly selected, 

where 70% of the dataset (175K) are used for training, whereas 30% of the dataset (75K) 

are used for testing. For 28nm process node, the average data distribution across the 

rule-based, DNN-based, and field-solver classes, at 5% required accuracy level, are 

63.02%, 36.77%, and 0.21%, respectively. The training used Adam optimizer, 5K as a 

maximum number of epochs, 10% as a validation set, categorical cross-entropy as a loss 

function, 1e-3 as a learning rate, 1000 as a batch size, and he_normal initializations. 

Moreover, the rule-based decision threshold is set to 0.65 and the weights of the DNN-

based and field-solver classes are set to 2 and 9, respectively. This helped in minimizing 

the probability of passing any non-rule-based pattern to the rule-based class. All 

parameters are obtained using a grid search algorithm. An early stopping is used to 

stop the training epochs once the training converges. The convergence is achieved when 

Flattening 

Input  
Layer 

Output 
Layer n: input vector size 

Layer1 

Layer2 

Layer3 

Rule-based 

DNN-based 

Field-Solver 
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the accuracy of the validation set starts to degrade, or after 50 epochs of not observing 

any further accuracy improvements in both the validation and training sets.  The 

average prediction accuracy of a classifier is 85%. The average training runtime of a 

classifier is 37 minutes using Intel Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16GB of 

RAM. Table 6.4 shows the test set confusion matrix of 28nm process node for 92 layers 

combinations, at 5% accuracy level, highlighting the number of patterns passed to each 

class. The results show that the number of non-rule-based patterns that are passed to 

the rule-based class is 2400 patterns (0.053% of the overall test set). Also, the precision 

of the rule-based class exceeds 99.8%, and the recall is 72%, where the precision is the 

ratio between the patterns predicted accurately as class A and all patterns predicted as 

class A, and the recall is the ratio between the patterns predicted accurately as class A 

and all actual class A patterns. 

6.2.5. Comparison to Other Layout Representations 

The classification accuracy using density-map (i.e., density-based) and CCAS 

layout feature representations are tested. The testing used 28nm process node and 

covered 92 layers combinations. The density-map is a layout rasterization method that 

provides a detailed information of layout patterns using an appropriate segment size 

as described in the previous section. On the other hand, the CCAS method provides an 

encoded geometrical information of layout patterns. However, CCAS representation 

misses the details of layout patterns that are required for parasitic extraction problems 

[92], [94]–[96]. Table 6.4 shows the confusion matrix, precision, and recall of 28nm 

process node test sets, using density-map and CCAS representations. The results show 

that the prediction accuracy of CCAS is 61.2%, and the number of non-rule-based 

patterns that are passed to the rule-based class is 405,540 patterns (9% of the overall test 

set). Also, the precision of the rule-based class is 76.78%, and the recall is 50.88%. Table 

6.4 shows that the density-map representation managed to provide outstanding 

accuracy results as compared to CCAS representation. 
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Table 6.4. The confusion matrices of extraction classifiers using density-map and CCAS layout 
representations for 28nm test sets, at 5% required accuracy level. 

  
Actual/True 

Rule-based DNN-based Field-solver 

D
e

n
si

ty
-m

a
p

 

Predicted 

Rule-based 1,846,980 2,220 180 

DNN-based 715,020 1,905,540 300 

Field-solver 4,680 12,420 12,660 

Precision 0.998702 0.727067 0.425403 

Recall 0.719599 0.992376 0.96347 

C
C

A
S

 Predicted 

Rule-based 1,341,060 405,480 60 

DNN-based 1,255,380 1,412,820 180 

Field-solver 39,120 45,240 660 

Precision 0.767812 0.529467 0.007763 

Recall 0.508833 0.758138 0.733333 

 

6.3. Experimental Results 

The accuracy and runtime of the proposed DNN-based and accuracy-based hybrid 

extraction methods are measured by comparing their results against Calibre xACT3D, 

i.e., field-solver, across several real designs that are not part of the training sets. The real 

designs include SRAM (28nm), digital to analog converter (DAC) (28nm), cache memory 

(CM) (28nm), and phase locked loop (PLL) (7nm). The testing mechanism starts with 

analyzing a real layout design and its corresponding metal stack. Then, a square sliding 

window is created with W×W dimensions, where W represents the sliding window’s 

width and length. The sliding window covers three metal layers including the aggressor 

(i.e., target) metal layer. It moves in x and y directions with a step size of (0.5×W), and it 

moves up in z direction with 1 metal layer step. The moving sliding window is 

responsible for capturing different layout patterns and passing them to a certain 

extraction method that extracts all different capacitance components. The overlapping 

windows improve the extraction accuracy by capturing the coupling capacitances 

between windows, extracting the capacitances of layout polygons multiple times each in 

a different context (i.e., window) to consider the surrounding metals, and averaging the 

overlapping capacitances [99]. The size of a sliding window, W, is the maximum 

interaction distance of the target metal layer. It depends on the metal stack definition and 
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the target metal layer. There is a sliding window for each target metal layer covering the 

different metal layers combinations [99]. Table 6.5 shows approximated sizes of 

windows, up to metal6, along with the corresponding vector sizes for 28nm and 7nm 

process nodes. 

Table 6.5. Approximate sizes of sliding windows for 28nm and 7nm process nodes. 

Target layer Window size (28nm) Window size (7nm) 

Metal1 and Metal2 1.0µm × 1.0µm 
Vector size: 45×45×3 

0.8µm × 0.8µm 
Vector size: 75×75×3 

Metal3 and Metal4 1.2µm × 1.2µm 
Vector size: 53×53×3 

1.2µm × 1.2µm 
Vector size: 63×63×3 

Metal5 1.4µm × 1.4µm 
Vector size: 62×62×3 

1.35µm × 1.35µm 
Vector size: 71×71×3 

Metal6 1.5µm × 1.5µm 
Vector size: 66×66×3 

1.47µm ×1.47µm 
Vector size: 77×77×3 

 

6.3.1. DNN-Based Extraction Results 

The proposed DNN-based extraction is tested and showed outstanding accuracy 

results relative to Calibre xACT3D across different real designs. Fig. 6.14 (a), Fig. 6.15 

(a), Fig. 6.16 (a), and Fig. 6.17 (a) show accuracy comparisons (i.e., histograms of relative 

errors) of the DNN-based extraction using SRAM (28nm), DAC (28nm), cache memory 

(CM) (28nm), and PLL (7nm) designs, respectively, whereas Fig. 6.14 (b), Fig. 6.15 (b), 

Fig. 6.16 (b), and Fig. 6.17 (b) show the rule-based extraction accuracy comparisons 

using the same designs, at 5% required accuracy level. The total numbers of extracted 

windows for SRAM (28nm), DAC (28nm), cache memory (CM) (28nm), and PLL (7nm) 

designs are 123K, 322K, 304K, and 14.1M, respectively, whereas the corresponding 

numbers of capacitance components are 345K, 675K, 690K, and 43.5M, respectively.  

The total numbers of extracted windows that do not exist in the training sets for SRAM 

(28nm), DAC (28nm), cache memory (CM) (28nm), and PLL (7nm) designs are 109K 

(88.7%), 248K (77%), 252K (82.8%), 10.7M (75.9%), respectively. The results show that 

the maximum number of outliers that exceed 5% error in the DNN-based extraction 

represents around 8% of the overall capacitances, whereas in the rule-based extraction, 

it represents around 50% of the overall capacitances.  
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6.3.2. Accuracy-Based Hybrid Extraction Results 

The proposed hybrid extraction flow is tested 5% accuracy level. The testing is done 

across four real designs including SRAM (28nm), DAC (28nm), cache memory (CM) 

(28nm), and PLL (7nm) designs.  

Table 6.6 shows the patterns distribution ratios among field-solver, DNN-based, 

and rule-based extraction methods using the proposed accuracy-based hybrid 

extraction flow, at 5% accuracy level. Also, the table shows the relative runtime 

comparisons among Calibre xACT3D (i.e., field-solver), Calibre PEX (i.e., rule-based 

extraction), and the proposed accuracy-based hybrid extraction flow assuming that the 

relative runtime of the proposed accuracy-based hybrid extraction flow is 1.0. The 

results show that the proposed accuracy-based hybrid extraction flow is way faster than 

the used field-solver with a speed up of 70 to 100X. Table 6.7 shows the total actual 

extraction runtime using rule-based, DNN-based, field-solvers, hybrid extraction 

(without using the DNN-based extraction), and the proposed hybrid extraction 

methods, at 5% required accuracy level. The results show that the removal of the DNN-

based extraction from the hybrid flow caused significant performance degradation, as 

compared to the proposed hybrid flow, of up to 43X, which emphasizes the need for 

having an intermediate extraction method. The runtimes are measured using Intel(R) 

Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM.  

