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Abstract 
Neural networks had been subject of continuous research since the sixties of last century. 

It went through ups and downs in research and industry potential until the last decade. 

Three main factors contributed to the rise of deep learning and artificial intelligence as 

instrumental tools in future; availability of enormous data, availability of computational 

power needed to train big data; and devising training algorithms that can train deep neural 

networks. Using feed-forward neural networks proved to be successful in regression and 

classification analysis. Modeling complex cell behavior is critical for accurate static timing 

analysis. Accounting for larger wire delays, noise and inductance effects on smaller 

transistor feature sizes resulted in the need to capture more complex waveforms during 

library cell characterization process. The more complex waveforms, the more waveform 

samples that need to be stored on disk to capture waveform overshoots, undershoots and 

multiple crossings. Increased technology file size can have drastic effects on the 

performance of digital design flow processes and static timing analysis that depend on 

these library files. Effective current source model, ECSM, and composite current source, 

CCS, waveform data compression became a necessity to reduce the size of technology files 

and increase the accuracy of the cell characterization data. Huge waveform data needed 

for current source models explodes technology file size and degrades design flow 

performance. We used deep learning nonlinear Autoencoders to compress voltage and 

current waveforms and compared them with singular component analysis approach. 

Autoencoders gave ~1.67x compression ratio for voltage waveforms better than, singular 

value decomposition, SVD, approach and between ~45x and ~55x better compression ratio 
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that lossless compression techniques like gzip and bz2. Autoencoders achieved ~1.7x 

compression ratio for complex rising-edge current waveforms at model loss of 7.6e-5 and 

comparable results to SVD approach for the falling-edge waveforms. However, SVD 

remains more computationally efficient than Autoencoders. Deep learning non-linear 

delay model, DL-NLDM, is proposed to replace the standard 7x7 non-linear delay 

modeling lookup tables, NLDM-LUT, that hold the delay information according to the 

input transition and effective capacitance values. The proposed DL-NLDM performed 

better than the standard 7x7 NLDM-LUT tables in average, standard deviation and 

maximum percentage errors compared to SPICE simulation. Building on both DL-NLDM 

and waveform compression, a combined DL-NLDM ECSM waveform model is proposed 

to produce both delay/transition time information as well as the compressed waveform 

parameters. Experiments show that separate DL-NLDM and encoded ECSM waveform 

parameters are better than the combined ones. In addition, deep learning waveform delay 

model, DL-WFDM, is proposed to radically change transition/delay propagation to a full 

waveform propagation that can be used to measure the delay or perform ECSM delay 

calculations. Experiments also show that separate DL-NLDM and encoded ECSM 

waveform parameters still perform better, in delay errors, than the proposed DL-WFDM 

models. 

Another type of neural network is used in this research to perform model order reduction, 

MOR, of linear time invariant, LTI, systems. Recurrent neural networks, RNN, where 

outputs of neurons are fed back into neurons inputs proved to help in modeling time series 

data in which future output is dependent on experience. Obtaining accurate and less 

computational demanding reduced models is a continuous challenge with complex 
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systems. We propose a structured recurrent neural network, S-RNN, that can model LTI 

single input single output, SISO, systems of any order. The weights of the trained S-RNN 

are directly mapped to the discrete state space equations of the system. We showed how to 

obtain the continuous time transfer function of the reduced system from the trained S-RNN 

weights. Using this S-RNN model outperformed other model order reduction techniques 

reported in selected literature. The proposed S-RNN reduced a complex system of 598 

states is reduced to a 10th order system at 9.04e-6 mean-square-error. SISO 4th order 

outperformed reported results of other MOR techniques. The S-RNN is extended to model 

single input single output, SIMO, LTI of any number of output and any system order. Using 

this RNN SIMO network, RLC interconnect of 108 states was reduced to a 5th system at 

9.1e-4 mean square error. S-RNN is also shown to be able to model multiple input multiple 

output, MIMO, systems with better results than modeling individual MIMO input output 

relationship. 
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Chapter 1 

 

Introduction 

 
1.1 Motivation  

Electronic design automation, EDA, tools are challenged with complex designs and enormous 

data that are getting generated during the design flow starting from requirements down to 

physical implementation. Machine and deep learning techniques proved to be very useful 

handling extremely large data during the last decade. Advent of new training algorithms, 

existence of very powerful processing power and very large data availability allowed deep 

learning to flourish and be used in practical applications in different domains. Data explosion 

forced big companies like Google and Microsoft to use AI/ML techniques in their search engines, 

image recognition, and movie analysis applications. The momentum behind autonomous cars, 

robotics and drones forced companies like Google and Tesla to use AI/ML techniques to 

empower computer vision and decision-making algorithms. IoT, Cloud Computing, 5G and 

Industry 4.0 are all driving big companies like Amazon, Microsoft, Siemens, Oracle, and IBM to 

allocate large budgets to AI/ML research to be able to handle the next wave of data explosion 

expected with all these technologies. 

Machine and deep learning techniques penetrated design flows and EDA tools. Many EDA 

companies are investing in machine learning, ML, applications anticipating that only ML-enabled 

EDA applications will be able to handle the complexity of the next generation semiconductor 
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design process. This research focuses on ML and DL applications in EDA applications to explore 

what is happening in the industry and academia as well as to contribute to this important field of 

research. 

1.2 Thesis Statement 
This thesis starts with surveying machine learning applications to electronic design automation. 

This thesis work focused on deep learning applications in cell delay modeling to increase the 

accuracy of delay models without increasing the size of the cell technology file. In addition, this 

thesis proposes deep learning applications for model order reduction of linear-time invariant 

systems to model white box complex systems and black box unknown systems given the original 

system step response. 

1.3 Thesis Contribution 

The main contributions of this thesis are: 

• Proposed deep learning non-delay model, DL-NLDM, to model cell delays using DL 

neural networks. This approach reduced the two lookup tables, NLDM-LUT, 

characterizing cell delay and transition time to one DL model for rising edge and another 

DL model for falling edge. For falling edge model, the proposed DL-NLDM outperforms 

7x7 NLDM-LUT average percentage errors by ~1.24x delay time and ~1.55x transition 

time over the selected wide range of input values. The same DL-NLDM model 

outperforms 100x100 NLDM-LUT maximum percentage errors by ~2.37x delay time and 

by ~2x for transition time. For rising edge model, the proposed DL-NLDM outperforms 

7x7 NLDM-LUT average percentage errors by ~5x for both delay and transition time and 

outperforms 100x100 NLDM-LUT maximum percentage errors by ~3.19x for delay time 

and by ~2.75x for transition time. The proposed rising edge model gives less than 1.41% 

average delay and 4.86% average transition time percentage error compared to SPICE. 
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DL-NLDM retrieving time outperformed this of 7x7 NLDM-LUT by 1.69x, and 

outperformed 100x100 NLDM-LUT by 12x using the outlined Python implementation.  

• Proposed DL Autoencoder-based compression technique for ECSM voltage waveforms to 

increase the waveform fidelity without increasing the technology file size. This DL 

compression technique outperformed the nearest rank SVD technique compression ratio 

by ~1.67x, and by ~1.78x for 150-points sampled waveforms. Two params Autoencoders 

compression ratio outperforms lossless compression techniques by ~45x to 55x factor. On 

the other hand, nearest SVD rank outperforms 2 params encoding decompression time by 

~12.25x and ~17.34x for 1000-points and 150-points sampled waveforms respectively. For 

1000-points sampled waveforms, 2 params Autoencoders models give between 0.4% to 

0.85% standard deviation of percentage errors compared to SPICE simulation. For 150-

points sampled waveforms, 2 params Autoencoders models give between 0.2% to 0.4% 

standard deviation of percentage errors compared to SPICE simulation. Encoding with 4 

params Autoencoders models are generally ~2x better in error rates compared to the 2 

params models on the expense of lower compression ratio. 

• Proposed compressing CCS voltage time waveforms using the same DL Autoencoder 

technique. The proposed Autoencoders give 1.7x better compression ratio results than the 

nearest rank SVD for 1000-points sampled rising-edge current waveforms. Autoencoders 

give 26.5x compression ratio compared to 15.4x SVD reported compression ratio. SVD 

compression gave slightly better results for falling-edge current waveforms, 30.8x versus 

29.34x Autoencoder compression ratio.  

• Proposed a combined DL-NLDM ECSM waveform compressed model trained to produce 

two-parameters encoded output waveforms given input transition time and input 
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capacitive load values. A combined DL-NLDM ECSM model is trained for each edge and 

for each cell type. Experiment results show that separate DL-NLDM and ECSM waveform 

parameters perform better than the combined model. However, the combined model 

remains better than the maximum percentage delay and transition time errors of the 

standard 7x7 NLDM-LUT over the selected wide cell characterization values range. 

