
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

Spring 5-31-2022

Integrated Circuits Parasitic Capacitance Extraction Using Integrated Circuits Parasitic Capacitance Extraction Using

Machine Learning and its Application to Layout Optimization Machine Learning and its Application to Layout Optimization

Mohamed Saleh Abouelyazid Saleh
mohsaleh@aucegypt.edu

Follow this and additional works at: https://fount.aucegypt.edu/etds

 Part of the Electrical and Electronics Commons, and the VLSI and Circuits, Embedded and Hardware

Systems Commons

Recommended Citation Recommended Citation

APA Citation
Saleh, M. S. (2022).Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning and its
Application to Layout Optimization [Doctoral Dissertation, the American University in Cairo]. AUC
Knowledge Fountain.
https://fount.aucegypt.edu/etds/1930

MLA Citation
Saleh, Mohamed Saleh Abouelyazid. Integrated Circuits Parasitic Capacitance Extraction Using Machine
Learning and its Application to Layout Optimization. 2022. American University in Cairo, Doctoral
Dissertation. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1930

This Doctoral Dissertation is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1930?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1930?utm_source=fount.aucegypt.edu%2Fetds%2F1930&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

Graduate Studies

Integrated Circuits Parasitic Capacitance Extraction Using
Machine Learning and its Application to Layout

Optimization

A THESIS SUBMITTED BY

Mohamed Saleh Abouelyazid Saleh

TO THE

Department of Electronics and Communications
Engineering

UNDER THE SUPERVISION OF

Prof. Yehea Ismail

Dr. Sherif Hammouda

May, 2022

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electronics and Communications

Engineering

i

Declaration of Authorship

I, Mohamed Saleh, declare that this thesis titled, “Integrated Circuits Parasitic Capacitance

Extraction Using Machine Learning and its Application to Layout Optimization” and the

work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Mohamed Saleh

Date:

13-April-2022

ii

To my beloved family

iii

Abstract
The impact of parasitic elements on the overall circuit performance keeps increasing from

one technology generation to the next. In advanced process nodes, the parasitic effects

dominate the overall circuit performance. As a result, the accuracy requirements of

parasitic extraction processes significantly increased, especially for parasitic capacitance

extraction. Existing parasitic capacitance extraction tools face many challenges to cope

with such new accuracy requirements that are set by semiconductor foundries (< 5%

error). Although field-solver methods can meet such requirements, they are very slow

and have a limited capacity. The other alternative is the rule-based parasitic capacitance

extraction methods, which are faster and have a high capacity; however, they cannot

consistently provide good accuracy as they use a pre-characterized library of capacitance

formulas that cover a limited number of layout patterns. On the other hand, the new

parasitic extraction accuracy requirements also added more challenges on existing

parasitic-aware routing optimization methods, where simplified parasitic models are

used to optimize layouts.

This dissertation provides new solutions for interconnect parasitic capacitance

extraction and parasitic-aware routing optimization methodologies in order to cope with

the new accuracy requirements of advanced process nodes as follows.

First, machine learning compact models are developed in rule-based extractors to

predict parasitic capacitances of cross-section layout patterns efficiently. The developed

models mitigate the problems of the pre-characterized library approach, where each

compact model is designed to extract parasitic capacitances of cross-sections of arbitrary

distributed metal polygons that belong to a specific set of metal layers (i.e., layer

combination) efficiently. Therefore, the number of covered layout patterns significantly

increased.

Second, machine learning compact models are developed to predict parasitic

capacitances of middle-end-of-line (MEOL) layers around FINFETs and MOSFETs. Each

compact model extracts parasitic capacitances of 3D MEOL patterns of a specific device

iv

type regardless of its metal polygons distribution. Therefore, the developed MEOL

models can replace field-solvers in extracting MEOL patterns.

Third, a novel accuracy-based hybrid parasitic capacitance extraction method is

developed. The proposed hybrid flow divides a layout into windows and extracts the

parasitic capacitances of each window using one of three parasitic capacitance extraction

methods that include: 1) rule-based; 2) novel deep-neural-networks-based; and 3) field-

solver methods. This hybrid methodology uses neural-networks classifiers to determine

an appropriate extraction method for each window. Moreover, as an intermediate

parasitic capacitance extraction method between rule-based and field-solver methods, a

novel deep-neural-networks-based extraction method is developed. This intermediate

level of accuracy and speed is needed since using only rule-based and field-solver

methods (for hybrid extraction) results in using field-solver most of the time for any

required high accuracy extraction.

Eventually, a parasitic-aware layout routing optimization and analysis methodology

is implemented based on an incremental parasitic extraction and a fast optimization

methodology. Unlike existing flows that do not provide a mechanism to analyze the

impact of modifying layout geometries on a circuit performance, the proposed

methodology provides novel sensitivity circuit models to analyze the integrity of signals

in layout routes. Such circuit models are based on an accurate matrix circuit

representation, a cost function, and an accurate parasitic sensitivity extraction. The circuit

models identify critical parasitic elements along with the corresponding layout

geometries in a certain route, where they measure the sensitivity of a route’s performance

to corresponding layout geometries very fast. Moreover, the proposed methodology uses

a nonlinear programming technique to optimize problematic routes with pre-determined

degrees of freedom using the proposed circuit models. Furthermore, it uses a novel

incremental parasitic extraction method to extract parasitic elements of modified

geometries efficiently, where the incremental extraction is used as a part of the routing

optimization process to improve the optimization runtime and increase the optimization

accuracy.

v

Acknowledgements

I would like to thank my supervisor, Prof. Yehea Ismail, who made this work possible.

His great guidance, understanding, and support carried me through all the phases of

writing this dissertation. I am grateful to him for teaching me many scientific research

methods that will benefit me in either the academic or professional domains.

 I would like to thank my manager, Dr. Sherif Hammouda, for his supervision,

continuous support, guidance, and understanding. With his great guidance and help, I

managed to pursue and finish my studies. I am grateful to him.

I would like to give a special thanks to my entire family, father, mother, sisters, wife,

and boys for their continuous support, understanding, and encouragement. With your

prayers, I made it this far.

Finally, I thank Allah for everything.

vi

Contents

Declaration of Authorship ... i

Abstract ..iii

Acknowledgements .. v

List of Figures ... xi

List of Tables ...xvi

List of Abbreviations .. xix

List of Symbols .. xx

 ... 1

Introduction .. 1

1.1. Interconnect Parasitic Elements .. 2

1.2. Layout Parasitic Extraction .. 3

1.2.1. Parasitic Extraction for Verification ... 5

1.2.2. Parasitic Extraction in Optimization Loops ... 5

1.3. Parasitic-Aware Layout Optimization ... 6

1.3.1. Net Symmetry Constraints .. 7

1.3.2. Parasitic Constraints ... 7

1.4. Problem Definition ... 7

1.4.1. Problems of Rule-Based Extraction Methods .. 7

1.4.2. Limitations of Rule-Based 2.5D Extraction Methods ... 9

1.4.3. Problems of Existing Parasitic-Aware Layout Optimization Flows 10

1.5. Contributions ... 11

1.5.1. Rule-Based 2.5D Capacitance Extraction Models .. 12

1.5.2. MEOL Rule-Based Capacitance Extraction Models .. 13

1.5.3. Accuracy-Based Hybrid Parasitic Capacitance Extraction Method 14

1.5.4. Parasitic-Aware Layout Analysis and Routing Optimization Methodology....... 15

1.6. Organization... 16

 ... 17

Background .. 17

2.1. Rule-Based 2.5D Capacitance Extraction .. 17

vii

2.1.1. The Pre-Characterization Step .. 19

2.1.2. Layout Parasitic Capacitance Extraction Step .. 20

2.2. Systematic Process Variations .. 20

2.3. Field-Solvers... 22

2.3.1. Discretization Methods .. 23

2.3.2. Integral Methods ... 23

2.3.3. Stochastic Methods ... 24

2.4. Parasitic Capacitance Extraction in Advanced Process Technology Nodes 24

2.5. Layout Optimization and System Moments .. 26

2.5.1. Template-Based Parasitic-Aware Layout Optimization .. 26

2.5.2. System Moments ... 31

2.6. Summary ... 32

 ... 33

Review of and Feature Comparison to Related Previous Work ... 33

3.1. Rule-Based 2.5D Capacitance Extraction .. 33

3.2. MEOL Parasitic Capacitance Extraction .. 39

3.3. Hybrid and Intermediate Parasitic Capacitance Extraction Methods 41

3.4. Parasitic-Aware Routing Optimization .. 42

3.5. Summary ... 49

 ... 50

Machine Learning Compact Models for Rule-Based 2.5D Capacitance Extraction 50

4.1. Identify Input Patterns Characteristics ... 51

4.1.1. Surrounding Multi-Dielectrics ... 51

4.1.2. Window Size of Cross-Section Patterns .. 53

4.1.3. The Number of Metal Layers in a Pattern .. 55

4.1.4. Maximum Number of Polygons in a Pattern ... 56

4.1.5. Systematic Process Variations .. 59

4.2. Generate 2D Cross-Section Patterns .. 63

4.3. Field-Solver Execution ... 64

4.4. Input Pattern Representation .. 64

4.4.1. Ratio-Based Representation .. 65

4.4.2. Dimensions-Based Representation .. 66

4.4.3. Vertex-Based Representation .. 66

viii

4.5. Training Parasitic Models.. 70

4.5.1. Neural-Networks Models .. 71

4.5.2. Support Vector Regressions .. 74

4.6. Experimental Results .. 75

4.6.1. Testing Designs of 28nm Process Nodes .. 76

4.6.2. Testing Designs of 14nm Process Nodes .. 79

4.6.3. Testing Designs of 7nm Process Nodes .. 83

4.6.4. Statistical Tests .. 86

4.7. Conclusion .. 88

 ... 90

Machine Learning Compact Models for Middle End of Line Parasitic Capacitances 90

5.1. Generate Training MEOL Patterns .. 92

5.1.1. Multi-Dielectric Environment .. 92

5.1.2. Multi-Finger Devices .. 93

5.2. Generate Reference Parasitic Capacitances .. 94

5.3. MEOL Pattern Representation .. 94

5.3.1. Fracturing Polygons .. 96

5.3.2. Creating a Feature Vector for Each MEOL Layer .. 96

5.3.3. Representing Vias and Fins ... 97

5.3.4. Maximum Number of MEOL Polygons .. 98

5.4. MEOL Parasitic Capacitance Models .. 99

5.4.1. Neural Networks Model .. 99

5.4.2. Support Vector Regressions .. 100

5.5. Experimental Results .. 100

5.5.1. Testing Results on 28nm Process Node .. 101

5.5.2. Testing Results on 7nm Process Node .. 103

5.6. Conclusion .. 106

 ... 107

Hybrid Parasitic Capacitance Extraction Using Machine Learning .. 107

6.1. Deep Neural-Networks Based Extraction ... 108

6.1.1. Input Patterns Generation ... 109

6.1.2. Running Field-solver .. 111

ix

6.1.3. Dataset Pre-Processing ... 111

6.1.4. Hybrid Density-Voltage Map Feature Representation .. 112

6.1.5. DNN Construction .. 115

6.1.6. DNN Training .. 116

6.1.7. Comparison to Other Layout Representations .. 117

6.1.8. Comparison Against Other Machine Learning Methods 119

6.2. Hybrid Parasitic Extraction.. 121

6.2.1. Multi-Class Extraction Selector .. 122

6.2.2. Training Patterns of Classifiers .. 124

6.2.3. NNs Construction .. 124

6.2.4. Classifiers Training and Tuning .. 125

6.2.5. Comparison to Other Layout Representations .. 126

6.3. Experimental Results .. 127

6.3.1. DNN-Based Extraction Results ... 128

6.3.2. Accuracy-Based Hybrid Extraction Results .. 129

6.4. Conclusion .. 135

 ... 137

Parasitic-Aware Routing Optimization .. 137

7.1. Incremental Parasitic Extraction ... 138

7.1.1. Incremental Parasitic Resistance Extraction ... 138

7.1.2. Incremental Parasitic Capacitance Extraction .. 139

7.2. Parasitic-Aware Layout Routing Optimization Methodology 142

7.2.1. Cost Function Development .. 144

7.2.2. Sensitivity Circuit Models ... 146

7.2.3. Performance Analysis to Identify Critical Geometries .. 150

7.2.4. Geometrical Constraints .. 151

7.2.5. Layout Routing Optimization Process .. 151

7.3. Experimental Results .. 153

7.3.1. Testing the Proposed Incremental Capacitance Extraction 153

7.3.2. Testing the Proposed Parasitic Sensitivity Models and Routing Optimization

Method Using a Simple Interconnect Structure .. 155

7.3.3. Testing the Layout Routing Optimization Method Using Circuit Designs 159

7.4. Conclusion .. 163

x

 ... 164

Conclusion .. 164

 ... 167

Future Work ... 167

Appendix .. 169

References ... 175

List of Publications ... 182

xi

List of Figures

Fig. 1.1. An illustrative graph that shows the increasing impact of interconnects delay on total

circuit delay across different process technology nodes (based on [1]–[3], [5]). 1

Fig. 1.2. VLSI design flow. ... 3

Fig. 1.3. Errors of parasitic capacitance extraction using typical rule-based 2.5D capacitance

extraction tools as compared to a 3D field-solver, Calibre xACT3D [32], over many 28nm designs.

 ... 10

Fig. 2.1. An illustrative example of extracting a metal polygon using the 2.5D parasitic capacitance

extraction method. ... 18

Fig. 2.2. Rule-based parasitic capacitance extraction steps including (a) pre-characterization and

(b) layout parasitic extraction steps. .. 19

Fig. 2.3. Examples of systematic process variations showing (a) metal thickness variation and

loading effects, (b) trapezoidal variations, and (c) metal width variations. 22

Fig. 2.4. An example of the cross-dependency between a sidewall slope (θ°) of a metal layer and

a lateral capacitance sensitivity to a metal thickness (∂Cl ⁄ ∂t). The experiment used metal1 layer

of 28nm process node. ... 22

Fig. 2.5. An illustrative example of the limitations of existing 2D cross-section models of 2.5D

extraction method. ... 25

Fig. 2.6. An example of three metal polygons showing the impact of applying mask misalignments

and effective line width variations on drawn dimensions. .. 26

Fig. 2.7. Template-based layout optimization flow [20], [44]. .. 27

Fig. 2.8. An Example of template geometrical constraints for a simply layout in the x-direction

[44]. ... 29

Fig. 4.1. The process of implementing 2D cross-section machine learning compact models for rule-

based extraction methods. .. 51

Fig. 4.2. An example of a process technology node (i.e., process stack) with multi-dielectric

environment. ... 52

Fig. 4.3. An example of machine learning compact models for cross-section patterns of two

different metal collections. .. 53

Fig. 4.4. An example of a 2D cross-section pattern of a certain metal collection showing the

corresponding window size. .. 54

Fig. 4.5. An example of calculating the maximum coupling range using metal3 layer with

minimum dimensions in 28nm process technology node. The capacitance unit is in femtofarad

(fF), whereas the separation unit is in micrometer (µm). ... 54

Fig. 4.6. An example showing (a) 2D cross-section patterns that are created to identify the

maximum number of upper metal layers for a target metal layer, and (b) the impact of adding

xii

upper metal layers on the lateral capacitance of a target metal layer. The results are generated

using metal1 as a target layer in 28nm process node. ... 56

Fig. 4.7. An example of (a) 2D cross-section patterns that are used to identify the maximum

number of target metal polygons in an input pattern, and (b) the impact of adding more adjacent

polygons on a same layer lateral capacitance. The results are generated using metal1 as a target

layer in 28nm process node. ... 57

Fig. 4.8. An example of (a) 2D cross-section patterns that are used to identify the maximum

number of secondary metal polygons in an input pattern, and (b) the impact of adding more

secondary metal polygons on a target layer total capacitance. The results are generated using

metal1 as a target layer and metal2 as a secondary layer in 28nm process node. 58

Fig. 4.9. An example of (a) width variations in cross-section interconnect patterns, and (b) the

impact of metal width variations on same layer lateral and total capacitances. The results are

generated using metal1 in 28nm process node. ... 60

Fig. 4.10. An example of (a) metal thickness variations in cross-section interconnect patterns, and

(b) the impact of metal thickness variations on same layer lateral and total capacitances using

metal1 with minimum dimensions in 28nm process technology node. ... 61

Fig. 4.11. An example of (a) ILD thickness variations in cross-section interconnect patterns, and

(b) the impact of ILD thickness variations on total capacitances using metal1 with minimum

dimensions in 28nm process technology node. ... 62

Fig. 4.12. An example of (a) trapezoidal variations in cross-section interconnect patterns, and (b)

the impact of trapezoidal variations on total capacitances. The results are generated using metal1

with minimum dimensions in 28nm process technology node. .. 62

Fig. 4.13. An example of the proposed width ratio-based pattern representation. 65

Fig. 4.14. An example of the proposed dimensions-based representation. 66

Fig. 4.15. An example showing the novel vertex-based pattern representation using three

polygons of the same metal layer in a cross-section pattern. ... 67

Fig. 4.16. An example showing the input vector of a parasitic model. ... 69

Fig. 4.17. An example showing the flow of generating an input feature vector of a parasitic

capacitance model. ... 70

Fig. 4.18. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for

2D cross-patterns of 28nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c)

dimensions-based NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR,

and (g) Calibre rule-based cross-section models. .. 78

Fig. 4.19. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for

2D cross-patterns of 14nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c)

dimensions-based NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR,

and (g) Calibre rule-based cross-section models. .. 82

Fig. 4.20. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for

2D cross-patterns of 7nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c)

xiii

dimensions-based NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR,

and (g) Calibre rule-based cross-section models. .. 85

Fig. 4.21. A graph showing the mean square errors of all proposed cross-section parasitic

capacitance models across different designs taking the mean square errors of rule-based models

as references. ... 87

Fig. 5.1. Some MEOL parasitic capacitances around (a) typical FINFET (Sun et al., 2015 [57]) and

(b) MOSFET structures. ... 90

Fig. 5.2. The process of implementing MEOL parasitic capacitance models. 92

Fig. 5.3. Examples of MEOL coupling capacitances in case of (a) a single MOSFET, (b) a gate at

the edge of a multi-finger device, and (c) a gate in the middle of a multi-finger device. The

experiment used 28nm node with minimum dimensions. Calibre xACT3D is used to extract

MEOL parasitic capacitances. ... 93

Fig. 5.4. Examples of training MEOL patterns showing (a) MOSFETs and (b) FINFETs. 94

Fig. 5.5. An example of the proposed MEOL feature vector that is used to predict gate to source

coupling capacitance in a MOSFET. .. 95

Fig. 5.6. An example of fracturing a polygon in x-direction. ... 96

Fig. 5.7. An Example of representing MEOL layer polygons using a vector of vertices. 97

Fig. 5.8. An example showing the feature vector of MEOL vias. .. 97

Fig. 5.9. An example showing the generating of the final input vector that is used for MEOL

parasitic capacitance extraction. ... 98

Fig. 5.10. An example of the most common NN architecture for MEOL parasitic capacitance

extraction. .. 100

Fig. 5.11. Error histograms, as compared to Calibre xACT3D, of 28nm process node using (a) the

proposed NN models, (b) the proposed SVR models, and (c) Calibre rule-based extraction tool.

 ... 102

Fig. 5.12. Error histograms, as compared to Calibre xACT3D, of 7nm process node using (a) the

proposed NN models, (b) the proposed SVR models, and (c) a hybrid extraction tool. 105

Fig. 6.1. An illustrative example of a partial layout showing an extraction window that is used in

the proposed hybrid parasitic capacitance extraction flow.. 108

Fig. 6.2. The process of implementing a deep neural-networks model for parasitic capacitance

extraction. .. 109

Fig. 6.3. An example of a layout pattern of three metal layers (28nm). ... 110

Fig. 6.4. An example showing the impact of increasing the separation between two adjacent metal

polygons on the lateral coupling capacitance. The experiment used metal1 in 28nm process node.

 ... 110

Fig. 6.5. An example of the density-map feature representation in a layout pattern using two

polygons that belong to the same metal layer. ... 113

xiv

Fig. 6.6. The proposed hybrid density-voltage map feature representation for total and coupling

parasitic capacitance extraction. ... 114

Fig. 6.7. An example of three layout patterns with different segment sizes. 115

Fig. 6.8. A fully connected NN architecture to calculate total and coupling parasitic capacitances

for a certain layout pattern.. 116

Fig. 6.9. An example of CCAS layout representation for capacitance extraction. 118

Fig. 6.10. Accuracy (i.e., relative error) and runtime distributions of rule-based extraction, DNN-

based extraction, and field-solver methods. ... 122

Fig. 6.11. The proposed multi-class parasitic capacitance extraction selector. 123

Fig. 6.12. The implementation process of NN Classifiers. .. 123

Fig. 6.13. A neural-networks architecture of the proposed multi-class classifier. 125

Fig. 6.14. Accuracy comparison histograms, relative to Calibre xACT3D, of the SRAM (28nm)

design using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the

proposed hybrid extraction at 5% accuracy level. ... 131

Fig. 6.15. Accuracy comparison histograms, relative to Calibre xACT3D, of the DAC (28nm)

design using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the

proposed hybrid extraction at 5% accuracy level. ... 132

Fig. 6.16. Accuracy comparison histograms, relative to Calibre xACT3D, of the cache memory

(28nm) using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the

proposed hybrid flow at 5% accuracy level. .. 133

Fig. 6.17. Accuracy comparison histograms, relative to Calibre xACT3D, of the PLL (7nm) using:

(a) the proposed DNN-based extraction, (b) the rule-based extraction, and (c) the proposed hybrid

extraction at 5% accuracy level. .. 134

Fig. 7.1. An example of second order coupling capacitances due to modifying a certain metal

polygon. ... 139

Fig. 7.2. The impact of increasing the separation between the aggressor and left victim polygons

on the coupling between the aggressor and right victim polygons. The experiment used metal5

layer of 28nm process technology node. ... 140

Fig. 7.3. The impact of increasing the separation (i.e., spacing) between two metal polygons on the

lateral coupling capacitance between them using metal5 of 28nm process technology node. 141

Fig. 7.4. An illustrative example of 2D cross-section metal polygons showing some capacitive

elements that are enclosed inside the maximum capacitance interaction range of a modified

polygon. ... 142

Fig. 7.5. The proposed layout optimization flow for critical routes. .. 143

Fig. 7.6. Two different RC systems that belong to (a) two different routes, or (b) the same route.

 ... 144

xv

Fig. 7.7. An illustrative example of the threshold ratio (rt) that represents the threshold-crossing

point (tp, Vth), where a time tp is required by the signal to reach Vth voltage. 146

Fig. 7.8. An illustrative example of a geometry representation in the proposed sensitivity models

showing (a) an unfractured polygon and (b) a fractured polygon. ... 147

Fig. 7.9. The proposed routing optimization algorithm pseudo code. .. 152

Fig. 7.10. An experimental interconnect structure that is used for verifying the sensitivity circuit

models and the optimization algorithm highlighting (a) the nodes, (b) the dimensions in the x-

direction, and (c) the dimensions in the y-direction, given that all dimensions are in µm. 156

Fig. 7.11. The experimental interconnect structure after the optimization process. 158

Fig. 7.12. The output response of the experimental interconnect structure at Vout1 and Vout2 (a)

before the optimization process and (b) after optimization process. ... 158

Fig. 7.13. Block diagram of a fully differential folded cascode amplifier with common mode

feedback circuit. .. 161

Fig. 7.14. A circuit design of an experimental folded cascode operational amplifier (65nm) showing

the optimized routes. ... 161

xvi

List of Tables

Table 3.1. Contributions and limitations of the proposed 2D cross-section models and related

works in rule-based capacitance extraction. ... 37

Table 3.2. A comparison among different parasitic rule-based capacitance extraction methods

including the proposed 2D cross-section parasitic capacitance models. ... 38

Table 3.3. Advantages and disadvantages of the different parasitic capacitance extraction

methods. .. 41

Table 3.4. Contributions and limitations of state-of-the-art layout routing optimization works

including our work. ... 46

Table 3.5. A comparison among several state-of-the-art layout routing optimization works

including our work. ... 48

Table 4.1. A summary of input pattern characteristics. .. 63

Table 4.2. Input vector sizes of several metal collections and models. ... 69

Table 4.3. Search ranges of neural network architectures. ... 72

Table 4.4. Neural network architectures of parasitic capacitance models. 72

Table 4.5. Search ranges of support vector regression hyper-parameters. 74

Table 4.6. SVR hyper-parameters of parasitic capacitance models for the proposed ratio-based,

dimensions-based, and vertex-based pattern representations. ... 74

Table 4.7. Training runtimes of the 2D cross-section parasitic models for 28nm process node. .. 76

Table 4.8. The accuracy and relative errors of test sets for all developed cross-section models of

28nm process node. .. 76

Table 4.9. Percentages of extracted capacitances with relative errors above 5% for 28nm designs.

 ... 77

Table 4.10. The computations runtime of the proposed extraction models and existing rule-based

models when executed over several designs of 28nm process nodes. ... 79

Table 4.11. Training runtimes of the 2D cross-section parasitic models of 14nm process node. .. 80

Table 4.12. The accuracy and relative errors of test sets for the proposed models of 14nm process

node. ... 80

Table 4.13. Percentages of extracted capacitance components with relative errors above 5% in

14nm designs. ... 81

Table 4.14. The computations runtime of the proposed extraction models and existing rule-based

models when executed over several designs of 14nm process nodes. ... 83

Table 4.15. Training runtimes of the 2D cross-section parasitic models for 7nm process node. .. 83

xvii

Table 4.16. The accuracy and relative errors of test sets for the proposed models of 7nm process

node. ... 84

Table 4.17. Percentages of extracted capacitance components with relative errors above 5% in 7nm

designs. .. 84

Table 4.18. The computations runtime of the proposed extraction models and existing rule-based

models when executed over several designs of 14nm process nodes. ... 86

Table 4.19. Accuracy comparisons in terms of mean square errors for rule-based, ratio-based, the

proposed SVR, and the proposed NN models. .. 87

Table 4.20. Paired comparisons using Wilcoxon signed-rank test (two-tailed) to test the significant

difference between each two models, where the mean square error, against a field-solver, is used

as a performance metric. ... 88

Table 5.1. Training hyper parameters of MEOL parasitic capacitances NN models. 99

Table 5.2. The architectures and parameters of 28nm MEOL patterns. ... 103

Table 5.3. The average prediction runtime of the different 28nm MEOL parasitic capacitance

models. ... 103

Table 5.4. The architectures and parameters of 7nm MEOL patterns. ... 104

Table 5.5. The average prediction runtime of the different 7nm MEOL parasitic capacitance

models. ... 104

Table 6.1. Accuracy comparison between CCAS and the Proposed hybrid density-voltage map

layout representations using 28nm process node.. 119

Table 6.2. A list of selected hyper-parameters of SVR, RFR, and CNN models for 28nm process

node. ... 120

Table 6.3. Test sets accuracy results of DNN-based, SVR(Polynomial), SVR (RBF), RFR, and CNN

Modeling methods using 28nm process node. .. 120

Table 6.4. The confusion matrices of extraction classifiers using density-map and CCAS layout

representations for 28nm test sets, at 5% required accuracy level. ... 127

Table 6.5. Approximate sizes of sliding windows for 28nm and 7nm process nodes. 128

Table 6.6. Patterns distribution ratios using the proposed hybrid flow, and the relative runtime

comparisons for field-solver and rule-based tools at 5% required accuracy level. 130

Table 6.7. Total runtimes of capacitance extraction using rule-based, DNN-based, field-solver,

hybrid flow (without using DNN-based), and accuracy-based hybrid extraction methods, at 5%

accuracy. .. 135

Table 6.8. The confusion matrices of SRAM, DAC, CM, and PLL designs using the proposed

multi-class extraction selector at 5% required accuracy level. ... 135

Table 7.1 Testing results of the proposed incremental capacitance extraction method using a RO

with 31 stages (7nm). .. 154

xviii

Table 7.2 Testing results of the proposed incremental capacitance extraction method using a DAC

(28nm). ... 154

Table 7.3 Testing results of the proposed incremental capacitance extraction method a VCO

(40nm). ... 155

Table 7.4. The values of the sensitivity of the relative cost function to each Vout2 coordinate in the

experimental interconnect structure. ... 157

Table 7.5. The testing results of the proposed routing optimization method as compared to a

traditional template-based method across six different RO (7nm) designs. 160

Table 7.6. The testing results of the proposed routing optimization method as compared to a

traditional template-based method over the first specification requirements of a folded cascode

differential amplifier. ... 162

Table 7.7. The testing results of the proposed routing optimization method as compared to a

traditional template-based method over the second specification requirements of a folded cascode

differential amplifier. ... 162

Table 7.8. The testing results of the proposed routing optimization method as compared to a

traditional template-based method over the third specification requirements of a folded cascode

differential amplifier. ... 162

xix

List of Abbreviations

IC Integrated Circuit

NN Neural Network

MEOL Middle-End-of Line

SVR Support Vector Regression

3DIC Three-Dimensional Integrated Circuit

TSV Through-Silicon-Via

ILD Inter Layer Dielectric

ADAM Adaptive Moment Estimation

SGD Stochastic Gradient Descent

RELU Rectified Linear Activation Unit

RBF Radial Basis Function

MSE Mean Square Error

STDEV Standard Deviation

RSD Raised Source Drain

RO Ring Oscillator

SRAM Static Read Access Memory

VCO Voltage-Controlled Oscillator

CM Cache Memory

DAC Digital to Analog Converter

SPR Sum of Positive Ranks

SNP Sum of Negative Ranks

RC Resistance and Capacitance

RLCK Resistance, Capacitance, and Self and Mutual Inductance

PDK Process Design Kit

CF Cost Function

RCF Relative Cost Function

DCF Delay Cost Function

MR Maximum coupling capacitance interaction range

BW Band Width

PM Phase Margin

GM Gain Margin

CMFB Common Mode Feedback

xx

List of Symbols

εr Dielectric constant

θ Sidewall edge angle

G Admittance Matrix

C Capacitance Matrix

Pi A parasitic element

Ri A parasitic resistive element

Cci A parasitic capacitive element

mk A circuit moment at kth order

rt A ratio of a threshold voltage to a max voltage

Si A circuit (i.e., network) response

Ge Route Geometries

Π RC PI model

1

Introduction

During the past decades, the semiconductor industry has developed considerably. There

is a continuous increase in the market demand to integrate more functionalities together

on a single chip at a much lower cost and higher speed. Such an increasing demand

motivated process technology nodes to scale down in a continuous manner. Therefore,

the density of integrated circuits keeps increasing, and the dimensions of metal wires (i.e.,

interconnect) keep decreasing from one technology generation to the next. This resulted

in an increase in the impact of interconnect parasitic elements on chips performance,

which is one of the major problems in advanced process technology nodes [1]–[4]. Fig.

1.1 shows the main contributors on the total circuit delay across different process

technology nodes highlighting that the RC parasitic effects became the main contributor

in smaller process technology nodes. Such an increasing trend of the RC parasitic impact

on the total delay has continued in more advanced nodes. As a result, more accurate

parasitic extraction methods are required in order to 1) provide accurate post-layout

circuit simulation results; 2) reduce the design turn-around time; and 3) improve the

yield, especially for analog and mixed-signal designs.

Fig. 1.1. An illustrative graph that shows the increasing impact of interconnects delay on total circuit
delay across different process technology nodes (based on [1]–[3], [5]).

Gate Delay

Interconnects Delay

Total Delay

350nm 180nm 130nm 90nm 65nm 28nm 16nm

Process technology node

T
o

ta
l

D
el

a
y

2

1.1. Interconnect Parasitic Elements

Interconnect parasitic elements represent the unintended passive circuit elements,

such as resistors, capacitors, and inductors, that are not included in original circuit

designs but exist in final chips. Such parasitic elements are associated with circuit routes

(i.e., interconnect) that connect circuit devices together [6]–[8].

The impact of parasitic inductances on a circuit performance is usually negligible,

except for parasitic inductances that are associated with global interconnect in some very

high frequency applications. Therefore, the extraction of parasitic inductances is not

required for most of current applications.

As for parasitic resistances, the number of resistance elements significantly increased

in advanced nodes adding more challenges to circuit simulators to handle such a huge

network. However, existing parasitic resistance extraction tools still can handle layout

structures of advanced nodes as parasitic resistances are mainly correlated with

interconnect’s dimensions, and foundries provide required resistance parameters such as

resistivity and sheet resistance values for each metal layer in a process technology node

throughout an interconnect technology format (ITF) specifications file. Therefore,

parasitic extraction tools use the provided resistance parameters to calculate interconnect

parasitic resistances. Once parasitic resistances are extracted, they are easily combined

with parasitic capacitances in a single network [6]–[8].

As for parasitic capacitances, the increasing complexities of layout designs and

process stacks, in advanced process technology nodes, have a significant impact on the

accuracy of current parasitic capacitance extraction tools, where layouts became denser,

and the number of interactions and fringing coupling capacitances among interconnects

significantly increased.

3

1.2. Layout Parasitic Extraction

The layout parasitic extraction is an essential step in integrated circuit (IC) design

flows as shown in Fig. 1.2. It is used to extract the parasitic elements of a given layout and

associate them with the corresponding circuit network (i.e., netlist). The netlist is later

used by a circuit simulator to perform a post-layout simulation in order to verify the

performance of the corresponding layout. In case of any violation in post-layout

simulation results, the layout designer would adjust his layout, re-extract its parasitic

elements, and re-simulate it. Such a process is repeated until the simulation results meet

the required circuit specifications [9].

Fig. 1.2. VLSI design flow.

In other words, the current IC design flow requires multiple parasitic extraction and

simulation runs until the given layout meets the required circuit specifications. Any

inaccuracy in the extracted parasitic elements would generate misleading post-layout

simulation results. Such misleading results would degrade the yield and increase the

System Specification

Architectural Design

Functional Design +

Logic Design

Circuit Design

Physical Design

Physical Verification

and Signoff

Fabrication

Packaging and Testing

Partitioning

Floor Planning

Placement

Clock Tree

Synthesis

Routing

Timing Closure

Design Rule Check

Layout Versus

Schematic

Parasitic Extraction

4

turn-around time of a circuit design. Moreover, in advanced process technology nodes,

the accuracy requirements of the parasitic capacitance extraction significantly increased

by semiconductor foundries (< 5% error) due to the increasing impact of parasitic

elements on a circuit performance. This increase added more challenges on parasitic

capacitance extraction tools in order to meet such new requirements [10]–[13].

There are two main parasitic capacitance extraction methods including field-solver

and rule-based extraction methods. Field-solvers provide very accurate parasitic

capacitance results relative to measurements; however, they are very slow and have a

limited capacity [14]. Field-solvers mainly use numerical methods to perform

electrostatic (or electromagnetic) simulations over a given layout. This is done by solving

Maxwell equations across the entire layout domain using any of computational methods

such as finite difference (FDM), finite element (FEM), and boundary element (BEM)

methods. On the other hand, rule-based extraction methods, also known as 2.5D

extraction methods, are way faster than field-solvers, and they can handle full chips with

a reasonable accuracy. Rule-based extraction methods use pattern matching operations

to match every layout pattern with corresponding pre-characterized analytical or

empirical parasitic capacitance formulas that are stored in a database (i.e., library) of pre-

characterized formulas [11], [15], [16]. To improve the accuracy of rule-based extraction

methods, one solution is to extract the parasitic capacitances of complicated and

problematic layout structures using a field-solver; however, this is not a sustainable

solution because the efficiency of existing rule-based methods is decreasing from one

technology generation to the next, and the size of layout designs keeps increasing.

Therefore, more layout patterns would be extracted by field-solvers impacting the

performance and the capacity of parasitic capacitance extraction processes. As a result,

there is a strong need to either improve the accuracy of rule-based parasitic capacitance

extraction models or create new accurate parasitic extraction methods that can cope with

the new accuracy requirements and handle the complicated and denser layout designs in

advanced process nodes [6], [11], [12], [17].

5

There are two main uses of parasitic extraction tools that include: 1) a parasitic

extraction for full chip verification (i.e., for sign-off) and 2) a parasitic extraction in

optimization loops (i.e., implementation-level parasitic extraction tools) [18].

1.2.1. Parasitic Extraction for Verification

The parasitic extraction for full chip verification uses sign-off parasitic extraction

tools, such as Calibre PEX [19]. Such tools are mainly used to verify the performance of

a final chip design before being manufactured by a foundry. They must be accurate and

have high capacity in order to handle full chips efficiently. Moreover, they should

provide an early and accurate understanding of the impact of parasitic elements on the

overall circuit behavior.

1.2.2. Parasitic Extraction in Optimization Loops

The parasitic extraction methods that are used in layout generation and parasitic-

aware layout optimization flows are called implementation-level parasitic extraction

methods. Such methods must provide fast and accurate parasitic extraction results in

order to obtain (or generate) an optimized layout in a reasonable runtime. There are

two extraction approaches for the implementation-level parasitic extraction that include

1) simplified models and 2) incremental parasitic extraction approaches.

As for the simplified models, each route, in a given layout, is represented by a

simple lumped RC Π (i.e., PI) model. The RC values of the Π model are evaluated using

simplified resistance and capacitance formulas. Such an approach provides a very fast

optimization; however, its accuracy is poor as compared to the accuracy requirements

of advanced process nodes. [20]. As for the incremental parasitic extraction approach,

it may use a sign-off layout parasitic extraction tool to extract the parasitic elements of

a whole layout design before the optimization process starts. After that, once the

optimization process starts, the incremental extraction approach identifies the modified

layout polygons, re-extracts the corresponding parasitic elements, and update the

circuit and parasitic network (i.e., netlist) accordingly. Such an approach provides more

6

accurate layout optimization results (in case of using a sign-off extraction tool) with a

minor impact on the optimization runtime [18].

1.3. Parasitic-Aware Layout Optimization

Layouts are usually generated by using automatic layout generation and

optimization tools. Such tools help layout designers in generating a layout that meets the

required circuit specifications. The layout generation tools are commonly used for digital

circuit designs, where cell-based tools are employed to cover circuit synthesis, mapping,

and physical design steps [21]. However, layout generation tools do not provide a full

automation environment for analog designs, where analog circuit designers still need to

do many manual analysis and layout modifications until their analog design meets the

required circuit specifications.

In analog designs, the layout optimization tools are usually used to determine device

sizes, circuit topologies, and routing paths. However, they still deal with the effects of

interconnect (i.e., route) parasitic elements as second order effects ignoring that the

interconnect parasitic effects became one of the dominant factors on a circuit performance

in advanced process nodes. In order to control the effects of interconnect parasitic

elements, the corresponding routes need to be routed in a way that reduces the associated

parasitic elements [22], [23]. This step is called parasitic-aware routing optimization, and

it is part of the routing process.

The routing is the process of creating connections between devices. It is mainly divided

into two stages that include global and detailed routing. The global routing is responsible

for identifying general paths of each connection. It usually divides the routing region into

windows and identifies the general window-to-window paths for all connections (i.e.,

routes) [24]. After that, the detailed routing is performed as it identifies exact paths, metal

layers, and vias for each net in a given layout. The routing processes usually consider

multiple constraints, such as maintaining net symmetry, minimizing wire lengths, having

a maximum number of vias, complying with corresponding design rules, and minimizing

parasitic elements [23], [25].

7

1.3.1. Net Symmetry Constraints

In net symmetry constraints, the layout geometrical matching is no longer enough

to achieve a net symmetry as it does not necessarily provide a performance matching

across the required nets. This problem significantly increases in advanced process

technology nodes because layouts became more complicated and the parasitic coupling

interactions with the surrounding polygons significantly increased increasing the

impact of parasitic elements on circuits performance. In order to achieve the

performance matching, the parasitic elements of the target nets need to be considered

while applying the net symmetry constraint.

1.3.2. Parasitic Constraints

Parasitic-aware routing processes aim to reduce the parasitic elements that are

mainly associated with critical routes in order to meet the required circuit specifications.

This is done by modifying layout geometries of critical routes in a way that reduces the

effects of associated parasitic elements. However, modifying layout geometries will not

only impact the associated parasitic elements, but it will also impact the parasitic

interactions among surrounding and nearby metals. Therefore, a full layout parasitic

extraction is required with every geometrical change in order to accurately measure the

impact of modifying routes [23]. However, the use of a full layout parasitic extraction

during the optimization process would significantly increase the optimization runtime.

Therefore, an incremental parasitic extraction may be considered to reduce the

optimization runtime.

1.4. Problem Definition

This work tackles three main problems that include: 1) the problems of existing rule-

based extraction methods; 2) the limitations of existing rule-based 2.5D extraction

methods; and 3) the problems of existing parasitic-aware routing optimization methods.

1.4.1. Problems of Rule-Based Extraction Methods

The current rule-based extraction methods have three main problems that include

1) a limited pattern coverage; 2) potential pattern mismatches; and 3) a limited handling

8

of systematic process variations. With regards to the limited pattern coverage, the

current rule-based extraction tools rely on limited pre-characterized layout patterns.

Such patterns are generated using a limited number of geometrical parameters, such as

widths and spacings, that are used to create corresponding parasitic capacitance

formulas. Such formulas cannot handle the complicated layout patterns in recent layout

designs as they do not have enough geometrical parameters to accurately represent

such patterns. Therefore, detailed and multi-dimensional models are required to

capture all required geometrical parameters that impact parasitic capacitances in a

certain layout pattern. Regarding the potential pattern mismatch, it means that parasitic

capacitances of a certain layout pattern are extracted using inappropriate capacitance

formulas. This results in extracting wrong parasitic capacitance values. There is a

tradeoff between pattern coverages and pattern mismatches, where increasing the

number of pre-characterized patterns increases the probability of pattern mismatches.

As for systematic process variations, they represent physical variations in layout

interconnects and devices. Such variations are layout-dependent, and they mainly

occur during layout manufacturing processes. The most common systematic variations

of interconnects include metal thickness variations, loading effects (i.e., inter layer

dielectric thickness variations), metal width variations (e.g., etching), and trapezoidal

variations (i.e., sidewall slope of metals). The impact of such variations on parasitic

capacitances significantly increased in advanced process nodes, where the dimensions

of metal wires are smaller, and systematic variations started to represent considerable

portions of metal dimensions. Therefore, layout parasitic capacitance extraction

processes must consider systematic process variations in order to provide accurate

parasitic netlists [10], [26].

