
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

Spring 6-21-2022

Machine Learning Applications to Static Timing Analysis Machine Learning Applications to Static Timing Analysis

Waseem Mohamed Raslan

Follow this and additional works at: https://fount.aucegypt.edu/etds

 Part of the Electrical and Electronics Commons, Electronic Devices and Semiconductor Manufacturing

Commons, and the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation

APA Citation
Raslan, W. (2022).Machine Learning Applications to Static Timing Analysis [Doctoral Dissertation, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1920

MLA Citation
Raslan, Waseem Mohamed. Machine Learning Applications to Static Timing Analysis. 2022. American
University in Cairo, Doctoral Dissertation. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1920

This Doctoral Dissertation is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/272?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1920?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1920?utm_source=fount.aucegypt.edu%2Fetds%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

Graduate Studies

Machine Learning Applications to Static Timing
Analysis

A THESIS SUBMITTED BY

Waseem Mohamed Raslan

TO THE

Department of Electronics and Communications
Engineering

May 2022

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy of Science in Electronics and Communications

Engineering

1

Declaration of Authorship

I, Waseem Mohamed Raslan, declare that this thesis titled, “[Thesis title]” and the work

presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Waseem Mohamed Raslan

Date:

May 2022

2

Abstract
Neural networks had been subject of continuous research since the sixties of last century.

It went through ups and downs in research and industry potential until the last decade.

Three main factors contributed to the rise of deep learning and artificial intelligence as

instrumental tools in future; availability of enormous data, availability of computational

power needed to train big data; and devising training algorithms that can train deep neural

networks. Using feed-forward neural networks proved to be successful in regression and

classification analysis. Modeling complex cell behavior is critical for accurate static timing

analysis. Accounting for larger wire delays, noise and inductance effects on smaller

transistor feature sizes resulted in the need to capture more complex waveforms during

library cell characterization process. The more complex waveforms, the more waveform

samples that need to be stored on disk to capture waveform overshoots, undershoots and

multiple crossings. Increased technology file size can have drastic effects on the

performance of digital design flow processes and static timing analysis that depend on

these library files. Effective current source model, ECSM, and composite current source,

CCS, waveform data compression became a necessity to reduce the size of technology files

and increase the accuracy of the cell characterization data. Huge waveform data needed

for current source models explodes technology file size and degrades design flow

performance. We used deep learning nonlinear Autoencoders to compress voltage and

current waveforms and compared them with singular component analysis approach.

Autoencoders gave ~1.67x compression ratio for voltage waveforms better than, singular

value decomposition, SVD, approach and between ~45x and ~55x better compression ratio

3

that lossless compression techniques like gzip and bz2. Autoencoders achieved ~1.7x

compression ratio for complex rising-edge current waveforms at model loss of 7.6e-5 and

comparable results to SVD approach for the falling-edge waveforms. However, SVD

remains more computationally efficient than Autoencoders. Deep learning non-linear

delay model, DL-NLDM, is proposed to replace the standard 7x7 non-linear delay

modeling lookup tables, NLDM-LUT, that hold the delay information according to the

input transition and effective capacitance values. The proposed DL-NLDM performed

better than the standard 7x7 NLDM-LUT tables in average, standard deviation and

maximum percentage errors compared to SPICE simulation. Building on both DL-NLDM

and waveform compression, a combined DL-NLDM ECSM waveform model is proposed

to produce both delay/transition time information as well as the compressed waveform

parameters. Experiments show that separate DL-NLDM and encoded ECSM waveform

parameters are better than the combined ones. In addition, deep learning waveform delay

model, DL-WFDM, is proposed to radically change transition/delay propagation to a full

waveform propagation that can be used to measure the delay or perform ECSM delay

calculations. Experiments also show that separate DL-NLDM and encoded ECSM

waveform parameters still perform better, in delay errors, than the proposed DL-WFDM

models.

Another type of neural network is used in this research to perform model order reduction,

MOR, of linear time invariant, LTI, systems. Recurrent neural networks, RNN, where

outputs of neurons are fed back into neurons inputs proved to help in modeling time series

data in which future output is dependent on experience. Obtaining accurate and less

computational demanding reduced models is a continuous challenge with complex

4

systems. We propose a structured recurrent neural network, S-RNN, that can model LTI

single input single output, SISO, systems of any order. The weights of the trained S-RNN

are directly mapped to the discrete state space equations of the system. We showed how to

obtain the continuous time transfer function of the reduced system from the trained S-RNN

weights. Using this S-RNN model outperformed other model order reduction techniques

reported in selected literature. The proposed S-RNN reduced a complex system of 598

states is reduced to a 10th order system at 9.04e-6 mean-square-error. SISO 4th order

outperformed reported results of other MOR techniques. The S-RNN is extended to model

single input single output, SIMO, LTI of any number of output and any system order. Using

this RNN SIMO network, RLC interconnect of 108 states was reduced to a 5th system at

9.1e-4 mean square error. S-RNN is also shown to be able to model multiple input multiple

output, MIMO, systems with better results than modeling individual MIMO input output

relationship.

5

Acknowledgements

First, I would like to thank Allah for helping me through finishing this thesis work.

I would like also to thank my wonderful wife Marwa, my cool son Ahmed, and my lovely

daughter Farida, for their endless support and encouragement through the long years I spent

pursuing my PhD degree not to mention the other years I spent studying for my MSc and MBA

degrees. I hope I had set a good example for Ahmed and Farida showing that pursuing

knowledge and contributing to research has no age limitation.

I would like to thank Prof. Dr. Ashraf Salem for his continuous support, encouragement and

literally pushing me to complete this research work.

In addition, I really appreciate and acknowledge the time and effort my internal and external

examiners have offered to assess this research on such a short notice.

Finally, my sincere appreciation for Prof. Dr. Yehea Ismail, my dear supervisor for his tremendous

support and confidence in addition to his valuable guidance throughout the research course. I

would like to thank Dr. Yehea for being very patient with my extended research period due to

work and personal commitments.

6

Contents

Declaration of Authorship .. 1

Abstract ... 2

Acknowledgements .. 5

Contents .. 6

List of Figures and Tables .. 9

List of Abbreviations ... 14

Chapter 1 .. 16

Introduction .. 16

1.1 Motivation .. 16

1.2 Thesis Statement.. 17

1.3 Thesis Contribution .. 17

1.4 Thesis Organization .. 19

Chapter 2 ... 22

Machine Learning Applications in Electronic Design Automation .. 22

2.1 Design Space Exploration .. 23

2.2 Power Estimation .. 24

2.3 Functional Verification ... 25

2.4 Timing Analysis .. 26

2.5 Physical Design ... 27

2.6 Cell Characterization .. 28

2.7 Routing ... 28

2.8 Other EDA Applications .. 29

Chapter 3 ... 30

Cell Characterization Models ... 30

3.1 Overview .. 30

3.2 Liberty File Format ... 31

3.3 Liberty File Structure .. 31

3.4 Non-linear Delay Model, NLDM .. 32

3.4 Current Source Model Waveforms Background .. 34

3.5 Current Source Cell Receiver Model .. 35

7

Chapter 4 ... 37

Deep Learning Autoencoder-based Compression for Current Source Model Waveforms .. 37

4.1 Overview .. 37

4.2 Autoencoder-based Waveform Data Compression ... 39

4.3 Waveform Data Compression Results ... 43

4.4 Conclusions .. 49

Chapter 5 ... 51

Deep Learning Cell Driver Delay Modeling .. 51

5.1 Overview .. 51

5.2 DL-NLDM: Deep Learning NLDM Cell Delay Model .. 53

5.3 Combined DL-NLDM ECSM Waveform Cell Delay Model 55

5.4 DL-WFDM: Deep Learning Waveform-Delay Model ... 58

5.5 Conclusions .. 62

Chapter 6 ... 64

S-RNN MOR: Structured Recurrent Neural Network Model Order Reduction for SISO,
SIMO and MIMO LTI Systems .. 64

6.1 Overview .. 64

6.2 Extracting Continuous-time Transfer Functions of RNN MOR Models 65

6.3 Model Order Reduction of SISO LTI Systems .. 66

6.4 SISO LTI RNN Modeling Experiments .. 69

6.5 Model Order Reduction of SIMO LTI Systems ... 74

6.6 Experiment: Modeling RLC Interconnect SIMO LTI RNN ... 75

6.7 Model Order Reduction of MIMO LTI Systems ... 79

6.8 S-RNN MIMO Model Order Reduction Experiments ... 84

6.9 S-RNN Model Order Reduction Applications .. 94

Chapter 7 ... 97

Conclusion and Future Work ... 97

References .. 100

APPENDIX A ... 106

Artificial Intelligence, Machine Learning and Deep Learning Background 106

A.1 Rule-based Systems ... 107

A.2 Machine Learning, ML .. 108

A.3 Artificial Neural Networks, ANN ... 119

A.4 Machine and Deep Learning Applications .. 126

APPENDIX B ... 127

Model Order Reduction of Non-Linear Systems using Recurrent Neural Networks 127

B.1 Overview ... 127

8

B.2 One-dimensional non-linear Schrodinger equation .. 128

B.3 POD-based reduced order model .. 129

B.4 RNN Model Order Reduction Results ... 129

APPENDIX C ... 142

Detailed trained models result ... 142

C.1 Autoencoding fixed time 1000-points ECSM Waveforms Detailed Results 142

C.2 Autoencoding variable time 50,100,150-points ECSM Waveforms Detailed Results
 ... 143

C.3 Autoencoding 21-points ECSM Voltage Waveforms .. 149

C.4 NLDM-LUT Results ... 151

C.5 DL-WFDM results .. 151

APPENDIX D ... 153

Published and accepted papers .. 153

9

List of Figures and Tables

FIGURE 2-1 Using BOA to optimize design parameters [Park'16] ... 23
FIGURE 2-2 Small-World NoC energy-efficient and reliable 3D optimization [Das’17] 24
FIGURE 2-3 Power estimation using CLSLR regression technique [Zheng’15] 25
FIGURE 2-4 Functional verification to filter and optimize test cases [Wang’15] 26
FIGURE 2-5 Grouping of failing coverage groups having common root causes using K-Means
clustering [Mandouh’16] ... 26
FIGURE 2-6 SI for free proposed model [Kahng’15] ... 27
FIGURE 2-7 Hotspot detection using CNN [Yang'17] .. 28
FIGURE 2-8 ML-based routing model using Gaussian process regression [Chang'17] 29
FIGURE 3-1 Cell Characterization Setup .. 32
FIGURE 3-2 NLDM Rise/Fall delay time LUT example .. 33
FIGURE 3-3 NLDM Transition LUT example .. 33
FIGURE 3-4 CCS rising-edge current waveform example ... 35
FIGURE 3-5 CC falling-edge current waveform example .. 35
FIGURE 3-6 CSM for simple inverter .. 36
FIGURE 3-7 CSM of a NOR2 Cell .. 36
FIGURE 4.1 Cell Characterization Transistor Level Simulation Setup .. 40
FIGURE 4.2 1000-points uniform time sampled waveform ... 40
FIGURE 4-3 Varying Time, 50, 100, 150 Sampling Points .. 41
Table 4.1 Autoencoder Models for Parameter P = 16,8,4,2,1 ... 42
Table 4.2 Best Autoencoding 1000-points ECSM Falling-Edge Waveform Results Against bz2,
gzip and SVD techniques .. 44
Table 4.3 Best Autoencoding 1000-points ECSM Rising-Edge Waveform Results Against bz2,
gzip and SVD techniques .. 44
FIGURE 4-4 Falling and rising decoded waveforms against Spice waveforms 45
Table 4.4 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD
techniques .. 46
Table 4.5 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD
techniques .. 46
Table 4.6 Autoencoding 50,100,150,1000-points Falling-Edge ECSM Waveform Results at
Different Number of Encoding Parameters .. 46
Table 4.7 Autoencoding 50,100,150,1000-points Rising-Edge ECSM Waveform Results at
Different Number of Encoding Parameters .. 47
Table 4.8 Autoencoding 1000-points Falling-Edge CCS Waveform Results at Different Number
of Encoding Parameters .. 47
Table 4.9 SVD 1000-points Falling-Edge CCS Waveform Results at Different Sigma Rank
Number .. 48
FIGURE 4-5 DECODED 8-P CCS FALLING-EDGE NORMALIZED AND SCALED CURRENT
WAVEFORM VS. SPICE WAVEFORM .. 48
Table 4.10 Autoencoding 1000-points Rising-Edge CCS Waveform Results at Different Number
of Encoding Parameters .. 48

10

Table 4.11 SVD 1000-points Rising-Edge CCS Waveform Results at Different Sigma Rank
Number .. 49
FIGURE 4-6 DECODED 16-P CCS RISING-EDGE NORMALIZED AND SCALED CURRENT
WAVEFORM VS. SPICE WAVEFORM .. 49
Table 5.1 Deep Learning Model Structure ... 53
Table 5.2 DL-NLDM best trained NOR models Mean/Max Percentage Error rates versus
different LUT sizes ... 54
Table 5.3 DL-NLDM best trained INV models Mean/Max Percentage Error rates versus
different LUT sizes ... 54
Table 5.4 DL-NLDM best trained NAND models Mean/Max Percentage Error rates versus
different LUT sizes ... 55
Table 5.5 Combined DL NLDM-ECSM Falling-edge NOR Model... 56
Table 5.6 Combined DL NLDM-ECSM Falling-edge INV Model .. 57
Table 5.7 Combined DL NLDM-ECSM Falling-edge NAND Model ... 57
Table 5.8 Combined DL NLDM-ECSM Rising-edge NOR Model .. 57
Table 5.9 Combined DL NLDM-ECSM Rising-edge INV Model ... 58
Table 5.10 Combined DL NLDM-ECSM Rising-edge NAND Model .. 58
Table 5.11 DL-WFDM NOR Falling-edge Model .. 60
Table 5.12 DL-WFDM INV Falling-edge Model ... 60
Table 5.13 DL-WFDM NAND Falling-edge Model .. 60
Table 5.14 DL-WFDM NOR Rising-edge Model ... 61
Table 5.15 DL-WFDM INV Rising-edge Model .. 61
Table 5.16 DL-WFDM NAND Rising-edge Model ... 61
Table 5.17 DL-WFDM Multi-stage analysis results .. 62
FIGURE 6-1 S-RNN Model Training and Continuous TF Extraction Flow 66
FIGURE 6-2 Second Order Discrete SISO System RNN Implementation .. 67
FIGURE 6-3 Third Order Discrete SISO System RNN Implementation ... 68
FIGURE 6-4 N Order Discrete SISO System RNN Implementation ... 69
FIGURE 6-5 Step response of G-Orig, 4th Order S-RNN and Other Model Order Reduction Techniques

 ... 70
Table 6.1 MSE Comparison of S-RNN Performance with Other MOR Techniques 71
FIGURE 6-6 Step response of original “Eady” system and the 5th order MOR .. 71
FIGURE 6-7 Pole-zero map of original and 5th order MOR ... 72
FIGURE 6-8 Step response of original Eady system and the 10th order ... 72
Table 6.2 MSE Comparison of 5th and 10th Order S-RNN Models ... 73
FIGURE 6-9 Pole-zero plot of original and reduced 10th order system .. 73
FIGURE 6-10 Step Response of the reduced 3rd order model ... 74
FIGURE 6-11 Pole-zero plot of the 3rd order model ... 74
FIGURE 6-12 Nth Order, Single Input, O Outputs Discrete MIMO System Implementation 75
FIGURE 6-13 RLC Spice sub-circuit ... 76
FIGURE 6-14 RLC Transmission Line, v(3), v(8), v(12), v(14) ... 76
FIGURE 6-15 v(3), v(8) Spice and 2nd order SIMO MOR response .. 76
FIGURE 6-16 v(12), v(14) Spice and 2nd order SIMO MOR response .. 77
FIGURE 6-17 v(3), v(8) spice and 5th order SIMO MOR response .. 77
FIGURE 6-18 v(12), v(14) spice and 5th order SIMO MOR response .. 77
FIGURE 6-19 v(3), v(8) spice and 5th order SISO MOR response ... 78
FIGURE 6-20 v(12), v(14) spice and 5th order SISO MOR response ... 78
Table 6.3 MSE Comparison of 3rd and 5th Order SIMO and 5th Order SISO S-RNN Models 78
FIGURE 6-21 Second Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation 79

11

FIGURE 6-22 Third Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation 80
FIGURE 6-23 Nth Order, M Inputs, O Outputs Discrete MIMO System Implementation 81
FIGURE 6-24 Step response of the original and fourth order reduced MIMO System 83
FIGURE 6-25 Sequence input to generate training MIMO data .. 83
FIGURE 6-26 Response of the Original System to be Used in Training ... 84
FIGURE 6-27 Step response of the original and second order reduced MIMO System 85
FIGURE 6-28 Pole-zero of the original and second order reduced MIMO System 85
FIGURE 6-29 Step response of the original and third order reduced MIMO System 86
FIGURE 6-30 Pole-zero of the original and third order reduced MIMO System 87
Table 6.4 MSE Comparison of MIMO 2nd and 3rd Order S-RNN ... 87
FIGURE 6-31 Response of the Original System to be Used in Training ... 88
FIGURE 6-32 Step response of the original and 3rd order reduced MIMO System 89
FIGURE 6-33 Step response of the original and 4th order reduced MIMO System 90
FIGURE 6-34 Pole-zero plot of the original and 3rd order reduced MIMO System 90
Table 6.5 MSE Comparison of S-RNN of 3rd and 4th Models Performance 91
FIGURE 6-35 Step response of the original and fourth order input 1 to output 1 reduced MIMO System91
FIGURE 6-36 Step response of the original and fourth order input 1 to output 2 reduced MIMO System92
FIGURE 6-37 Step response of the original and fourth order input 2 to output 1 reduced MIMO System93
FIGURE 6-38 Step response of the original and fourth order input 2 to output 2 reduced MIMO System93
Table 6.6 MSE Comparison of S-RNN of 3rd and 4th Models .. 94
FIGURE 6-39 Using RNN model order reduction in black box identification .. 95
FIGURE A-1 Artificial Intelligence Categories Relationships [Goodfellow’16] 106
FIGURE A-2 Artificial Intelligence Categories [Goodfellow’16] ... 107
FIGURE A-3 Q-learning Reinforced Learning ... 108
FIGURE A-4 ML Experience [Wang'17] .. 110
FIGURE A-5 Machine Learning Over-fitting and Under-fitting [Goodfellow’16] 112
FIGURE A-6 Machine Learning Capacity versus Training and Generalization Error Rates
[Goodfellow’16] .. 112
FIGURE A-7 Linear Regressions [Eremenko’17] ... 114
FIGURE A-8 Start with plain dataset [Eremenko’17] .. 114
FIGURE A-9 Categorize data based on information entropy [Eremenko’17] 114
FIGURE A-10 Decision Tree formation [Eremenko’17] .. 115
FIGURE A-11 Support Vector Machine in Classification [Eremenko’17] 115
FIGURE A-12 K-nearest neighbor [Eremenko’17] ... 116
FIGURE A-13 Naïve Bayes Classification Steps .. 117
FIGURE A-14 K-Means Clustering Steps [Eremenko’17] ... 118
FIGURE A-15 Hierarchical Clustering Steps [Eremenko’17] ... 119
FIGURE A-16 Single Perceptron .. 119
FIGURE A-17 Threshold and Rectifier Functions.. 120
FIGURE A-18 Sigmoid and Hyperbolic Functions .. 120
FIGURE A-19 Artificial Neural Network.. 121
FIGURE A-20 Back Propagation Learning Algorithm .. 121
FIGURE A-21 Gradient descent algorithm [Eremenko’17] .. 122
FIGURE A-22 Recurrent Neural Network .. 122
FIGURE A-23 Recurrent Neural Network .. 123
FIGURE A-24 Convolutional Neural Networks, CNN [Eremenko’17] .. 124
FIGURE A-25 TRAINING of DEEP LEARNING AUTOENCODER .. 125
FIGURE A-26 AUTOENCODER Split to Encoder and Decoder ... 125
FIGURE B-1 Matlab Simulation with Sech(x) initial function ... 130

12

FIGURE B-2 SVD Analysis ... 130
FIGURE B-3 First three modes plot ... 131
FIGURE B-4 One Mode POD MOR .. 131
FIGURE B-5 Second order S-RNN MOR .. 132
FIGURE B-6 SVD analysis of Second order S-RNN solution ... 132
FIGURE B-7 Matlab Simulation with 2*Sech(x) initial function .. 133
FIGURE B-8 SVD analysis of Matlab solution ... 134
FIGURE C-1 DECODED ECSM FALLING AND RISING-EDGE WAVEFORMS VS. SPICE
WAVEFORMS .. 142
Table C.1 Autoencoding 1000-points Falling-Edge ECSM Waveform Results at Different
Number of Encoding Parameters .. 142
Table C.2 SVD 1000-points Falling-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 143
Table C.3 Autoencoding 1000-points Rising-Edge ECSM Waveform Results at Different
Number of Encoding Parameters .. 143
Table C.4 SVD 1000-points Rising-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 143
Table C.5 Autoencoding 50-points Falling-Edge ECSM Waveform Results at Different Number
of Encoding Parameters .. 143
Table C.6 SVD 50-points Falling-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 144
FIGURE C-2 SPICE vs reconstructed 50-points sampled falling edge waveform 144
Table C.7 Autoencoding 50-points Rising-Edge ECSM Waveform Results at Different Number
of Encoding Parameters .. 144
Table C.8 SVD 50-points Rising-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 145
FIGURE C-3 SPICE vs reconstructed 50-points sampled rising edge waveform 145
Table C.9 Autoencoding 100-points Falling-Edge ECSM Waveform Results at Different Number
of Encoding Parameters .. 145
Table C.10 SVD 100-points Falling-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 146
FIGURE C-4 SPICE vs reconstructed 100-points sampled falling edge waveform 146
Table C.11 Autoencoding 100-points Rising-Edge ECSM Waveform Results at Different
Number of Encoding Parameters .. 146
Table C.12 SVD 100-points Rising-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 147
FIGURE C-5 SPICE vs reconstructed 100-points sampled rising edge waveform 147
Table C.13 Autoencoding 150-points Falling-Edge ECSM Waveform Results at Different
Number of Encoding Parameters .. 147
Table C.14 SVD 150-points Falling-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 148
FIGURE C-6 SPICE vs reconstructed 150-points sampled falling edge waveform 148
Table C.15 Autoencoding 150-points Rising-Edge ECSM Waveform Results at Different
Number of Encoding Parameters .. 148
Table C.16 SVD 150-points Rising-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 148
FIGURE C-7 SPICE vs reconstructed 150-points sampled rising edge waveform 149
Table C.17 Autoencoding 21-points Falling-Edge ECSM Waveform Results at Different Number
of Encoding Parameters .. 150

13

Table C.18 SVD 21-points Falling-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 150
Table C.19 Autoencoding 21-points Rising-Edge ECSM Waveform Results at Different Number
of Encoding Parameters .. 150
Table C.20 SVD 21-points Rising-Edge ECSM Waveform Results at Different Sigma Rank
Number .. 150
Table C.21 Falling Edge Mean Percentage Error NLDM-LUT versus Spice 151
Table C.22 Rising Edge Mean Percentage Error NLDM-LUT versus Spice 151
Table C.23 DL-WFDM Model Training Results using 1000-points Sampled Waveforms 151
Table C.24 DL-WFDM Model Training Results using 150-points Sampled Waveforms 151

14

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

BOA Bayesian Optimization Algorithm

BP Back Propagation Algorithm

BT Balanced Truncation

CCS Composite Current Source

CNN Convolutional Neural Network

CSM Current Source Model

DL Deep Learning

DL-NLDM Deep Learning Nonlinear Delay Model

DL-WFDM Deep Learning Waveform Delay Model

ECSM Effective Current Source Model

EDA Electronic Design Automation

IV Instrumental Variable

J-RNN Jordan-Recurrent Neural Network

LTI Linear Time-Invariant

MOR Model Order Reduction

ML Machine Learning

MLP Multi-Layer Perceptron

MIMO Multiple-input multiple-output

NLDM Nonlinear Delay Model

PCA Principal Component Analysis

15

PDN Power Distribution Network

RNN Recurrent Neural Network

S-RNN Structured Recurrent Neural Network

SI Signal Integrity

SISO Single-input single-output

SIMO Single-input multiple-output

STA Static Timing Analysis

SVD Singular Value Decomposition

SVM Support Vector Machine

TSV Through Silicon Via

16

Chapter 1

Introduction

1.1 Motivation

Electronic design automation, EDA, tools are challenged with complex designs and enormous

data that are getting generated during the design flow starting from requirements down to

physical implementation. Machine and deep learning techniques proved to be very useful

handling extremely large data during the last decade. Advent of new training algorithms,

existence of very powerful processing power and very large data availability allowed deep

learning to flourish and be used in practical applications in different domains. Data explosion

forced big companies like Google and Microsoft to use AI/ML techniques in their search engines,

image recognition, and movie analysis applications. The momentum behind autonomous cars,

robotics and drones forced companies like Google and Tesla to use AI/ML techniques to

empower computer vision and decision-making algorithms. IoT, Cloud Computing, 5G and

Industry 4.0 are all driving big companies like Amazon, Microsoft, Siemens, Oracle, and IBM to

allocate large budgets to AI/ML research to be able to handle the next wave of data explosion

expected with all these technologies.