As for the accuracy results, Fig. 6.14 (c), Fig. 6.15 (c), Fig. 6.16 (c), and Fig. 6.17 (c) 

show the proposed hybrid extraction accuracy comparisons using SRAM (28nm), DAC 

(28nm), cache memory (CM) (28nm), and PLL (7nm) designs, respectively. The results 

show that the proposed hybrid flow managed to eliminate more than 99% of the outliers 

that exceed 5% error. As for the prediction accuracy of the extraction classifiers, the 

prediction accuracy (ACC) is given by: 

ACC = correct predictions / all predictions, (6.5) 

    whereas the prediction accuracy for parasitic extraction (ACCPEX) is given by: 
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ACCPEX = patterns passed to appropriate extraction methods  

/ all predictions (i.e., patterns), 

 

(6.6) 

given that the field-solver method is appropriate for all patterns as it can meet the 

required accuracy level, also the three extraction methods are appropriate for rule-

based patterns as the three extraction methods can extract the parasitic capacitances of 

rule-based patterns with the required accuracy level. Table 6.8 shows the confusion 

matrices, classification accuracy, and classification accuracy for parasitic extraction of 

SRAM (28nm), DAC (28nm), cache memory (28nm), and PLL (7nm) designs, 

respectively, using the extraction selector of the hybrid flow at 5% accuracy level.  

 
Table 6.6. Patterns distribution ratios using the proposed hybrid flow, and the relative runtime 
comparisons for field-solver and rule-based tools at 5% required accuracy level. 

Design 

Patterns distribution in a design 

among different extraction 

methods 

Relative runtime as 

compared to the proposed 

hybrid flow. 

Field-

solver 

DNN- 

based 
Rule-based 

All Rule-

based 

All Field-

solver 

SRAM(28nm) 0.78% 57.1% 42.12% 0.348 74.54 

DAC(28nm) 0.85% 53.9% 45.25% 0.409 72.36 

CM(28nm) 0.81% 58.3% 40.89% 0.455 72.32 

PLL(7nm) 0.93% 60.3% 38.77% 0.413 67.1 
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(a) 

 

 (b) 

 

(c) 

Fig. 6.14. Accuracy comparison histograms, relative to Calibre xACT3D, of the SRAM (28nm) design 
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid 
extraction at 5% accuracy level. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.15.  Accuracy comparison histograms, relative to Calibre xACT3D, of the DAC (28nm) design 
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid 
extraction at 5% accuracy level. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 6.16.  Accuracy comparison histograms, relative to Calibre xACT3D, of the cache memory (28nm) 
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid 
flow at 5% accuracy level. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6.17.  Accuracy comparison histograms, relative to Calibre xACT3D, of the PLL (7nm) using: (a) the 
proposed DNN-based extraction, (b) the rule-based extraction, and (c) the proposed hybrid extraction 
at 5% accuracy level. 
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Table 6.7. Total runtimes of capacitance extraction using rule-based, DNN-based, field-solver, hybrid 
flow (without using DNN-based), and accuracy-based hybrid extraction methods, at 5% accuracy. 

Design 

Runtime (Hours) 

Rule-

based 

DNN-

based 

Field-

solver 

Hybrid (No 

DNN) 

Accuracy-based 

Hybrid 

SRAM(28nm) 0.23 0.42 49.2 28.49 0.66 

DAC(28nm) 0.45 0.78 79.6 43.8 1.1 

CM(28nm) 0.51 0.81 81 47.9 1.12 

PLL(7nm) 2.17 3.425 352.8 216.33 5.26 

 

Table 6.8. The confusion matrices of SRAM, DAC, CM, and PLL designs using the proposed multi-class 
extraction selector at 5% required accuracy level. 

Design  Actual/True ACC ACC- 
PEX 

Rule-based DNN-based 
Field-
solver 

SRAM 
(28nm) 

P
re

d
ic

te
d

 

 

Rule-based 50,644 470 327 79.4% 99.07% 

DNN-based 23,473 45,934 339 

Field-solver 186 371 394 

DAC 
(28nm) 

Rule-based 143,925 964 706 80.26% 99.23% 

DNN-based 59,722 112,873 820 

Field-solver 506 784 1,438 

CM 
(28nm) 

Rule-based 122,537 905 613 78.53% 99.33% 

DNN-based 61,837 114,586 510 

Field-solver 451 842 1,152 

PLL 
(7nm) 

Rule-based 5,964,848 51,109 9,286 84.7% 99.05% 

DNN-based 1,957,103 5,944,609 7,3871 

Field-solver 19,929 41,603 19,242 

 

6.4. Conclusion 

A novel accuracy-based hybrid parasitic capacitance extraction flow is introduced. 

The proposed hybrid flow divides the chip into windows and extracts the parasitic 

capacitances of each window using one of three extraction methods: field-solver, rule-

based, and novel deep neural-networks based extraction methods by directing each 

layout pattern to the fastest extraction method that meets the user pre-determined 

accuracy level. The proposed flow uses neural-networks classifiers to determine the 

capacitance extraction method for each window.  

On the other hand, a novel deep neural-networks-based extraction method is 

developed as an intermediate parasitic extraction method between rule-based method 
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and field-solver method. The proposed hybrid flow is tested on different real designs. 

The results showed outstanding accuracy and runtime as compared to existing 

commercial field-solver and rule-based tools. Also, the proposed hybrid flow introduced 

a novel deep neural-networks modeling methodology that extracts parasitic capacitances 

of complicated structures with high accuracy levels (less than 3% average error) and 100X 

faster than field-solvers. Furthermore, the experimental results showed that the proposed 

hybrid flow managed to meet the required accuracy levels (of less than 5% error) with 

more than 99% accuracy, and with a speed up of 70X as compared to field-solvers. 
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Parasitic-Aware Routing Optimization 
 

The continuous scaling down of process technology nodes enabled the integration of 

more functionalities and systems together on a single chip. Such an integration 

significantly increased the complexity and density of layouts introducing more parasitic 

elements. The impact of interconnect parasitic elements on the overall circuit 

performance keeps increasing from one technology generation to the next. Moreover, the 

number of interconnect parasitic elements significantly increased in recent advanced 

processes. Therefore, the effects of interconnect parasitic elements are no longer second 

order effects. They are now dominating the overall circuit performance [3], [4], [100]. As 

a result, it is very important to consider the parasitic effects during placement and routing 

processes to reduce the overall turn-around-time of a circuit design and improve the 

yield.  

This chapter aims to provide a new parasitic-aware routing optimization 

methodology. The proposed methodology can be applied either after or within the 

detailed routing. The proposed methodology enables circuit designers to debug and 

analyze the impact of parasitic elements on a circuit performance. Also, it provides a 

mechanism to identify the problematic parasitic elements and correlate them with 

specific layout geometries. Moreover, it uses nonlinear programming to re-route the 

problematic paths (i.e., routes) in order to achieve the required specifications with a full 

consideration of the surrounding environment. The proposed methodology uses a novel 

incremental parasitic extraction method in order to extract the parasitic elements of a 

modified layout during the optimization process. The proposed incremental extraction 

method provides very accurate parasitic extraction results with a maximum error < 1% 

as compared to a full layout extraction. 
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7.1. Incremental Parasitic Extraction 

The layout parasitic extraction is an essential step in conventional integrated circuit 

(IC) design flows. It is used to extract parasitic elements of a given layout in order to 

perform a post-layout simulation. If the post-layout simulation results did not meet the 

required circuit’s specifications, layout designers would modify the corresponding 

layout until its post-layout simulation results meet the required specifications. Usually, 

this process requires several iterations of layout modifications, parasitic extractions, and 

post-layout simulations until convergence. 

There are two approaches to reduce the turn-around-time of the layout parasitic 

extraction step in design loops. First, some approaches use simplified parasitic models to 

speed up the extraction process and reduce the parasitic network such as in [20], [43], 

[44]. This approach is not efficient in advanced process technology nodes as it handles 

the parasitic effects as second order effects ignoring that the interconnect parasitic effects 

became one of the dominant factors on a circuit’s performance in such advanced nodes 

[11]. Second, other approaches may use an incremental parasitic extraction to limit the 

parasitic extraction process to the modified polygons in a given layout. As a result, the 

execution time (i.e., runtime) of the layout parasitic extraction step in design loops 

decreases significantly with minimal impact on the extraction accuracy as compared to 

the use of a full layout parasitic extraction. 

The incremental parasitic extraction aims to identify the modified layout geometries, 

extract the corresponding parasitic elements, and update the corresponding circuit 

network (i.e., netlist) with the newly extracted parasitic elements. In our work, the 

incremental parasitic extraction is used to extract parasitic resistances and capacitances 

of modified areas in a given layout. 

7.1.1. Incremental Parasitic Resistance Extraction 

As for parasitic resistances, they only depend on the geometrical shapes of modified 

layouts, and they do not depend on the surrounding environment. Therefore, the 

incremental parasitic resistance extraction identifies the modified layout polygons and 
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re-extracts their parasitic resistances smoothly without any consideration of the 

surrounding environment. After that, the corresponding circuit network (i.e., netlist) 

are updated with the newly extracted parasitic resistive elements. 

7.1.2. Incremental Parasitic Capacitance Extraction 

The incremental extraction of parasitic capacitances is more complicated than the 

incremental extraction of parasitic resistances because parasitic capacitances are highly 

correlated with the surrounding environment. In other words, if a layout polygon is 

modified, the modifications will not only impact the associated parasitic capacitive 

elements, but also, they will impact the parasitic capacitive elements among nearby 

metal polygons. Therefore, the incremental parasitic capacitance extraction needs to 

select and re-extract the parasitic capacitive elements that are impacted by layout 

modifications. 

Existing incremental parasitic extraction methods can re-extract parasitic 

resistances efficiently; however, they cannot efficiently re-extract parasitic capacitance. 