• Proposed modeling cell delays using DL waveform delay model, DL-WFDM, trained to 

produce two-parameters encoded output waveforms given two-parameters encoded 

input waveforms and capacitive load input values. Experiments show that separate DL-

NLDM and ECSM waveform parameters perform better than the proposed DL-WFDM 

model, however there is a great potential to improve this new modeling methodology 

performance results. 

• Proposed and trained a structured recurrent neural network, S-RNN, that models Nth 

order LTI SISO systems. Proposed and trained other S-RNN network structures to model 

Nth order LTI SIMO systems of any number of outputs O. Proposed RNN network 

structure to model Nth order MIMO LTI systems of any number of input M and output 

O. Reconstructed the continuous time state-space model from the weights of the trained 

S-RNN models. 

1.4 Thesis Organization 
This thesis is organized as it follows: Chapter 2 of this thesis surveys the most notable machine 

learning research activities in electronic design automation. Chapter 3 provides background 

information on cell characterization models which most of this research focuses on to apply deep 

learning applications. Chapter 4 details the proposed DL Autoencoder-based waveform 

compression technique and the compression results compared with other compression 

techniques. Chapter 5 presents different proposed deep learning cell delay modeling techniques 
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and experiment results. Chapter 6 shows another proposed application of deep learning 

technique - structured recurrent neural networks, S-RNN, to perform model order reduction of 

complex SISO, SIMO and MIMO linear time-invariant, LTI, systems. Chapter 6 lists several 

experiment results for different types of complex systems. Finally, chapter 7 contains thesis 

conclusions and future work followed by the list of references. 
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Chapter 2 

 

Machine Learning Applications in 
Electronic Design Automation 

 
There are many driving forces behind the machine learning success in the recent decade, on top 

to these forces is the huge available data that need deeper analysis to extract useful information. 

Google and Bing search engines and other big names like Amazon, and Netflex invested heavily 

in machine and deep learning for data analysis, image recognition, and movie analysis. Hi-tech 

companies developing autonomous cars and drones invested in image processing and computer 

vision. Companies driving IoT, cloud computing and the promises of Industry 4.0 like Amazon, 

Siemens, IBM and Oracle are investing in data analytics. 

ML/DL techniques are penetrating EDA applications. Focus on optimization, classification, and 

image recognition problems with large parameters. Search for optimal design with acceptable 

accuracy, reliable, cost effective and scalable algorithms. DAC, the most notable IEEE EDA 

conference focus started to dedicate special track for machine learning application in EDA 

applications for papers and tutorials. Several joint industry and academia centers are founded to 

focus on ML applications in EDA like CAEML, “Center for Advanced Electronics Through 

Machine Learning”. EDA companies like Synopsys, Cadence and Siemens EDA are investing in 

in-house ML enabled applications as well as investing in acquiring high potential startups. Many 

EDA startups focusing on machine learning had successful launch and some have been acquired 

by big EDA names. Many recent publications in the last five years across all design life cycle. The 

following sections explores the recent research activities of machine and deep learning in 
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electronic design automation domain. 

2.1 Design Space Exploration 
3D-IC design space application: Heterogeneous die integration provides More than Moore, 

however thermal gradient and TSV reliability limit 3D-IC benefits. There is a need to optimize 

many parameters to reach optimal design. Use of thermal-electrical simulation plus sweep of 

optimization parameters increases computation time exponentially. Park et al., [Park’16], 

proposed Bayesian Optimization Algorithm, BOA, to optimize the design parameters taking 

accuracy, speed, scalability into consideration.  

 

FIGURE 2-1 Using BOA to optimize design parameters [Park'16] 

 

Using full system Thermal Electrical Simulation to run and get few datasets across optimization 

parameters. Fig. 2-1 shows the extracted features like the dimension, total power, fan speed, TSV 

number, etc. and the corresponding measured outputs, temperature, clock skew, PDN noise, etc. 

used to train the model.  Now switch to BOA to use this dataset to learn from experience instead 

of sweeping all parameters in Monte Carlo Analysis. Near real simulation accuracy is achieved 

with small run and cost time.  

3D-IC SW NoC Research: Another 3D-IC ML optimization application Small World NoC where 

it’s needed to transmit data with low latency, high throughput, and minimum power 
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consumption. 3D-IC NoC enables high performance and low-power many core chips. There is a 

need for energy-efficient and reliable 3D SW NoC.  

 

FIGURE 2-2 Small-World NoC energy-efficient and reliable 3D optimization [Das’17] 

 

To achieve this objective, it’s needed to optimize placement of planar and vertical communication 

links and optimize the placement of spare vertical links sVLs in a 3-D NoC. Das et al., [Das’17], 

proposed using stage learning algorithm, Fig. 2-2, to perform this optimization. Stage starts with 

base search optimization which generates new training data used to perform a meta search that 

enhances the optimization process.  

2.2 Power Estimation 
Power models are either not available or not accurate which results in over or under-estimated 

power designs. Real HW is not always available. Lee et al., [Lee’15] proposed training a model 

using real hardware and then calibrate McPAT (Multicore Power, Area, and Timing) simulator, 



25  

the open-source simulator used by hpLabs McPAT models. Lee et al’ work utilized the least 

square regression technique. 

Power estimation depends on running SW applications on cycle accurate instruction set 

simulator, ISS, simulation. This process requires lengthy simulation and huge HW resources. 

Zheng et. Al, [Zheng’15] proposed technique to train a model using cycle accurate simulator 

results to predict target power estimate while running on a host machine as Fig. 2-3 shows. They 

used constrained locally sparse linear regression, CLSLR, technique to train the ML model which 

is a variant of Linear Regression technique. 

 

FIGURE 2-3 Power estimation using CLSLR regression technique [Zheng’15] 
 

2.3 Functional Verification 
Functional verification of complex designs involves thousands of test cases that require huge time 

to execute. Most of the time there are redundant test cases that consume time, effort, machine 

power and don’t add any coverage value. Wang et al., [Wang’15], proposed machine learning 

techniques using SVM, Fig. 2-4, to add a filtering module that performs data mining to skip 

repeated tests that don’t add any coverage and generate unique tests that increase test coverage. 
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FIGURE 2-4 Functional verification to filter and optimize test cases [Wang’15] 
 

Mandouh el al., [Mandouh’16] focused on the problem of having huge number of assertions, and 

test failures that have common root causes that causes duplicate effort to debug/fix from large 

team. Their approach, Fig. 2-5, uses K-Means clustering to extract similar failing coverage groups, 

assertions trace signals to accelerates debugging and verification of large designs. 

 

FIGURE 2-5 Grouping of failing coverage groups having common root causes using K-Means 
clustering [Mandouh’16] 

2.4 Timing Analysis 
Kahng et al., [Kahng’17], proposed ways to reduce the cost and time of performing signal 

integrity timing analysis used in Synopsys Prime Time-SI commercial product. Capacitor 

inductor effects create serious timing errors, shrinking transistor feature size results in huge 

CrossTalk impact, signal glitches and jitters cannot be ignored as well as noise and distortion. 

Kahng et al., [Kahng’15], trained a model with SI and non-SI mode timing reports using both 
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ANN and SVM, Fig. 2-6, and used a weighted prediction of both methods to estimate the SI 

reports from non-SI reports. 

 

FIGURE 2-6 SI for free proposed model [Kahng’15] 
 

Wang et al., [Wang’17], proposed ML application to refute false positive and false negative critical 

paths during static timing analysis. There are many reported false negative critical paths in order 

of thousands. There are also many missed real critical paths in order of hundreds. Wang et al. 

used machine learning to perform correlation between STA and post-silicon timing measurement 

using SVM learning techniques to uncover learning rules for improvement. 

2.5 Physical Design 
Physical proximity of certain mask shapes can lead to short or open circuit which reduces IC 

manufacturing yield. Different solutions with different limitations exist to address this problem 

including simulation, design rule checks, DRC and pattern matching. Machine learning provides 

solutions that can generalize the learnt patterns. Yang et al., [Yang’17] proposed convolutional 

neural networks to perform hotspot detection using CNN setup in Fig. 2-7. 
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FIGURE 2-7 Hotspot detection using CNN [Yang'17] 
 

Predicting high variability area due to process and voltage variability is another physical design 

ML application. Drmanac at al., [Drmanac’09], performed feature extraction of variability 

measures, performed supervised SVM learning to build a variability classifier for inter-cell 

variability classification. They also performed unsupervised SVM outlier learning to predict areas 

of high variability. 