Machine and deep learning techniques penetrated design flows and EDA tools. Many EDA

companies are investing in machine learning, ML, applications anticipating that only ML-enabled

EDA applications will be able to handle the complexity of the next generation semiconductor

17

design process. This research focuses on ML and DL applications in EDA applications to explore

what is happening in the industry and academia as well as to contribute to this important field of

research.

1.2 Thesis Statement
This thesis starts with surveying machine learning applications to electronic design automation.

This thesis work focused on deep learning applications in cell delay modeling to increase the

accuracy of delay models without increasing the size of the cell technology file. In addition, this

thesis proposes deep learning applications for model order reduction of linear-time invariant

systems to model white box complex systems and black box unknown systems given the original

system step response.

1.3 Thesis Contribution

The main contributions of this thesis are:

• Proposed deep learning non-delay model, DL-NLDM, to model cell delays using DL

neural networks. This approach reduced the two lookup tables, NLDM-LUT,

characterizing cell delay and transition time to one DL model for rising edge and another

DL model for falling edge. For falling edge model, the proposed DL-NLDM outperforms

7x7 NLDM-LUT average percentage errors by ~1.24x delay time and ~1.55x transition

time over the selected wide range of input values. The same DL-NLDM model

outperforms 100x100 NLDM-LUT maximum percentage errors by ~2.37x delay time and

by ~2x for transition time. For rising edge model, the proposed DL-NLDM outperforms

7x7 NLDM-LUT average percentage errors by ~5x for both delay and transition time and

outperforms 100x100 NLDM-LUT maximum percentage errors by ~3.19x for delay time

and by ~2.75x for transition time. The proposed rising edge model gives less than 1.41%

average delay and 4.86% average transition time percentage error compared to SPICE.

18

DL-NLDM retrieving time outperformed this of 7x7 NLDM-LUT by 1.69x, and

outperformed 100x100 NLDM-LUT by 12x using the outlined Python implementation.

• Proposed DL Autoencoder-based compression technique for ECSM voltage waveforms to

increase the waveform fidelity without increasing the technology file size. This DL

compression technique outperformed the nearest rank SVD technique compression ratio

by ~1.67x, and by ~1.78x for 150-points sampled waveforms. Two params Autoencoders

compression ratio outperforms lossless compression techniques by ~45x to 55x factor. On

the other hand, nearest SVD rank outperforms 2 params encoding decompression time by

~12.25x and ~17.34x for 1000-points and 150-points sampled waveforms respectively. For

1000-points sampled waveforms, 2 params Autoencoders models give between 0.4% to

0.85% standard deviation of percentage errors compared to SPICE simulation. For 150-

points sampled waveforms, 2 params Autoencoders models give between 0.2% to 0.4%

standard deviation of percentage errors compared to SPICE simulation. Encoding with 4

params Autoencoders models are generally ~2x better in error rates compared to the 2

params models on the expense of lower compression ratio.

• Proposed compressing CCS voltage time waveforms using the same DL Autoencoder

technique. The proposed Autoencoders give 1.7x better compression ratio results than the

nearest rank SVD for 1000-points sampled rising-edge current waveforms. Autoencoders

give 26.5x compression ratio compared to 15.4x SVD reported compression ratio. SVD

compression gave slightly better results for falling-edge current waveforms, 30.8x versus

29.34x Autoencoder compression ratio.

• Proposed a combined DL-NLDM ECSM waveform compressed model trained to produce

two-parameters encoded output waveforms given input transition time and input

19

capacitive load values. A combined DL-NLDM ECSM model is trained for each edge and

for each cell type. Experiment results show that separate DL-NLDM and ECSM waveform

parameters perform better than the combined model. However, the combined model

remains better than the maximum percentage delay and transition time errors of the

standard 7x7 NLDM-LUT over the selected wide cell characterization values range.

• Proposed modeling cell delays using DL waveform delay model, DL-WFDM, trained to

produce two-parameters encoded output waveforms given two-parameters encoded

input waveforms and capacitive load input values. Experiments show that separate DL-

NLDM and ECSM waveform parameters perform better than the proposed DL-WFDM

model, however there is a great potential to improve this new modeling methodology

performance results.

• Proposed and trained a structured recurrent neural network, S-RNN, that models Nth

order LTI SISO systems. Proposed and trained other S-RNN network structures to model

Nth order LTI SIMO systems of any number of outputs O. Proposed RNN network

structure to model Nth order MIMO LTI systems of any number of input M and output

O. Reconstructed the continuous time state-space model from the weights of the trained

S-RNN models.

1.4 Thesis Organization
This thesis is organized as it follows: Chapter 2 of this thesis surveys the most notable machine

learning research activities in electronic design automation. Chapter 3 provides background

information on cell characterization models which most of this research focuses on to apply deep

learning applications. Chapter 4 details the proposed DL Autoencoder-based waveform

compression technique and the compression results compared with other compression

techniques. Chapter 5 presents different proposed deep learning cell delay modeling techniques

20

and experiment results. Chapter 6 shows another proposed application of deep learning

technique - structured recurrent neural networks, S-RNN, to perform model order reduction of

complex SISO, SIMO and MIMO linear time-invariant, LTI, systems. Chapter 6 lists several

experiment results for different types of complex systems. Finally, chapter 7 contains thesis

conclusions and future work followed by the list of references.

21

22

Chapter 2

Machine Learning Applications in
Electronic Design Automation

There are many driving forces behind the machine learning success in the recent decade, on top

to these forces is the huge available data that need deeper analysis to extract useful information.

Google and Bing search engines and other big names like Amazon, and Netflex invested heavily

in machine and deep learning for data analysis, image recognition, and movie analysis. Hi-tech

companies developing autonomous cars and drones invested in image processing and computer

vision. Companies driving IoT, cloud computing and the promises of Industry 4.0 like Amazon,

Siemens, IBM and Oracle are investing in data analytics.

ML/DL techniques are penetrating EDA applications. Focus on optimization, classification, and

image recognition problems with large parameters. Search for optimal design with acceptable

accuracy, reliable, cost effective and scalable algorithms. DAC, the most notable IEEE EDA

conference focus started to dedicate special track for machine learning application in EDA

applications for papers and tutorials. Several joint industry and academia centers are founded to

focus on ML applications in EDA like CAEML, “Center for Advanced Electronics Through

Machine Learning”. EDA companies like Synopsys, Cadence and Siemens EDA are investing in

in-house ML enabled applications as well as investing in acquiring high potential startups. Many

EDA startups focusing on machine learning had successful launch and some have been acquired

by big EDA names. Many recent publications in the last five years across all design life cycle. The

following sections explores the recent research activities of machine and deep learning in

23

electronic design automation domain.

2.1 Design Space Exploration
3D-IC design space application: Heterogeneous die integration provides More than Moore,

however thermal gradient and TSV reliability limit 3D-IC benefits. There is a need to optimize

many parameters to reach optimal design. Use of thermal-electrical simulation plus sweep of

optimization parameters increases computation time exponentially. Park et al., [Park’16],

proposed Bayesian Optimization Algorithm, BOA, to optimize the design parameters taking

accuracy, speed, scalability into consideration.

FIGURE 2-1 Using BOA to optimize design parameters [Park'16]

Using full system Thermal Electrical Simulation to run and get few datasets across optimization

parameters. Fig. 2-1 shows the extracted features like the dimension, total power, fan speed, TSV

number, etc. and the corresponding measured outputs, temperature, clock skew, PDN noise, etc.

used to train the model. Now switch to BOA to use this dataset to learn from experience instead

of sweeping all parameters in Monte Carlo Analysis. Near real simulation accuracy is achieved

with small run and cost time.

3D-IC SW NoC Research: Another 3D-IC ML optimization application Small World NoC where

it’s needed to transmit data with low latency, high throughput, and minimum power

24

consumption. 3D-IC NoC enables high performance and low-power many core chips. There is a

need for energy-efficient and reliable 3D SW NoC.

FIGURE 2-2 Small-World NoC energy-efficient and reliable 3D optimization [Das’17]

To achieve this objective, it’s needed to optimize placement of planar and vertical communication

links and optimize the placement of spare vertical links sVLs in a 3-D NoC. Das et al., [Das’17],

proposed using stage learning algorithm, Fig. 2-2, to perform this optimization. Stage starts with

base search optimization which generates new training data used to perform a meta search that

enhances the optimization process.

2.2 Power Estimation
Power models are either not available or not accurate which results in over or under-estimated

power designs. Real HW is not always available. Lee et al., [Lee’15] proposed training a model

using real hardware and then calibrate McPAT (Multicore Power, Area, and Timing) simulator,

25

the open-source simulator used by hpLabs McPAT models. Lee et al’ work utilized the least

square regression technique.

Power estimation depends on running SW applications on cycle accurate instruction set

simulator, ISS, simulation. This process requires lengthy simulation and huge HW resources.

Zheng et. Al, [Zheng’15] proposed technique to train a model using cycle accurate simulator

results to predict target power estimate while running on a host machine as Fig. 2-3 shows. They

used constrained locally sparse linear regression, CLSLR, technique to train the ML model which

is a variant of Linear Regression technique.

FIGURE 2-3 Power estimation using CLSLR regression technique [Zheng’15]

2.3 Functional Verification
Functional verification of complex designs involves thousands of test cases that require huge time

to execute. Most of the time there are redundant test cases that consume time, effort, machine

power and don’t add any coverage value. Wang et al., [Wang’15], proposed machine learning

techniques using SVM, Fig. 2-4, to add a filtering module that performs data mining to skip

repeated tests that don’t add any coverage and generate unique tests that increase test coverage.

26

FIGURE 2-4 Functional verification to filter and optimize test cases [Wang’15]

Mandouh el al., [Mandouh’16] focused on the problem of having huge number of assertions, and

test failures that have common root causes that causes duplicate effort to debug/fix from large

team. Their approach, Fig. 2-5, uses K-Means clustering to extract similar failing coverage groups,

assertions trace signals to accelerates debugging and verification of large designs.

FIGURE 2-5 Grouping of failing coverage groups having common root causes using K-Means
clustering [Mandouh’16]

2.4 Timing Analysis
Kahng et al., [Kahng’17], proposed ways to reduce the cost and time of performing signal

integrity timing analysis used in Synopsys Prime Time-SI commercial product. Capacitor

inductor effects create serious timing errors, shrinking transistor feature size results in huge

CrossTalk impact, signal glitches and jitters cannot be ignored as well as noise and distortion.

Kahng et al., [Kahng’15], trained a model with SI and non-SI mode timing reports using both

27

ANN and SVM, Fig. 2-6, and used a weighted prediction of both methods to estimate the SI

reports from non-SI reports.

FIGURE 2-6 SI for free proposed model [Kahng’15]

Wang et al., [Wang’17], proposed ML application to refute false positive and false negative critical

paths during static timing analysis. There are many reported false negative critical paths in order

of thousands. There are also many missed real critical paths in order of hundreds. Wang et al.

used machine learning to perform correlation between STA and post-silicon timing measurement

using SVM learning techniques to uncover learning rules for improvement.

2.5 Physical Design
Physical proximity of certain mask shapes can lead to short or open circuit which reduces IC

manufacturing yield. Different solutions with different limitations exist to address this problem

including simulation, design rule checks, DRC and pattern matching. Machine learning provides

solutions that can generalize the learnt patterns. Yang et al., [Yang’17] proposed convolutional

neural networks to perform hotspot detection using CNN setup in Fig. 2-7.

28

FIGURE 2-7 Hotspot detection using CNN [Yang'17]

Predicting high variability area due to process and voltage variability is another physical design

ML application. Drmanac at al., [Drmanac’09], performed feature extraction of variability

measures, performed supervised SVM learning to build a variability classifier for inter-cell

variability classification. They also performed unsupervised SVM outlier learning to predict areas

of high variability.

2.6 Cell Characterization
Cell Characterization is an important domain for machine and deep learning applications. Since

this these focuses on cell delay modeling, cell characterization ML applications will be discussed

in next chapter.

2.7 Routing
Meeting IR-drop and EM constraint requires more power distribution network, PDN, metal

which increases the overall routing overhead with increased need to speed up design closure

process. Chang et al., [Chang’17], proposed using routing cost rather than total area cost and

created a learned routing-cost model using Gaussian process regression as in Fig.2-8.

29

FIGURE 2-8 ML-based routing model using Gaussian process regression [Chang'17]

2.8 Other EDA Applications
Provan et al. [Provan’12] explored machine learning applications in circuit synthesis. Hu et al.,

[Hu’16], explored machine learning techniques to check equivalence between synthesis and RTL

logic. Wu et al., [Wu’17] explored machine learning applications to improve Boolean satisfactory,

SAT, solving algorithms. Capodieci et al., [Capodieci’17], explored machine learning applications

to optimize yield of IC manufacturing. Dai et al., [Dai’17] explored deep learning applications in

hardware security problem of circuit recognition. Jap et al., [Jap’16], explored supervised and

unsupervised learning technique to detect side-channel based Trojan attacks. Tenace et al.,

[Tenace’17], used classification and regression tree, CART, to extract the most significant primary

inputs and their logic relationships with accuracy that can reach 89%.

30

Chapter 3

Cell Characterization Models

3.1 Overview

Cell characterization is the process of extracting important cell characteristics to build an accurate

and efficient cell model that represents its behavior. Models are used in various EDA digital

design flow, [Kahng’11], and tools:

• Static Timing Analysis

• Synthesis

• Power Analysis and Estimation

• Placement and Routing

• Floor Planning

• Automatic Test Pattern Generation, ATPG tools

• Verification Tools

There are several quality metrics to take into consideration while designing and generating these

cell models, mainly:

• Accuracy – how far models deviate from silicon behavior

• Conformance – with existing EDA tools

• Completeness – characterizing needed information for time, area, and power

• Efficiency - effort models need at run-time inside EDA tools

• Characterization time – effort needed off-line to characterize cells

• Size of files on disk – how much model information is needed to be stored and maintained

The approach of trading accuracy with run time performance is usually taken to guarantee

31

adequate cell model that executes fast in different design flows.

In addition, it’s needed to characterize each cell against PVT (process, voltage, and temperature)

variations, if we have:

• Temp: -40, 25, 80, 125, 150

• Vdd: 0.52, 0.65, 0.8, 0.92, 1.1, 1.3

• Process: FF, SS, TT, FS, SF

Then we have 5x6x5 = 150 combinations = 150 costly Spice Simulation

3.2 Liberty File Format
Provides lookup tables that store standard cell and process information:

• Rise and fall time of logic cells given input transition time and load capacitance (for

NLDM model)

• Output transition time to be used in the next stage of logic

• Setup and hold time for sequential parts

• Characteristics of different tradeoff cell variants:

• High speed, high density, low power, low leakage, low voltage, low noise

• Other important cell characterization information like area and power

• Manufacturing process information, nominal operating temperature, supply voltage

variations

• On chip variation information

Library technology is basically the outcome of cell characterization process. Synopsys Liberty .lib

file format is the de-facto standard format.

3.3 Liberty File Structure
• Structure Information. Cell connectivity information

• Functional Information. Cell functionality information

32

• Timing Information. Pin to pin timing information and delay calculations

• Environmental Information. Manufacturing process information, nominal operating

temperature, supply voltage variations, etc.

3.4 Non-linear Delay Model, NLDM
The most notable cell driver model is the non-linear delay model as explained by Sharma,

[Sharma’16]. The characterization process starts with connecting the cell output pin to a load

capacitance and applying a ramp signal to the cell input using a transistor level simulator. The

ramp transition time and the load capacitance are swept through defined a range to measure the

output delay and transition time.

FIGURE 0-1 Cell Characterization Setup

The output delay and transition time parameters at in given input transition and load capacitance

are measured and stored in technology files. Usually, the process is repeated twice; one for the

rising-edge and the second for the falling-edge. This model is also known as input-Slew, output-

Load Delay-Slew Model, SLDSM. Cell characteristics are either:

• Fitted to closed form characteristic equations and stored in the form of k-factor for those

equations

• Stored as 2-D look-up table which is the widely used approach. Interpolation is used to

retrieve output ramp voltage delay and transition time

The lookup tables are the commonly used method, we proposed DL models in chapter 4 to

33

replace those traditional tables to increase the error rates without increasing the technology file

size. Static timing analysis tools make use of these technology tables to perform its timing

analysis. Cell driver model is a voltage source that outputs a ramp-voltage with delay and

transition time dependent on input transition and output load values retrieved from the lookup

tables or the characteristic equations. Cell receiver model is simply the load capacitance, the

effective capacitance, or the PI model of the interconnect.

FIGURE 0-2 NLDM Rise/Fall delay time LUT example

FIGURE 0-3 NLDM Transition LUT example

34

This ramp model fails short to capture signal high nonlinearity, noise, and crosstalk effects when

the feature size decreases, and the interconnect delays increase, and timing analysis becomes

more sensitive to signals over-shoot, under-shoot, and multiple crossings. Hence, more complex

models were introduced to increase the accuracy of cell models.

3.4 Current Source Model Waveforms Background
3.4.1 Effective Current Source Model, ECSM, Waveforms

In addition to the cell characterization delay and transition-time tables, the output voltage

waveform at a given transition time and output load is also stored in the technology file.

Waveform information is stored in the output voltage table ECSM format that is introduced by

Cadence and adopted as a Silicon Integration Initiative standard, [Si2’21]. The more waveform

points we store in the technology file, the more accurate reconstructed waveform we get.

However, the accuracy of the stored waveforms comes on the expense of the size of technology

file on disk and the performance of static analysis tools making use of these files. Hence, trade-

offs between voltage waveform accuracy and data size on disk must be applied.

3.4.2 Composite Current Source, CCS, Waveforms

Composite current source model depends on storing the output current waveform flowing

through the capacitive load at given transition input. Waveform information is stored in the

output current table CCS format that is introduced by Synopsys, [Synopsys’21]. For current

waveforms we only can sample N-points current-time samples at certain time increments. Like

ECSM waveforms, the more samples per waveform we take the better waveform accuracy, but

on the expense of more size on disk and less performance in static timing analysis. Hence, we

must trade current waveform accuracy with data size on disk or find an efficient way to compress

CCS and ESCM waveform information.

35

FIGURE 0-4 CCS rising-edge current waveform example

And the fall CCS example is:

FIGURE 0-5 CC falling-edge current waveform example

3.5 Current Source Cell Receiver Model

Cell behavior is modeled as voltage-controlled current source so to be independent of the load.

This CSM can model high nonlinearity cell behavior and it can model noise and crosstalk effects

by adding and characterizing Miller capacitance, Cm.

36

FIGURE 0-6 CSM for simple inverter

For a simple inverter, Io and Ci, Cm, and Co are used to characterize the cell given values of Vi

and Vo

• Io is characterized through DC simulations over multiple combinations of DC values of

(Vi, Vo), while Cint is characterized through a set of transient simulations

• Interconnect trees are also reduced to PI-model, small circuit simulation is performed with

the CSM and the PI-model to get the driving point waveform

• Full interconnect simulation is performed with the driving point waveform to determine

the waveform delay and shape at the sink points

NOR2, NAND2 requires 2 current sources and 6 capacitances to model Miller, input, and output

capacitances. Number of parameters increases with the complexity of cells; table size increases

significantly.

FIGURE 0-7 CSM of a NOR2 Cell

37

Chapter 4

Deep Learning Autoencoder-based
Compression for Current Source
Model Waveforms

4.1 Overview

Accounting for larger wire delays, noise and inductance effects on smaller transistor feature sizes

resulted in the need to capture more complex waveforms during library cell characterization

process. The more complex waveforms, the more waveform samples that need to be stored on

disk to capture waveform overshoots, undershoots and multiple crossings. Increased technology

file size can have drastic effects on the performance of digital design flow processes and static

timing analysis that depend on these library files. Current source model waveform data

compression became a necessity to reduce the size of technology files and increase the accuracy

of the cell characterization data.

Waveform compression techniques are needed to increase the waveform fidelity without

increasing the technology file size. General data compressors can be used like gzip, zlib, and bz2

techniques [Berz’15]. Singular value decomposition, SVD, technique is a linear algebra algorithm

to decompose any rectangular MxN matrix, A, into three matrices, left singular matrix, sigma

matrix and right singular matrix. The best sigma matrix rank can be selected and ignore less

significant values. The best rank matrix represents the data basis that can represent the

compressed version of the original matrix A. SVD technique can decompose any rectangular

matrix, and it doesn’t require intensive computation power or GPU. Ramalingam et al.,

[Ramalingam’07], proposed fixed waveform-basis principal component analysis using the

38

singular value decomposition technique. Hatimi et al., [Hatami’09], used an adaptive waveform-

basis singular value decomposition to get better compression results of certain waveforms. They

achieved compression ratios between 20 to 4 depending on the accuracy level. Recursive

polynomial representation is used by Saurabh and Mittal, [Saurabh’18]. Li and Yu proposed

signal-value compression scheme achieving average of 26 compression ratio [Li’21]. Abrishami

et al., [Abrishami’19], proposed a neural network simulation framework to eliminate current

source model lookup tables without performing waveform data compression to reduce memory

latency and computation of current source model. Deep learning Autoencoder, [Goodfellow’16],

is a feedforward neural network with multiple hidden layers. Autoencoders are trained to

produce an output close to the training input data. The layers from the input layer down to the

middle layer, which is typically of a size much smaller than the size of the input data, represent

the date encoder. The layers from the middle layer down to the output layer represent the date

decoder. Using linear activation functions in the Autoencoder layers produces a comparable

performance to the principal component analysis, PCA, technique. On the other hand, using

nonlinear activation functions should result in better encoding results. Training Autoencoders

requires a large dataset and intensive computation power. However, since the training phase is

done offline, this intensive computation power can be tolerated for better performance. Fournier

and Aloise, [Fournier’19], compared Autoencoders performance with principal component

analysis technique using different image datasets. They showed that PCA technique produces

comparable accuracy to Autoencoders results at two orders of magnitude faster performance.

We propose using deep learning nonlinear Autoencoders to compress current source models

waveform data. We used SVD technique to compress the same waveforms and compared the

trained Autoencoders results with the SVD compression results. We trained different

Autoencoder models on 142800 voltage waveforms and another 142800 current waveforms

https://ieeexplore.ieee.org/author/37086937160
https://ieeexplore.ieee.org/author/37086937160
https://ieeexplore.ieee.org/author/37086933758

39

characterizing rising-edge output NOR, NAND, and INV cells. Different encoding models are

trained on similar number of falling-edge waveforms. We achieved effective compression ratio

of 104 after encoding 1000-points sampled voltage-time waveforms using two encoding

parameters with average correlation coefficient greater than 0.999 and less than 0.5% average

percentage error at key waveform points. Compared with SVD compression, Autoencoders gave

1.67x better compression ratio for 1000-points sampled voltage waveforms. We also encoded

voltage waveforms at varying time 50, 100, and 150 points. Trained models on 150-points sampled

waveforms gave better 1.78x better compression ratio than SVD of rank 16. Encoding more

complex 1000-points sampled current-time waveforms resulted in an effective compression ratio

of 26 and average correlation coefficient of 0.975 and 0.998 using 8 and 16 encoding parameters

respectively. Compared with SVD, Autoencoders achieved 1.7x better compression ratio for

complex rising-edge current-time waveforms at model loss of 7.6e-5 and achieved comparable

performance for the falling-edge waveforms.