The current rule-based extraction tools handle the impact of systematic process

variations on parasitic capacitances independently using sensitivity formulas that

represent the sensitivity of a certain capacitance component to a certain variation

parameter. Such formulas are pre-characterized with limited geometrical parameters

[27]–[29]. Therefore, they also suffer from potential pattern mismatch and limited

9

pattern coverage problems. To consider systematic process variations during the

parasitic capacitance extraction, each capacitance component is calculated using a

single capacitance formula and multiple sensitivity formulas. This way of handling

systematic variations neglects the cross-dependency impact of different variation

parameters on parasitic capacitances, where the capacitance sensitivity to each variation

parameter is calculated independently while keeping other parameters fixed.

Moreover, the computational runtime of capacitance calculations significantly

increased due to using multiple pre-characterized formulas to calculate a single

capacitance component.

1.4.2. Limitations of Rule-Based 2.5D Extraction Methods

The current extraction techniques cannot cope with the continuous scaling down

and complexity of advanced technologies. While field-solvers can provide the required

high accuracy levels, they are very slow and have a limited capacity. On the other hand,

the errors of rule-based 2.5D extraction methods started to explode with the increase of

accuracy requirements at newer nodes [11], [17], [30]. The main reason behind such

inaccuracy is that the rule-based methods use simplified 2D vertical cross-section

models to calculate parasitic capacitances. Such models have an incomplete view of the

surrounding environment (e.g., metal wires). This results in errors in the extracted

parasitic capacitances and negligence of many 3D fringing capacitance components.

Such a problem is a limitation of the 2.5D extraction method. Most of the recent efforts

only focused on improving the prediction accuracy of rule-based models, as in [31], and

they did not provide a solution to overcome the limitations of the 2.5D extraction

method. Fig. 1.3 shows the error margin of rule-based 2.5D parasitic capacitance

extraction methods, as compared to field-solvers, after performing many experiments

across different real designs using 28nm process node. The results show that the errors

are exceeding 15% at many data points.

10

Fig. 1.3. Errors of parasitic capacitance extraction using typical rule-based 2.5D capacitance extraction
tools as compared to a 3D field-solver, Calibre xACT3D [32], over many 28nm designs.

Hybrid parasitic capacitance extraction methods that combine rule-based and field-

solvers are considered in advanced nodes. Despite the accuracy improvements

introduced by those methods, they suffer from two main problems. First, the proportion

of patterns that have to go to field-solvers increases in advanced nodes (as technology

scales down). With this proportion approaching 50%, using these hybrid methods does

not save much time as compared to field-solvers. Second, these hybrid methods do not

eliminate all outliers because the layout patterns are assigned to extraction methods

based on a pre-characterized library. To improve the accuracy and runtime of the

hybrid parasitic capacitance extraction, a new adaptive, accurate, and faster

intermediate extraction method is required to replace field-solvers in extracting most of

layout patterns. Furthermore, a smarter way to direct each layout pattern to an

appropriate extraction method based on the required accuracy is needed.

1.4.3. Problems of Existing Parasitic-Aware Layout Optimization Flows

The current optimization flows do not deal with the parasitic effects as dominant

factors. They are still dealing with the parasitic effects as second order effects.

Moreover, current flows do not provide proper layout analysis and debugging

methodologies to help circuit designers in identifying the problematic parasitic

elements and the corresponding layout geometries. As a result, circuit designers need

to manually analyze the impact of interconnect parasitic elements on a circuit

-30% -20% -10% 0% 10% 20% 30%
T

o
ta

l
c
a

p
a

ci
ta

n
ce

 (
fF

)

Parasitic extraction error

1000

100

10

1

11

performance, which is a very time-consuming and error-prone operation. Nowadays,

the time consumed in analyzing the post-layout simulation results is more critical than

post-layout simulation runtime itself. Therefore, there is an increasing demand to

provide algorithms that help circuit designers in understanding the impact of parasitic

elements on post-layout simulation results and identifying the most problematic

parasitic elements along with the corresponding layout geometries in a given layout.

The problems of existing layout optimization (i.e., routing optimization) methods can

be summarized as below:

a. They do not provide debugging and analysis methodologies that help circuit

designers in understanding the impact of parasitic elements on a system’s (i.e.,

route) performance, such as identifying the problematic parasitic elements along

with the associated geometries.

b. Most of existing efforts are customized to simple parasitic formulas that cannot

cope with the accuracy requirements by semiconductor foundries in advanced

process technology nodes (< 5% error). Also, they are not designed to use

complicated parasitic networks that are generated from sign-off parasitic

extraction tools, such as Calibre PEX [19] and STARC [33]. On the other hand, few

methods perform a full layout extraction at each design iteration in order to

improve the optimization accuracy; however, such methods consume a lot of time

and are not suitable for large designs.

c. Many of existing layout optimization flows rely on multiple circuit simulations in

order to identify the parasitic bounds for each parasitic element; however, such

methods consume a lot of time in circuit simulations, especially for large designs.

d. Existing efforts do not help circuit designers in understanding the impact of

parasitic elements on a system’s (e.g., route) performance.

1.5. Contributions

This work mainly focuses on providing innovative solutions to improve the accuracy

of 1) the interconnect parasitic capacitance extraction and 2) the parasitic-aware layout

12

routing optimization method. The contributions of this work cover several parasitic

capacitance extraction methods that include rule-based 2.5D, MEOL, and hybrid parasitic

capacitance extraction methods. Moreover, the contributions include developing a new

parasitic-aware routing optimization methodology that can cope with the increasing

impact of parasitic elements in advanced process nodes. The contributions are as follows.

1.5.1. Rule-Based 2.5D Capacitance Extraction Models

The contributions of the rule-based 2.5D extraction focuses on implementing a new

interconnect parasitic capacitance compact models for 2D cross-section layout patterns

in rule-based 2.5D extraction tools. The new models use novel input pattern

representations that considers systematic process variations efficiently. The new

models are compact, have high pattern coverage, mitigate pattern mismatches, and

provide a faster layout parasitic capacitance extraction process. Also, the proposed

compact models can replace thousands of existing capacitance and sensitivity formulas,

where each model can calculate a coupling capacitance between two certain polygons

using a single computation instead of multiple computations (using multiple

capacitance and sensitivity formulas) in traditional rule-based methods. The

contributions of rule-based 2.5D extraction method are summarized below:

a. Machine learning compact models that predict interconnect parasitic capacitances

in layouts of a certain process node are proposed. Each model predicts parasitic

coupling capacitances of cross-section patterns covering a certain set of metal

layers with arbitrary distributed polygons considering systematic process

variations. Unlike existing models that require multiple computations to calculate

a capacitance component, the compact models can calculate a certain capacitance

component using a single computation. Therefore, there is no need to invoke

multiple capacitance formulas to calculate a certain capacitance component

anymore.

b. Three different representations of 2D cross-section layout patterns are proposed.

The proposed representations include ratio-based, dimensions-based, and vertex-

13

based 2D cross-section representations. The ratio-based and dimensions-based

representations consider the impact of metal width variations, whereas the vertex-

based representation accounts for systematic process variations including metal

thickness variations, loading effects, metal width variations, and trapezoidal

variations.

c. The compact models are generated using two different machine learning methods

including Neural Networks (NN) and Support Vector Regression (SVR) methods.

d. The proposed methodology is tested over test chips of 28nm, 14nm, and 7nm

process nodes with more than 6.7M interconnect cross-section patterns. The results

show that the proposed methodology provided outstanding accuracy as

compared to field-solvers and rule-based models with an average error < 0.15%

and a standard deviation < 3.3%, whereas the average errors and standard

deviations of rule-based models exceed 6%, for the same test chips. Also, the

computational runtimes of the proposed compact models are almost 2.5X faster

than rule-based models.

1.5.2. MEOL Rule-Based Capacitance Extraction Models

The contributions of MEOL parasitic capacitance extraction focuses on developing

a new modeling methodology that can generate machine learning compact models to

predict parasitic capacitances of MEOL patterns as below:

a. A new modeling methodology based on machine learning methods is developed

to predict parasitic coupling capacitances for MEOL structures in rule-based

extractors. The methodology provides accurate and compact parasitic capacitance

models for MEOL around the devices for a certain process technology node. The

generated models significantly improve the parasitic capacitance extraction

accuracy of MEOL patterns by increasing the pattern coverage, considering metal

connectivity, and mitigating pattern mismatches. The generated models are

compact, where each model can handle many MEOL patterns with different

14

arrangements. Each compact model can replace thousands of pre-characterized

patterns and provide more accurate results.

b. A novel geometry-based pattern representation is proposed to represent the

MEOL input patterns.

c. Two machine learning approaches are used and tested to implement the MEOL

parasitic capacitance models including Neural Networks (NN) and Support

Vector Regressions (SVR).

d. The testing covered more than 40M devices of several different real designs that

belong to 28nm and 7nm process technology nodes. The proposed methodology

managed to provide outstanding results as compared to field-solvers with an

average error < 0.2%, a standard deviation < 3%, and a speedup of 100X.

1.5.3. Accuracy-Based Hybrid Parasitic Capacitance Extraction Method

As for the hybrid parasitic capacitance extraction, A novel hybrid parasitic

capacitance extraction flow is developed. The proposed hybrid flow can alternate

between three extraction methods: field-solver, rule-based, and novel Deep Neural-

Networks (DNN) based extraction methods. The novel DNN-based extraction is

considered to be an intermediate method that is order of magnitudes faster than field-

solvers. Also, it provides high accuracy values as the hybrid extraction flow can find a

faster alternative to field-solvers to extract most patterns. Moreover, an accuracy-based

neural-networks classifier is introduced to efficiently assign each layout pattern to the

fastest extraction method that meets the user predetermined accuracy requirements.

The contributions are summarized as below:

a. A novel DNN-based parasitic capacitance extraction method intended as an

intermediate method between field-solver and rule-based methods in terms of

performance and accuracy. This intermediate level of accuracy and speed is

needed since using only rule-based and field-solver methods (for hybrid

extraction) results in using field-solver most of the time for any required high

accuracy extraction.

15

b. A novel accuracy-based hybrid parasitic capacitance extraction flow that allows

the user to determine the required accuracy level. This flow divides the layouts

into windows and extracts the parasitic capacitances of each window using one of

three parasitic capacitance extraction methods that include: 1) rule-based; 2) novel

neural-networks-based; and 3) field-solver methods.

c. A smart layout patterns classifier that assigns layout patterns to the fastest

extraction method (field-solver, new DNN-based method, or rule-based) that

meets the required accuracy requirement.

d. The testing covered four designs of 28nm and 7nm process nodes. The results

show that the proposed DNN-based extraction method extracts capacitances of

complicated structures with high accuracy (< 3% average error) and 100X faster

than field-solvers. However, few outliers have an error exceeding 5% in extracted

capacitances. Furthermore, the proposed hybrid flow managed to meet the

required accuracy (< 5% error) with 99% accuracy and 70X faster than field-

solvers.

1.5.4. Parasitic-Aware Layout Analysis and Routing Optimization Methodology

A new parasitic-aware re-routing optimization method using circuit moments is

proposed. The proposed methodology enables circuit designers to debug and analyze

the impact of parasitic elements on a circuit performance. Also, the proposed method

provides a mechanism to identify the problematic parasitic elements and correlate them

with specific layout geometries. Moreover, it uses nonlinear programming to re-route

the problematic paths (i.e., routes) in order to achieve the required specifications with

full consideration of the surrounding environment. The proposed methodology is very

efficient with net symmetry constraints and parasitic-aware re-routing. The

contributions can be summarized as below:

a. Circuit models to measure and analyze the impact of parasitic elements and

corresponding layout geometries on a pre-defined cost function, such as net

16

symmetry and maximum delay cost functions. In other words, they measure the

sensitivity of system’s performance cost function to layout geometries.

b. The proposed models are used in an algorithm that identifies the geometries and

parasitic elements that the system’s performance is most sensitive to without any

circuit simulations.

c. A parasitic-aware re-routing optimization algorithm that uses nonlinear

programming to automatically modify the most critical routes in order to meet the

required performance cost function. The proposed algorithm accepts pre-

determined degrees of freedom (e.g., route’s corners) and dynamic constraints.

d. A novel incremental parasitic extraction methodology that considers second order

parasitic capacitance effects efficiently. The proposed incremental methodology is

applied on top of a full layout parasitic extraction tool, Calibre PEX [19]. It

provides very accurate parasitic extraction results with a maximum error < 1% and

a speedup of up to 40X as compared to a full layout extraction.

e. The proposed methodology is tested on different designs of 7nm and 65nm

process nodes.

1.6. Organization

This dissertation is organized as follows. Chapter 2 provides a background on

different parasitic capacitance extraction methods, the impact of systematic process

variations on parasitic capacitances, and the parasitic capacitance extraction in advanced

process technology nodes, and the parasitic-aware template-based layout optimization

method. Chapter 3 provides the related works. Chapter 4 describes the proposed 2D

cross-section interconnect parasitic capacitance models. Chapter 5 describes the proposed

MEOL parasitic capacitance models. Chapter 6 describes the proposed hybrid parasitic

capacitance extraction method. Chapter 7 describes the proposed parasitic-aware layout

routing optimization method. Chapter 8 provides the conclusion. Chapter 9 presents the

future work.

17

Background

This chapter provides background on relevant topics to parasitic capacitance extraction

and parasitic-aware routing optimization methods. It is organized as follows. Section 2.1

explains the rule-based 2.5D parasitic capacitance extraction method. Section 2.2

discusses the systematic process variations. Section 2.3 illustrates the different field-

solver methods. Section 2.4 provides the main challenges of the parasitic capacitance

extraction in advanced process nodes. Section 2.5 discusses the template-based layout

optimization method and provides a brief discussion on system moments.

2.1. Rule-Based 2.5D Capacitance Extraction

Rule-based parasitic capacitance extraction methods are used in several commercial

extraction tools, such as Calibre PEX [19] and StarRC [33], because they can handle full

chips efficiently. Rule-based methods employ 2.5D extraction approaches in order to

extract interconnect parasitic capacitances of a given layout. In 2.5D approaches, parasitic

extraction tools scan a given layout in the x and y directions to obtain all corresponding

2D cross-section layout patterns. For each cross-section pattern, plate and fringing

coupling capacitances (per unit length) are calculated using pre-characterized

capacitance formulas [11]. The mapping between cross-section patterns and the

corresponding capacitance formulas is performed using pattern matching operations.

Once all capacitances are calculated, they are multiplied by the corresponding projection

length to get the total capacitance values.

Fig. 2.1 provides an illustrative example of extracting a certain metal polygon using

the 2.5D extraction approach. The figure shows a layout structure of three metal layers

including metal1, metal2, and metal3 layers. The target metal polygon is the middle

metal2 polygon. There are four cross-sections for the target metal polygon. Three cross-

sections are in the z-y plane, and one cross-section is in the z-x plane. Cross-section1 (C1)

18

and crosssection2 (C2) are identical, and each contains five capacitance components.

Cross-section3 (C3) contains eight capacitance components. Cross-section4 (C4) contains

six capacitance components. The fringing and lateral capacitances are calculated for each

cross-section using corresponding capacitance formulas. Then, each capacitance

component is multiplied by the corresponding projection length (i.e., L1 to L4). As for

plate capacitances, they are calculated in one cross-section, either z-x or z-y cross-sections,

and multiplied by the corresponding projection length. This is done to avoid duplicate

calculations of the same plate capacitance.

Fig. 2.1. An illustrative example of extracting a metal polygon using the 2.5D parasitic capacitance
extraction method.

The rule-based extraction method has two main steps: 1) a pre-characterization (i.e.,

calibration) step, as shown in Fig. 2.2 (a); and 2) a layout parasitic capacitance extraction

step, as shown in Fig. 2.2 (b). The pre-characterization (i.e., calibration) step is responsible

for generating a pre-characterized library of capacitance and sensitivity formulas, where

each process technology node has a different pre-characterized library. On the other

Metal 2

Target

polygon
Top view

Metal 1

Metal 2

M
et

a
l

3

C1 C2

C3

C4

ground

ground

Cross-sections

(C1:C4)

 (C1 and C2)

 (C3)

 (C4)

Top-view

Projection lengths (L1:L4)

L3

L4

L1 L2

x
 y

 y
z

x
 y

x
 y

 y z x
 y

x
 y

x
z

x
 y

Metal 2

Metal 1

Metal 2

M
et

a
l

3

Metal 2

Metal 1

Metal 2

M
et

a
l

3
 Metal 2

Metal 1

Metal 2
M

et
a

l
3

Metal 2

Metal 1

Metal 2

M
et

a
l

3
 Metal 2

Metal 1

Metal 2

M
et

a
l

3

ground

Metal1 Metal2 Metal2

(Target polygon)

Metal3

19

hand, the layout parasitic extraction step is responsible for analyzing layouts and

calculating corresponding parasitic elements using the corresponding pre-characterized

library.

 (a) (b)

Fig. 2.2. Rule-based parasitic capacitance extraction steps including (a) pre-characterization and (b)
layout parasitic extraction steps.

2.1.1. The Pre-Characterization Step

In this step, a pre-characterized library of capacitance and sensitivity formulas are

generated for a certain process technology node. The pre-characterization process starts

with generating many 2D and 3D layout patterns based on the corresponding

technology specifications. The structures of those patterns are pre-characterized. Then,

a field-solver tool is used to extract reference parasitic capacitance values for each

layout pattern. The reference capacitance numbers are either formatted in lookup tables

or passed to a curve fitting tool. The curve fitting tool generates a capacitance formula

for each capacitance component as below:

𝐶 = 𝑓(𝑝1, 𝑝2, . . .), (2.1)

where C represents a certain capacitance component, f (p1,p2,..) represents the curve

fitted capacitance formula, whereas p represents a certain geometrical parameter (e.g.,

width or spacing). Moreover, sensitivity formulas are generated to measure the impact

of systematic process variations on each capacitance component, where each

Process technology node

(Process stack)

Patterns (samples)

generation

Field-Solver

Curve-fitting

Capacitance formulas

Pre-characterized library

Layout + Process technology

node (process stack)

Layout Fracturing

Pattern

matching

Capacitance

calculation

Pre-characterized library

Parasitic netlist

20

capacitance component is calculated using a single capacitance formula and multiple

sensitivity formulas as below:

𝐶 = 𝑓(𝑝1, 𝑝2, . . .) + ∑ ∆𝑆𝑖

𝑛

𝑖 = 0

 ∙
𝜕𝐶

𝜕𝑆𝑖
, (2.2)

where S represents a certain variation parameter (e.g., a metal thickness variation),

𝜕𝐶 𝜕𝑆⁄ represents a sensitivity formula that measures a capacitance sensitivity to a

certain variation parameter, whereas n represents the number of systematic process

variation parameters. Eventually, the generated capacitance and sensitivity formulas

are stored in a pre-characterized library in order to be later used by parasitic capacitance

extraction tools [34].

2.1.2. Layout Parasitic Capacitance Extraction Step

The layout parasitic capacitance extraction step is responsible for extracting

parasitic capacitances of a given layout and writing the extracted parasitic elements into

a parasitic netlist. The extraction flow starts with analyzing and measuring the

geometries of a layout. After that, layout geometries are fractured into 2D cross-section

patterns as shown in Fig. 2.1. Then, a pattern matching operation is performed to match

each 2D cross-section pattern with corresponding pre-characterized capacitance and

sensitivity formulas. Eventually, the measured geometries are passed to the obtained

pre-characterized formulas to calculate the corresponding capacitance values. Once all

parasitic capacitances are extracted, a parasitic netlist is generated to be later used by

circuit simulators to perform post-layout simulations [34].

2.2. Systematic Process Variations

As process technology nodes scale down, the dimensions of metal wires continue to

shrink, and the difficulty of controlling the variations of interconnect geometries and

device parameters significantly increased [35]. There are two types of variations

including random and systematic variations. Random variations represent the

unpredictable and stochastic variations that cannot be associated with specific conditions

21

or layout patterns. They might change from time to time and from location to another.

The random variations are usually modeled using statistical models as in [36]–[39].

On the other hand, systematic variations represent the predictable and deterministic

variations that are associated with specific process conditions (e.g., chemical mechanical

polishing) and layout patterns. In advanced process technology nodes, the impact of

systematic variations on parasitic capacitances increases because systematic variations

represent higher percentages of interconnect and device dimensions [26], [27], [40]. The

main systematic process variations include metal thickness variations, inter layer

dielectric thickness variations (i.e., loading effects), metal width variations (e.g., etching),

and trapezoidal variations of metal layers as shown in Fig. 2.3. Fig. 2.3 (a) shows examples

of metal thickness variations and inter layer dielectric thickness variations (i.e., loading

effects). The loading effects mainly impact the thickness of inter layer dielectrics and the

elevation of the corresponding upper metal layers, whereas the metal thickness variations

mainly impact the top thickness of the corresponding metal layer. Fig. 2.3 (b) shows an

example of trapezoidal variations in metal layers, where the sidewall slope of a certain

metal layer changes. Fig. 2.3 (c) shows an example of a metal width variation that impacts

the width of metals and the separation between them. Since systematic variations are

pattern dependent, parasitic capacitance extraction tools usually model their effects using

sensitivity formulas as in [27]–[29]. Such a modeling approach has three main problems

that impact the extraction accuracy: 1) it neglects the cross-dependency impact among

different variation parameters on parasitic capacitances; 2) it uses a limited number of

patterns and parameters to model the impact of systematic variations on parasitic

capacitances; and 3) it has a high potential of pattern mismatches similar to the case of

capacitance calculations (i.e., formulas). Moreover, the current handling of systematic

variations introduces extra computational runtime, where each capacitance component

is calculated using a single capacitance formula and multiple sensitivity formulas as

shown in (2.2). Fig. 2.4 shows an example of the cross-dependency between the sidewall

slope (θ°) of metal1 layer and metal1 lateral capacitance sensitivity to metal1 thickness

(𝜕𝐶𝑙 𝜕𝑡⁄). The experiment used metal1 layer of 28nm process node.

22

(a)

(b)

(c)

Fig. 2.3. Examples of systematic process variations showing (a) metal thickness variation and loading
effects, (b) trapezoidal variations, and (c) metal width variations.

Fig. 2.4. An example of the cross-dependency between a sidewall slope (θ°) of a metal layer and a lateral

capacitance sensitivity to a metal thickness (∂Cl ⁄ ∂t). The experiment used metal1 layer of 28nm process node.

2.3. Field-Solvers

Numerical methods (field-solvers) are the most accurate techniques to calculate the

parasitic capacitances. They simulate electrostatic fields among different metal polygons

in integrated circuits to capture the coupling capacitances among different metal

Inter Layer Dielectric (ILD) thickness

variation, also known as loading effects.

𝜀1

𝜀2

T2
T1

ΔT

ILD

Metal thickness

variations
Metal

layer Top width

Bottom width

Slope

𝜃 𝜃

Metal

Layer

Before applying

width variations

After applying

width variations

S
1
 W

1
 W

1
 S’

1
 W’

1
 W’

1

Metal

layer

In case of etching:

W’
1
 = W

1
 – etching

S’
1
 = S

1
 + etching

ΔW = -etching

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

90° 86.82° 83.66° 80.5° 77.4° 74.4°

Sidewall slope (θ°)

𝜕
𝐶

𝑙
𝜕
𝑡

⁄
(f

F
/μ

m
) ground

θ°

C
l
 Δt

Metal1 of 28nm

23

polygons. Assume M metal polygons arbitrarily distributed. The parasitic coupling

capacitances among different polygons can be calculated by:

𝑄𝑖 = ∑𝐶𝑖𝑗 ∗ 𝑉𝑖 ,

𝑀

𝑗=1

 (2.3)

where Qi is the electric charge on a certain metal polygon, Cij is the coupling capacitance

between two different metal polygons, and Vi is the electric potential on a certain

polygon; however, solving this formula is not trivial, especially with complicated

structures and multiple dielectrics. Laplace equation helps in calculating the parasitic

capacitances in multi-dimensional structures. For each homogenous dielectric region, the

electric potential V is governed by Laplace equation as below:

∇2𝑉 =
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
= 0, (2.4)

There are several numerical methods that is used to solve Laplace equation. They can be

classified into three main classes: discretization methods, integral methods, and

stochastic methods.

2.3.1. Discretization Methods

The discretization methods include finite difference methods (FDM), finite element

methods (FEM), and finite volume methods (FVM) [14]. The discretization methods are

used to solve Laplace equation by discretizing the whole domain and generating a high

order linear system. This provides very accurate results but with a very limited

computational runtime.

2.3.2. Integral Methods

The integral methods include methods of moments (MOM), direct boundary

element methods (DBEM), and indirect boundary element methods (IBEM) [14]. In the

integral methods, only the boundaries of the domain are discretized.

24

2.3.3. Stochastic Methods

The stochastic methods include floating random walk algorithms (FRW). Such

methods are useful for very large size applications. The main idea behind the stochastic

methods is to calculate conductor charges by Monte Carlo (MC) integrations using

random walks [14], [41], [42].

2.4. Parasitic Capacitance Extraction in Advanced Process Technology Nodes

With the continuous down scaling in advanced nodes, metal interconnects are

shrunk, and more metal layers are introduced to provide more routing paths. This

introduced three main challenges to the parasitic capacitance extraction accuracy. First,

the accuracy requirements increased significantly due to the increasing impact of

interconnect parasitic effects on circuit performances. Second, the mask misalignments

(due to double and multi-patterning) and lithography effects cause more geometrical

variations that impact parasitic capacitances. Third, the impact of surrounding metals on

parasitic capacitances significantly increased due to the increased density and shrunk

dimensions of interconnects (e.g., 3D fringing coupling capacitances [3], [5], [6], [10], [30].

Traditional 2.5D extraction methods cannot cope with the new accuracy requirements

by semiconductor foundries (< 5% error) in advanced process nodes because they suffer

from three main problems. First, the 2.5D extraction method only considers the

capacitance interactions and arrangements of metal polygons in z-x and z-y planes.

Therefore, many 3D fringing capacitance interactions are neglected as shown in Fig. 2.5.

Moreover, many surrounding metal polygons that impact parasitic capacitances are not

considered because they are not detected in either z-x or z-y planes. Second, the pattern

mismatches, which occur when parasitic capacitances of a layout pattern are extracted

using inappropriate capacitance formulas, increase due to the increased complexity of

layout patterns. Third, the pattern coverage is limited, where the pre-characterized layout

patterns and capacitance formulas are not enough to efficiently handle the more diverse

layout patterns in advanced nodes.

25

Fig. 2.5. An illustrative example of the limitations of existing 2D cross-section models of 2.5D
extraction method.

The proposed DNN-based extraction method, in Chapter 6, can handle layout patterns

of advanced process nodes efficiently because of four main reasons. First, the proposed

method provides compact parasitic capacitance models that extract the 3D fringing

capacitances efficiently. Second, the proposed method improves pattern coverage

because each compact model handles many diverse layout patterns with arbitrary

distributed polygons. Third, the proposed method mitigates pattern mismatches as

patterns of a certain layer combination are extracted using a single compact model.

Fourth, it considers different lithography effects, such as double and multi-patterning, as

the inputs to DNN models use layout polygons of effective actual dimensions (not drawn

dimensions) as shown in Fig. 2.6. However, some foundries prefer to model mask

misalignments by changing dielectric constants of surrounding dielectrics [6]. In such a

case, the proposed method handles that by representing each mask in a separate layer.

Cr1

Cr2

L3

L1

L2

C
12

C

13

C
23

 Cross-section (Cr1)

 Cross-section (Cr2)

x
y

z

x

y

y

z

x

z

C
12

 is captured by 2D cross-section

models; however, the impact of L3

on C
12

 is not considered as they do

not exist in the same vertical cross-

section

C
23

, C
32

, and C
13

are not captured by

2D cross-section models because

they do not exist at any vertical

cross-section.

C
32

26

Fig. 2.6. An example of three metal polygons showing the impact of applying mask misalignments and
effective line width variations on drawn dimensions.

2.5. Layout Optimization and System Moments

This section explains the template-based parasitic-aware layout optimization

highlighting the importance of parasitic extraction during the optimization loops.

Moreover, a brief discussion on system moments is introduced.

2.5.1. Template-Based Parasitic-Aware Layout Optimization

A layout optimization is the process of modifying and optimizing layout designs in

order to meet the required circuit specifications. One of the most efficient layout

optimization methods is the template-based method. The template-based method is

used to either migrate a layout design from one process node to another or optimize an

existing layout to meet the required constraints and specifications. It consists of two

main steps that include symbolic template extraction and layout generation steps as

shown in Fig. 2.7. The symbolic template extraction step is responsible for extracting a

symbolic template of an existing layout design, whereas the layout generation step is

responsible for generating and optimizing an existing layout by using the obtained

symbolic template.

2.5.1.1. Symbolic Template Extraction:

This step is responsible for generating a set of geometrical and electrical

constraints (i.e., symbolic template) of an existing layout considering the required

circuit specifications. It starts with extracting transistors, devices, and nets from an

existing (i.e., original) layout. Then, the constraints of an existing layout are extracted,

translated into equations or inequalities, and included in the corresponding symbolic

S1 S1 S2
S3

Metal polygons with

drawn dimensions
Metal polygons with effective

actual dimensions

Effective width

variations

S2
S3

Mask misalignment

27

template, for example, the connectivity of interconnects, corresponding design rules,

proximity, and symmetry constraints [20], [22], [43], [44]. On the other hand, a corner

stitching is used, as a data structuring technique [45], in order to help in performing

the different geometry operations. It is worth mentioning that the symbolic template

is usually represented by mathematical formulas (e.g., compaction formulas) such as

in Fig. 2.8.

Fig. 2.7. Template-based layout optimization flow [20], [44].

2.5.1.2. Layout Generation and Optimization

In this step, an existing layout is optimized using the obtained symbolic template

constraints and the new design requirements in order to achieve the required

specifications. The optimization constraints include geometrical (e.g., geometrical

symmetry) and electrical (e.g., parasitic constraints) constraints [20], [22], [43], [44].

The layout optimization step starts with a device sizing followed by a routing

optimization, where the routing optimization is performed in the horizontal and

vertical directions separately.

2.5.1.3. Geometrical Constraints

The constraints that are used in the optimization processes, excluding the

parasitic effects, can be expressed by compaction formulas and solved in the vertical

Existing Layout

Design

Original

Design Rules

Target Design

Rules

Device sizes

Symbolic

template

Output Layout

Design

A layout template extractor Layout optimizer and generator

Corner stitching data

structure

Net and device

extraction

Generate design rules
and connectivity

constraints

Generate symmetry
constraints

Integrate the target

design rules

Device Resizing

Transform Equi-

distance constraints

Solve constraint
graph

Individual rectangle

minimization

First, Horizontal.
Then, Vertical.

28

and horizontal directions separately [44], [46]. For example, let Xr represents the right

most end of a target layout, whereas Xl represents the left most end of the same target

layout. Therefore, the compaction formulas in the x-direction are expressed by:

min(𝑋𝑟 − 𝑋𝑙)

subject to (𝑥𝑖 − 𝑥𝑗) ≥ LOB,

(𝑥𝑖 − 𝑥𝑗) = EXB,

(𝑥𝑖 − 𝑥𝑗) = (𝑥𝑘 − 𝑥𝑙), (2.5)

where LOB is a constraint that represents geometrical lower bounds (e.g., polygons

minimum dimensions), EXB is a constraint that represents exact bounds, whereas x

variables represent either the symmetry axes or the right and left edges of layout

polygons. The constraints should include and describe the properties that are needed

to meet the required specifications, such as design rules, new device size

specifications, and crosstalk minimization [44].

Fig. 2.8 shows an example of a simple layout with 13 horizontal coordinates (x1 to

x13), given that x13 represents the symmetry axis. The formulas that are shown in Fig.

2.8 represent the geometrical constraints that can be used in the corresponding routing

optimization process. The highlighted constraints represent the corresponding design

rules, a layout symmetry, and minimum dimensions. For example, (x12 – x11) ≥ 2 aims

to set the minimum width of a certain polygon to 2µm, whereas (x4 – x3) = (x10 – x9)

aims to maintain the geometrical symmetry of the given two structures.

29

Fig. 2.8. An Example of template geometrical constraints for a simply layout in the x-direction [44].

2.5.1.4. Parasitic Constraints

The layout optimization processes must consider the impact of parasitic elements

on a circuit performance in order to achieve more accurate optimization results.

Therefore, layout parasitic elements must be extracted and reduced in order to meet

the required circuit specifications efficiently. Since layout parasitic elements are

highly correlated with the corresponding layout geometries, parasitic constraints can

be converted into geometrical constraints. In other words, the parasitic constraints can

be represented by functions of x and y coordinates of the corresponding metal

polygons. This is usually performed in two steps. First, the bounds of parasitic

elements that ensure the circuit performance are identified using circuit simulations.

Therefore, the parasitic constraints as functions of the corresponding geometrical

coordinates are given by:

Left bound (X
l
) Right bound (X

r
)

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

min(X
r
 - X

l
), subject to:

(x
1
 - X

l
) ≥ 0, (x

3
 - X

l
) ≥ 0, …

(X
r
 – x

12
) ≥ 0, (X

r
 – x

10
) ≥ 0, …

(x
2
 – x

1
) ≥ 2, (x

12
 – x

11
) ≥ 2, …

(x
3
 – x

2
) = 0, (x

11
 – x

10
) = 0, …

(x
4
 – x

3
) = (x

10
 – x

9
), (x

13
 – x

4
) = (x

9
 – x

13
), …

30

𝑓(𝑥, 𝑦) ≤ UPB, (2.6)

where UPB is an upper bound of a certain parasitic element. Second, the

corresponding geometrical constraints are defined in both x and y directions as below:

(𝑥𝑖 − 𝑥𝑗) ≥ 𝐿𝐵, (𝑦𝑖 − 𝑦𝑗) ≥ 𝐿𝐵, (2.7)

(𝑥𝑖 − 𝑥𝑗) ≤ 𝑈𝐵, (𝑦𝑖 − 𝑦𝑗) ≤ 𝑈𝐵, (2.8)

(𝑥𝑖 − 𝑥𝑗) = (𝑥𝑘 − 𝑥𝑙), (𝑦𝑖 − 𝑦𝑗) = (𝑦𝑘 − 𝑦𝑙), (2.9)

where LB represents a geometrical lower bound, and UB represents a geometrical

upper bound. Such geometrical bounds are obtained from the corresponding parasitic

bounds as shown in (2.6). Therefore, (2.7) and (2.8) represent the lower and upper

geometrical bounds in x and y directions, whereas (2.9) represents the matched

interconnect that are required to achieve identical parasitic elements. Once all

required geometrical and parasitic constraints are obtained, the optimization (i.e.,

searching) process is performed to achieve a layout that meets the required

specifications.

The main challenges of existing parasitic-aware layout optimization processes are:

a. The calculations of parasitic bounds require multiple circuit simulations that

consume a lot of time. Moreover, the optimization process requires the

calculations of a circuit performance sensitivity to each parasitic element, which

consume a lot of time as the sensitivities are usually calculated using multiple

circuit simulations.

b. The relationship between parasitic elements and layout geometries is nonlinear,

which complicates the optimization process [22], [44].

c. Usually, the compaction formula is solved in the x and y directions separately (one

after another). Such a way of handling the compaction formula cannot provide

efficient results when it comes to the nonlinearity of parasitic constraints.

Moreover, it does not consistently provide the required solution, and it may

require manual modifications afterwards. On the other hand, the efforts that solve

31

the compaction formulas in the x and y dimensions simultaneously did not handle

the situations of non-Manhattan shapes such as in [22], [44].

d. Most of existing efforts rely on simple and lumped parasitic formulas that cannot

cope with the accuracy requirements of advanced process technology nodes.

e. Existing efforts do not help circuit designers in understanding the impact of

parasitic elements on system (e.g., route) performance.

The impact of such problems in parasitic-aware optimization flows significantly

increases in advanced process nodes, where the interconnect parasitic effects

dominate the overall circuit performance.

2.5.2. System Moments

Assuming an RC linear circuit, the corresponding general nodal analysis equations

are given by:

𝐺 𝑉 + 𝐶 𝑉̇ = 𝑏, (2.10)

where G is an n×n admittance matrix that is obtained from the interconnections among

the resistive elements, C is an n×n capacitance matrix that is obtained from the

interconnections among the capacitive elements, 𝑏 is a vector of size n that represent

the inputs at each node, V is a vector with n state variables that represent the capacitor

voltages (i.e., voltage response at each node), whereas n represent the number of nodes

(or capacitor voltages) for a linear system with RC elements. The response, V(s), at any

node in a given linear circuit can be expressed by a Taylor series expansion as below

[47]:

𝑉(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (2.11)

where mi represents the ith moment of a given linear system at a given node.

Substitute (2.11) in (2.10), we get:

𝐺[𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + ⋯] + 𝐶 𝑠[𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠

2 + ⋯] = 𝑏 . (2.12)

Equating the coefficients of sn in both sides of (2.12), we get [47]:

32

𝐺 𝑚0 = 𝑏

𝑚0 = 𝐺−1 𝑏

𝑚1 = 𝐺−1 𝐶 𝑚0

𝑚2 = 𝐺−1 𝐶 𝑚1

⋮

𝑚𝑛 = 𝐺−1 𝐶 𝑚𝑛−1. (2.13)

Therefore, the moments of a linear system provide a detailed representation of its

response (i.e., a system response) as shown in (2.11), and system moments can be

obtained by (2.13) [47].

2.6. Summary

This chapter provides backgrounds on 1) rule-based 2.5D parasitic capacitance

extraction highlighting the main limitations of such an extraction method; 2) different

field-solver methods; 3) the main systematic process variations; 4) the challenges of

parasitic capacitance extraction in advanced process nodes; and 5) the template-based

parasitic-aware layout optimization method.

33

Review of and Feature Comparison to
Related Previous Work

This chapter discusses state-of-the-art related work of parasitic capacitance extraction

and parasitic-ware layout optimization methods. Moreover, it summarizes the main

differences between our work and state-of-the-art related work. This chapter is organized

as follows. Section 3.1 discusses related work of rule-based 2.5D capacitance extraction

highlighting the main differences between our work and several state-of-the-art related

work. Section 3.2 provides related work of MEOL parasitic capacitance extraction. Section

3.3 explains the different extraction methods and compares them with the proposed

hybrid extraction method. Section 3.4 presents several previous efforts of parasitic-aware

routing optimization methods, and it provides a comparison among state-of-the-art

related work including our work.

3.1. Rule-Based 2.5D Capacitance Extraction

Many efforts were done to improve the accuracy of rule-based 2.5D parasitic

capacitance extraction methods [9], [15], [16], [27], [28], [31], [48]–[50]; however, most of

them either use simplified models to improve pattern matching as in [9], [31], or tackle

specific interconnect structures by using analytical models as in [15], [16], [50]. As for

systematic process variations, all previous efforts of modeling the impact of systematic

variations on parasitic capacitances, in rule-based methods, focused only on the accuracy

of the capacitance and sensitivity formulas. They completely ignored other sources of

inaccuracies such as pattern mismatches and pattern coverages. Also, they did not

consider the impact on the extraction runtime after incorporating their formulas [27], [48].

In [27], a modeling methodology was developed to improve the accuracy of the 2.5D

parasitic capacitance extraction method by considering reactive ion etching (RIE)

34

variations using sensitivity formulas. This effort used traditional sensitivity methods to

handle interconnect thickness variations that are caused by RIE. Such an approach has

three main problems. First, it has a limited pattern coverage as it only considers basic

three wires patterns. Therefore, it cannot be generalized on complicated layout patterns.

Second, it adds more computational runtime on parasitic extraction tools as it introduces

additional sensitivity formulas to be computed on top of existing formulas. Third, it only

considers RIE effects and completely ignores the cross-dependency impact of different

variation parameters on parasitic capacitances. As a result, it is not suitable for advanced

process nodes.

In [48], a modeling methodology for interconnect parasitic capacitances considering

lithography effects was developed. The methodology uses a lithography simulator across

many 3D layout patterns to incorporate lithography effects, such as metal width

variations, into the generated 3D layout patterns. Then, it passes the modified layout

patterns to a 3D field-solver to extract their parasitic capacitances. After that, the modified

patterns and their parasitic capacitances are stored in a pre-characterized library to be

later used by parasitic extraction tools. This effort has several problems. First, it is not

applicable for 2.5D extraction methods since it only considers 3D layout patterns. Second,

the lithography simulator would generate a lot of curvilinear layout shapes that add a lot

of complications on layout parasitic extraction processes. The complications include more

pattern mismatches, more parasitic extraction runtime due to running a lithography

simulator on layouts, and a huge pre-characterization runtime due to running a 3D field-

solver over many curvilinear shapes. Third, such a methodology has a very limited

pattern coverage, and it cannot provide good accuracy on full chips. Moreover, the

authors did not introduce any solution for the pattern coverage and pattern mismatch

problems.

In [15] and [16], field-based parasitic capacitance formulas for metal wires were

developed. Such formulas consider the different 3D parasitic effects of a metal wire

including fringing and corner coupling capacitances; however, those formulas are only

35

valid for isolated wires. They do not consider the impact of surrounding metals and

systematic process variations. Hence, they are not efficient for full chip interconnect

parasitic extraction in advanced process nodes.

In [51], a neural-network model was developed for several 3DIC interconnect

structures around through-silicon-vias (TSVs). This model uses a single dielectric

structure, and it is only limited to certain interconnect structures around TSVs. Hence,

such a model is not efficient for multi-dielectric environment and full chip extraction.

In [31], a pattern matching classifier was developed using neural networks in order

to assign each layout pattern to a corresponding capacitance model. Also, interconnect

parasitic capacitance models using neural networks were developed for 2D cross-section

layout patterns. Such an approach managed to reduce pattern mismatches and improve

the accuracy of parasitic capacitance extraction results; however, it has three main

problems. First, the proposed models use layout patterns with limited geometrical

parameters. Second, the models completely ignore systematic process variations. Third,

the proposed models were only verified on simple 2D cross-section patterns, and they

were not verified on real layout patterns.