2.6 Cell Characterization 
Cell Characterization is an important domain for machine and deep learning applications. Since 

this these focuses on cell delay modeling, cell characterization ML applications will be discussed 

in next chapter. 

2.7 Routing 
Meeting IR-drop and EM constraint requires more power distribution network, PDN, metal 

which increases the overall routing overhead with increased need to speed up design closure 

process. Chang et al., [Chang’17], proposed using routing cost rather than total area cost and 

created a learned routing-cost model using Gaussian process regression as in Fig.2-8. 
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FIGURE 2-8 ML-based routing model using Gaussian process regression [Chang'17] 
 

2.8 Other EDA Applications 
Provan et al. [Provan’12] explored machine learning applications in circuit synthesis. Hu et al., 

[Hu’16], explored machine learning techniques to check equivalence between synthesis and RTL 

logic. Wu et al., [Wu’17] explored machine learning applications to improve Boolean satisfactory, 

SAT, solving algorithms. Capodieci et al., [Capodieci’17], explored machine learning applications 

to optimize yield of IC manufacturing. Dai et al., [Dai’17] explored deep learning applications in 

hardware security problem of circuit recognition. Jap et al., [Jap’16], explored supervised and 

unsupervised learning technique to detect side-channel based Trojan attacks. Tenace et al., 

[Tenace’17], used classification and regression tree, CART, to extract the most significant primary 

inputs and their logic relationships with accuracy that can reach 89%. 
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Chapter 3 

 

Cell Characterization Models 

 
3.1 Overview 

Cell characterization is the process of extracting important cell characteristics to build an accurate 

and efficient cell model that represents its behavior. Models are used in various EDA digital 

design flow, [Kahng’11], and tools: 

• Static Timing Analysis 

• Synthesis 

• Power Analysis and Estimation 

• Placement and Routing 

• Floor Planning 

• Automatic Test Pattern Generation, ATPG tools 

• Verification Tools 

There are several quality metrics to take into consideration while designing and generating these 

cell models, mainly: 

• Accuracy – how far models deviate from silicon behavior 

• Conformance – with existing EDA tools 

• Completeness – characterizing needed information for time, area, and power 

• Efficiency - effort models need at run-time inside EDA tools 

• Characterization time – effort needed off-line to characterize cells 

• Size of files on disk – how much model information is needed to be stored and maintained 

The approach of trading accuracy with run time performance is usually taken to guarantee 
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adequate cell model that executes fast in different design flows.  

In addition, it’s needed to characterize each cell against PVT (process, voltage, and temperature) 

variations, if we have:  

• Temp: -40, 25, 80, 125, 150 

• Vdd: 0.52, 0.65, 0.8, 0.92, 1.1, 1.3 

• Process: FF, SS, TT, FS, SF 

Then we have 5x6x5 = 150 combinations = 150 costly Spice Simulation 

3.2 Liberty File Format 
Provides lookup tables that store standard cell and process information: 

• Rise and fall time of logic cells given input transition time and load capacitance (for 

NLDM model) 

• Output transition time to be used in the next stage of logic  

• Setup and hold time for sequential parts 

• Characteristics of different tradeoff cell variants: 

• High speed, high density, low power, low leakage, low voltage, low noise 

• Other important cell characterization information like area and power 

• Manufacturing process information, nominal operating temperature, supply voltage 

variations 

• On chip variation information 

Library technology is basically the outcome of cell characterization process. Synopsys Liberty .lib 

file format is the de-facto standard format. 

3.3 Liberty File Structure 
• Structure Information. Cell connectivity information 

• Functional Information. Cell functionality information 
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• Timing Information. Pin to pin timing information and delay calculations 

• Environmental Information. Manufacturing process information, nominal operating 

temperature, supply voltage variations, etc. 

3.4 Non-linear Delay Model, NLDM 
The most notable cell driver model is the non-linear delay model as explained by Sharma, 

[Sharma’16]. The characterization process starts with connecting the cell output pin to a load 

capacitance and applying a ramp signal to the cell input using a transistor level simulator. The 

ramp transition time and the load capacitance are swept through defined a range to measure the 

output delay and transition time.  

 

FIGURE 0-1 Cell Characterization Setup 

The output delay and transition time parameters at in given input transition and load capacitance 

are measured and stored in technology files. Usually, the process is repeated twice; one for the 

rising-edge and the second for the falling-edge. This model is also known as input-Slew, output-

Load Delay-Slew Model, SLDSM. Cell characteristics are either: 

• Fitted to closed form characteristic equations and stored in the form of k-factor for those 

equations 

• Stored as 2-D look-up table which is the widely used approach. Interpolation is used to 

retrieve output ramp voltage delay and transition time 

The lookup tables are the commonly used method, we proposed DL models in chapter 4 to 
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replace those traditional tables to increase the error rates without increasing the technology file 

size. Static timing analysis tools make use of these technology tables to perform its timing 

analysis. Cell driver model is a voltage source that outputs a ramp-voltage with delay and 

transition time dependent on input transition and output load values retrieved from the lookup 

tables or the characteristic equations. Cell receiver model is simply the load capacitance, the 

effective capacitance, or the PI model of the interconnect. 

 

FIGURE 0-2 NLDM Rise/Fall delay time LUT example 

 

FIGURE 0-3 NLDM Transition LUT example 
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This ramp model fails short to capture signal high nonlinearity, noise, and crosstalk effects when 

the feature size decreases, and the interconnect delays increase, and timing analysis becomes 

more sensitive to signals over-shoot, under-shoot, and multiple crossings. Hence, more complex 

models were introduced to increase the accuracy of cell models. 

3.4 Current Source Model Waveforms Background 
3.4.1 Effective Current Source Model, ECSM, Waveforms 

In addition to the cell characterization delay and transition-time tables, the output voltage 

waveform at a given transition time and output load is also stored in the technology file. 

Waveform information is stored in the output voltage table ECSM format that is introduced by 

Cadence and adopted as a Silicon Integration Initiative standard, [Si2’21]. The more waveform 

points we store in the technology file, the more accurate reconstructed waveform we get. 

However, the accuracy of the stored waveforms comes on the expense of the size of technology 

file on disk and the performance of static analysis tools making use of these files. Hence, trade-

offs between voltage waveform accuracy and data size on disk must be applied. 

3.4.2 Composite Current Source, CCS, Waveforms 

Composite current source model depends on storing the output current waveform flowing 

through the capacitive load at given transition input. Waveform information is stored in the 

output current table CCS format that is introduced by Synopsys, [Synopsys’21]. For current 

waveforms we only can sample N-points current-time samples at certain time increments. Like 

ECSM waveforms, the more samples per waveform we take the better waveform accuracy, but 

on the expense of more size on disk and less performance in static timing analysis. Hence, we 

must trade current waveform accuracy with data size on disk or find an efficient way to compress 

CCS and ESCM waveform information. 
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FIGURE 0-4 CCS rising-edge current waveform example 

 
And the fall CCS example is: 

 
FIGURE 0-5 CC falling-edge current waveform example 

3.5 Current Source Cell Receiver Model 
 
Cell behavior is modeled as voltage-controlled current source so to be independent of the load. 

This CSM can model high nonlinearity cell behavior and it can model noise and crosstalk effects 

by adding and characterizing Miller capacitance, Cm. 
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FIGURE 0-6 CSM for simple inverter 

For a simple inverter, Io and Ci, Cm, and Co are used to characterize the cell given values of Vi 

and Vo 

• Io is characterized through DC simulations over multiple combinations of DC values of 

(Vi, Vo), while Cint is characterized through a set of transient simulations 

• Interconnect trees are also reduced to PI-model, small circuit simulation is performed with 

the CSM and the PI-model to get the driving point waveform 

• Full interconnect simulation is performed with the driving point waveform to determine 

the waveform delay and shape at the sink points 

NOR2, NAND2 requires 2 current sources and 6 capacitances to model Miller, input, and output 

capacitances. Number of parameters increases with the complexity of cells; table size increases 

significantly. 

 

FIGURE 0-7 CSM of a NOR2 Cell 
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Chapter 4 

 

Deep Learning Autoencoder-based 
Compression for Current Source 
Model Waveforms 

 
4.1 Overview 

Accounting for larger wire delays, noise and inductance effects on smaller transistor feature sizes 

resulted in the need to capture more complex waveforms during library cell characterization 

process. The more complex waveforms, the more waveform samples that need to be stored on 

disk to capture waveform overshoots, undershoots and multiple crossings. Increased technology 

file size can have drastic effects on the performance of digital design flow processes and static 

timing analysis that depend on these library files. Current source model waveform data 

compression became a necessity to reduce the size of technology files and increase the accuracy 

of the cell characterization data.  