This is because existing incremental methods only re-extract parasitic capacitances that 

are directly coupled with modified shapes (i.e., first order parasitic capacitances), and 

they ignore all coupling capacitances that are not directly coupled to modified layout 

shapes, such as second order coupling capacitances as shown in Fig. 7.1, even if those 

capacitances are significantly impacted by layout modifications  [18], [101]. As a result, 

they provide a low extraction accuracy as compared to a full layout parasitic 

capacitance extraction. Fig. 7.2 shows an example of modifying the position of a nearby 

polygon on the second order coupling capacitance between two other fixed polygons.  

 

 
Fig. 7.1. An example of second order coupling capacitances due to modifying a certain metal polygon. 
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Fig. 7.2. The impact of increasing the separation between the aggressor and left victim polygons on 
the coupling between the aggressor and right victim polygons. The experiment used metal5 layer of 
28nm process technology node. 

A novel incremental parasitic capacitance extraction method is developed to extract 

first and second order capacitances efficiently. The developed method provides 

outstanding accuracy results as compared to a full layout extraction with a maximum 

relative error < 1%. Moreover, the impact of extracting second order capacitances on 

the total extraction runtime is negligible, where the time required to extract second 

order capacitances represents < 5% of the total incremental extraction runtime. The 

developed method has three main steps. First, it identifies the modified shapes and the 

corresponding metal layers. Second, it calculates a maximum coupling capacitance 

interaction range (MR) for each metal layer. Third, it extracts all coupling capacitances 

that are enclosed inside the maximum interaction range, and it updates the 

corresponding circuit’s network (i.e., netlist) with the newly extracted parasitic 

capacitive elements. The three steps of the developed incremental capacitance 

extraction method are described in more details as follows. 

7.1.2.1. Identify Modified Shapes 

In this step, all metal polygons that are impacted by layout modifications are 

marked, where the modified metal polygons are marked, and the metal polygons that 

were previously interacting with the modified polygons (before modifications) are 

also marked. This is to ensure that all impacted parasitic capacitances are considered 

during the incremental extraction process. 
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7.1.2.2. Calculating the Maximum Capacitance Interaction Range 

In this step, a maximum capacitance interaction range (MR) is calculated for each 

metal layer. The MR of a polygon represents the range (i.e., distance) where coupling 

capacitances to other polygons are negligible and do not impact the accuracy of a 

parasitic capacitance extraction. in other words, the MR identifies the valid coupling 

range for each layout polygon in order to avoid unnecessarily capacitance 

computations. The calculation of a MR depends on the corresponding metal stack 

specifications, where each metal layer in a certain process node has a different MR 

value.  

The MR for each metal layer is only calculated once at the beginning of the 

incremental capacitance extraction process. For a certain metal layer, the MR is 

calculated by constructing two adjacent metal polygons using the corresponding 

minimum dimensions. Then, an electrostatic simulator is used to extract the lateral 

coupling capacitance between the two polygons. Also, the simulator performs a 

parametric sweep over lateral spacings while it measures the coupling capacitance 

between the two metal polygons until the MR is achieved, given that the MR 

represents the distance where the coupling capacitance between the two polygons is 

less than or equal to 1% of the total capacitance on one of the polygons as shown in 

Fig. 7.3. 

 

Fig. 7.3. The impact of increasing the separation (i.e., spacing) between two metal polygons on the 
lateral coupling capacitance between them using metal5 of 28nm process technology node. 
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7.1.2.3. Capacitance Extraction and Netlist Update 

Once the maximum interaction ranges of all modified polygons are identified, all 

parasitic capacitive elements that are enclosed inside this range are re-extracted 

including second order parasitic capacitances. This ensures that all impacted 

capacitive elements are extracted, whereas the capacitive elements that are not 

enclosed inside the maximum interaction ranges are not extracted as shown in Fig. 

7.4. Eventually, the corresponding circuit’s network (i.e., netlist) is updated with the 

newly extracted parasitic capacitive elements. 

 

Fig. 7.4. An illustrative example of 2D cross-section metal polygons showing some capacitive 
elements that are enclosed inside the maximum capacitance interaction range of a modified polygon. 

7.2. Parasitic-Aware Layout Routing Optimization Methodology 

Parasitic-aware layout routing optimization methodology based on circuit moments 

is developed. The proposed routing methodology is used as a part of a template-based 

layout optimization flow. The proposed methodology has three main benefits. First, it 

helps circuit designers in analyzing the performance of critical routes. This is done by 

developing a sensitivity circuit model that measures the sensitivity of a route’s 

performance cost function to the corresponding metal geometries. Second, the proposed 
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methodology efficiently considers the impact of parasitic elements during the 

optimization of critical routes by using a novel incremental parasitic extraction method. 

Third, the proposed methodology optimizes critical routes very fast using a cost function 

and corresponding sensitivity circuit models. The critical routes represent the routes that 

either hold analog signals or have a considerable impact on a circuit’s performance. Such 

routes are identified by circuit designers after performing a sensitivity analysis across 

different routes, i.e., the sensitivity of a circuit performance to a route’s network including 

parasitic elements. 

The proposed methodology consists of three main steps as shown in Fig. 7.5. First, a 

performance cost function is developed, for example, a relative cost function that 

measures the performance difference between two routes. Second, sensitivity circuit 

models are derived to measure the sensitivities of a cost function to route’s geometries. 

Third, a nonlinear programming is used to minimize a cost function subject to route’s 

geometries considering the obtained sensitivity circuit models. The cost function 

minimization process considers different geometry constraints such as connectivity, 

blockages, and net symmetry constraints. Moreover, the optimization process can handle 

Manhattan and non-Manhattan geometries. It is worth mentioning that the proposed 

routing optimization method can be applied after the detailed routing step to provide 

further routing optimization improvements. 

 

Fig. 7.5. The proposed layout optimization flow for critical routes. 
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The nonlinear programming requires a layout parasitic extraction process with every 

optimization iteration to evaluate the developed cost function. Therefore, a novel 

incremental parasitic extraction method is developed, as described in section 7.1. The 

developed incremental extraction method employs a full layout extraction tool, Calibre 

PEX [19], in an incremental manner in order to reduce the parasitic extraction runtime. 

Moreover, it provides high accuracy numbers as compared to a full layout extraction 

(<1% error).  

7.2.1. Cost Function Development 

Two cost functions are developed. The first one represents a net matching (i.e., 

symmetry), whereas the second one represents a route’s delay. 

7.2.1.1. Relative Cost Function 

A cost function that measures the performance difference between two systems 

(i.e., routes) is developed as follows.  Assuming two systems with output responses 

S1 and S2. The systems can belong to the same net, as shown in Fig. 7.6 (a), or different 

nets, as shown in Fig. 7.6 (b).  The corresponding responses at their terminals are 

expressed by Taylor series expansions as below: 

𝑆1(𝑠) =  𝑚0 + 𝑚1 𝑠 +  𝑚2 𝑠
2 +  𝑚3 𝑠

3 + ⋯, (7.1) 

and 

𝑆2(𝑠) =  𝑚′
0 + 𝑚′

1 𝑠 +  𝑚′
2 𝑠

2 +  𝑚′
3 𝑠

3 + ⋯, (7.2) 

where mi and m’i are circuit moments at ith order. 

 

(a) 

 

(b) 

Fig. 7.6. Two different RC systems that belong to (a) two different routes, or (b) the same route. 

R
1
 R

2
 R

n
 

C
2
 C

1
 

V
1
 

C
n
 

S
1
 

R’
1
 R’

2
 R’

m
 

C’
2
 C’

1
 

V
2
 

C’
m
 

S
2
 

R
1
 R

2
 

R
n
 

C
2
 C

1
 

V
1
 

C
n
 

S
1
 

R
m
 

C
m
 

S
2
 

R
i
 

C
i
 

R
j
 

C
j
 



145 

 

To ensure that the two systems have the same output response, a relative cost 

function (RCF) is developed as below: 

relative cost function (RCF) =  ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

 (7.3) 

where q represents the required order of circuit moments. The purpose of using a 

relative formula is to normalize the weights for all required moments to ensure that 

all required moments are equally considered (regardless of their order of magnitude) 

during the optimization process.  

The RCF has two main uses. First, it is used to meet net symmetry constraints as 

it measures the performance (or response) error between two routes. Second, it is used 

to optimize critical layout routes by measuring the performance error between a 

certain critical route and the corresponding shortest path route assuming no 

blockages. 

7.2.1.2. Delay cost function 

Another cost function is developed based on circuit moments in order to minimize 

a route’s delay. According to [102], for a certain network, the crossing time (trt,q) 

represents the time required by a signal to reach a certain voltage as shown in Fig. 7.7. 

The crossing time (trt,q) of a signal at a certain threshold ratio of a voltage (rt) for q 

moments is given by: 

𝑡𝑟𝑡,𝑞 = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙  

𝑚𝑞

𝑚1
(𝑞−1)

, (7.4) 

where the valid range of rt is from 0 to 1, 𝑡𝑟𝑡,𝑞 is the time taken by the signal to achieve 

(or cross) the threshold voltage, q is the required order of moment, whereas a1 to aq 

are constant coefficients that might have different values based on the required 

threshold value (rt). These constants were obtained using curve fitting operations as 

shown in [102].  

In this work, a delay cost function is developed based on (7.4). The threshold 

voltage ratio of the crossing point is set to 0.5, and the maximum number of moments 
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(q) is set to 5 moments, as recommended by [102] to achieve a good accuracy. 