Table 3.1 summarizes the contributions and limitations of our work and related

works. Table 3.2 provides a comprehensive comparison among related works including

our work. The comparison includes ten factors as below:

a. The considered systematic process variations.

b. The modeling methodology of systematic process variations, where the impact of

systematic variations on parasitic capacitances can be implicitly considered while

predicting parasitic capacitances by using the capacitance models (i.e., embedded

inside the model), or it can be modeled using sensitivity formulas or lithography

simulators.

c. The pattern coverage, where some models may only cover a limited number of layout

patterns.

d. Type of input layout patterns (2D cross-section or 3D layout patterns).

36

e. The pattern matching mechanism, which is an essential step in 2.5D extraction flows.

The pattern matching is used to match layout patterns with corresponding pre-

characterized capacitance formulas (or models) in order to calculate the

corresponding parasitic capacitance numbers. There are two types of pattern

matching that include geometry-based and layer-based. In the geometry based, the

pattern matching is performed based on the geometrical structures of layout patterns,

whereas in the layer-based, the pattern matching is performed based on the layer

names, where each set of metal layers is handled by a specific model (regardless of its

geometrical structure).

f. The possibility of pattern mismatches that occur when parasitic capacitances of a

layout pattern are calculated using inappropriate capacitance formulas.

g. The support of multi-dielectric environment.

h. The modeling method, which represents the method that is used to implement the

models, such as analytical formulas, curve fitted formulas, lookup tables, neural

networks, and support vector regressions.

i. The testing and validation methodologies, which indicate whether the related work

was verified on real process technology nodes or not.

j. The overhead on the actual parasitic capacitance extraction runtime, where some

models require additional computations in order to predict the impact of systematic

process variations on parasitic capacitances.

37

Table 3.1. Contributions and limitations of the proposed 2D cross-section models and related works in
rule-based capacitance extraction.

Research Contribution Limitation

Karsilayan et
al. [27]

• Sensitivity formulas were developed to model the
impact of a reactive ion etching (RIE) on
interconnect parasitic capacitances.

• This effort used traditional sensitivity methods to
handle interconnect thickness variations that are
caused by RIE.

• It has a limited pattern coverage as it only considers
basic three wires patterns.

• It adds more computational runtime on parasitic
extraction tools.

• It only considered reactive ion etching (RIE) effects and
completely ignored the cross-dependency impact of
different variation parameters on parasitic capacitances.

Tsai et al.
[48]

• A modeling methodology for interconnect
parasitic capacitances considering lithography
effects was developed.

• A lithography simulator was used to incorporate
lithography effects into pre-characterized 3D
layout patterns. Then, the parasitic capacitances of
the modified patterns were extracted using a field-
solver and stored in a pre-characterized library.

• In the extraction phase, a lithography simulator
was used to incorporate lithography effects into a
given layout. Then, a pattern matching operation
was performed to match layout patterns with pre-
characterized patterns.

• Limited pattern coverage as the method only supports
3D layout patterns.

• The lithography simulators would generate a lot of
curvilinear layout shapes that add a lot of complications
on layout parasitic extraction processes that include
more pattern mismatches, more parasitic extraction
runtime, and a huge pre-characterization runtime.

• It only considered metal width variations.

• It is neither suitable for advanced process nodes nor
three-dimensional integrated circuits (3DIC)
technologies.

Zhang et al.
[15], [16]

• Analytical capacitance formulas were developed to
calculate the different parasitic capacitance
components of an isolated metal wire.

• Such formulas consider the different 3D parasitic
effects of a metal wire such as fringing and corner
coupling capacitances.

• The proposed formulas are only valid for isolated metal
wires.

• They are not efficient for full chip interconnect parasitic
extraction in advanced process nodes.

• The formulas do not consider systematic process
variations.

• They are neither suitable for advanced process nodes nor
3DIC technologies.

Li and Shi
[31]

• A pattern matching classifier was developed using
neural networks in order to assign each layout
pattern to a corresponding capacitance model.

• Interconnect parasitic capacitance models using
neural networks were developed for cross-section
layout patterns.

• This approach managed to reduce the pattern
mismatches.

• Limited pattern coverage as it used limited number of
pre-characterized patterns.

• The method did not mitigate pattern mismatches.

• The method does not consider systematic process
variations.

• It is not suitable for 3DIC technologies.

The
proposed
ratio-based
and
dimensions-
based
models

• Neural network models were developed for 28nm
process node to predict interconnect parasitic
capacitances of 2D cross-section layout patterns
efficiently.

• The proposed models use two different pattern
representations that include: ratio-based and
dimensions-based representations.

• The proposed models managed to mitigate the
pattern mismatches and improve the extraction
accuracy.

• The models only consider metal width variations, and
they do not consider the different systematic process
variations.

• The models are slower than Calibre PEX, rule-based tool,
by 1.3X.

• The models were only verified on 28nm process
technology node.

• The models are not suitable for 3DIC technologies.

The
proposed
vertex-based
models

• Machine learning compact models were developed
to predict interconnect parasitic capacitances of 2D
cross-section layout patterns efficiently.

• The models can handle layout patterns of arbitrary
distributed polygons and mitigate pattern
mismatches.

• The models use a new vertex-based layout
representation to help in handling systematic
process variations.

• The models are almost 2.5X faster than existing
rule-based models.

• The models consider the cross-dependency impact
of different variation parameters on parasitic
capacitances.

• The generated models are only valid for 2DIC
technologies, where the die is mounted on a single plane
inside the package. As for 3DIC technologies, multiple
dies of different (or same) process nodes would be
connected together by using either TSVs or interposers.
This requires special modeling to predict the parasitic
coupling interactions among TSVs and interconnects of
different dies.

38

Table 3.2. A comparison among different parasitic rule-based capacitance extraction methods including
the proposed 2D cross-section parasitic capacitance models.

 Karsilayan
et al.

Tsai et al. Zhang et
al.

Li and Shi The proposed ratio-based
and dimensions-based
models

The proposed vertex-
based models

S
y

st
em

a
ti

c
p

ro
ce

ss
 v

a
ri

a
ti

o
n

s Metal width
variations

No Yes
(Supported)

No No Yes (Supported) Yes (Supported)

Metal
Thickness
Variations

Yes
(Supported)

No No No No Yes (Supported)

Loading
effects

No No No No No Yes (Supported)

Trapezoidal
variations

No No No No No Yes (Supported)

Modeling
Method of
variations

Sensitivity
models

lithography
simulator

Not
applicable

Not
applicable

Embedded inside the
model

Embedded inside the
model

Pattern coverage It has a limited pattern coverage because their models
cover a limited number of layout patterns.

High pattern coverage as
the proposed models can
handle patterns with
arbitrary distributed
polygons. However, they
cannot handle metal
polygons that are vertically
overlapped.

High pattern coverage
as the proposed
models can handle
patterns with arbitrary
distributed polygons.

Type of
supported
patterns

2D cross-
section
patterns of
three
parallel
wires.

3D patterns
of parallel
wires.

3D
patterns
of isolated
wires.

2D cross-
section
patterns of
parallel
wires.

2D cross-section patterns of arbitrary distributed
metal polygons (i.e., wires).

Pattern matching
mechanism

Geometry-
based

Geometry-
based

Geometry
-based

Geometry-
based

Layer-based Layer-based

Pattern
mismatches

High potential pattern mismatches as the pattern
matching operations are performed based on the
geometrical structures.

No pattern mismatches as the pattern matching
operations are performed based on the layer names.
Therefore, each set of metal layers are handled using
a single compact model.

Multi-dielectric
environment

Yes Yes No Yes Yes Yes

Modeling
methods

Curve fitted
formulas.

Lookup
tables

Analytical
formulas

Neural
networks

Neural networks Neural networks
Support vector
regressions

Validation and
testing

Not Tested on real designs. Only tested on 28nm
process node.

Tested on 28nm, 14nm,
and 7nm process
nodes.

Overhead on the
actual parasitic
capacitance
extraction
runtime

It doubles
the number
of
computatio
ns as
sensitivity
formulas
are
computed
separately.

Running a
lithography
simulator
adds a lot of
overhead on
runtimes.

It is fast as
it uses
analytical
formulas
with
small
number of
variables.

It adds extra
runtime due
to running a
classifier to
assign each
layout
pattern to a
capacitance
model.

It is slower than existing
commercial rule-based tool
(i.e., Calibre PEX [19]) by
1.3X when being tested on
28nm process node.

It is 2.5X faster than
existing commercial
rule-based tool (i.e.,
Calibre PEX [19]) when
being tested on 28nm,
14nm, and 7nm process
nodes.

39

3.2. MEOL Parasitic Capacitance Extraction

Several efforts were done to implement MEOL parasitic capacitance models [53]–[59].

However, most of these efforts did not provide a general methodology that can predict

parasitic capacitances of MEOL patterns regardless of their geometrical structure. There

are four main methods to extract MEOL patterns that include: 1) field-solvers; 2)

analytical formulas [55], [56], [59], [60]; 3) pre-layout parasitic extraction models that do

not consider layout geometries [53], [54]; and 4) a pre-characterized library of MEOL

patterns [57], [58], where the parasitic capacitances of those patterns are extracted by

field- solvers and stored in a library to be later used by parasitic extraction tools.

The methods that rely on field-solvers to extract MEOL patterns suffer from three

main problems including: 1) capacity limitations, 2) excessive runtime, and 3) the

consumption of many computational resources [11], [56], [59]. The methods that rely on

analytical models are limited to specific MEOL patterns. On the other hand, the pattern

matching methods that use a pre-characterized library of MEOL patterns suffer from

three problems including: 1) potential pattern mismatches that impact the accuracy of

extracted capacitances; 2) insufficient pattern coverage; and 3) the consumption of large

diskspace. As a result, the pre-characterization approach results in a poor parasitic

capacitance extraction accuracy with error percentages exceeding 10% [57].

In [53], a neural-network model is developed to predict parasitic elements and device

parameters (e.g., geometrical parameters) of devices. This is done by converting a circuit

schematic into graphs that include: 1) the number of fanouts of each transistor terminal

and 2) the device sizes. After that, the graphs as an input to the models in order to predict

the parasitic elements and device parameters. In terms of MEOL parasitic capacitance

extraction, this effort has three main problems. First, it predicts the parasitic elements as

lumped capacitances. Second, it does not consider the interconnect layout geometries

around the devices, which have a major impact on parasitic capacitances. Third, it can

only handle the regular device structures of FINFETs with Manhattan geometries.

40

In [54], machine learning-based models were developed to predict parasitic elements

around devices. They are pre-layout models that provide a very fast extraction runtime

with reasonable accuracy. The inputs of those models are device parameters such as

channel length and channel width. This effort has two main problems. First, it does not

consider any layout geometries. Therefore, the post-layout simulation results might not

be accurate especially for analog designs. Second, it only considers regular device

structures with Manhattan geometries. Therefore, it cannot handle irregular MEOL

structures.

In [55], parasitic capacitance models that predict gate-around parasitic capacitances

were developed based on SPICE models. Such models were mainly developed for

MOSFET structures in 40nm process technology node. They can efficiently predict the

parasitic capacitances around the gate; however, they have two main problems. First, this

approach only considers MOSFET devices with regular structures. Second, it is only

validated on 40nm process node.

In [57], a parasitic capacitance extraction methodology for MEOL capacitances was

developed. This methodology aims to identify the MEOL structures and extract their

parasitic capacitances using a 3D field-solver tool. Such a methodology provides very

accurate MEOL parasitic capacitance results; however, it is very slow and has a limited

capacity as it uses a 3D field-solver tool. Therefore, it is not suitable for large designs.

In this work, machine learning based MEOL parasitic capacitance models were

developed. The developed models are suitable for MEOL around MOSFETs and

FINFETs. The models can handle regular and irregular device structures with either

Manhattan or non-Manhattan geometries. They are very fast and have high capacity as

compared to field-solvers.

41

3.3. Hybrid and Intermediate Parasitic Capacitance Extraction Methods

Hybrid parasitic capacitance extraction methods that combine rule-based and field-

solvers are considered in advanced nodes. Despite the accuracy improvements

introduced by those methods, they suffer from two main problems. First, the proportion

of patterns that have to go to field-solvers increases in advanced nodes (as technology

scales down). With this proportion approaching 50%, using theses hybrid methods does

not save much time as compared to field-solvers. Second, these hybrid methods do not

eliminate all outliers because the layout patterns are assigned to extraction methods

based on a pre-characterized library. Sometimes, in case of encountering a pattern that

does not exist in the pre-characterized library, a field-solver is used, which results in more

overhead to the runtime and capacity [8]. Table 3.3 summarizes the main differences

among field-solver, rule-based, existing hybrid, the proposed intermediate extraction,

and the proposed accuracy-based hybrid extraction methods.

Table 3.3. Advantages and disadvantages of the different parasitic capacitance extraction methods.
Method Advantages disadvantages

Field-solvers • They are very accurate as compared to

measurements.

• They are slow with a limited capacity.

• They cannot handle large designs

Rule-based

methods

• They are very fast with reasonable

accuracy.

• They can handle full chips.

• They are used for sign-off for many

legacy nodes (>20nm)

• They cannot cope with the increasing

accuracy requirements in advanced

process nodes.

• They neglect many 3D fringing

capacitances impacting the accuracy

in advanced process nodes.

Existing Hybrid

method

• It can provide very accurate results.

• It can handle large designs.

• It cannot cope with the accuracy

requirements in advanced nodes as

more patterns would be extracted

using field-solvers.

Proposed

intermediate

• It provides accurate results in a

reasonable runtime.

• It can predict all 3D fringing capacitances

withing a pre-defined window.

• It is suitable for advanced process nodes.

• It is 2-3X slower than existing rule-

based method.

• It requires a large characterization

runtime.

Proposed

Hybrid

• It provides very accurate results.

• It can predict all 3D fringing capacitances

withing a pre-defined window.

• It is suitable for advanced process nodes.

• It is faster than existing hybrid method.

• It requires a large characterization

runtime.

42

3.4. Parasitic-Aware Routing Optimization

Most of existing parasitic-aware routing methods suffer from two problems. First,

they use either simplified parasitic formulas or a full layout parasitic extraction in order

to measure the parasitic elements for each layout modification in the design loop. The

simplified parasitic models are not accurate and cannot cope with the increasing parasitic

extraction accuracy requirements in advanced nodes leading to inaccurate layout

optimization. On the other hand, the use of a full layout extraction is very time-

consuming and not suitable for optimizing large layout designs. Second, the existing

routing optimization methods do not provide a systematic way to help circuit designers

in understanding the impact of parasitic elements and the corresponding layout

geometries on a system’s (i.e., route) performance.

In [61], a parasitic-aware routing method was developed based on simplified

parasitic formulas. This approach aims to reduce the delay and routing area considering

the interconnect parasitic elements of a given layout. This method identifies multiple

candidate routes for each connection. Then, it evaluates the performance of each

candidate until the candidates that meet the required performance are achieved. This

method has three main problems. First, it uses simplified parasitic formulas that cannot

cope with the new accuracy requirements of advanced process nodes. Second, this

method does not deal with the parasitic effects as dominant factors on a circuit’s

performance. Third, this method relies on a pre-determined set of candidate routes that

do not necessarily achieve the required performance.

In [62], an automatic optimization-based sizing and routing methodology was

developed for analog circuits. This methodology uses a layout generator that computes

the optimal electrical current correct wire topology and global routing in loop for each

different sizing solution. Such a methodology relies on simplified parasitic models in

order to achieve reasonable optimization runtime as it requires many optimization loops

(i.e., iterations). This methodology has three main problems. First, it requires many

iterations to achieve good results. Second, it uses simplified parasitic formulas that

43

cannot cope with the new accuracy requirements of advanced process nodes. Third, it

does not deal with the parasitic effects as dominant factors on circuit’s performance.

In [63]–[65], parasitic-aware routing methodologies based on circuit moments were

developed. The proposed methodologies aim to optimize layout routes by minimizing a

cost function. The cost function considers parasitic resistance, capacitance, self-

inductance, and mutual coupling inductance effects (RLCK), and it provides a

representation of the delay and ringing of the signals. Therefore, the minimization of the

developed cost function helps in achieving a good balance between route’s delay and

ringing. These efforts have five problems. First, they require a full layout parasitic

extraction in order to evaluate the corresponding cost function with every optimization

iteration. Second, the cost function is only valid for delay and ringing effects. Third, they

are not suitable for both net symmetry constraints and analog designs. Fourth, they do

not provide good understanding to the impact of parasitic effects on a route’s

performance. Fifth, they do not correlate parasitic elements to certain geometries.

In [20], a template-based parasitic-aware layout optimization method was developed.

Traditional template-based methods optimize layout routes in x and y directions

separately. This method aims to overcome this problem by optimizing layout routes in x

and y directions simultaneously. Such a method uses a hybrid algorithm that consists of

nonlinear programming and graph-based algorithms in order to achieve more accurate

layout optimization. However, this method has three problems. First, it does not deal

with the parasitic effects as dominant factors on a circuit’s performance as it uses very

simple parasitic formulas to extract the parasitic elements of a given layout. Such

formulas cannot cope with the new accuracy requirements of advanced process nodes.

Second, it does not provide a mechanism to help circuit designers in understanding the

impact of parasitic effects on a system’s (i.e., route) performance. Third, it only considers

rectilinear and Manhattan geometries, and it cannot handle non-Manhattan geometries.

In [22], [43], [44], [66], template-based parasitic-aware routing optimization

methodologies were proposed. They are used for either retargeting or layout

44

optimizations. They aim to create a symbolic template with a set of constraints such as

net symmetry, connectivity, parasitic bounds, and corresponding design rules. The

calculations of parasitic bounds rely on multiple circuit simulations in order to identify a

parasitic bound for each parasitic element. The parasitic model for each route is

represented by a simple RC Π (i.e., pi) model in order to speed up the calculations of

parasitic bounds. Such methodologies are fast; however, they are suffering from three

problems. First, they use simplified parasitic formulas that cannot cope with the new

accuracy requirements of advanced nodes. Second, they do not provide a mechanism to

help circuit designers in understanding the impact of parasitic effects on a system’s (i.e.,

route) performance. Third, most of them cannot handle non-Manhattan geometries.

In [67], analog layout design tool called LAYGEN II was developed. It uses a symbolic

template (i.e., template-based) approach in order to perform placement and routing. This

approach is very efficient in achieving a good initial layout for a given circuit design;

however, it requires a lot of computational resources in order to handle large layouts.

In [68], an analog layout design tool was developed. It uses a combination of symbolic

template (i.e., template-based) and optimization approaches in order to generate layouts.

This method uses a template approach in order to reduce the search (i.e., solution) space.

This method is efficient in achieving a good initial layout for a given circuit design;

however, it requires a lot of computational resources in order to handle large layouts.

Moreover, it is not designed to handle non-Manhattan geometries.

In [69], a routing algorithm was developed using a discrete particle swarm

optimization and multi-stage transformation methods. The proposed algorithm

optimizes layout routes using two types of Steiner minimal tree models that include

Manhattan and non-Manhattan Steiner minimal trees. Therefore, the selected route

structure can contain Manhattan and non-Manhattan geometries. This flow has two

problems. First, it does not consider the impact of parasitic elements except for a route’s

delay. Second, it does not have a mechanism to help circuit designers in understanding

the impact of parasitic elements on system’s performance.

45

The problems of existing layout routing optimization methods can be summarized as

below:

a. They do not provide a mechanism to help circuit designers in understanding the

impact of parasitic elements on a system’s (i.e., route) performance, such as

identifying the problematic parasitic elements along with the corresponding layout

geometries.

b. Most of existing efforts use either simplified parasitic formulas, such as in [9], [20],

[22], [43], [66], [70], [71], or a full layout extraction, such as in [63]–[65], [72], in order

to extract the parasitic elements of a given layout. The methods that use simplified

parasitic formulas suffer from an accuracy problem as the accuracy of such parasitic

formulas cannot cope with the increasing accuracy requirements in advanced process

nodes, whereas the methods that use a full layout extraction suffer from a long

runtime problem as they require a full layout extraction with every optimization

iteration.

c. Many of existing layout optimization flows rely on circuit simulations with every

optimization iteration as in [73], [74].

This work focuses on overcoming these problems. First, it provides a routing

optimization method that can be applied either after or within the detailed routing.

Second, it provides sensitivity circuit models that help circuit designers in understanding

the impact of parasitic elements and the corresponding layout geometries on a route’s

performance. Third, it uses a novel incremental parasitic extraction method to extract the

parasitic elements of modified layouts during the optimization process. Such an

incremental method provides very accurate results (<1% error) with a speedup of up to

40X as compared to a full layout extraction. Fourth, it does not require multiple circuit

simulations. Table 3.4 summarizes the contributions and limitations of related works

including our work. Table 3.5 provides a functional comparison among related works

and our work.

46

Table 3.4. Contributions and limitations of state-of-the-art layout routing optimization works including
our work.

 Contributions Limitations

Smey et al.,

[61]
• A routing optimization method that aims to

reduce the area and delay was developed.

• This method optimizes layout routes by

identifying multiple candidate routes for each

connection. Then, it selects the candidate route

with minimum area and minimum delay.

• It uses simplified RC parasitic formulas that cannot

handle complicated layout structures in advanced

nodes. Moreover, the accuracy of such formulas

cannot cope with the increasing accuracy

requirements in advanced nodes.

• It does not consider inductance effects.

• It relies on pre-determined candidate routes that

do not necessarily achieve the required

performance.

• It does not handle non-Manhattan geometries.

Lourenco et
al., [62]

• An automatic optimization-based sizing and
routing methodology was developed for analog
circuits.

• It uses a layout generator that computes the
optimal electrical current correct wire topology
and global routing in-loop with each different
sizing solution.
It relies on simplified parasitic models in order
to achieve reasonable runtime as it requires
many optimization loops (i.e., iterations).

• It requires many iterations to achieve good results.

• It uses simplified RC parasitic formulas that cannot

handle complicated layout structures in advanced

nodes. Moreover, the accuracy of such formulas

cannot cope with the increasing accuracy

requirements in advanced nodes.

• It does not consider inductance effects.

• It does not handle non-Manhattan geometries.

Bhaduri and
Vemuri
[63]–[65]

• Parasitic-aware routing optimization
methodologies based on circuit moments were
developed.

• The proposed optimization methodologies use a
cost function that consider the different RLCK
parasitic elements in a candidate route. The
minimization of the cost function helps in
achieving a good balance between route’s delay
and ringing.

• The proposed methodologies identify multiple
candidate routes and select the route with a
minimum cost value.

• They use a full layout parasitic extraction to
evaluate the cost function, which consumes a lot of
time.

• The developed cost function has limited
applications as it only considers the delay and
ringing effects.

• The cost function is not suitable for net symmetry
constraints and analog designs.
These efforts do not provide a mechanism to help
circuit designers in understanding the impact of
parasitic effects on a route’s performance.

Zhang et al.,
[44].
Liu and
Zhang [22],
[66].
Bhattacharya
et al., [43].
Jangkrajarng
et al., [20].

• Template-based parasitic-aware routing

optimization methodologies were proposed.

• They aim to create a symbolic template with a set

of constraints such as design rules, connectivity,

and net symmetry constraints. Moreover, they

identify the parasitic bounds of each parasitic

element using circuit simulations. The symbolic

template constraints and parasitic bounds are

used as inputs to the routing optimization flow.

• The calculations of parasitic elements use simple

resistance and capacitance parasitic formulas.

• They are efficient in achieving a good initial

layout for a given circuit design in a reasonable

time.

• They use simple RC parasitic formulas that cannot

handle complicated layout structures in advanced

nodes. Moreover, the accuracy of such formulas

cannot cope with the increasing accuracy

requirements in advanced nodes

• They do not deal with the parasitic effects as

dominant factors on a circuit’s performance.

• They do not consider inductance effects.

• Most of them do not handle non-Manhattan
geometries.
They do not have a mechanism to help circuit

designers in understanding the impact of parasitic

elements on a system’s performance

Naguib et al.,
[68]

• An analog layout design tool was developed.
This tool contains an automatic routing
algorithm that uses symbolic template
approaches.

• The developed tool uses a template algorithm
approach in order to reduce the routing search
(i.e., solution) space. This approach is efficient in
achieving a good initial layout for a given circuit
design.

• It requires a lot of computational resources in
order to handle large layout designs.

• It does not consider inductance effects.

• It is not designed to handle non-Manhattan
geometries.

• It does not have a mechanism to help circuit
designers in understanding the impact of parasitic
elements on a system’s performance.

47

Table 3.4. Contributions and limitations of state-of-the-art layout routing optimization works

including our work.-continued.

 Contributions Limitations

Liu et al., [69] • A routing algorithm was developed using a
discrete particle swarm optimization and multi-
stage transformation methods.

• The proposed flow optimizes the routes using
two types of Steiner minimal tree models that
include Manhattan and non-Manhattan Steiner
minimal trees. Therefore, the selected route
structure can contain Manhattan and non-
Manhattan geometries.

• It does not consider the impact of parasitic
elements except for a route’s delay.

• It does not have a mechanism to help circuit
designers in understanding the impact of parasitic
elements on system’s performance.

This work • Sensitivity circuit models were developed to

measure and analyze the impact of parasitic

elements and corresponding layout geometries on

a circuit performance cost function.

• A parasitic-aware re-routing optimization

methodology that uses nonlinear programming

was developed. The developed methodology

automatically modifies the most critical routes to

meet the required performance cost function

without circuit simulations. Moreover, it handles

Manhattan and non-Manhattan geometries.

• The routing optimization methodology uses a

novel incremental parasitic extraction method in

order to provide an accurate parasitic extraction

results very fast. The proposed incremental

extraction method considers second order

parasitic capacitance effects efficiently.

• It only considers the RC parasitic elements. Hence,
this model is appropriate for local interconnect at
any frequency and global interconnect at a lower
frequency. For high frequency global interconnect,
inductance and more complex models need to be
included.

48

Table 3.5. A comparison among several state-of-the-art layout routing optimization works including our
work.

 Routing methodology Parasitic
extraction

Considered
parasitic
elements

Requires
circuit
simulations

Handling of
Non-
Manhattan
geometries

Models to
analyze the
impact of
layout
geometries on
a system’s
performance

Smey et al., [61] Minimize route’s area and
delay.

Simplified 2D
cross-section
models.

RC Yes No No

Lourenco et al.,
[62]

Automatic
electromigration-aware
wire topology and global
routing in-loop for each
different sizing solution.

Simplified 2D
cross-section
models.

RC Yes No No

Bhaduri and
Vemuri
[63]–[65]

Minimize a cost function
that provides a balance
between the delay and
ringing effects.
It uses template-based
approach to generate
routing candidates.

Full layout
extraction

RLCK No No No

Zhang et al.,
[44].
Liu and Zhang
[22], [66].
Bhattacharya et
al., [43].
Jangkrajarng et
al., [20].

A symbolic template
approach that is used to
minimize parasitic effects
and a route’s area.

Simplified 2D
cross-section
models.

RC Yes No No

Naguib et al.,
[68]

A symbolic template
approach that is used to
minimize parasitic effects
and a route’s area.

Simplified 2D
cross-section
models.

RC Yes No No

Liu et al., [69] Swarm optimization
algorithms that are used to
minimize parasitic effects
and a route’s area

Full layout
extraction

RC No Yes No

This work Nonlinear programming
to minimize a performance
cost function based on
circuit moments and
sensitivity models.

Incremental
layout
parasitic
extraction.

RC No Yes Yes

49

3.5. Summary

This chapter discusses previous related works of 1) rule-based 2.5D parasitic

capacitance extraction methods; 2) MEOL parasitic capacitance extraction methods; 3)

hybrid parasitic capacitance extraction methods; and 4) parasitic-aware routing

optimization methods. Moreover, it provides a comprehensive comparison among state-

of-the-art related work including our work.

50

Machine Learning Compact Models for
Rule-Based 2.5D Capacitance
Extraction

A novel modeling methodology of interconnect parasitic capacitance extraction is

developed in rule-based extraction methods. The proposed methodology uses machine

learning methods to create compact models that predict parasitic coupling capacitances

between metal polygons in 2D cross-section layout patterns. Unlike existing models, the

compact models handle patterns with arbitrary distributed polygons, consider connected

polygons (i.e., polygons that hold the same potential), reduce pattern mismatches,

increase pattern coverage, and consider systematic process variations. The compact

models are technology-dependent, where each process technology node has a pre-

characterized set of compact models. The proposed compact models enabled the

extraction of more complicated and multi-dimensional layout patterns. Moreover, each

compact model can replace hundreds to thousands of existing capacitance and sensitivity

formulas. Therefore, the compact models managed to provide a lower computational

runtime, significant reduction in pattern mismatches, and significant accuracy

improvements.

The implementation process of the parasitic capacitance compact models consists of

five main steps as follows: 1) identify the main characteristics of input patterns; 2) obtain

training patterns; 3) generate reference parasitic capacitance numbers of training

patterns; 4) extract features of cross-section patterns; and 5) train machine learning

models. Fig. 4.1 shows the implementation process of interconnect parasitic capacitance

compact models.

51

Fig. 4.1. The process of implementing 2D cross-section machine learning compact models for rule-based
extraction methods.

4.1. Identify Input Patterns Characteristics

To create a compact model, we need to study several factors that identify the main

characteristics of input patterns. The factors include: the surrounding multi-dielectrics,

the window size of a cross-section pattern, the number of metal layers in a pattern

window, the number of metal polygons in each layer, and systematic process variations.

4.1.1. Surrounding Multi-Dielectrics

Each process technology node (i.e., process stack) consists of multiple metal layers

that are placed vertically and surrounded by dielectrics. Each metal layer has its own

geometrical specifications such as minimum width, minimum spacing, thickness,

elevation, and corresponding systematic process variation parameters. The metal layers

are separated by dielectric structures. The dielectrics can be planar or conformal. Each

dielectric has certain specifications such as a dielectric constant and thickness. Fig. 4.2

shows an example of a typical process technology node stack (i.e., process stack) with

multi-dielectric environment. The surrounding dielectrics have a direct impact on

coupling capacitances between metal layers. So, they must be considered during

parasitic capacitance extraction processes. However, including the surrounding

Process technology node

specifications (process stack)

Identify

characteristics of input

patterns

Obtain training patterns

Extract features of

input patterns

Run a Field-Solver

Train machine

learning models

For 2D cross-section patterns

Models are

ready

A grid search over model’s hyper-

parameters

Input feature vector generation

52

dielectrics into the input parameters to our parasitic models would complicate the

models, require more training patterns, increase pattern mismatches, and add more

overhead on training and prediction runtimes. Therefore, to avoid such complications

and generate effective parasitic models, each process technology node (i.e., process

stack) must have its own set of parasitic capacitance compact models. Also, each pre-

defined set of metal layers (i.e., metal collection), in a certain process technology node,

must have a certain parasitic capacitance compact model as shown in Fig. 4.3, for

example, metal1-metal2-metal3 collection has a compact model, whereas metal3-

metal4-metal5 collection has another compact model. In other words, each process

technology node would have a separate pre-characterized library of machine learning

compact models.

Fig. 4.2. An example of a process technology node (i.e., process stack) with multi-dielectric environment.

Diffusion

poly
Diffusion contact

Metal1

Via1

Metal2

Metal3

Via2

poly

T1

T2

T3

𝜀𝑟 : dielectric constant

Dielectric 1 (𝜀𝑟1)

Dielectric 2 (𝜀𝑟2)

Dielectric 3 (𝜀𝑟3)

Dielectric 4 (𝜀𝑟4)

Dielectric 5 (𝜀𝑟5)

Dielectric 6 (𝜀𝑟6)

Dielectric 7 (𝜀𝑟7)

Width
Spacing

53

Fig. 4.3. An example of machine learning compact models for cross-section patterns of two different
metal collections.

4.1.2. Window Size of Cross-Section Patterns

The window size of a 2D cross-section pattern represents the width of the pattern

in the horizontal direction as shown in Fig. 4.4. When the size of a pattern window

increases, the number of polygons that overlap with the window increases. Hence,

more coupling capacitance components are extracted. However, this would trigger the

extraction of minor capacitance components that do not have any observable impact on

the extraction accuracy. Moreover, extracting such minor capacitance components

would significantly increase the extraction runtime without any considerable gain. As

a result, the pattern window should only consider the coupling capacitances that

impact the extraction accuracy.

As the separation between any two metal polygons increases, the coupling

capacitance between them decreases as shown in Fig. 4.5. Hence, any metal polygon

would have an effective coupling distance (i.e., range), where any coupling capacitance

to a polygon that is outside of this range is negligible.

metal1

metal2

metal3

Model1 Model1

Examples of 2D cross-section layout patterns of

metal collection: metal1-metal2-metal3

Parasitic

capacitances

Parasitic

capacitances

Examples of 2D cross-section layout patterns of

metal collection: metal3-metal4-metal5

metal3

metal4

metal5

Model2 Model2

Parasitic

capacitances

Parasitic

capacitances

Pattern (i) Pattern (j) Pattern (i) Pattern (j)

54

Fig. 4.4. An example of a 2D cross-section pattern of a certain metal collection showing the
corresponding window size.

A pattern window size is identified by using the maximum coupling range of a

target metal layer. The maximum coupling range is the maximum distance where the

lateral coupling capacitance between two polygons, which belong to the same target

metal layer, represents 1% of their total capacitances. Therefore, all coupling

capacitances to polygons that are outside of this range are ignored. For each metal layer,

the maximum coupling range is calculated by constructing a 2D cross-section pattern

of two adjacent polygons using minimum dimensions. The total and lateral coupling

capacitances are calculated by Raphael2D, a 2D field-solver tool [75]. The separation

(i.e., spacing) between the two polygons is increased until the lateral coupling

capacitance between the two polygons is less than or equal to 1% of the total capacitance

on one polygon. Fig. 4.5 shows an example of calculating the maximum interaction

range for metal3 layer in 28nm process node. The capacitance unit is in femtofarad (fF),

whereas the separation unit is in micrometer (µm).

Fig. 4.5. An example of calculating the maximum coupling range using metal3 layer with minimum
dimensions in 28nm process technology node. The capacitance unit is in femtofarad (fF), whereas the
separation unit is in micrometer (µm).

Window size

Layer (i-j)

Layer (i)

Layer (i+k)

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3

Cc

Ct

Ratio = Cc/Ct = 0.00983

Maximum range = 1.73µm
Cc

ground

Separation (S)

C
g

Metal 3

(28nm)

Ctotal (Ct) = Cc + C
g

Separation (S) (µm)

C
ap

ac
it

an
ce

 (
fF

)

55

4.1.3. The Number of Metal Layers in a Pattern

Each cross-section layout pattern consists of arbitrary distributed metal polygons

that belong to the same or different metal layers. Most of existing rule-based models

handle cross-section layout patterns with one, two, and three metal layers [76]–[79].

This might be enough for high density layout designs; however, for low density

designs, the capacitance models should consider more than three metal layers to

provide a higher extraction accuracy.

 The maximum number of layers in a pattern is identified by measuring the impact

of adding multiple upper and lower metal layers on total and lateral capacitance of a

target metal layer. The maximum number of upper metal layers (or lower layers) is

identified by constructing multiple 2D cross-section patterns of two adjacent metal

polygons. Each 2D cross-section pattern has a different numbers of upper metal layers

(or lower) as shown in Fig. 4.6 (a). The lateral capacitance, of a target metal polygon, is

measured using Raphael2D, a 2D field-solver tool [75], while adding more upper metal

layers, until the impact of adding more upper metal layers on the lateral capacitance is

negligible (< 1% difference in the lateral capacitance). It is worth mentioning that the

patterns are constructed on a way that minimize the impact of intermediate upper metal

layers and maximize the impact of the most upper metal layer on the lateral capacitance,

where all intermediate upper metal layers are represented by a single polygon with

minimum dimensions, whereas the most upper metal layer is represented by a plane.

This process is applied on all metal layers on a process stack. Also, the same process is

applied to the maximum number of lower metal layers.

 Fig. 4.6 shows an example of identifying the maximum number of upper metal

layers using metal1 as a target layer in 28nm process node. Fig. 4.6 (a) shows the

constructed patterns, whereas Fig. 4.6 (b) shows the lateral coupling capacitance values

with increasing the number of upper metal layers. The results show that adding more

than two upper layers has a minor impact (< 1% difference in the lateral capacitance)

on the lateral capacitances. This process is tested on different process nodes including

56

28nm, 14nm, and 7nm nodes to identify the maximum number of upper and lower

metal layers. The experiments show that adding more than two upper or lower metal

layers has a minor impact on the lateral capacitance of a target layer. As a result, the

maximum number of metal layers in a pattern is five, i.e., two upper layers, two lower

layers, and one target layer.

(a)

(b)

Fig. 4.6. An example showing (a) 2D cross-section patterns that are created to identify the maximum
number of upper metal layers for a target metal layer, and (b) the impact of adding upper metal layers
on the lateral capacitance of a target metal layer. The results are generated using metal1 as a target layer
in 28nm process node.

4.1.4. Maximum Number of Polygons in a Pattern

Each pattern may contain multiple polygons across different metal layers. It is not

necessarily for all polygons to have considerable coupling capacitances to target

polygons, where some of the capacitances are considerable and impact the extraction

accuracy, whereas other capacitances may be minor and do not impact the extraction

accuracy. As a result, surrounding polygons that only impact the parasitic extraction

accuracy, of target metal polygons, should be considered by the corresponding model.

The maximum possible number of polygons in a pattern is identified for each metal

layer separately, where each metal layer in a pattern may have a different maximum

number of polygons. In other words, the maximum number of polygons is identified

Metal-1

Metal-2 (plane)

Metal-i (plane)

Metal-2
Cc Cc Cc

ground ground ground

Metal-1

Target polygon

0.1

0.105

0.11

0.115

0 1 2 3

Cc

C
ap

ac
it

an
ce

 (
fF

)

Number of upper metal layers

57

for a target metal layer and surrounding (i.e., secondary) metal layers in a cross-section

pattern. As for a target metal layer, the maximum number of polygons is identified by

constructing 2D cross-section patterns of 3, 5, and 7 adjacent polygons as shown in Fig.

4.7 (a). The lateral capacitance between the middle and right polygons is measured in

each case, by using Raphael2D, a 2D field-solver tool [75], until the impact of adding

more adjacent polygons on the lateral capacitance is negligible (< 1% difference in the

lateral capacitance). This process is applied on all metal layers in a process stack.

Fig. 4.7 shows an example of identifying the maximum number of target metal

polygons using metal1 as a target layer in 28nm process node. Fig. 4.7 (a) shows the

constructed patterns, whereas Fig. 4.7 (b) shows the lateral coupling capacitance values

with increasing the number of adjacent polygons. This process is tested on different

process nodes including 28nm, 14nm, and 7nm nodes. The experiments show that the

appropriate maximum number of polygons for a target metal layer is 5.

(a)

(b)

Fig. 4.7. An example of (a) 2D cross-section patterns that are used to identify the maximum number of
target metal polygons in an input pattern, and (b) the impact of adding more adjacent polygons on a
same layer lateral capacitance. The results are generated using metal1 as a target layer in 28nm process
node.

Cc

ground

Metal layer (i)

0.098

0.1

0.102

0.104

0.106

3 5 7 9

Cc (Metal1)

C
ap

ac
it

an
ce

 (
fF

)

Number of adjacent metal polygons

58

As for upper and lower (i.e., secondary) metal layers, the maximum numbers of

polygons are calculated by constructing 2D cross-section patterns of two metal layers

(i.e., the target and secondary layers) as shown in Fig. 4.8 (a). The target metal layer

contains one polygon at the middle, whereas the secondary metal layer has a varying

number of polygons (from 2 to 7). All polygons are constructed using the corresponding

minimum dimensions. The total capacitance on the middle target polygon is measured,

using Raphael2D, a 2D field-solver tool [75], in each case until the impact of adding

more secondary layer polygons on the total capacitance is negligible (< 1% difference

in the total capacitance). This process is applied on all metal layers in a process stack.

Fig. 4.8 shows an example of identifying the maximum number of secondary metal

layer polygons using metal1 as a target layer and metal2 as a secondary layer in 28nm

process node. Fig. 4.8 (a) shows the constructed pattern, Fig. 4.8 (b) shows the total

capacitance values with increasing the number of secondary metal layer polygons. This

process is tested on different process nodes including 28nm, 14nm, and 7nm nodes. The

experiments show that the appropriate maximum number of polygons for a secondary

metal layer is 4.

(a)

(b)

Fig. 4.8. An example of (a) 2D cross-section patterns that are used to identify the maximum number of
secondary metal polygons in an input pattern, and (b) the impact of adding more secondary metal
polygons on a target layer total capacitance. The results are generated using metal1 as a target layer and
metal2 as a secondary layer in 28nm process node.

C
total

= C1 +C2+C3

ground

…

C1

C2

C4

C3

Metal layer

(i)

Metal layer (j)

0.108

0.11

0.112

0.114

0.116

0.118

2 3 4 5 6

C
total

 (Metal1)

C
ap

ac
it

an
ce

 (
fF

)

Number of secondary metal polygons (Metal2)

59

Eventually, the maximum number of polygons in a target metal layer is 5, whereas

the maximum number of polygons in each secondary metal layer is 4. For example, the

maximum number of polygons in metal1-metal2-metal3 cross-section pattern is 13,

where metal1 may contain up to 4 polygons, metal2 may contain up to 5 polygons, and

metal3 may contain up to 4 polygons.

4.1.5. Systematic Process Variations

Systematic process variations may have a major impact on parasitic capacitances in

advanced process technology nodes. They do not only impact parasitic capacitances of

associated polygons, but they also may impact parasitic capacitances of surrounding

polygons [10], [26], [80]. Therefore, parasitic models must consider systematic process

variations along with input patterns in order to improve the accuracy of parasitic

capacitance extraction processes. In other words, the inputs to a parasitic model should

be a 2D cross-section layout pattern along with the corresponding systematic process

variations.

Systematic process variations are pattern dependent. They are provided by

foundries in the form of lookup tables through a technology specifications file such as

interconnect technology file (ITF) [26]. Therefore, systematic variations can be

processed by parasitic extraction tools. Fig. 4.9 shows an example of metal width

variations using metal1 layer with minimum dimensions in 28nm process node. Fig. 4.9

(a) show the impact of metal width variations on metal dimensions. The width

variations impact both the width of metal wires and the separation between them,

where increasing the width of metal wires decreases the separation between them. Fig.