Waveform compression techniques are needed to increase the waveform fidelity without 

increasing the technology file size. General data compressors can be used like gzip, zlib, and bz2 

techniques [Berz’15]. Singular value decomposition, SVD, technique is a linear algebra algorithm 

to decompose any rectangular MxN matrix, A, into three matrices, left singular matrix, sigma 

matrix and right singular matrix. The best sigma matrix rank can be selected and ignore less 

significant values. The best rank matrix represents the data basis that can represent the 

compressed version of the original matrix A. SVD technique can decompose any rectangular 

matrix, and it doesn’t require intensive computation power or GPU. Ramalingam et al., 

[Ramalingam’07], proposed fixed waveform-basis principal component analysis using the 
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singular value decomposition technique. Hatimi et al., [Hatami’09], used an adaptive waveform-

basis singular value decomposition to get better compression results of certain waveforms. They 

achieved compression ratios between 20 to 4 depending on the accuracy level. Recursive 

polynomial representation is used by Saurabh and Mittal, [Saurabh’18]. Li and Yu proposed 

signal-value compression scheme achieving average of 26 compression ratio [Li’21]. Abrishami 

et al., [Abrishami’19], proposed a neural network simulation framework to eliminate current 

source model lookup tables without performing waveform data compression to reduce memory 

latency and computation of current source model. Deep learning Autoencoder, [Goodfellow’16], 

is a feedforward neural network with multiple hidden layers. Autoencoders are trained to 

produce an output close to the training input data. The layers from the input layer down to the 

middle layer, which is typically of a size much smaller than the size of the input data, represent 

the date encoder. The layers from the middle layer down to the output layer represent the date 

decoder. Using linear activation functions in the Autoencoder layers produces a comparable 

performance to the principal component analysis, PCA, technique. On the other hand, using 

nonlinear activation functions should result in better encoding results. Training Autoencoders 

requires a large dataset and intensive computation power. However, since the training phase is 

done offline, this intensive computation power can be tolerated for better performance. Fournier 

and Aloise, [Fournier’19], compared Autoencoders performance with principal component 

analysis technique using different image datasets. They showed that PCA technique produces 

comparable accuracy to Autoencoders results at two orders of magnitude faster performance. 

We propose using deep learning nonlinear Autoencoders to compress current source models 

waveform data. We used SVD technique to compress the same waveforms and compared the 

trained Autoencoders results with the SVD compression results. We trained different 

Autoencoder models on 142800 voltage waveforms and another 142800 current waveforms 

https://ieeexplore.ieee.org/author/37086937160
https://ieeexplore.ieee.org/author/37086937160
https://ieeexplore.ieee.org/author/37086933758
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characterizing rising-edge output NOR, NAND, and INV cells. Different encoding models are 

trained on similar number of falling-edge waveforms. We achieved effective compression ratio 

of 104 after encoding 1000-points sampled voltage-time waveforms using two encoding 

parameters with average correlation coefficient greater than 0.999 and less than 0.5% average 

percentage error at key waveform points. Compared with SVD compression, Autoencoders gave 

1.67x better compression ratio for 1000-points sampled voltage waveforms. We also encoded 

voltage waveforms at varying time 50, 100, and 150 points. Trained models on 150-points sampled 

waveforms gave better 1.78x better compression ratio than SVD of rank 16. Encoding more 

complex 1000-points sampled current-time waveforms resulted in an effective compression ratio 

of 26 and average correlation coefficient of 0.975 and 0.998 using 8 and 16 encoding parameters 

respectively. Compared with SVD, Autoencoders achieved 1.7x better compression ratio for 

complex rising-edge current-time waveforms at model loss of 7.6e-5 and achieved comparable 

performance for the falling-edge waveforms. 

4.2 Autoencoder-based Waveform Data Compression 
We propose using Autoencoders to encode waveforms into very small number of parameters. 

Those parameters can be decoded again to the original waveform within certain error. The less 

parameters we can represent a complex waveform is the better in terms of reduced size on disk 

and higher execution performance. The steps we followed for waveform data compression are:  

• Generating ECSM and CCS waveforms. 

• Preprocessing waveform data. 

• Designing Autoencoder models  

• Training Autoencoder models. 

4.2.1 Generating ECSM and CCS Waveforms 

MOS transistor model BSIM3v3 model (Eldo level 53) is used to perform transistor level 
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simulation of NOR, NAND and INV cells. Each cell is connected to a capacitive load and input 

ramp voltage source. Using the simple cell characterization setup in Fig. 4-1 for INV, NOR and 

NAND cells, the transition time of the ramp input is varied from 10ps to 2 ns, whereas the 

capacitive load is varied from 0.1fF to 100fF.  

 
FIGURE 4.1 Cell Characterization Transistor Level Simulation Setup 

In each simulation run, the 1000-points voltage-time samples are measured at the output pin to 

store the waveforms needed for ECSM models. Uniform time 1000 sampled points per waveform, 

as in Fig. 4-2, is selected to capture more complex waveform properties like overshoots, 

undershoots, rapid transitions and multiple crossings. 

 

FIGURE 4.2 1000-points uniform time sampled waveform 
 

Another sampling technique is devised to sample the most significant N samples before crossing 

95%VDD or 5%VDD for rising or falling time waveforms respectively as shown in Fig. 4-3. The 
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number of samples N is varied between 50, 100 and 150 points. Sampling 150-points gave better 

results than 50 and 100, therefore sampling results of 150-points are reported and compared with 

sampling uniform time 1000-points in this paper.  

 
FIGURE 4-3 Varying Time, 50, 100, 150 Sampling Points 

 

Total of 142800 rising-edge and another 142800 falling-edge voltage waveforms were captured 

for ECSM models.  During the same simulation run, delay and transition time values are recorded 

against the input waveform transition time and effective load capacitance to train the NLDM 

deep learning models. 

4.2.2 Preprocessing Waveform Data 

Data normalization is a key step to perform before training deep learning networks. 

Preprocessing voltage-time waveform data is a little bit more involved to account for the over 

and under shoots. Assuming 50% possible overshoot or undershoot, then equation (4) normalizes 

waveform data between 0 and 1 including possible over or under-shoots.  

Normalized WF = (WF+0.5VDD)/(2*VDD) () 

Current waveforms are more complex to normalize between 0 and 1 because the minimum and 

maximum current values are different from waveform to the other. Hence, we scaled each 
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waveform to have similar minimum and maximum values, then normalized all waveform data 

between 0 and 1. 

4.2.3 Designing Autoencoder Models 

We designed several Autoencoder models and trained them using the preprocessed ECSM and 

CCS waveform data. The model topologies that resulted in best training performance are listed 

in table 4.1. Each model has an input layer I, and output layer O of the same size that is equal to 

the number of waveform sample points. For each model, the number of the encoded parameters 

P is varied between 8, 4, 2, 1 for ECSM waveforms and between 16, 8, 4, 2, 1 for CCS waveforms. 

Relu activation function is used for all Autoencoder layers, and sigmoid function is used in the 

output layer. Using sigmoid function adds a non-linearity learning capability to the 

Autoencoders that enables them to learn more complex data. 

Table 4.1 Autoencoder Models for Parameter P = 16,8,4,2,1 

ID 
Autoencoder Models 

Model Topology Activation Function 

13 I,2048,512, P,512,2048,O 

Relu for all layers, 
except Sigmoid for 
middle and last layer 

12 I,2048,512,16, P,16,512,2048,O 

10 I,2048,1024,32,16, P,16,32,1024,2048,O 

9 
I,2048,1024,128,64,32,16, 

P,16,32,64,128,1024,2048,O 

4 I,1024,64,32,16, P,16,32,64,1024,O 

3 I,1024,32,16, P,16,32,1024,O 

2 I,1024,16, P,16,1024,O 

 
To calculate the compression ratio, we need to calculate the size of encoded data plus the decoder 

size to compare with the original data size on disk. Given S number of waveforms, P number of 

encoded parameters, B number of bytes to store the encoded parameters, then the encoded 

waveform size, E, if given by equation (5). On the other hand, given R number of actual data 

points per waveform saved on disk; R=21 data points for ECSM and R=1000 data points for each 

ECSM or CCS waveform, then the uncompressed data size, O, is given by equation (6). 

Considering that the total size needed to store the encoded data on disk is the encoded waveform 
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size plus the decoder size, D, needed to decode the waveforms. Hence, the effective compression 

ratio is calculated by equation (7). 