Therefore, the delay cost function (DCF) is given by: 

Delay cost function (DCF) =  𝑡0.5,5, (7.5) 

where the values of a1 to a5 coefficients are -3.05, 5.59, -4.36, 1.75, and -0.291, 

respectively as shown in [102]. 

 

 

Fig. 7.7. An illustrative example of the threshold ratio (rt) that represents the threshold-crossing point 
(tp, Vth), where a time tp is required by the signal to reach Vth voltage. 

 

7.2.2. Sensitivity Circuit Models 

In order to measure the impact of modifying layout geometries (i.e., route’s 

geometries) on a cost function (CF), a circuit model that measures the sensitivity of CF 

to layout geometries is proposed and derived as below:  

𝜕CF

𝜕𝐺𝑒

̅̅ ̅̅ ̅
= [

𝜕CF

𝜕𝑃
]
1×𝑛

. [
𝜕𝑃

𝜕𝐺𝑒
]
𝑛×𝑚

, (7.6) 

where P represents the associated parasitic elements, Ge represents route’s geometries, 

n is the number of parasitic elements, whereas m is the number of corresponding layout 

geometries. In order to correlate the cost function with layout geometries (Ge), the 

geometries are represented by using their coordinates (or vertices). Therefore, the 

sensitivity of a cost function (CF) to layout geometries is given by: 
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𝜕𝐶𝐹

𝜕𝐺𝑒

̅̅ ̅̅ ̅̅
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝐶𝐹

𝜕𝑅1

𝜕𝐶𝐹

𝜕𝑅2

⋮
𝜕𝐶𝐹

𝜕𝑅𝑖

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+1

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+2

⋮
𝜕𝐶𝐹

𝜕𝐶𝑐𝑛 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 .

[
 
 
 
 
𝜕𝑅1

𝜕𝑥1

𝜕𝑅1

𝜕𝑥2
…

𝜕𝑅1

𝜕𝑦𝑚−1

𝜕𝑅1

𝜕𝑦𝑚

⋮ ⋮   ⋱      ⋮      ⋮
𝜕𝐶𝑐𝑛

𝜕𝑥1

𝜕𝐶𝑐𝑛

𝜕𝑥2
…

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚−1

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚 ]
 
 
 
 

, (7.7) 

where x and y represent the coordinates of route polygons as shown in Fig. 7.8, R is a 

parasitic resistive element, whereas Cc is a parasitic capacitive element. In order to 

provide a degree of freedom, routes are fractured into quadrilateral polygons (e.g., 

rectangles). As a result, the sensitivity and cost function calculations consider either 

Manhattan or non-Manhattan geometries. 

 

(a) 

 

(b) 

Fig. 7.8. An illustrative example of a geometry representation in the proposed sensitivity models 
showing (a) an unfractured polygon and (b) a fractured polygon. 

 

The proposed model in (7.6) has two main components. First, the CF sensitivity to 

parasitic elements (𝜕CF 𝜕𝑃⁄ ), which is different from one cost function to another. 

Second, the sensitivity of parasitic elements to system (i.e., route) geometries (𝜕𝑃 𝜕𝐺𝑒⁄ ).   
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As for a cost function sensitivity to parasitic elements (𝜕CF 𝜕𝑃⁄ ), two sensitivity 

models are developed. First, the relative cost sensitivity to a parasitic element, which is 

derived from the relative cost function in (7.3). Second, the delay cost sensitivity to a 

parasitic element, which is derived from the delay cost function in (7.5). Both of them 

are derived for each parasitic element (Pi) in order to fill the corresponding matrix. As 

for the sensitivity of parasitic elements to system geometries, it does not rely on the 

used cost function, and it can be used in (7.7) regardless of the used cost function. The 

three sensitivity models are derived as follows.   

7.2.2.1. The Relative Cost Function Sensitivity to a Parasitic Element 

As for the relative cost function sensitivity (RCF) to a parasitic element, it is 

obtained by differentiating (7.3) with a parasitic element (Pi) as below, given that the 

detailed derivations are found in the Appendix: 

where mk is a certain degree moment at a given node, q is the maximum required 

degree of moments, and RCFmk is the relative cost function for a certain moment (i.e., 

relative moment cost function). This model has two components that include the 

sensitivity of a relative moment cost function to a circuit moment (𝜕RCFmk 𝜕𝑚𝑘⁄ ) and 

the sensitivity of a moment to a parasitic element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄ ). 

As for the relative moment cost function sensitivity to a circuit moment, it is 

obtained by differentiating  (7.9) with a moment (mk) as below: 

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (

(𝑚0 − 𝑚′
0)

2

𝑚′
0
2 + 

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯),  (7.8) 

Let 

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 . 

(7.9) 

Therefore, by using mk as an intermediate variable, 

𝜕RCF

𝜕𝑃𝑖
= ∑

𝜕RCFmk

𝜕𝑚𝑘
   

𝜕𝑚𝑘

𝜕𝑃𝑖
 

𝑞

𝑘=0

, (7.10) 
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𝜕RCFmk

𝜕𝑚𝑘
= 2 

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2 .    (7.11) 

As for the sensitivity of each moment to a parasitic element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄ ), it is 

obtained by differentiating (2.13) with a parasitic element (Pi) as below, given that the 

detailed derivations are found in the Appendix: 

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1  

𝜕𝐺

𝜕𝑃𝑖
𝑚0,  (7.12) 

and 

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1 (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1 

(7.13) 

where C is the capacitors matrix, G is the admittance matrix, and m0 to mk are circuit 

moments at a given node.  

Eventually, the sensitivity of an RCF to a parasitic element (Pi) is obtained by 

substituting (7.11), (7.12), and (7.13) in (7.10) as below, given that the detailed 

derivations are found in the Appendix: 

𝜕RCF

𝜕𝑃𝑖
=  2 

(𝑚0 − 𝑚′
0)

𝑚′
0
2

∙ (−𝐺−1  
𝜕𝐺

𝜕𝑃𝑖
𝑚0) + ∑ (2 

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2     

𝑞

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖
𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
))). 

(7.14) 

7.2.2.2. The Delay Cost Function Sensitivity to a Parasitic Element 

As for the delay cost function (DCF) sensitivity to a parasitic element (Pi), it is 

obtained by differentiating (7.5) with a parasitic element (Pi) as below, given that the 

detailed derivations are found in the Appendix: 

𝜕𝐷𝐶𝐹

𝜕𝑃𝑖
=  𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+ ∑ [𝑎𝑘  (

𝜕𝑚𝑘

𝜕𝑃𝑖
 ∙

1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

 ∙  
𝜕𝑚1

𝜕𝑃𝑖
  )] ,

𝑞

𝑘=2

 (7.15) 

where 𝜕𝑚𝑘 𝜕𝑃𝑖⁄  is obtained in (7.13). 
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7.2.2.3. A Parasitic Sensitivity to Layout Geometries 

 As for parasitic sensitivities to layout geometries (𝜕𝑃 𝜕𝐺𝑒⁄ ), they are measured 

by using the proposed incremental parasitic extraction flow, which provides very fast 

and localized sensitivity numbers. For a certain parasitic element (Pi) and geometry 

parameter (xj), the sensitivity is calculated using the below formula: 

𝜕𝑃𝑖

𝜕𝑥𝑗
= 

𝑃𝑖(𝑥𝑗+1) − 𝑃𝑖(𝑥𝑗)

𝑥𝑗+1 − 𝑥𝑗
, (7.16) 

where Pi(xj+1) is the value of a parasitic element (Pi) when a geometry x equals xj+1, 

Pi(xj) is the value of a parasitic element (Pi) when a geometry x equals xj. 

7.2.3. Performance Analysis to Identify Critical Geometries  

It is very important to understand and analyze the impact of layout geometries on 

a route’s performance. This would help identifying the most sensitive geometries to a 

route’s performance cost function, speeding up the optimization process, and achieving 

better optimization results.  

The performance analysis is performed by using the cost sensitivity to layout 

geometries model in (7.7).  However, the sensitivity analysis mainly relies on the 

required performance cost function. In case of performing net matching analysis, the 

sensitivity models of the relative cost function in (7.7), (7.14), and (7.16) are used. In case 

of performing a delay analysis, the sensitivity models of the delay cost function in (7.7), 

(7.15), and (7.16) are used. The higher the sensitivity value, the higher the impact on a 

route’s performance. 

As for a general performance analysis, the sensitivity models of the relative cost 

function may be used in three steps. First, identify the critical routes. Second, create a 

shortest path route assuming no blockages as a reference route. Third, use (7.7), (7.14), 

and (7.16) in order to calculate the sensitivity of the RCF to route’s geometries using the 

moments of a shortest path route as reference moments.  
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7.2.4. Geometrical Constraints 

Once the most sensitive geometries are selected, they are used as optimization 

parameters for the routing optimization process; however, this requires maintaining 

constraints such as the corresponding process design kit (PDK), net blockage 

constraints, connectivity, and net symmetry constraints. The constraints are obtained 

using a symbolic template approach. 

7.2.5. Layout Routing Optimization Process 

The purpose of this step is to minimize a cost function with respect to the most 

sensitive route’s geometries (i.e., coordinates) using a nonlinear programming. The 

sequential linear-quadratic programming (SLSQP) algorithm is used as a nonlinear 

programming algorithm because it is an iterative approach for nonlinear optimization 

problems that accepts multiple constraints. In order to provide degrees of freedom for 

the routing optimization process, the target routes are fractured into quadrilateral 

shapes. The number of fractured polygons relies on the required number of degrees of 

freedom. The fracturing is done in two steps. First, the polygons are scanned in the x 

direction and fractured vertically. Second, the polygons are scanned in the y direction 

and fractured horizontally as shown in Fig. 7.8 (b). Each fractured polygon holds four 

vertices conforming a quadrilateral polygon. The fractured polygons are used to create 

and evaluate the sensitivity circuit models in (7.7). 