4.9 (b) shows the impact of width variations on lateral and total capacitances using

metal1 layer with minimum dimensions in 28nm process node. The width variations

may cause the lateral and total capacitances to change by more than 50%.

60

(a)

(b)

Fig. 4.9. An example of (a) width variations in cross-section interconnect patterns, and (b) the impact
of metal width variations on same layer lateral and total capacitances. The results are generated using
metal1 in 28nm process node.

Fig. 4.10 (a) shows an example of metal thickness variations using metal1 layer with

minimum dimensions in 28nm process node. Fig. 4.10 (b) shows the impact of metal

thickness variations on lateral and total capacitances. The results show that the metal

thickness variations may cause the lateral and total capacitances to change by more than

20%.

Fig. 4.11 (a) shows an example of inter layer dielectric (ILD) thickness variations

below metal1 layer with minimum dimensions in 28nm process node. Fig. 4.11 (b)

shows the impact of ILD thickness variations on the total capacitance. The results show

that the ILD thickness variations may cause the total capacitances to change by more

than 10%.

Fig. 4.12 (a) shows an example of trapezoidal variations using metal1 layer with

minimum dimensions in 28nm process node. Fig. 4.12 (b) shows the impact of

ground

W

W+ ΔW

W

S

S- ΔW
C

g

Cc C
total

 = Cc + C
g

As ΔW increases, the separation (S) decreases.

Metal layer (i)

W+ ΔW

0.07

0.12

0.17

0.22

0.27

-0.01 -0.005 0 0.005 0.01 0.015 0.02

Ctotal

Cc

ΔW of Metal1 (µm)

16% decrease

63% increase

C
ap

ac
it

an
ce

 (
fF

)

-22% -11% 0% 11% 22% 33% 44%

(ΔW / W) %

As ΔW increases, the

separation (S) decreases.

61

trapezoidal variations (i.e., sidewall slope) on the lateral and total capacitances. The

results show that the trapezoidal variations may cause the total and lateral capacitances

to change by more than 9%. Table 4.1 summarizes all required characteristics of input

patterns.

Eventually, the maximum number of models for a process stack with N metal layers

is given by:

Number of models = (NCk+ NCk-1 …+ NC1), (4.1)

where C is the combination function, k is the maximum number of layers in a pattern

of a certain layer collection. Usually, the number of models in a process stack ranges

from tens to few hundreds, whereas the corresponding number of traditional rule-

based formulas is in the range of many thousands.

(a)

(b)

Fig. 4.10. An example of (a) metal thickness variations in cross-section interconnect patterns, and (b) the
impact of metal thickness variations on same layer lateral and total capacitances using metal1 with
minimum dimensions in 28nm process technology node.

T

Cc

ground

C
g
 C

total
 = Cc + C

g

ΔT ΔT

Metal layer (i)

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-0.02 -0.01 0 0.01 0.02 0.03

Ctotal

Cc

C
ap

ac
it

an
ce

 (
fF

)

ΔT of Metal1(µm)

22% increase

18% decrease

-22% -11% 0% 11% 22% 33%

(ΔT / T) %

62

(a)

(b)

Fig. 4.11. An example of (a) ILD thickness variations in cross-section interconnect patterns, and (b) the
impact of ILD thickness variations on total capacitances using metal1 with minimum dimensions in
28nm process technology node.

(a)

(b)

Fig. 4.12. An example of (a) trapezoidal variations in cross-section interconnect patterns, and (b) the
impact of trapezoidal variations on total capacitances. The results are generated using metal1 with
minimum dimensions in 28nm process technology node.

BT

ground

C
g
 C

total
 = C

g

Before loading

ΔBT

ILD

After loading

Metal layer (i)
ε

r

BT’ = BT - ΔBT

0.068

0.07

0.072

0.074

0.076

0 0.01 0.02 0.03 0.04

Ctotal

ΔBT of Metal1 (µm)

C
ap

ac
it

an
ce

 (
fF

)

10.2% increase

θ
o
 θ

o

Cc

C
g

ground

Metal layer (i)

C
total

 = Cc + C
g

0.11

0.13

0.15

0.17

74°79°84°89°

Ctotal

Cc

Sidewall slope (θ°) of Metal1

C
ap

ac
it

an
ce

 (
fF

) 9.3% increase

10.1% increase

63

Table 4.1. A summary of input pattern characteristics.

Characteristic The way of handling a certain characteristic

Multi-dielectric stacks Multi-dielectric environments are handled by using a

different pre-characterized library for each process

stack.

The size of cross-section pattern

window (in the horizontal x-direction)

The pattern size, in x-direction, equals to the

maximum coupling range of the corresponding

target metal layer.

The maximum number of metal layers

in a pattern

5 metal layers

The maximum number of metal

polygons

For a target metal layer: 5 polygons
For a secondary metal layer: 4 polygons

Systematic process variations Inputs patterns of parasitic models should include

systematic variations.

4.2. Generate 2D Cross-Section Patterns

Once all input pattern characteristics are identified, they are used to generate input

and training patterns for parasitic models. The training patterns are obtained from

several real designs in order to increase the pattern coverage and make sure that training

patterns reflect real design topologies. The generation process of training patterns starts

with selecting several real designs, for example, ring oscillator (RO), static read access

memory (SRAM), and digital to analog converter (DAC) layout designs. Then, the

geometries and dimensions of all selected designs are modified by applying the

corresponding systematic process variations. After that, the modified layouts are

fractured into 2D cross-section patterns taking into considerations the corresponding

characteristics of input patterns. In addition, more patterns are generated randomly for

each metal collections covering the ranges from 1X to 10X of minimum dimensions.

Eventually, the obtained 2D cross-section patterns are used as training patterns to

machine learning models. The total number of obtained cross-section patterns for each

model is 30K patterns, where each model handles patterns of a certain metal layer

collection (e.g., metal1-metal2-metal3).

64

4.3. Field-Solver Execution

Once all training patterns are obtained, their parasitic capacitances are extracted

using Raphael2D, a 2D field-solver tool [75]. The extracted parasitic capacitances are used

as reference numbers to train our machine learning models.

4.4. Input Pattern Representation

Layout patterns are represented by a set of parameters that are used as inputs to NN

models to predict the corresponding parasitic capacitances. These parameters should

represent the main features of each cross-section pattern that are required to predict a

certain capacitance component. The required features include the pattern’s geometrical

characteristics, polygons connectivity, and the required capacitance component. The

proposed features consist of three feature vectors. The first vector provides geometrical

characteristics of the whole pattern, the second vector provides geometrical

characteristics of aggressor polygons, while the third vector provides geometrical

characteristics of victim polygons. The three vectors are combined and used as an input

to a NN model.

Providing geometrical characteristics of aggressor and victim polygons helps in

identifying the connectivity and the required coupling capacitance component, which is

the coupling capacitance between the aggressor and victim polygons. Since the three

vectors belong to the same layout pattern, they have the same size. Each vector consists

of a number of metal layers (from 1 to 5) that varies based on the corresponding layers

collection (i.e., layer combination), and each metal layer is represented by a vector of

features (i.e., parameters). In other words, each pattern’s vector is represented by an array

of vectors, where each vector in the array represents a metal layer’s feature vector, and

the size of the array is the number of metal layers in the corresponding pattern. In order

to represent the geometrical characteristics of each cross-section patterns, three different

feature representations are proposed. The proposed representations include ratio-based

and dimensions-based representations.

65

4.4.1. Ratio-Based Representation

In this representation, each metal layer, in a certain cross-section pattern, is

represented by an array of segments, and each segment contains a value that represents

the ratio between the overlapping polygon width and the segment width (i.e., density).

So, each metal layer is represented by a vector of densities as shown in Fig. 4.13. The

experiments showed that the segment width should be less than half the minimum

spacing of the corresponding metal layer to avoid having multiple polygons on the

same segment. The number of segments is calculated based on the pattern’s size and

the corresponding technology specifications as below:

Number of segments per layer =
Pattern size

segment width
. (4.2)

Since

segment width ≤ (0.5 × min spacing),
(4.3)

then

number of segments per layer ≥
Pattern size

0.5 × min spacing
.

(4.4)

Therefore, the input vector size for ratio-based representation is given by:

Ratio-based input vector size = 3 × (number of layers × number of segments

per layer),
(4.5)

Fig. 4.13. An example of the proposed width ratio-based pattern representation.

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

1

0 0 0 0 0 0.4

0.3 0.3

0.2 0.9 0.8 0.6

Layer (i-1)

Layer (i)

Layer (i+1)

66

This representation does not consider the different systematic process variations,

except for width variations. The rest of systematic process variations are handled using

the traditional sensitivity formulas as in [27]–[29].

4.4.2. Dimensions-Based Representation

In this representation, each metal layer is represented by a vector of widths and

spacings that are measured from the middle of the corresponding pattern. The vector

length is twice the maximum number of polygons in the corresponding pattern’s size

as shown in Fig. 4.14. The number of parameters is different from a metal layer to

another and from layers collection (i.e., layer combination) to another, given that the

maximum number of target metal polygons is 5, and the maximum number of

secondary metal polygons is 4. Therefore, the maximum number of target layer

parameters is 10, and the maximum number of secondary layer parameters is 8. The

maximum input vector size for dimensions-based representation is given by:

Dimensions-based input vector size = 3 × (8 × number of secondary layers + 10). (4.6)

This representation does not consider the different systematic process variations,

except for width variations. The rest of systematic process variations are handled using

the traditional sensitivity formulas as in [27]–[29].

Fig. 4.14. An example of the proposed dimensions-based representation.

4.4.3. Vertex-Based Representation

In this representation, the pattern’s geometries and systematic process variations

are represented together by using a novel vertex-based feature representation. As

Layer (i)

Layer’s feature vector = [middle; 1
st
 right; 1

st
 left; 2

nd
 right; 2

nd
 left; …]

 = [Mw 0; Rw1 Rs1; Lw1 Ls1; Rw2 Rs2; Lw2 Ls2;…]

Mw Rw1 Rw2 Lw1 Lw2

Rs1
Rs2 Ls2

Ls1

67

shown in Fig. 4.15, each metal layer in a pattern is represented by a vector of polygons.

The number of polygons of each metal layer in a pattern is shown in Table 4.1, where

the maximum number of polygons of a target metal layer is 5, whereas the maximum

number of polygons of a secondary metal layer is 4. Each metal polygon in a vector is

represented by the polygon’s vertices, where each vertex is measured from the center

of the corresponding pattern. In other words, each polygon is represented by 8

displacement parameters including (x1, y1), (x2, y2), (x3, y3), and (x4, y4) as shown in Fig.

4.15. As a result, each polygon is represented by 8 values (vertices), and the vector size

of each layer is estimated by (8 × maximum number of polygons in a metal layer). It is

worth mentioning that the vertices of empty polygons are represented by zeros as

shown in Fig. 4.15.

Fig. 4.15. An example showing the novel vertex-based pattern representation using three polygons of
the same metal layer in a cross-section pattern.

Such a vertex-based representation considers metal thickness variations, loading

effects, wire width variations, and trapezoidal variations of all polygons in a pattern

simultaneously. In other words, it includes systematic process variations during

capacitance calculations. Therefore, there is no need to invoke traditional sensitivity

×

(0,0)

PL1(x1,y1)

PL1(x2,y2)

PL1(x3,y3)

PL1(x4,y4)

PL2(x1,y1)

PL2(x4,y4)

PL2(x2,y2)

PL2(x3,y3)

PL3(x1,y1)

PL3(x4,y4)

PL3(x2,y2)

PL3(x3,y3)

PL3 PL1
PL2

 Layer(i) vector = [middle polygon, 1
st
 right, 1

st
 left, 2

nd
 right, 2

nd
 left]

= [PL1(x1, y1, x2, y2, x3, y3, x4, y4), // middle polygon

 PL2(x1, y1, x2, y2, x3, y3, x4, y4), // 1
st
 right polygon

 PL3(x1, y1, x2, y2, x3, y3, x4, y4), // 1
st
 left polygon

 0,0,0,0,0,0,0,0, // 2
nd

 right polygon is empty

 0,0,0,0,0,0,0,0 // 2
nd

 left polygon is empty

]

PL: metal polygon

× ×

× ×

× ×

× ×

× ×

× ×

68

formulas or any special modeling to handle systematic process variations. Also, such a

representation considers the cross-dependency impact of different variation parameters

on parasitic capacitances. This resulted in fewer computations, better performance, and

more accurate parasitic extraction results. The next required input parameter by

parasitic models is the required capacitance component, which informs the model

about the capacitance components to be extracted. The required capacitance

components are identified by including the geometries of aggressor and victim

polygons to the input vector of parasitic models. Therefore, the input feature vector is

represented by three internal vectors. The first vector contains geometries of all

polygons, the second vector contains geometries of aggressor polygons, whereas the

third vector contains geometries of victim polygons as shown in Fig. 4.16. The three

vectors have the same size. The novel vertex-based pattern representation is used to

represent the polygons in the three vectors. The size of an internal vector is estimated

by:

Vertex-based internal vector size = 8 × (4 × number of secondary layers + 5 ×

number of target layers),
(4.7)

where the number of target layers is usually 1, whereas the input feature vector size of

is estimated by:

Vertex-based input feature vector size = 3 × Vertex-based internal vector size, (4.8)

for example, the input vector size of a pattern with one target metal layer is 120, where

the maximum number of polygons of a target metal layer is 5, each polygon is

represented by 8 parameters (i.e., vertices), and there are three internal vectors with the

same size (i.e., all polygons, aggressor polygons, and victim polygons). Table 4.2 shows

the input vector sizes of different metal collections (i.e., models) using the proposed

vertex-based, ratio-based, and dimensions-based pattern representations.

69

Fig. 4.16. An example showing the input vector of a parasitic model.

Table 4.2. Input vector sizes of several metal collections and models.

Collection
Input vector sizes

vertex-based Ratio-based Dimensions-based

Metal1-

Metal2-

Metal3

Target Metal: Metal2
Secondary Metals: Metal1, Metal3
Target Metal polygons: 5
Secondary Metal polygons: 4 + 4 =
8
Number of Polygons: 8 + 5 = 13
Vertex-based representation: 13 ×
8 = 104
Input vector size: 104 × 3 = 312

Assuming each metal is
represented by 50 segments.

Whole pattern: 3×50
Aggressor: 3×50
Victim: 3×50
Input vector size: 3×3×50 =

450

Target and secondary metals

are represented by 10 and 8

parameters, respectively.

Whole pattern: 10 + 8 + 8 = 26
Aggressor: 10 + 8 + 8 = 26
Victim: 10 + 8 + 8 = 26
Input vector size: 3×26 = 78

Metal2-

Metal3-

Metal5-

Metal6

Target Metal: Metal3
Secondary Metals: Metal2, Metal5,
Metal6
Target Metal polygons: 5
Secondary Metal polygons: 4 + 4 +
4 = 12
Number of Polygons: 12 + 5 = 17
Vertex-based representation: 17 ×
8 = 136
Input vector size: 136 × 3 = 408

Assuming each metal is
represented by 50 segments.

Whole pattern: 4×50
Aggressor: 4×50
Victim: 4×50

Input vector size: 3×4×50 =

600

Target and secondary metals

are represented by 10 and 8

parameters, respectively.

Whole pattern: 10+3×8 = 34
Aggressor: 10+3×8 =34
Victim: 10+3×8 =34
Input vector size: 3×34 = 102

Metal (i)

Aggressor

Metal (j)

Metal (k)

Victim

Input patterns of a parasitic model

Required pattern

Vector1: All polygons Vector2: Aggressor

polygon(s)
Vector3:Victim

polygon(s)

Vector1 = all polygons of [Metal(i); Metal(j); Metal(k)]

Vector2 = aggressor polygons in [Metal(i); Metal(j); Metal(k)]

Vector3 = victim polygons in [Metal(i); Metal(j); Metal(k)]

Input feature vector = [Vector1; Vector2; Vector3]

70

Table 4.2. Input vector sizes of several metal collections and models. continued.

Collection
Input vector sizes

vertex-based Ratio-based Dimensions-based

Metal3 Target Metal: Metal3
Target Metal polygons: 5
Number of Polygons: 5
Vertex-based representation: 5 × 8
= 40
Input vector size: 40 × 3 = 120

Assuming each metal is
represented by 50 segments.

Whole pattern: 1×50
Aggressor: 1×50
Victim: 1×50
Input vector size: 3×1×50 =

150

Target metal is represented

by 10 parameters.

Whole pattern: 10
Aggressor: 10
Victim: 10
Input vector size: 3×10 = 30

Metal1-

Metal2

Target Metal: Metal1
Secondary Metals: Metal2
Target Metal polygons: 5
Secondary Metal polygons: 4
Number of Polygons: 4 + 5 = 9
Vertex-based representation: 9 × 8
= 72
Input vector size: 72 × 3 = 216

Assuming each metal is
represented by 50 segments.

Whole pattern: 2×50
Aggressor: 2×50
Victim: 2×50

Input vector size: 3×2×50 =

300

Target and secondary metals

are represented by 10 and 8

parameters, respectively.

Whole pattern: 10 + 8 = 18
Aggressor: 10 + 8 = 18
Victim: 10 + 8 = 18
Input vector size: 3×18 = 54

4.5. Training Parasitic Models

Two different machine learning methods are used to create parasitic capacitance

models including Neural Networks (NN) and Support Vector Regressions (SVR). The

models are used to predict parasitic coupling capacitances between metal polygons in 2D

cross-section patterns. For a certain process technology node, there is a model for each

metal collection, where metal1-metal2-metal3 has a model, whereas metal2-metal4-

metal5 has another model. The inputs of the models are the pattern representation of all

polygons followed by aggressor and victim polygons as shown in Fig. 4.17.

Fig. 4.17. An example showing the flow of generating an input feature vector of a parasitic capacitance
model.

Cc

All polygons

Aggressor polygon(s)

Victim polygon(s)

Pattern

Representation

Pattern

Representation

Pattern

Representation

Vector1

Vector2

Vector3

Merge

Input vector

Parasitic

Model Cc

Size of Vector1 = Size of Vector2 = Size of Vector3

 Input vector =

 [Vector1;Vector2;Vector3]

71

4.5.1. Neural-Networks Models

A Neural Network (NN) model is implemented to predict parasitic capacitances in

2D cross-section patterns. There is a NN model for each metal collection in a certain

process technology node. The architecture and hyper-parameters of NN models are

obtained using a grid search algorithm. The purpose of applying a grid search

algorithm is to obtain appropriate NN architectures. The NN architectures are obtained

based on the number of metal layers in the corresponding metal collection. For example,

a metal collection with five metal layers has a NN architecture, whereas a metal

collection with four metal layers has another NN architecture.

The grid search algorithm is applied on fully connected neural networks. The

search range of the grid search covers several parameters including the number of

layers, number of neurons in each layer, activation functions, optimizer, batch size,

learning rate, and initializations. Table 4.3 summarizes the search ranges of each

parameter. The evaluation criteria of selecting a NN architecture are set based on the

test set accuracy, where the grid search observes the accuracy of test sets across all

architectures until a mean square error of 0.01% is achieved. Such a process is applied

on 28nm, 16nm, and 7nm process nodes in order to obtain unified NN architectures

for each metal collection model. Table 4.4 shows the obtained NN architectures for the

different proposed pattern representations.

As for hyper-parameters, the dataset is divided into 70% training data and 30% test

data, validation set is 10%, the number of epochs is 1K, adaptive moment estimation

(ADAM) optimizer is used, the learning rate is set to 1e-3, the batch size is set to 500,

the cost function is set to a mean square error, and the batch normalization is applied.

These parameters are obtained using a grid search.

72

Table 4.3. Search ranges of neural network architectures.
Parameter Search range

Number of layers From 1 to 7 with a step size of 1

Number of neurons

in each layer

n/7, n/6, n/5, n/4, n/3, n/2, and n,

where n is the input vector size.

Activation function The rectified linear activation unit

(RELU) and hyperbolic tangent

function (tanh)

Optimizer The adaptive moment estimation

(ADAM) and stochastic gradient

descent (SGD)

Batch size 500, 1000, and 1500

Learning rate 1e-2, 1e-3, and 1e-4

Table 4.4. Neural network architectures of parasitic capacitance models.

Input vector
NN Architecture

vertex-based Ratio-based Dimensions-based

One metal layer

Input vector size: 120

Number of hidden layers: 2.

Number of neurons in hidden

layers: 40 and 60, respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

[81] and Glorot’s normal [82]

initializations, respectively.

For input vector size: 50.

Number of hidden layers: 2.

Number of neurons in hidden

layers: 50 and 50, respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

[81] and Glorot’s normal [82]

initializations, respectively.

Input vector size: 30.

Number of hidden layers: 2.

Number of neurons in hidden

layers: 30 and 30, respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

[81] and Glorot’s normal [82]

initializations, respectively.

Two metal

layers

Input vector size: 216

Number of hidden layers: 2.

Number of neurons in hidden

layers: 72 and 108,

respectively.

Activation functions: RELU

and tanh.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

For input vector size: 100.

Number of hidden layers: 2.

Number of neurons in hidden

layers: 50 and 100,

respectively.

Activation functions: RELU

and tanh.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

Input vector size: 54.

Number of neurons in hidden

layers: 54 and 54, respectively.

Activation functions: RELU

and tanh.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

73

Table 4.4. Neural network architectures of parasitic capacitance models,-continued.

Input vector
NN Architecture

vertex-based Ratio-based Dimensions-based

Three metal

layers

Input vector size: 312

Number of hidden layers: 2.

Number of neurons in hidden

layers: 78 and 156,

respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

For input vector size: 150.

Number of hidden layers: 2.

Number of neurons in hidden

layers: 75 and 150,

respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

Input vector size: 78.

Number of neurons in hidden

layers: 78 and 78, respectively.

Activation functions: RELU

and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal

and Glorot’s normal

initializations, respectively.

Four metal

layers

Input vector size: 408

Number of hidden layers: 3.

Number of neurons hidden

layers: 68, 102, and 204,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

For input vector size: 200.

Number of hidden layers: 3.

Number of neurons hidden

layers: 67, 100, and 200,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

Input vector size: 102.

Number of hidden layers: 3.

Number of neurons hidden

layers: 51, 102, and 102,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

Five metal

layers

Input vector size: 504

Number of hidden layers: 3.

Number of neurons hidden

layers: 84, 126, and 252,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

For input vector size: 250.

Number of hidden layers: 3.

Number of neurons hidden

layers: 84, 125, and 250,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

Input vector size: 126.

Number of hidden layers: 3.

Number of neurons hidden

layers: 126, 63, and 126,

respectively.

Activation functions: RELU,

tanh, and tanh, respectively.

Cost function: mean square

error.

Initializations: He’s normal,

Glorot’s normal, and Glorot’s

normal initializations,

respectively.

74

4.5.2. Support Vector Regressions

Support vector regression (SVR) models are implemented to predict parasitic

coupling capacitances of 2D cross-section patterns. There is a model for each metal

collection in a certain process technology node. In order to obtain unified hyper

parameters for all models, a grid search algorithm is applied across 28nm, 14nm, and

7nm process nodes. The search range of SVR models includes kernel, regularization

parameter (C), gamma, and epsilon parameters. The search ranges of these parameters

are listed in Table 4.5. The cost function is set to a mean square error. The evaluation

criteria are set based on the test set accuracy, where the grid search observes the

accuracy of test sets across different combinations of hyper-parameters until a mean

square error of 0.01% is achieved. Table 4.6 shows the obtained SVR hyper-parameters

for each input vector size for the three pattern representations.

Table 4.5. Search ranges of support vector regression hyper-parameters.
Parameter The search range

Kernel Radial Basis Function (RBF) and polynomial.

Regularization parameter (C) From 1 to 20 with a step size of 1

Epsilon From 0.05 to 0.5 with a step size of 0.05

Gamma From 0.1 to 1 with a step size of 0.1

Table 4.6. SVR hyper-parameters of parasitic capacitance models for the proposed ratio-based,
dimensions-based, and vertex-based pattern representations.

Input vector of a model SVR Hyper-parameters

One metal layer Kernel: Radial Basis Function (RBF)
Regularization parameter (C): 8

Epsilon: 0.1
Gamma: 0.3

Two metal layers Kernel: Radial Basis Function (RBF)
Regularization parameter (C): 9

Epsilon: 0.1
Gamma: 0.4

Three metal layers Kernel: Radial Basis Function (RBF)
Regularization parameter (C): 9

Epsilon: 0.1
Gamma: 0.4

Four metal layers

Kernel: Radial Basis Function (RBF)
Regularization parameter (C): 10

Epsilon: 0.1
Gamma: 0.3

Five metal layers

Kernel: Radial Basis Function (RBF)
Regularization parameter (C): 10

Epsilon: 0.1
Gamma: 0.3

75

4.6. Experimental Results

The proposed modeling methodology was tested across three different process

technology nodes including 28nm, 14nm, and 7nm process nodes. The testing covered

several real designs for each node. The accuracy of the generated compact models was

measured relative to Raphael, 2D field-solver. Also, the accuracy and runtime of the

generated NN and SVR compact models were compared against Calibre PEX cross-

section models [19]. The proposed ratio-based and dimensions-based used the sensitivity

formulas of Calibre PEX to handle systematic process variations, whereas the proposed

vertex-based can handle the impact of systematic process variations without using

external sensitivity formulas. The relative error was measured for each capacitance

component in a layout pattern using the below formula:

Relative error = (predicted – reference) / predicted, (4.9)

where the predicted value represents the capacitance value that is obtained from the

model, whereas the reference value represents the corresponding capacitance value that

was obtained from Raphael, 2D field-solver. Moreover, nonparametric statistical tests

were performed to test the significant difference in performance (i.e., accuracy) between

each two models.

For each process technology node, the proposed modeling methodology was used to

generate NN and SVR models. The training data were obtained from real layouts

including static read access memory (SRAM), digital to analog converter (DAC), and ring

oscillator (RO) designs. Also, more training patterns were randomly generated covering

the ranges from 1X to 10X of the minimum dimensions. The training and model’s

generation used Tensor flow libraries, [83], and the implementation is done using Python

[84]. The training used Intel Xeon(R) E5-2680, 4CPU, 2.50GHz, and 16G of RAM. The

errors of extracted capacitances were measured relative to Raphael, 2D field-solver. There

are six types of developed models that include NN using ratio-based, SVR using ratio-

based, NN using dimensions-based, SVR using dimensions-based, NN using vertex-

76

based, and SVR using vertex-based. The six types were tested and compared to each

other.

4.6.1. Testing Designs of 28nm Process Nodes

The total number of generated models for each modeling method is 130. The

generated models cover 130 different metal collections each includes 1 to 5 different

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%)

were used for the test set. Table 4.7 shows the training runtime of NN and SVR models

using the three different proposed pattern representations.

Table 4.7. Training runtimes of the 2D cross-section parasitic models for 28nm process node.
 Ratio-based Dimensions-based Vertex-based

NN SVR NN SVR NN SVR
Training runtime 18.9 hours 11.2 hours 18.2 hours 10.3 hours 19.3 hours 12.7 hours

As for NN models, the total training runtime of all models for the ratio-based,

dimensions-based, and vertex-based representations are 18.9, 18.2, and 19.3 hours,

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 11.2, 10.3, and 12.7

hours, respectively. The training (i.e., models generation) runtimes can significantly

improve by multi-processing. It is worth mentioning that the models were generated

only once for each process node. After that, the generated models are used numerous

times by parasitic extraction tools. Table 4.8 shows the test sets accuracy the proposed

models for the three different representations.

Table 4.8. The accuracy and relative errors of test sets for all developed cross-section models of 28nm
process node.

 Ratio-based Dimensions-based Vertex-based
NN
models

SVR
models

NN
models

SVR
models

NN
models

SVR
models

Mean of relative errors 0.051% 0.062% 0.049% 0.058% 0.031% 0.052%
Standard deviation of
relative errors

2.61% 2.95% 2.93% 3.17% 2.13% 2.35%

Outliers with relative
error > 5%

2.25% 2.37% 2.45% 2.71% 1.45% 1.67%

Mean square error 0.00314 0.00335 0.00416 0.00422 0.00173 0.00216

77

The training and test sets accuracy comparison used four main criteria including 1)

the mean of all relative errors, 2) the standard deviation of all relative errors, 3) the

percentage of outliers that exceeds 5% relative error (i.e., the number of outliers to the

total number of extracted capacitance components), and 4) the mean square error across

all models. The accuracy results of test sets show that the proposed models provide a

high accuracy, where almost 98% of the extracted capacitances have relative errors

below 5%.

As for testing the generated models on real design patterns of 28nm process node,

the generated models were tested over cross-section patterns of three different test

chips including dynamic read access memory (DRAM), static read access memory

(SRAM), and voltage-controlled oscillator (VCO) designs that were not included during

the training processes. The total numbers of extracted cross-section patterns in DRAM,

SRAM, and VCO designs are 790K, 327K, and 953K patterns, respectively. The

corresponding total number of capacitance components are 2.76M, 1.3M, and 4.2M

capacitances, respectively. Therefore, the total number of extracted cross-section

patterns across all designs is 2.07M patterns, and the total number of extracted

capacitances across all designs is 8.26M.

Fig. 4.18 shows histograms of relative errors covering all extracted capacitances

across all tested 28nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based

extraction cross-section models. The accuracy comparisons show that the proposed

vertex-based NN and SVR models provide high accuracy results as compared to

existing rule-based cross-section models and other proposed models. Table 4.9 shows

the percentages of extracted capacitance components with relative errors above 5%

using the different extraction methods.

Table 4.9. Percentages of extracted capacitances with relative errors above 5% for 28nm designs.

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR

Outliers > 5% relative error 7.71% 7.84% 9.37% 10.13% 1.5% 1.9% 24.76%

78

It is worth mentioning that most of the outliers, with more than 5% relative error,

that were generated using the proposed vertex-based NN and SVR models have very

small capacitance values (<1e-4 fF).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4.18. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D
cross-patterns of 28nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based
cross-section models.

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 7.71%
STDEV of relative errors: 4.8%

Relative error

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 7.84%
STDEV of relative errors: 4.9%

0

500K

1,000K

1,500K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 9.37%
STDEV of relative errors: 5.32%

0

500K

1,000K

1,500K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 10.13%
STDEV of relative errors: 5.47%

0

500K

1,000K

1,500K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 1.5%
STDEV of relative errors: 2.31%

Relative error

0

500K

1,000K

1,500K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

 Outliers with relative errors > |5%|: 1.9%
STDEV of relative errors: 2.89%

Relative error

0

200K

400K

600K

800K

1,000K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

 Outliers with relative errors > |5%|: 24.76%
STDEV of relative errors: 6.8%

Relative error

79

As for runtime comparisons, the total runtimes of extracting (i.e., computing) all

cross-sections (i.e., 2.07M patterns) including the sensitivity formulas are shown in

Table 4.10. The capacitance computations were done on a single CPU using Intel

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes of the

ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR,

vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.2,

1.09, 1.13, 1.06, 0.417, and 0.38, respectively. Therefore, the corresponding speeding ups

as relative to rule-based models are 0.833, 0.917, 0.88, 0.943, 2.398, and 2.634,

respectively. As a result, proposed vertex-based models are almost 2.5X faster than

existing rule-based and other proposed models. Such a speeding up is achieved because

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to

measure the impact of systematic process variations as in the other methods.

Eventually, the vertex-based models (either NN or SVR models) managed to achieve

high accuracy results as compared to existing rule-based cross-section models and other

proposed models with an average speed up of 2.5X.

Table 4.10. The computations runtime of the proposed extraction models and existing rule-based
models when executed over several designs of 28nm process nodes.

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR

Computations runtime 19.27
hours

17.52
hours

18.23
hours

17.04
hours

6.7
hours

6.1
hours

16.07
hours

Relative runtime to rule-based
models

1.2 1.09 1.13 1.06 0.417 0.38 1

4.6.2. Testing Designs of 14nm Process Nodes

The total number of generated models for each modeling method is 175. The

generated models cover 175 different metal collections each includes 1 to 5 different

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%)

were used for the test set. Table 4.11 shows the training runtime of NN and SVR models

using the three different proposed pattern representations.

80

Table 4.11. Training runtimes of the 2D cross-section parasitic models of 14nm process node.
 Ratio-based Dimensions-based Vertex-based

NN SVR NN SVR NN SVR

Training runtime 19.4 hours 12.9 hours 18.7 hours 12.1 hours 21.7 hours 13.9 hours

As for NN models, the total training runtime of all models for the ratio-based,

dimensions-based, and vertex-based representations are 19.4, 18.7, and 21.7 hours,

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 12.9, 12.1, and 13.9

hours, respectively. The training (i.e., models generation) runtimes can significantly

improve by multi-processing.

Table 4.12 shows the test sets accuracy of the proposed models. The results show

that the proposed models provide high accuracy values, where almost 98% of the

extracted capacitances have relative errors below 5%.

Table 4.12. The accuracy and relative errors of test sets for the proposed models of 14nm process node.

 Ratio-based Dimensions-based Vertex-based
NN
models

SVR
models

NN
models

SVR
models

NN
models

SVR
models

Mean of relative errors 0.072% 0.074% 0.077% 0.081% 0.042% 0.061%
Standard deviation of
relative errors

3.12% 3.55% 3.41% 3.65% 2.21% 2.75%

Outliers with relative
error > 5%

2.07% 2.27% 2.21% 2.37% 1.77% 1.97%

Mean square error 0.00351 0.00406 0.00397 0.00496 0.00237 0.00316

As for testing the generated models on real design patterns of 14nm process node,

the generated models were tested over cross-section patterns of three test chips

including cache memory, DRAM, and VCO designs that were not included during the

training processes. The total numbers of extracted cross-section patterns in cache

memory, DRAM, and VCO designs are 630K, 915K, and 1.03M patterns, respectively.

The corresponding total number of capacitance components are 2.8M, 4M, and 4.4M

capacitances, respectively. Therefore, the total number of extracted cross-section

patterns is 2.575M patterns, and the total number of extracted capacitances is 11.2M.

81

Fig. 4.19 shows histograms of relative errors covering all extracted capacitances

across all tested 14nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based

extraction cross-section models. The accuracy comparisons show that the proposed

vertex-based models (either NN or SVR models) provide high accuracy results as

compared to existing rule-based cross-section models and other proposed models.

Table 4.13 shows the percentages of extracted capacitance components with relative

errors above 5% using the different extraction methods. It is worth mentioning that

most of the outliers, with more than 5% relative error, that were generated from the

proposed vertex-based models have very small capacitance values (<1e-4 fF).

Table 4.13. Percentages of extracted capacitance components with relative errors above 5% in 14nm
designs.

 Ratio-based Dimensions-based Vertex-based Rule-
based

NN SVR NN SVR NN SVR

Outliers > 5% relative error 12.6% 14.3% 12.4% 14.7% 1.97% 2.19% 25.7%

As for runtime comparisons, the total runtimes of extracting (i.e., computing) all

cross-section patterns (i.e., 2.575M patterns) including the sensitivity formulas are

shown in Table 4.14. The capacitance computations were done on a single CPU using

Intel Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes

of the ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR,

vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.2,

1.093, 1.19, 1.068, 0.415, and 0.3914, respectively. Therefore, the corresponding

speeding ups as relative to rule-based models are 0.83, 0.91, 0.84, 0.936, 2.41, and 2.55,

respectively. As a result, proposed vertex-based models are almost 2.45X faster than

existing rule-based and other proposed models. Such a speeding up is achieved because

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to

measure the impact of systematic process variations as in the other methods.

82

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4.19. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D
cross-patterns of 14nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based
cross-section models.

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

Outliers with relative errors > |5%|: 12.6%
STDEV of relative errors: 5.82%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 14.3%
STDEV of relative errors: 5.96%

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 12.4%
STDEV of relative errors: 5.47%

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Outliers with relative errors > |5%|: 14.7%
STDEV of relative errors: 5.98%

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 1.97%
STDEV of relative errors: 2.58%

Relative error

0

500K

1,000K

1,500K

2,000K
<

-1
0

%
-1

0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%
>

1
0

%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

 Outliers with relative errors > |5%|: 2.19%
STDEV of relative errors: 3.07%

Relative error

0
200K
400K
600K
800K

1,000K
1,200K
1,400K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%C

a
p

a
ci

ta
n

ce
 c

o
m

p
o

n
en

ts

Relative error

Outliers with relative errors > |5%|: 25.7%
STDEV of relative errors: 6.94%

83

Table 4.14. The computations runtime of the proposed extraction models and existing rule-based models
when executed over several designs of 14nm process nodes.

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR

Computations runtime 24.1
hours

21.9
hours

23.8
hours

21.4
hours

8.32
hours

7.84
hours

20.03
hours

Relative runtime to rule-based
models

1.2 1.093 1.19 1.068 0.415 0.3914 1

4.6.3. Testing Designs of 7nm Process Nodes

The total number of generated models for each modeling method is 231. The

generated models cover 231 different metal collections each includes 1 to 5 different

metal layers. Each model (i.e., NN or SVR model) was trained over 30K cross-section

patterns, where 21K patterns (70%) were used for the training set, and 9K patterns (30%)

were used for the test set. Table 4.15 shows the training runtime of NN and SVR models

using the three different proposed pattern representations.

Table 4.15. Training runtimes of the 2D cross-section parasitic models for 7nm process node.
 Ratio-based Dimensions-based Vertex-based

NN SVR NN SVR NN SVR

Training runtime 22.7 hours 13.2 hours 21.5 hours 12.9 hours 23.01 hours 15.03 hours

As for NN models, the total training runtime of all models for the ratio-based,

dimensions-based, and vertex-based representations are 22.7, 21.5, and 23.01 hours,

respectively. As for SVR models, the total training runtime of all models for the ratio-

based, dimensions-based, and vertex-based representations are 13.2, 12.9, and 15.03

hours, respectively. The training (i.e., models generation) runtimes can significantly

improve by multi-processing. It is worth mentioning that the models were generated

only once for each process node. After that, the generated models are used numerous

times by parasitic extraction tools.

Table 4.16 shows the test sets accuracy of NN and SVR models. The results show

that the proposed models provide high accuracy values, where almost 97% of the

extracted capacitances have relative errors below 5%.

84

Table 4.16. The accuracy and relative errors of test sets for the proposed models of 7nm process node.

 Ratio-based Dimensions-based Vertex-based

NN
models

SVR
models

NN
models

SVR
models

NN
models

SVR
models

Mean of relative errors 0.067% 0.091% 0.081% 0.089% 0.065% 0.083%

Standard deviation of
relative errors

3.52% 3.67% 3.76% 3.9% 3.02% 3.17%

Outliers with relative
error > 5%

2.71% 3.1% 3.01% 3.2% 2.31% 2.6%

Mean square error 0.0059 0.0068 0.0062 0.0072 0.0052 0.0063

As for testing the generated models on real design patterns of 7nm process node,

the generated models were tested over cross-section patterns of two test chips including

cache memory (CM) and VCO designs that were not included during the training

processes. The total numbers of cross-section patterns of cache memory and VCO

designs are 920K and 1.17M patterns, respectively. The corresponding total number of

capacitance components are 4.1M and 5M capacitances, respectively. Therefore, the

total number of extracted cross-section patterns is 2.09M patterns, and the total number

of extracted capacitances is 9.1M.

Fig. 4.20 shows histograms of relative errors covering all extracted capacitances

across all tested 14nm designs using the ratio-based NN, ratio-based SVR, dimensions-

based NN, dimensions-based SVR, vertex-based NN, vertex-based SVR, and rule-based

extraction cross-section models. The accuracy comparisons show that the proposed

vertex-based models (either NN or SVR models) provide high accuracy results as

compared to existing rule-based cross-section models and other proposed models.

Table 4.17 shows the percentages of extracted capacitance components with relative

errors above 5% using the different extraction methods. It is worth mentioning that

most of the outliers, with more than 5% relative error, that were generated from the

proposed vertex-based models have very small capacitance values (<1e-4 fF).

Table 4.17. Percentages of extracted capacitance components with relative errors above 5% in 7nm
designs.

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR

Outliers > 5% relative error 23.3% 23.9% 24.1% 24.7% 2.53% 3.2% 28.9%

85

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4.20. Relative error histograms, as compared to Raphael 2D [75], of extracted capacitances for 2D
cross-patterns of 7nm designs using the (a) ratio-based NN, (b) ratio-based SVR, (c) dimensions-based
NN, (d) dimensions-based SVR, (e) vertex-based NN, (f) vertex-based SVR, and (g) Calibre rule-based
cross-section models.

As for runtime comparisons, the total runtimes of extracting (i.e., computing) all

cross-section patterns (i.e., 2.09M patterns) including the sensitivity formulas are shown

in Table 4.18. The capacitance computations were done on a single CPU using Intel

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. The results shows that the runtimes of the

ratio-based NN, ratio-based SVR, dimensions-based NN, dimensions-based SVR,

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 23.3%
STDEV of relative errors: 7.01%

Relative error

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

Outliers with relative errors > |5%|: 23.9%
STDEV of relative errors: 7.15%

Relative error

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 24.1%
STDEV of relative errors: 7.32%

Relative error

0

500K

1,000K

1,500K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0
%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 24.7%
STDEV of relative errors: 7.61%

Relative error

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Outliers with relative errors > |5%|: 2.53%
STDEV of relative errors: 2.65%

Relative error

0

500K

1,000K

1,500K

2,000K

<
-1

0
%

-1
0

%
-9

%
-8

%
-7

%
-6

%
-5

%
-4

%
-3

%
-2

%
-1

%
0

%
1

%
2

%
3

%
4

%
5

%
6

%
7

%
8

%
9

%
1

0
%

>
1

0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

 Outliers with relative errors > |5%|: 3.2%
STDEV of relative errors: 3.29%

Relative error

0

500K

1,000K

<
-1

0
%

-1
0

%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1

0
%

Outliers with relative errors > |5%|: 28.9%
STDEV of relative errors: 8.31%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

86

vertex-based NN, and vertex-based SVR models relative to rule-based models are 1.196,

1.065, 1.162, 1.044, 0.426, and 0.419, respectively. Therefore, the corresponding

speeding ups as relative to rule-based models are 0.836, 0.94, 0.86, 0.958, 2.346, and 2.39,

respectively. As a result, proposed vertex-based models are almost 2.35X faster than

existing rule-based and other proposed models. Such a speeding up is achieved because

the impact of systematic process variations is incorporated inside the proposed vertex-

based models. Therefore, there is no need to apply additional computations in order to

measure the impact of systematic process variations as in the other methods.