E (Encoded Waveform Size) = (S*P*B) ()  

                O (Original Waveform Size) = (S*R*B)                             () 

                Effective Compression Ratio= O/(E+D)                            () 

4.2.4 Training Autoencoder Models 

All Autoencoder models with all possible values of the parameter P (16, 8, 4, 2, 1) were trained 

on the normalized WF data. The used computer configuration is: Intel Core I7, 16GB RAM, with 

6GB NVIDIA GeForce RTX 2060 GPU. Python version 3.8.5 and Keras library v2.4 with GPU-

enabled Tensorflow backend is used to model Autoencoder models. Adam optimization is used 

in the training process and mean squared error, MSE, is used as a loss function. The training 

process was designed to abort training if the loss value deteriorates 50 iterations in sequence. 

Single Autoencoder model is trained on a combined input of NOR, NAND, INV rising or falling-

edge waveforms. Successful training of 142800 1000-points current waveforms took average of 

400 epochs in average of 2000 sec. Training of 142800 1000-points voltage waveforms took average 

of 300 epochs in an average of 1500 sec. 

4.3 Waveform Data Compression Results 
To evaluate the performance of the trained Autoencoders, all the normalized waveforms were 

compressed using Python implementation of SVD technique. All the normalized waveforms are 

packed in a matrix A, of size 142800x1000 or 142800x150 depending on the sampling points. The 

matrix A is analyzed using SVD. Different ranks of the sigma matrix are selected to produce the 

compressed version of matrix A. The SVD data compression at different ranks are evaluated and 

compared to our proposed Autoencoder-based compression at different number of encoding 

parameters. 

4.3.1 Autoencoding fixed time 1000-points ECSM Voltage Waveforms  
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To evaluate the performance of the trained Autoencoders, all the normalized waveforms were 

compressed using Python implementation of gzip, bz2 techniques and SVD. Autoencoders of 2 

parameters gave between 39x to 45x better compression ratios than gzip and bz2 techniques at 

less degree of accuracy. For SVD, all the normalized waveforms are packed in a matrix A, of size 

142800 times the number of sampling points). The matrix A is analyzed using SVD. Different 

ranks of the sigma matrix are selected to produce the compressed version of matrix A. The SVD 

data compression at different ranks are evaluated and compared to our proposed Autoencoder-

based compression at different number of encoding parameters.  

Table 4.2 Best Autoencoding 1000-points ECSM Falling-Edge Waveform Results Against bz2, gzip 

and SVD techniques 
 

 
 

 
 
 
 
 
 
 

Table 4.3 Best Autoencoding 1000-points ECSM Rising-Edge Waveform Results Against bz2, gzip 

and SVD techniques 
 

 

 

 

 

 

Tables 4-2 and 4.3 show that Autoencoders of 2 parameters were able to produce 1.67x better 

compression ratio results than SVD technique of rank 16, and less than 0.7% average percentage 

error compared to SPICE simulation. The tables show also that encoding with 4-params 

 Falling-Edge WF 

 
bz2 gzip SVD Rank=16 

Autoencoder, Model ID=2 

2 param 4 param 
% error 

0 0 

Avg Std Max Avg Std Max Avg Std Max 

@ 0.8VDD 0.84 2.5 99.9 0.67 1.3 34.7 0.37 0.5 8.1 

@ 0.5VDD 0.58 2.1 83.2 0.52 0.8 8.4 0.27 0.3 4.7 

@ 0.2VDD 1.10 2.4 84.8 0.66 1.1 34.9 0.29 0.5 5.3 

Mean corrcoef 1 1 0.99876 0.9995 0.99988 

Loss (MSE) 0 0 8.29E-05 5.2E-05 1.27E-05 

Disk size-MB 188.5 161.6 6.9 4.15 4.15 
Compression Ratio 2.29 2.67 62.5 104.06 86.14 
Compression time (s) 49.6s 32s 0.974s 4.6s 4.6s 
Decompression time (s) 16.2s 10s 0.212s 2.6s 2.6s 

 Rising-Edge WF 

 
bz2 gzip SVD Rank=16 

Autoencoder, Model ID=2 

2 param 4 param 
% error 

0 0 

Avg Std Max Avg Std Max Avg Std Max 

@ 0.8VDD 2.9 6.7 210 0.7 1.4 30.3 0.3 0.7 12.6 

@ 0.5VDD 1.1 5.7 192 0.46 0.8 30.4 0.25 0.5 7.6 
@ 0.2VDD 2.1 5.6 158 0.67 1.5 31.4 0.32 0.7 16.2 

Mean corrcoef 1 1 0.99535 0.9994 0.99985 

Loss (MSE) 0 0 3.2E-04 5.8E-05 1.37E-05 

Disk size-MB 188.5 161.6 6.9 4.15 4.15 
Compression Ratio 2.36 2.71 62.5 104.06 86.14 
Compression time (s) 49.6s 32s 0.974s 4.6s 4.6s 
Decompression time (s) 16.2s 10s 0.212s 2.6s 2.6s 
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outperforms 2-params encoding by ~2x factor. The standard deviation of 2-params encoding is 

less than 1.5% for key waveform parameters. The offline training time is 600s for 100 epochs it 

can be enhanced with better hardware resources and smaller encoding models. Autoencoders of 

4 parameters gives better average and maximum percentage errors at less compression ratio 

compared to compressed 2 parameters. 

4.3.2 Autoencoding varying time ECSM Voltage Waveforms  

The same experiment is repeated with 50,100 and 150-points sampled waveforms at varying time 

range as described in section 4.2.1. Tables 4.4 and 4.5 show that Autoencoders ID 17 gave best 

results for 2-4 params encoding of rising and falling edges. Autoencoding with 2 parameters give 

1.79x better compression ratio results than the nearest SVD model of rank 4 with more than ~1.5x 

better average, maximum and standard deviation of percentage errors. Autoencoders of 2 

parameters also gave between 40x to 55x better compression ratios than gzip and bz2 techniques 

at less degree of accuracy. This accuracy is achieved with offline training time of 100s for 100 

epochs. Encoding with 4-params resulted in ~2x better results than encoding with 2-params. The 

encoded 150-points sampled waveforms remain overall better than the encoded 1000-points 

sampled waveforms in average and maximum percentage errors by ~2x factor. Fig. 4-4 shows a 

sample falling and rising edge waveform reconstructed after being encoded. 

 

 
FIGURE 4-4 Falling and rising decoded waveforms against Spice waveforms 
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Table 4.4 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD 

techniques 
 

 

Table 4.5 Best Autoencoding 150-points ECSM Waveform Results Against bz2, gzip and SVD 

techniques 

 

Tables 4.6 and 4.7 compare 2 and 4 parameters Autoencoder results for 1000-points, and varying 

time 50, 100, 150 points sampled waveforms.  

Table 4.6 Autoencoding 50,100,150,1000-points Falling-Edge ECSM Waveform Results at 

Different Number of Encoding Parameters 
Falling-Edge WF Autoencoder Number of Encoding Parameters 

Num of Params 4 2 

Num of waveform 

samples 

50 100 150 1000 50 100 150 1000 

Model ID 15 17 16 2 15 14 16 2 

Decoder size (KB) 39 111 125 4249 39 33 125 4249 

Avg % error 0.8VDD 1.8758 0.8707 0.19 0.37 2.316 1.3110 0.39 0.7 

Avg % error 0.5VDD 1.861 0.9338 0.12 0.27 2.1428 0.8739 0.29 0.46 

Avg % error 0.2VDD 1.8777 0.9652 0.12 0.29 2.0736 1.0262 0.49 0.67 

Mean corrcoef 0.99982 0.99994 0.99978 0.99985 0.9996 0.99948 0.99911 0.9995 

Model Loss (MSE) 1.24E-05 6.18E-06 9.01E-06 1.37E-05 3.87E-05 6.18E-05 5.1E-05 5.2E-05 

Compression Ratio 12.28 23.8 35.51 86.13 24.15 48.58 67.45 104.06 

 
 
 
 

 Falling-Edge WF 

 
bz2 gzip SVD Rank=4 

Autoencoder, Model ID=17 

2 param 4 param 
% error 

0 0 

Avg Std Max Avg Std Max Avg Std Max 
@ 0.8VDD 0.82 1.9 32.8 0.39 0.66 8.7 0.19 0.3 3.43 
@ 0.5VDD 0.42 0.65 13.7 0.29 0.54 9.37 0.12 0.2 3.36 
@ 0.2VDD 0.61 1.4 251.8 0.49 0.85 12.0 0.12 0.2    3.99 
Mean corrcoef 1 1 0.99632 0.99911 0.99978 
Loss (MSE) 0 0 1.78E-04 5.1E-05 9.01E-06 