The optimization algorithm is shown in Fig. 7.9. The inputs of the algorithm are: 1) 

the target routes and 2) the constraints including the new design requirements, whereas 

the outputs are new routes that are represented by their coordinates. It is worth 

mentioning that the minimization of a cost function uses the derived sensitivity model, 

in (7.7), to create the Jacobean matrix that are used by the nonlinear programming 

algorithm. It is worth mentioning that the routing optimization algorithm is 

implemented using Python [84]. 
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Inputs: 

   Routes[1..n]: List of routes that require optimization, and their count is n. 

   Constraints[1..m]: List of constraints, and their count is m. 

Output: 

    New_Routes[1..n]: final list of optimized routes 

Begin 

    Routes = initial current routes. 

    CF = initial values of a cost function across all routes. 

    for i ∈ [1..n]        //foreach route 

        R = Routes[i]   //in case of a delay optimization, it contains one route 

//and in case of a net matching optimization, it contains the two routes. 

        while (optimization is needed) //i.e., gradient is needed 

            Parasitics ← extract_parasitics(R)  //extract parasitics of routes in (R) 

            dPdGe ← calculate_dPdGe(R, Parasitics)  //  𝜕𝑃 𝜕𝐺𝑒⁄   using (7.16) 

            Moments ← calculate_moments(Parasitics) //  using (2.13) 

            dCFdP ← calculate_dCFdP(Moments, Parasitics)  //  calculate 𝜕𝐶𝐹 𝜕𝑃⁄  using (7.14) or (7.15) 

            dCFdGe ←calculate_dCFdGe (dCFdP, dPdGe)    

// calculate 𝜕𝐶𝐹 𝜕𝐺𝑒⁄  using (7.7) to identify the most sensitive geometries for optimization. 

            R ← optimize_route(R, dCFdGe, Constraints, SLSQP)   

 // At this point, R holds an updated route. 

            New_Parasitics← extract_parasitics(R) 

            New_Moments←calculate_moments(New_Parasitics) //using (2.13) 

            CF[i]←calculate_cost_value(New_Moments)  // using (7.3) or (7.5) to calculate new cost value 

        end while 

        New_Routes[i] = R  

    end for 

End 

Fig. 7.9. The proposed routing optimization algorithm pseudo code. 

 

 



153 

 

7.3. Experimental Results 

The testing covered the proposed incremental parasitic capacitance extraction 

method, the derived sensitivity models, and the proposed parasitic-aware routing 

optimization method. The testing used Intel Xeon(R) E5-2680, 2 CPUs, 2.50GHz, and 

16GB of RAM. 

7.3.1. Testing the Proposed Incremental Capacitance Extraction 

The accuracy and runtime of the proposed incremental parasitic capacitance 

extraction were tested and compared against a full layout parasitic capacitance 

extraction across three designs that include Ring Oscillator (RO) (7nm), Digital to 

Analog converter (DAC) (28nm), and voltage-controlled oscillator (VCO) (40nm) 

designs. Calibre PEX is used as an extraction tool for both incremental and full layout 

parasitic extractions. The testing methodology involves modifying metal shapes for 

some critical nets. The modifications include deleting, moving, stretching, and adding 

new metal polygons.  Each modified layout is tested by running a full layout parasitic 

extraction, the proposed incremental extraction, and the incremental extraction without 

considering the second order capacitances.  

As for the RO (7nm), some input and output nets of RO stages were modified in 

three different ways: 1) modifying two metal layers with 1075 parasitic capacitive 

elements (i.e., small), 2) modifying three metal layers with 2037 parasitic capacitive 

elements (i.e., medium), and 3) modifying four metal layers with 3524 parasitic 

capacitive elements (i.e., large). As shown in Table 7.1, The maximum relative errors in 

the three scenarios after applying the proposed incremental parasitic extraction flow as 

compared to the full parasitic extraction are 0.14%, 0.25%, and 0.5%, respectively. 

Moreover, the relative speedup of the proposed incremental flow as compared to the 

full layout extraction in the three scenarios is 40.4, 27.8, and 21.15, respectively. 

Furthermore, the results show that the consideration of the second order parasitic 

capacitances has a very small impact on the runtime as compared to the incremental 

extraction that does not consider the second order parasitic capacitances. 
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Table 7.1 Testing results of the proposed incremental capacitance extraction method using a RO with 
31 stages (7nm). 

Component 
Modification Type 

Small Medium Large 

Capacitive elements 1075 2037 3524 

Metal layers 2 3 4 

Max error of the proposed method 0.14% 0.25% 0.5% 

Incremental extraction runtime in seconds 
(secs) 

11 secs 16 secs 21 secs 

Full extraction runtime (minutes) 7.4 minutes 

Relative speedup as compared to a full 
extraction run 

40.4 27.8 21.15 

Incremental extraction runtime without second 
order capacitances  

10.4 secs 15.1 secs 19.5 secs 

As for the DAC (28nm), several nets were modified in three different ways: 1) 

modifying two metal layers with 9015 parasitic capacitive elements (i.e., small), 2) 

modifying three metal layers with 11422 parasitic capacitive elements (i.e., medium), 

and 3) modifying four metal layers with 14372 parasitic capacitive elements (i.e., large). 

As shown in Table 7.2, the maximum errors in the three scenarios after applying the 

proposed incremental parasitic extraction flow as compared to the full parasitic 

extraction are 0.21%, 0.47%, and 0.67%, respectively. Moreover, the relative speedup of 

the proposed incremental flow as compared to the full layout extraction in the three 

scenarios is 43.16, 32.12, and 21.14, respectively.  

Table 7.2 Testing results of the proposed incremental capacitance extraction method using a DAC 
(28nm). 

Component 
Modification Type 

Small Medium large 

Capacitive elements 9051 11422 14372 

Metal layers 2 3 4 

Max error of the proposed method 0.21% 0.47% 0.67% 

Incremental extraction runtime in minutes (mins) 4.31 mins 5.79 mins 8.8 mins 

Full extraction runtime 3.1 hours 

Relative speedup as compared to full run 43.16 32.12 21.14 

Incremental extraction runtime without second 
order capacitances 

4.12 mins 5.47 mins 8.25 mins 

As for the VCO (40nm), several nets were modified in three different ways: 1) 

modifying two metal layers with 11768 parasitic capacitive elements (i.e., small), 2) 

modifying three metal layers with 12794 parasitic capacitive elements (i.e., medium), 

and 3) modifying four metal layers with 17724 parasitic capacitive elements (i.e., large). 
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As shown in Table 7.3, the maximum errors in the three scenarios after applying the 

proposed incremental parasitic extraction flow as compared to the full parasitic 

extraction are 0.19%, 0.38%, and 0.63%, respectively. Moreover, the relative speedup of 

the proposed incremental flow as compared to the full layout extraction in the three 

scenarios is 54.2, 43.07, and 35.1, respectively. 

Table 7.3 Testing results of the proposed incremental capacitance extraction method a VCO (40nm). 

Component 
Modification Type 

Small Medium large 

Capacitive elements 11768 12794 17724 

Metal layers 2 3 4 

Max error of the proposed method 0.19% 0.38% 0.63% 

Incremental extraction runtime in minutes 
(mins) 

6.67 mins 8.4 mins 10.3 mins 

Full extraction runtime 6.03 hours 

Relative speedup as compared to full run 54.2 43.07 35.1 

Incremental extraction runtime without 
second order capacitances 

6.35 mins 7.93 mins 9.65 mins 

Table 7.1, Table 7.2, and Table 7.3 summarize the experimental results of the RO 

(7nm), DAC (28nm), and VCO (40nm) designs, respectively. As shown in the tables, the 

proposed incremental extraction flow provides an outstanding accuracy as compared 

to full extraction with maximum errors < 1% and with huge runtime savings of up to 

54X. Furthermore, the results show that the consideration of the second order parasitic 

capacitances has a very small impact on the runtime as compared to the incremental 

extraction that does not consider the second order parasitic capacitances. 

7.3.2. Testing the Proposed Parasitic Sensitivity Models and Routing Optimization 

Method Using a Simple Interconnect Structure 

The proposed sensitivity models were tested using the interconnect structure 

shown in Fig. 7.10. This experiment has two purposes. First, it aims to measure the 

sensitivity of the relative cost function (RCF) to each layout geometry (i.e., coordinate) 

using (7.7), where the relative cost function measures Vout2 moments relative to Vout1 

moments. Second, it aims to match the signal responses at Vout1 and Vout2 by optimizing 

the geometries of Vout2 route. This is done by using a nonlinear programming to 

minimize the relative cost function in (7.3).  
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Fig. 7.10 (a) shows the experimental interconnect structure. It contains one input 

pin, Vin, and two output pins that include Vout1 and Vout2. The surrounding dielectric 

constant is set to 3.9, the elevation of the metal is set to 1 µm, the metal thickness is set 

to 0.1µm, whereas the sheet resistance is set to 3 Ω/□.  