4.2 Autoencoder-based Waveform Data Compression
We propose using Autoencoders to encode waveforms into very small number of parameters.

Those parameters can be decoded again to the original waveform within certain error. The less

parameters we can represent a complex waveform is the better in terms of reduced size on disk

and higher execution performance. The steps we followed for waveform data compression are:

• Generating ECSM and CCS waveforms.

• Preprocessing waveform data.

• Designing Autoencoder models

• Training Autoencoder models.

4.2.1 Generating ECSM and CCS Waveforms

MOS transistor model BSIM3v3 model (Eldo level 53) is used to perform transistor level

40

simulation of NOR, NAND and INV cells. Each cell is connected to a capacitive load and input

ramp voltage source. Using the simple cell characterization setup in Fig. 4-1 for INV, NOR and

NAND cells, the transition time of the ramp input is varied from 10ps to 2 ns, whereas the

capacitive load is varied from 0.1fF to 100fF.

FIGURE 4.1 Cell Characterization Transistor Level Simulation Setup

In each simulation run, the 1000-points voltage-time samples are measured at the output pin to

store the waveforms needed for ECSM models. Uniform time 1000 sampled points per waveform,

as in Fig. 4-2, is selected to capture more complex waveform properties like overshoots,

undershoots, rapid transitions and multiple crossings.

FIGURE 4.2 1000-points uniform time sampled waveform

Another sampling technique is devised to sample the most significant N samples before crossing

95%VDD or 5%VDD for rising or falling time waveforms respectively as shown in Fig. 4-3. The

41

number of samples N is varied between 50, 100 and 150 points. Sampling 150-points gave better

results than 50 and 100, therefore sampling results of 150-points are reported and compared with

sampling uniform time 1000-points in this paper.

FIGURE 4-3 Varying Time, 50, 100, 150 Sampling Points

Total of 142800 rising-edge and another 142800 falling-edge voltage waveforms were captured

for ECSM models. During the same simulation run, delay and transition time values are recorded

against the input waveform transition time and effective load capacitance to train the NLDM

deep learning models.

4.2.2 Preprocessing Waveform Data

Data normalization is a key step to perform before training deep learning networks.

Preprocessing voltage-time waveform data is a little bit more involved to account for the over

and under shoots. Assuming 50% possible overshoot or undershoot, then equation (4) normalizes

waveform data between 0 and 1 including possible over or under-shoots.

Normalized WF = (WF+0.5VDD)/(2*VDD) ()

Current waveforms are more complex to normalize between 0 and 1 because the minimum and

maximum current values are different from waveform to the other. Hence, we scaled each

42

waveform to have similar minimum and maximum values, then normalized all waveform data

between 0 and 1.

4.2.3 Designing Autoencoder Models

We designed several Autoencoder models and trained them using the preprocessed ECSM and

CCS waveform data. The model topologies that resulted in best training performance are listed

in table 4.1. Each model has an input layer I, and output layer O of the same size that is equal to

the number of waveform sample points. For each model, the number of the encoded parameters

P is varied between 8, 4, 2, 1 for ECSM waveforms and between 16, 8, 4, 2, 1 for CCS waveforms.

Relu activation function is used for all Autoencoder layers, and sigmoid function is used in the

output layer. Using sigmoid function adds a non-linearity learning capability to the

Autoencoders that enables them to learn more complex data.

Table 4.1 Autoencoder Models for Parameter P = 16,8,4,2,1

ID
Autoencoder Models

Model Topology Activation Function

13 I,2048,512, P,512,2048,O

Relu for all layers,
except Sigmoid for
middle and last layer

12 I,2048,512,16, P,16,512,2048,O

10 I,2048,1024,32,16, P,16,32,1024,2048,O

9
I,2048,1024,128,64,32,16,

P,16,32,64,128,1024,2048,O

4 I,1024,64,32,16, P,16,32,64,1024,O

3 I,1024,32,16, P,16,32,1024,O

2 I,1024,16, P,16,1024,O

To calculate the compression ratio, we need to calculate the size of encoded data plus the decoder

size to compare with the original data size on disk. Given S number of waveforms, P number of

encoded parameters, B number of bytes to store the encoded parameters, then the encoded

waveform size, E, if given by equation (5). On the other hand, given R number of actual data

points per waveform saved on disk; R=21 data points for ECSM and R=1000 data points for each

ECSM or CCS waveform, then the uncompressed data size, O, is given by equation (6).

Considering that the total size needed to store the encoded data on disk is the encoded waveform

43

size plus the decoder size, D, needed to decode the waveforms. Hence, the effective compression

ratio is calculated by equation (7).

E (Encoded Waveform Size) = (S*P*B) ()

 O (Original Waveform Size) = (S*R*B) ()

 Effective Compression Ratio= O/(E+D) ()

4.2.4 Training Autoencoder Models

All Autoencoder models with all possible values of the parameter P (16, 8, 4, 2, 1) were trained

on the normalized WF data. The used computer configuration is: Intel Core I7, 16GB RAM, with

6GB NVIDIA GeForce RTX 2060 GPU. Python version 3.8.5 and Keras library v2.4 with GPU-

enabled Tensorflow backend is used to model Autoencoder models. Adam optimization is used

in the training process and mean squared error, MSE, is used as a loss function. The training

process was designed to abort training if the loss value deteriorates 50 iterations in sequence.

Single Autoencoder model is trained on a combined input of NOR, NAND, INV rising or falling-

edge waveforms. Successful training of 142800 1000-points current waveforms took average of

400 epochs in average of 2000 sec. Training of 142800 1000-points voltage waveforms took average

of 300 epochs in an average of 1500 sec.

4.3 Waveform Data Compression Results
To evaluate the performance of the trained Autoencoders, all the normalized waveforms were

compressed using Python implementation of SVD technique. All the normalized waveforms are

packed in a matrix A, of size 142800x1000 or 142800x150 depending on the sampling points. The

matrix A is analyzed using SVD. Different ranks of the sigma matrix are selected to produce the

compressed version of matrix A. The SVD data compression at different ranks are evaluated and

compared to our proposed Autoencoder-based compression at different number of encoding

parameters.

4.3.1 Autoencoding fixed time 1000-points ECSM Voltage Waveforms

44

To evaluate the performance of the trained Autoencoders, all the normalized waveforms were

compressed using Python implementation of gzip, bz2 techniques and SVD. Autoencoders of 2

parameters gave between 39x to 45x better compression ratios than gzip and bz2 techniques at

less degree of accuracy. For SVD, all the normalized waveforms are packed in a matrix A, of size

142800 times the number of sampling points). The matrix A is analyzed using SVD. Different

ranks of the sigma matrix are selected to produce the compressed version of matrix A. The SVD

data compression at different ranks are evaluated and compared to our proposed Autoencoder-

based compression at different number of encoding parameters.

Table 4.2 Best Autoencoding 1000-points ECSM Falling-Edge Waveform Results Against bz2, gzip

and SVD techniques

Table 4.3 Best Autoencoding 1000-points ECSM Rising-Edge Waveform Results Against bz2, gzip

and SVD techniques

Tables 4-2 and 4.3 show that Autoencoders of 2 parameters were able to produce 1.67x better

compression ratio results than SVD technique of rank 16, and less than 0.7% average percentage

error compared to SPICE simulation. The tables show also that encoding with 4-params

 Falling-Edge WF

bz2 gzip SVD Rank=16

Autoencoder, Model ID=2

2 param 4 param
% error

0 0

Avg Std Max Avg Std Max Avg Std Max

@ 0.8VDD 0.84 2.5 99.9 0.67 1.3 34.7 0.37 0.5 8.1

@ 0.5VDD 0.58 2.1 83.2 0.52 0.8 8.4 0.27 0.3 4.7

@ 0.2VDD 1.10 2.4 84.8 0.66 1.1 34.9 0.29 0.5 5.3

Mean corrcoef 1 1 0.99876 0.9995 0.99988

Loss (MSE) 0 0 8.29E-05 5.2E-05 1.27E-05

Disk size-MB 188.5 161.6 6.9 4.15 4.15
Compression Ratio 2.29 2.67 62.5 104.06 86.14
Compression time (s) 49.6s 32s 0.974s 4.6s 4.6s
Decompression time (s) 16.2s 10s 0.212s 2.6s 2.6s

 Rising-Edge WF

bz2 gzip SVD Rank=16

Autoencoder, Model ID=2

2 param 4 param
% error

0 0

Avg Std Max Avg Std Max Avg Std Max

@ 0.8VDD 2.9 6.7 210 0.7 1.4 30.3 0.3 0.7 12.6

@ 0.5VDD 1.1 5.7 192 0.46 0.8 30.4 0.25 0.5 7.6
@ 0.2VDD 2.1 5.6 158 0.67 1.5 31.4 0.32 0.7 16.2

Mean corrcoef 1 1 0.99535 0.9994 0.99985

Loss (MSE) 0 0 3.2E-04 5.8E-05 1.37E-05

Disk size-MB 188.5 161.6 6.9 4.15 4.15
Compression Ratio 2.36 2.71 62.5 104.06 86.14
Compression time (s) 49.6s 32s 0.974s 4.6s 4.6s
Decompression time (s) 16.2s 10s 0.212s 2.6s 2.6s

45

outperforms 2-params encoding by ~2x factor. The standard deviation of 2-params encoding is

less than 1.5% for key waveform parameters. The offline training time is 600s for 100 epochs it

can be enhanced with better hardware resources and smaller encoding models. Autoencoders of

4 parameters gives better average and maximum percentage errors at less compression ratio

compared to compressed 2 parameters.

4.3.2 Autoencoding varying time ECSM Voltage Waveforms

The same experiment is repeated with 50,100 and 150-points sampled waveforms at varying time

range as described in section 4.2.1. Tables 4.4 and 4.5 show that Autoencoders ID 17 gave best

results for 2-4 params encoding of rising and falling edges. Autoencoding with 2 parameters give

1.79x better compression ratio results than the nearest SVD model of rank 4 with more than ~1.5x

better average, maximum and standard deviation of percentage errors. Autoencoders of 2

parameters also gave between 40x to 55x better compression ratios than gzip and bz2 techniques

at less degree of accuracy. This accuracy is achieved with offline training time of 100s for 100

epochs. Encoding with 4-params resulted in ~2x better results than encoding with 2-params. The

encoded 150-points sampled waveforms remain overall better than the encoded 1000-points

sampled waveforms in average and maximum percentage errors by ~2x factor. Fig. 4-4 shows a

sample falling and rising edge waveform reconstructed after being encoded.

FIGURE 4-4 Falling and rising decoded waveforms against Spice waveforms

46

Table 4.4 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD

techniques

Table 4.5 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD

techniques

Tables 4.6 and 4.7 compare 2 and 4 parameters Autoencoder results for 1000-points, and varying

time 50, 100, 150 points sampled waveforms.

Table 4.6 Autoencoding 50,100,150,1000-points Falling-Edge ECSM Waveform Results at

Different Number of Encoding Parameters
Falling-Edge WF Autoencoder Number of Encoding Parameters

Num of Params 4 2

Num of waveform

samples

50 100 150 1000 50 100 150 1000

Model ID 15 17 16 2 15 14 16 2

Decoder size (KB) 39 111 125 4249 39 33 125 4249

Avg % error 0.8VDD 1.8758 0.8707 0.19 0.37 2.316 1.3110 0.39 0.7

Avg % error 0.5VDD 1.861 0.9338 0.12 0.27 2.1428 0.8739 0.29 0.46

Avg % error 0.2VDD 1.8777 0.9652 0.12 0.29 2.0736 1.0262 0.49 0.67

Mean corrcoef 0.99982 0.99994 0.99978 0.99985 0.9996 0.99948 0.99911 0.9995

Model Loss (MSE) 1.24E-05 6.18E-06 9.01E-06 1.37E-05 3.87E-05 6.18E-05 5.1E-05 5.2E-05

Compression Ratio 12.28 23.8 35.51 86.13 24.15 48.58 67.45 104.06

 Falling-Edge WF

bz2 gzip SVD Rank=4

Autoencoder, Model ID=17

2 param 4 param
% error

0 0

Avg Std Max Avg Std Max Avg Std Max
@ 0.8VDD 0.82 1.9 32.8 0.39 0.66 8.7 0.19 0.3 3.43
@ 0.5VDD 0.42 0.65 13.7 0.29 0.54 9.37 0.12 0.2 3.36
@ 0.2VDD 0.61 1.4 251.8 0.49 0.85 12.0 0.12 0.2 3.99
Mean corrcoef 1 1 0.99632 0.99911 0.99978
Loss (MSE) 0 0 1.78E-04 5.1E-05 9.01E-06

Disk size-KB 6805 5501 245 136 136
Compression Ratio 1.35 1.67 37.5 67.45 35.35
Compression time (s) 16s 2.4s 0.06s 0.62s 0.62s
Decompression time (s) 1.45s 0.24s 0.03s 0.52s 0.52s

 Rising-Edge WF

bz2 gzip SVD Rank=4

Autoencoder, Model ID=17

2 param 4 param
% error

0 0

Avg Std Max Avg Std Max Avg Std Max
@ 0.8VDD 0.47 0.84 27.6 0.38 0.7 11.97 0.15 0.2 3.49
@ 0.5VDD 0.59 1.3 35.96 0.27 0.4 7.08 0.12 0.2 3.09
@ 0.2VDD 0.65 1.9 43.08 0.37 0.7 5.44 0.22 0.4 4.92
Mean corrcoef 1 1 0.99289 0.99854 0.99973
Loss (MSE) 0 0 2.15E-04 7.27E-05 1.17E-05

Disk size-KB 7593 6048 245 136 136
Compression Ratio 1.21 1.51 37.5 66.85 35.35
Compression time (s) 7.1s 1.2s 0.06s 0.62s 0.62s
Decompression time (s) 1.45s 0.24s 0.03s 0.52s 0.52s

47

Table 4.7 Autoencoding 50,100,150,1000-points Rising-Edge ECSM Waveform Results at

Different Number of Encoding Parameters
Rising-Edge WF Autoencoder Number of Encoding Parameters

Num of Params 4 2

Num of waveform

samples

50 100 150 1000 50 100 150 1000

Model ID 17 17 16 2 15 15 17 2

Decoder size (KB) 86 86 125 4249 39 51 136 4249

Avg % error 0.8VDD 2.0015 0.9643 0.15 0.3 2.1108 1.1525 0.38 0.7

Avg % error 0.5VDD 1.9264 0.9889 0.12 0.25 2.0596 0.9409 0.27 0.46

Avg % error 0.2VDD 1.9350 1.0649 0.22 0.32 2.1574 1.2043 0.37 0.67

Mean corrcoef 0.99991 0.99992 0.99973 0.99985 0.99966 0.99954 0.99911 0.9994

Model Loss (MSE) 4.96E-06 6.03E-06 1.17E-05 1.37E-05 3.00E-05 5.01E-05 5.1E-05 5.8E-05

Compression Ratio 12.03 23.81 35.51 86.13 24.15 47.81 66.85 104.06

4.3.3 Autoencoding fixed time 1000-points CCS Current Waveforms

CCS current Waveforms are more complex than the ECSM voltage waveforms, hence it’s

expected to require more parameters to achieve acceptable accuracy results. Tables 4.8 and 4.10

list the best Autoencoder models at different number of parameters for falling and rising edge

waveforms respectively. Autoencoders with single parameter didn’t converge, so they are

omitted from the tables. Falling edge Autoencoder gave better results at 8 encoding parameters

for model ID#10, and 26.8 effective compression ratio. Table 4.9 shows the SVD compression

results of the same waveforms. At Sigma of rank 32, SVD gives 1.15x better compression results

than the nearest Autoencoder model of 8 encoding parameters. However, SVD runtime decoding

can be 19x faster than Autoencoders decode time. Fig. 4-5 shows a sample reconstructed 8-

parameters encoded falling-edge waveform.

Table 4.8 Autoencoding 1000-points Falling-Edge CCS Waveform Results at Different Number of

Encoding Parameters

Falling-Edge WF
Autoencoder Number of Encoding

Parameters
16 8 4 2

Model ID 12 10 9 10

Decoder size (KB) 12163 16368 16795 16368

Mean corrcoef 0.95310 0.97501 0.94947 0.9365

Model Loss (MSE) 6.20E-04 5.90E-04 8.00E-04 5.7E-03
Compression Ratio 26.46 26.79 29.34 31.93

48

Table 4.9 SVD 1000-points Falling-Edge CCS Waveform Results at Different Sigma Rank Number

Falling-Edge WF
SVD Sigma Rank Number

64 32 16 8

Mean corrcoef 0.99666 0.98393 0.94397 0.82042

Model Loss (MSE) 1.47E-04 7.00E-04 2.60E-03 7.9E-03

Compression Ratio 15.41 30.81 61.63 123.27

FIGURE 4-5 DECODED 8-P CCS FALLING-EDGE NORMALIZED AND SCALED CURRENT

WAVEFORM VS. SPICE WAVEFORM

Rising-edge current waveforms gave better results at 16 encoding parameters, model ID#13 and

compression ratio of 26.5. Table 4.11 shows the SVD compression results of the same waveforms.

In this case, Autoencoder of 16-parameters gave 1.72x better compression ratio than the nearest

SVD Sigma matrix of rank 64. Fig. 4-6 shows a sample reconstructed 16-parameters encoded

rising-edge current waveform.

Table 4.10 Autoencoding 1000-points Rising-Edge CCS Waveform Results at Different Number of

Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding
Parameters

16 8 4 2

Model ID 13 12 2 3

Decoder size (KB) 12128 12163 4249 4320

Mean corrcoef 0.99846 0.99765 0.97981 0.94083

Model Loss (MSE) 7.60E-05 1.10E-04 1.10E-03 3.5E-03

Compression Ratio 26.51 33.57 86.13 102.7

49

Table 4.11 SVD 1000-points Rising-Edge CCS Waveform Results at Different Sigma Rank Number

Rising-Edge WF
SVD Sigma Rank Number

128 64 32 16

Mean corrcoef 0.96587 0.93526 0.90055 0.70785

Model Loss (MSE) 2.33E-05 7.99E-05 3.44E-04 1.3E-03

Compression Ratio 7.71 15.41 30.81 61.63

FIGURE 4-6 DECODED 16-P CCS RISING-EDGE NORMALIZED AND SCALED CURRENT

WAVEFORM VS. SPICE WAVEFORM

4.4 Conclusions
Encoding 1000-points sampled waveforms with 2-params outperforms the nearest SVD 16-rank

compression ratio by 1.67x and the generic lossless compression ratio by ~45x. It also outperforms

the technology file LUT by ~3x reduction in storage (assuming storing 8 points per waveform

and storing all number of waveforms). Encoding with 4-params outperforms the 2-params

encoding waveform quality by ~2x, and the nearest SVD rank compression ratio by 1.37x.

Similarly, 4-params encoding outperforms the technology file LUT by ~4x reduction in storage

(assuming storing 8 points per waveform and storing all number of waveforms). Encoding 150-

points waveforms outperformed the 1000-points waveform encoding by 2x. However, the nearest

50

SVD 16-rank outperforms 2-params encoding decompression time by ~12.25x for 1000-points and

by 17.34x for 150-points waveforms. There is a room for improving the reported decompression

time of the Autoencoders either through finding better DL models with smaller size, or by using

ML accelerated hardware. In the following chapter, these encoded waveform parameters will be

used in two proposed models; one that replaces both NLDM-LUT and ECSM waveforms using a

combined model, and another DL model to propagate waveform parameters instead of

depending only on the waveform transition time.

51

Chapter 5

Deep Learning Cell Driver Delay
Modeling

5.1 Overview
Several deep learning techniques to model cell delays are proposed in this chapter. First, a deep

learning non-linear delay model, DL-NLDM, is proposed to replace the traditional non-linear

delay model lookup tables, NLDM-LUT, to produce higher degrees of accuracy over a wide range

of input parameters. These DL-NLDM models are trained using measured cell output transition

and delay time at different input transition time and capacitive load values. The deep learning

model ability to generalize allowed achieving better results than lookup tables. Building on

chapter 4 waveform Autoencoding technique, the input/output encoded waveform parameters

are then used together with the associated effective capacitance to train another DL model and

generalize the cell behavior. The trained DL cell model can then be utilized to produce the

expected cell output encoded waveform given an encoded input. At any point of time, the cell

output can be decoded back to its time-domain form using the corresponding waveform decoder

produced earlier during the training phase. Finally, deep learning waveform delay model, DL-

WFDM, is proposed instead of NLDM-LUT or DL-NLDM models. In DL-WFDM, auto-encoded

input/output waveforms parameters are proposed to model cell delays instead of the cell delay

and the transition time used in the NLDM. SPICE-simulated cell input and output waveforms are

used to train DL waveform Autoencoders. These trained Autoencoders can encode and decode

the whole waveform into few parameters. The input/output encoded waveform parameters are

then used together with the associated effective capacitance to train another DL model and

generalize the cell behavior. The trained DL-WFDM model can then be utilized to produce the

52

expected cell output encoded waveform given an encoded input. At any point of time, the cell

output can be decoded back to its time-domain form using the corresponding waveform decoder

produced earlier during the training phase.

The main contributions of this research work are:

• Modeling cell delays using DL neural networks. This approach reduced the two tables

characterizing the cell delay and transition time to one DL model. The DL-NLDM

performed better than the standard 7x7 LUT size in average percentage errors and

outperformed the non-standard 100x100 LUT in maximum percentage errors over the

selected wide range of input values, and less than 1.4% average percentage delay error

compared with SPICE simulation.

• Compressing ECSM voltage time waveforms to increase the waveform fidelity while

reducing the technology file size using DL Autoencoders technique. This DL compression

technique outperformed the SVD technique by 1.67x for 1000-points sampled waveforms,

and by 1.79x for 150-points sampled waveforms. Autoencoder technique outperformed

gzip and bz2 techniques compression by 45x.

• Modeling a combined DL-NLDM-ECSM model trained on two-parameters encoded

output waveforms given input transition time and capacitive load values. Instead of using

only the delay and transition time to characterize the cell, this approach uses two

parameters to represent a complex waveform. Combined models are still better than

NLDM-LUT delay and transition time maximum percentage error, however separate DL-

NLDM and ECSM compression models still perform better than the combined models.

• Modeling cells using DL-WFDM model trained on two-parameters encoded input

waveforms plus capacitive load values as inputs and two-parameters encoded output

waveforms. The results of the DL-WFDM are promising, but separate DL-NLDM and

53

ECSM compression models still perform better than these new models.

5.2 DL-NLDM: Deep Learning NLDM Cell Delay Model
The same cell characterization setup used to obtain the ECSM voltage waveforms are used to get

the training data for NLDM models. For each waveform output, the cell delay is measured as

well as the transition time from 80% from/to 20% of VDD for the output voltage. The training

data is formed using the input waveform transition time and effective load capacitance, and the

output cell delay and the output waveform transition time. Feed-forward fully connected, FC,

neural network is constructed and trained using this training data. Fifteen different deep learning

model topologies are examined, one DL model and one training process is required for each of

NAND, INV, and NOR.

FIGURE 5.1 DL-NLDM cell delay model

Table 5.1 shows the models that gave best modeling results.

Table 5.1 Deep Learning Model Structure
Model

ID
FC Neural Network

Structure
Activation
Functions

2 I,50,25,2 Relu for all
layers,

Sigmoid for
output layer

I=2 or 3

3 I,100,2

4 I,100,50,2

6 I,200,100,25,2

8 I,150,75,32,16,2

The error rates of the deep-learning models are compared with the error rates of NLDM lookup

tables, LUT, of different sizes. Though the de-facto size of NLDM LUT is 5x5 or 7x7 tables, DL-

NLDM results are compared with other larger non-standard LUT sizes as shown in Tables 5.2,

54

5.3 and 5.4 for different cell types. To increase the accuracy of the LUT tables, two sets of tables

are used for each cell/edge type; one LUT table for input ramp range of 10ps to 1 ns and capacitive

load range of 0.1fF to 1fF, and another LUT table for input ramp range of 1ns to 2ns and capacitive

load range of 1fF to 100fF. On the other hand, a single DL-NLDM is trained on the whole input

range. Offline training time is 20s, retrieving time is almost the same for different cell types, so

it’s reported for NOR type only in table 5.2.