Disk size-KB 6805 5501 245 136 136 
Compression Ratio 1.35 1.67 37.5 67.45 35.35 
Compression time (s) 16s 2.4s 0.06s 0.62s 0.62s 
Decompression time (s) 1.45s 0.24s 0.03s 0.52s 0.52s 

 Rising-Edge WF 

 
bz2 gzip SVD Rank=4 

Autoencoder, Model ID=17 

2 param 4 param 
% error 

0 0 

Avg Std Max Avg Std Max Avg Std Max 
@ 0.8VDD 0.47 0.84 27.6 0.38 0.7 11.97 0.15 0.2 3.49 
@ 0.5VDD 0.59 1.3 35.96 0.27 0.4 7.08 0.12 0.2 3.09 
@ 0.2VDD 0.65 1.9 43.08 0.37 0.7 5.44 0.22 0.4 4.92 
Mean corrcoef 1 1 0.99289 0.99854 0.99973 
Loss (MSE) 0 0 2.15E-04 7.27E-05 1.17E-05 

Disk size-KB 7593 6048 245 136 136 
Compression Ratio 1.21 1.51 37.5 66.85 35.35 
Compression time (s) 7.1s 1.2s 0.06s 0.62s 0.62s 
Decompression time (s) 1.45s 0.24s 0.03s 0.52s 0.52s 
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Table 4.7 Autoencoding 50,100,150,1000-points Rising-Edge ECSM Waveform Results at 

Different Number of Encoding Parameters 
Rising-Edge WF Autoencoder Number of Encoding Parameters 

Num of Params 4 2 

Num of waveform 

samples 

50 100 150 1000 50 100 150 1000 

Model ID 17 17 16 2 15 15 17 2 

Decoder size (KB) 86 86 125 4249 39 51 136 4249 

Avg % error 0.8VDD 2.0015 0.9643 0.15 0.3 2.1108 1.1525 0.38 0.7 

Avg % error 0.5VDD 1.9264 0.9889 0.12 0.25 2.0596 0.9409 0.27 0.46 

Avg % error 0.2VDD 1.9350 1.0649 0.22 0.32 2.1574 1.2043 0.37 0.67 

Mean corrcoef 0.99991 0.99992 0.99973 0.99985 0.99966 0.99954 0.99911 0.9994 

Model Loss (MSE) 4.96E-06 6.03E-06 1.17E-05 1.37E-05 3.00E-05 5.01E-05 5.1E-05 5.8E-05 

Compression Ratio 12.03 23.81 35.51 86.13 24.15 47.81 66.85 104.06 

 
4.3.3 Autoencoding fixed time 1000-points CCS Current Waveforms  

CCS current Waveforms are more complex than the ECSM voltage waveforms, hence it’s 

expected to require more parameters to achieve acceptable accuracy results. Tables 4.8 and 4.10 

list the best Autoencoder models at different number of parameters for falling and rising edge 

waveforms respectively. Autoencoders with single parameter didn’t converge, so they are 

omitted from the tables. Falling edge Autoencoder gave better results at 8 encoding parameters 

for model ID#10, and 26.8 effective compression ratio. Table 4.9 shows the SVD compression 

results of the same waveforms. At Sigma of rank 32, SVD gives 1.15x better compression results 

than the nearest Autoencoder model of 8 encoding parameters. However, SVD runtime decoding 

can be 19x faster than Autoencoders decode time. Fig. 4-5 shows a sample reconstructed 8-

parameters encoded falling-edge waveform. 

Table 4.8 Autoencoding 1000-points Falling-Edge CCS Waveform Results at Different Number of 

Encoding Parameters 

Falling-Edge WF 
Autoencoder Number of Encoding 

Parameters 
16 8 4 2 

Model ID 12 10 9 10 

Decoder size (KB) 12163 16368 16795 16368 

Mean corrcoef 0.95310 0.97501 0.94947 0.9365 

Model Loss (MSE) 6.20E-04 5.90E-04 8.00E-04 5.7E-03 
Compression Ratio 26.46 26.79 29.34 31.93 
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Table 4.9 SVD 1000-points Falling-Edge CCS Waveform Results at Different Sigma Rank Number 

Falling-Edge WF 
SVD Sigma Rank Number 

64 32 16 8 

Mean corrcoef 0.99666 0.98393 0.94397 0.82042 

Model Loss (MSE) 1.47E-04 7.00E-04 2.60E-03 7.9E-03 

Compression Ratio 15.41 30.81 61.63 123.27 

 

 
FIGURE 4-5 DECODED 8-P CCS FALLING-EDGE NORMALIZED AND SCALED CURRENT 

WAVEFORM VS. SPICE WAVEFORM 

Rising-edge current waveforms gave better results at 16 encoding parameters, model ID#13 and 

compression ratio of 26.5. Table 4.11 shows the SVD compression results of the same waveforms. 

In this case, Autoencoder of 16-parameters gave 1.72x better compression ratio than the nearest 

SVD Sigma matrix of rank 64. Fig. 4-6 shows a sample reconstructed 16-parameters encoded 

rising-edge current waveform. 

Table 4.10 Autoencoding 1000-points Rising-Edge CCS Waveform Results at Different Number of 

Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 
Parameters 

16 8 4 2 

Model ID 13 12 2 3 

Decoder size (KB) 12128 12163 4249 4320 

Mean corrcoef 0.99846 0.99765 0.97981 0.94083 

Model Loss (MSE) 7.60E-05 1.10E-04 1.10E-03 3.5E-03 

Compression Ratio 26.51 33.57 86.13 102.7 
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Table 4.11 SVD 1000-points Rising-Edge CCS Waveform Results at Different Sigma Rank Number 

Rising-Edge WF 
SVD Sigma Rank Number 

128 64 32 16 

Mean corrcoef 0.96587 0.93526 0.90055 0.70785 

Model Loss (MSE) 2.33E-05 7.99E-05 3.44E-04 1.3E-03 

Compression Ratio 7.71 15.41 30.81 61.63 

 

 
FIGURE 4-6 DECODED 16-P CCS RISING-EDGE NORMALIZED AND SCALED CURRENT 

WAVEFORM VS. SPICE WAVEFORM 

4.4 Conclusions  
Encoding 1000-points sampled waveforms with 2-params outperforms the nearest SVD 16-rank 

compression ratio by 1.67x and the generic lossless compression ratio by ~45x. It also outperforms 

the technology file LUT by ~3x reduction in storage (assuming storing 8 points per waveform 

and storing all number of waveforms). Encoding with 4-params outperforms the 2-params 

encoding waveform quality by ~2x, and the nearest SVD rank compression ratio by 1.37x. 

Similarly, 4-params encoding outperforms the technology file LUT by ~4x reduction in storage 

(assuming storing 8 points per waveform and storing all number of waveforms). Encoding 150-

points waveforms outperformed the 1000-points waveform encoding by 2x. However, the nearest 
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SVD 16-rank outperforms 2-params encoding decompression time by ~12.25x for 1000-points and 

by 17.34x for 150-points waveforms. There is a room for improving the reported decompression 

time of the Autoencoders either through finding better DL models with smaller size, or by using 

ML accelerated hardware. In the following chapter, these encoded waveform parameters will be 

used in two proposed models; one that replaces both NLDM-LUT and ECSM waveforms using a 

combined model, and another DL model to propagate waveform parameters instead of 

depending only on the waveform transition time. 
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Chapter 5 

 

Deep Learning Cell Driver Delay 
Modeling 

5.1 Overview 
Several deep learning techniques to model cell delays are proposed in this chapter. First, a deep 

learning non-linear delay model, DL-NLDM, is proposed to replace the traditional non-linear 

delay model lookup tables, NLDM-LUT, to produce higher degrees of accuracy over a wide range 

of input parameters. These DL-NLDM models are trained using measured cell output transition 

and delay time at different input transition time and capacitive load values. The deep learning 

model ability to generalize allowed achieving better results than lookup tables. Building on 

chapter 4 waveform Autoencoding technique, the input/output encoded waveform parameters 

are then used together with the associated effective capacitance to train another DL model and 

generalize the cell behavior. The trained DL cell model can then be utilized to produce the 

expected cell output encoded waveform given an encoded input. At any point of time, the cell 

output can be decoded back to its time-domain form using the corresponding waveform decoder 

produced earlier during the training phase. Finally, deep learning waveform delay model, DL-

WFDM, is proposed instead of NLDM-LUT or DL-NLDM models. In DL-WFDM, auto-encoded 

input/output waveforms parameters are proposed to model cell delays instead of the cell delay 

and the transition time used in the NLDM. SPICE-simulated cell input and output waveforms are 

used to train DL waveform Autoencoders. These trained Autoencoders can encode and decode 

the whole waveform into few parameters. The input/output encoded waveform parameters are 

then used together with the associated effective capacitance to train another DL model and 

generalize the cell behavior. The trained DL-WFDM model can then be utilized to produce the 
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expected cell output encoded waveform given an encoded input. At any point of time, the cell 

output can be decoded back to its time-domain form using the corresponding waveform decoder 

produced earlier during the training phase. 