Table 4.18. The computations runtime of the proposed extraction models and existing rule-based
models when executed over several designs of 14nm process nodes.

 Ratio-based Dimensions-based Vertex-based Rule-
based NN SVR NN SVR NN SVR

Computations runtime 19.46
hours

17.31
hours

18.9
hours

16.98
hours

6.93
hours

6.81
hours

16.26
hours

Relative runtime to rule-
based models

1.196 1.065 1.162 1.044 0.426 0.419 1

4.6.4. Statistical Tests

Nonparametric statistical tests were performed to test the significant difference in

performance (i.e., accuracy) between each two models using Wilcoxon signed-ranks test

[85]. Since the vertex-based NN models provided better accuracy results as compared to

other models. The Wilcoxon signed-rank tests are performed to compared test the

significant difference in accuracy between the vertex-based models and all other models.

In our case, the null hypothesis indicates a lack of a significant difference between the

two tested models. The null hypothesis will be rejected if the p-value is less than 0.05 (p-

value < 0.05). The mean square error (MSE) was used as a performance metric to help in

performing statistical tests. MSE values were obtained for the four extraction models

over 13 datasets using Raphael, 2D field-solver, as a reference, as shown in Table 4.19.

Fig. 4.21 shows the differences in mean square errors between the rule-based model and

each proposed model across different test designs. The figure shows that the vertex-

based models provide better results as compared to all other models. Moreover, the

vertex-based models show outstanding results as compared to the other proposed

87

models when the impact of systematic process variations on parasitic capacitances

increases, mainly in advanced nodes.

Table 4.19. Accuracy comparisons in terms of mean square errors for rule-based, ratio-based, the
proposed SVR, and the proposed NN models.

Dataset

Mean square error (MSE)

Calibre
rule-based

[19]

Ratio-
based

NN

Ratio-
based
SVR

Dimensions-
based

NN

Dimensions-
based
SVR

Vertex-
based
NN

Vertex-
based
SVR

RO (28nm) 0.00710 0.00231 0.00320 0.00265 0.00337 0.00173 0.00141

DRAM(28nm) 0.00930 0.00213 0.00260 0.00192 0.00221 0.00201 0.00219

SRAM(28nm) 0.00120 0.00160 0.00115 0.00219 0.00223 0.00233 0.00173

DAC(28nm) 0.00760 0.00432 0.00471 0.00417 0.00471 0.0019 0.00201

VCO(28nm) 0.00314 0.00470 0.00530 0.00427 0.00527 0.00211 0.00379

RO(14nm) 0.00301 0.00217 0.00207 0.00218 0.00209 0.00237 0.00296

DAC(14nm) 0.00430 0.00523 0.00514 0.00596 0.00572 0.0019 0.00327

DRAM(14nm) 0.00810 0.00455 0.00473 0.00512 0.00538 0.00385 0.00316

VCO(14nm) 0.01300 0.00710 0.00722 0.00801 0.00891 0.0031 0.00411

RO(7nm) 0.05010 0.10810 0.09370 0.10783 0.09730 0.00387 0.00510

SRAM(7nm) 0.05230 0.05030 0.05410 0.0502 0.0532 0.0049 0.00471

CM(7nm) 0.08150 0.07711 0.08132 0.07984 0.08041 0.0059 0.00720

VCO(7nm) 0.10300 0.13800 0.13910 0.1337 0.1401 0.0061 0.00811

Fig. 4.21. A graph showing the mean square errors of all proposed cross-section parasitic capacitance models

across different designs taking the mean square errors of rule-based models as references.

-0.1

-0.05

0

0.05

Ratio-based NN

Ratio-based SVR

Dimensions-based NN

Dimensions-based SVR

Vertex-based NN

Vertex-based SVR

Higher impact of systematic

process variations on parasitic

capacitances

RO SRAM VCO DAC VCO SRAM VCO

(28nm) (14nm)

Regular structures (SRAM and CM)

Zero Reference

is Rule-based

(7nm)

(R
u

le
-B

as
ed

 M
S

E
)

–
(M

o
d

el
 M

S
E

)

Designs

 DRAM DAC RO DRAM RO CM

88

Table 4.20 shows statistical comparisons using Wilcoxon signed-rank tests. The table

shows the p-value and z-value for each paired comparison test. Also, the table shows the

sum of positive ranks (SPR) and sum of negative ranks (SNR) for each paired

comparison test. The comparisons show that there is no significant difference between

the proposed vertex-based NN and vertex-based SVR models as the p-value is greater

than 0.05. However, the results show significant differences (i.e., rejecting the null

hypothesis) between the proposed models and each compared extraction model as the

p-values are less than 0.05.

Table 4.20. Paired comparisons using Wilcoxon signed-rank test (two-tailed) to test the significant
difference between each two models, where the mean square error, against a field-solver, is used as a
performance metric.

Pairwise comparison
SNR SPR z-value p-value Significance

Model1 Model2

Vertex-based NN Vertex-based
SVR

71 20 -1.7821 0.07508 No

Vertex-based NN Calibre rule-
based [19]

88 3 -2.9701 0.00298 Yes

Vertex-based NN Ratio-based NN 84 7 -2.6906 0.00714 Yes

Vertex-based NN Ratio-based SVR 86 5 -2.8304 0.00466 Yes

Vertex-based NN Dim-based NN 85 6 -2.7605 0.00578 Yes

Vertex-based NN Dim-based SVR 87 4 -2.9003 0.00374 Yes

 SNR: Sum of negative ranks; SPR: Sum of positive ranks.

4.7. Conclusion

A novel modeling methodology for interconnect parasitic capacitances is

developed for rule-based extraction tools using machine learning methods. The

proposed methodology managed to overcome several problems in rule-based

extraction tools such as handling systematic process variations, high pattern

mismatches, and limited pattern coverages. The proposed methodology creates cross-

section compact models for a certain process technology node. Such compact models

predict the parasitic coupling capacitances between metal polygons on a given 2D

cross-section layout pattern considering the impact of systematic process variations.

The modeling methodology process starts with processing process stack specifications

to identify the main characteristics of layout input patterns, such as pattern’s size, the

maximum number of metal layers in a pattern, handling multi-dielectric stacks,

89

systematic process variations, and the maximum number of polygons in a pattern. The

input of the compact models is a given cross-section pattern including the required

capacitances and the corresponding systematic process variations. Three different

pattern representations are introduced. First, a ratio-based representation. Second, a

dimensions-based representation. Third, a novel vertex-based pattern representation

that considers systematic process variations as a part of the geometrical characteristics

of a given pattern. The compact models are implemented using two different machine

learning methods: neural networks and support vector regression methods. The

proposed methodology is tested over thirteen real designs of 28nm, 14nm, and 7nm

process nodes with more than 6.7M interconnect patterns. The generated compact

models are faster than traditional rule-based models by 2.5X. Also, they managed to

achieve outstanding results as compared to field-solvers and rule-based cross-section

models, where the average relative error of the generated models is < 0.15% and the

standard deviation of relative errors is < 3.31%.

90

Machine Learning Compact Models for
Middle End of Line Parasitic
Capacitances

The massive improvement in the semiconductor industry enabled the integration of more

systems and functionalities on the same chip. Such integrations are empowered by the

feature scaling and the introduction of FINFETs. The continuous scaling down of

technologies resulted in parasitic effects such as interconnect resistances and capacitances

to dominate circuit performances, increasing the importance of interconnect parasitic

extraction. The parasitic effects that are associated with the Middle-End-Of-Lines

(MEOL), which are the interconnects connecting devices to upper metal layers, have a

major impact on circuit performances in advanced process nodes as shown in [53]–[56],

[60]. Fig. 5.1 shows some MEOL parasitic capacitances in case of FINFETs and MOSFETs,

respectively. Usually, commercial parasitic extraction tools use field-solvers to extract the

MEOL parasitic elements to achieve high accuracy levels. However, field-solvers are

slow, have a limited capacity, and consume a lot of computational resources [11].

(a)

(b)

Fig. 5.1. Some MEOL parasitic capacitances around (a) typical FINFET (Sun et al., 2015 [57]) and (b)
MOSFET structures.

Gate

Fin

STI

Ma

Mb Via

Cc(Gate-to-Via)

Cc(Gate-to-Mb)

Cc(Gate-to-Ma)

Cc(Gate extension-to-Ma)

Fin Ma

Cc(Gate-to-Fin)

 Drain Source

 Gate

Cc(Gate-to-M1)

Cc(Gate-to-Via-and-RSD)

Cc(Gate

End -to-

M1)

 Gate

Cc (Gate End

-to-Diffusion-

and-RSD)

Cc(Gate End -to-Via)

z
y

x

y

x

M1 M1

91

A novel MEOL parasitic capacitance modeling methodology using machine learning

is introduced. The proposed modeling methodology aims to provide a compact multi-

dimensional model for each device (i.e., transistor) type (e.g., N-type and P-type) for a

certain process node. Each compact model would replace thousands of pre-characterized

patterns. The inputs of the compact model are MEOL geometrical properties, whereas

the output is a certain pre-identified coupling capacitance component. The proposed

methodology uses a novel geometry-based representation to represent the required

features of MEOL patterns. Therefore, the geometry-based representations of MEOL

patterns are used as inputs to the compact models. Unlike existing pre-characterized

models, the proposed methodology can efficiently decrease pattern mismatches and

handle many varieties of MEOL patterns. Hence, the accuracy and runtime of MEOL

parasitic extraction processes are significantly improved.

As shown in Fig. 5.2, the proposed modeling methodology consists of three main

phases in order to create parasitic capacitance machine learning models for MEOL

patterns. The first phase aims to prepare training data. This is done by generating many

MEOL patterns, applying systematic process variations (e.g., etching), and extracting

parasitic capacitances of MEOL patterns using a field-solver to obtain reference parasitic

capacitance numbers. The second phase aims to extract features of MEOL patterns. This

is done by representing each MEOL pattern using a novel geometry-based

representation. Eventually, the third phase aims to train and create machine learning

models for MEOL parasitic capacitances.

92

Fig. 5.2. The process of implementing MEOL parasitic capacitance models.

5.1. Generate Training MEOL Patterns

The training patterns consists of 25K MEOL patterns for each device (transistor) type

in a certain process node. Each MEOL pattern consists of several metal layers that

construct gate, source, and drain terminals of a certain device as shown in Fig. 5.1. They

are created by scanning many real layout designs including cache memory, digital to

analog converter, and voltage controlled oscillator layouts. Also, additional MEOL

patterns were randomly generated covering different dimensions from 1X to 10X of the

minimum technological dimensions. To obtain realistic and practical MEOL training

patterns, two main factors need to be considered: the multi-dielectric environment and

the multi finger devices.

5.1.1. Multi-Dielectric Environment

Multi-dielectric process stacks became very common in advanced process

technology nodes, where each metal layer may overlap with multiple planar and

conformal dielectrics each with a different dielectric constant (εr). The use of multi-

Process node specifications (Metal stack)

Generate MEOL patterns

MEOL pattern
representation

Field-solver

Systematic variations

Train a Machine
learning Model

Phase1:

Prepare Training data

Modify Hyper-

parameters

Model

Phase3: Training

Phase2:

Pattern representation using a

geometry-based representation

YES

NO
Achieved required

accuracy?

93

dielectric characteristics as inputs to the capacitance models would significantly

complicate the modeling process and generate less accurate models with a slow

computational runtime. In order to consider the multi-dielectric characteristics without

using them as inputs to the parasitic capacitance models, each process node (i.e., metal

stack) should have its own models. Moreover, since each device type, in a certain

process node, may overlap with different dielectrics, each device type must also have

its own parasitic capacitance model. As a result, each device type per process node has

a capacitance model.

5.1.2. Multi-Finger Devices

The multi-finger devices contain multiple gates and MEOL patterns. Therefore, the

MEOL training patterns should consider the position of each gate within the

corresponding multi-finger device as the spatial position of each gate may impact the

calculations of MEOL parasitic coupling capacitances. Fig. 5.3 shows three identical

gates with a different spatial position within a multi-finger device. Fig. 5.3 (a) shows a

single gate MOSFET, Fig. 5.3 (b) shows a gate MOSFET on the edge of a multi-finger

device, whereas Fig. 5.3 (c) shows an intermediate gate MOSFET as a part of a multi-

finger device. The results show that the coupling capacitance between the source and

gate varies based on the location of the gate. Fig. 5.4 shows some examples of MEOL

patterns for both FINFET and MOSFET technologies.

 (a) (b) (c)
Fig. 5.3. Examples of MEOL coupling capacitances in case of (a) a single MOSFET, (b) a gate at the edge
of a multi-finger device, and (c) a gate in the middle of a multi-finger device. The experiment used 28nm
node with minimum dimensions. Calibre xACT3D is used to extract MEOL parasitic capacitances.

Source Drain

 Cgs: gate to source coupling capacitance, Cds: gate to drain coupling capacitance

Cgs = 0.0097 fF
Cgd = 0.01167 fF

Source Drain Source Drain

Cgs = Cds
 = 0.0097 fF

Cgs = Cds
 = 0.0118 fF

Gate Gate Gate

94

(a)

(b)

Fig. 5.4. Examples of training MEOL patterns showing (a) MOSFETs and (b) FINFETs.

5.2. Generate Reference Parasitic Capacitances

After generating MEOL training patterns, their parasitic capacitance reference

numbers are extracted using Calibre xACT3D, a 3D field-solver [32]. The reference

numbers are used to train MEOL parasitic capacitance machine learning models.

5.3. MEOL Pattern Representation

In order to create an efficient MEOL parasitic capacitance model for each device type,

the inputs of each model must provide sufficient information about the input MEOL

pattern that help in describing the geometries and identifying the required capacitance

component. Therefore, the inputs must include geometrical properties of the whole

MEOL pattern, aggressor polygons, and victim polygons. The geometrical properties of

the whole pattern help in determining the pattern structures, whereas the geometrical

properties of aggressor and victim polygons help in identifying the required parasitic

coupling capacitance component, which is between the aggressor and victim polygons.

The geometrical properties are represented by feature vectors. Hence, there is a feature

vector for the whole pattern, a feature vector for aggressor polygons, and a feature vector

for victim polygons. All feature vectors have the same size. Eventually, the three feature

 Gate Gate Poly Poly

Vias Metal1
Diffusion

and RSD

 Gate Gate poly poly

fins Local interconnect

Diffusion and raised source drain (RSD)

Vias

95

vectors are combined together conforming a final feature vector that represents the given

MEOL pattern and the required capacitance component. Fig. 5.5 shows an example of the

proposed MEOL feature vector that is used to predict a coupling capacitance between

gate and source nets.

Fig. 5.5. An example of the proposed MEOL feature vector that is used to predict gate to source coupling

capacitance in a MOSFET.

A geometry-based feature representation is proposed to extract geometrical

properties of MEOL patterns including a whole pattern, aggressor polygons, and victim

polygons. The proposed geometry-based representation has four main steps. The first

step aims to scan MEOL patterns and fracture their polygons into quadrilateral or

triangular polygons, e.g., rectangles and triangles. The second step aims to represent each

polygon (i.e., fractured polygon) by the spatial position of its vertices, where the spatial

position is measured from the center of the corresponding gate. In other words, the

spatial position of a vertex is its displacement from the center of the corresponding gate.

The third step aims to represent vias and fins. As for vias, each set of symmetrical vias is

grouped into a cluster. The spatial position (i.e., displacements from the center of the

corresponding gate) and the dimensions of via clusters are used as a representation of

vias. On the other hand, the fins are represented by fin width, fin spacing, and fins count.

Source Drain

Required capacitance =

gate to source capacitance

Window

Main pattern

Whole pattern
 representation

Aggressor polygon
 representation

Victim polygons
 representation

Metal1

Gate

Diffusion (source/drain)

Via (diffusion contact)

Feature vector = [whole pattern vector, aggressor vector, victim vector]

Representation patterns

96

Eventually, the fourth step aims to concatenate all feature vectors together creating a final

input vector that is used as an input to the required machine learning model. It is worth

mentioning that such geometrical representation captures non-Manhattan geometries.

The flow is described below.

5.3.1. Fracturing Polygons

In MEOL patterns, some polygons may have more than four vertices, e.g., T-shaped

polygons. In such cases, the polygons are fractured into quadrilateral or triangular

polygons. The fracturing is done by scanning the polygons in the x-direction (i.e.,

perpendicular to gate). In case of capturing any polygon with more than 4 vertices, the

polygon is fractured vertically as shown in Fig. 5.6. Then, the polygons are scanned in

the y-direction (i.e., parallel to gate). In case of capturing any polygon with more than

4 vertices, the polygon is fractured horizontally.

Fig. 5.6. An example of fracturing a polygon in x-direction.

5.3.2. Creating a Feature Vector for Each MEOL Layer

After fracturing all MEOL polygons for each layer in a certain MEOL pattern. Each

polygon is represented by the spatial position of its four vertices, where the spatial

position is measured from the center of the corresponding gate in a given MEOL

pattern. Therefore, each polygon is represented by a vector of eight values that

represent the x and y locations of each vertex. For example, an MEOL layer with 5

polygons is represented by a vector of 40 indices as shown in Fig. 5.7. In case of

triangular polygons, they are represented by 4 vertices, but the last two vertices have

the same position.

Fracturing in x-direction

(perpendicular to gate)

Fractured polygons: PL1, PL2, and PL3 Polygon

Gate

PL1

PL2 PL3

97

Fig. 5.7. An Example of representing MEOL layer polygons using a vector of vertices.

5.3.3. Representing Vias and Fins

MEOL patterns may contain many vias. Representing all vias with their vertices

would significantly increase the feature vector size. Hence, vias are grouped into

clusters, where each set of symmetrical vias are clustered together conforming a matrix

(or a vector) of vias. Each cluster is represented by six parameters: the spatial position

of its center (in x and y axes), the number of vias in x-direction, the number of vias in y-

direction, the width of the corresponding vias, and the spacing between the

corresponding vias as shown in Fig. 5.8. On the other hand, fins are represented by

three parameters: fin width, fin spacing, and fins count.

Fig. 5.8. An example showing the feature vector of MEOL vias.

Gate/poly feature Vector =
[x1, y1, x2, y2, x3, y3, x4, y4 For PL1: Center polygon

, x1, y1, x2, y2, x3, y3, x4, y4 For PL2: 1
st
 right polygon

, x1, y1, x2, y2, x3, y3, x4, y4] For PL3: 1
st
 left polygon

x

PL1
PL2

PL3

PL2(x1,y1)

PL2(x2,y2)
PL2(x3,y3)

PL2(x4,y4)

(0,0)

C1: Via Cluster (right)

Via feature vector =
[x1,y1, via count(x), via count (y), via width, via spacing For C1
, x2,y2, via count(x), via count (y), via width, via spacing] For C2

C2: Via Cluster (left)

C1 center

(x1,y1)

C2 center

(x2,y2)

Via count (x)= 1
Via count (y)= 5

(0,0)

Via count (x)= 1
Via count (y)= 5

98

5.3.4. Maximum Number of MEOL Polygons

Obtaining the maximum number of polygons for each layer (e.g., diffusion, poly,

and metal1) in MEOL patterns helps in identifying the input vector size of MEOL

models. The maximum number of polygons for each MEOL layer is identified by

checking the corresponding layout design rules and by observing many fractured

MEOL training patterns. In case of MOSFETs (28nm process node), the maximum

numbers of fractured polygons for gate, field-poly, diffusion (including raised source

drain (RSD)), and metal1 layers are 7, 7, 6, and 6, respectively. As for vias, the maximum

number of via clusters is 4. On the other hand, in case of FINFETs (7nm process node),

the maximum numbers of fractured polygons for gate, field-poly, diffusion, raised

source drain (RSD), device local interconnect, and field local interconnect layers are 3,

6, 2, 2, 6, and 6, respectively. As for vias, the maximum number of via clusters is 4. All

previous steps are performed for the whole MEOL pattern, aggressor polygons, and

victim polygons. Eventually, the final input vector size is calculated by:

input vector size of MEOL model = 3 (𝑉 + 𝐹 + ∑𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒(𝑖)

𝑛

𝑖=1

), (5.1)

where n is the number of MEOL layers, V is the via vector size, whereas F is the fin

vector size. Fig. 5.9 shows an example of the final input feature vector for a certain

MEOL pattern.

Fig. 5.9. An example showing the generating of the final input vector that is used for MEOL parasitic
capacitance extraction.

Final input feature vector = [Vector1, Vector2, Vector3]

Whole pattern

Aggressors

Victims

Main MEOL

pattern

Layers Feature

vectors

Layers Feature

vectors

Layers Feature

vectors

Vias and Fins

feature vectors

Vias and Fins

feature vectors

Vias and Fins

feature vectors

Vector1

Vector2

Vector3

99

5.4. MEOL Parasitic Capacitance Models

Two modeling approaches are used to create MEOL parasitic capacitance models.

The first approach uses Neural-Networks (NN) models, whereas the second approach

uses Support Vector Regressions (SVR). There is a model for each device type in a certain

process node. The inputs of both methods are the concatenated feature vectors that

include geometrical representations of an MEOL pattern, aggressor polygons, and victim

polygons as shown in Fig. 5.9. The models are implemented based on Google Tensor flow

libraries, [83], using Python [84].

5.4.1. Neural Networks Model

The NN architectures are obtained using neural architecture search [86]. As for the

search space, the number of hidden layers varies from 1 to 4, the activation function of

each layer alternates between RELU and tanh, the number of neurons per hidden layer

varies from n/6 to n, where n is the input vector size, and the initialization parameter

of each layer alternates between glorot_normal and he_normal. A fully connected NN

is considered for MEOL models. A grid search is used as a search strategy. The lowest

mean square error of test sets with smallest architecture is used as an evaluation

method. Table 5.1 summarizes NN hyper-parameters. Fig. 5.10 shows the most

common NN architecture that is obtained for MEOL patterns in 28nm and 7nm process

nodes. It consists of three hidden layers with n/4, n/4, and n/5 neurons, respectively.

The activation function of each layer is tanh, tanh, and RELU, respectively. The

initialization parameters of the layers are golort_normal, golort_normal, and

he_normal, respectively.

Table 5.1. Training hyper parameters of MEOL parasitic capacitances NN models.
Parameter Value
Training set 80% (20K patterns)

Test set 20% (5K patterns)
Batch size 500
Validation set 10% (2K patterns)

Loss function Mean square error
Learning rate 1e-3

Batch normalization YES
Epochs 500
Optimizer Adam

100

Fig. 5.10. An example of the most common NN architecture for MEOL parasitic capacitance extraction.

5.4.2. Support Vector Regressions

A grid search is used to obtain SVR hyper-parameters. The kernel is set to the

radial basis function because MEOL parasitic capacitance extraction is a non-linear

problem. As of the search space, the regularization parameter (C) varies from 1 to 20,

gamma varies from 0.1 to 1, and epsilon varies from 0.05 to 0.5. The lowest mean square

error of test sets is used as an evaluation method. The most common hyper parameters

that are obtained for MEOL patterns in 28nm and 7nm process nodes are: 8 as a

regularization parameter (C), 0.3 as a gamma, and 0.1 as an epsilon.

5.5. Experimental Results

The testing covered two process nodes that include 28nm and 7nm. The testing

methodology aims to select MEOL patterns from several designs, which are not part of

the training sets, and extract the selected devices using the proposed MEOL NN models,

the proposed MEOL SVR models, Calibre xACT3D as a reference 3D field-solver [32],

Calibre PEX as a rule-based extraction tool for 28nm process node [19], and Calibre xACT

as a hybrid extraction tool [87], which is a hybrid extraction tool that extracts MEOL

layers using a 3D field-solver, for 7nm process node. All errors are measured relative to

Calibre xACT3D, 3D field-solver.

Whole
pattern

Each vector size = m

Feature Vectors

Merge

Input vector size (n)= 3 × m

Neurons = n n/4 n/4 n/5
Activation = tanh tanh relu

Cgs

Target Capacitance = gate to source coupling (Cgs)

Aggressors

Victims

101

5.5.1. Testing Results on 28nm Process Node

The proposed MEOL modeling methodology was tested over 28nm process node,

which is a MOSFET technology. The MEOL layers of 28nm process are diffusion, via

(i.e., diffusion contact), gate, field poly, and metal1 layers. Two different MEOL models

were implemented to cover two different device types (i.e., NMOS and PMOS). The

total number of training MEOL patterns is 50K. They were obtained from different

designs that include cache memory, digital to analog converters, and other MEOL

patterns that were randomly generated. The parasitic capacitance reference numbers of

the patterns were extracted using Calibre xACT3D, 3D field-solver, on Intel Xeon(R)

E5-2680, 2.50GHz with 8 CPUs and 16G of RAM. The total runtime of extracting the

patterns is 4.3 hours. The input vector size of the models is 696.

As for the fully connected NN models architecture, the two models have the same

architecture. The NN architecture consists of three hidden layers with 174, 174, and 140

neurons, respectively. The activation functions are tanh, tanh, and RELU, respectively.

The total training runtime of the two models is 3.6 hours using Intel Xeon(R) E5-2680,

2.50GHz, and 16G of RAM. As for SVR models, the two SVR models have the same

hyper-parameters which are: 8 as a regularization parameter (C), 0.3 as a gamma, and

0.1 as an epsilon. The total training runtime of the two models is 1.7 hours using Intel

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM.

The proposed models were tested over more than 15M devices across several

designs that include ring oscillators, voltage-controlled oscillator, and digital to analog

converter designs. Fig. 5.11 shows the error histograms across all designs using the

proposed NN models, SVR models, and Calibre PEX as a rule-based tool with a pre-

characterized library. The results show that the proposed NN models have a superior

accuracy as compared to Calibre PEX. Also, the prediction runtime of the NN and SVR

models are faster than Calibre PEX by 1.057X and 1.23X, respectively. Moreover, the

prediction runtime of the NN and SVR models are faster than Calibre xACT3D, 3D

field-solver, by 97X and 112X, respectively. Table 5.2 summarizes the architectures of

102

the NN and SVR models, the accuracy results of training and test sets, and the training

runtime. Table 5.3 summarizes the average prediction runtime of the different MEOL

extraction models.

(a)

(b)

(c)

Fig. 5.11. Error histograms, as compared to Calibre xACT3D, of 28nm process node using (a) the
proposed NN models, (b) the proposed SVR models, and (c) Calibre rule-based extraction tool.

0

1M

2M

3M

4M

5M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Relative errors

N
u

m
b

er
 o

f
ca

p
a

ci
ta

n
ce

s Outliers > |5%| error represents 1.6% of the dataset.
Standard deviation: 2.25%

0

1M

2M

3M

4M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

N
u

m
b

er
 o

f
ca

p
ac

it
an

ce
s

Relative errors

Outliers > |5%| error represents 8.7% of the dataset.
Standard deviation: 3.5%

0

1M

2M

3M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

N
u

m
b

er
 o

f
ca

p
a

ci
ta

n
ce

s

Outliers > |5%| error represents 19.7% of the dataset.
Standard deviation: 5.3%

Relative errors

103

Table 5.2. The architectures and parameters of 28nm MEOL patterns.

 NN models SVR models

Input vector size (n) 696

Test coverage 15M devices (RO, VCO, and DAC)

Parameters Three hidden layers: 174, 174,
and 140 neurons, respectively.
Activations: tanh, tanh, and
RELU, respectively.

Kernel: RBF
Regularization (C): 8
Epsilon: 0.1
Gamma: 0.3

Training set accuracy (MSE) 3.7e-3 4.1e-3

Test set accuracy (MSE) 5.2e-3 6.7e-3

Total training runtime for all
models

3.6 hours (2 models) 1.7 hours (2 models)

Table 5.3. The average prediction runtime of the different 28nm MEOL parasitic capacitance models.

 MEOL NN MEOL SVR Rule-based Field-solver

Average prediction runtime per MEOL
pattern

2.43ms 2.08ms 2.57ms 235ms

5.5.2. Testing Results on 7nm Process Node

The proposed MEOL modeling methodology was tested on 7nm process node,

which is a FINFET technology. The MEOL layers of 7nm process are diffusion, raised

source drain (RSD), fins, gate, field poly, via, a local interconnect (e.g., Mb), and a field

local interconnect. Six different MEOL models were implemented to cover six different

device types, such as n-type high power (NHP), n-type low power (NLP), p-type high

power (PHP), p-type low power (PLP), general n-type, and general p-type devices. The

total number of training MEOL patterns are 150K patterns. They were obtained from

different real designs including cache memory, digital to analog converters, and other

MEOL patterns that were randomly generated. The parasitic capacitance reference

numbers of the patterns were extracted using Calibre xACT3D, 3D field-solver, on Intel

Xeon(R) E5-2680, 2.50GHz with 8 CPUs and 16G of RAM. The total runtime of

extracting the patterns is 8.1 hours. The input vector size of the models is 681.

As for the fully connected NN models architecture, the six models have the same

architecture. The NN architecture consists of three hidden layers with 170, 170, and 136

neurons, respectively. The activation functions are tanh, tanh, and RELU, respectively.

104

The total training runtime of the six models is 13.8 hours using Intel Xeon(R) E5-2680,

2.50GHz, and 16G of RAM. As for SVR models, the SVR models have the same hyper-

parameters which are: 8 as a regularization parameter (C), 0.3 as a gamma, and 0.1 as

an epsilon. The total training runtime of the six models is 6.18 hours using Intel Xeon(R)

E5-2680, 2.50GHz, and 16G of RAM.

The proposed models are tested over more than 20M devices from ring oscillators,

SRAM, and PLL clock generator designs. Fig. 5.12 shows the error histograms across all

designs using the proposed NN models, SVR models, and Calibre xACT as a hybrid

tool that uses a field-solver to extract MEOL. The results show that the proposed NN

models has a good accuracy relative to Calibre xACT. Also, the prediction runtime of

the NN and SVR models are faster than Calibre xACT by 90X and 98X, respectively.

Moreover, the prediction runtime of the NN and SVR models are faster than Calibre

xACT3D, 3D field-solver, by 101X and 110X, respectively.

Table 5.4 summarizes the architectures of the NN and SVR models, the accuracy

results of training and test sets, and the training runtime. Table 5.5 summarizes the

average prediction runtime of the different MEOL extraction models.

Table 5.4. The architectures and parameters of 7nm MEOL patterns.

 NN models SVR models

Input vector size (n) 681

Test coverage 20M devices (RO, SRAM, and PLL clock generators)

Parameters Three hidden layers: 174, 174,
and 140 neurons, respectively.
Activations: tanh, tanh, and
RELU, respectively.

Kernel: RBF
Regularization (C): 8
Epsilon: 0.1
Gamma: 0.3

Training set accuracy (MSE) 4.3e-3 5.7e-3

Test set accuracy (MSE) 5.8e-3 7.1e-3

Total training runtime for all
models

13.8 hours (6 models) 6.18 hours (6 models)

Table 5.5. The average prediction runtime of the different 7nm MEOL parasitic capacitance models.

 MEOL NN MEOL SVR Hybrid Field-solver

Average prediction runtime per MEOL
pattern

2.61ms 2.4ms 235ms 264ms

105

(a)

(b)

(c)

Fig. 5.12. Error histograms, as compared to Calibre xACT3D, of 7nm process node using (a) the proposed
NN models, (b) the proposed SVR models, and (c) a hybrid extraction tool.

0

2M

4M

6M

8M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Outliers > |5%| error represents 2.74% of the dataset.

Standard deviation: 2.51%

N
u

m
b

er
 o

f
ca

p
a

ci
ta

n
ce

s

Relative errors

0

1M

2M

3M

4M

5M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Outliers > |5%| error represents 8.7% of the dataset.
Standard deviation: 3.64%

N
u

m
b

er
 o

f
ca

p
a

ci
ta

n
ce

s

Relative errors

0
2M
4M
6M
8M

10M
12M
14M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%N

u
m

b
er

 o
f

ca
p

a
ci

ta
n

ce
s

Relative errors

Outliers > |5%| error represents 1.5% of the dataset.
Standard deviation: 1.45%

106

5.6. Conclusion

A parasitic capacitance extraction modeling methodology is developed for middle

end of line patterns around FINFETs and MOSFETs using machine learning methods.

The current extraction tools either rely on field-solvers or pre-characterized libraries to

extract MEOL patterns. The pre-characterized libraries suffer from several issues that

impact the extraction accuracy including pattern mismatches and insufficient pattern

coverage. On the other hand, the field-solver methods have a limited capacity and

consume a lot of time. The proposed modeling methodology provides compact models

that predict MEOL parasitic capacitances accurately. This is done by selecting all devices

in a certain layout, identifying their MEOL patterns, and representing MEOL patterns

using a novel geometry-based representation to be used as inputs to the required machine

learning models. Two different machine learning methods are used to create MEOL

parasitic capacitance models: support vector regressions and neural networks. The

proposed methodology is tested over two process nodes including: 28nm and 7nm. The

testing covered devices in several real designs with more than 40M devices. The proposed

methodology provided outstanding results as compared to field-solvers with an average

error < 0.2%, a standard deviation < 3%, and a speed up of 100X.

107

Hybrid Parasitic Capacitance Extraction
Using Machine Learning

The increasing parasitic capacitance extraction accuracy requirements in advanced

process nodes by semiconductor foundries (< 5% error) added many challenges to the

models of existing parasitic extraction tools. Hybrid parasitic capacitance extraction

methods that combine rule-based and field-solvers are considered in advanced nodes.

Despite the accuracy improvements introduced by those methods, they suffer from two

main problems. First, the proportion of patterns that have to go to field-solvers increases

in advanced nodes (as technology scales down). With this proportion approaching 50%,

using these hybrid methods does not save much time as compared to field-solvers.

Second, these hybrid methods do not eliminate all outliers because the layout patterns

are assigned to extraction methods based on a pre-characterized library.

To improve the accuracy and runtime of the hybrid parasitic capacitance extraction,

a new adaptive, accurate, and faster intermediate extraction method is required to replace

field-solvers in extracting most of layout patterns. Furthermore, a smarter way to direct

each layout pattern to an appropriate extraction method based on the required accuracy

is needed. Therefore, an accuracy-based hybrid parasitic capacitance extraction method

is proposed. The proposed hybrid flow divides a layout into windows (i.e., sliding

window) and extract each window using one of three extraction methods, based on the

required parasitic capacitance extraction accuracy level, that include field-solver, rule-

based, and novel deep neural-networks-based (i.e., intermediate) extraction methods.

Fig. 6.1 shows an illustrative example of extraction windows that are used in the

proposed hybrid flow.

108

Fig. 6.1. An illustrative example of a partial layout showing an extraction window that is used in the
proposed hybrid parasitic capacitance extraction flow.

6.1. Deep Neural-Networks Based Extraction

Deep Neural-Networks (DNN) models are implemented to predict parasitic

capacitances effeciently in VLSI layout patterns based on Google Tensor flow libraries,

[83], using Python [84]. The proposed models extract the different parasitic capacitance

components of layout polygons that are enclosed inside a certain window. The proposed

models use a novel hybrid density-voltage map feature representaion to represent the

input layout patterns. The proposed models can handle the multi-dielectric environment

of process nodes, where each process node has its own set of parasitic models. Two DNN

models are created for each metal layers combination in a certain process node (i.e., metal

stack): one to predict total capacitances on certain polygons and the other to predict

coupling capacitances among polygons. Each metal layers combination contains a

collection of one to three metal layers, where each combination has the same set of metals

and dielectrics specifications, for example, metal1-metal2-metal3 is a combination,

whereas metal1-metal3-metal4 is a different combination. As a result, the total number of

combinations of a metal stack with M layers is MC1 + MC2 + MC3, where MCn is the

combinations function. It is worth mentioning that the proposed modeling methodology

can handle combinations with more than three metal layers. However, three metal layers

combinations are very common in parasitic capacitance extraction, and usually, they

provide good parasitic extraction accuracy for real chips with high metal densities [50],

[76], [88]–[90].

A layout window that is extracted by one of three

extraction methods: field-solver, rule-based, and

novel intermediate extraction methods.

109

The process of implementing parasitic capacitance DNN is shown in Fig. 6.2. The

process starts with generating real layout patterns based on drawn dimensions for a

certain process node. After that, the drawn dimensions are converted into actual

dimensions by applying the corresponding systematic process variations (e.g., etching).

Then, a field-solver is used to extract reference parasitic capacitances for the patterns with

actual dimensions. Eventually, the input patterns and their parasitic capacitances are

used to train the required DNN models.

Fig. 6.2. The process of implementing a deep neural-networks model for parasitic capacitance extraction.

6.1.1. Input Patterns Generation

A dataset of layout patterns is obtained from several real designs that belong to a

certain process technology node. The designs include Op-Amp, Ring Oscillator, DRAM,

PLL, and sense-amplifier circuits. Also, additional patterns are generated using layout

schema generator (LSG) in [91]. The LSG aims to generate random realistic patterns

using Monte Carlo methods. The patterns are generated by creating a grid of square

segments and then injecting polygons into the created grid in a way that complies with

the corresponding design rules. The dataset consists of 250K layout patterns. Each

pattern contains one to three metal layers. Fig. 6.3 shows an example of a layout pattern

Generate Patterns (Drawn)

Run Field-solver

Real designs

Train DNN Model

Post-Processing

Model is

Ready

Modify DNN model

structure

No Yes

Technology file (Metal stack)

Feature extraction Pre-Processing

Criteria

achieved?

Convert Drawn to Actual

110

with 1µm × 1µm window size using 28nm node. The size of each pattern is technology

dependent, and it represents the maximum interaction distance of the target metal

layer. The maximum interaction distance is calculated by simulating 2D cross-section

patterns of two adjacent polygons that belong to the same target metal layer using a

field-solver. The simulation starts with minimum technological dimensions and sweeps

over the spacing between these two polygons. The maximum interaction distance is the

spacing where the coupling capacitance between the two polygons is less than or equal

to 1% of the total capacitance as shown in Fig. 6.4.

Fig. 6.3. An example of a layout pattern of three metal layers (28nm).

Fig. 6.4. An example showing the impact of increasing the separation between two adjacent metal
polygons on the lateral coupling capacitance. The experiment used metal1 in 28nm process node.

1µm

1µm

Ratio = Cc/Ct = 0.00971
Maximum distance = 0.93 µm

Separation (S) (µm)

C
a

p
a

ci
ta

n
ce

 (
fF

)
L

n
 (C

c)

-7

-6

-5

-4

-3

-2

-1

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

Ct

Cc

ln(Cc)

Cc

ground

Separation (S)

C
g

Metal 1

(28nm)

Ctotal (Ct) = Cc + C
g

111

6.1.2. Running Field-solver

Once all layout patterns are ready, they are passed to our field-solver, Calibre

xACT3D [32], to extract all parasitic capacitance components that should be used as

reference capacitance numbers. The field-solver generates a capacitance matrix of m×m

dimensions for each layout pattern, where m represents the number of metal polygons

in a layout pattern. In a typical pattern, there are around 10 to 15 metal polygons. Each

off-diagonal entry in the matrix represents a coupling capacitance between two certain

polygons, whereas each diagonal entry represents a total capacitance on each polygon.

6.1.3. Dataset Pre-Processing

To achieve high accuracy levels, two DNNs are created: one to predict the total

capacitances on each polygon, and the other one to predict the coupling capacitances

among polygons in a certain layout pattern. The total and coupling capacitances are

pre-processed differently. The total capacitances are normalized to have a zero mean

and unit standard deviation:

𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐶−mean(∑𝐶)

stdev(∑𝐶)
, (6.1)

where Cnormalized is the normalized capacitance, C represents a certain capacitance

component, mean(∑C) is the mean of capacitances, whereas stdev(∑C) is the standard

deviation of capacitances. The normalized capacitances are used as reference numbers

to the total capacitance DNN model. On the other hand, the coupling capacitances are

pre-processed using:

Cln = ln(Ccoupling), (6.2)

where Cln is the pre-processed (linearized) capacitance and (ln) is the natural logarithm.

The natural logarithm provides some sort of linearization as coupling capacitances

decrease exponentially with the separation (i.e., spacing), as shown in Fig. 6.4. By such

a linearization, the linearized capacitance margins are increased, and the non-linearity

of coupling capacitances against the separation is decreased as shown in Fig. 6.4.

Therefore, the training of parasitic models would converge faster on better coefficients

112

(or neuron weights). As a result, the overall coupling capacitance extraction accuracy is

improved. The linearized capacitances are used as reference numbers to the coupling

capacitance DNN model.

It is worth mentioning that the small coupling capacitance components that are less

than 0.1% of the total capacitances are excluded as they do not impact the capacitance

extraction accuracy and might disturb the training process. In the extraction (i.e.,

prediction) phase, the subtractive approach is followed, where for each polygon, the

extracted coupling capacitances are subtracted from the total capacitance until the

subtraction reaches zero. In case of any remaining residuals, they are distributed across

the nearby polygons.

6.1.4. Hybrid Density-Voltage Map Feature Representation

A novel hybrid density-voltage map feature representation is proposed to extract

features of layout patterns. Those features are used as inputs to parasitic capacitance

DNN models. The proposed feature representation is a combination of density- map

and voltage-map feature representations. The density-map feature representation is

one of the most effective layout feature representations, where each layer in a given

layout pattern is divided into segments, and the density of polygons is calculated in

each segment creating a density matrix for each layer in a given layout pattern [92]. Fig.

6.5 shows an example of the density-map feature representation of two polygons that

belong to the same metal layer creating 6×6 density matrix [92]. To have a meaningful

density matrix, each segment must include information of a single polygon at

maximum. The expirements showed that the segment’s size must be less than half the

minimum spacing of the corresponding metal layer.

113

Fig. 6.5. An example of the density-map feature representation in a layout pattern using two polygons
that belong to the same metal layer.

On the other hand, in the voltage-map representation, 1V is assigned to aggressor

polygons, whereas 0V is assigned everywhere else. To extract parasitic capacitances,

the density-map feature representation is not enough to predict different parasitic

capacitance components efficiently because each pattern contains several and different

numbers of capacitance components. In order to overcome this problem, each

capacitance component must be associated with a different input (i.e., a layout pattern

matrix).

A novel hybrid density-voltage map feature representation is proposed to provide

a different input pattern (matrix) for each capacitance component as shown in Fig. 6.6.