 
(a) 

 
(b) 

 
(c) 

Fig. 7.10. An experimental interconnect structure that is used for verifying the sensitivity circuit models 
and the optimization algorithm highlighting (a) the nodes, (b) the dimensions in the x-direction, and (c) 
the dimensions in the y-direction, given that all dimensions are in µm. 
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The experiment aims to match the signal responses of Vout1 and Vout2 without 

moving the fixed nodes that represent the locations of input and output pins. The route 

of Vout2 pin has four obstacles (i.e., blockages). Therefore, Vout2 route should pass 

through such obstacles with minimal impact on the performance. The dimensions of 

the interconnect are shown in Fig. 7.10 (b) and Fig. 7.10 (c).  The optimization process 

used Calibre PEX, [19], to extract the parasitic elements of the interconnect structure. 

Table 7.4 shows the initial values (at the original interconnect dimensions) of the 

relative cost function sensitivities to the coordinates of Vout2 route using (7.7). It is worth 

mentioning that the sensitivities are nonlinear. Therefore, they are calculated with 

every optimization iteration.   

Table 7.4. The values of the sensitivity of the relative cost function to each Vout2 coordinate in the 
experimental interconnect structure. 

Sensitivity parameter Value Sensitivity parameter Value 

𝝏𝑪𝑭 𝝏𝒙𝟐⁄  181.226 𝝏𝑪𝑭 𝝏𝒚𝟓⁄  -936.95 

𝝏𝑪𝑭 𝝏𝒙𝟑⁄  -1395.2 𝝏𝑪𝑭 𝝏𝒚𝟔⁄  937.001 

𝝏𝑪𝑭 𝝏𝒙𝟒⁄  1416.3 𝝏𝑪𝑭 𝝏𝒚𝟕⁄  -903.5 

𝝏𝑪𝑭 𝝏𝒙𝟓⁄  -1020.98 𝝏𝑪𝑭 𝝏𝒚𝟖⁄  837.4 

𝝏𝑪𝑭 𝝏𝒙𝟔⁄  1307.1 𝝏𝑪𝑭 𝝏𝒚𝟗⁄  926.7 

𝝏𝑪𝑭 𝝏𝒙𝟕⁄  -1120.98 𝝏𝑪𝑭 𝝏𝒚𝟏𝟎⁄  -843.9 

𝝏𝑪𝑭 𝝏𝒙𝟖⁄  1902.3 𝝏𝑪𝑭 𝝏𝒚𝟏𝟏⁄  884.2 

𝝏𝑪𝑭 𝝏𝒙𝟗⁄  -1813.7 𝝏𝑪𝑭 𝝏𝒚𝟏𝟐⁄  -809.7 

 

Moreover, a nonlinear programming is applied using SLSQP method in order to 

minimize the relative cost function. The nonlinear programming uses Vout2 interconnect 

geometries (i.e., coordinates) as optimization parameters. Fig. 7.11 shows the optimized 

interconnect structure.  Fig. 7.12 (a) shows the signal responses at Vout1 and Vout2 before 

the optimization process, whereas Fig. 7.12 (b) shows the signal responses after the 

optimization process. As for the cost values, the value of the relative cost function 

before the optimization is 0.391, whereas the value of the relative cost function after the 

optimization is 0.002047. 

 

 



158 

 

 

Fig. 7.11. The experimental interconnect structure after the optimization process. 

 

 
(a) 

 
(b) 

Fig. 7.12. The output response of the experimental interconnect structure at Vout1 and Vout2 (a) before 
the optimization process and (b) after optimization process. 
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7.3.3. Testing the Layout Routing Optimization Method Using Circuit Designs 

The proposed circuit models and layout optimization methodology were tested 

across different designs that include Ring Oscillators (RO) of 7nm process node and 

folded cascode operational amplifiers with common mode feedback of 65nm process 

node. The performance of the proposed optimization method was tested in terms of the 

accuracy and the optimization runtime. The accuracy was measured and compared to 

the required circuit specifications. The results were also compared against the 

traditional template-based layout optimization method that is described in [20], [44], 

[66], [68].   

7.3.3.1. Ring Oscillator (7nm) 

As for the RO(7nm), six different RO designs each with 31 stages were tested using 

0.75V as an operating voltage. The optimization used the delay cost function in (7.5) 

and its corresponding sensitivity circuit models. The optimization included the input 

and output pins (i.e., input and output routes) of each stage. As shown in Table 7.5, 

the proposed optimization flow managed to reduce the delay of the six RO designs 

by 9.32%, 10.33%, 10.79%, 9.68%, 10.65%, and 11.1%, respectively, as compared to 

traditional template-based methods. Moreover, the relative speedup of the proposed 

method as compared to the traditional template-based method for the six designs is 

9.06, 8.91, 9.48, 8.7, 9.27, and 8.54, respectively, as shown in Table 7.5. The reason 

behind such improvements is that traditional template-based optimization methods 

use multiple circuit simulations in order to identify the parasitic bounds, and each 

simulation consumes around 29 minutes. As for the delay improvements, traditional 

template-based methods use simplified parasitic formulas that are not suitable for 

advanced process technology nodes, whereas the proposed method uses the 

proposed incremental extraction method. As for the area, both optimization methods 

provided almost the same area. 

 



160 

 

Table 7.5. The testing results of the proposed routing optimization method as compared to a 
traditional template-based method across six different RO (7nm) designs. 

 Traditional template-based routing 
Method 

Proposed Method 

Delay Optimization 
runtime 

Delay Optimization 
runtime 

RO1 7.51ps 4.23 hours 6.81ps 28 minutes 

RO2 8.13ps 4.31 hours 7.29ps 29 minutes 

RO3 9.27ps 4.11 hours 8.27ps 26 minutes 

RO4 8.47ps 4.35 hours 7.65ps 30 minutes 

RO5 8.26ps 4.17 hours 7.38ps 27 minutes 

RO6 9.10ps 4.41 hours 8.09ps 31 minutes 

 

7.3.3.2. Folded Cascode Differential Amplifier with Common Mode Feedback 

(65nm) 

Folded cascode differential amplifiers with common mode feedback (CMFB) 

circuits were tested using three different specifications. The Amplifiers were 

developed using 65nm process node. Fig. 7.13 shows a block diagram of the 

amplifiers, whereas Fig. 7.14 shows a schematic circuit design of the folded cascode 

differential amplifier. 

The optimization used the relative cost function in (7.3) and its corresponding 

sensitivity circuit models with 5 moments. The optimization was performed over 7 

routes, Route1 to Route7, as shown in Fig. 7.14. The optimization aimed to match the 

responses (i.e., net matching) at the output terminal of each two similar routes, where 

Route1 was matched with Route2, Route3 was matched with Route4, and Route5 was 

matched with Route6. Moreover, the responses at the output terminals (i.e., t1 and t2) 

of Route7 were also matched. 
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Fig. 7.13. Block diagram of a fully differential folded cascode amplifier with common mode 
feedback circuit. 

 

Fig. 7.14. A circuit design of an experimental folded cascode operational amplifier (65nm) showing 
the optimized routes. 

Tables 7.6, 7.7, and 7.8 show the optimization results for three different required 

specifications. The results show that the proposed optimization method managed to 

provide closer results to the specifications as compared to the traditional template-
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of the proposed method for the three cases were faster than the traditional template-

based method with a speedup of 3.6X, 3.36X, 3.41X, respectively.  

Table 7.6.  The testing results of the proposed routing optimization method as compared to a 
traditional template-based method over the first specification requirements of a folded cascode 
differential amplifier. 

 Specifications Traditional Method Proposed Method 

Gain (dB)  60.0 61.1 60.3 

GBW (Hz) 350M 361M 352M 

PM (o)  60.0 63.1 61.5 

Output swing (V) 0.8 0.76 0.78 

Loading capacitance 
(pF) 

1pF 

Optimization runtime 4.3 minutes 1.2 minutes 

Area (µm)2 2958 2962 

 

Table 7.7. The testing results of the proposed routing optimization method as compared to a 
traditional template-based method over the second specification requirements of a folded cascode 
differential amplifier. 

 Specifications Traditional Method Proposed Method 

Gain (dB)  50.0 53.2 51.1 

GBW (Hz) 300M 309M 303M 

PM (o)  50.0 53.8 50.7 

Output swing (V) 0.9 0.88 0.89 

Loading capacitance 
(pF) 

1pF 

Optimization runtime 4.5 minutes 1.34 minutes 

Area (µm)2 3162 3150 

 

Table 7.8. The testing results of the proposed routing optimization method as compared to a 
traditional template-based method over the third specification requirements of a folded cascode 
differential amplifier. 

 Specifications Traditional Method Proposed Method 

Gain (dB)  60.0 61.3 60.8 

GBW (Hz) 600M 612M 604M 

PM (o)  55.0 57.1 55.6 

Output swing (V) 0.8 0.78 0.79 

Loading capacitance 
(pF) 

1pF 

Optimization runtime 4.7 minutes 1.38 minutes 

Area (µm)2 3364 3352 
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7.4. Conclusion 

A parasitic-aware layout routing optimization methodology is developed. Existing 

layout routing optimization methods suffer from three main problems. First, they rely on 

many circuit simulations to calculate the parasitic bounds. Second, they rely on either 

simple parasitic models, which provide poor accuracy, or a full layout extraction, which 

consumes a lot of time, in order to extract the parasitic elements of a given layout during 

the optimization process. Third, they do not provide a mechanism to analyze the impact 

of parasitic elements and corresponding geometries on a system’s performance. The 

proposed methodology overcomes such limitations by providing novel sensitivity circuit 

models that help circuit designers in analyzing the impact of parasitic elements and 

corresponding layout geometries on a system’s performance. Moreover, it provides a 

novel incremental parasitic capacitance extraction methodology that helps in providing 

a significant speeding up in the optimization runtime with minimal impact on the 

accuracy as compared to those methods that use a full layout extraction.  The proposed 

optimization method uses a nonlinear programming technique to modify and optimize 

the problematic routes based on the proposed sensitivity circuit models. The proposed 

methodology is tested over different ring oscillator designs of 7nm process node and 

folded cascode differential amplifiers of 65nm process node. The experimental results 

show that the proposed methodology managed to achieve better accuracy and runtime 

results as compared to traditional template-based layout routing optimization methods. 