Table 5.2 DL-NLDM best trained NOR models Mean/Max Percentage Error rates versus different

LUT sizes

Table 5.3 DL-NLDM best trained INV models Mean/Max Percentage Error rates versus different

LUT sizes

NOR Falling Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max

Delay Time 0.53 0.91 15.46 0.22 0.67 15.46 0.16 0.86 18.1 0.48 0.57 3.56

Tr Time 1.65 2.09 33.49 0.89 1.77 33.49 0.51 2.27 52.8 1.19 2.06 8.00

MSE - - - 1.76E-05

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

NOR Rising Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6

Delay Time 0.91 1.21 16.54 0.34 0.82 16.54 0.19 0.94 19.0 0.71 0.93 5.95

Tr Time 4.24 5.44 43.85 2.12 3.99 48.06 0.91 3.63 89.2 3.20 4.72 36.33

MSE - - - 6.29E-05

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

INV Falling Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max

Delay Time 0.70 0.71 26.31 0.37 1.21 26.31 0.29 1.54 33.1 0.60 0.94 10.41

Tr Time 2.67 3.76 39.85 1.42 3.01 41.58 0.62 2.75 59.8 1.91 3.00 22.67

MSE - - - 3.48E-05

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

INV Rising Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6
Delay Time 2.82 3.72 51.53 0.97 2.12 31.51 0.40 0.40 43.4 1.41 2.67 42.25

Tr Time 9.25 12.13 128.6 3.94 2.77 153.7 1.0 3.86 142.5 4.86 4.86 51.80

MSE - - - 2.35E-04

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

55

Table 5.4 DL-NLDM best trained NAND models Mean/Max Percentage Error rates versus different

LUT sizes

The above tables show that the single DL-NLDM outperforms the rising and falling edge 7x7

dual-table LUT average error accuracy and outperforms 100x100 dual-table LUT in maximum

percentage errors for both delay and transition time over the selected wide range of transition

time and effective capacitance values. Table 5.2 shows also that the retrieving time of DL-NLDM

is better than those of different NLDM-LUT sizes. The increased accuracy and better retrieving

time come at the expense of offline DL-NLDM training time and the increased size of disk,

however the DL-NLDM disk size is better than 100x100 LUT size.

5.3 Combined DL-NLDM ECSM Waveform Cell Delay Model
Combined DL NLDM-ECSM deep learning model is proposed to be used to retrieve both NLDM

delay/transition time values and the ECSM voltage waveform using a single model per cell type

per waveform output edge. The ECSM output waveforms are encoded using the corresponding

Autoencoder model encoder to produce the expected output waveform parameters. The

combined DL model is trained on input waveform transition time and effective load capacitance

values as input to produce the expected output waveform encoded parameters as well as the

output transition and delay times as shown in Fig. 5.2. Tables 5.5 to table 5.10 show model ID#8

results which gives the best training results for 1000-points based waveforms. These combined

models achieved less than 2.89% average percentage error for key waveform points, less than

NAND Falling Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max

Delay Time 0.61 1.28 23.44 0.26 1.01 23.44 0.24 1.36 28.6 0.49 0.79 7.84

Tr Time 1.32 2.11 38.10 0.65 1.79 38.1 0.46 2.33 50.8 0.85 1.21 7.51

MSE - - - 2.91E-05

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

NAND Rising Edge

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6
Delay Time 1.88 2.58 27.38 0.68 1.54 22.97 0.29 0.29 27.9 0.79 1.34 12.30

Tr Time 5.54 6.13 57.95 2.29 4.51 110.5 0.78 2.86 54.5 2.69 4.56 74.66

MSE - - - 8.66E-04

Disk size-KB 2 25.2 408 109

Retrieving
time (s) 0.18s 0.26s 1.28s 0.106s

56

1.94% average percentage error for delay time, and less than 6.64% average percentage error for

transition time compared with SPICE simulation. Combined NLDM using 150-points varying

time encoded waveforms gives better results than 1000-points sampled waveforms with model

ID#6 for the average and maximum waveform percentage errors as well as for the average

transition time as shown in tables 5.5 to table 5.10. All trained models have 218 KB size on disk.

Tables 5.5 to table 5.10 show that separate DL-NLDM with 1000-points and 150-points 2-params

encoded ECSM waveforms are compared against combined 1000-points and 150-points DL-

NLDM ECSM models.

FIGURE 5.2 Combined NLDM-ECSM cell delay model

Table 5.5 Combined DL NLDM-ECSM Falling-edge NOR Model
Cell Type NOR

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 1.27 2.16 27.98 1.08 1.57 10.21 0.7 1.3 34.7 0.39 0.66 8.7

0.5 VDD% 0.84 1.41 14.84 1.00 1.36 8.93 0.5 0.8 8.4 0.29 0.54 9.37

0.2 VDD% 1.32 1.97 21.48 1.02 1.39 8.19 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99911 0.99603 0.9995 0.99914

WF MSE 7.62E-05 2.36E-04 5.2E-05 5.10E-05

Delay 0.59 0.82 3.86 0.52 0.78 6.09 Mean: 0.48 Std: 0.51 Max: 3.56 0.53 0.91 15.46

Delay MSE 1.27E-05 9.53E-06 1.76E-05

Transition 1.42 1.81 9.11 1.33 1.78 9.61 Mean: 1.19 Std: 2.06 Max: 8.00 1.65 2.09 33.49

Transition MSE 8.34E-05 2.45E-05 1.76E-05

Same ECSM Autoencoders models are used for NOR, INV, NAND waveforms. Separate models

are better by ~2x for waveform values and by ~1.2x for delay and transition time. However,

combined models are still better than NLDM-LUT in delay and transition time maximum

percentage error. Combined rising-edge and falling-edge 150-points DL-NLDM outperformed

57

100x100 and lower sizes of NLDM-LUT tables in terms of the maximum percentage errors.

Table 5.6 Combined DL NLDM-ECSM Falling-edge INV Model

Cell Type INV

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 1.67 3.21 20.12 1.52 2.17 16.96 0.7 1.3 34.7 0.39 0.66 8.7

0.5 VDD% 1.06 2.42 38.82 1.29 1.85 15.17 0.5 0.8 8.4 0.29 0.54 9.37

0.2 VDD% 1.43 3.04 33.84 1.28 1.86 15.03 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99875 0.98943 0.9995 0.99914

WF MSE 9.35E-05 4.70E-04 5.2E-05 5.10E-05

Delay 1.18 1.67 11.98 0.84 1.29 9.18 Mean: 0.60 Std: 0.94 Max: 10.41 0.29 0.71 33.1

Delay MSE 2.94E-05 1.66E-05 3.48E-05

Transition 4.06 4.16 27.98 2.77 3.62 27.49 Mean: 1.91 Std: 3.0 Max: 22.67 0.62 3.76 59.8

Transition MSE 4.38E-04 1.04E-04 3.48E-05

Table 5.7 Combined DL NLDM-ECSM Falling-edge NAND Model
Cell Type NAND

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 1.65 3.68 28.65 1.06 1.43 9.26 0.7 1.3 34.7 0.39 0.66 8.7

0.5 VDD% 1.00 1.59 33.96 0.98 1.29 8.11 0.5 0.8 8.4 0.29 0.54 9.37

0.2 VDD% 1.19 1.87 32.37 0.98 1.31 8.26 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99909 0.99776 0.9995 0.99914

WF MSE 8.50E-05 1.56E-04 5.2E-05 5.10E-05

Delay 0.83 1.15 5.81 0.53 0.82 7.85 Mean: 0.49 Std: 0.79 Max: 7.84 0.24 1.28 28.6

Delay MSE 2.14E-05 4.29E-05 2.91E-05

Transition 1.01 1.41 9.85 1.02 1.37 8.44 Mean: 0.85 Std:1.21 Max: 7.51 0.46 2.11 50.8

Transition MSE 5.06E-05 2.39E-05 2.91E-05

Table 5.8 Combined DL NLDM-ECSM Rising-edge NOR Model

Cell Type NOR

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 2.04 4.19 45.96 0.99 1.37 9.16 0.7 1.4 30.3 0.38 0.7 11.97

0.5 VDD% 1.63 3.91 36.76 1.00 1.40 9.30 0.5 0.8 30.4 0.27 0.4 7.08
0.2 VDD% 2.03 4.31 43.71 1.02 1.42 9.68 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.99788 0.99108 0.9994 0. 998632
WF MSE 1.42E-04 3.50E-04 5.80E-05 7.27E-05

Delay 0.82 1.21 8.54 0.94 1.29 6.95 Mean: 0.71 Std: 0.93 Max: 5.95 0.91 1.21 16.54

Delay MSE 1.71E-05 1.47E-05 6.29E-05

Transition 3.79 5.81 45.47 3.32 5.1 47.39 Mean: 3.2 Std: 4.72 Max: 36.33 4.24 5.44 43.85

Transition MSE 1.88E-04 1.19E-04 6.29E-05

58

Table 5.9 Combined DL NLDM-ECSM Rising-edge INV Model
Cell Type INV

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 2.15 3.89 54.07 1.23 1.85 14.64 0.7 1.4 30.3 0.38 0.7 11.97

0.5 VDD% 1.57 2.82 48.44 1.23 1.84 13.89 0.5 0.8 30.4 0.27 0.4 7.08

0.2 VDD% 2.89 4.74 43.60 1.25 1.89 15.24 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.99783 0.98039 0.9994 0. 998632

WF MSE 1.80E-04 7.30E-04 5.80E-05 7.27E-05

Delay 1.94 2.79 36.93 2.0 2.34 25.35 Mean: 0.41 Std: 2.67 Max: 42.25 2.82 3.72 51.53

Delay MSE 5.25E-05 5.73E-05 2.35E-04

Transition 6.64 9.24 137.08 5.28 8.26 14.74 Mean: 4.86 Std: 4.86 Max: 51.80 9.25 12.13 128.6

Transition MSE 4.49E-04 4.00E-04 2.35E-04

Table 5.10 Combined DL NLDM-ECSM Rising-edge NAND Model

Cell Type NAND

Model Type Combined 1000 pts Combined 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 8 6 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 2.04 3.65 24.37 1.01 1.42 10.68 0.7 1.4 30.3 0.38 0.7 11.97
0.5 VDD% 1.63 2.35 19.75 1.00 1.39 10.35 0.5 0.8 30.4 0.27 0.4 7.08
0.2 VDD% 2.76 3.59 39.25 0.99 1.36 8.79 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.99805 0.98926 0.9994 0. 998632
WF MSE 1.70E-04 4.33E-04 5.80E-05 7.27E-05

Delay 1.67 2.21 15.85 1.51 1.94 22.74 Mean: 0.79 Std: 1.34 Max: 12.30 1.88 2.58 27.38

Delay MSE 4.68E-05 3.97E-05 8.66E-05

Transition 5.28 6.33 47.62 3.16 4.75 48.83 Mean: 2.69 Std: 4.56 Max: 74.66 5.54 6.13 57.95

Transition MSE 2.73E-04 1.68E-04 8.66E-05

After training, the corresponding waveform decoder is used to decode the output waveform

parameters, this decoded waveform is ready to be used in the ECSM model. Delay and transition

time can still be used to perform the NLDM if needed.

5.4 DL-WFDM: Deep Learning Waveform-Delay Model
Deep learning waveform delay model, DL-WFDM, is proposed instead NLDM LUT or DL-

NLDM models. In DL-WFDM, auto-encoded input/output waveforms parameters are proposed

to model cell delays instead of the cell delay and the transition time used in the NLDM. Figure 5

shows our proposed new cell delay training methodology. First, each input waveform is encoded

as well as its associated output waveform using the corresponding rising or falling edge

Autoencoder encoder model. Since sigmoid activation function is used for the middle

59

Autoencoder layer i.e., the encoder output layer, there is no need to normalize the input

waveform parameters or the expected output waveform parameters.

The encoded input waveform parameters and the associated effective capacitance values are

applied as input data to train the deep learning network. The deep-learning network is trained

on these encoded input waveform parameters in addition to the associated effective capacitance

input value to produce the expected encoded output waveform parameters.

FIGURE 5.3 Training DL Cell model with encoded input/output waveform parameter

Table 5.11 shows the proposed DL-WFDM model results. Using 1000-points sampled encoded

waveforms to train the new model resulted in a standard deviation of percentage errors for key

waveform points below 1.5% compared to SPICE simulation. These models also give below 5.75%

delay percentage error compared to SPICE simulation. These DL-WFDM models, based on 1000-

points waveforms, outperformed DL-WFDM that use 150-points sampled encoded waveforms

by factors greater than 2x. Tables 5.10 to table 5.16 show also a comparison of combined DL-

WFDM using 1000-pts encoded waveforms, DL-WFDM using 150-points encoded waveforms,

separate DL-NLDM and 1000-pts and 150-pts encoded waveforms and 7x7 NLDM-LUT. The

tables show that DL-WFDM using 1000-pts generally outperformed DL-WFDM in decoded

waveform fidelity, and in average percentage delay error. However, the separate DL-NLDM and

60

1000-pts remain better than all the DL models, and better than 7x7 NLDM-LUT in maximum

percentage error as mentioned before.

Table 5.11 DL-WFDM NOR Falling-edge Model

Cell Type NOR

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.49 0.75 6.57 0.94 1.26 10.40 0.7 1.3 34.7 0.39 0.66 8.7

0.5 VDD% 0.45 0.59 3.91 0.61 0.86 7.82 0.5 0.8 8.4 0.29 0.54 9.37

0.2 VDD% 0.51 0.67 3.79 0.58 0.85 8.79 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99962 0.99752 0.9995 0.99914

MSE 3.78E-5 1.43E-4 5.2E-05 5.10E-05

Delay 2.27 2.37 11.07 3.3 3.93 17.2 Mean: 0.48 Std: 0.51 Max: 3.56 0.53 0.91 15.46

Table 5.12 DL-WFDM INV Falling-edge Model

Cell Type INV

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.93 1.36 10.28 1.25 2.19 27.93 0.7 1.3 34.7 0.39 0.66 8.7

0.5 VDD% 0.64 1.04 8.79 0.99 1.91 26.71 0.5 0.8 8.4 0.29 0.54 9.37

0.2 VDD% 0.97 1.49 14.84 0.93 1.85 27.12 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99872 0.99235 0.9995 0.99914

MSE 1.08E-4 3.55E-4 5.2E-05 5.10E-05

Delay 4.22 5.75 32.3 5.95 8.28 59.43 Mean: 0.60 Std: 0.94 Max: 10.41 0.29 0.71 33.1

Table 5.13 DL-WFDM NAND Falling-edge Model
Cell Type NAND

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.89 1.18 12.89 0.82 1.21 12.35 0.7 1.3 34.7 0.39 0.66 8.7
0.5 VDD% 0.68 0.79 5.32 0.59 0.78 10.33 0.5 0.8 8.4 0.29 0.54 9.37
0.2 VDD% 1.00 1.12 7.87 0.51 0.72 6.93 0.7 1.1 34.9 0.49 0.85 12.0

Mean corrcoef 0.99885 0.99804 0.9995 0.99914
MSE 1.09E-4 1.39E-4 5.2E-05 5.10E-05

Delay 3.04 2.93 21.47 2.57 2.61 13.19 Mean: 0.49 Std: 0.79 Max: 7.84 0.24 1.28 28.6

61

Table 5.14 DL-WFDM NOR Rising-edge Model
Cell Type NOR

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.62 0.92 9.49 0.85 0.94 6.79 0.7 1.4 30.3 0.38 0.7 11.97

0.5 VDD% 0.37 0.48 5.74 0.95 1.12 7.00 0.5 0.8 30.4 0.27 0.4 7.08

0.2 VDD% 0.42 0.63 4.36 0.99 1.19 7.55 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.99936 0.99536 0.9994 0. 998632

MSE 6.39E-5 1.74E-4 5.80E-05 7.27E-05

Delay 2.83 2.88 14.53 6.02 4.92 25.59 Mean: 0.71 Std: 0.93 Max: 5.95 0.91 1.21 16.54

Table 5.15 DL-WFDM INV Rising-edge Model
Cell Type INV

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.97 1.42 13.01 0.94 1.95 33.58 0.7 1.4 30.3 0.38 0.7 11.97
0.5 VDD% 0.43 0.72 8.28 0.98 2.04 33.58 0.5 0.8 30.4 0.27 0.4 7.08
0.2 VDD% 0.48 0.71 7.88 1.02 2.14 33.62 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.9988 0.98901 0.9994 0. 998632
MSE 9.99E-5 3.6E-4 5.80E-05 7.27E-05

Delay 2.83 5.51 14.53 8.59 12.49 90.75 Mean: 1.41 Std: 2.67 Max: 42.25 2.82 3.72 51.53

Table 5.16 DL-WFDM NAND Rising-edge Model

Cell Type INV

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts

DL-NLDM &
1000pts Encoded

ECSM

DL-NLDM &
150pts Encoded

ECSM NLDM-LUT 7x7

Model ID 4 4 6 & 2 6 & 2

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max

0.8 VDD% 0.55 0.86 5.11 0.83 1.19 11.96 0.7 1.4 30.3 0.38 0.7 11.97
0.5 VDD% 0.36 0.52 4.48 0.87 1.16 12.30 0.5 0.8 30.4 0.27 0.4 7.08
0.2 VDD% 0.42 0.71 4.95 0.91 1.23 12.33 0.7 1.5 31.4 0.37 0.7 5.44

Mean corrcoef 0.99935 0.99387 0.9994 0. 998632
MSE 5.93E-5 2.3E-4 5.80E-05 7.27E-05

Delay 3.00 3.35 22.79 7.60 8.23 35.49 Mean: 1.79 Std: 1.34 Max: 12.30 1.88 2.58 27.38

5.5.1 DL-WFDM: Multi-stage analysis

DL-WFDM represents a radical change to the exiting NLDM-LUT, or the DL variants proposed

in this research, therefore it’s important to evaluate the accumulation of model errors in multi-

stages. Six stages of modeled cells, NOR INV, NAND, are stacked in a way that ensures signal

transition at each stage like Fig. 5.4 for INV cells, similar setup is created for NOR and NAND

wired to operate as inverters to switch signal at each stage. The first waveform is encoded using

62

the corresponding DL waveform Autoencoder to produce the input waveform parameters. The

input parameter is applied to the corresponding cell DL-WFDM with the input capacitance to

produce the output encoded waveform parameter. The output waveform parameters are then

decoded to calculate the delay between the input and output waveforms. The output waveform

parameters and the next stage input capacitance are applied to the second stage to produce the

second stage output waveform parameters. The process is repeated for all stages, and the average

percentage delay is calculated at each stage output.

FIGURE 5.4 Multi-stage INV cell setup

Table 5.17 shows the results of this multi-stage experiment for each cell for different rising and

falling starting edge. The results are not satisfactory compared with NLDM-LUT or DL-NLDM

expected results but are promising to be enhanced with more training and powerful model.

Table 5.17 DL-WFDM Multi-stage analysis results
 Multi-stage Analysis

Cell Type
NOR Avg%
Delay Error

INV Avg%
Delay Error

NAND Avg%
Delay Error

Stage \ Input
WF Edge Rising Falling Rising Falling Rising Falling

1 2.6 3.2 5.1 4.0 4.1 2.9

2 6.1 5.7 9.6 6.3 10.6 3.4

3 6.3 4.9 7.1 7.4 4.2 8.9

4 4.9 6.2 6.5 6.7 7.8 3.6

5 6.2 5.3 6.6 6.3 3.6 6.9

6 5.4 6.1 6.3 6.8 6.9 3.3

5.5 Conclusions

DL-NLDM retrieving time outperformed this of 7x7 NLDM-LUT by 1.69x, and outperformed

100x100 NLDM-LUT by 12x using the outlined Python implementation. In addition, DL-NLDM

outperforms 7x7 NLDM-LUT average percentage errors by ~1.24x better (delay time) and ~1.55x

(transition time) for falling-edge waveforms. DL-NLDM has ~5x better delay time transition time

average percentage errors for rising-edge waveforms. In addition, DL-NLDM outperforms

63

NLDM-LUT 100x100 maximum percentage errors by ~2.37x better delay time and ~2.x better

transition time for falling-edge and by ~3.19x better delay time and ~2.75x better transition time

for rising-edge waveforms. Compared to SPICE, DL-NLDM gives less than 0.60% average

percentage delay and 1.91% average transition time percentage error, and it gives less than 1.41%

average delay and 4.86% average percentage transition time error.

Combined DL-NLDM and ECSM encoded models showed consistent results for NOR, INV and

NAND models. However, separate DL-NLDM and ECSM encoded waveform models remained

better in average percentage errors by ~2x for waveform values and by ~2x for delay and

transition time. Combined models are still better than NLDM-LUT delay and transition time

maximum percentage error.

DL-WFDM shows promising results to propagate waveform parameters rather than

transition/delay time. Separate DL-NLDM and ECSM encoded models remained better in

average percentage errors by ~2x for waveform values and by another ~2x for delay and

transition time. DL-WFDM models are still better than NLDM-LUT maximum delay time

percentage error.

64

Chapter 6

S-RNN MOR: Structured Recurrent
Neural Network Model Order
Reduction for SISO, SIMO and
MIMO LTI Systems

6.1 Overview
Many research efforts are still dedicated to finding optimal model order reduction techniques as

in [Schilders’08]. MOR techniques fall into different categories; 1) Proper Orthogonal

Decomposition (POD) methods that use a small set of uncorrelated coefficients that represented

the whole system, 2) balanced truncation, BT, methods that reduce the state-space system while

preserving the observable states, 3) reduced basis methods that preserve the most important basis

of the original system and 4) ANN-based methods that can model the input/output relationship.

Baziyad at al. [Baziyad’19] obtained 4th order model using BT technique, and used J-RNN

[Jordan’97] model to estimate 4th order transfer function and used instrument variable, IV,

method to estimate a third transfer function model. They also created a MOR framework that

cascades the reduced-order systems obtained by the BT technique, and the J-RNN method to

reduce the errors and uncertainties in both models. Salah et al. [Salah’16] proposed a simple RNN

model structure model single input single output LTI system to a reduced 2nd order system, their

work was limited to 2nd order SISO LTI system reduction. Nguyen et al. [Nguyen’19] used deep

learning neural networks to extract Volterra kernels for I/O buffers from input/output data. In

this section, we propose RNN model structure, S-RNN, to model SISO LTI systems to a reduced

system of order N trained only on the original system step response. We also proposed an S-RNN

network structure to model SIMO systems of O outputs with a reduced model of order N. The

65

main advantage of this S-RNN model is that the weights of the trained S-RNN model directly

map to the discrete-time state-space parameters of the reduced dynamic system. Therefore, the

discrete-time state-space reduced model can be directly retrieved from the trained model

parameters. The training data are obtained by applying a step function at the input and discretize

the step response at the output of the original systems. The training process applies step input to

the input layer of the S-RNN and train the network to produce the expected step response at the

S-RNN network output. Though simulation time is spent to produce the step response of the

original white box system, the reduced-order system model can be used instead of the original

model in subsequent simulations for faster simulation time. In addition, the same methodology

can be used to model black box systems if their step responses are known or measured. The main

contributions of this research paper are:

1. Proposed and trained an RNN network structure that models Nth order LTI SISO systems.

2. Proposed and trained an RNN network structure to model Nth order LTI SIMO and MIMO

systems of any number of outputs O.

3. Modeled RLC interconnects with our proposed SIMO S-RNN model.

4. Reconstructed the continuous time state-space model from the trained S-RNN model.

6.2 Extracting Continuous-time Transfer Functions of RNN MOR Models
The data used to train the RNN is a discrete time data that is basically a sampled-time data of the

full system model. Therefore, training the RNN model on this data results in a discrete time state

space model of the original system. As mentioned before, the weights of the trained RNN

represent the discrete space parameters. The weights of the trained RNN can be easily extracted

to recover the discrete-time state-space model of the reduced system.

66

FIGURE 0-1 S-RNN Model Training and Continuous TF Extraction Flow

As shown in Fig. 6-1, we used Matlab function ss() to construct the reduced discrete-time state-

space model using the trained RNN model parameters and the sampling time used to discretize

the step response during training. Many mathematical algorithms exist to convert the discrete-

time state-space model to its equivalent continuous-time model. Algorithms like zero-order hold,

pole-zero match or Tustin algorithms [Beale’18] can be used to perform this task. We used Matlab

function d2c() and Tustin algorithm to reconstruct the continuous-time model. Once the

continuous-time state-space model is constructed, the continuous-time transfer function can be

obtained. The transfer function of the trained RNN MOR systems can be obtained for any SISO,

SIMO or MIMO systems of any order.