In the proposed representation, total capacitances are addressed by assigning

(1V+density) on aggressor polygons and (0V+density) everywhere else, whereas

coupling capacitances are addressed by assigning (1V+density) on aggressor polygons,

(-1 × (1V+density)) on victim polygons, and (0V+density) everywhere else. Fig. 6.6

shows an example of the proposed hybrid density-voltage map feature representation

highlighting patterns of total and coupling capacitances.

0.3

0.5

0.5

0.3

0.5 0.5 0.5 0.5

0.0 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.5 0.5 0.5 0.5

0.6 0.4 0.0 0.0 0.0 0.0

0.6 0.4 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0

W

L
=

 area of a segment

area of an overlapping part of a polygon

Segment density

Metal polygon

114

Fig. 6.6. The proposed hybrid density-voltage map feature representation for total and coupling
parasitic capacitance extraction.

The size of the map is obtained for each metal layer using the pattern window size

and the number of segments (i.e., pixels) in each window. First, each layout pattern

window has a square shape, where the width and length of each window equal the

maximum interaction distance of the target metal layer. Second, each window is

segmented into ns×ns segments, where the length and width of each segment equal half

the minimum spacing of the corresponding metal layer. Therefore, ns is estimated by:

ns = window width / (0.5 × minimum spacing). (6.3)

As for the window width (i.e., size), it is set to the maximum interaction distance to

ensure that only significant coupling capacitances are considered, and minor coupling

+

=

Density-map

Voltage-map

Hybrid representation
(Final input patterns)

Total capacitance on PL1

Coupling capacitance

between PL1 and PL2

PL1

PL2

Layout pattern

Total capacitance on PL2

1

1

1

1

1 1 1 1

0.0 0.0 0.0 0.0 0.0 0.0

1 1 1 1 1 1

1 1 0.0 0.0 0.0 0.0

1 1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1 1 1

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.3

0.5

0.5

0.3

0.5 0.5 0.5 0.5

0.0 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.5 0.5 0.5 0.5

0.6 0.4 0.0 0.0 0.0 0.0

0.6 0.4 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0

1.3

1.5

1.5

1.3

1.5 1.5 1.5 1.5

0.0 0.0 0.0 0.0 0.0 0.0

1.6 1.7 1.5 1.5 1.5 1.5

1.6 1.4 0.0 0.0 0.0 0.0

1.6 1.4 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0

0.3

0.5

0.5

0.3

0.5 0.5 0.5 0.5

0.0 0.0 0.0 0.0 0.0 0.0

0.6 0.7 0.5 0.5 0.5 0.5

0.6 0.4 0.0 0.0 0.0 0.0

0.6 0.4 0.0 2.0 2.0 2.0

0.0 0.0 0.0 0.0

1.3

1.5

1.5

1.3

1.5 1.5 1.5 1.5

0.0 0.0 0.0 0.0 0.0 0.0

1.6 1.7 1.5 1.5 1.5 1.5

1.6 1.4 0.0 0.0 0.0 0.0

1.6 1.4 0.0 -2.0 -2.0 -2.0

0.0 0.0 0.0 0.0

PL1: metal polygon 1
PL2: metal polygon 2

115

capacitances that do not impact the accuracy of capacitance extraction are neglected.

This would help in avoiding unnecessarily capacitance computations. As for the

segment width, it must be less than or equal to half the minimum spacing to ensure that

every layout pattern has a unique density representation, where all polygons should be

separated by empty (i.e., zero) segments. Fig. 6.7 shows three examples with different

segment sizes, where the same density-map matrix may represent multiple layout

patterns as long as the corresponding segment width is greater than half the minimum

spacing, whereas the patterns that have segment widths less than or equal to half the

minimum spacing would have unique density-map matrices.

Fig. 6.7. An example of three layout patterns with different segment sizes.

6.1.5. DNN Construction

Two DNN models are implemented. One to predict total capacitances and the other

one to predict coupling capacitances. The inputs of the DNNs are the flattened hybrid

density-voltage matrices of a layout pattern as shown in Fig. 6.8. Since each layout

pattern consists of three different metal layers, the input size is (M 2 + N 2 + Y 2), where

M 2 is the density-voltage matrix size of the first metal layer, N2 is the density-voltage

matrix size of the second metal layer, whereas Y2 is the density-voltage matrix size of

the third metal layer. The output of the first DNN is the total capacitance on a certain

polygon, whereas the output of the second DNN is the coupling capacitance between

two selected polygons in a given layout pattern.

Invalid: two patterns have the same density map

representations

SW > 0.5 × minimum spacing

0.2 0.2 0.5 0.5 SW

SW

SW ≤ 0.5 × minimum spacing

SW: segment width
MD: maximum interaction distance

0.2 0.2 0.5 0.5

0.2 0.2 0.5 0.5

0.2 0.2 0.5 0.5

0.2

0.2

0.2

0.2

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.2

0.2

MD

M
D

SW

S
W

 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.7
0.7

0.8 0.8
0.8

0.7
0.7 0.8

0

0

0

0

0

0
0.7
0.7

0.8 0.8
0.8

0.7
0.7 0.8

0.2

Valid: empty segments between

two different polygons

116

As for DNN architectures, a fully connected NN architecture is selected. A grid

search algorithm is used to obtain NN architectures. The search range includes the

number of NN layers that varies from 2 to 7, the number of neurons per layer that varies

from n/9 to n, where n represents the input vector size, and the activation function of

each layer that alternates between RELU and tanh. As for the evaluation method, the

mean square error (MSE) of testsets is used where the smallest DNN architecture that

reaches MSE of 0.05% is selected. Fig. 6.8 shows the most common fully connected DNN

architecture that is used to predict total and coupling parasitic capacitances in layout

patterns. For each hidden layer, the number of neurons depends on the input vector

size. For example, layout patterns with an input vector size of 6075 segments use a DNN

architecture that has 4 hidden layers with 675, 868, 760, and 868 neurons, respectively.

Layer 1 (input) 2 3 4 5 6(output)

Neurons = n n/9 n/7 n/8 n/7 1

Activation = RELU RELU tanh RELU tanh Uniform

Fig. 6.8. A fully connected NN architecture to calculate total and coupling parasitic capacitances for a
certain layout pattern.

6.1.6. DNN Training

In the training phase, the dataset is divided into training and test sets. They are

randomly selected, where 70% of the dataset are used for training, whereas 30% of the

dataset are used for testing. The training used Adam optimizer, 5K as a maximum

number of epochs, 10% as a validation set, mean square error as a cost function, 1e-3 as

a learning rate, and 1000 as a batch size. The input and four hidden layers initializations

are: he_normal, he_normal, glorot_normal, he_normal, and glorot_normal, respectivily

Flattening

Input
Layer Output

Layer

4 Hidden
Layers n: input vector size

Layer1

Layer2

Layer3

Capacitance

117

[93]. These parameters are obtained using a grid search algorithm. An early stopping is

used to stop the training epochs once the training converges. The convergence is

achieved when the accuracy of the validation set starts to degrade, or after 50 epochs of

not observing any further accuracy improvements in both the validation and training

sets. The average training runtime of a parasitic capacitance DNN model is 4.9 hours

using Intel(R) Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM.

6.1.7. Comparison to Other Layout Representations

The most common layout representation methods include spectrum-based,

concentric circle area sampling (CCAS), and density-based methods [92], [94]–[96]. In

spectrum-based representation, a frequency domain transformation, such as Discrete

Transform (DCT) and Discrete Fourier Transform (DFT), is applied on each layout

pattern creating feature vectors of transformation coefficients (e.g., Fourier coefficients).

After that, each feature vector is passed to a convolution step to be used as an input to

the required models [92].

On the other hand, the CCAS representation method creates a set of concentric

circles for each layout pattern with radiuses of: 0, 4, 8, 12, …, rin, rin+8, rin+16, …, L/2

pixels, where rin is a user controlled sampling density parameter, L is the pattern’s

length, and the unit of a pixel is nm, as shown in Fig. 6.9. Each circle is sampled

uniformly with x samples conforming x digits binary numbers, where 1 means that the

sample point overlaps with a polygon and 0 means that the sample point does not

overlap with a polygon. After that, the binary number of each circle is encoded into a

more compact representation (e.g., decimal number). The encoded numbers are

combined into a feature vector and used as an input to the required models.

118

Fig. 6.9. An example of CCAS layout representation for capacitance extraction.

In capacitance extraction, any layout modification may impact many coupling

capacitances. So, its layout representation must consider many layout details. The

convolutional methods, as in spectrum-based, may lose a lot of layout details as they

mainly target limited layout features. Other methods like CCAS representation can

provide detailed information about layout patterns by reducing the separation between

concentric circles and increasing the number of samples per circle; however, this will

result in a lot of redundant data that may disturb the training process and cause

overfitting [92]. On the other hand, the density-based representation, which uses

density-map features, is a rasterization method that can capture many layout details.

Also, it is less complicated as compared to other methods and can easily be reverse

engineered for any debugging purposes.

The accuracy of the proposed hybrid density-voltage map is evaluated against the

CCAS representation by comparing their results against Calibre xACT3D, field-solver.

To extract the coupling capacitances using the CCAS representation, an additional

feature vector that represents the target polygons is added to the input vector. Fig. 6.9

shows an example of a coupling pattern that is used to extract the coupling capacitance

between two certain polygons.

The testing used 28nm process node and included 11M capacitance components

across different 92 layers combinations that cover metal1 to metal8 layers. The training

(00101110)2 (10001110)2 (11000000)2

(46)10 (142)10 (192)10

Layout pattern Coupling pattern
To capture the coupling capacitance

between the two polygons

L

Input vector = [layout pattern; coupling pattern]

(00100000)2 (10001110)2 (11000000)2

(32)10 (142)10 (192)10

L

119

process shown in Fig. 6.2 is followed to train CCAS NN models using the same hyper-

parameters, same hardware, and same settings. The CCAS training used 0.5µm as a

sampling density parameter, which approximately represents 0.5 × maximum

interaction distance of most of the training patterns, and 8 sample points for each circle.

This increased the number of concentric circles in the range of maximum interaction

distance. Therefore, the sampling fidelity of layout patterns is increased providing more

detailed representations. The NN architecture of the CCAS contains two hidden layers,

each with 185 neurons and tanh activations. The testing included two main factors: the

mean of relative errors and the standard deviation (STDEV) of relative errors, where

the relative error is calculated as below:

Relative error =
𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
, (6.4)

where Cmodel represents a capacitance value that is calculated by a model, whereas

Creference represents a reference capacitance value that is calculated by a field-solver.

Table 6.1 shows the testing accuracy results of the proposed hybrid density-voltage

map and CCAS layout representations. The results show that the hybrid density-

voltage map representation provides better accuracy numbers as compared to the

CCAS representation.

Table 6.1. Accuracy comparison between CCAS and the Proposed hybrid density-voltage map layout
representations using 28nm process node.

 Mean of errors STDEV of errors

CCAS 1.2% 13.7%

Hybrid density-voltage 0.021% 1.61%

6.1.8. Comparison Against Other Machine Learning Methods

The proposed DNN models are compared against Support Vector Regression

(SVR), random forest regression (RFR), and Convolutional Neural Networks (CNN)

models [97], [98]. The models use the proposed hybrid density-voltage map feature

representation as inputs and the pre-processed capacitance values as outputs. Table 6.2

shows the used hyper-parameters of SVR, RFR, and CNN models. These hyper

parameters are obtained using a grid search algorithm. The testing used 28nm process

120

node and included 11M capacitance components across different 92 layers

combinations that cover metal1 to metal8 layers. The testing included two main factors:

the mean of relative errors and the standard deviation (STDEV) of relative errors. Table

6.3 shows the test set accuracy results of the DNN-based, SVR, RFR, and CNN models.

The results show that the DNN-based and CNN models provide outstanding accuracy

results as compared to the other models. The accuracy of DNN-based models is better

than CNN (LeNet5) models and very close to CNN (ResNet18) models. The training

and prediction times of the DNN-based models are way faster than CNN models,

where the average training times of DNN-based, CNN (LeNet5), and CNN (ResNet18)

models are 4.9, 10.3, and 32.8 hours, respectively, whereas the corresponding average

prediction times are 1.3, 4.7, and 15.8 ms, respectively. The training used Intel(R)

Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM, whereas the prediction is

done on the same machine using a single CPU.

Table 6.2. A list of selected hyper-parameters of SVR, RFR, and CNN models for 28nm process node.

Method Hyper-parameters

Support Vector Regression
(SVR)

Kernel = polynomial
Cost = 5
order (d) = 6

Support Vector Regression
(SVR)

Kernel = radial basis function (RBF)
Cost = 9
Gamma = 0.2

Random Forest for Regression (RFR) Number of trees=2000

Convolutional Neural-Network (CNN)
(architecture = LeNet5) [97]

Optimizer: Adam
Learning rate: 1e-3
Batch normalization: Yes
Validation set: 10%
Batch size: 1000
Epochs: 500 or early stopping

Convolutional Neural-Network (CNN)
(architecture = ResNet18) [98]

Table 6.3. Test sets accuracy results of DNN-based, SVR(Polynomial), SVR (RBF), RFR, and CNN
Modeling methods using 28nm process node.

Method Mean of errors STDEV of errors

DNN-based 0.02% 1.61%

SVR (kernel = polynomial) 1.6% 9.9%

SVR (kernel = RBF) 0.9% 6.8%

RFR 1.8% 8.5%

CNN (LeNet5) [97] 0.141% 3.11%

CNN (ResNet18) [98] 0.036% 1.63%

121

6.2. Hybrid Parasitic Extraction

A hybrid parasitic capacitance extraction flow is proposed to achieve high accuracy

levels with a very good performance, regardless of the process technology node or the

layout complexity. Unlike existing hybrid flows that are pattern-based, the proposed flow

is accuracy and performance based. Existing hybrid flows rely on pattern structures, if a

given layout pattern is covered by rule-based models then it is extracted using a rule-

based extraction method, otherwise, it is extracted using a field-solver. Such flows do not

necessarily provide good parasitic capacitance extraction accuracy because rule-based

models do not consistently provide good accuracy levels on all covered and extracted

patterns. There are several reasons for inaccuracy in rule-based extraction methods such

as a curve fitting inaccuracy, insufficient samples, and pattern matching issues [11], [14],

[34]. The proposed hybrid flow overcomes these issues by evaluating each layout pattern

from the accuracy perspective not from the pattern perspective, and then assigning each

layout pattern to the appropriate extraction method based on the pattern’s accuracy

characteristics with each method. Also, the proposed hybrid flow gives the user the

ability to determine the required accuracy level based on design and design phase

requirements. As a result, the proposed flow managed to meet the required accuracy level

with more than 99% accuracy when tested on several real designs.

The proposed hybrid flow uses three extraction methods: field-solver, rule-based,

and novel DNN-based extraction methods. To mitigate accuracy outliers of the used

extraction methods, the proposed flow identifies the accuracy limitations of each

extraction method for each layout pattern and extracts parasitic capacitances using the

fastest extraction method that meets the user pre-determined accuracy level. Fig. 6.10

provides an illustration of accuracy limitations of the three extraction methods and their

relative runtimes. Also, it shows the distribution of parasitic capacitance errors for each

extraction method where the mean of parasitic capacitance errors of the proposed DNN-

based extraction method is below 5%, the mean of rule-based extraction methods is above

5%, and the mean of field-solvers is close to zero. Moreover, the rule-based and DNN-

based extraction methods have outliers that exceed 10%.

122

Fig. 6.10. Accuracy (i.e., relative error) and runtime distributions of rule-based extraction, DNN-based
extraction, and field-solver methods.

The proposed hybrid flow starts with a sliding window that scans a whole layout

design and divides it into patterns (i.e., windows). All patterns are passed to a classifier

(i.e., extraction selector) that assigns each pattern to an appropriate extraction method.

Moreover, the extraction selector enables the user to pre-determine the accuracy level

based on his preferences.

In this work, Calibre xACT3D, [32], is used as a field-solver method, Calibre PEX,

[19], is used as a rule-based method, and the novel DNN-based extraction is used as an

intermediate extraction method.

6.2.1. Multi-Class Extraction Selector

A multi-class extraction selector is implemented to select an appropriate extraction

method that meets the user pre-determined accuracy for each given layout pattern. As

shown in Fig. 6.11, the extraction selector consists of a classifier’s switch and five

different classifiers each operates at a different accuracy level. Each classifier has three

possible outputs (i.e., extraction method decision): rule-based, field-solver, and DNN-

based extraction methods. In this flow, each layout pattern is passed to a classifier’s

switch that assigns each layout pattern to the appropriate extraction multi-class

classifier based on the required accuracy level. After that, the chosen classifier predicts

the appropriate extraction method for each given layout pattern. The multi-class

classifiers are implemented using NNs. The layout density-map feature extraction,

N
u

m
b

er
 o

f
 c

a
p

ac
it

an
ce

s

2-10

DNN-based
Mean ≈ 0
STDEV ≤ 3.5%

Field-Solver

Mean ≈ 0
STDEV ≤ 1%

Rule-based
Mean ≈ 4-8%
STDEV > 6%

-5% 0% 5%
1

200 <

-5% 0% 5%

-5% 0% 5%

Required accuracy: |5%|

123

shown in Fig. 6.5, is used to represent layout input patterns. Moreover, each

combination of layers has a different extraction selector.

The process of implementing a NN classifier is shown in Fig. 6.12. The process starts

with generating real layout patterns based on drawn dimensions, converting them into

actual dimensions by applying process variations (e.g., etching), running the three

extraction methods over all patterns, labeling each pattern with an appropriate

extraction method, extracting features for each pattern, and train NNs classifiers with

different architectures until a high accuracy classifier is obtained.

Fig. 6.11. The proposed multi-class parasitic capacitance extraction selector.

Fig. 6.12. The implementation process of NN Classifiers.

Classifier 2 (< 3%)

Layout
Pattern

Rule-based Extraction

DNN-based Extraction

Field-solver

Classifier 3 (< 5%)

Classifier 4 (< 7%)

Classifier 5 (< 10%)

Classifier 1 (< 2%)

Accuracy
level

Generate Patterns (Drawn)

Real designs

Label Patterns

Classifier is Ready

Convert Drawn to Actual

Technology file

(Metal Stack)

Run Field-Solver Run Rule-Based Run DNN-Based

Train NN Model

Feature Extraction

Grid-Search to obtain

NN Architectures

124

6.2.2. Training Patterns of Classifiers

The dataset of training layout patterns are obtained from several real designs that

belong to a certain process node. the layout designs include Op-Amp, Ring Oscillator,

DRAM, PLL, and sense-amplifier circuits. Also, to further increase the coverage of

training patterns, additional patterns are generated using a layout schema generator

(LSG) in [91]. The LSG aims to generate random realistic patterns that comply with the

corresponding design rules. The dataset consists of 250K layout patterns. Each pattern

contains one to three metal layers. The size of each pattern is technology dependent and

it represents the maximum interaction distance of the target metal layer. To label layout

patterns, each pattern is extracted by the three extraction methods using: Calibre

xACT3D, Calibre PEX, and the proposed DNN-based extraction. After that, the worst

parasitic capacitance error is recorded for each extraction method, using Calibre

xACT3D as a reference. Then, each pattern is marked with all extraction methods that

meet the required accuracy. However, since each layout pattern must be labeled only

with one extraction method, each pattern is labeled with the fastest extraction method

that meets the required accuracy, given that the rule-based method is faster than the

DNN-based method, and both of them are faster than the used field-solver. Moreover,

rule-based patterns must also be solvable using the DNN-based method, otherwise they

will be labeled as field-solver patterns. Therefore, if a rule-based pattern is extracted

using any of the three methods, it will still meet the required accuracy level.

6.2.3. NNs Construction

As for NN architectures, a fully connected NN architecture is selected. A grid search

algorithm is used to obtain NN architectures. The search range includes the number of

NN layers that varies from 2 to 7, the number of neurons per layer that varies from n/9

to n, where n represents the input vector size, and the activation function of each layer

that alternates between RELU and tanh. Moreover, the search range includes the weight

and decision threshold of each class in order to handle the unbalanced training data. As

for the evaluation method, the F1-score of testsets are used, where the architecture with

the largest F1-score is selected. Fig. 6.13 shows the most common fully connected NN

125

architecture that is used to develop extraction selectors. In the NN architecture, the

number of neurons for each hidden layer depends on the input vector size. For example,

layout patterns with an input vector size of 6075 segments use a NN architecture that

has 3 hidden layers with 760, 868, and 868 neurons, respectively.

Layer 1 (input) 2 3 2 4 (output)

Neurons = n n/8 n/7 n/7 3

Activation = RELU RELU RELU RELU softmax

Fig. 6.13. A neural-networks architecture of the proposed multi-class classifier.

6.2.4. Classifiers Training and Tuning

The training dataset is divided into training and test sets that are randomly selected,

where 70% of the dataset (175K) are used for training, whereas 30% of the dataset (75K)

are used for testing. For 28nm process node, the average data distribution across the

rule-based, DNN-based, and field-solver classes, at 5% required accuracy level, are

63.02%, 36.77%, and 0.21%, respectively. The training used Adam optimizer, 5K as a

maximum number of epochs, 10% as a validation set, categorical cross-entropy as a loss

function, 1e-3 as a learning rate, 1000 as a batch size, and he_normal initializations.

Moreover, the rule-based decision threshold is set to 0.65 and the weights of the DNN-

based and field-solver classes are set to 2 and 9, respectively. This helped in minimizing

the probability of passing any non-rule-based pattern to the rule-based class. All

parameters are obtained using a grid search algorithm. An early stopping is used to

stop the training epochs once the training converges. The convergence is achieved when

Flattening

Input
Layer

Output
Layer n: input vector size

Layer1

Layer2

Layer3

Rule-based

DNN-based

Field-Solver

3 Hidden
Layers

126

the accuracy of the validation set starts to degrade, or after 50 epochs of not observing

any further accuracy improvements in both the validation and training sets. The

average prediction accuracy of a classifier is 85%. The average training runtime of a

classifier is 37 minutes using Intel Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16GB of

RAM. Table 6.4 shows the test set confusion matrix of 28nm process node for 92 layers

combinations, at 5% accuracy level, highlighting the number of patterns passed to each

class. The results show that the number of non-rule-based patterns that are passed to

the rule-based class is 2400 patterns (0.053% of the overall test set). Also, the precision

of the rule-based class exceeds 99.8%, and the recall is 72%, where the precision is the

ratio between the patterns predicted accurately as class A and all patterns predicted as

class A, and the recall is the ratio between the patterns predicted accurately as class A

and all actual class A patterns.

6.2.5. Comparison to Other Layout Representations

The classification accuracy using density-map (i.e., density-based) and CCAS

layout feature representations are tested. The testing used 28nm process node and

covered 92 layers combinations. The density-map is a layout rasterization method that

provides a detailed information of layout patterns using an appropriate segment size

as described in the previous section. On the other hand, the CCAS method provides an

encoded geometrical information of layout patterns. However, CCAS representation

misses the details of layout patterns that are required for parasitic extraction problems

[92], [94]–[96]. Table 6.4 shows the confusion matrix, precision, and recall of 28nm

process node test sets, using density-map and CCAS representations. The results show

that the prediction accuracy of CCAS is 61.2%, and the number of non-rule-based

patterns that are passed to the rule-based class is 405,540 patterns (9% of the overall test

set). Also, the precision of the rule-based class is 76.78%, and the recall is 50.88%. Table

6.4 shows that the density-map representation managed to provide outstanding

accuracy results as compared to CCAS representation.

127

Table 6.4. The confusion matrices of extraction classifiers using density-map and CCAS layout
representations for 28nm test sets, at 5% required accuracy level.

Actual/True

Rule-based DNN-based Field-solver

D
e

n
si

ty
-m

a
p

Predicted

Rule-based 1,846,980 2,220 180

DNN-based 715,020 1,905,540 300

Field-solver 4,680 12,420 12,660

Precision 0.998702 0.727067 0.425403

Recall 0.719599 0.992376 0.96347

C
C

A
S

 Predicted

Rule-based 1,341,060 405,480 60

DNN-based 1,255,380 1,412,820 180

Field-solver 39,120 45,240 660

Precision 0.767812 0.529467 0.007763

Recall 0.508833 0.758138 0.733333

6.3. Experimental Results

The accuracy and runtime of the proposed DNN-based and accuracy-based hybrid

extraction methods are measured by comparing their results against Calibre xACT3D,

i.e., field-solver, across several real designs that are not part of the training sets. The real

designs include SRAM (28nm), digital to analog converter (DAC) (28nm), cache memory

(CM) (28nm), and phase locked loop (PLL) (7nm). The testing mechanism starts with

analyzing a real layout design and its corresponding metal stack. Then, a square sliding

window is created with W×W dimensions, where W represents the sliding window’s

width and length. The sliding window covers three metal layers including the aggressor

(i.e., target) metal layer. It moves in x and y directions with a step size of (0.5×W), and it

moves up in z direction with 1 metal layer step. The moving sliding window is

responsible for capturing different layout patterns and passing them to a certain

extraction method that extracts all different capacitance components. The overlapping

windows improve the extraction accuracy by capturing the coupling capacitances

between windows, extracting the capacitances of layout polygons multiple times each in

a different context (i.e., window) to consider the surrounding metals, and averaging the

overlapping capacitances [99]. The size of a sliding window, W, is the maximum

interaction distance of the target metal layer. It depends on the metal stack definition and

128

the target metal layer. There is a sliding window for each target metal layer covering the

different metal layers combinations [99]. Table 6.5 shows approximated sizes of

windows, up to metal6, along with the corresponding vector sizes for 28nm and 7nm

process nodes.

Table 6.5. Approximate sizes of sliding windows for 28nm and 7nm process nodes.

Target layer Window size (28nm) Window size (7nm)

Metal1 and Metal2 1.0µm × 1.0µm
Vector size: 45×45×3

0.8µm × 0.8µm
Vector size: 75×75×3

Metal3 and Metal4 1.2µm × 1.2µm
Vector size: 53×53×3

1.2µm × 1.2µm
Vector size: 63×63×3

Metal5 1.4µm × 1.4µm
Vector size: 62×62×3

1.35µm × 1.35µm
Vector size: 71×71×3

Metal6 1.5µm × 1.5µm
Vector size: 66×66×3

1.47µm ×1.47µm
Vector size: 77×77×3

6.3.1. DNN-Based Extraction Results

The proposed DNN-based extraction is tested and showed outstanding accuracy

results relative to Calibre xACT3D across different real designs. Fig. 6.14 (a), Fig. 6.15

(a), Fig. 6.16 (a), and Fig. 6.17 (a) show accuracy comparisons (i.e., histograms of relative

errors) of the DNN-based extraction using SRAM (28nm), DAC (28nm), cache memory

(CM) (28nm), and PLL (7nm) designs, respectively, whereas Fig. 6.14 (b), Fig. 6.15 (b),

Fig. 6.16 (b), and Fig. 6.17 (b) show the rule-based extraction accuracy comparisons

using the same designs, at 5% required accuracy level. The total numbers of extracted

windows for SRAM (28nm), DAC (28nm), cache memory (CM) (28nm), and PLL (7nm)

designs are 123K, 322K, 304K, and 14.1M, respectively, whereas the corresponding

numbers of capacitance components are 345K, 675K, 690K, and 43.5M, respectively.

The total numbers of extracted windows that do not exist in the training sets for SRAM

(28nm), DAC (28nm), cache memory (CM) (28nm), and PLL (7nm) designs are 109K

(88.7%), 248K (77%), 252K (82.8%), 10.7M (75.9%), respectively. The results show that

the maximum number of outliers that exceed 5% error in the DNN-based extraction

represents around 8% of the overall capacitances, whereas in the rule-based extraction,

it represents around 50% of the overall capacitances.

129

6.3.2. Accuracy-Based Hybrid Extraction Results

The proposed hybrid extraction flow is tested 5% accuracy level. The testing is done

across four real designs including SRAM (28nm), DAC (28nm), cache memory (CM)

(28nm), and PLL (7nm) designs.

Table 6.6 shows the patterns distribution ratios among field-solver, DNN-based,

and rule-based extraction methods using the proposed accuracy-based hybrid

extraction flow, at 5% accuracy level. Also, the table shows the relative runtime

comparisons among Calibre xACT3D (i.e., field-solver), Calibre PEX (i.e., rule-based

extraction), and the proposed accuracy-based hybrid extraction flow assuming that the

relative runtime of the proposed accuracy-based hybrid extraction flow is 1.0. The

results show that the proposed accuracy-based hybrid extraction flow is way faster than

the used field-solver with a speed up of 70 to 100X. Table 6.7 shows the total actual

extraction runtime using rule-based, DNN-based, field-solvers, hybrid extraction

(without using the DNN-based extraction), and the proposed hybrid extraction

methods, at 5% required accuracy level. The results show that the removal of the DNN-

based extraction from the hybrid flow caused significant performance degradation, as

compared to the proposed hybrid flow, of up to 43X, which emphasizes the need for

having an intermediate extraction method. The runtimes are measured using Intel(R)

Xeon(R) E5-2680, 2.70GHz with 4 CPUs and 16G of RAM.

As for the accuracy results, Fig. 6.14 (c), Fig. 6.15 (c), Fig. 6.16 (c), and Fig. 6.17 (c)

show the proposed hybrid extraction accuracy comparisons using SRAM (28nm), DAC

(28nm), cache memory (CM) (28nm), and PLL (7nm) designs, respectively. The results

show that the proposed hybrid flow managed to eliminate more than 99% of the outliers

that exceed 5% error. As for the prediction accuracy of the extraction classifiers, the

prediction accuracy (ACC) is given by:

ACC = correct predictions / all predictions, (6.5)

 whereas the prediction accuracy for parasitic extraction (ACCPEX) is given by:

130

ACCPEX = patterns passed to appropriate extraction methods

/ all predictions (i.e., patterns),

(6.6)

given that the field-solver method is appropriate for all patterns as it can meet the

required accuracy level, also the three extraction methods are appropriate for rule-

based patterns as the three extraction methods can extract the parasitic capacitances of

rule-based patterns with the required accuracy level. Table 6.8 shows the confusion

matrices, classification accuracy, and classification accuracy for parasitic extraction of

SRAM (28nm), DAC (28nm), cache memory (28nm), and PLL (7nm) designs,

respectively, using the extraction selector of the hybrid flow at 5% accuracy level.

Table 6.6. Patterns distribution ratios using the proposed hybrid flow, and the relative runtime
comparisons for field-solver and rule-based tools at 5% required accuracy level.

Design

Patterns distribution in a design

among different extraction

methods

Relative runtime as

compared to the proposed

hybrid flow.

Field-

solver

DNN-

based
Rule-based

All Rule-

based

All Field-

solver

SRAM(28nm) 0.78% 57.1% 42.12% 0.348 74.54

DAC(28nm) 0.85% 53.9% 45.25% 0.409 72.36

CM(28nm) 0.81% 58.3% 40.89% 0.455 72.32

PLL(7nm) 0.93% 60.3% 38.77% 0.413 67.1

131

(a)

 (b)

(c)

Fig. 6.14. Accuracy comparison histograms, relative to Calibre xACT3D, of the SRAM (28nm) design
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid
extraction at 5% accuracy level.

0

50K

100K

150K

200K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Mean: 0.14%
STDEV: 2.9%
Outliers with |Error| > 5%: 6.8%
Outliers with |Error| > 10%: 1.45%

0

25K

50K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

co
m

p
o

n
en

ts

Relative error

Mean: 3.87% Outliers with |Error| > 5%: 38.3%
STDEV: 5.96% Outliers with |Error| > 10%: 4.47%

0

40K

80K

120K

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Mean: 0.83% Outliers with |Error| > 5%: 0.0673%
STDEV: 2.1% Outliers with |Error| > 10%: 0.0021%

132

(a)

(b)

(c)

Fig. 6.15. Accuracy comparison histograms, relative to Calibre xACT3D, of the DAC (28nm) design
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid
extraction at 5% accuracy level.

0

60K

120K

180K

240K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Mean: 0.25%
STDEV: 3.19%
Outliers with |Error| > 5%: 6.13%
Outliers with |Error| > 10%: 1.57%

0

25K

50K

75K

100K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Mean: 4.03% Outliers with |Error| > 5%: 41.07%
STDEV: 6.73% Outliers with |Error| > 10%: 5.83%

0

40K

80K

120K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Relative error

Mean: 0.54% Outliers with |Error| > 5%: 0.174%
STDEV: 2.48% Outliers with |Error| > 10%: 0.00374%

133

(a)

(b)

(c)

Fig. 6.16. Accuracy comparison histograms, relative to Calibre xACT3D, of the cache memory (28nm)
using: (a) the proposed DNN-based extraction, (b) rule-based extraction, and (c) the proposed hybrid
flow at 5% accuracy level.

0

50K

100K

150K

200K

250K

300K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Relative error

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Mean: 0.212%
STDEV: 3.856%
Outliers with |Error| > 5%: 6.39%
Outliers with |Error| > 10%: 2.31%

0

20K

40K

60K

80K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Relative error

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Mean: 3.47% Outliers with |Error| > 5%: 38.04%
STDEV: 6.3% Outliers with |Error| > 10%: 4.9%

0

20K

40K

60K

80K

100K

120K

140K

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Relative error

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Mean: 0.58% Outliers with |Error| > 5%: 0.103%
STDEV: 2.74% Outliers with |Error| > 10%: 0.0067%

134

(a)

(b)

(c)

Fig. 6.17. Accuracy comparison histograms, relative to Calibre xACT3D, of the PLL (7nm) using: (a) the
proposed DNN-based extraction, (b) the rule-based extraction, and (c) the proposed hybrid extraction
at 5% accuracy level.

0

2M

4M

6M

8M

10M

12M

14M

16M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

Mean: 0.037%
STDEV: 4.02%
Outliers with |Error| > 5%: 8.1%
Outliers with |Error| > 10%: 3.05%

Relative error

0

1M

2M

3M

4M

5M

6M

7M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%

Mean: 5.81% Outliers with |Error| > 5%: 53.3%
STDEV: 8.53% Outliers with |Error| > 10%: 9.11%

Relative error

C
a

p
a

ci
ta

n
ce

 c
o

m
p

o
n

en
ts

0

1M

2M

3M

4M

5M

6M

7M

8M

<
-1

0
%

-1
0
%

-9
%

-8
%

-7
%

-6
%

-5
%

-4
%

-3
%

-2
%

-1
%

0
%

1
%

2
%

3
%

4
%

5
%

6
%

7
%

8
%

9
%

1
0

%

>
1
0
%C

a
p

a
ci

ta
n

ce
 c

o
m

p
o

n
en

ts
 Mean: 0.72% Outliers with |Error| > 5%: 0.124%

STDEV: 2.78% Outliers with |Error| > 10%: 0.0315%

Relative error

135

Table 6.7. Total runtimes of capacitance extraction using rule-based, DNN-based, field-solver, hybrid
flow (without using DNN-based), and accuracy-based hybrid extraction methods, at 5% accuracy.

Design

Runtime (Hours)

Rule-

based

DNN-

based

Field-

solver

Hybrid (No

DNN)

Accuracy-based

Hybrid

SRAM(28nm) 0.23 0.42 49.2 28.49 0.66

DAC(28nm) 0.45 0.78 79.6 43.8 1.1

CM(28nm) 0.51 0.81 81 47.9 1.12

PLL(7nm) 2.17 3.425 352.8 216.33 5.26

Table 6.8. The confusion matrices of SRAM, DAC, CM, and PLL designs using the proposed multi-class
extraction selector at 5% required accuracy level.

Design Actual/True ACC ACC-
PEX

Rule-based DNN-based
Field-
solver

SRAM
(28nm)

P
re

d
ic

te
d

Rule-based 50,644 470 327 79.4% 99.07%

DNN-based 23,473 45,934 339

Field-solver 186 371 394

DAC
(28nm)

Rule-based 143,925 964 706 80.26% 99.23%

DNN-based 59,722 112,873 820

Field-solver 506 784 1,438

CM
(28nm)

Rule-based 122,537 905 613 78.53% 99.33%

DNN-based 61,837 114,586 510

Field-solver 451 842 1,152

PLL
(7nm)

Rule-based 5,964,848 51,109 9,286 84.7% 99.05%

DNN-based 1,957,103 5,944,609 7,3871

Field-solver 19,929 41,603 19,242

6.4. Conclusion

A novel accuracy-based hybrid parasitic capacitance extraction flow is introduced.

The proposed hybrid flow divides the chip into windows and extracts the parasitic

capacitances of each window using one of three extraction methods: field-solver, rule-

based, and novel deep neural-networks based extraction methods by directing each

layout pattern to the fastest extraction method that meets the user pre-determined

accuracy level. The proposed flow uses neural-networks classifiers to determine the

capacitance extraction method for each window.

On the other hand, a novel deep neural-networks-based extraction method is

developed as an intermediate parasitic extraction method between rule-based method

136

and field-solver method. The proposed hybrid flow is tested on different real designs.

The results showed outstanding accuracy and runtime as compared to existing

commercial field-solver and rule-based tools. Also, the proposed hybrid flow introduced

a novel deep neural-networks modeling methodology that extracts parasitic capacitances

of complicated structures with high accuracy levels (less than 3% average error) and 100X

faster than field-solvers. Furthermore, the experimental results showed that the proposed

hybrid flow managed to meet the required accuracy levels (of less than 5% error) with

more than 99% accuracy, and with a speed up of 70X as compared to field-solvers.

137

Parasitic-Aware Routing Optimization

The continuous scaling down of process technology nodes enabled the integration of

more functionalities and systems together on a single chip. Such an integration

significantly increased the complexity and density of layouts introducing more parasitic

elements. The impact of interconnect parasitic elements on the overall circuit

performance keeps increasing from one technology generation to the next. Moreover, the

number of interconnect parasitic elements significantly increased in recent advanced

processes. Therefore, the effects of interconnect parasitic elements are no longer second

order effects. They are now dominating the overall circuit performance [3], [4], [100]. As

a result, it is very important to consider the parasitic effects during placement and routing

processes to reduce the overall turn-around-time of a circuit design and improve the

yield.

This chapter aims to provide a new parasitic-aware routing optimization

methodology. The proposed methodology can be applied either after or within the

detailed routing. The proposed methodology enables circuit designers to debug and

analyze the impact of parasitic elements on a circuit performance. Also, it provides a

mechanism to identify the problematic parasitic elements and correlate them with

specific layout geometries. Moreover, it uses nonlinear programming to re-route the

problematic paths (i.e., routes) in order to achieve the required specifications with a full

consideration of the surrounding environment. The proposed methodology uses a novel

incremental parasitic extraction method in order to extract the parasitic elements of a

modified layout during the optimization process. The proposed incremental extraction

method provides very accurate parasitic extraction results with a maximum error < 1%

as compared to a full layout extraction.

138

7.1. Incremental Parasitic Extraction

The layout parasitic extraction is an essential step in conventional integrated circuit

(IC) design flows. It is used to extract parasitic elements of a given layout in order to

perform a post-layout simulation. If the post-layout simulation results did not meet the

required circuit’s specifications, layout designers would modify the corresponding

layout until its post-layout simulation results meet the required specifications. Usually,

this process requires several iterations of layout modifications, parasitic extractions, and

post-layout simulations until convergence.

There are two approaches to reduce the turn-around-time of the layout parasitic

extraction step in design loops. First, some approaches use simplified parasitic models to

speed up the extraction process and reduce the parasitic network such as in [20], [43],

[44]. This approach is not efficient in advanced process technology nodes as it handles

the parasitic effects as second order effects ignoring that the interconnect parasitic effects

became one of the dominant factors on a circuit’s performance in such advanced nodes

[11]. Second, other approaches may use an incremental parasitic extraction to limit the

parasitic extraction process to the modified polygons in a given layout. As a result, the

execution time (i.e., runtime) of the layout parasitic extraction step in design loops

decreases significantly with minimal impact on the extraction accuracy as compared to

the use of a full layout parasitic extraction.

The incremental parasitic extraction aims to identify the modified layout geometries,

extract the corresponding parasitic elements, and update the corresponding circuit

network (i.e., netlist) with the newly extracted parasitic elements. In our work, the

incremental parasitic extraction is used to extract parasitic resistances and capacitances

of modified areas in a given layout.

7.1.1. Incremental Parasitic Resistance Extraction

As for parasitic resistances, they only depend on the geometrical shapes of modified

layouts, and they do not depend on the surrounding environment. Therefore, the

incremental parasitic resistance extraction identifies the modified layout polygons and

139

re-extracts their parasitic resistances smoothly without any consideration of the

surrounding environment. After that, the corresponding circuit network (i.e., netlist)

are updated with the newly extracted parasitic resistive elements.

7.1.2. Incremental Parasitic Capacitance Extraction

The incremental extraction of parasitic capacitances is more complicated than the

incremental extraction of parasitic resistances because parasitic capacitances are highly

correlated with the surrounding environment. In other words, if a layout polygon is

modified, the modifications will not only impact the associated parasitic capacitive

elements, but also, they will impact the parasitic capacitive elements among nearby

metal polygons. Therefore, the incremental parasitic capacitance extraction needs to

select and re-extract the parasitic capacitive elements that are impacted by layout

modifications.

Existing incremental parasitic extraction methods can re-extract parasitic

resistances efficiently; however, they cannot efficiently re-extract parasitic capacitance.

This is because existing incremental methods only re-extract parasitic capacitances that

are directly coupled with modified shapes (i.e., first order parasitic capacitances), and

they ignore all coupling capacitances that are not directly coupled to modified layout

shapes, such as second order coupling capacitances as shown in Fig. 7.1, even if those

capacitances are significantly impacted by layout modifications [18], [101]. As a result,

they provide a low extraction accuracy as compared to a full layout parasitic

capacitance extraction. Fig. 7.2 shows an example of modifying the position of a nearby

polygon on the second order coupling capacitance between two other fixed polygons.

Fig. 7.1. An example of second order coupling capacitances due to modifying a certain metal polygon.

Modified

polygon

Second order

coupling capacitance
Second order

coupling capacitance

140

Fig. 7.2. The impact of increasing the separation between the aggressor and left victim polygons on
the coupling between the aggressor and right victim polygons. The experiment used metal5 layer of
28nm process technology node.