The proposed methodology managed to identify and optimize the problematic 

geometries in critical routes with up to 10% improvements in the performance and a 

speed up of 3 to 9X as compared to traditional template-based methods. 
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Conclusion 
 

This work provided new solutions to: 1) improve the accuracy of the rule-based 2.5D 

interconnect parasitic capacitance extraction models; 2) provide new models to predict 

parasitic capacitances of MEOL; 3) introduce new parasitic capacitance extraction method 

based on NN that provides high accuracy values in a reasonable runtime; 4)  introduce 

new hybrid parasitic capacitance extraction method; and 5) introduce new parasitic-

aware routing methodology based on an incremental parasitic extraction and a fast 

optimization algorithm.  

As for the rule-based 2.5D parasitic capacitance models, a novel modeling 

methodology is developed using machine learning methods. The proposed methodology 

managed to overcome several problems in rule-based extraction tools such as handling 

systematic process variations, high pattern mismatches, and limited pattern coverages. It 

aims to create new machine learning compact models in order to predict parasitic 

capacitances between different metal polygons in 2D cross-section layout patterns. The 

models are created for each process technology node in order to simplify the modeling 

process and reduce the number of input variables. The input of the compact models is a 

given cross-section pattern including the required capacitances and the corresponding 

systematic process variations. Three different input representations are introduced 

including: 1) ratio-based; 2) dimensions-based; and 3) vertex-based pattern 

representations. Moreover, two different machine learning methods are used to 

implement the compact models including neural networks and support vector regression 

methods. The proposed methodology is tested over multiple real designs of 28nm, 14nm, 

and 7nm process nodes with more than 6.7M interconnect patterns. The generated 

compact models are faster than traditional rule-based models by 2.5X. Also, they 

managed to achieve outstanding results as compared to field-solvers and rule-based 



165 

 

cross-section models, where the average relative error of the generated models is < 0.15% 

and the standard deviation of relative errors is < 3.31%. 

As for the MEOL parasitic capacitance models, a new modeling methodology is 

developed. The methodology aims to create machine learning models to predict parasitic 

coupling capacitances for MEOL around FINFETs and MOSFETs. This method 

overcomes the problems of existing methods that either use field-solvers or pre-

characterized libraries to extract MEOL patterns, where field-solvers suffer from runtime 

and capacity problems, whereas pre-characterized libraries suffer from pattern 

mismatches and insufficient pattern coverage problems. The proposed modeling 

methodology selects all devices in a certain layout, identifies their MEOL patterns, and 

represents MEOL patterns using a novel geometry-based representation to be used as 

inputs to the required machine learning models. The proposed methodology is tested 

over two process nodes including: 28nm and 7nm. The testing covered devices in several 

real designs with more than 40M devices. The proposed methodology provided 

outstanding results as compared to field-solvers with an average error < 0.2%, a standard 

deviation < 3%, and a speed up of 100X. 

As for the hybrid extraction method, a novel accuracy-based hybrid parasitic 

capacitance extraction flow is developed. The proposed hybrid flow divides the chip into 

windows and extracts the parasitic capacitances of each window using one of three 

extraction methods: 1) field-solver; 2) rule-based; or 3) novel deep neural-networks based 

extraction methods. This is done by extracting the parasitic capacitive elements of each 

pattern (i.e., window) by using the fastest extraction method that meets the user pre-

determined accuracy level. The proposed flow uses neural-networks classifiers to 

determine the capacitance extraction method for each window. On the other hand, a new 

DNN-based extraction method is developed as an intermediate parasitic extraction 

method between rule-based method and field-solver method in terms of runtime and 

accuracy. The proposed hybrid flow is tested over different designs of 7nm and 28nm 

process nodes. The results showed that the proposed hybrid flow managed to meet the 
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required accuracy levels (of less than 5% error) with more than 99% accuracy, and with a 

speed up of 70X as compared to field-solvers 

 As for the parasitic-aware routing optimization methodology, a new routing 

optimization methodology is developed based on an incremental parasitic extraction and 

a fast optimization algorithm. The proposed methodology aims to overcome the 

problems of existing layout routing optimization that include: 1) the use of many circuit 

simulations to calculate the parasitic bounds; 2) the use of either simple parasitic models, 

which provide poor accuracy, or a full layout extraction, which consumes a lot of time, 

in order to extract the parasitic elements of a given; and 3) the lack of a mechanism to 

analyze the impact of parasitic elements and corresponding geometries on a system’s 

performance. The proposed methodology provides: 1) novel sensitivity circuit models 

that help circuit designers in analyzing the impact of parasitic elements and 

corresponding layout geometries on a system’s performance; 2) a novel incremental 

parasitic capacitance extraction methodology that helps in providing a significant 

speedup in the optimization runtime; and 3) a nonlinear programming algorithm to 

modify and optimize the problematic routes based on the proposed sensitivity circuit 

models. The proposed methodology is tested over different ring oscillator designs of 7nm 

process node and folded cascode differential amplifiers of 65nm process node. The 

experimental results show the proposed methodology managed to identify and optimize 

the problematic geometries in critical routes with up to 10% improvements in the 

performance and a speedup of 3 to 9X as compared to traditional template-based 

methods. 
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Future Work 
 

The future work includes two main topics: 1) extending the parasitic capacitance 

modeling to cover new technologies, such as 3DICs; and 2) improving the parasitic-aware 

routing method to incorporate parasitic inductances. 

As for the neural network models of the proposed parasitic capacitance modeling 

methodologies, the impact of changing and increasing the number of neurons and layers 

on the network performance need to be studied. This would provide more understanding 

to the impact of changing neural network architecture on the performance of the different 

parasitic capacitance extraction models. 

Moreover, the proposed models cannot predict parasitic capacitances of three-

dimensional integrated circuits (3DIC) technologies, such as stacked-die 3DIC and 

monolithic 3DIC technologies. The 3DIC technologies aims to combine and integrate 

multiple systems on a single package. In stacked-die 3DIC technologies, multiple silicon 

wafers (or chips) are stacked vertically and connected together by using a through-

silicon-via (TSV). The stacking may have many forms, such as a face to face or a face to 

back. In such cases, the capacitance coupling interactions among the interconnects across 

those chips need to be modeled. As for monolithic 3DIC technologies, the device layers 

and their corresponding devices are fabricated sequentially, and multiple devices with 

different elevations may exist. In such cases, there are many different metal and device 

layers that are vertically overlapped, and the parasitic capacitances among them need to 

be modeled correctly. Eventually, the proposed models need to be extended to support 

3DIC technologies. 

As for the parasitic-aware routing optimization method, it might be extended to use 

different machine learning methods, such as re-enforcement learning, in order to improve 
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the routing optimization process. On the other hand,  the proposed methodology only 

considers the RC parasitic elements. Hence, their models are appropriate for local 

interconnect at any frequency and global interconnect at a lower frequency. For high 

frequency global interconnect, inductance and more complex models need to be 

included. Therefore, the future work aims to extend this work to consider the different 

inductance effects. 
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Appendix 
The appendix provides the derivations of the sensitivity circuit models in Chapter 7 as 

follows. 

A. Moments Sensitivity to a Parasitic Element 

The derivations of moments sensitivity to a parasitic element, in (7.12) and (7.13), are as 

below: 

By differentiating (2.13) with a certain parasitic element (Pi) we get: 

for m0: differentiating (G m0 = b) with Pi 

𝜕

𝜕𝑃𝑖
(𝐺 𝑚0) =

𝜕

𝜕𝑃𝑖
( 𝑏), 

(1) 

Therefore, 

 
𝜕𝐺

𝜕𝑃𝑖
 𝑚0 + 𝐺 

𝜕𝑚0

𝜕𝑃𝑖
= 0. 

(2) 

Then,  

𝜕𝐺

𝜕𝑃𝑖
 𝑚0 = −𝐺 

𝜕𝑚0

𝜕𝑃𝑖
, 

(3) 

Multiplying both sides by 𝐺−1 , we get: 

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1  

𝜕𝐺

𝜕𝑃𝑖
𝑚0, (4) 

for m1: differentiating (G m1 + C m0 = 0) with Pi 

𝜕

𝜕𝑃𝑖
(𝐺 𝑚1) +

𝜕

𝜕𝑃𝑖
(𝐶 𝑚0) =  0. 

(5) 

Therefore, 

  
𝜕𝐺

𝜕𝑃𝑖
 𝑚1 + 𝐺 

𝜕𝑚1

𝜕𝑃𝑖
+ 

𝜕𝐶

𝜕𝑃𝑖
 𝑚0 + 𝐶 

𝜕𝑚0

𝜕𝑃𝑖
=  0, 

(6) 

  Eventually,  

𝜕𝑚1

𝜕𝑃𝑖
= −𝐺−1 ∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚1 +

𝑑𝐶

𝜕𝑃𝑖
 𝑚0 + 𝐶 

𝜕𝑚0

𝜕𝑃𝑖
). 