6.3 Model Order Reduction of SISO LTI Systems
6.3.1 Second order LTI SISO System

The general state space representation of second order LTI system that has a single input signal

U(t) and a single output signal Y(t) is:

[
𝑋1(𝑡)
𝑋2(𝑡)

] = [
𝑎11 𝑎21
𝑎12 𝑎22

] ∗ [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑏1
𝑏2

] ∗ [𝑢1 0] (1)

67

[𝑌(𝑡)] = [𝑐1 𝑐2] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] + [𝑑1 𝑑2] ∗ [
𝑈1(𝑡)

0
] (2)

If we consider the case where the output signal is only a function of system states with no direct

contribution of input signals, then the governing output signal equation is:

[𝑌(𝑡)] = [𝑐1 𝑐2] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] (3)

Fig. 6-2 shows our implementation of the RNN network structure that models a SISO LTI system

of a second order. The activation function is linear in all the layers. The delay of the feedback loop

used is one delay element as explained in Matlab neural network toolbox user’s guide.

FIGURE 0-2 Second Order Discrete SISO System RNN Implementation

The Feedback loop from the output of layers 1&2 perceptron play as delay elements, hence the

corresponding equations that govern the operation of this RNN are:

 [
𝑋1(𝑡)
𝑋2(𝑡)

] = [
𝑤11 𝑤21
𝑤12 𝑤22

] ∗ [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑢1
0

] ∗ [𝑈(𝑡) 0] (4)

[𝑌(𝑡)] = [𝑦1 𝑦2] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] (5)

Therefore, there is a direct mapping between this RNN implementation and the second order

SISO LTI system. If we can train this RNN topology to represent a certain system, then the RNN

weights can directly construct the discrete space second order model representing the trained

system. This RNN implementation can be extended to third order model by introducing a third

layer to the RNN connecting it to the other layers as shown in the following section.

68

6.3.2 Third order LTI SISO System

FIGURE 0-3 Third Order Discrete SISO System RNN Implementation

The state space representation of this third order model is:

 [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] = [
𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

] ∗ [

𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)
𝑋3(𝑡 + 1)

] + [
𝑢1
0
0

] ∗ [𝑈(𝑡) 0 0] (6)

[𝑌(𝑡)] = [𝑦1 𝑦2 𝑦3] ∗ [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] (7)

6.3.3 Nth Order LTI SISO System

We propose an RNN network structure in Fig. 6-4, that can model any SISO LTI system to a model

of order N. The state space representation of this LTI system of order N and X of Nx1 state vector,

U(t) single input and Y(t) single output is shown is equation (8) and (9). Thus, to model Nth order

LTI system we need N+1 number of layers.

We used Matlab 2018a neural network toolbox 7 [Beale’18] on a Core i7, 8 GB physical memory

to model our RNN implementation. Bayesian Regularization (BR) as the training algorithm, and

the mean-squared-error as the loss function as well as maximum of 5000 epochs for all

experiments. We were able to use this experiment setup to construct and train S-RNN model

69

order as large as 15. Convergence of S-RNN model order greater than 15 remains a challenging

task that needs further research.

FIGURE 0-4 N Order Discrete SISO System RNN Implementation

The state space representation of this RNN implementation of the Nth order LTI system is:

[

𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]

=

[

𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮ ⋮ ⋮

𝑤𝑁3 … 𝑤𝑁𝑁]

∗

[

𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]

+

[

𝑢1
0
0
⋮
0]

 (8) ∗ [𝑈(𝑡) 0 0 ⋯ 0]

[𝑌(𝑡)] = [𝑦1 𝑦2 𝑦3 … 𝑦𝑁] ∗

[

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

⋮
𝑋𝑁(𝑡)]

 (9)

6.4 SISO LTI RNN Modeling Experiments
6.4.1 Experiment 1

We used the same transfer function G in equation (10), used by Baziyad et al. [Baziyad’19] to be

reduced to a 4th order system and compared the performance of our S-RNN MOR technique with

the results of the MOR techniques used in that research. In addition to bode magnitude and phase

70

MSE metrics, we added the step response MSE as another metric for the comparison.

𝐺 − 𝑂𝑅𝐼𝐺 =
𝑠4 − 20𝑠3 + 180𝑠2 − 840𝑠 + 1680

𝑠6 + 22.5𝑠5 + 231𝑠4 + 1310𝑠3 + 3960𝑠2 + 5040𝑠 + 1680
 (10)

Training of our 4th order S-RNN converged at MSE of 8.76e-6 in 25 seconds, resulting in the

transfer function in equation (11).

𝐺 − 𝑆𝑅𝑁𝑁, 4 =
0.002088𝑠4−0.2805𝑠3+2.293𝑠2−9.731𝑠+16.71

𝑠4+10.51𝑠3+36.07𝑠2+49.23𝑠+16.7
 (11)

FIGURE 0-5 Step response of G-Orig, 4th Order S-RNN and Other Model Order Reduction Techniques

Fig. 6-5 shows the step response of G-Orig, 4th Order S-RNN and the other model order reduction

techniques used by Baziyad et al. [Baziyad’19]. Table 6.1 shows the comparison of different

approaches with our S-RNN 4th order model. S-RNN model gives better results than the

proposed 4th order model BT-JRNN model proposed by Baziyad et al. In addition, S-RNN model

outperformed IV and JRNN 4th order models used to evaluate the BT-JRNN performance.

Training S-RNN on a 2nd order model converged in 19 seconds at 2.19e-4 MSE with transfer

function shown in equation (12). The 2nd order model still gives better magnitude and step

response results than IV, JRNN and BT-JRNN models, but worse phase MSE results than all of

71

them. Yang et al. model [Yang’96] remained the best in terms of magnitude MSE, but our

proposed S-RNN 2nd and 4th order models are better when it comes to phase MSE.

Table 6.1 MSE Comparison of S-RNN Performance with Other MOR Techniques

MOR Technique
MSE Comparison

Magnitude Phase Step

IV [Baziyad’19] 0.0171 7.6253 0.414

IV-JRNN [Baziyad’19] 0.0182 7.7917 0.419

Yang et al. [Yang’96] 9.17e-7 95.59 NA

BT-JRNN [Baziyad’19] 0.0031 7.6862 0.414
S-RNN – 4th order 5.5917e-5 6.4191 8.6105e-6

S-RNN – 2nd order 2.3672e-4 14.2582 1.1777e-4

𝐺 − 𝑆𝑅𝑁𝑁, 2 =
0.002031𝑠2 − 0.2589𝑠 + 0.4322

𝑠2 + 1.234𝑠 + 0.4371
 (12)

6.4.2 Experiment 2: Modeling Eady.mat Benchmark

We also tested our S-RNN proposed MOR technique with selected Matlab benchmark systems

created by Chahlaoui et al. [Chahlaoui’02]. We used Eady benchmark that is defined by dense

matrices with N=598 states. This benchmark models the atmospheric storm track.

6.4.2.1 S-RNN MOR of Order 5

We attempted to model this benchmark with order 5 reduced model. The RNN converged at MSE

of 9.0e-5 resulting in the reduced TF given in equation (13). Fig. 6-6 and Fig. 6-7 show the step

response and pole-zero diagrams of the full and 5th order reduced order systems respectively.

FIGURE 0-6 Step response of original “Eady” system and the 5th order MOR

72

FIGURE 0-7 Pole-zero map of original and 5th order MOR

𝐺 − 𝑆𝑅𝑁𝑁 =

0.02242𝑠5 − 0.5401𝑒𝑠4

+24.66𝑠3 + 582.6𝑠2 + 487.2𝑠 + 213.6
𝑠5 + 65.1𝑠4

+1109𝑠3 + 1653𝑠2 + 561.9𝑠 + 128.6

 (13)

6.4.2.2 S-RNN MOR of Order 10

However, increasing the order of the reduced model resulted in better results. The new S-RNN

model converged with 9.04e-6 MSE in 1000 iterations and 27 sec resulting in the reduced system

TF in equation (14). Table 6.2 compares the step response, magnitude, and phase MSE of the 5th

and 10th S-RNN models. Fig. 6-8 shows the step response of the full and 10th order reduced order

systems, and Fig. 6-9 shows the pole-zero plot of the original and the reduced model.

FIGURE 0-8 Step response of original Eady system and the 10th order

73

Table 6.2 MSE Comparison of 5th and 10th Order S-RNN Models

S-RNN Model Order

5
th

 Order 10
th

Order

Magnitude 3.25E-4 4.87E-4

Phase 34.75 23.64

Step 0.037 2.147E-4

FIGURE 0-9 Pole-zero plot of original and reduced 10th order system

𝐺 − 𝑆𝑅𝑁𝑁 =

−0.01405𝑠10 − 2.771𝑠9 − 212.5𝑠8 − 6976𝑠7 + 656.8𝑠6 + 7.569𝑒6𝑠5 + 2.483𝑒8𝑠4

+3.492𝑒9𝑠3 + 1.905𝑒10𝑒10𝑠2 + 3.061𝑒8𝑠 + 5.514𝑒9
𝑠10 + 230.4𝑠9 + 2.275𝑒4𝑠8 + 1.249𝑒6𝑠7 + 4.118𝑒7𝑠6 + 8.158𝑒8𝑠5 + 9.02𝑒9𝑠4

+4.353𝑒10𝑠3 + 1.045𝑒10𝑠2 + 1.093𝑒10𝑠 + 2.872𝑒9

 (14)

6.4.3 Experiment 3: Modeling pde.mat Benchmark

6.4.3.1 S-RNN MOR of Order 3

The second benchmark we used is pde.mat with 84 number of states. Trying MOR to a system of

order 3, the RNN training converged with 2.11e-7 MSE error rate.

74

FIGURE 0-10 Step Response of the reduced 3rd order model

FIGURE 0-11 Pole-zero plot of the 3rd order model

𝐺 − 𝑆𝑅𝑁𝑁 = 0.1844𝑠3 − 5530𝑠2 + 3.947𝑒07𝑠 + 3.037𝑒10
𝑠3 + 1.642𝑒04𝑠2 + 1.585𝑒07𝑠 + 2.801𝑒09

 (15)

6.5 Model Order Reduction of SIMO LTI Systems
SIMO systems are of particular importance in modeling interconnects between an output pin of

a certain gate to the driven input pins of the subsequent gates. We extended the RNN state space

modeling technique to model SIMO LTI systems of a single input and any number of O outputs

and Nth order. Fig. 6-12 shows our proposed structured RNN network that achieves this SIMO

model.

75

FIGURE 0-12 Nth Order, Single Input, O Outputs Discrete MIMO System Implementation

Equations 16 and 17 are the state space represented by this S-RNN given that:

• N is the order of the system.

• Single input signal.

• is the number of output signals.

[

𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]

=

[

𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮ ⋮ ⋮

𝑤𝑁3 … 𝑤𝑁𝑁]

∗

[

𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]

+

[

𝑢11
𝑢12
𝑢13
⋮

𝑢1𝑁]

∗ 𝑈1(𝑡) (16)

[

𝑌1(𝑡)
𝑌2(𝑡)

⋮
𝑌𝑂(𝑡)

] = [

𝑦11
𝑦21
⋮

𝑦𝑂1

𝑦12
𝑦22
⋮

𝑦𝑂2

𝑦13
𝑦23
⋮

𝑦𝑂3

…
…
⋮
…

𝑦1𝑁
𝑦2𝑁

⋮
𝑦𝑂𝑁

] ∗

[

𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]

 (17)

6.6 Experiment: Modeling RLC Interconnect SIMO LTI RNN
We selected arbitrary sub-circuit RLC interconnect as in the Fig. 6-13. The resistors value is

1.0e+03Ω, capacitances value is 1.76e-15F, and inductances value is 0.245e-6H. We connected 12

such sub-circuits together denoted as TRn in Fig. 6-14. The whole RLC interconnect represented

108 states. We then simulated this interconnect using a Spice simulator with a step response input

76

at v(1) node. The number of output pins is 4 at selected points, pins v(3), v(8), v(12) and v(14), in

the RLC interconnect.

FIGURE 0-13 RLC Spice sub-circuit

FIGURE 0-14 RLC Transmission Line, v(3), v(8), v(12), v(14)

Single input multiple output RLC interconnect is a common connectivity structure in VLSI

circuits. The single input v(1) represents the output of an active element. The multiple output

pins v(3), v(8), v(12) and v(14) represent the input pins of the next-stage active elements fed by

v(1). The RLC passive elements represent the wires connecting the active elements. We sampled

the output waveforms at 2ps. Our 1x4 RNN SIMO network is trained on those multiple outputs

using different RNN state space MOR order. RNN with order 2 converged with MSE of 5.1e-3

giving the following Fig. 6-15 and Fig. 6-16 results.

FIGURE 0-15 v(3), v(8) Spice and 2nd order SIMO MOR response

77

FIGURE 0-16 v(12), v(14) Spice and 2nd order SIMO MOR response

Training S-RNN of 5th order gave better results of MSE 9.1e-4 and the following Fig. 6-17 and

Fig. 6-18 step response results.

FIGURE 0-27 v(3), v(8) spice and 5th order SIMO MOR response

FIGURE 0-3 v(12), v(14) spice and 5th order SIMO MOR response

Modeling the RLC interconnect network using a single SIMO RNN network produces one

network that models the whole system with all its outputs in one single training operation.

However, the RNN weights are optimized to model all the outputs given a step input. Modeling

each input/output as a single RNN model is expected to give better results, however it takes

78

training as many RNN networks as the number of outputs.

Modeling each input/output as a SISO 5th order Model gave better MSE results as in Fig. 6-19

and Fig. 6-20. Modeling output V(3) MSE is 2.0e-4, output V(8) MSE is 4.0e-4, output V(12) MSE

is 3.0e-4, output V(14) MSE is 4.0e-4. Table 6.3 shows the MSE comparison of the three modeling

experiments: 2nd order, 5th order SIMO and 5th order SISO models of the four output responses.

FIGURE 0-19 v(3), v(8) spice and 5th order SISO MOR response

FIGURE 0-20 v(12), v(14) spice and 5th order SISO MOR response

Table 6.3 MSE Comparison of 3rd and 5th Order SIMO and 5th Order SISO S-RNN Models

S-RNN Model Order

Input V(3) V(8)

 SIMO 2nd
Order

SIMO 5th
Order

SISO 5th
Order

SIMO 2nd
Order

SIMO 5th
Order

SISO 5th
Order

Step Response MSE 4.4E-3 5.53E-4 2.29E-4 6.9E-3 1.3E-3 9.55E-4

Input V(12) V(14)

SIMO 2nd
Order

SIMO 5th
Order

SISO 5th
Order

SIMO 2nd
Order

SIMO 5th
Order

SISO 5th
Order

Step Response MSE 3.0E-3 3.97E-4 2.03E-4 5.8E-3 1.1E-3 3.71E-4

79

6.7 Model Order Reduction of MIMO LTI Systems
6.7.1 Second order 2x2 LTI MIMO system

We extended the S-RNN state space modeling technique to model MIMO LTI systems of 2 inputs

and 2 outputs second order system as illustrated in Fig. 6-21. The 2 inputs, 2 outputs second order

LTI system is:

[
𝑋1(𝑡)
𝑋2(𝑡)

] = [
𝑎11 𝑎21
𝑎12 𝑎22

] ∗ [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑏11
𝑏21

𝑏12
𝑏22

] ∗ [
𝑈1(𝑡)
𝑈2(𝑡)

] (18)

[
𝑌1(𝑡)
𝑌2(𝑡)

] = [
𝑐11
𝑐21

𝑐12
𝑐22

] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] + [
𝑑11
𝑑21

𝑑12
𝑑22

] ∗ [
𝑈1(𝑡)
𝑈2(𝑡)

] (19)

Extending the idea of using RNN to represent 2 inputs, 2 outputs second order LTI system as

follows:

FIGURE 0-21 Second Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation

The state space representation of such system is:

 [
𝑋1(𝑡)
𝑋2(𝑡)

] = [
𝑤11 𝑤21
𝑤12 𝑤22

] ∗ [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑢11 𝑢21
𝑢21 𝑢22

] ∗ [
𝑈1(𝑡)
𝑈2(𝑡)

] (20)

[
𝑌1(𝑡)
𝑌2(𝑡)

] = [
𝑦11 𝑦12
𝑦21 𝑦22

] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] (21)

80

6.7.2 Third order 2x2 LTI MIMO Systems

This 2x2x2 RNN state space modeling technique is generalized to model MIMO LTI systems of 3

inputs and 3 outputs, and 3 order as shown in Fig. 6-22.

FIGURE 0-42 Third Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation

The state space represented by this RNN is:

 [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] = [
𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

] ∗ [

𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)
𝑋3(𝑡 + 1)

] + [
𝑢11 𝑢21
𝑢12 𝑢22
𝑢13 𝑢23

] ∗ [
𝑈1(𝑡)
𝑈2(𝑡)

] (22)

[
𝑌1(𝑡)
𝑌2(𝑡)

] = [
𝑦11
𝑦21

𝑦12
𝑦22

𝑦13
𝑦23

] ∗ [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] (23)

6.7.3 Nth Order MxO LTI MIMO Systems

We further generalized this 3x3x3 RNN state space modeling technique to model MIMO LTI

systems of any number M inputs and any number of O outputs and any system order N as

illustrated in Fig. 6-23.

81

FIGURE 0-53 Nth Order, M Inputs, O Outputs Discrete MIMO System Implementation

Equations 24 and 25 are the state space represented by this S-RNN where:

• N is the order of the system.

• M is the number of input signals.

• is the number of output signals.

[

𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]

=

[

𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮ ⋮ ⋮

𝑤𝑁3 … 𝑤𝑁𝑁]

∗

[

𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]

+

[

𝑢11 𝑢21 … 𝑢𝑀1
𝑢12 𝑢22 … 𝑢𝑀2
𝑢13 𝑢23 … 𝑢𝑀3

⋮ ⋮ ⋮ ⋮
𝑢1𝑁 𝑢2𝑁 … 𝑈𝑀𝑁]

∗

[

𝑈1(𝑡)
𝑈2(𝑡)
𝑈3(𝑡)

⋮
𝑈𝑀(𝑡)]

(24)

[

𝑌1(𝑡)
𝑌2(𝑡)

⋮
𝑌𝑂(𝑡)

] = [

𝑦11
𝑦21
⋮

𝑦𝑂1

𝑦12
𝑦22
⋮

𝑦𝑂2

𝑦13
𝑦23
⋮

𝑦𝑂3

…
…
⋮
…

𝑦1𝑁
𝑦2𝑁

⋮
𝑦𝑂𝑁

] ∗

[

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

⋮
𝑋𝑁(𝑡)]

 (25)

82

6.7.4 Training of N*M*O MIMO S-RNN Models

 The first attempt to train our proposed S-RNN MIMO followed the same approach we did to

tarin SISO and SIMO S-RNN models, i.e., applying step response to the original system and use

this step response to train the S-RNN model. The input data of the MIMO system is prepared by

getting the step response at all outputs when a step function is applied on a single input having

all other inputs wired to ground. This input is then wired to ground, and the step function is then

applied to the next input to get the step response at all outputs for this input. If we apply the step

function to different inputs of the S-RNN model in a sequence, the trained S-RNN will produce

an output that is only correct if the input step function is applied in the same order used in

training. To show this S-RNN MIMO training challenge, consider this example of the 7th order

two-area power system described by the following state space matrices.

A = [-0.05 6 0 -6 0 0 0;

 0 -3.33 0 0 0 3.33 0;

 0 0 -0.05 6 6 0 0;

 0.45 0 -.545 0 0 0 0;

 0 0 0 0 -3.33 0 3.33;

 -5.21 0 0 0 0 -12.5 0;

 0 0 -0.521 0 0 0 -12.5];

B = [0 0;

 0 0;

 0 0;

 0 0;

 0 0;

 12.5 0;

 0 12.5];

C = [0.178 0 0 1 0 0 0;

 0 0 0 -1 -0.6 0 0];

D = [0 0

0 0];

Training the S-RNN MIMO model on the step function response of the first input followed by the

step function response of the second input converged with 0.00116 MSE with 4th. order S-RNN

model. Applying the step function on the generated MIMO transfer function resulted in the step

response in Fig. 6-24 which clearly shows that there is a big deviation between the original and

83

the reduced systems. This deviation didn’t improve by increasing the S-RNN model order.

FIGURE 0-64 Step response of the original and fourth order reduced MIMO System

Training the proposed MIMO S-RNN requires a special input data preparation to avoid the

problems of sequencing step responses in the training process. Instead of getting the step

response of the original MIMO system, we get the MIMO system response to the sequence of

input signals shown in Fig. 6-25 using Matlab lsim() function.

FIGURE 0-75 Sequence input to generate training MIMO data

This sequence guarantees that we train the S-RNN MIMO model on the response of individual

input step functions while ensuring that the system is returned gracefully to its idle state during

the period of which all input signals are set to ground. The input sequence also generates the

MIMO response when all inputs are set to the step function. To make sure the input sequence is

84

not a factor of training the S-RNN model, the sequence is repeated with different combinations

of which input is set to the step function and which inputs are set to ground.

6.8 S-RNN MIMO Model Order Reduction Experiments
6.8.1 Experiment 1: Jet Transport Aircraft example

To test our proposed S-RNN MIMO model order reduction, we used the Matlab MIMO State-

Space Model of Jet Transport Aircraft example. The Jet example is 2x2 MIMO system. The inputs

are the rudder and aileron, and the outputs are the yaw rate and the bank angle. There are four

states defined for this model: beta, yaw, roll and phi.

A = [-0.0558 -0.9968 0.0802 0.0415

 0.5980 -0.1150 -0.0318 0

 -3.0500 0.3880 -0.4650 0

 0 0.0805 1.0000 0];

B = [0.0073 0

 -0.4750 0.0077

 0.1530 0.1430

 0 0];

C = [0 1 0 0

 0 0 0 1];

D = [0 0

 0 0];

Matlab is used to generate the step response of this 2x2 MIMO system. Using the input sequence

proposed in Fig. 6-25, we get the system response in Fig. 6-26 that will be used in training the S-

RNN.

FIGURE 0-86 Response of the Original System to be Used in Training

85

6.8.1.1 Second Order S-RNN MIMO

Starting with RNN MIMO network of order 2, the training phase converged after 2553 iterations

in 49 seconds with MSE step response of 0.00147. The step response of the full system is plotted

against the reduced order model according to the following Fig. 6-27.

FIGURE 0-27 Step response of the original and second order reduced MIMO System

FIGURE 0-98 Pole-zero of the original and second order reduced MIMO System

Using the same technique used in our proposed SISO model, we obtained 4 different continuous

time second order transfer functions. Those transfer functions describe the relationship between

each output and each input of the MIMO system.

86

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.1436𝑠2 + 0.1202𝑠 − 0.0364
𝑠2 + 0.2193𝑠 + 0.001542

 (26)

𝐺 − 𝐼1𝑡𝑜𝑂2 = −5.66𝑠2 + 3.611𝑠 − 0.576
𝑠2 + 0.2193𝑠 + 0.001542

 (27)

𝐺 − 𝐼2𝑡𝑜𝑂1 = 0.01166𝑠2 − 0.009704𝑠 + 0.001902
𝑠2 + 0.2193𝑠 + 0.001542

 (28)

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.4585𝑠2 − 0.2915𝑠 + 0.04634
𝑠2 + 0.2193𝑠 + 0.001542

 (29)

6.8.1.2 Third Order S-RNN MIMO

To obtain a higher order MIMO models of potential complex systems, we used the same data to

train a 3rd order S-RNN MIMO model order reduction network. The training phase converged

after 5000 iterations, in 2:39 mins, with better MSE step response of 1.07E-4. The step response of

the trained 3rd order S-RNN MIMO network is plotted against the full system response in the

following figure.

FIGURE 0-109 Step response of the original and third order reduced MIMO System

87

FIGURE 0-30 Pole-zero of the original and third order reduced MIMO System

The Matlab script we developed to extract the continuous-time transfer function generated the

required 4 continuous time transfer functions of order 3. Table 6.4 shows MSE comparison of 2nd

and 3rd order MIMO S-RNN models. The table shows that the 3rd order model didn’t improve the

accuracy of the reduced system.