The main contributions of this research work are: 

• Modeling cell delays using DL neural networks. This approach reduced the two tables 

characterizing the cell delay and transition time to one DL model. The DL-NLDM 

performed better than the standard 7x7 LUT size in average percentage errors and 

outperformed the non-standard 100x100 LUT in maximum percentage errors over the 

selected wide range of input values, and less than 1.4% average percentage delay error 

compared with SPICE simulation. 

• Compressing ECSM voltage time waveforms to increase the waveform fidelity while 

reducing the technology file size using DL Autoencoders technique. This DL compression 

technique outperformed the SVD technique by 1.67x for 1000-points sampled waveforms, 

and by 1.79x for 150-points sampled waveforms. Autoencoder technique outperformed 

gzip and bz2 techniques compression by 45x. 

• Modeling a combined DL-NLDM-ECSM model trained on two-parameters encoded 

output waveforms given input transition time and capacitive load values. Instead of using 

only the delay and transition time to characterize the cell, this approach uses two 

parameters to represent a complex waveform. Combined models are still better than 

NLDM-LUT delay and transition time maximum percentage error, however separate DL-

NLDM and ECSM compression models still perform better than the combined models. 

• Modeling cells using DL-WFDM model trained on two-parameters encoded input 

waveforms plus capacitive load values as inputs and two-parameters encoded output 

waveforms. The results of the DL-WFDM are promising, but separate DL-NLDM and 
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ECSM compression models still perform better than these new models. 

5.2 DL-NLDM: Deep Learning NLDM Cell Delay Model 
The same cell characterization setup used to obtain the ECSM voltage waveforms are used to get 

the training data for NLDM models. For each waveform output, the cell delay is measured as 

well as the transition time from 80% from/to 20% of VDD for the output voltage. The training 

data is formed using the input waveform transition time and effective load capacitance, and the 

output cell delay and the output waveform transition time. Feed-forward fully connected, FC, 

neural network is constructed and trained using this training data. Fifteen different deep learning 

model topologies are examined, one DL model and one training process is required for each of 

NAND, INV, and NOR.  

 

FIGURE 5.1 DL-NLDM cell delay model 

Table 5.1 shows the models that gave best modeling results. 

Table 5.1 Deep Learning Model Structure 
Model 

ID 
FC Neural Network 

Structure 
Activation 
Functions 

2 I,50,25,2 Relu for all 
layers, 

Sigmoid for 
output layer 

I=2 or 3 

3 I,100,2 

4 I,100,50,2 

6 I,200,100,25,2 

8 I,150,75,32,16,2 

The error rates of the deep-learning models are compared with the error rates of NLDM lookup 

tables, LUT, of different sizes. Though the de-facto size of NLDM LUT is 5x5 or 7x7 tables, DL-

NLDM results are compared with other larger non-standard LUT sizes as shown in Tables 5.2, 
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5.3 and 5.4 for different cell types. To increase the accuracy of the LUT tables, two sets of tables 

are used for each cell/edge type; one LUT table for input ramp range of 10ps to 1 ns and capacitive 

load range of 0.1fF to 1fF, and another LUT table for input ramp range of 1ns to 2ns and capacitive 

load range of 1fF to 100fF. On the other hand, a single DL-NLDM is trained on the whole input 

range. Offline training time is 20s, retrieving time is almost the same for different cell types, so 

it’s reported for NOR type only in table 5.2. 

Table 5.2 DL-NLDM best trained NOR models Mean/Max Percentage Error rates versus different 

LUT sizes 

 

Table 5.3 DL-NLDM best trained INV models Mean/Max Percentage Error rates versus different 

LUT sizes 
 

 

 
 
 
 

NOR Falling Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

Delay Time 0.53 0.91 15.46 0.22 0.67 15.46 0.16 0.86 18.1 0.48 0.57 3.56 

Tr Time 1.65 2.09 33.49 0.89 1.77 33.49 0.51 2.27 52.8 1.19 2.06 8.00 

MSE - - - 1.76E-05 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 

NOR Rising Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 

Delay Time 0.91 1.21 16.54 0.34 0.82 16.54 0.19 0.94 19.0 0.71 0.93 5.95 

Tr Time 4.24 5.44 43.85 2.12 3.99 48.06 0.91 3.63 89.2 3.20 4.72 36.33 

MSE - - - 6.29E-05 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 

INV Falling Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

Delay Time 0.70 0.71 26.31 0.37 1.21 26.31 0.29 1.54 33.1 0.60 0.94 10.41 

Tr Time 2.67 3.76 39.85 1.42 3.01 41.58 0.62 2.75 59.8 1.91 3.00 22.67 

MSE - - - 3.48E-05 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 

INV Rising Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 
Delay Time 2.82 3.72 51.53 0.97 2.12 31.51 0.40 0.40 43.4 1.41 2.67 42.25 

Tr Time 9.25 12.13 128.6 3.94 2.77 153.7 1.0 3.86 142.5 4.86 4.86 51.80 

MSE - - - 2.35E-04 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 
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Table 5.4 DL-NLDM best trained NAND models Mean/Max Percentage Error rates versus different 

LUT sizes 
 

 

The above tables show that the single DL-NLDM outperforms the rising and falling edge 7x7 

dual-table LUT average error accuracy and outperforms 100x100 dual-table LUT in maximum 

percentage errors for both delay and transition time over the selected wide range of transition 

time and effective capacitance values. Table 5.2 shows also that the retrieving time of DL-NLDM 

is better than those of different NLDM-LUT sizes. The increased accuracy and better retrieving 

time come at the expense of offline DL-NLDM training time and the increased size of disk, 

however the DL-NLDM disk size is better than 100x100 LUT size. 

5.3 Combined DL-NLDM ECSM Waveform Cell Delay Model 
Combined DL NLDM-ECSM deep learning model is proposed to be used to retrieve both NLDM 

delay/transition time values and the ECSM voltage waveform using a single model per cell type 

per waveform output edge. The ECSM output waveforms are encoded using the corresponding 

Autoencoder model encoder to produce the expected output waveform parameters. The 

combined DL model is trained on input waveform transition time and effective load capacitance 

values as input to produce the expected output waveform encoded parameters as well as the 

output transition and delay times as shown in Fig. 5.2. Tables 5.5 to table 5.10 show model ID#8 

results which gives the best training results for 1000-points based waveforms. These combined 

models achieved less than 2.89% average percentage error for key waveform points, less than 

NAND Falling Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 

% error Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

Delay Time 0.61 1.28 23.44 0.26 1.01 23.44 0.24 1.36 28.6 0.49 0.79 7.84 

Tr Time 1.32 2.11 38.10 0.65 1.79 38.1 0.46 2.33 50.8 0.85 1.21 7.51 

MSE - - - 2.91E-05 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 

NAND Rising Edge 

Delay Model LUT 7x7 LUT 25x25 LUT 100x100 DL-NLDM, Model ID=6 
Delay Time 1.88 2.58 27.38 0.68 1.54 22.97 0.29 0.29 27.9 0.79 1.34 12.30 

Tr Time 5.54 6.13 57.95 2.29 4.51 110.5 0.78 2.86 54.5 2.69 4.56 74.66 

MSE - - - 8.66E-04 

Disk size-KB 2 25.2 408 109 

Retrieving 
time (s) 0.18s 0.26s 1.28s 0.106s 
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1.94% average percentage error for delay time, and less than 6.64% average percentage error for 

transition time compared with SPICE simulation. Combined NLDM using 150-points varying 

time encoded waveforms gives better results than 1000-points sampled waveforms with model 

ID#6 for the average and maximum waveform percentage errors as well as for the average 

transition time as shown in tables 5.5 to table 5.10. All trained models have 218 KB size on disk. 

Tables 5.5 to table 5.10 show that separate DL-NLDM with 1000-points and 150-points 2-params 

encoded ECSM waveforms are compared against combined 1000-points and 150-points DL-

NLDM ECSM models.  