(7) 
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Similarly, for m2 till mk , where (G mk + C mk-1 = 0) :   

𝜕

𝜕𝑃𝑖
(𝐺 𝑚𝑘) +

𝜕

𝜕𝑃𝑖
(𝐶 𝑚𝑘−1) =  0. 

⋮ 

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1, 

(8) 

where mk is an n vector of moments and n is the number of nodes in an RC network. This 

model represents a general model for moments sensitivity to a certain parasitic element. 

For a certain target node, the moment sensitivity to a parasitic element (Pi) is given by: 

 

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1  

𝜕𝐺

𝜕𝑃𝑖
𝑚0,     and (9) 

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1, (10) 

where C is the capacitors matrix, G is the admittance matrix, and m0 to mk are circuit 

moments at a given node.  

The parasitic element (Pi) in (9) and (10) can be either a resistive or capacitive element. 

The derivations for both cases are as follows. 

1) Moments Sensitivity to a Parasitic Resistive Element 

The moment sensitivity to a parasitic resistive element (Ri) is obtained by 

substituting a parasitic element parameter (Pi) in (9) and (10) with a resistive element 

(Ri) as below: 

𝜕𝑚0

𝜕𝑅𝑖
= −𝐺−1  

𝜕𝐺

𝜕𝑅𝑖
𝑚0, and (11) 

𝜕𝑚𝑘

𝜕𝑅𝑖
= −𝐺−1 (

𝜕𝐺

𝜕𝑅𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑅𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑅𝑖
) , 𝑘 ≥ 1. (12) 

However, some terms might have special values when they are differentiated with a 

parasitic resistive element (Ri) as below: 

𝜕𝐶

𝜕𝑅𝑖
= 0, (13) 
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because C is the capacitance matrix and differentiating it with a resistive element gives 

zero. Moreover, 𝑑𝐺/𝑑𝑅𝑖is obtained as below: 

𝜕𝐺

𝜕𝑅𝑖
=

𝜕𝐺

𝜕𝑔𝑖
  
𝜕𝑔𝑖

𝜕𝑅𝑖
 , (14) 

where 𝑔𝑖 = (1/𝑅𝑖). Therefore, 

𝜕𝐺

𝜕𝑅𝑖
=

𝜕𝐺

𝜕𝑔𝑖
 
𝜕(1/𝑅𝑖)

𝜕𝑅𝑖
, 

(15) 

𝜕𝐺

𝜕𝑅𝑖
= −

1

𝑅𝑖
2  

𝜕𝐺

𝜕𝑔𝑖
. (16) 

As a result, the moments sensitivity to a parasitic resistive element (Ri) is given by: 

for m0:  

substitute (16) in (11), we get: 

𝜕𝑚0

𝜕𝑅𝑖
= 𝐺−1  

1

𝑅2
  
𝜕𝐺

𝜕𝑔𝑖
𝑚0, 

(17) 

which represents the moment (m0) sensitivity to a certain parasitic resistive element at 

a given node. 

for mk , k ≥1, substitute (13) and (16) in (12), we get: 

𝜕𝑚𝑘

𝜕𝑅𝑖
= −𝐺−1  (− 

1

𝑅𝑖
2  

𝜕𝐺

𝜕𝑔𝑖
 𝑚𝑘 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑅𝑖
) , 𝑘 ≥ 1, 

(18) 

which represents the moment (mk) sensitivity to a certain parasitic resistive element 

when k ≥ 1 at a given node. 

2) Moments Sensitivity to a Parasitic Capacitive Element 

The moment sensitivity to a parasitic capacitive element (Ccj) is obtained by 

substituting a parasitic element parameter (Pi) in (9) and (10) with a capacitive element 

(Ccj) as below: 

𝜕𝑚0

𝜕𝐶𝑐𝑗
= −𝐺−1  

𝜕𝐺

𝜕𝐶𝑐𝑗
𝑚0, and (19) 

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐺

𝜕𝐶𝑐𝑗
 𝑚𝑘 +

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) , 𝑘 ≥ 1. (20) 
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However, some terms might have special values when they are differentiated with a 

parasitic capacitive element (Ccj) as below: 

𝜕𝐺

𝜕𝐶𝑐𝑗
= 0, (21) 

because G is the admittance matrix and differentiating it with a capacitive element gives 

zero.  

As a result, the moments sensitivity to a parasitic capacitive element (Ccj) is given by: 

for m0, substitute (21) in (19), we get: 

𝜕𝑚0

𝜕𝐶𝑐𝑗
= 0, 

(22) 

which represents the moment (m0) sensitivity to a certain parasitic capacitive element 

at a given node. 

for mk , k ≥1, substitute (21) in (20), we get: 

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) , 𝑘 ≥ 1 (23) 

which represents the moment (mk) sensitivity to a certain parasitic capacitive element 

when k ≥ 1 at a given node. 

 

B. Relative Cost Function Sensitivity to a Parasitic Element 

The derivations of the relative cost function sensitivity to a parasitic element, in (7.14), 

are as below: 

Assuming two systems, the output response of the first system is given by: 

𝑆1(𝑠) =  𝑚0 + 𝑚1 𝑠 +  𝑚2 𝑠
2 +  𝑚3 𝑠

3 + ⋯, (24) 

whereas the output response of the second system is given by: 

𝑆2(𝑠) =  𝑚′
0 + 𝑚′

1 𝑠 +  𝑚′
2 𝑠

2 +  𝑚′
3 𝑠

3 + ⋯. (25) 

Therefore, the relative cost function (RCF) between the two systems is given by: 

RCF =  ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

  

where q represents the required order of circuit moments.  

(26) 
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differentiating (26) with a parasitic element (Pi) gives: 

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (

(𝑚0 − 𝑚′
0)

2

𝑚′
0
2 + 

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯).  

(27) 

Let 

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 . 

(28) 

Therefore,  

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (RCFm0 + RCFm1 + ⋯), 

(29) 

Use m0 to mk as intermediate variables for differentiation, we get: 

 

𝜕RCF

𝜕𝑃𝑖
= 

𝜕RCFm0

𝜕𝑚0
 
𝜕𝑚0

𝜕𝑃𝑖
+ 

𝜕RCFm1

𝜕𝑚1
 
𝜕𝑚1

𝜕𝑃𝑖
+ ⋯. 

(30) 

As a result, 

𝜕RCF

𝜕𝑃𝑖
= ∑

𝜕RCFmk

𝜕𝑚𝑘
   

𝜕𝑚𝑘

𝜕𝑃𝑖
 .

𝑛

𝑘=0

 
(31) 

This model has two components. The first component is (𝜕𝑅𝐶𝐹𝑚𝑘 𝜕𝑚𝑘⁄ ). It is obtained by 

differentiating (28) with a certain moment (mk) as below:  

 

𝜕RCFmk

𝜕𝑚𝑘
= 2 

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2 , (32) 

The second component (𝜕𝑚𝑘 𝜕𝑃𝑖⁄ ) is already obtained in (9) and (10). By substituting (9), 

(10) and (32) in (31), we get: 

𝜕RCF

𝜕𝑃𝑖
=  2 

(𝑚0 − 𝑚′
0)

𝑚′
0
2

∙ (−𝐺−1  
𝜕𝐺

𝜕𝑃𝑖
𝑚0) + ∑ (2 

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2     

𝑛

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖
𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
))), 

(33) 
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which represents the relative cost function (RCF) sensitivity to a certain parasitic element 

(Pi) at a given node. 

C. Delay cost function sensitivity to a parasitic element 

The derivations of the delay cost function sensitivity to a parasitic element, in (7.15), 

are as below: 

The delay cost function (DCF) is given by, based on [102]: 

 

DCF = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙  

𝑚𝑞

𝑚1
(𝑞−1)

,   
(34) 

 

differentiating (34) with a parasitic element (Pi) gives: 

𝜕DCF

𝜕𝑃𝑖
= 

𝜕

𝜕𝑃𝑖
(𝑎1 ∙ 𝑚1 + 𝑎2 ∙

𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙  

𝑚𝑞

𝑚1
(𝑞−1)

). 
(35) 

Therefore, 

𝜕DCF

𝜕𝑃𝑖
= 𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+ 

𝑎2 ∙ (
𝜕𝑚2

𝜕𝑃𝑖

1

𝑚1
+ 𝑚2 (−𝑚1

−2)
𝜕𝑚1

𝜕𝑃𝑖
) + ⋯+ 

𝑎𝑞 ∙ (
𝜕𝑚𝑞

𝜕𝑃𝑖

1

𝑚1
𝑘−1

+ 𝑚𝑞 (−(𝑞 − 1)𝑚1
−𝑞)

𝜕𝑚1

𝜕𝑃𝑖
). 

(36) 

As a result,  

𝜕DCF

𝜕𝑃𝑖
=  𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+ ∑ [𝑎𝑘  (

𝜕𝑚𝑘

𝜕𝑃𝑖
 ∙

1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

 ∙  
𝜕𝑚1

𝜕𝑃𝑖
  )] ,

𝑞

𝑘=2

 
(37) 

which represents the delay cost function sensitivity to a parasitic element (Pi) at a given 

node. 
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