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.3032𝑠3 + 0.1716𝑠2 − 0.02053𝑠 − 0.001076
𝑠3 + 0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05 (30)

𝐺 − 𝐼1𝑡𝑜𝑂2 = −6.381𝑠3 + 3.744𝑠2 − 04628𝑠 − 0.02623
𝑠3 + 0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05 (31)

𝐺 − 𝐼2𝑡𝑜𝑂1 = 0.02664𝑠3 − 0.0143𝑠2 + 0.0015853𝑠 + 8.613𝑒−05

𝑠3 + 0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05 (32)

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.543𝑠3 − 0.3105𝑠2 + 0.03723𝑠 + 0.002111
𝑠3 + 0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05 (33)

Table 6.4 MSE Comparison of MIMO 2nd and 3rd Order S-RNN

Input 1-

Output 1

S-RNN Model Order Input 1-

Output 2
S-RNN Model Order

2nd Order 3rd Order 2nd Order 3rd Order

Magnitude 3.13 2.97 Magnitude 2.407 2.28

Phase 0.056 0.057 Phase 28.71 28.75
Step 0.1030 0.1229 Step 1.09E-4 6.3E-4

Input 2-

Output 1

S-RNN Model Order Input 2-

Output 2

S-RNN Model Order

2nd Order 3rd Order 2nd Order 3rd Order
Magnitude 38.25 38.29 Magnitude 10.51 10.51

Phase 3.37E-4 4.55E-4 Phase 0.1901 0.1907

Step 30.64 39.04 Step 0.1983 0.2804

88

6.8.2 Experiment 2: Two-area power system example

6.8.2.1 Third Order S-RNN MIMO

The second selected example is the same system used to illustrate the training challenges

presented in section 6.7.4. Using the input sequence proposed in Fig. 6-25, we get the system

response in Fig. 6-31 that will be used in training the S-RNN.

FIGURE 0-31 Response of the Original System to be Used in Training

The trained model gave better results at MSE step response of 1.36E-3. This model converged in

7:46 mins, at 2327 iterations.

89

FIGURE 0-32 Step response of the original and 3rd order reduced MIMO System

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.003258𝑠3 + 0.8751𝑠2 + 4.215𝑠 + 4.618
𝑠3 + 4.185𝑠2 + 8.369𝑠 + 9.858

 (34)

𝐺 − 𝐼1𝑡𝑜𝑂2 = −0.003413𝑠3 + 0.9459𝑠2 − 3.524𝑠 − 0.3328
𝑠3 + 4.185𝑠2 + 8.369𝑠 + 9.858

 (35)

𝐺 − 𝐼2𝑡𝑜𝑂1 = −0.001326𝑠3 + 0.3673𝑠2 − 1.286𝑠 − 5.075
𝑠3 + 4.185𝑠2 + 8.369𝑠 + 9.858

 (36)

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.008092𝑠3 − 2.206𝑠2 − 1.516𝑠 + 3.473
𝑠3 + 4.185𝑠2 + 8.369𝑠 + 9.858

 (37)

6.8.2.2 4th Order S-RNN MIMO

Modeling the same using a 4th order S-RNN gave better results with MSE step response of 4.17E-

4 as table 6.5 clearly shows. This model converged in 9:54 mins, at 2031 iterations.

90

FIGURE 0-33 Step response of the original and 4th order reduced MIMO System

FIGURE 0-34 Pole-zero plot of the original and 3rd order reduced MIMO System

𝐺 − 𝐼1𝑡𝑜𝑂1 = 0.002522𝑠4 − 0.7023𝑠3 + 3.492𝑠2 + 9.647𝑠 + 16.5
𝑠4+ 3.804𝑠3 + 16.82𝑠2 + 24.2𝑠 + 35.48

 (38)

𝐺 − 𝐼1𝑡𝑜𝑂2 = −0.006871𝑠4 + 0.186𝑠3 + 0.5341𝑠2 − 8.929𝑠 − 1.663
𝑠4+ 3.804𝑠3 + 16.82𝑠2 + 24.2𝑠 + 35.48

 (39)

𝐺 − 𝐼2𝑡𝑜𝑂1 = −0.003076𝑠4 + 0.8474𝑠3 − 1.806𝑠2 − 1.283𝑠 − 18.27
𝑠4+ 3.804𝑠3 + 16.82𝑠2 + 24.2𝑠 + 35.48

 (40)

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.006893𝑠4 − 1.875𝑠3 − 2.433𝑠2 − 10.22𝑠 + 12.85
𝑠4+ 3.804𝑠3 + 16.82𝑠2 + 24.2𝑠 + 35.48

 (41)

91

Table 6.5 MSE Comparison of S-RNN of 3rd and 4th Models Performance

Input 1-

Output 1

S-RNN Model Order Input 1-

Output 2
S-RNN Model Order

3rd Order 4th Order 3rd Order 4th Order

Magnitude 0.0327 0.0074 Magnitude 0.0171 0.0035

Phase 12.67 12.41 Phase 5.71 5.6916
Step 0.0025 6.2089e-04 Step 0.0027 4.5344e-04

Input 2-

Output 1

S-RNN Model Order Input 2-

Output 2

S-RNN Model Order

3rd Order 4th Order 3rd Order 4th Order
Magnitude 0.0080 0.0085 Magnitude 0.0065 0.0028

Phase 4.58 4.577 Phase 4.922 4.9267
Step 0.0016 6.9822e-04 Step 5.8632e-04 4.9368e-04

6.8.3 Modeling MIMO LTI system using multiple 4th order S-RNN SISO Models

The SISO S-RNN MOR is used to generate reduced order models for the same MIMO system

used in experiment 2 to compare the SISO performance with the MIMO S-RNN model order

reduction. This approach requires M*O number of S-RNN models and training processes. Table

6.6 shows that while the 4 SISO S-RNN models gave better MSE step response, MIMO S-RNN

model gives better magnitude and phase MSE.

6.8.3.1 Input 1 to Output 1 S-RNN SISO Model

Training a SISO 4th order S-RNN on the step response of input 1 to output 1 gave a MSE step

response of 5.288e-04.

FIGURE 0-35 Step response of the original and fourth order input 1 to output 1 reduced MIMO System

92

𝐺 − 𝐼1/𝑂1 = −0.0147𝑠4 + 0.5256𝑠3 + 5.219𝑠2 − 326.5𝑠 + 2439
𝑠4 + 50.4𝑠3 + 673𝑠2 + 1157𝑠 + 5117

 (42)

6.8.3.2 Input 1 to Output 2 S-RNN SISO Model

Training a SISO 4th order S-RNN on the step response of input 1 to output 2 gave a MSE step

response of 4.4828e-05.

FIGURE 0-36 Step response of the original and fourth order input 1 to output 2 reduced MIMO System

𝐺 − 𝐼1/𝑂2 = 0.003778𝑠4 − 0.1421𝑠3 + 1.573𝑠2 − 8.273𝑠 − 1.345
𝑠4 + 2.842𝑠3 + 14.68𝑠2 + 19.96𝑠 + 30.27

 (43)

6.8.3.3 Input 2 to Output 1 S-RNN SISO Model

Training a SISO 4th order S-RNN on the step response of input 2 to output 1 gave a MSE step

response of 5.856e-04.

93

FIGURE 0-37 Step response of the original and fourth order input 2 to output 1 reduced MIMO System

𝐺 − 𝐼2/𝑂1 = −0.001894𝑠4 + 0.1314𝑠3 − 0.3114𝑠2 − 3.446𝑠 − 12.67
𝑠4 + 3.12𝑠3 + 14.58𝑠2 + 24.34𝑠 + 23.98

 (44)

6.8.3.4 Input 2 to Output 2 S-RNN SISO Model

Training a SISO 4th order S-RNN on the step response of input 2 to output 2 gave a MSE step

response of 4.5314e-04.

FIGURE 0-38 Step response of the original and fourth order input 2 to output 2 reduced MIMO System

𝐺 − 𝐼2/𝑂2 = −0.001429𝑠4 − 0.05972𝑠3 + 157.6𝑠2 − 9470𝑠 + 9478
𝑠4 + 344.9𝑠3 + 5199𝑠2 + 1.121𝑒04𝑠 + 2.59𝑒04

 (45)

94

Table 6.6 MSE Comparison of S-RNN of 3rd and 4th Models

Input 1-

Output 1

S-RNN Model Order Input 1-

Output 2
S-RNN Model Order

4th O SISO 4th O MIMO 4th O SISO 4th O MIMO

Magnitude 0.002 0.0074 Magnitude 0.0228 0.0035

Phase 123.05 12.41 Phase 43.06 5.69
Step 5.288e-04 6.2089e-04 Step 4.4828e-05 4.5344e-04

Input 2-

Output 1

S-RNN Model Order Input 2-

Output 2

S-RNN Model Order

4th O SISO 4th O MIMO 4th O SISO 4th O MIMO
Magnitude 0.0232 0.0085 Magnitude 0.0025 0.0028

Phase 26.61 4.577 Phase 35.58 4.926
Step 5.856e-04 6.9822e-04 Step 4.5314e-04 4.9368e-04

6.9 S-RNN Model Order Reduction Applications
We identified two main applications for our proposed S-RNN model order reduction technique:

• Modeling a black-box LTI system. Using the step response of the black-box system, the

RNN can produce state space discrete model that models the system to a certain

percentage error. If the percentage error is acceptable, then the state space model can be

used to generate the corresponding continuous time transfer function of the black box

system.

• Producing less computationally intensive model of a white-box complex LTI system.

Using the step response of the complex system, the RNN can remodel the full system to

lower order discrete time state space model. The corresponding continuous time state

space models the full system according to a calculated percentage error.

95

FIGURE 0-39 Using RNN model order reduction in black box identification

The proposed S-RNN model technique can be used in an algorithm to find the S-RNN model

order that gives a desired mean-squared-error between the original and the reduced system

response. The flow chart in Fig. 6-39 summarizes the proposed algorithm:

• The algorithm is fed with the step response of either the black box or the known complex

LTI system. A desired percentage error is given as an input to the algorithm.

• The algorithm starts with N=2 as an initial value. The RNN of N=2 is trained, and the

percentage error is calculated.

• If the percentage error is less than or equal the desired error, then the weights of the RNN

are extracted. The weights directly map to the discrete time state space model matrices as

it was explained in the previous sections.

96

• The discrete time state space model is converted to the continuous time and the transfer

function is constructed from this model.

If the RNN percentage error is greater than the desired error, then the current model order is not

enough to generate an acceptable reduced order model. The order N is incremented and the RNN

is re-trained. The process continues until we reach an acceptable reduced model of order N, or

we exceed the maximum allowed order given by clients of the algorithm.

97

Chapter 7

Conclusion and Future Work

In this research, DL-NLDM model is proposed, designed, and trained on input and output

waveform delay and transition time in addition to capacitive load values. Two cell-delay models

are trained on rising and falling edge waveform transitions. The proposed DL-NLDM generally

outperformed the standard 7x7 NLDM-LUT in mean, standard deviation and maximum

percentage errors compared to SPICE simulation. In addition, the proposed DL-NLDM

outperformed the non-standard 100x100 LUT in maximum percentage errors. Waveform

compression allows storing more complex waveforms data to raise the accuracy of the current

source models without increasing the technology file size or degrading the performance. In this

research, deep learning non-linear Autoencoders are used to compress voltage-time waveforms

used in effective current source model. The performance of several deep learning Autoencoder

models at different number of encoding parameters is evaluated against the SVD compression

technique. Compression ratio of 104 at below ~1.5% percentage error standard deviation

compared to SPICE simulation is achieved after encoding 1000-points sampled voltage-time

waveforms. These compression ratios are 1.67x better than the nearest rank SVD results and ~39

to ~45x better than gzip and bz2 compression techniques. Better compression ratios are also

achieved at less accuracy figures with other Autoencoder models and number of parameters.

Autoencoding 150-points varying-time sampled waveforms with 2 parameters gives 1.79x better

compression ratio than the nearest rank SVD compression with below 0.85% standard deviation

of percentage error compared to SPICE simulation. Those Autoencoders gave ~40 to ~55x better

than gzip and bz2 compression techniques. Autoencoders require large time to be trained, and

98

larger compression and decompression time compared to the SVD algorithm, however training

and compression are offline operations that can be accepted for the sake of better compression

and accuracy. The decompression time can be enhanced with better hardware resources and

smaller encoding models. Building on both DL-NLDM and waveform compression, a combined

DL-NLDM ECSM waveform model is proposed to produce both delay/transition time

information as well as the compressed waveform parameters. Experiments show that separate

DL-NLDM and Autoencoder ECSM waveform parameters are better than the combined ones. In

addition, DL-WFDM is proposed to radically change transition/delay propagation to a full

waveform propagation that can be used to measure the delay or perform ECSM delay

calculations. Experiments show that separate DL-NLDM and Autoencoder ECSM waveform

parameters still perform better than the proposed DL-WFDM models.

In addition, we proposed a structured RNN network that models SISO LTI system of any order

N. A complex benchmark system of 598 states was reduced to a system of 10 states at 9.04e-6

mean square error rate, using the proposed S-RNN SISO network. SISO 4th order S-RNN

outperformed the reported MOR techniques using the same original transfer function. We also

proposed an S-RNN network that can be trained to model any number of outputs, O, and order,

N, of a SIMO system. This SIMO S-RNN network is used to model an RLC interconnect of 108

states in a reduced system of order 5 at 9.1e-4 mean square error rate in a single training operation.

Training individual interconnect outputs using SIMO S-RNN models gives better results but

requires several training operations equals to the number of system outputs. The trained S-RNN

weights are directly mapped to the discrete-time state-space model of the reduced system. Using

the step-response sampling time and the trained network weights, the discrete-time state-space

model is obtained and used to derive the continuous-time transfer function of the reduced model.

Scaling S-RNN above 15th order system requires further research in RNN training algorithms.

99

Developing an S-RNN network to model a MIMO system of any number of inputs M, outputs O

and order N is possible in theory. Training this MIMO S-RNN network is successful using the

system response to a sequence of inputs that ensure the system is gracefully returned to the idle

state after applying step input to each MIMO input.

Future work will focus on enhancing both training time and run time of the proposed DL-NLDM

and DL-WFDM models which is key to adopt these models in practical digital design flows.

Future work also includes enhancements to Autoencoders models and training algorithms to

achieve higher compression ratios in less offline training time and less decoding time with lower

error rates. In addition, some modern neural network could perform lossless compression, like

bits-back coding, these models need to be examined and compared to the performance of the

Autoencoder based compression. Developing new RNN training techniques is also

recommended to guarantee S-RNN convergence for model order greater than 15.

100

References

[Abrishami’19] M. S. Abrishami, M. Pedram and S. Nazarian, "CSM-NN: Current Source Model

Based Logic Circuit Simulation - A Neural Network Approach" 2019 IEEE 37th International

Conference on Computer Design (ICCD), Abu Dhabi, United Arab Emirates, 2019, pp. 393-400.

[Baziyad’19] M. Baziyad, A. Jarndal and M. Bettayeb, "A Model Order Reduction Technique Based

on Balanced Truncation Method and Artificial Neural Networks," 2019 8th International

Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019, pp. 1-5, doi:

10.1109/ICMSAO.2019.8880270.

[Beale’18] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural Network Toolbox™ 7 User’s Guide,

2018, , Matlab 2018rb release.

[Berz’15] D. Berz, M. Engstler, M. Heindl, F. Waibel, “Comparison of lossless data compression

methods”, Technical Reports in Computing Science No. CS-07-2015, University of Applied

Sciences Kempten.

[Capodieci’17] L. Capodieci, “Data Analytics and Machine Learning for Design-Process-Yield

Optimization in Electronic Design Automation and IC semiconductor manufacturing”,

CSTIC’17.

[Chahlaoui’02] Y. Chahlaoui, P. Van Dooren, A collection of benchmark examples for model

reduction of linear time invariant dynamical systems, SLICOT Working Note 2002-2, 2002.

[Chang’17] W. Chang, C. Lin, S. Mu, L. Chen, C. Tsai, Y. Chiu, M. C.-T. Chao, “Generating

Routing-Driven Power Distribution Networks With Machine-Learning Technique”, IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND

SYSTEMS, 2017.

101

[Dai’17] Y. Dai, R. K. Brayton, “Circuit recognition with deep learning”, IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), 2017 IEEE’17.

[Das’17] S. Das, J. R. Doppa, P. P. Pande, K. Chakrabarty, “Design-Space Exploration and

Optimization of an Energy-Efficient and Reliable 3-D Small-World Network-on-Chip”, “IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems”, 2017.

[Drmanac’09] D. G. Drmanac, F. Liu, Li-C. Wang, “Predicting variability in nanoscale lithography

processes”, Design Automation Conference (DAC), 2009.

[Eremenko’17] K. Eremenko, H. de Ponteves, “Deep Learning A-Z™: Hands-On Artificial Neural

Networks”, Udemy Course: www.udemy.com

[Fournier’19] Q. Fournier and D. Aloise, "Empirical Comparison between Autoencoders and

Traditional Dimensionality Reduction Methods," 2019 IEEE Second International Conference

on Artificial Intelligence and Knowledge Engineering (AIKE), 2019, pp. 211-214, doi:

10.1109/AIKE.2019.00044.

[Goodfellow’16] I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning”. MIT Press,

http://www.deeplearningbook.org, 2016, pp. 164-223 and pp. 499-523.

[Hatami’09] S. Hatami, P. Feldmann, S. Abbaspour and M. Pedram, "Efficient compression and

handling of current source model library waveforms," 2009 Design, Automation & Test in

Europe Conference & Exhibition, 2009, pp. 1178-1183, doi: 10.1109/DATE.2009.5090841.

[Hu’16] J. Hu, T. Li, S. Li, “Equivalence Checking between SLM and RTL Using Machine Learning

Techniques”, Quality Electronic Design (ISQED), 2016.

[Jap’16] D. Jap, S. Bhasin W. He, “Supervised and unsupervised machine learning for side-

channel based Trojan detection”, IEEE 27th International Conference on Application-specific

Systems, Architectures and Processors (ASAP)’16.

http://www.udemy.com/
http://www.deeplearningbook.org/

102

[Jordan’97] M. I. Jordan, Serial Order: A Parallel Distributed Processing Approach, Neural-

Network Models of Cognition - Biobehavioral Foundations Advances in Psychology, pp.

471495, 1997.

[Kahng’11] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, “VLSI Physical Design: From Graph

Partitioning to Timing Closure, Springer Netherlands, 2011”, pp. 221-264.

[Kahng’15] A. B. Kahng, M. Luo, S. Nath, “SI for Free: Machine Learning of Interconnect Coupling

Delay and Transition Effects”, “System Level Interconnect Prediction (SLIP) Workshop”, 2015.

[Lee’15] W. Lee, Y. Kim, J. H. Ryoo, D. Sunwoo, A. Gerstlauer, L. K. John, “PowerTrain: A

Learning-based Calibration of McPAT Power Models”, International Symposium on Low

Power Electronics and Design (ISLPED), 2015.

[Li’21] L. Li and W. Yu, "Efficient and Accuracy-Ensured Waveform Compression for Transient

Circuit Simulation," in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 40, no. 7, pp. 1437-1449, July 2021, doi: 10.1109/TCAD.2020.3020496.

[Mandouh’16] E. El Mandouh A. G. Wassal “Accelerating the Debugging of FV Traces Using K-

Means Clustering Techniques”, 11th International Design & Test Symposium (IDT), 2016.

[Mitchell’97] T. Mitchell, Machine Learning, McGraw-Hill, New York, ISBN: 0070428077, 1997.

[Nguyen’19] T. Nguyen, X. Wang, X. Chen and J. Schutt-Aine, "A Deep Learning Approach for

Volterra Kernel Extraction for Time Domain Simulation of Weakly Nonlinear Circuits," 2019

IEEE 69th Electronic Components and Technology Conference (ECTC), 2019, pp. 1889-1896,

doi: 10.1109/ECTC.2019.00291.

[Park’16] S. J. Park, H. Yu, M. Swaminathan, “Preliminary application of machine-learning

techniques for thermal-electrical parameter optimization in 3-D IC”, IEEE International

Symposium on Electromagnetic Compatibility (EMC), 2016.

103

[Provan’12] P. Gregory, F. Alexander, “Machine-learning-based circuit synthesis”, IEEE 27th

Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2012.

[Ramalingam’07] A. Ramalingam, A. K. Singh, S. R. Nassif, M. Orshansky and D. Z. Pan,

"Accurate Waveform Modeling using Singular Value Decomposition with Applications to

Timing Analysis," 2007 44th ACM/IEEE Design Automation Conference, 2007, pp. 148-153.

[Salah’16] K. Salah, A. Adel, Model order reduction using artificial neural networks, IEEE

International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, 2016, pp.

89-92.

[Saurabh’18] S. Saurabh and P. Mittal, "A Practical Methodology to Compress Technology

Libraries Using Recursive Polynomial Representation," 2018 31st International Conference on

VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), 2018, pp.

301-306, doi: 10.1109/VLSID.2018.80.

[Schilders’08] W. H. Schilders, H. A. van der Vorst, J. Rommes, Model order reduction: theory,

research aspects and applications, The European Consortium for Mathematics in Industry,

Springer, ISBN 978-3-540-78841-6, 2008.

[Sharma’16] R. Sharma, “Characterization and Modeling of Digital Circuits”, ISBN-10:

1983144827, paripath.inc, 2016, pp.75-120.

[Si2’21] Silicon Integration Initiaitive, https://si2.org/os-downloads

[Synopsys’21] Synopsys Inc., CCS Timing Technical White Paper version 2.0

[Tenace’17] V. Tenace, A. Calimera, “Activation-Kernel Extraction Through Machine Learning”,

New Generation of CAS (NGCAS) ,2017

[Wang’15] Li-C. Wang “Data Mining in Functional Test Content Optimization ”, ASP-DAC, 2015.

https://www.springer.com/series/4651
https://si2.org/os-downloads

104

[Wang’17] Li-C. Wang, “Experience of Data Analytics in EDA and Test—Principles, Promises, and

Challenges”, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, 2017.

[Williams’95] J. R. Williams, D. Zipser, “Gradient-Based Learning Algorithms for Recurrent

Networks and Their Computational Complexity”, Back-propagation Book, L. Erlbaum

Associates Inc. Hillsdale, NJ, USA, 1995, pp. 433-486.

[Wu’17] H. Wu, “Improving SAT-solving with Machine Learning”, SIGCSE ’17, ACM library.

[Yang’96] Z.-J. Yang, T. Tsuji, and T. Hachino, “Model reduction with time delay combining the

least-squares method with the genetic algorithm”, IEE Proceedings - Control Theory and

Applications, vol. 143, no. 3, pp. 247254, Jan. 1996.

[Yang’17] H. Yang, J. Su2, Y. Zou, B. Yu, E. F. Y. Young, “Layout Hotspot Detection with Feature

Tensor Generation and Deep Biased Learning”, “Design Automation Conference (DAC)”,

2017.

[Zhang’18] S. Zhang, J. Zhai, J. Chen, Q. HE, “Autoencoder and its various variants”, IEEE

International Conference on Systems, Man, and Cybernetics, 2018.

[Zheng’15] X. Zheng, P. Ravikumar, L. K. John, A. Gerstlauer, “Learning-based Analytical Cross-

Platform Performance Prediction”, 15th International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation, 2015.

105

106

APPENDIX A

Artificial Intelligence, Machine Learning
and Deep Learning Background

Machine learning, neural networks and deep learning are all concerned with producing a

program that can learn from experience. Those programs usual tackle problems that don’t scale

linearly with increased complexity level or data size. Such problems are usually named NP-

Complete problems. Machine or deep learning approach usually trades accuracy with

performance. In other words, those ML/DP programs perform certain tasks in less time than

conventional programs to a certain accuracy level. Fig. A-1, [Goodfellow’16], describes the

relationship between artificial intelligence, machine learning, neural networks, and deep

learning. Artificial intelligence is the science that encloses all the others as the superset.

FIGURE A-1 Artificial Intelligence Categories Relationships [Goodfellow’16]

An artificial intelligence program that doesn’t belong to machine learning is usually a hand

designed program that models the knowledge and experience in the form of rules. Machine

learning programs that don’t belong to neural networks or deep learning depend on hand-

107

engineered features. Those features abstract the most important information from the knowledge

and experience. Programs that are performing automatic features extraction are typically neural

networks. Neural networks that have many hidden layers are said to be performing deep

learning. Those deep learning programs usually work on huge data set. Fig. A-2, [Goodfellow’16],

describes different artificial intelligence categories categorized based on features extraction.