A novel incremental parasitic capacitance extraction method is developed to extract

first and second order capacitances efficiently. The developed method provides

outstanding accuracy results as compared to a full layout extraction with a maximum

relative error < 1%. Moreover, the impact of extracting second order capacitances on

the total extraction runtime is negligible, where the time required to extract second

order capacitances represents < 5% of the total incremental extraction runtime. The

developed method has three main steps. First, it identifies the modified shapes and the

corresponding metal layers. Second, it calculates a maximum coupling capacitance

interaction range (MR) for each metal layer. Third, it extracts all coupling capacitances

that are enclosed inside the maximum interaction range, and it updates the

corresponding circuit’s network (i.e., netlist) with the newly extracted parasitic

capacitive elements. The three steps of the developed incremental capacitance

extraction method are described in more details as follows.

7.1.2.1. Identify Modified Shapes

In this step, all metal polygons that are impacted by layout modifications are

marked, where the modified metal polygons are marked, and the metal polygons that

were previously interacting with the modified polygons (before modifications) are

also marked. This is to ensure that all impacted parasitic capacitances are considered

during the incremental extraction process.

0.087

0.09

0.093

0.096

0.099

0 1 2 3 4

Aggressor Victim

C1 S

Victim

Separation (S) (µm)

C
o

u
p

li
n

g

ca
p

a
ci

ta
n

ce
 (

C
1

)
(f

F
)

8.9%

increase

141

7.1.2.2. Calculating the Maximum Capacitance Interaction Range

In this step, a maximum capacitance interaction range (MR) is calculated for each

metal layer. The MR of a polygon represents the range (i.e., distance) where coupling

capacitances to other polygons are negligible and do not impact the accuracy of a

parasitic capacitance extraction. in other words, the MR identifies the valid coupling

range for each layout polygon in order to avoid unnecessarily capacitance

computations. The calculation of a MR depends on the corresponding metal stack

specifications, where each metal layer in a certain process node has a different MR

value.

The MR for each metal layer is only calculated once at the beginning of the

incremental capacitance extraction process. For a certain metal layer, the MR is

calculated by constructing two adjacent metal polygons using the corresponding

minimum dimensions. Then, an electrostatic simulator is used to extract the lateral

coupling capacitance between the two polygons. Also, the simulator performs a

parametric sweep over lateral spacings while it measures the coupling capacitance

between the two metal polygons until the MR is achieved, given that the MR

represents the distance where the coupling capacitance between the two polygons is

less than or equal to 1% of the total capacitance on one of the polygons as shown in

Fig. 7.3.

Fig. 7.3. The impact of increasing the separation (i.e., spacing) between two metal polygons on the
lateral coupling capacitance between them using metal5 of 28nm process technology node.

0

0.09

0.18

0 0.5 1 1.5 2 2.5 3

Cc

Ct

Cc/Ct = 0.00977
Maximum range = 1.81µm Cc

ground

Separation

C
g

Metal 5

(28nm)

Ctotal (Ct) = Cc + C
g

Separation(µm)

C
a

p
a

ci
ta

n
ce

 (
fF

)

142

7.1.2.3. Capacitance Extraction and Netlist Update

Once the maximum interaction ranges of all modified polygons are identified, all

parasitic capacitive elements that are enclosed inside this range are re-extracted

including second order parasitic capacitances. This ensures that all impacted

capacitive elements are extracted, whereas the capacitive elements that are not

enclosed inside the maximum interaction ranges are not extracted as shown in Fig.

7.4. Eventually, the corresponding circuit’s network (i.e., netlist) is updated with the

newly extracted parasitic capacitive elements.

Fig. 7.4. An illustrative example of 2D cross-section metal polygons showing some capacitive
elements that are enclosed inside the maximum capacitance interaction range of a modified polygon.

7.2. Parasitic-Aware Layout Routing Optimization Methodology

Parasitic-aware layout routing optimization methodology based on circuit moments

is developed. The proposed routing methodology is used as a part of a template-based

layout optimization flow. The proposed methodology has three main benefits. First, it

helps circuit designers in analyzing the performance of critical routes. This is done by

developing a sensitivity circuit model that measures the sensitivity of a route’s

performance cost function to the corresponding metal geometries. Second, the proposed

MR: Maximum range

MR

MR

MR

Layer(i-1)

Layer(i)

Layer(i+1)

Modified metal Polygon

Metal polygons outside of

maximum range

Capacitances enclosed inside the MR

143

methodology efficiently considers the impact of parasitic elements during the

optimization of critical routes by using a novel incremental parasitic extraction method.

Third, the proposed methodology optimizes critical routes very fast using a cost function

and corresponding sensitivity circuit models. The critical routes represent the routes that

either hold analog signals or have a considerable impact on a circuit’s performance. Such

routes are identified by circuit designers after performing a sensitivity analysis across

different routes, i.e., the sensitivity of a circuit performance to a route’s network including

parasitic elements.

The proposed methodology consists of three main steps as shown in Fig. 7.5. First, a

performance cost function is developed, for example, a relative cost function that

measures the performance difference between two routes. Second, sensitivity circuit

models are derived to measure the sensitivities of a cost function to route’s geometries.

Third, a nonlinear programming is used to minimize a cost function subject to route’s

geometries considering the obtained sensitivity circuit models. The cost function

minimization process considers different geometry constraints such as connectivity,

blockages, and net symmetry constraints. Moreover, the optimization process can handle

Manhattan and non-Manhattan geometries. It is worth mentioning that the proposed

routing optimization method can be applied after the detailed routing step to provide

further routing optimization improvements.

Fig. 7.5. The proposed layout optimization flow for critical routes.

Design Rules

Critical routes

Cost function
+

Sensitivity circuit models

Identify constraints

Routing optimization
(uses sensitivity circuit models to

minimize the cost function)

Requires a layout
parasitic extraction

144

The nonlinear programming requires a layout parasitic extraction process with every

optimization iteration to evaluate the developed cost function. Therefore, a novel

incremental parasitic extraction method is developed, as described in section 7.1. The

developed incremental extraction method employs a full layout extraction tool, Calibre

PEX [19], in an incremental manner in order to reduce the parasitic extraction runtime.

Moreover, it provides high accuracy numbers as compared to a full layout extraction

(<1% error).

7.2.1. Cost Function Development

Two cost functions are developed. The first one represents a net matching (i.e.,

symmetry), whereas the second one represents a route’s delay.

7.2.1.1. Relative Cost Function

A cost function that measures the performance difference between two systems

(i.e., routes) is developed as follows. Assuming two systems with output responses

S1 and S2. The systems can belong to the same net, as shown in Fig. 7.6 (a), or different

nets, as shown in Fig. 7.6 (b). The corresponding responses at their terminals are

expressed by Taylor series expansions as below:

𝑆1(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (7.1)

and

𝑆2(𝑠) = 𝑚′
0 + 𝑚′

1 𝑠 + 𝑚′
2 𝑠

2 + 𝑚′
3 𝑠

3 + ⋯, (7.2)

where mi and m’i are circuit moments at ith order.

(a)

(b)

Fig. 7.6. Two different RC systems that belong to (a) two different routes, or (b) the same route.

R
1
 R

2
 R

n

C
2
 C

1

V
1

C
n

S
1

R’
1
 R’

2
 R’

m

C’
2
 C’

1

V
2

C’
m

S
2

R
1
 R

2

R
n

C
2
 C

1

V
1

C
n

S
1

R
m

C
m

S
2

R
i

C
i

R
j

C
j

145

To ensure that the two systems have the same output response, a relative cost

function (RCF) is developed as below:

relative cost function (RCF) = ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

 (7.3)

where q represents the required order of circuit moments. The purpose of using a

relative formula is to normalize the weights for all required moments to ensure that

all required moments are equally considered (regardless of their order of magnitude)

during the optimization process.

The RCF has two main uses. First, it is used to meet net symmetry constraints as

it measures the performance (or response) error between two routes. Second, it is used

to optimize critical layout routes by measuring the performance error between a

certain critical route and the corresponding shortest path route assuming no

blockages.

7.2.1.2. Delay cost function

Another cost function is developed based on circuit moments in order to minimize

a route’s delay. According to [102], for a certain network, the crossing time (trt,q)

represents the time required by a signal to reach a certain voltage as shown in Fig. 7.7.

The crossing time (trt,q) of a signal at a certain threshold ratio of a voltage (rt) for q

moments is given by:

𝑡𝑟𝑡,𝑞 = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙

𝑚𝑞

𝑚1
(𝑞−1)

, (7.4)

where the valid range of rt is from 0 to 1, 𝑡𝑟𝑡,𝑞 is the time taken by the signal to achieve

(or cross) the threshold voltage, q is the required order of moment, whereas a1 to aq

are constant coefficients that might have different values based on the required

threshold value (rt). These constants were obtained using curve fitting operations as

shown in [102].

In this work, a delay cost function is developed based on (7.4). The threshold

voltage ratio of the crossing point is set to 0.5, and the maximum number of moments

146

(q) is set to 5 moments, as recommended by [102] to achieve a good accuracy.

Therefore, the delay cost function (DCF) is given by:

Delay cost function (DCF) = 𝑡0.5,5, (7.5)

where the values of a1 to a5 coefficients are -3.05, 5.59, -4.36, 1.75, and -0.291,

respectively as shown in [102].

Fig. 7.7. An illustrative example of the threshold ratio (rt) that represents the threshold-crossing point
(tp, Vth), where a time tp is required by the signal to reach Vth voltage.

7.2.2. Sensitivity Circuit Models

In order to measure the impact of modifying layout geometries (i.e., route’s

geometries) on a cost function (CF), a circuit model that measures the sensitivity of CF

to layout geometries is proposed and derived as below:

𝜕CF

𝜕𝐺𝑒

̅̅ ̅̅ ̅
= [

𝜕CF

𝜕𝑃
]
1×𝑛

. [
𝜕𝑃

𝜕𝐺𝑒
]
𝑛×𝑚

, (7.6)

where P represents the associated parasitic elements, Ge represents route’s geometries,

n is the number of parasitic elements, whereas m is the number of corresponding layout

geometries. In order to correlate the cost function with layout geometries (Ge), the

geometries are represented by using their coordinates (or vertices). Therefore, the

sensitivity of a cost function (CF) to layout geometries is given by:

tp

Vth
rt =

𝑉𝑡ℎ

𝑉𝑚𝑎𝑥

tp = f (m1, m2, …)

Vmax

Time

V
o

lt
ag

e

147

𝜕𝐶𝐹

𝜕𝐺𝑒

̅̅ ̅̅ ̅̅
=

[

𝜕𝐶𝐹

𝜕𝑅1

𝜕𝐶𝐹

𝜕𝑅2

⋮
𝜕𝐶𝐹

𝜕𝑅𝑖

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+1

𝜕𝐶𝐹

𝜕𝐶𝑐𝑖+2

⋮
𝜕𝐶𝐹

𝜕𝐶𝑐𝑛]

 .

[

𝜕𝑅1

𝜕𝑥1

𝜕𝑅1

𝜕𝑥2
…

𝜕𝑅1

𝜕𝑦𝑚−1

𝜕𝑅1

𝜕𝑦𝑚

⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝐶𝑐𝑛

𝜕𝑥1

𝜕𝐶𝑐𝑛

𝜕𝑥2
…

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚−1

𝜕𝐶𝑐𝑛

𝜕𝑦𝑚]

, (7.7)

where x and y represent the coordinates of route polygons as shown in Fig. 7.8, R is a

parasitic resistive element, whereas Cc is a parasitic capacitive element. In order to

provide a degree of freedom, routes are fractured into quadrilateral polygons (e.g.,

rectangles). As a result, the sensitivity and cost function calculations consider either

Manhattan or non-Manhattan geometries.

(a)

(b)

Fig. 7.8. An illustrative example of a geometry representation in the proposed sensitivity models
showing (a) an unfractured polygon and (b) a fractured polygon.

The proposed model in (7.6) has two main components. First, the CF sensitivity to

parasitic elements (𝜕CF 𝜕𝑃⁄), which is different from one cost function to another.

Second, the sensitivity of parasitic elements to system (i.e., route) geometries (𝜕𝑃 𝜕𝐺𝑒⁄).

y1

y2

x1 x2 x3 x4 x5 x6 x7 x8

y3

(x1,y1)

(x1,y2)

(x2,y1)

(x3,y1)

(x4,y1)

(x5,y1)

(x6,y1)

(x7,y1) (x8,y1)

(x8,y2)

(x2,y3)

(x3,y3)

(x4,y3)

(x5,y3)

(x6,y3)

(x7,y3)

148

As for a cost function sensitivity to parasitic elements (𝜕CF 𝜕𝑃⁄), two sensitivity

models are developed. First, the relative cost sensitivity to a parasitic element, which is

derived from the relative cost function in (7.3). Second, the delay cost sensitivity to a

parasitic element, which is derived from the delay cost function in (7.5). Both of them

are derived for each parasitic element (Pi) in order to fill the corresponding matrix. As

for the sensitivity of parasitic elements to system geometries, it does not rely on the

used cost function, and it can be used in (7.7) regardless of the used cost function. The

three sensitivity models are derived as follows.

7.2.2.1. The Relative Cost Function Sensitivity to a Parasitic Element

As for the relative cost function sensitivity (RCF) to a parasitic element, it is

obtained by differentiating (7.3) with a parasitic element (Pi) as below, given that the

detailed derivations are found in the Appendix:

where mk is a certain degree moment at a given node, q is the maximum required

degree of moments, and RCFmk is the relative cost function for a certain moment (i.e.,

relative moment cost function). This model has two components that include the

sensitivity of a relative moment cost function to a circuit moment (𝜕RCFmk 𝜕𝑚𝑘⁄) and

the sensitivity of a moment to a parasitic element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄).

As for the relative moment cost function sensitivity to a circuit moment, it is

obtained by differentiating (7.9) with a moment (mk) as below:

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (

(𝑚0 − 𝑚′
0)

2

𝑚′
0
2 +

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯), (7.8)

Let

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 .

(7.9)

Therefore, by using mk as an intermediate variable,

𝜕RCF

𝜕𝑃𝑖
= ∑

𝜕RCFmk

𝜕𝑚𝑘

𝜕𝑚𝑘

𝜕𝑃𝑖

𝑞

𝑘=0

, (7.10)

149

𝜕RCFmk

𝜕𝑚𝑘
= 2

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2 . (7.11)

As for the sensitivity of each moment to a parasitic element (𝜕𝑚𝑘 𝜕𝑃𝑖⁄), it is

obtained by differentiating (2.13) with a parasitic element (Pi) as below, given that the

detailed derivations are found in the Appendix:

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1

𝜕𝐺

𝜕𝑃𝑖
𝑚0, (7.12)

and

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1 (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1

(7.13)

where C is the capacitors matrix, G is the admittance matrix, and m0 to mk are circuit

moments at a given node.

Eventually, the sensitivity of an RCF to a parasitic element (Pi) is obtained by

substituting (7.11), (7.12), and (7.13) in (7.10) as below, given that the detailed

derivations are found in the Appendix:

𝜕RCF

𝜕𝑃𝑖
= 2

(𝑚0 − 𝑚′
0)

𝑚′
0
2

∙ (−𝐺−1
𝜕𝐺

𝜕𝑃𝑖
𝑚0) + ∑ (2

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2

𝑞

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖
𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
))).

(7.14)

7.2.2.2. The Delay Cost Function Sensitivity to a Parasitic Element

As for the delay cost function (DCF) sensitivity to a parasitic element (Pi), it is

obtained by differentiating (7.5) with a parasitic element (Pi) as below, given that the

detailed derivations are found in the Appendix:

𝜕𝐷𝐶𝐹

𝜕𝑃𝑖
= 𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+ ∑ [𝑎𝑘 (

𝜕𝑚𝑘

𝜕𝑃𝑖
 ∙

1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

 ∙
𝜕𝑚1

𝜕𝑃𝑖
)] ,

𝑞

𝑘=2

 (7.15)

where 𝜕𝑚𝑘 𝜕𝑃𝑖⁄ is obtained in (7.13).

150

7.2.2.3. A Parasitic Sensitivity to Layout Geometries

 As for parasitic sensitivities to layout geometries (𝜕𝑃 𝜕𝐺𝑒⁄), they are measured

by using the proposed incremental parasitic extraction flow, which provides very fast

and localized sensitivity numbers. For a certain parasitic element (Pi) and geometry

parameter (xj), the sensitivity is calculated using the below formula:

𝜕𝑃𝑖

𝜕𝑥𝑗
=

𝑃𝑖(𝑥𝑗+1) − 𝑃𝑖(𝑥𝑗)

𝑥𝑗+1 − 𝑥𝑗
, (7.16)

where Pi(xj+1) is the value of a parasitic element (Pi) when a geometry x equals xj+1,

Pi(xj) is the value of a parasitic element (Pi) when a geometry x equals xj.

7.2.3. Performance Analysis to Identify Critical Geometries

It is very important to understand and analyze the impact of layout geometries on

a route’s performance. This would help identifying the most sensitive geometries to a

route’s performance cost function, speeding up the optimization process, and achieving

better optimization results.

The performance analysis is performed by using the cost sensitivity to layout

geometries model in (7.7). However, the sensitivity analysis mainly relies on the

required performance cost function. In case of performing net matching analysis, the

sensitivity models of the relative cost function in (7.7), (7.14), and (7.16) are used. In case

of performing a delay analysis, the sensitivity models of the delay cost function in (7.7),

(7.15), and (7.16) are used. The higher the sensitivity value, the higher the impact on a

route’s performance.

As for a general performance analysis, the sensitivity models of the relative cost

function may be used in three steps. First, identify the critical routes. Second, create a

shortest path route assuming no blockages as a reference route. Third, use (7.7), (7.14),

and (7.16) in order to calculate the sensitivity of the RCF to route’s geometries using the

moments of a shortest path route as reference moments.

151

7.2.4. Geometrical Constraints

Once the most sensitive geometries are selected, they are used as optimization

parameters for the routing optimization process; however, this requires maintaining

constraints such as the corresponding process design kit (PDK), net blockage

constraints, connectivity, and net symmetry constraints. The constraints are obtained

using a symbolic template approach.

7.2.5. Layout Routing Optimization Process

The purpose of this step is to minimize a cost function with respect to the most

sensitive route’s geometries (i.e., coordinates) using a nonlinear programming. The

sequential linear-quadratic programming (SLSQP) algorithm is used as a nonlinear

programming algorithm because it is an iterative approach for nonlinear optimization

problems that accepts multiple constraints. In order to provide degrees of freedom for

the routing optimization process, the target routes are fractured into quadrilateral

shapes. The number of fractured polygons relies on the required number of degrees of

freedom. The fracturing is done in two steps. First, the polygons are scanned in the x

direction and fractured vertically. Second, the polygons are scanned in the y direction

and fractured horizontally as shown in Fig. 7.8 (b). Each fractured polygon holds four

vertices conforming a quadrilateral polygon. The fractured polygons are used to create

and evaluate the sensitivity circuit models in (7.7).

The optimization algorithm is shown in Fig. 7.9. The inputs of the algorithm are: 1)

the target routes and 2) the constraints including the new design requirements, whereas

the outputs are new routes that are represented by their coordinates. It is worth

mentioning that the minimization of a cost function uses the derived sensitivity model,

in (7.7), to create the Jacobean matrix that are used by the nonlinear programming

algorithm. It is worth mentioning that the routing optimization algorithm is

implemented using Python [84].

152

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Inputs:

 Routes[1..n]: List of routes that require optimization, and their count is n.

 Constraints[1..m]: List of constraints, and their count is m.

Output:

 New_Routes[1..n]: final list of optimized routes

Begin

 Routes = initial current routes.

 CF = initial values of a cost function across all routes.

 for i ∈ [1..n] //foreach route

 R = Routes[i] //in case of a delay optimization, it contains one route

//and in case of a net matching optimization, it contains the two routes.

 while (optimization is needed) //i.e., gradient is needed

 Parasitics ← extract_parasitics(R) //extract parasitics of routes in (R)

 dPdGe ← calculate_dPdGe(R, Parasitics) // 𝜕𝑃 𝜕𝐺𝑒⁄ using (7.16)

 Moments ← calculate_moments(Parasitics) // using (2.13)

 dCFdP ← calculate_dCFdP(Moments, Parasitics) // calculate 𝜕𝐶𝐹 𝜕𝑃⁄ using (7.14) or (7.15)

 dCFdGe ←calculate_dCFdGe (dCFdP, dPdGe)

// calculate 𝜕𝐶𝐹 𝜕𝐺𝑒⁄ using (7.7) to identify the most sensitive geometries for optimization.

 R ← optimize_route(R, dCFdGe, Constraints, SLSQP)

 // At this point, R holds an updated route.

 New_Parasitics← extract_parasitics(R)

 New_Moments←calculate_moments(New_Parasitics) //using (2.13)

 CF[i]←calculate_cost_value(New_Moments) // using (7.3) or (7.5) to calculate new cost value

 end while

 New_Routes[i] = R

 end for

End

Fig. 7.9. The proposed routing optimization algorithm pseudo code.

153

7.3. Experimental Results

The testing covered the proposed incremental parasitic capacitance extraction

method, the derived sensitivity models, and the proposed parasitic-aware routing

optimization method. The testing used Intel Xeon(R) E5-2680, 2 CPUs, 2.50GHz, and

16GB of RAM.

7.3.1. Testing the Proposed Incremental Capacitance Extraction

The accuracy and runtime of the proposed incremental parasitic capacitance

extraction were tested and compared against a full layout parasitic capacitance

extraction across three designs that include Ring Oscillator (RO) (7nm), Digital to

Analog converter (DAC) (28nm), and voltage-controlled oscillator (VCO) (40nm)

designs. Calibre PEX is used as an extraction tool for both incremental and full layout

parasitic extractions. The testing methodology involves modifying metal shapes for

some critical nets. The modifications include deleting, moving, stretching, and adding

new metal polygons. Each modified layout is tested by running a full layout parasitic

extraction, the proposed incremental extraction, and the incremental extraction without

considering the second order capacitances.

As for the RO (7nm), some input and output nets of RO stages were modified in

three different ways: 1) modifying two metal layers with 1075 parasitic capacitive

elements (i.e., small), 2) modifying three metal layers with 2037 parasitic capacitive

elements (i.e., medium), and 3) modifying four metal layers with 3524 parasitic

capacitive elements (i.e., large). As shown in Table 7.1, The maximum relative errors in

the three scenarios after applying the proposed incremental parasitic extraction flow as

compared to the full parasitic extraction are 0.14%, 0.25%, and 0.5%, respectively.

Moreover, the relative speedup of the proposed incremental flow as compared to the

full layout extraction in the three scenarios is 40.4, 27.8, and 21.15, respectively.

Furthermore, the results show that the consideration of the second order parasitic

capacitances has a very small impact on the runtime as compared to the incremental

extraction that does not consider the second order parasitic capacitances.

154

Table 7.1 Testing results of the proposed incremental capacitance extraction method using a RO with
31 stages (7nm).

Component
Modification Type

Small Medium Large

Capacitive elements 1075 2037 3524

Metal layers 2 3 4

Max error of the proposed method 0.14% 0.25% 0.5%

Incremental extraction runtime in seconds
(secs)

11 secs 16 secs 21 secs

Full extraction runtime (minutes) 7.4 minutes

Relative speedup as compared to a full
extraction run

40.4 27.8 21.15

Incremental extraction runtime without second
order capacitances

10.4 secs 15.1 secs 19.5 secs

As for the DAC (28nm), several nets were modified in three different ways: 1)

modifying two metal layers with 9015 parasitic capacitive elements (i.e., small), 2)

modifying three metal layers with 11422 parasitic capacitive elements (i.e., medium),

and 3) modifying four metal layers with 14372 parasitic capacitive elements (i.e., large).

As shown in Table 7.2, the maximum errors in the three scenarios after applying the

proposed incremental parasitic extraction flow as compared to the full parasitic

extraction are 0.21%, 0.47%, and 0.67%, respectively. Moreover, the relative speedup of

the proposed incremental flow as compared to the full layout extraction in the three

scenarios is 43.16, 32.12, and 21.14, respectively.

Table 7.2 Testing results of the proposed incremental capacitance extraction method using a DAC
(28nm).

Component
Modification Type

Small Medium large

Capacitive elements 9051 11422 14372

Metal layers 2 3 4

Max error of the proposed method 0.21% 0.47% 0.67%

Incremental extraction runtime in minutes (mins) 4.31 mins 5.79 mins 8.8 mins

Full extraction runtime 3.1 hours

Relative speedup as compared to full run 43.16 32.12 21.14

Incremental extraction runtime without second
order capacitances

4.12 mins 5.47 mins 8.25 mins

As for the VCO (40nm), several nets were modified in three different ways: 1)

modifying two metal layers with 11768 parasitic capacitive elements (i.e., small), 2)

modifying three metal layers with 12794 parasitic capacitive elements (i.e., medium),

and 3) modifying four metal layers with 17724 parasitic capacitive elements (i.e., large).

155

As shown in Table 7.3, the maximum errors in the three scenarios after applying the

proposed incremental parasitic extraction flow as compared to the full parasitic

extraction are 0.19%, 0.38%, and 0.63%, respectively. Moreover, the relative speedup of

the proposed incremental flow as compared to the full layout extraction in the three

scenarios is 54.2, 43.07, and 35.1, respectively.

Table 7.3 Testing results of the proposed incremental capacitance extraction method a VCO (40nm).

Component
Modification Type

Small Medium large

Capacitive elements 11768 12794 17724

Metal layers 2 3 4

Max error of the proposed method 0.19% 0.38% 0.63%

Incremental extraction runtime in minutes
(mins)

6.67 mins 8.4 mins 10.3 mins

Full extraction runtime 6.03 hours

Relative speedup as compared to full run 54.2 43.07 35.1

Incremental extraction runtime without
second order capacitances

6.35 mins 7.93 mins 9.65 mins

Table 7.1, Table 7.2, and Table 7.3 summarize the experimental results of the RO

(7nm), DAC (28nm), and VCO (40nm) designs, respectively. As shown in the tables, the

proposed incremental extraction flow provides an outstanding accuracy as compared

to full extraction with maximum errors < 1% and with huge runtime savings of up to

54X. Furthermore, the results show that the consideration of the second order parasitic

capacitances has a very small impact on the runtime as compared to the incremental

extraction that does not consider the second order parasitic capacitances.

7.3.2. Testing the Proposed Parasitic Sensitivity Models and Routing Optimization

Method Using a Simple Interconnect Structure

The proposed sensitivity models were tested using the interconnect structure

shown in Fig. 7.10. This experiment has two purposes. First, it aims to measure the

sensitivity of the relative cost function (RCF) to each layout geometry (i.e., coordinate)

using (7.7), where the relative cost function measures Vout2 moments relative to Vout1

moments. Second, it aims to match the signal responses at Vout1 and Vout2 by optimizing

the geometries of Vout2 route. This is done by using a nonlinear programming to

minimize the relative cost function in (7.3).

156

Fig. 7.10 (a) shows the experimental interconnect structure. It contains one input

pin, Vin, and two output pins that include Vout1 and Vout2. The surrounding dielectric

constant is set to 3.9, the elevation of the metal is set to 1 µm, the metal thickness is set

to 0.1µm, whereas the sheet resistance is set to 3 Ω/□.

(a)

(b)

(c)

Fig. 7.10. An experimental interconnect structure that is used for verifying the sensitivity circuit models
and the optimization algorithm highlighting (a) the nodes, (b) the dimensions in the x-direction, and (c)
the dimensions in the y-direction, given that all dimensions are in µm.

V
in

= 5V V
out1

V
out2

Fixed node

Fixed

node

Blockage (connected to ground)

Fixed

node

3µm

1µm

0.5µm 0.5µm

0.5µm 0.5µm 0.5µm

0.1µm

0.1µm

0.7µm 0.7µm 0.7µm

0.6µm

0.1µm 0.1µm 0.1µm

0.1µm
0.1µm

0.1µm 0.1µm

x1=1

x2=2 x3=2.1 x4=2.8 x5=2.9 x6=3.6 x7=3.7 x8=4.4 x9=4.5

x10=5.1

x11=5.1

0.7µm 0.2µm

0.2µm

0.2µm

0.3µm

0.2µm
0.1µm

0.1µm

0.2µm
0.2µm

0.2µm

0.2µm

0.2µm

0.3µm 0.2µm

0.4µm

0.9µm

y1=0

y2=0.2

y4=0.4

y3=0.3

y6=-0.2

y5=-0.1

y8=-0.9

y7=-0.8
y9=-0.8

y10=-0.9

y11=-0.1

y12=-0.2

157

The experiment aims to match the signal responses of Vout1 and Vout2 without

moving the fixed nodes that represent the locations of input and output pins. The route

of Vout2 pin has four obstacles (i.e., blockages). Therefore, Vout2 route should pass

through such obstacles with minimal impact on the performance. The dimensions of

the interconnect are shown in Fig. 7.10 (b) and Fig. 7.10 (c). The optimization process

used Calibre PEX, [19], to extract the parasitic elements of the interconnect structure.

Table 7.4 shows the initial values (at the original interconnect dimensions) of the

relative cost function sensitivities to the coordinates of Vout2 route using (7.7). It is worth

mentioning that the sensitivities are nonlinear. Therefore, they are calculated with

every optimization iteration.

Table 7.4. The values of the sensitivity of the relative cost function to each Vout2 coordinate in the
experimental interconnect structure.

Sensitivity parameter Value Sensitivity parameter Value

𝝏𝑪𝑭 𝝏𝒙𝟐⁄ 181.226 𝝏𝑪𝑭 𝝏𝒚𝟓⁄ -936.95

𝝏𝑪𝑭 𝝏𝒙𝟑⁄ -1395.2 𝝏𝑪𝑭 𝝏𝒚𝟔⁄ 937.001

𝝏𝑪𝑭 𝝏𝒙𝟒⁄ 1416.3 𝝏𝑪𝑭 𝝏𝒚𝟕⁄ -903.5

𝝏𝑪𝑭 𝝏𝒙𝟓⁄ -1020.98 𝝏𝑪𝑭 𝝏𝒚𝟖⁄ 837.4

𝝏𝑪𝑭 𝝏𝒙𝟔⁄ 1307.1 𝝏𝑪𝑭 𝝏𝒚𝟗⁄ 926.7

𝝏𝑪𝑭 𝝏𝒙𝟕⁄ -1120.98 𝝏𝑪𝑭 𝝏𝒚𝟏𝟎⁄ -843.9

𝝏𝑪𝑭 𝝏𝒙𝟖⁄ 1902.3 𝝏𝑪𝑭 𝝏𝒚𝟏𝟏⁄ 884.2

𝝏𝑪𝑭 𝝏𝒙𝟗⁄ -1813.7 𝝏𝑪𝑭 𝝏𝒚𝟏𝟐⁄ -809.7

Moreover, a nonlinear programming is applied using SLSQP method in order to

minimize the relative cost function. The nonlinear programming uses Vout2 interconnect

geometries (i.e., coordinates) as optimization parameters. Fig. 7.11 shows the optimized

interconnect structure. Fig. 7.12 (a) shows the signal responses at Vout1 and Vout2 before

the optimization process, whereas Fig. 7.12 (b) shows the signal responses after the

optimization process. As for the cost values, the value of the relative cost function

before the optimization is 0.391, whereas the value of the relative cost function after the

optimization is 0.002047.

158

Fig. 7.11. The experimental interconnect structure after the optimization process.

(a)

(b)

Fig. 7.12. The output response of the experimental interconnect structure at Vout1 and Vout2 (a) before
the optimization process and (b) after optimization process.

3µm 0.1µm

1µm

0.2µm
0.1µm

1.4µm
0.12µm

0.18µm 0.2µm

0.9µm

0.7µm

0.1µm

0.2µm

0.1µm

0.1µm
0.1µm

159

7.3.3. Testing the Layout Routing Optimization Method Using Circuit Designs

The proposed circuit models and layout optimization methodology were tested

across different designs that include Ring Oscillators (RO) of 7nm process node and

folded cascode operational amplifiers with common mode feedback of 65nm process

node. The performance of the proposed optimization method was tested in terms of the

accuracy and the optimization runtime. The accuracy was measured and compared to

the required circuit specifications. The results were also compared against the

traditional template-based layout optimization method that is described in [20], [44],

[66], [68].

7.3.3.1. Ring Oscillator (7nm)

As for the RO(7nm), six different RO designs each with 31 stages were tested using

0.75V as an operating voltage. The optimization used the delay cost function in (7.5)

and its corresponding sensitivity circuit models. The optimization included the input

and output pins (i.e., input and output routes) of each stage. As shown in Table 7.5,

the proposed optimization flow managed to reduce the delay of the six RO designs

by 9.32%, 10.33%, 10.79%, 9.68%, 10.65%, and 11.1%, respectively, as compared to

traditional template-based methods. Moreover, the relative speedup of the proposed

method as compared to the traditional template-based method for the six designs is

9.06, 8.91, 9.48, 8.7, 9.27, and 8.54, respectively, as shown in Table 7.5. The reason

behind such improvements is that traditional template-based optimization methods

use multiple circuit simulations in order to identify the parasitic bounds, and each

simulation consumes around 29 minutes. As for the delay improvements, traditional

template-based methods use simplified parasitic formulas that are not suitable for

advanced process technology nodes, whereas the proposed method uses the

proposed incremental extraction method. As for the area, both optimization methods

provided almost the same area.

160

Table 7.5. The testing results of the proposed routing optimization method as compared to a
traditional template-based method across six different RO (7nm) designs.

 Traditional template-based routing
Method

Proposed Method

Delay Optimization
runtime

Delay Optimization
runtime

RO1 7.51ps 4.23 hours 6.81ps 28 minutes

RO2 8.13ps 4.31 hours 7.29ps 29 minutes

RO3 9.27ps 4.11 hours 8.27ps 26 minutes

RO4 8.47ps 4.35 hours 7.65ps 30 minutes

RO5 8.26ps 4.17 hours 7.38ps 27 minutes

RO6 9.10ps 4.41 hours 8.09ps 31 minutes

7.3.3.2. Folded Cascode Differential Amplifier with Common Mode Feedback

(65nm)

Folded cascode differential amplifiers with common mode feedback (CMFB)

circuits were tested using three different specifications. The Amplifiers were

developed using 65nm process node. Fig. 7.13 shows a block diagram of the

amplifiers, whereas Fig. 7.14 shows a schematic circuit design of the folded cascode

differential amplifier.

The optimization used the relative cost function in (7.3) and its corresponding

sensitivity circuit models with 5 moments. The optimization was performed over 7

routes, Route1 to Route7, as shown in Fig. 7.14. The optimization aimed to match the

responses (i.e., net matching) at the output terminal of each two similar routes, where

Route1 was matched with Route2, Route3 was matched with Route4, and Route5 was

matched with Route6. Moreover, the responses at the output terminals (i.e., t1 and t2)

of Route7 were also matched.

161

Fig. 7.13. Block diagram of a fully differential folded cascode amplifier with common mode
feedback circuit.

Fig. 7.14. A circuit design of an experimental folded cascode operational amplifier (65nm) showing
the optimized routes.

Tables 7.6, 7.7, and 7.8 show the optimization results for three different required

specifications. The results show that the proposed optimization method managed to

provide closer results to the specifications as compared to the traditional template-

based method with minimal impact on the area. Moreover, the optimization runtimes

CMFB

Vin
+

Vin
-

Vout
+

Vout
-

Vref

Folded cascode differential Amplifier

VCM

Ibias

VDD

Vin
+
 Vin

-

Vb1

ground

Route1

Route2

Route7

Route3

Vb2

VCM

Vout
+

Vb3

Vout
-

CL CL

Route4

Route5 Route6

Route1 = Route2

Route3 = Route4

Route5 =Route6

Route7(t1) = Route7(t2)

t1 t2

162

of the proposed method for the three cases were faster than the traditional template-

based method with a speedup of 3.6X, 3.36X, 3.41X, respectively.

Table 7.6. The testing results of the proposed routing optimization method as compared to a
traditional template-based method over the first specification requirements of a folded cascode
differential amplifier.

 Specifications Traditional Method Proposed Method

Gain (dB) 60.0 61.1 60.3

GBW (Hz) 350M 361M 352M

PM (o) 60.0 63.1 61.5

Output swing (V) 0.8 0.76 0.78

Loading capacitance
(pF)

1pF

Optimization runtime 4.3 minutes 1.2 minutes

Area (µm)2 2958 2962

Table 7.7. The testing results of the proposed routing optimization method as compared to a
traditional template-based method over the second specification requirements of a folded cascode
differential amplifier.

 Specifications Traditional Method Proposed Method

Gain (dB) 50.0 53.2 51.1

GBW (Hz) 300M 309M 303M

PM (o) 50.0 53.8 50.7

Output swing (V) 0.9 0.88 0.89

Loading capacitance
(pF)

1pF

Optimization runtime 4.5 minutes 1.34 minutes

Area (µm)2 3162 3150

Table 7.8. The testing results of the proposed routing optimization method as compared to a
traditional template-based method over the third specification requirements of a folded cascode
differential amplifier.

 Specifications Traditional Method Proposed Method

Gain (dB) 60.0 61.3 60.8

GBW (Hz) 600M 612M 604M

PM (o) 55.0 57.1 55.6

Output swing (V) 0.8 0.78 0.79

Loading capacitance
(pF)

1pF

Optimization runtime 4.7 minutes 1.38 minutes

Area (µm)2 3364 3352

163

7.4. Conclusion

A parasitic-aware layout routing optimization methodology is developed. Existing

layout routing optimization methods suffer from three main problems. First, they rely on

many circuit simulations to calculate the parasitic bounds. Second, they rely on either

simple parasitic models, which provide poor accuracy, or a full layout extraction, which

consumes a lot of time, in order to extract the parasitic elements of a given layout during

the optimization process. Third, they do not provide a mechanism to analyze the impact

of parasitic elements and corresponding geometries on a system’s performance. The

proposed methodology overcomes such limitations by providing novel sensitivity circuit

models that help circuit designers in analyzing the impact of parasitic elements and

corresponding layout geometries on a system’s performance. Moreover, it provides a

novel incremental parasitic capacitance extraction methodology that helps in providing

a significant speeding up in the optimization runtime with minimal impact on the

accuracy as compared to those methods that use a full layout extraction. The proposed

optimization method uses a nonlinear programming technique to modify and optimize

the problematic routes based on the proposed sensitivity circuit models. The proposed

methodology is tested over different ring oscillator designs of 7nm process node and

folded cascode differential amplifiers of 65nm process node. The experimental results

show that the proposed methodology managed to achieve better accuracy and runtime

results as compared to traditional template-based layout routing optimization methods.

The proposed methodology managed to identify and optimize the problematic

geometries in critical routes with up to 10% improvements in the performance and a

speed up of 3 to 9X as compared to traditional template-based methods.

164

Conclusion

This work provided new solutions to: 1) improve the accuracy of the rule-based 2.5D

interconnect parasitic capacitance extraction models; 2) provide new models to predict

parasitic capacitances of MEOL; 3) introduce new parasitic capacitance extraction method

based on NN that provides high accuracy values in a reasonable runtime; 4) introduce

new hybrid parasitic capacitance extraction method; and 5) introduce new parasitic-

aware routing methodology based on an incremental parasitic extraction and a fast

optimization algorithm.

As for the rule-based 2.5D parasitic capacitance models, a novel modeling

methodology is developed using machine learning methods. The proposed methodology

managed to overcome several problems in rule-based extraction tools such as handling

systematic process variations, high pattern mismatches, and limited pattern coverages. It

aims to create new machine learning compact models in order to predict parasitic

capacitances between different metal polygons in 2D cross-section layout patterns. The

models are created for each process technology node in order to simplify the modeling

process and reduce the number of input variables. The input of the compact models is a

given cross-section pattern including the required capacitances and the corresponding

systematic process variations. Three different input representations are introduced

including: 1) ratio-based; 2) dimensions-based; and 3) vertex-based pattern

representations. Moreover, two different machine learning methods are used to

implement the compact models including neural networks and support vector regression

methods. The proposed methodology is tested over multiple real designs of 28nm, 14nm,

and 7nm process nodes with more than 6.7M interconnect patterns. The generated

compact models are faster than traditional rule-based models by 2.5X. Also, they

managed to achieve outstanding results as compared to field-solvers and rule-based

165

cross-section models, where the average relative error of the generated models is < 0.15%

and the standard deviation of relative errors is < 3.31%.

As for the MEOL parasitic capacitance models, a new modeling methodology is

developed. The methodology aims to create machine learning models to predict parasitic

coupling capacitances for MEOL around FINFETs and MOSFETs. This method

overcomes the problems of existing methods that either use field-solvers or pre-

characterized libraries to extract MEOL patterns, where field-solvers suffer from runtime

and capacity problems, whereas pre-characterized libraries suffer from pattern

mismatches and insufficient pattern coverage problems. The proposed modeling

methodology selects all devices in a certain layout, identifies their MEOL patterns, and

represents MEOL patterns using a novel geometry-based representation to be used as

inputs to the required machine learning models. The proposed methodology is tested

over two process nodes including: 28nm and 7nm. The testing covered devices in several

real designs with more than 40M devices. The proposed methodology provided

outstanding results as compared to field-solvers with an average error < 0.2%, a standard

deviation < 3%, and a speed up of 100X.