FIGURE A-2 Artificial Intelligence Categories [Goodfellow’16]

A.1 Rule-based Systems
Rule-based systems are hand-designed by engineers. In these systems, developers program past-

experience, useful information, and facts in the form of rules. The rule-based system usually has

an inference engine that infer new rules and information from given ones. Queries are used as

input to the inference engine to draw conclusions based on the facts and rules provided to the

engine. Though those systems had a lot of potential, they failed to solve complex problems. The

most famous languages and inference engines are Prolog and Lisp.

108

Reinforced learning is another type of artificial intelligence where there are no predefined rules,

however a rewarding-based learning system is established to learn the good behavior just like a

child. Q-Learning, Fig. A-3, is an example of reinforced learning that beats pre-programmed rule-

based system.

FIGURE A-3 Q-learning Reinforced Learning

A.2 Machine Learning, ML
A.2.1 ML Definition

Machine learning here means the classic machine learning techniques, artificial neural networks,

and deep learning techniques. Goodfellow at al., [Goodfellow’16], formally define machine

learning as “A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E”.

The main keywords in the definition are tasks, performance, and experience. The program is said

to be learning if its performance during performing a task improves by introducing new

experience.

A.2.2 ML Tasks

109

The main tasks to be performed by machine learning techniques are:

i. Regression:
Regression task falls under supervised machine learning category. In this task, the program is

trained on pervious data to generalize the data trends and predict the system response given new

system input. In the training phase, the pervious data input, a.k.a. experience, together with the

corresponding known system output are presented to the machine learning program. The

program adapts its parameters to learn from previous experience and reduce the system error

predicting new output.

ii. Classification:
Classification task also falls under supervised machine learning category. However, the program

in this task is trained to classify given input into a known set of categories. Previous experience

in addition to its known category is applied to the program during the learning phase. The

program adjusts its parameters to reduce the error of classifying input data. After training phase,

the program can classify new experience input into one of the known categories.

iii. Clustering
Clustering task falls under unsupervised machine learning category. In this task, the program is

given experience as input only without specifying any output information. The program is

trained to categorize input experience according to similar features they share into clusters. After

training, the program is supposed to categorize new experience into an appropriate cluster

according to its feature similarity with experience inputs belonging to this cluster.

iv. ML Experience
Experience, information, data, or machine learning input is usually represented in the form of

vectors as Fig. A-4 shows. In case of supervised machine learning, each experience vector is

associated with given output. Experience output can be represented in vector format as well. In

classical machine learning techniques, important features are extracted from raw data before

using them in either training or generalizing output given new experience.

110

FIGURE A-4 ML Experience [Wang'17]

v. ML Performance
Just like any learning process, performance measure is crucial to monitor and adjust the learning

process. The performance measure provides learning error measures to guide the learning

process, it also provides testing error measures to evaluate the performance of the ML model. The

most famous error rate is the mean square error MSE, Euclidian distance and variance. Mean

square error is usually used with regression tasks.

Hit rate or 0-1 loss is another famous performance measure used with classification tasks.

Performance measures can be carefully designed according to the performed ML task.

vi. Data Pre-processing
For all types of machine learning, data pre-processing is an important step to put raw input data

in a suitable format for machine learning techniques. Standardizing on consistent data format is

an essential step to ensure the learning process produces meaningful results. If the machine

learning problem relates to image classification or clustering the all the images must be in the

same image format, size, etc. If the machine learning is learning from raw data numbers, the

numbers must have the same units standardized using the mean and standard deviation using

the following formula.

111

Data scaling and normalization are also recommended to achieve better results for machine

learning. This step avoids having one input variable dominating the other inputs.

Whenever the case of having some missing input data for any reason, there is a need to amend

the missing using the mean, median or the most frequent of the rest of the data. Categorical data

requires special data processing setup to convert them into number suitable for machine learning.

Enumeration and one-hot encoding are usually utilized in this situation.

vii. Learning, Testing and Validation Data Set Distribution
Information data is usually divided into three portions. One for training purpose called the

training dataset. Usually, the training dataset is 80% of the data size. The second dataset is the

validation set, for validating the training process and adjusting its parameters. Usually, the

validation dataset is 10% of the dataset size. The third dataset is the testing dataset. The testing

dataset is used after the training phase to evaluate the machine learning program and its error

rate. The testing dataset usually constitute the rest 10% of the original dataset.

viii. Capacity, Under-fitting and Over-fitting
One of the most important problems facing machine learning is matching the data complexity

and features with the capacity of the learning ML program. A ML program that has more capacity

than the data feature complexity results in a memorizing program that produces almost 100%

error rate on the training data but produces very poor testing error rate. This is referred to the

over-fitting problem.

112

FIGURE A-5 Machine Learning Over-fitting and Under-fitting [Goodfellow’16]

The reason is that the ML program over fitted itself to the training data and lost the ability to

generalize on the important features extracted from the training data. A ML learning program

that has less capacity than the data feature complexity results in poor training rate and poor

testing rate. This is referred to the under-fitting problem. The choice of appropriate capacity

results in acceptable training error rate and testing error rate. It’s said that the ML can generalize

on the main features of the input dataset in this case.

FIGURE A-6 Machine Learning Capacity versus Training and Generalization Error Rates [Goodfellow’16]

The above figure describes the relation between the capacity and the error rate. The increased

capacity results in lower training error rate, and higher testing or generalization rate. This is

typically called the generalization gap. The less capacity than appropriate results in larger

training and generalization rates. The choice of the optimal capacity is crucial for a successful

training and generalization process. However, the optimal capacity choice is a trial-and-error

113

process. It depends mainly on the experience of the ML program designer as well as some de-

facto best practices.

A.2.3 Classic Machine Learning Algorithms

In classic machine learning, [Mitchell’97], the main features of data are hand-picked and designed

by engineers. The main target of features extraction is to select the best features that abstract the

dense information into simpler but important information. The quality of the hand-designed

features maps directly to the quality of the classic machine learning programs that are produced.

Engineers responsible for selecting the important features must have strong domain knowledge

to be able to select high quality features.

The role of the classic machine learning program is to map and transform extracted features to

the desired output. When new input is introduced to the classic machine learning program, the

same features are extracted from the input data and those features are mapped to produce the

output. The machine learning program can be designed to perform the same tasks of ML,

regression, classification, or clustering tasks. There are several classic machine learning

algorithms:

• Regression – Supervised Learning

o Simple linear regression, multiple linear regression, and polynomial regression are

famous classic machine learning technique. Fig. A-7, [Eremenko’17], shows the

different types of regressions. The experience, input data x, and the known

response y are used to find the parameters of the line/curve that will be used later

to produce new response of new input data.

114

FIGURE A-7 Linear Regressions [Eremenko’17]

o Decision tree regression. Starts with plain dataset as in Fig. A-8. Information

Entropy is utilized to determine data “splits” as in Fig. A-9. Decision tree is formed

based on the splits as in Fig. A-10. Locate new instance leaf node. Calculate the

average of nodes belonging to this leaf node

FIGURE A-8 Start with plain dataset [Eremenko’17]

FIGURE A-9 Categorize data based on information entropy [Eremenko’17]

115

FIGURE A-10 Decision Tree formation [Eremenko’17]

o Other regression techniques are random forest regression and support vector

regression.

• Classification – Supervised Learning

o Support Vector Machine, SVM, is widely used in supervised classification

problems. The goal of the SVM technique is to find the optimal hyperplane that

separates dataset categories with maximum margins that guarantees an enhanced

classification accuracy. Support vectors are created, Fig. A-11, between the initial

hyperplane and the data points near it. A cost function is defined to maximize the

margin between the hyperplane and the known categories of the dataset with help

of the support vectors.

FIGURE A-11 Support Vector Machine in Classification [Eremenko’17]

116

o K-nearest Neighbor. Assuming there are two categories A and B and there is a

need to classify a new data point as in Fig. A-12, the algorithm starts by selecting

the number K of the neighbors then calculates the Euclidean distance of the new

data point with all the existing points and takes the K nearest neighbors based on

the calculated Euclidean distance. Among these k neighbors, the algorithm counts

the number of the data points in each category. Finally, the algorithm assigns the

new data point to the category that has a maximum number of the neighbors.

FIGURE A-12 K-nearest neighbor [Eremenko’17]

o Naïve Bayes. The algorithm starts with Class 1 and Class 2 already defined as in

step 1 of Fig. A-13. To classify a new instance X, the algorithm draws a circle of

radius r around the new instance, calculates P(Class1|X) and P(Class2|X), and

finally assigns X to the class of higher probability.

117

FIGURE A-13 Naïve Bayes Classification Steps

o Other supervised learning techniques are logistic regression, decision tree

classification and random forest classification.

• Clustering – Unsupervised Learning

o K-Means Clustering. The algorithm starts with plain dataset as in step 1 of Fig. A-

14, determine number of classes K, random pick of K centroids as in step 2, assign

points to closest centroid as in step 3 based on constructing equi-distance planes

to K centroids, then calculate new centroid of each cluster as in step 4, reassign

points to new closest centroids as in step 5 then go to step 3, repeat until no

reassignments of points occur to clusters as in step 6.

118

FIGURE A-14 K-Means Clustering Steps [Eremenko’17]

o Hierarchical Clustering. The algorithm starts by making each data point a cluster

N points which results in N clusters as in step 1 of Fig. A-15. Then step 2 combines

the closest two clusters in one cluster which results in N-1 clusters as in step 2. The

algorithm keeps every clustering step in memory, and step 2 is repeated until

everything point becomes in one cluster as in step 5. The number of clusters K is

determined, and the algorithm goes back K steps in memory to get K-clusters

formation as in step 6.

119

FIGURE A-15 Hierarchical Clustering Steps [Eremenko’17]

A.3 Artificial Neural Networks, ANN
Single perceptron is a simple summation function of all input signals multiplied by a weight value

for each input. The summation is applied to what is called an activation function to produce the

perceptron output. The ANN learning process is basically an optimization process to find the set

of weights that minimize the training error rate. Once trained, the ANN structure and weights is

ready to perform the regressions, classification or clustering task trained to do.

FIGURE A-16 Single Perceptron

Y = Ø(∑ 𝑥𝑘

𝑛

𝑘=0

∗ 𝑤𝑘)

The choice of the activation function is an important design parameter for ANN success. The

activation function can be as simple as a linear function,Ø(𝑥) = 𝑥, or non-linear function. Non-

linear like threshold function, rectifier function, hyperbolic function or sigmoid function allows

120

the ANN to learn non-linear problems and extract features that are hard to be extracted using

classic machine learning techniques.

FIGURE A-17 Threshold and Rectifier Functions

FIGURE A-18 Sigmoid and Hyperbolic Functions

Threshold activation function is usually used in output layer for ANN that performs classification

tasks. Whereas the rectifier and sigmoid activation functions are usually used in the hidden

layers. Hyperbolic activation function is usually used with ANN dealing with probability

distributions. There are more non-linear functions used in research and in practice. Artificial

neural network, ANN is composed of three layers: input layer, one hidden layer of many

perceptron, and an output layer.

121

FIGURE A-19 Artificial Neural Network

A.3.1 Neural Networks Learning Algorithms

Back propagation is the most famous neural network learning algorithm. The algorithm

initializes the different weights randomly then applies input to the ANN in the forward activation

flow. The cost function is defined, and the error rate is calculated between the actual and desired

values. The error is propagated back from the output layer to the input layers adjusting the

different weights to reduce the gap between desired and actual output.

FIGURE A-20 Back Propagation Learning Algorithm

122

The process is repeated for all the input/output values in the learning dataset. The learning

process converges as the gradient of the cost function descends and stabilizes to a minimum value

as in Fig. A-21. The result of the learning phase is updated weight values that minimize the overall

error rate across all the values of the learning set.

FIGURE A-21 Gradient descent algorithm [Eremenko’17]

A.3.2 Recurrent Neural Networks, RNN

The presented artificial neural network is a feedforward network. No output is fed back to

neurons input. Thus, it’s better suited for regression analysis and classification problems of

independent datasets. When the input data is time series data, feedback from the neurons’

outputs to neurons’ inputs introduces a neural network that is capable of learning time series

data.

FIGURE A-22 Recurrent Neural Network

This type of neural networks is called recurrent neural networks. Recurrent neural network can

learn data dependencies over time and generalize based on this information. Some researchers

focused on optimizing the learning algorithms of RNN network as in [Williams’95].

123

A.3.3 Deep Learning, DL

The notion of deep learning refers to artificial neural networks that has several hidden layers of

large number of neurons. The extremely large capacity of these networks can learn and extract

larger number of small features. Deep learning depends on having huge dataset to be used in the

training phase. This huge data is necessary to be able to find an optimized set of weights of these

huge networks.

FIGURE A-23 Recurrent Neural Network

Deep learning became possible in recent years because of the availability of huge data, powerful

processing machines, and advanced learning algorithms. There are many business driving forces

that enforce a successful echo system that empowers deep learning.

A.3.4 Convolutional Neural Network, CNN

Convolutional neural networks are typically used in image recognition and classification

problem. The input image is represented by 2D matrix as in Fig. A-24, then it’s applied to a

convolutional layer followed by a pooling layer. The role of convolutional and pooling layers is

to reduce the size of the data representing the image by applying filters on the dataset without

losing important features or losing the information about the dependencies between objects in

the image. The convolutional layer is responsible for extracting the high-level features of the

124

image, there could be more than one convolutional layer in the CNN. On the other hand, the

pooling layer is responsible for extracting the dominant features of the image. The output of the

pooling layer is flattened before it gets applied to deep learning feed forward neural network.

Referring to AI/ML categorization in Fig. A-2, each layer of the DL neural network extracts more

features of the image at a certain level of abstraction.

FIGURE A-24 Convolutional Neural Networks, CNN [Eremenko’17]

A.3.5 Autoencoders

Feed-forward neural network is used to encode large data into a smaller set of parameters

representing the original data. The core idea of Autoencoder is to train a deep neural network to

produce an output that matches the input data to a certain degree of error, [Goodfellow’16] and

[Zhang’18]. The output layer must have the same size of the input layer. If the Autoencoder

middle layer size is smaller than the number of inputs as shown in Fig. A-25, then the

Autoencoder can perform dimensionality reduction of data.

125

FIGURE A-25 TRAINING of DEEP LEARNING AUTOENCODER

After training, the autoencoder is split into two models at the middle layer: an encoder model

and a decoder model. Fig. A-26 shows the trained Autoencoder after being split into the two

models. The layers from the input layer to the middle layer represent the encoder model. When

the original data is presented as input to the encoder model, the output values of the middle layer

neurons are the encoded, compressed data of the original data. Therefore, we refer to number of

neurons in the middle layer as the number of encoding parameters. The layers from the middle

layer to the output layer represent the decoder model with the middle layer playing as the input

layer to the decoder model.

FIGURE A-26 AUTOENCODER Split to Encoder and Decoder

The compressed encoded data – the output of the middle layer, are presented as input to the first

decoder model layer to be decoded to reproduce the original data within certain degree of error.

Encoding large data points into a smaller number of parameters can be used in performing the

126

required waveform data compression. The decoder model must be provided with the compressed

data to be able to decompress and restore the original data.

A.4 Machine and Deep Learning Applications
ML and DL learning algorithms can generally address problems of type:

• Classification

• Regression (Modeling, Prediction)

• Clustering

• Anomaly Detection

• Dimensionality Reduction

ML and DL techniques are typically used when there is no conventional algorithm to solve a

problem with adequate accuracy is adequate time, or accuracy and performance of conventional

algorithms deteriorates don’t scale up with increased data size and problem complexity. Classic

ML techniques are typically used with when there are small or medium training data, and the

domain knowledge is known such that it’s extracting reliable and important features can be

achieved. DL techniques are typically used when there is large training data and less domain

knowledge to extract the important features.

127

APPENDIX B

Model Order Reduction of Non-Linear
Systems using Recurrent Neural
Networks

B.1 Overview
In the proper orthogonal model technique, the most important modes are selected to perform

model order reduction based on the singular value decomposition analysis. The main hurdles of

the model order reduction using this method is the non-linear term. This non-linear term makes

the computation expensive even if we select few modes for the model order reduction. The more

modes we must include the more computation power and time it needs to calculate the time

dependent factors that complete the reduced order model definition. The proper orthogonal

model-based model order reduction depends on having high fidelity measurements of the actual

system or simulation results from detailed full order model that takes huge efforts to develop and

simulate. Given that data, our approach is to train a recurrent neural network to lean the system

behavior and hence represent a reduced order model of the system.

Using RNN to model non-linear systems doesn’t require explicitly selecting certain modes and

sacrificing other upfront. The RNN learning mechanism is responsible for learning important

modes and ignoring others to minimize its cost function. The RNN topology, the learning

algorithm and the dataset will define the accuracy of the reduced model.

To obtain training data, we used Matlab to implement exact solution of selected non-linear

systems. The data obtained from the exact solution is used twice. Once to create a POD based

reduced order model using the first couple of important modes, and the second time to train our

RNN to produced neural network based non-linear reduced order model. The RNN topology we

selected looks like the MIMO RNN we proposed in section 5.2. We treated the initial values at

128

different grid points of the x dimension as the multi-inputs for the non-linear system. In addition,

we treated the system output at different points of the grid as the multi-outputs. As the time

advances, the RNN learns the expected multiple output at each point of the x axis grid.

The main contributions of this research are:

• Applying RNN modeling techniques to non-linear systems.

B.2 One-dimensional non-linear Schrodinger equation
The first selected non-linear system is the one-dimensional non-linear Schrodinger like wave

equation with x and t independent variables:

𝑖
𝜕

𝜕𝑡
(𝑢(𝑥, 𝑡)) +

1

2

𝜕
2

𝜕𝑥2
(𝑢(𝑥, 𝑡)) + |𝑢(𝑥, 𝑡)|

2
 𝑢(𝑥, 𝑡) = 0

Re-writing the equation:

𝜕

𝜕𝑡
(𝑢(𝑥, 𝑡)) =

𝑖

2

𝜕2

𝜕𝑥2 (𝑢(𝑥, 𝑡)) + 𝑖|𝑢(𝑥, 𝑡)|
2
 𝑢(𝑥, 𝑡)

Utilizing Fourier basis, we get:

(û𝑡) =
−𝑖

2
 𝑘 2 (û) + 𝑖 ∗ 𝑓𝑓𝑡 (|𝑢|

2
 𝑢(𝑥, 𝑡)) ; k is (2*pi/L)*[0:n/2-1 -n/2:-1] :

Where L is the length of x dimension and n is the number of discrete points taken along the length

L. We can utilize Matlab ode45 function to solve the above equation. The initial value can take

any shape, we selected, sech(x), 2sech(x), and 𝑠𝑒𝑐ℎ (𝑥
2) to study the neural network behavior at

different conditions. This Matlab solution generates the non-linear system data that is used to

perform POD-based model order reduction and our proposed S-RNN model order reduction.

init_vals = sech(x); ut = fft(init_vals);
t=linspace(0,2*pi, 41); k = (2*pi/L)*[0:n/2-1 -n/2:-1].';
[t, utsol] = ode45('nls_rhs',t,ut,[],k);

The Matlab function nls_rhs is defined as:

 function rhs= nls_rhs(t,ut,dummy,k)
u = ifft(ut);
rhs=(-i/2)*(k.^2).*ut + i*fft((abs(u).^2).*u);

end
The solution is retrieved by doing inverse fft to utsol;

129

for j=1:length(t)
 usol(j,:) = ifft(utsol(j,:));
end

The solution can be plotted using:

surfl(x, t, abs(usol)), shading interp;

B.3 POD-based reduced order model
The solution data of the full system is contained in the usol array. As the size of the system

increases the computation power increases. It’s required to get a reduced size model of the full

system. Using the data obtained from full model system simulation or actual system

measurements, we can utilize the proper orthogonal decomposition method to get a reduced

order model. Section 2.4 outlined the steps required to perform POD-based reduced order model.

1. The first step is to perform the singular value decomposition matrices. Using Matlab svd()

function this can be calculated as:

2. [u,s,v] = svd(usol, 'econ');

3. The singular matrix s is a diagonal matrix ordered by values. The matrix is examined, and

the most important number of modes are identified.

4. The corresponding number of vectors are selected from the basis matrix u. Selecting the

first couple of modes can be done using Matlab as: phi=u(:,1:2);

5. Taking advantage of the orthonormal basis of the matrix u, and applying the general

equation mentioned in section 2.4 to the wave equation problem:

𝑑

𝑑𝑡
(𝑎(𝑡)) = ф𝑟 𝐿ф𝑟 ∗ 𝑎(𝑡) + ф𝑟 𝑁(ф𝑟 ∗ 𝑎(𝑡))

B.4 RNN Model Order Reduction Results

B.4.1 Experiment 1: Sech(x) as an initial function:

B.4.1.1 Full System Solution Using Matlab

Using sech(x) as initialization function as an input to the Matlab ode45() solution outlined above,

produces the below solution. It’s clear that there is a single mode dominating the waveform.

130

FIGURE B-1 Matlab Simulation with Sech(x) initial function

The single mode observation is confirmed by performing singular value decomposition. The

following figure plots the diagonal values divided by their summation. There is only one value

dominating the diagonal matrix as expected.

FIGURE B-2 SVD Analysis

The first three modes of the matrix u are plotted in the following figure. The first mode in blue is

the dominating mode, while the rest have negligible contribution and are considered numerical

errors.

131

FIGURE B-3 First three modes plot

B.4.1.2 POD-based MOR with 1 Mode

Selecting only one mode to perform model order reduction produced satisfactory results.

FIGURE B-4 One Mode POD MOR

B.4.1.3 S-RNN MIMO of 2nd Order MOR

Our implementation of model order reduction using MIMO is utilized to perform machine

learning based model order reduction. The grid values of the solution at the x dimension

represent the multi-input values. The output values are the system response after one time

iteration. During the learning phase the RNN is fed with the usol data obtained from the exact

132

Matlab solution. As time advances, the RNN learns the system behavior. After only 9 iterations,

the RNN learned the system behavior with a very good MSE of 1.48e-11.

FIGURE B-5 Second order S-RNN MOR

The trained RNN is then subjected to the same initial value function, to produce similar results

to Matlab exact solution and the POD-based reduced model order solution.

FIGURE B-6 SVD analysis of Second order S-RNN solution

To double check the dominating modes of RNN reduced order model response, we perform

singular value decomposition analysis to RNN solution data array. Plotting the singular diagonal

matrix values divided by their summation confirmed that there is only one mode dominating the

RNN system response as expected.

133

B.4.2 Experiment 2: 2*Sech(x) as an initial function:

B.4.2.1 Full System Solution Using Matlab

Applying a different initialization function to the same wave equation produced the following

waveform solution using Matlab ode45() function. It’s expected that more than one mode

contributes to the full system solution.

FIGURE B-7 Matlab Simulation with 2*Sech(x) initial function

Performing singular value decomposition analysis on the usol matrix confirms this observation

as clear in the following figure. The relative value of the singular values diagonal matrix shows

that there are two main modes dominating the full system behavior.

134

FIGURE B-8 SVD analysis of Matlab solution

The following figure shows the first three modes of the matrix u. The first mode is the blue curve,

the second is the red curve. The third mode is less significant mode compared to the first two and

considered numerical errors.

FIGURE B-9 Mode plot Matlab solution

B.4.2.2 POD-based MOR with 2 Modes

Selecting the first two modes and performing POD-based reduced model order reduction

resulted in a solution that has the following waveform.

135

FIGURE B-10 Matlab simulation of POD solution

B.4.2.3 S-RNN MIMO of 2nd Order MOR

Our proposed MIMO RNN of order 2 is used to model this non-linear full system response. The

training phase stopped after 122 iterations with MSE of 0.0133. Plotting the RNN response to the

same initialization function showed that the results are not satisfactory. The RNN reduced order

model didn’t manage to model important system behavior. Performing singular value

decomposition and plotting the relative values of the singular matrix diagonal values shows that

the RNN response model almost only one mode.