As for the hybrid extraction method, a novel accuracy-based hybrid parasitic

capacitance extraction flow is developed. The proposed hybrid flow divides the chip into

windows and extracts the parasitic capacitances of each window using one of three

extraction methods: 1) field-solver; 2) rule-based; or 3) novel deep neural-networks based

extraction methods. This is done by extracting the parasitic capacitive elements of each

pattern (i.e., window) by using the fastest extraction method that meets the user pre-

determined accuracy level. The proposed flow uses neural-networks classifiers to

determine the capacitance extraction method for each window. On the other hand, a new

DNN-based extraction method is developed as an intermediate parasitic extraction

method between rule-based method and field-solver method in terms of runtime and

accuracy. The proposed hybrid flow is tested over different designs of 7nm and 28nm

process nodes. The results showed that the proposed hybrid flow managed to meet the

166

required accuracy levels (of less than 5% error) with more than 99% accuracy, and with a

speed up of 70X as compared to field-solvers

 As for the parasitic-aware routing optimization methodology, a new routing

optimization methodology is developed based on an incremental parasitic extraction and

a fast optimization algorithm. The proposed methodology aims to overcome the

problems of existing layout routing optimization that include: 1) the use of many circuit

simulations to calculate the parasitic bounds; 2) the use of either simple parasitic models,

which provide poor accuracy, or a full layout extraction, which consumes a lot of time,

in order to extract the parasitic elements of a given; and 3) the lack of a mechanism to

analyze the impact of parasitic elements and corresponding geometries on a system’s

performance. The proposed methodology provides: 1) novel sensitivity circuit models

that help circuit designers in analyzing the impact of parasitic elements and

corresponding layout geometries on a system’s performance; 2) a novel incremental

parasitic capacitance extraction methodology that helps in providing a significant

speedup in the optimization runtime; and 3) a nonlinear programming algorithm to

modify and optimize the problematic routes based on the proposed sensitivity circuit

models. The proposed methodology is tested over different ring oscillator designs of 7nm

process node and folded cascode differential amplifiers of 65nm process node. The

experimental results show the proposed methodology managed to identify and optimize

the problematic geometries in critical routes with up to 10% improvements in the

performance and a speedup of 3 to 9X as compared to traditional template-based

methods.

167

Future Work

The future work includes two main topics: 1) extending the parasitic capacitance

modeling to cover new technologies, such as 3DICs; and 2) improving the parasitic-aware

routing method to incorporate parasitic inductances.

As for the neural network models of the proposed parasitic capacitance modeling

methodologies, the impact of changing and increasing the number of neurons and layers

on the network performance need to be studied. This would provide more understanding

to the impact of changing neural network architecture on the performance of the different

parasitic capacitance extraction models.

Moreover, the proposed models cannot predict parasitic capacitances of three-

dimensional integrated circuits (3DIC) technologies, such as stacked-die 3DIC and

monolithic 3DIC technologies. The 3DIC technologies aims to combine and integrate

multiple systems on a single package. In stacked-die 3DIC technologies, multiple silicon

wafers (or chips) are stacked vertically and connected together by using a through-

silicon-via (TSV). The stacking may have many forms, such as a face to face or a face to

back. In such cases, the capacitance coupling interactions among the interconnects across

those chips need to be modeled. As for monolithic 3DIC technologies, the device layers

and their corresponding devices are fabricated sequentially, and multiple devices with

different elevations may exist. In such cases, there are many different metal and device

layers that are vertically overlapped, and the parasitic capacitances among them need to

be modeled correctly. Eventually, the proposed models need to be extended to support

3DIC technologies.

As for the parasitic-aware routing optimization method, it might be extended to use

different machine learning methods, such as re-enforcement learning, in order to improve

168

the routing optimization process. On the other hand, the proposed methodology only

considers the RC parasitic elements. Hence, their models are appropriate for local

interconnect at any frequency and global interconnect at a lower frequency. For high

frequency global interconnect, inductance and more complex models need to be

included. Therefore, the future work aims to extend this work to consider the different

inductance effects.

169

Appendix
The appendix provides the derivations of the sensitivity circuit models in Chapter 7 as

follows.

A. Moments Sensitivity to a Parasitic Element

The derivations of moments sensitivity to a parasitic element, in (7.12) and (7.13), are as

below:

By differentiating (2.13) with a certain parasitic element (Pi) we get:

for m0: differentiating (G m0 = b) with Pi

𝜕

𝜕𝑃𝑖
(𝐺 𝑚0) =

𝜕

𝜕𝑃𝑖
(𝑏),

(1)

Therefore,

𝜕𝐺

𝜕𝑃𝑖
 𝑚0 + 𝐺

𝜕𝑚0

𝜕𝑃𝑖
= 0.

(2)

Then,

𝜕𝐺

𝜕𝑃𝑖
 𝑚0 = −𝐺

𝜕𝑚0

𝜕𝑃𝑖
,

(3)

Multiplying both sides by 𝐺−1 , we get:

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1

𝜕𝐺

𝜕𝑃𝑖
𝑚0, (4)

for m1: differentiating (G m1 + C m0 = 0) with Pi

𝜕

𝜕𝑃𝑖
(𝐺 𝑚1) +

𝜕

𝜕𝑃𝑖
(𝐶 𝑚0) = 0.

(5)

Therefore,

𝜕𝐺

𝜕𝑃𝑖
 𝑚1 + 𝐺

𝜕𝑚1

𝜕𝑃𝑖
+

𝜕𝐶

𝜕𝑃𝑖
 𝑚0 + 𝐶

𝜕𝑚0

𝜕𝑃𝑖
= 0,

(6)

 Eventually,

𝜕𝑚1

𝜕𝑃𝑖
= −𝐺−1 ∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚1 +

𝑑𝐶

𝜕𝑃𝑖
 𝑚0 + 𝐶

𝜕𝑚0

𝜕𝑃𝑖
).

(7)

170

Similarly, for m2 till mk , where (G mk + C mk-1 = 0) :

𝜕

𝜕𝑃𝑖
(𝐺 𝑚𝑘) +

𝜕

𝜕𝑃𝑖
(𝐶 𝑚𝑘−1) = 0.

⋮

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1,

(8)

where mk is an n vector of moments and n is the number of nodes in an RC network. This

model represents a general model for moments sensitivity to a certain parasitic element.

For a certain target node, the moment sensitivity to a parasitic element (Pi) is given by:

𝜕𝑚0

𝜕𝑃𝑖
= −𝐺−1

𝜕𝐺

𝜕𝑃𝑖
𝑚0, and (9)

𝜕𝑚𝑘

𝜕𝑃𝑖
= −𝐺−1∙ (

𝜕𝐺

𝜕𝑃𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
) , 𝑘 ≥ 1, (10)

where C is the capacitors matrix, G is the admittance matrix, and m0 to mk are circuit

moments at a given node.

The parasitic element (Pi) in (9) and (10) can be either a resistive or capacitive element.

The derivations for both cases are as follows.

1) Moments Sensitivity to a Parasitic Resistive Element

The moment sensitivity to a parasitic resistive element (Ri) is obtained by

substituting a parasitic element parameter (Pi) in (9) and (10) with a resistive element

(Ri) as below:

𝜕𝑚0

𝜕𝑅𝑖
= −𝐺−1

𝜕𝐺

𝜕𝑅𝑖
𝑚0, and (11)

𝜕𝑚𝑘

𝜕𝑅𝑖
= −𝐺−1 (

𝜕𝐺

𝜕𝑅𝑖
 𝑚𝑘 +

𝜕𝐶

𝜕𝑅𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑅𝑖
) , 𝑘 ≥ 1. (12)

However, some terms might have special values when they are differentiated with a

parasitic resistive element (Ri) as below:

𝜕𝐶

𝜕𝑅𝑖
= 0, (13)

171

because C is the capacitance matrix and differentiating it with a resistive element gives

zero. Moreover, 𝑑𝐺/𝑑𝑅𝑖is obtained as below:

𝜕𝐺

𝜕𝑅𝑖
=

𝜕𝐺

𝜕𝑔𝑖

𝜕𝑔𝑖

𝜕𝑅𝑖
 , (14)

where 𝑔𝑖 = (1/𝑅𝑖). Therefore,

𝜕𝐺

𝜕𝑅𝑖
=

𝜕𝐺

𝜕𝑔𝑖

𝜕(1/𝑅𝑖)

𝜕𝑅𝑖
,

(15)

𝜕𝐺

𝜕𝑅𝑖
= −

1

𝑅𝑖
2

𝜕𝐺

𝜕𝑔𝑖
. (16)

As a result, the moments sensitivity to a parasitic resistive element (Ri) is given by:

for m0:

substitute (16) in (11), we get:

𝜕𝑚0

𝜕𝑅𝑖
= 𝐺−1

1

𝑅2

𝜕𝐺

𝜕𝑔𝑖
𝑚0,

(17)

which represents the moment (m0) sensitivity to a certain parasitic resistive element at

a given node.

for mk , k ≥1, substitute (13) and (16) in (12), we get:

𝜕𝑚𝑘

𝜕𝑅𝑖
= −𝐺−1 (−

1

𝑅𝑖
2

𝜕𝐺

𝜕𝑔𝑖
 𝑚𝑘 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑅𝑖
) , 𝑘 ≥ 1,

(18)

which represents the moment (mk) sensitivity to a certain parasitic resistive element

when k ≥ 1 at a given node.

2) Moments Sensitivity to a Parasitic Capacitive Element

The moment sensitivity to a parasitic capacitive element (Ccj) is obtained by

substituting a parasitic element parameter (Pi) in (9) and (10) with a capacitive element

(Ccj) as below:

𝜕𝑚0

𝜕𝐶𝑐𝑗
= −𝐺−1

𝜕𝐺

𝜕𝐶𝑐𝑗
𝑚0, and (19)

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐺

𝜕𝐶𝑐𝑗
 𝑚𝑘 +

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) , 𝑘 ≥ 1. (20)

172

However, some terms might have special values when they are differentiated with a

parasitic capacitive element (Ccj) as below:

𝜕𝐺

𝜕𝐶𝑐𝑗
= 0, (21)

because G is the admittance matrix and differentiating it with a capacitive element gives

zero.

As a result, the moments sensitivity to a parasitic capacitive element (Ccj) is given by:

for m0, substitute (21) in (19), we get:

𝜕𝑚0

𝜕𝐶𝑐𝑗
= 0,

(22)

which represents the moment (m0) sensitivity to a certain parasitic capacitive element

at a given node.

for mk , k ≥1, substitute (21) in (20), we get:

𝜕𝑚𝑘

𝜕𝐶𝑐𝑗
= −𝐺−1 (

𝜕𝐶

𝜕𝐶𝑐𝑗
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝐶𝑐𝑗
) , 𝑘 ≥ 1 (23)

which represents the moment (mk) sensitivity to a certain parasitic capacitive element

when k ≥ 1 at a given node.

B. Relative Cost Function Sensitivity to a Parasitic Element

The derivations of the relative cost function sensitivity to a parasitic element, in (7.14),

are as below:

Assuming two systems, the output response of the first system is given by:

𝑆1(𝑠) = 𝑚0 + 𝑚1 𝑠 + 𝑚2 𝑠
2 + 𝑚3 𝑠

3 + ⋯, (24)

whereas the output response of the second system is given by:

𝑆2(𝑠) = 𝑚′
0 + 𝑚′

1 𝑠 + 𝑚′
2 𝑠

2 + 𝑚′
3 𝑠

3 + ⋯. (25)

Therefore, the relative cost function (RCF) between the two systems is given by:

RCF = ∑
(𝑚𝑖 − 𝑚′

𝑖)
2

𝑚′
𝑖
2 ,

𝑞

𝑖=0

where q represents the required order of circuit moments.

(26)

173

differentiating (26) with a parasitic element (Pi) gives:

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (

(𝑚0 − 𝑚′
0)

2

𝑚′
0
2 +

(𝑚1 − 𝑚′
1)

2

𝑚′
1
2 + ⋯).

(27)

Let

RCFmk =
(𝑚𝑘 − 𝑚′

𝑘)
2

𝑚′
𝑘
2 .

(28)

Therefore,

𝜕RCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
 (RCFm0 + RCFm1 + ⋯),

(29)

Use m0 to mk as intermediate variables for differentiation, we get:

𝜕RCF

𝜕𝑃𝑖
=

𝜕RCFm0

𝜕𝑚0

𝜕𝑚0

𝜕𝑃𝑖
+

𝜕RCFm1

𝜕𝑚1

𝜕𝑚1

𝜕𝑃𝑖
+ ⋯.

(30)

As a result,

𝜕RCF

𝜕𝑃𝑖
= ∑

𝜕RCFmk

𝜕𝑚𝑘

𝜕𝑚𝑘

𝜕𝑃𝑖
 .

𝑛

𝑘=0

(31)

This model has two components. The first component is (𝜕𝑅𝐶𝐹𝑚𝑘 𝜕𝑚𝑘⁄). It is obtained by

differentiating (28) with a certain moment (mk) as below:

𝜕RCFmk

𝜕𝑚𝑘
= 2

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2 , (32)

The second component (𝜕𝑚𝑘 𝜕𝑃𝑖⁄) is already obtained in (9) and (10). By substituting (9),

(10) and (32) in (31), we get:

𝜕RCF

𝜕𝑃𝑖
= 2

(𝑚0 − 𝑚′
0)

𝑚′
0
2

∙ (−𝐺−1
𝜕𝐺

𝜕𝑃𝑖
𝑚0) + ∑ (2

(𝑚𝑘 − 𝑚′
𝑘)

𝑚′
𝑘
2

𝑛

𝑘=1

∙ (−𝐺−1 (
𝜕𝐺

𝜕𝑃𝑖
𝑚𝑘 +

𝜕𝐶

𝜕𝑃𝑖
𝑚𝑘−1 + 𝐶

𝜕𝑚𝑘−1

𝜕𝑃𝑖
))),

(33)

174

which represents the relative cost function (RCF) sensitivity to a certain parasitic element

(Pi) at a given node.

C. Delay cost function sensitivity to a parasitic element

The derivations of the delay cost function sensitivity to a parasitic element, in (7.15),

are as below:

The delay cost function (DCF) is given by, based on [102]:

DCF = 𝑎1 ∙ 𝑚1 + 𝑎2 ∙
𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙

𝑚𝑞

𝑚1
(𝑞−1)

,
(34)

differentiating (34) with a parasitic element (Pi) gives:

𝜕DCF

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖
(𝑎1 ∙ 𝑚1 + 𝑎2 ∙

𝑚2

𝑚1
+ 𝑎3 ∙

𝑚3

𝑚1
2
+ ⋯+ 𝑎𝑞 ∙

𝑚𝑞

𝑚1
(𝑞−1)

).
(35)

Therefore,

𝜕DCF

𝜕𝑃𝑖
= 𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+

𝑎2 ∙ (
𝜕𝑚2

𝜕𝑃𝑖

1

𝑚1
+ 𝑚2 (−𝑚1

−2)
𝜕𝑚1

𝜕𝑃𝑖
) + ⋯+

𝑎𝑞 ∙ (
𝜕𝑚𝑞

𝜕𝑃𝑖

1

𝑚1
𝑘−1

+ 𝑚𝑞 (−(𝑞 − 1)𝑚1
−𝑞)

𝜕𝑚1

𝜕𝑃𝑖
).

(36)

As a result,

𝜕DCF

𝜕𝑃𝑖
= 𝑎1 ∙

𝜕𝑚1

𝜕𝑃𝑖
+ ∑ [𝑎𝑘 (

𝜕𝑚𝑘

𝜕𝑃𝑖
 ∙

1

𝑚1
𝑘−1

+ 𝑚𝑘 ∙
(1 − 𝑘)

𝑚1
𝑘

 ∙
𝜕𝑚1

𝜕𝑃𝑖
)] ,

𝑞

𝑘=2

(37)

which represents the delay cost function sensitivity to a parasitic element (Pi) at a given

node.

175

References
[1] G. Bell, “Growing challenges in nanometer timing analysis,” EE Times, Oct. 18, 2004.

[2] G. Bell, “Nanometer scale effects complicate IP characterization -,” EETimes, Dec. 19, 2002.

Accessed: Jun. 01, 2021. [Online]. Available: https://www.eetimes.com/nanometer-scale-effects-

complicate-ip-characterization/

[3] J. H.-C. Chen, T. E. Standaert, E. Alptekin, T. A. Spooner, and V. Paruchuri, “Interconnect

performance and scaling strategy at 7 nm node,” in IEEE International Interconnect Technology

Conference, May 2014, pp. 93–96. doi: 10.1109/IITC.2014.6831843.

[4] M. Bohr, “The new era of scaling in an SoC world,” in 2009 IEEE International Solid-State Circuits

Conference - Digest of Technical Papers, Feb. 2009, pp. 23–28. doi: 10.1109/ISSCC.2009.4977293.

[5] A. Naeemi, C. Pan, A. Ceyhan, R. M. Iraei, V. Kumar, and S. Rakheja, “BEOL scaling limits and

next generation technology prospects,” in 2014 51st ACM/EDAC/IEEE Design Automation

Conference (DAC), Jun. 2014, pp. 1–6. doi: 10.1145/2593069.2596672.

[6] EDN, “Parasitic extraction must solve advanced node issues,” EDN, May 01, 2018.

https://www.edn.com/parasitic-extraction-must-solve-advanced-node-issues/ (accessed Jun. 10,

2021).

[7] R. Suaya, R. Escovar, and Q. Salvador, “Modeling and Extraction of Nanometer Scale Interconnects:

Challenges and Opportunities,” in Proceedings of the 23rd Advanced Metallization Conference

(AMC), Oct. 2006, pp. 1–11.

[8] X. Qi and R. W. Dutton, “Interconnect Parasitic Extraction of Resistance, Capacitance, and

Inductance,” in Interconnect Technology and Design for Gigascale Integration, J. Davis and J. D.

Meindl, Eds. Boston, MA: Springer US, 2003, pp. 67–109. doi: 10.1007/978-1-4615-0461-0_3.

[9] B. Cardoso, R. Martins, N. Lourenço, and N. Horta, “AIDA-PEx: Accurate parasitic extraction for

layout-aware analog integrated circuit sizing,” in 2015 11th Conference on Ph.D. Research in

Microelectronics and Electronics (PRIME), Jun. 2015, pp. 129–132. doi:

10.1109/PRIME.2015.7251351.

[10] C. Venkataiah, K. S. Prasad, and T. J. C. Prasad, “Effect of interconnect parasitic variations on

circuit performance parameters,” in 2016 International Conference on Communication and

Electronics Systems (ICCES), Oct. 2016, pp. 1–4. doi: 10.1109/CESYS.2016.7889958.

[11] W. Yu, M. Song, and M. Yang, “Advancements and Challenges on Parasitic Extraction for

Advanced Process Technologies,” in 2021 26th Asia and South Pacific Design Automation

Conference (ASP-DAC), Jan. 2021, pp. 841–846.

[12] “FinFETs, 16nm and 14nm nodes, and Parasitic Extraction.” https://www5.cadence.com/2014-July-

Newsletter_LP.html (accessed Oct. 12, 2021).

[13] A. Kurokawa, T. Sato, T. Kanamoto, and M. Hashimoto, “Interconnect Modeling: A Physical

Design Perspective,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1840–1851, Sep. 2009, doi:

10.1109/TED.2009.2026208.

[14] W. Yu and X. Wang, Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits.

Springer Science & Business, 2014.

[15] A. Zhang et al., “A field-based parasitic capacitance model with 3-D terminal and terminal fringe

components,” in 2015 6th Asia Symposium on Quality Electronic Design (ASQED), Aug. 2015, pp.

166–170. doi: 10.1109/ACQED.2015.7274028.

[16] A. Zhang et al., “Field-based parasitic capacitance models for 2D and 3D sub-45-nm interconnect,”

in 2012 4th Asia Symposium on Quality Electronic Design (ASQED), Jul. 2012, pp. 110–116. doi:

10.1109/ACQED.2012.6320485.

176

[17] W. H. Kao, C.-Y. Lo, M. Basel, and R. Singh, “Parasitic extraction: current state of the art and future

trends,” Proc. IEEE, vol. 89, no. 5, pp. 729–739, May 2001, doi: 10.1109/5.929651.

[18] W. PINELLO, A. Nieuwoudt, M. DRUT, and B. Qiu, “Determining eco aggressor nets during

incremental extraction,” US20160350470A1, Dec. 01, 2016 Accessed: Mar. 07, 2021. [Online].

Available: https://patents.google.com/patent/US20160350470A1/en

[19] “Calibre xRC | Siemens Digital Industries Software.” https://eda.sw.siemens.com/en-US/ic/calibre-

design/circuit-verification/xrc (accessed Jul. 19, 2021).

[20] N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen, and C.-R. Shi, “Template-Based Parasitic-

Aware Optimization and Retargeting of Analog and RF Integrated Circuit Layouts,” in 2006

IEEE/ACM International Conference on Computer Aided Design, Nov. 2006, pp. 342–348. doi:

10.1109/ICCAD.2006.320056.

[21] A. Domic, “Layout synthesis of MOS digital cells,” in 27th ACM/IEEE Design Automation

Conference, Jun. 1990, pp. 241–245. doi: 10.1109/DAC.1990.114861.

[22] Zheng Liu and Lihong Zhang, “Performance-constrained parasitic-aware retargeting and

optimization of analog layouts,” in 2009 Canadian Conference on Electrical and Computer

Engineering, May 2009, pp. 1194–1197. doi: 10.1109/CCECE.2009.5090314.

[23] M. P. Lin, Y. Chang, and C. Hung, “Recent research development and new challenges in analog

layout synthesis,” in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC),

Jan. 2016, pp. 617–622. doi: 10.1109/ASPDAC.2016.7428080.

[24] M. D. Moffitt, “Global routing revisited,” in 2009 IEEE/ACM International Conference on

Computer-Aided Design - Digest of Technical Papers, Nov. 2009, pp. 805–808. doi:

10.1145/1687399.1687549.

[25] N. Gockel, R. Drechsler, and B. Becker, “A multi-layer detailed routing approach based on

evolutionary algorithms,” in Proceedings of 1997 IEEE International Conference on Evolutionary

Computation (ICEC ’97), Apr. 1997, pp. 557–562. doi: 10.1109/ICEC.1997.592373.

[26] X. Qi, A. Gyure, Y. Luo, S. C. Lo, M. Shahram, and K. Singhal, “Measurement and characterization

of pattern dependent process variations of interconnect resistance, capacitance and inductance in

nanometer technologies,” in Proceedings of the 16th ACM Great Lakes symposium on VLSI -

GLSVLSI ’06, Philadelphia, PA, USA, 2006, p. 14. doi: 10.1145/1127908.1127914.

[27] N. K. Karsilayan, J. Falbo, and D. Petranovic, “Efficient and accurate RIE modeling methodology

for BEOL 2.5D parasitic extraction,” in 2014 IEEE 57th International Midwest Symposium on

Circuits and Systems (MWSCAS), Aug. 2014, pp. 519–522. doi: 10.1109/MWSCAS.2014.6908466.

[28] N. K.-H. Huang, “Implementation of algorithms to determine the capacitance sensitivity of

interconnect parasitics in the Magic VLSI layout tool,” University of British Columbia, 2009. doi:

10.14288/1.0067690.

[29] N. Huang and A. Labun, “Extracting interconnect capacitance sensitivity to linewidth variation,” in

2009 Canadian Conference on Electrical and Computer Engineering, May 2009, pp. 185–189. doi:

10.1109/CCECE.2009.5090117.

[30] C. Clee, “Parasitic extraction at advanced nodes,” EDN, Nov. 15, 2017.

https://www.edn.com/electronics-blogs/absolute-eda/4459079/Parasitic-extraction-at-advanced-

nodes (accessed May 30, 2021).

[31] Z. Li and W. Shi, “Layout Capacitance Extraction Using Automatic Pre-Characterization and

Machine Learning,” in 2020 21st International Symposium on Quality Electronic Design (ISQED),

Mar. 2020, pp. 457–464. doi: 10.1109/ISQED48828.2020.9136970.

[32] “Calibre xACT 3D | Siemens Digital Industries Software.” https://eda.sw.siemens.com/en-

US/ic/calibre-design/circuit-verification/xact-3d/ (accessed Jul. 19, 2021).

177

[33] “Synopsys StarRC - Golden Signoff Extraction.” https://www.synopsys.com/implementation-and-

signoff/signoff/starrc.html (accessed Oct. 12, 2021).

[34] L. Lavagno, L. Scheffer, and G. Martin, EDA for IC Implementation, Circuit Design, and Process

Technology. CRC Press, 2006.

[35] K. J. Kuhn et al., “Process Technology Variation,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp.

2197–2208, Aug. 2011, doi: 10.1109/TED.2011.2121913.

[36] Y.-S. Song, C.-Y. Chu, J. Jeon, U.-H. Kwon, K.-H. Lee, and S. Kim, “Accurate BEOL statistical

modeling methodology with circuit-level multi-layer process variations,” in 2017 International

Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Sep. 2017, pp. 265–

268. doi: 10.23919/SISPAD.2017.8085315.

[37] J.-H. Liu, J.-K. Zeng, A.-S. Hong, L. Chen, and C. C. P. Chen, “Process-Variation Statistical

Modeling for VLSI Timing Analysis,” in 9th International Symposium on Quality Electronic Design

(isqed 2008), Mar. 2008, pp. 730–733. doi: 10.1109/ISQED.2008.4479828.

[38] V. Mehrotra, “Modeling the effects of systematic process variation on circuit performance,” phd,

Massachusetts Institute of Technology, USA, 2001.

[39] L. Sun et al., “A Novel Customized RC Tightened Corner Modeling Methodology Using Statistical

SPICE Simulation in Advanced FinFET Technology,” in 2018 14th IEEE International Conference

on Solid-State and Integrated Circuit Technology (ICSICT), Oct. 2018, pp. 1–4. doi:

10.1109/ICSICT.2018.8564960.

[40] S. Kiamehr et al., “The impact of process variation and stochastic aging in nanoscale VLSI,” in 2016

IEEE International Reliability Physics Symposium (IRPS), Apr. 2016, p. CR-1-1-CR-1-6. doi:

10.1109/IRPS.2016.7574590.

[41] W. Yu, H. Zhuang, C. Zhang, G. Hu, and Z. Liu, “RWCap: A Floating Random Walk Solver for 3-

D Capacitance Extraction of Very-Large-Scale Integration Interconnects,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 32, no. 3, pp. 353–366, Mar. 2013, doi:

10.1109/TCAD.2012.2224346.

[42] W. Yu, “RWCap2: Advanced floating random walk solver for the capacitance extraction of VLSI

interconnects,” in 2013 IEEE 10th International Conference on ASIC, Oct. 2013, pp. 1–4. doi:

10.1109/ASICON.2013.6811859.

[43] S. Bhattacharya, N. Jangkrajarng, and C.-R. Shi, “Template-driven parasitic-aware optimization of

analog integrated circuit layouts,” in Proceedings. 42nd Design Automation Conference, 2005., Jun.

2005, pp. 644–647. doi: 10.1145/1065579.1065748.

[44] L. Zhang, N. Jangkrajarng, S. Bhattacharya, and C.-R. Shi, “Parasitic-Aware Optimization and

Retargeting of Analog Layouts: A Symbolic-Template Approach,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 27, no. 5, pp. 791–802, May 2008, doi: 10.1109/TCAD.2008.917594.

[45] J. K. Ousterhout, “Corner Stitching: A Data-Structuring Technique for VLSI Layout Tools,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 3, no. 1, pp. 87–100, Jan. 1984, doi:

10.1109/TCAD.1984.1270061.

[46] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun, “Practical placement and routing techniques for

analog circuit designs,” in 2010 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), Nov. 2010, pp. 675–679. doi: 10.1109/ICCAD.2010.5654239.

[47] Y. I. Ismail, “Improved model-order reduction by using spacial information in moments,” IEEE

Trans. Very Large Scale Integr. VLSI Syst., vol. 11, no. 5, pp. 900–908, Oct. 2003, doi:

10.1109/TVLSI.2003.817138.

[48] K.-Y. Tsai, W.-J. Hsieh, Y.-C. Lu, B.-S. Chang, S.-W. Chien, and Y.-C. Lu, “A new method to

improve accuracy of parasitics extraction considering sub-wavelength lithography effects,” in 2010

178

15th Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2010, pp. 651–656.

doi: 10.1109/ASPDAC.2010.5419805.

[49] Weibing Gong, Wenjian Yu, Yongqiang Lü, Qiming Tang, Qiang Zhou, and Yici Cai, “A parasitic

extraction method of VLSI interconnects for pre-route timing analysis,” in 2010 International

Conference on Communications, Circuits and Systems (ICCCAS), Jul. 2010, pp. 871–875. doi:

10.1109/ICCCAS.2010.5581853.

[50] S.-C. Wong, G.-Y. Lee, and D.-J. Ma, “Modeling of interconnect capacitance, delay, and crosstalk

in VLSI,” IEEE Trans. Semicond. Manuf., vol. 13, no. 1, pp. 108–111, Feb. 2000, doi:

10.1109/66.827350.

[51] R. Kasai, T. Kanamoto, M. Imai, A. Kurokawa, and K. Hachiya, “Neural Network-Based 3D IC

Interconnect Capacitance Extraction,” in 2019 2nd International Conference on Communication

Engineering and Technology (ICCET), Apr. 2019, pp. 168–172. doi:

10.1109/ICCET.2019.8726919.

[52] C. Zhang and G. Sun, “Fabrication cost analysis for 2D, 2.5D, and 3D IC designs,” in 2011 IEEE

International 3D Systems Integration Conference (3DIC), 2011 IEEE International, Jan. 2012, pp.

1–4. doi: 10.1109/3DIC.2012.6263032.

[53] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph: Layout Parasitics and Device

Parameter Prediction using Graph Neural Networks,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC), Jul. 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218515.

[54] B. Shook, P. Bhansali, C. Kashyap, C. Amin, and S. Joshi, “MLParest: Machine Learning based

Parasitic Estimation for Custom Circuit Design,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC), Jul. 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218495.

[55] L. Sun et al., “Extraction and modeling of layout-dependent MOSFET gate-to-source/drain fringing

capacitance in 40nm technology,” Solid-State Electron., vol. 111, pp. 118–122, Sep. 2015, doi:

10.1016/j.sse.2015.05.033.

[56] R. Bose and J. N. Roy, “Analytical Modeling for Parasitics in a Triple Gate MOSFET Device,” in

2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), Jul. 2020, pp. 187–192. doi:

10.1109/VLSIDCS47293.2020.9179934.

[57] L. Sun, Z. Li, W. Wong, and Y. Xia, “MEOL Gate-around Parasitic Capacitance Extraction

Verification for Design Enablements in Advanced FinFET Technology,” in 2018 IEEE International

Conference on Electron Devices and Solid State Circuits (EDSSC), Jun. 2018, pp. 1–2. doi:

10.1109/EDSSC.2018.8487070.

[58] L.-J. Sun et al., “Extraction of geometry-related interconnect variation based on parasitic

capacitance data,” IEEE Electron Device Lett., vol. 35, no. 10, pp. 980–982, Oct. 2014, doi:

10.1109/LED.2014.2344173.

[59] O. Moldovan, D. Lederer, B. Iniguez, and J.-P. Raskin, “Finite Element Simulations of Parasitic

Capacitances Related to Multiple-Gate Field-Effect Transistors Architectures,” in 2008 IEEE

Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2008, pp. 183–186.

doi: 10.1109/SMIC.2008.52.

[60] S. S. Rodriguez, J. C. Tinoco, A. G. Martinez-Lopez, J. Alvarado, and J.-P. Raskin, “Parasitic Gate

Capacitance Model for Triple-Gate FinFETs,” IEEE Trans. Electron Devices, vol. 60, no. 11, pp.

3710–3717, Nov. 2013, doi: 10.1109/TED.2013.2282629.

[61] R. M. Smey, B. Swartz, and P. H. Madden, “Crosstalk reduction in area routing,” in Automation and

Test in Europe Conference and Exhibition 2003 Design, Mar. 2003, pp. 862–867. doi:

10.1109/DATE.2003.1253714.

179

[62] N. Lourenço, R. Martins, and N. Horta, “Layout-aware sizing of analog ICs using floorplan amp;

routing estimates for parasitic extraction,” in 2015 Design, Automation Test in Europe Conference

Exhibition (DATE), Mar. 2015, pp. 1156–1161.

[63] A. Bhaduri and R. Vemuri, “Parasitic-Aware and Moment-driven Constraint Satisfying Non-Linear

Routing Methodology,” in 2006 49th IEEE International Midwest Symposium on Circuits and

Systems, Aug. 2006, vol. 2, pp. 84–88. doi: 10.1109/MWSCAS.2006.382214.

[64] A. Bhaduri and R. Vemuri, “Parasitic aware routing methodology based on higher order RLCK

moment metrics,” in 19th International Conference on VLSI Design held jointly with 5th

International Conference on Embedded Systems Design (VLSID’06), Jan. 2006, p. 6 pp.-. doi:

10.1109/VLSID.2006.129.

[65] A. Bhaduri and R. Vemuri, “Inductive and capacitive coupling aware routing methodology driven

by a higher order RLCK moment metric,” in Design, Automation and Test in Europe, Mar. 2005,

pp. 922-923 Vol. 2. doi: 10.1109/DATE.2005.182.

[66] Zheng Liu and L. Zhang, “A performance-constrained template-based layout retargeting algorithm

for analog integrated circuits,” in 2010 15th Asia and South Pacific Design Automation Conference

(ASP-DAC), Jan. 2010, pp. 293–298. doi: 10.1109/ASPDAC.2010.5419880.

[67] R. Martins, N. Lourenço, and N. Horta, “LAYGEN II—Automatic Layout Generation of Analog

Integrated Circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 32, no. 11, pp.

1641–1654, Nov. 2013, doi: 10.1109/TCAD.2013.2269050.

[68] F. A. Naguib, S. Ahmed, S. Hamed, and M. Dessouky, “Expert Guided Analog Layout Placement

and Routing Automation for Deep Nanotechnologies,” in 2020 37th National Radio Science

Conference (NRSC), Sep. 2020, pp. 240–247. doi: 10.1109/NRSC49500.2020.9235112.

[69] G. Liu, W. Zhu, S. Xu, Z. Zhuang, Y.-C. Chen, and G. Chen, “Efficient VLSI routing algorithm

employing novel discrete PSO and multi-stage transformation,” Journal of Ambient Intelligence and

Humanized Computing, pp. 1–16, 2020, doi: https://doi.org/10.1007/s12652-020-02659-8.

[70] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Coupling aware routing,” in Proceedings of 13th

Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541), Sep. 2000, pp. 392–396.

doi: 10.1109/ASIC.2000.880770.

[71] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “A fast crosstalk- and performance-driven

multilevel routing system,” in ICCAD-2003. International Conference on Computer Aided Design

(IEEE Cat. No.03CH37486), Nov. 2003, pp. 382–387. doi: 10.1109/ICCAD.2003.159715.

[72] H. Habal and H. Graeb, “Constraint-Based Layout-Driven Sizing of Analog Circuits,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 30, no. 8, pp. 1089–1102, Aug. 2011, doi:

10.1109/TCAD.2011.2158732.

[73] S. J. Patel and R. A. Thakker, “Parasitic-Aware Automatic Analog CMOS Circuit Design

Environment,” in 2019 32nd International Conference on VLSI Design and 2019 18th International

Conference on Embedded Systems (VLSID), Jan. 2019, pp. 245–250. doi:

10.1109/VLSID.2019.00061.

[74] S. J. Patel and R. A. Thakker, “Parasitic Aware Automatic Analog CMOS Circuit Design

Environment Using ABC Algorithm,” in 2018 31st International Conference on VLSI Design and

2018 17th International Conference on Embedded Systems (VLSID), Jan. 2018, pp. 445–446. doi:

10.1109/VLSID.2018.105.

[75] “Raphael - Technology Computer Aided Design (TCAD) | Synopsys.”

https://www.synopsys.com/silicon/tcad/interconnect-simulation/raphael.html (accessed Oct. 12,

2021).

180

[76] R. Sharma, Nitin, V. K. Sehgal, and D. S. Chauhan, “Closed-form expressions for extraction of

capacitances in multilayer VLSI interconnects,” in TENCON 2008 - 2008 IEEE Region 10

Conference, Nov. 2008, pp. 1–4. doi: 10.1109/TENCON.2008.4766573.

[77] S.-C. Wong, T. G.-Y. Lee, D.-J. Ma, and C.-J. Chao, “An empirical three-dimensional crossover

capacitance model for multilevel interconnect VLSI circuits,” IEEE Trans. Semicond. Manuf., vol.

13, no. 2, pp. 219–227, May 2000, doi: 10.1109/66.843637.

[78] A. Kurokawa, “Second-Order Polynomial Expressions for On-Chip Interconnect Capacitance,”

IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E88-A, no. 12, pp. 3453–3462, Dec.

2005, doi: 10.1093/ietfec/e88-a.12.3453.

[79] T. Sakurai and K. Tamaru, “Simple formulas for two- and three-dimensional capacitances,” IEEE

Trans. Electron Devices, vol. 30, no. 2, pp. 183–185, Feb. 1983, doi: 10.1109/T-ED.1983.21093.

[80] E. Demircan, “Effects of Interconnect Process Variations on Signal Integrity,” in 2006 IEEE

International SOC Conference, Sep. 2006, pp. 281–284. doi: 10.1109/SOCC.2006.283898.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification,” in 2015 IEEE International Conference on Computer

Vision (ICCV), Santiago, Chile, Dec. 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[82] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, Mar. 2010, pp. 249–256. Accessed: Nov. 30, 2021. [Online]. Available:

https://proceedings.mlr.press/v9/glorot10a.html

[83] “TensorFlow,” TensorFlow. https://www.tensorflow.org/ (accessed Mar. 25, 2021).

[84] “Welcome to Python.org,” Python.org. https://www.python.org/ (accessed Apr. 30, 2022).

[85] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biom. Bull., vol. 1, no. 6, pp. 80–83,

1945, doi: 10.2307/3001968.

[86] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A Big

Comparison for NAS,” ArXiv191206059 Cs Stat, Dec. 2019, Accessed: Jul. 18, 2021. [Online].

Available: http://arxiv.org/abs/1912.06059

[87] “Calibre xACT,” Siemens Digital Industries Software. https://eda.sw.siemens.com/en-

US/ic/calibre-design/circuit-verification/xact/ (accessed Jul. 19, 2021).

[88] J.- Chern, J. Huang, L. Arledge, P.- Li, and P. Yang, “Multilevel metal capacitance models for CAD

design synthesis systems,” IEEE Electron Device Lett., vol. 13, no. 1, pp. 32–34, Jan. 1992, doi:

10.1109/55.144942.

[89] S. Tani et al., “Parasitic capacitance modeling for multilevel interconnects,” in Asia-Pacific

Conference on Circuits and Systems, Oct. 2002, vol. 1, pp. 59–64 vol.1. doi:

10.1109/APCCAS.2002.1114908.

[90] G. Shomalnasab, H. M. Heys, and L. Zhang, “Interconnect Capacitive Modeling in Submicron and

Nano Technologies,” 2011.

[91] H. Li et al., “Design space exploration for early identification of yield limiting patterns,” in Design-

Process-Technology Co-optimization for Manufacturability X, Mar. 2016, vol. 9781, p. 97810W.

doi: 10.1117/12.2218540.

[92] H. Geng, H. Yang, B. Yu, X. Li, and X. Zeng, “Sparse VLSI Layout Feature Extraction: A

Dictionary Learning Approach,” in 2018 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Jul. 2018, pp. 488–493. doi: 10.1109/ISVLSI.2018.00094.

[93] “Module: tf.keras.initializers | TensorFlow Core v2.4.1,” TensorFlow.

https://www.tensorflow.org/api_docs/python/tf/keras/initializers (accessed Feb. 04, 2021).

181

[94] A. Gu and A. Zakhor, “Optical Proximity Correction With Linear Regression,” IEEE Trans.

Semicond. Manuf., vol. 21, no. 2, pp. 263–271, May 2008, doi: 10.1109/TSM.2008.2000283.

[95] D. Z. Pan, Y. Lin, X. Xu, and J. Ou, “Machine learning for mask/wafer hotspot detection and mask

synthesis,” in Photomask Technology, Monterey, United States, Oct. 2017, p. 10. doi:

10.1117/12.2282943.

[96] H. Zhang, F. Zhu, H. Li, E. F. Y. Young, and B. Yu, “Bilinear Lithography Hotspot Detection,” in

Proceedings of the 2017 ACM on International Symposium on Physical Design, New York, NY,

USA, Mar. 2017, pp. 7–14. doi: 10.1145/3036669.3036673.

[97] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[98] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778.

doi: 10.1109/CVPR.2016.90.

[99] W. R. S. Jr, R. A. Brodie, and M. W. Beaven, “Method of computing multi-conductor parasitic

capacitances for VLSI circuits,” US5452224A, Sep. 19, 1995 Accessed: May 30, 2021. [Online].

Available: https://patents.google.com/patent/US5452224A/en

[100] “New Parasitic Extraction Requirements In Custom Design For The Next Wave Of SoCs,”

Semiconductor Engineering, Jan. 30, 2020. https://semiengineering.com/new-parasitic-extraction-

requirements-in-custom-design-for-the-next-wave-of-socs/ (accessed Jun. 21, 2021).

[101] K. Kalafala et al., “Incremental parasitic extraction for coupled timing and power optimization,”

US9858383B2, Jan. 02, 2018 Accessed: Mar. 04, 2021. [Online]. Available:

https://patents.google.com/patent/US9858383B2/en

[102] Y. I. Ismail and C. S. Amin, “Computation of signal threshold crossing times directly from higher

order moments,” in IEEE/ACM International Conference on Computer Aided Design, 2004.

ICCAD-2004., Nov. 2004, pp. 246–253. doi: 10.1109/ICCAD.2004.1382581.

182

List of Publications

1. M. S. Abouelyazid, S. Hammouda and Y. Ismail, "Accuracy-Based Hybrid
Parasitic Capacitance Extraction Using Rule-Based, Neural-Networks, and Field-
Solver Methods," in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, doi: 10.1109/TCAD.2022.3161199.

2. M. S. Abouelyazid, S. Hammouda and Y. Ismail, "Fast and Accurate Machine
Learning Compact Models for Interconnect Parasitic Capacitances Considering
Systematic Process Variations," in IEEE Access, vol. 10, pp. 7533-7553, 2022, doi:
10.1109/ACCESS.2022.3142330.

3. M. S. Abouelyazid, S. Hammouda and Y. Ismail, "A Fast and Accurate Middle
End of Line Parasitic Capacitance Extraction for MOSFET and FinFET
Technologies Using Machine Learning," 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2022, pp. 371-376, doi: 10.1109/ASP-
DAC52403.2022.9712514.

4. M. S. Abouelyazid, S. Hammouda and Y. Ismail, "Connectivity-Based Machine
Learning Compact Models for Interconnect Parasitic Capacitances," 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), 2021, pp. 1-6,
doi: 10.1109/MLCAD52597.2021.9531300.

Submitted:

1. “Parasitic-Aware Layout Analysis and Routing Optimization Methodology” to
IEEE ACCESS

	Integrated Circuits Parasitic Capacitance Extraction Using Machine Learning and its Application to Layout Optimization
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1653386632.pdf.nVqsv