FIGURE B-11 Second-order S-RNN MOR

136

FIGURE B-12 SVD analysis of S-RNN MOR

B.4.2.4 S-RNN MIMO of 5th Order MOR

Raising the order of the RNN MIMO order to 5 produces satisfactory results with better MSE of

0.00183 after 1000 iterations. Plotting the RNN response of the trained network shows that the S-

RNN reduced order model was able to retain important system characteristics.

FIGURE B-13 5th-order S-RNN MOR

Performing SVD and plotting the relative singular matrix diagonal values shows that the RNN

response has 2 dominating modes like the full system response.

137

FIGURE B-14 SVD analysis of 5th-order S-RNN MOR

FIGURE B-15 5th-order S-RNN MOR mode plot

B.4.3 Experiment 3: Sech(x^2) as an initial function:

B.4.3.1 Full System Solution Using Matlab

Applying sech(x^2) as an initialization function to the same system produces different response.

The full system response in the following figure shows more involving characteristics. It’s

expected that more than 2 modes will dominate the system behavior.

138

FIGURE B-16 Matlab Simulation with Sech(x^2) initial function

The singular value decomposition analysis confirms the observation, more than two modes are

contributing to the system behavior.

FIGURE B-17 SVD analysis of Matlab solution

The following figure plots the first three dominating modes.

139

FIGURE B-18 Mode plot of Matlab solution

B.4.3.2 POD-based MOR with 2 Modes

Utilizing two modes to perform POD-based singular value decomposition reduced order model

results in losing important system behavior. The following figure shows the POD-based reduced

order model using only two mode.

FIGURE B-19 POD analysis with 2 modes

Using more than two modes to perform POD-based model order reduction requires more

expensive processing power.

B.4.3.3 S-RNN MIMO of 3rd Order MOR

140

Using our proposed MIMO based RNN of order 3 to be trained on the full system response

consumed 1000 iterations and stopped at MSE of 0.00590. However, plotting the RNN response

to the same initialization function showed that the reduced order model lacked important system

characteristics.

FIGURE B-20 SVD Analysis of POD solution

The singular value decomposition analysis of the RNN system response confirmed these

observations. The trained RNN was able to capture only three modes as shown in the following

figure.

B.4.3.4 S-RNN MIMO of 5th Order MOR

Increasing the order of the S-RNN MIMO model order to 5 resulted in better results. The training

phase finished after 1000 iterations with better MSE of 0.000876. The trained RNN response to the

same initialization function resulted in similar behavior to the full system.

141

FIGURE B-21 5th order S-RNN solution

The singular value decomposition analysis of the RNN response shows 4 dominating modes.

FIGURE B-22 SVD analysis of 5th order S-RNN solution

142

APPENDIX C

Detailed trained models result
C.1 Autoencoding fixed time 1000-points ECSM Waveforms Detailed Results

Similar measures are used to evaluate the performance of the Autoencoders trained to encode

1000-points sampled ECSM waveforms. Two encoding parameters give mean correlation

coefficient greater than 0.999 and less than 1% average percentage error with a compression ratio

104.06. Fig. C-1 shows reconstructed rising and falling-edge waveforms after encoding with 2

parameters and model ID#2. Tables C.1 and C.3 list the best encoding results at different encoding

parameters. Tables C.2 and C.4 show the SVD compression results at different Sigma rank

number. The 2-parameters Autoencoder model gives 3.37x better compression ratio than the

nearest SVD compression results at sigma rank equals 8. However, SVD runtime decoding is 14x

faster than Autoencoders decode time.

FIGURE C-1 DECODED ECSM FALLING AND RISING-EDGE WAVEFORMS VS. SPICE WAVEFORMS

Table C.1 Autoencoding 1000-points Falling-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 3 2 2 2

Decoder size (KB) 4320 4249 4249 4249

Avg % error 0.8VDD 0.2936 0.3169 0.4676 0.5362

Avg % error 0.5VDD 0.1957 0.1962 0.3755 0.3318

Avg % error 0.2VDD 0.2383 0.2425 0.4363 0.4247

Mean corrcoef 0.99998 0.99997 0.99992 0.99987

Model Loss (MSE) 1.46E-06 1.60E-06 4.10E-06 5.9E-06

Compression Ratio 42.13 64.06 86.13 104.06

143

Table C.2 SVD 1000-points Falling-Edge ECSM Waveform Results at Different Sigma

Rank Number

Falling-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.1599 1.9487 0.6635 11.7535 3.1479 99.8715 10.8588 386.27

Avg % error 0.5VDD 0.1314 1.6828 0.4421 7.5705 1.2438 47.2797 3.90126 69.87

Avg % error 0.2VDD 0.1675 3.3921 0.9593 17.5298 4.3191 74.2143 13.1785 190.324

Mean corrcoef 0.99993 0.99908 0.99313 0.97136

Model Loss (MSE) 6.2216E-06 8.294E-05 6.3932E-4 2.626E-3

Compression Ratio 31.25 62.5 125 250

Table C.3 Autoencoding 1000-points Rising-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 2 4 2 2

Decoder size (KB) 4320 4249 4249 4249

Avg % error 0.8VDD 0.2476 0.2925 0.3005 0.3356

Avg % error 0.5VDD 0.1915 0.2105 0.2063 0.2451

Avg % error 0.2VDD 0.2927 0.3202 0.3153 0.3732

Mean corrcoef 0.99997 0.99996 0.99996 0.99995

Model Loss (MSE) 1.75E-06 2.50E-06 2.60E-06 3.8E-06

Compression Ratio 42.35 62.52 86.13 104.06

Table C.4 SVD 1000-points Rising-Edge ECSM Waveform Results at Different Sigma

Rank Number

Rising-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.4669 8.9164 2.2491 26.4061 6.9245 92.2892 17.3397 234.75

Avg % error 0.5VDD 0.1877 4.3850 0.6449 10.6402 1.4726 57.5539 4.6693 168.95

Avg % error 0.2VDD 0.3235 7.1173 1.6261 26.5724 5.7295 36.5229 14.7416 88.2501

Mean corrcoef 0.99959 0.99634 0.98484 0.95517

Model Loss (MSE) 3.663E-5 3.2E-4 1.351E-3 4.006E-3

Compression Ratio 31.25 62.5 125 250

C.2 Autoencoding variable time 50,100,150-points ECSM Waveforms Detailed
Results

C.2.1 Falling-edge 50-samples

Table C.5 Autoencoding 50-points Falling-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 16 15 15 15

Decoder size (KB) 75 39 39 39

Avg % error 0.8VDD 1.9486 2.0433 1.8758 2.316

Avg % error 0.5VDD 1.9841 1.9792 1.861 2.1428

Avg % error 0.2VDD 1.9922 2.0084 1.8777 2.0736

Mean corrcoef 0.99995 0.99990 0.99982 0.9996

144

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

4

Model Loss (MSE)
2.99E-06 6.09E-06 1.24E-05

3.87E-
05

Compression Ratio 3.11 6.19 12.28 24.15

Table C.6 SVD 50-points Falling-Edge ECSM Waveform Results at Different Sigma Rank

Number

Falling-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.3278 42.53 0.3117 118.001 0.3942 5.4991 0.7765 15.1329

Avg % error 0.5VDD 0.1809 9.0276 0.1878 5.9907 0.19088 1.9743 0.4008 2.4779

Avg % error 0.2VDD 0.1073 3.9161 0.1171 1.5579 0.1590 2.1628 0.4604 26.6131

Mean corrcoef 0.99999 0.99993 0.99951 0.99586

Model Loss (MSE) 9.513E-8 1.889E-6 1.5075E-5 1.53E-3

Compression Ratio 1.56 3.125 6.25 12.5

FIGURE C-2 SPICE vs reconstructed 50-points sampled falling edge waveform

C.2.2 Rising-edge 50-samples

Table C.7 Autoencoding 50-points Rising-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 16 17 17 15

Decoder size (KB) 75 86 86 39

Avg % error 0.8VDD 2.0579 2.0365 2.0015 2.1108

Avg % error 0.5VDD 2.0528 2.0463 1.9264 2.0596

Avg % error 0.2VDD 2.1393 2.0543 1.9350 2.1574

Mean corrcoef 0.99997 0.99996 0.99991 0.99966

145

Rising-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model Loss (MSE)
2.57E-06 2.71E-06 4.96E-06

3.00E-
05

Compression Ratio 3.09 6.13 12.03 24.15

Table C.8 SVD 50-points Rising-Edge ECSM Waveform Results at Different Sigma Rank

Number

Rising-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.1344 1.3921 0.13929 1.3921 0.17956 2.02019 0.37226 4.305

Avg % error 0.5VDD 0.02621 0.6596 0.03957 0.6596 0.08648 1.00776 0.3875 3.7750

Avg % error 0.2VDD 0.04936 1.0029 0.09402 1.4019 0.20546 3.5549 0.44435 5.9104

Mean corrcoef 0.99999 0.99999 0.9937 0.99323

Model Loss (MSE) 3.27E-8 1.379E-6 1.366E-5 1.416E-4

Compression Ratio 1.56 3.125 6.25 12.5

FIGURE C-3 SPICE vs reconstructed 50-points sampled rising edge waveform

C.2.3 Falling-edge 100-samples

Table C.9 Autoencoding 100-points Falling-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 16 14 17 14

Decoder size (KB) 100 33 111 33

Avg % error 0.8VDD 1.0134 1.2019 0.8707 1.3110

Avg % error 0.5VDD 0.9884 0.9656 0.9338 0.8739

Avg % error 0.2VDD 1.0057 1.0476 0.9652 1.0262

Mean corrcoef 0.99997 0.99984 0.99994 0.99948

Model Loss (MSE)
2.65E-06 1.28E-05 6.18E-06

6.18E-
05

146

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Compression Ratio 6.18 12.4 23.8 48.58

Table C.10 SVD 100-points Falling-Edge ECSM Waveform Results at Different Sigma

Rank Number

Falling-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.07631 3.2092 0.0988 1.27973 0.2062 1.8925 0.5987 15.3771

Avg % error 0.5VDD 0.04704 1.2790 0.0551 0.75622 0.12005 1.3618 0.3688 2.6508

Avg % error 0.2VDD 0.04425 0.4861 0.5997 0.86481 0.1426 1.8896 0.46007 10.9180

Mean corrcoef 0.99999 0.99993 0.99953 0.99627

Model Loss (MSE) 2.804E-7 2.15E-6 1.706E-5 1.64E-4

Compression Ratio 3.125 6.25 12.5 25

FIGURE C-4 SPICE vs reconstructed 100-points sampled falling edge waveform

C.2.4 Rising-edge 100-samples

Table C.11 Autoencoding 100-points Rising-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 14 15 17 15

Decoder size (KB) 33 51 86 51

Avg % error 0.8VDD 0.9356 0.9321 0.9643 1.1525

Avg % error 0.5VDD 0.9492 0.9436 0.9889 0.9409

Avg % error 0.2VDD 0.9939 0.9538 1.0649 1.2043

Mean corrcoef 0.99988 0.99992 0.99992 0.99954

Model Loss (MSE)
8.57E-06 6.21E-06 6.03E-06

5.01E-
05

Compression Ratio 6.22 12.35 23.81 47.81

147

Table C.12 SVD 100-points Rising-Edge ECSM Waveform Results at Different Sigma

Rank Number

Rising-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.02674 0.3859 0.05112 0.83632 0.11525 1.9355 0.36684 4.0784

Avg % error 0.5VDD 0.01025 0.2249 0.03264 0.44025 0.08862 1.3399 0.4364 4.2364

Avg % error 0.2VDD 0.02754 0.65583 0.07973 1.3464 0.20594 3.6207 0.4608 6.6813

Mean corrcoef 0.99999 0.99992 0.99945 0.99356

Model Loss (MSE) 1.878E-7 2.005E-6 1.664E-5 1.746E-4

Compression Ratio 3.125 6.25 12.5 25

FIGURE C-5 SPICE vs reconstructed 100-points sampled rising edge waveform

C.2.4 Falling-edge 150-samples

Table C.13 Autoencoding 150-points Falling-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Falling-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 16 17 16 16

Decoder size (KB) 125 136 125 125

Avg % error 0.8VDD 0.7010 0.5637 0.8729 1.2061

Avg % error 0.5VDD 0.6733 0.5478 0.7194 0.7247

Avg % error 0.2VDD 0.6749 0.6433 0.6641 0.7709

Mean corrcoef 0.99996 0.99993 0.99992 0.99961

Model Loss (MSE)
3.31E-06 6.59E-06 6.52E-06

4.72E-
05

Compression Ratio 9.24 18.19 35.51 67.45

148

Table C.14 SVD 150-points Falling-Edge ECSM Waveform Results at Different Sigma

Rank Number

Falling-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.04299 1.01357 0.77262 0.91243 0.19899 1.7279 0.58807 16.449

Avg % error 0.5VDD 0.02473 0.47767 0.03946 0.65335 0.12546 1.7001 0.3929 3.347

Avg % error 0.2VDD 0.02975 0.25947 0.05113 0.69059 0.14689 1.7784 0.4865 15.279

Mean corrcoef 0.99999 0.99993 0.99953 0.99632

Model Loss (MSE) 3.0967E-7 2.2919E-6 1.9E-5 1.786E-4

Compression Ratio 4.6875 9.375 18.75 37.5

FIGURE C-6 SPICE vs reconstructed 150-points sampled falling edge waveform

C.2.5 Rising-edge 150-samples

Table C.15 Autoencoding 150-points Rising-Edge ECSM Waveform Results at Different

Number of Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding

Parameters

16 8 4 2

Model ID 15 15 16 17

Decoder size (KB) 64 51 125 136
Avg % error 0.8VDD 0.6854 0.7104 0.6484 0.7136

Avg % error 0.5VDD 0.6891 0.6756 0.6564 0.6939

Avg % error 0.2VDD 0.7286 0.7422 0.6800 0.8106

Mean corrcoef 0.99996 0.99992 0.99993 0.99983

Model Loss (MSE) 3.28E-06 5.89E-06 5.32E-06 1.9E-05

Compression Ratio 9.3 18.48 35.51 66.85

Table C.16 SVD 150-points Rising-Edge ECSM Waveform Results at Different Sigma

Rank Number

149

Rising-Edge WF
SVD Sigma Rank Number

32 16 8 4
 Mean Max Mean Max Mean Max Mean Max

Avg % error 0.8VDD 0.02157 0.3424 0.04969 0.76387 0.12358 1.90699 0.41759 4.9855

Avg % error 0.5VDD 0.01063 0.2024 0.03594 0.78928 0.09710 1.69376 0.48040 4.42509

Avg % error 0.2VDD 0.02639 0.67071 0.08528 1.45211 0.21191 3.5906 0.48052 6.33794

Mean corrcoef 0.99998 0.99992 0.99945 0.99317

Model Loss (MSE) 2.849E-7 2.219E-6 1.926E-5 2.15E-4

Compression Ratio 4.6875 9.375 18.75 37.5

FIGURE C-7 SPICE vs reconstructed 150-points sampled rising edge waveform

C.3 Autoencoding 21-points ECSM Voltage Waveforms
To evaluate the accuracy of the ECSM Autoencoders, we used multiple measures to compare the

original waveform with the decoded one. Time-voltage 21-points samples must be normalized to

time value between 0 and 1. This is as simple as dividing all the time values by the simulation

time used to measure the sample data. Mean correlation coefficient, average percentage error at

the key waveform points; 0.2VDD, 0.5VDD and 0.8VDD as well as the overall decoder loss. The

best results at different number of encoding parameters are reported in tables C.19 and C.21 for

21-points time-voltage sampled waveforms. Two Autoencoder encoding parameters give less

than 1% average percentage error at the key waveform points and average correlation coefficient

greater than 0.999 at effective compression ratio of 7.77. Tables C.20 and C.22 shows the SVD

compression results at different Sigma rank number. The 2-parameters Autoencoder model gives

1.46x better compression ratio than the nearest SVD compression results at sigma rank equals 4.

150

Better Autoencoder compression ratio of 15.96 can be achieved at less than 5% average percentage

error at key waveform values. On the other hand, SVD runtime decoding is more than 470x faster

than Autoencoders decode time because of the small data involved in the SVD analysis, and the

large model used for Autoencoders. However, 21-points sampled waveforms don’t capture

overshoots, undershoots and multiple crossings.

Table C.17 Autoencoding 21-points Falling-Edge ECSM Waveform Results at Different Number of

Encoding Parameters

Falling-Edge WF

Autoencoder Number of Encoding
Parameters

8 4 2 1

Model ID 3 2 4 2

Decoder size (KB) 248 176 391 176

Avg % error 0.8VDD 0.4701 0.4682 0.8755 4.8877

Avg % error 0.5VDD 0.2949 0.2545 0.3878 3.7616

Avg % error 0.2VDD 0.4211 0.4486 0.7502 4.5249

Mean corrcoef 0.99982 0.99981 0.99911 0.96553

Model Loss (MSE) 1.5E-06 1.4E-06 9.3E-06 4.3E-04

Compression Ratio 2.48 4.86 7.77 15.96

Table C.18 SVD 21-points Falling-Edge ECSM Waveform Results at Different Sigma Rank Number

Falling-Edge WF
SVD Sigma Rank Number

8 4 2 1

Avg % error 0.8VDD 0.1984 0.7575 5.0746 8.2802

Avg % error 0.5VDD 0.1168 0.3724 1.4202 5.1151

Avg % error 0.2VDD 0.2273 0.4463 4.5582 6.4531

Mean corrcoef 0.9997 0.99964 0.98072 0.8738

Model Loss (MSE) 4.20E-07 5.10E-06 2.80E-04 3.6E-03

Compression Ratio 2.62 5.24 10.49 20.99

Table C.19 Autoencoding 21-points Rising-Edge ECSM Waveform Results at Different Number of

Encoding Parameters

Rising-Edge WF

Autoencoder Number of Encoding
Parameters

8 4 2 1

Model ID 2 3 4 2

Decoder size (KB) 176 248 391 176

Avg % error 0.8VDD 0.2979 0.4329 0.4197 1.9021

Avg % error 0.5VDD 0.3665 0.2757 0.3281 3.0917

Avg % error 0.2VDD 0.3616 0.8221 0.8341 6.4361

Mean corrcoef 0.99991 0.99945 0.99952 0.96948

Model Loss (MSE) 1.40E-06 4.50E-06 4.70E-06 8.6E-04

Compression Ratio 4.86 2.48 7.77 15.96

Table C.20 SVD 21-points Rising-Edge ECSM Waveform Results at Different Sigma Rank Number

Rising-Edge WF
SVD Sigma Rank Number

8 4 2 1

Avg % error 0.8VDD 0.1414 0.262 1.5299 1.8536

Avg % error 0.5VDD 0.0948 0.305 0.8058 3.4004

Avg % error 0.2VDD 0.182 0.7886 3.21 6.9688

Mean corrcoef 0.99998 0.99984 0.99489 0.96318

Model Loss (MSE) 2.25E-07 1.88E-06 5.74E-05 9.8E-04

Compression Ratio 2.62 5.25 10.49 20.99

151

C.4 NLDM-LUT Results

Table C.21 Falling Edge Mean Percentage Error NLDM-LUT versus Spice

Table C.22 Rising Edge Mean Percentage Error NLDM-LUT versus Spice

C.5 DL-WFDM results

Table C.23 DL-WFDM Model Training Results using 1000-points Sampled Waveforms

Table C.24 DL-WFDM Model Training Results using 150-points Sampled Waveforms

Cell NOR INV NAND

LUT Size 100x100 50x50 100x100 50x50 100x100 50x50

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

Delay Time 0.16 18.08 0.41 57.15 0.29 33.13 0.55 57.77 0.24 28.60 0.46 51.55
Tr Time 0.51 52.27 0.97 54.74 0.62 59.75 1.23 59.75 0.46 50.76 0.79 50.76

LUT Size 25x25 7x7 25x25 7x7 25x25 7x7

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
Delay Time 0.22 15.46 0.53 15.46 0.37 26.31 0.70 26.31 0.26 23.44 0.61 23.44

Tr Time 0.89 33.49 1.65 33.49 1.42 41.58 2.67 39.85 0.65 38.10 1.32 38.10

Cell NOR INV NAND
LUT Size 100x100 50x50 100x100 50x50 100x100 50x50
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

Delay Time 0.19 19.04 0.46 55.56 0.40 43.39 0.85 80.48 0.29 27.94 0.67 75.15
Tr Time 0.91 89.17 1.67 89.17 1.01 142.5 2.28 202.7 0.78 54.47 1.62 133.4

LUT Size 25x25 7x7 25x25 7x7 25x25 7x7

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
Delay Time 0.34 16.54 0.91 16.54 0.97 31.51 2.82 51.53 0.68 22.97 1.88 27.78

Tr Time 2.12 48.06 4.24 43.85 3.94 153.7 9.25 128.6 2.29 110.5 5.54 57.94

 Falling Edge Waveform Output, Model ID=4 Rising Edge Waveform Output, Model ID=4
Cell NOR INV NAND NOR INV NAND
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

@ 0.8VDD 0.61 5.77 0.87 16.38 1.06 14.90 0.59 4.89 1.02 18.13 0.57 7.78
@ 0.5VDD 0.42 5.44 0.72 13.17 0.93 4.95 0.38 2.45 0.54 10.08 0.35 5.46
@ 0.2VDD 0.62 3.48 1.14 17.3 1.21 7.41 0.41 4.20 0.58 4.61 0.41 4.39

Avg
Corrcoef 0.9995 0.9986 0.9985 0.96435 0.9636 0.9643

MSE 4.8E-05 1.14E-04 1.41E-04 6.99E-05 1.4E-04 6.72E-05

Disk size-KB 38 38

Time - (s) Training time = 40s – Retrieving time = 0.4s Training time = 40s – Retrieving time = 0.4s

 Falling Edge Waveform Output, Model ID=3 Rising Edge Waveform Output, Model ID=4

Cell NOR INV NAND NOR INV NAND
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

@ 0.8VDD 0.82 10.63 1.33 13.94 0.99 9.5 0.87 5.15 0.94 19.31 0.88 9.04
@ 0.5VDD 0.49 6.62 1.05 9.98 0.79 7.93 1.02 6.14 0.94 18.96 0.83 10.08
@ 0.2VDD 0.55 6.41 0.91 8.47 0.66 6.14 1.00 6.06 1.05 20.57 0.93 10.28

Avg
Corrcoef 0.9962 0.9886 0.9976 0.9943 0.9893 0.9932

MSE 2.21E-4 5.04E-04 1.69E-04 2.42E-04 4.57E-04 2.9E-04

Disk size-KB 15 38

Time - (s) Training time = 20s – Retrieving time = 0.11s Training time = 20s – Retrieving time = 0.1s

152

153

APPENDIX D

Published and accepted papers
We have two published papers at one refereed IEEE conference as an outcome of work done in

this thesis, and one journal paper is under review at Ain-Shams Engineering Journal.

• Published: W. Raslan and Y. Ismail, "Deep Learning Autoencoder-based Compression for

Current Source Model Waveforms," 2021 28th IEEE International Conference on Electronics,

Circuits, and Systems (ICECS), 2021, pp. 1-6, doi: 10.1109/ICECS53924.2021.9665573.

o https://ieeexplore.ieee.org/document/9665573

• Published: W. Raslan and Y. Ismail, "Structured Recurrent Neural Network Model Order

Reduction for SISO and SIMO LTI Systems," 2021 28th IEEE International Conference on

Electronics, Circuits, and Systems (ICECS), 2021, pp. 1-6, doi:

10.1109/ICECS53924.2021.9665593.

o https://ieeexplore.ieee.org/document/9665593/

• Accepted: W. Raslan and Y. Ismail, “Deep-learning cell-delay modeling for static timing

analysis”, Ain-Shams Engineering Journal. Manuscript Ref# ASEJ-D-21-01477R1

o https://authors.elsevier.com/tracking/article/details.do?aid=101828&jid=ASEJ&
surname=Raslan

https://ieeexplore.ieee.org/document/9665573
https://ieeexplore.ieee.org/document/9665593/
https://authors.elsevier.com/tracking/article/details.do?aid=101828&jid=ASEJ&surname=Raslan
https://authors.elsevier.com/tracking/article/details.do?aid=101828&jid=ASEJ&surname=Raslan

	Machine Learning Applications to Static Timing Analysis
	Recommended Citation
	APA Citation
	MLA Citation

	Channel Feedback in FDD Massive MIMO Systems with Multiple-Antenna Users