 
FIGURE 5.2 Combined NLDM-ECSM cell delay model 

Table 5.5 Combined DL NLDM-ECSM Falling-edge NOR Model 
Cell Type NOR 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 1.27 2.16 27.98 1.08 1.57 10.21 0.7 1.3 34.7 0.39 0.66 8.7  

0.5 VDD% 0.84 1.41 14.84 1.00 1.36 8.93 0.5 0.8 8.4 0.29 0.54 9.37  

0.2 VDD% 1.32 1.97 21.48 1.02 1.39 8.19 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99911 0.99603 0.9995 0.99914  

WF MSE 7.62E-05 2.36E-04 5.2E-05 5.10E-05  

Delay 0.59 0.82 3.86 0.52 0.78 6.09 Mean: 0.48 Std: 0.51 Max: 3.56 0.53 0.91 15.46 

Delay MSE 1.27E-05 9.53E-06 1.76E-05  

Transition 1.42 1.81 9.11 1.33 1.78 9.61 Mean: 1.19 Std: 2.06 Max: 8.00 1.65 2.09 33.49 

Transition MSE 8.34E-05 2.45E-05 1.76E-05  

 
Same ECSM Autoencoders models are used for NOR, INV, NAND waveforms. Separate models 

are better by ~2x for waveform values and by ~1.2x for delay and transition time. However, 

combined models are still better than NLDM-LUT in delay and transition time maximum 

percentage error.  Combined rising-edge and falling-edge 150-points DL-NLDM outperformed 
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100x100 and lower sizes of NLDM-LUT tables in terms of the maximum percentage errors. 

Table 5.6 Combined DL NLDM-ECSM Falling-edge INV Model 

Cell Type INV 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 1.67 3.21 20.12 1.52 2.17 16.96 0.7 1.3 34.7 0.39 0.66 8.7  

0.5 VDD% 1.06 2.42 38.82 1.29 1.85 15.17 0.5 0.8 8.4 0.29 0.54 9.37  

0.2 VDD% 1.43 3.04 33.84 1.28 1.86 15.03 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99875 0.98943 0.9995 0.99914  

WF MSE 9.35E-05 4.70E-04 5.2E-05 5.10E-05  

Delay 1.18 1.67 11.98 0.84 1.29 9.18 Mean: 0.60 Std: 0.94 Max: 10.41 0.29 0.71 33.1 

Delay MSE 2.94E-05 1.66E-05 3.48E-05  

Transition 4.06 4.16 27.98 2.77 3.62 27.49 Mean: 1.91 Std: 3.0 Max: 22.67 0.62 3.76 59.8 

Transition MSE 4.38E-04 1.04E-04 3.48E-05  

 

Table 5.7 Combined DL NLDM-ECSM Falling-edge NAND Model 
Cell Type NAND 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 1.65 3.68 28.65 1.06 1.43 9.26 0.7 1.3 34.7 0.39 0.66 8.7  

0.5 VDD% 1.00 1.59 33.96 0.98 1.29 8.11 0.5 0.8 8.4 0.29 0.54 9.37  

0.2 VDD% 1.19 1.87 32.37 0.98 1.31 8.26 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99909 0.99776 0.9995 0.99914  

WF MSE 8.50E-05 1.56E-04 5.2E-05 5.10E-05  

Delay 0.83 1.15 5.81 0.53 0.82 7.85 Mean: 0.49 Std: 0.79 Max: 7.84 0.24 1.28 28.6 

Delay MSE 2.14E-05 4.29E-05 2.91E-05  

Transition 1.01 1.41 9.85 1.02 1.37 8.44 Mean: 0.85 Std:1.21 Max: 7.51 0.46 2.11 50.8 

Transition MSE 5.06E-05 2.39E-05 2.91E-05  

 
Table 5.8 Combined DL NLDM-ECSM Rising-edge NOR Model 

Cell Type NOR 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 2.04 4.19 45.96 0.99 1.37 9.16 0.7 1.4 30.3 0.38 0.7 11.97  

0.5 VDD% 1.63 3.91 36.76 1.00 1.40 9.30 0.5 0.8 30.4 0.27 0.4 7.08  
0.2 VDD% 2.03 4.31 43.71 1.02 1.42 9.68 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.99788 0.99108 0.9994 0. 998632  
WF MSE 1.42E-04 3.50E-04 5.80E-05 7.27E-05  

Delay 0.82 1.21 8.54 0.94 1.29 6.95 Mean: 0.71 Std: 0.93 Max: 5.95 0.91 1.21 16.54 

Delay MSE 1.71E-05 1.47E-05 6.29E-05  

Transition 3.79 5.81 45.47 3.32 5.1 47.39 Mean: 3.2 Std: 4.72 Max: 36.33 4.24 5.44 43.85 

Transition MSE 1.88E-04 1.19E-04 6.29E-05  
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Table 5.9 Combined DL NLDM-ECSM Rising-edge INV Model 
Cell Type INV 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 2.15 3.89 54.07 1.23 1.85 14.64 0.7 1.4 30.3 0.38 0.7 11.97  

0.5 VDD% 1.57 2.82 48.44 1.23 1.84 13.89 0.5 0.8 30.4 0.27 0.4 7.08  

0.2 VDD% 2.89 4.74 43.60 1.25 1.89 15.24 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.99783 0.98039 0.9994 0. 998632  

WF MSE 1.80E-04 7.30E-04 5.80E-05 7.27E-05  

Delay 1.94 2.79 36.93 2.0 2.34 25.35 Mean: 0.41 Std: 2.67 Max: 42.25 2.82 3.72 51.53 

Delay MSE 5.25E-05 5.73E-05 2.35E-04  

Transition 6.64 9.24 137.08 5.28 8.26 14.74 Mean: 4.86 Std: 4.86 Max: 51.80 9.25 12.13  128.6 

Transition MSE 4.49E-04 4.00E-04 2.35E-04  

 
Table 5.10 Combined DL NLDM-ECSM Rising-edge NAND Model 

Cell Type NAND 

Model Type Combined 1000 pts Combined 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 8 6 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 2.04 3.65 24.37 1.01 1.42 10.68 0.7 1.4 30.3 0.38 0.7 11.97  
0.5 VDD% 1.63 2.35 19.75 1.00 1.39 10.35 0.5 0.8 30.4 0.27 0.4 7.08  
0.2 VDD% 2.76 3.59 39.25 0.99 1.36 8.79 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.99805 0.98926 0.9994 0. 998632  
WF MSE 1.70E-04 4.33E-04 5.80E-05 7.27E-05  

Delay 1.67 2.21 15.85 1.51 1.94 22.74 Mean: 0.79 Std: 1.34 Max: 12.30 1.88 2.58 27.38 

Delay MSE 4.68E-05 3.97E-05 8.66E-05  

Transition 5.28 6.33 47.62 3.16 4.75 48.83 Mean: 2.69 Std: 4.56 Max: 74.66 5.54 6.13 57.95 

Transition MSE 2.73E-04 1.68E-04 8.66E-05  

 

After training, the corresponding waveform decoder is used to decode the output waveform 

parameters, this decoded waveform is ready to be used in the ECSM model. Delay and transition 

time can still be used to perform the NLDM if needed. 

5.4 DL-WFDM: Deep Learning Waveform-Delay Model 
Deep learning waveform delay model, DL-WFDM, is proposed instead NLDM LUT or DL-

NLDM models. In DL-WFDM, auto-encoded input/output waveforms parameters are proposed 

to model cell delays instead of the cell delay and the transition time used in the NLDM. Figure 5 

shows our proposed new cell delay training methodology. First, each input waveform is encoded 

as well as its associated output waveform using the corresponding rising or falling edge 

Autoencoder encoder model. Since sigmoid activation function is used for the middle 
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Autoencoder layer i.e., the encoder output layer, there is no need to normalize the input 

waveform parameters or the expected output waveform parameters. 

The encoded input waveform parameters and the associated effective capacitance values are 

applied as input data to train the deep learning network. The deep-learning network is trained 

on these encoded input waveform parameters in addition to the associated effective capacitance 

input value to produce the expected encoded output waveform parameters. 

 
FIGURE 5.3 Training DL Cell model with encoded input/output waveform parameter 

Table 5.11 shows the proposed DL-WFDM model results. Using 1000-points sampled encoded 

waveforms to train the new model resulted in a standard deviation of percentage errors for key 

waveform points below 1.5% compared to SPICE simulation. These models also give below 5.75% 

delay percentage error compared to SPICE simulation. These DL-WFDM models, based on 1000-

points waveforms, outperformed DL-WFDM that use 150-points sampled encoded waveforms 

by factors greater than 2x. Tables 5.10 to table 5.16 show also a comparison of combined DL-

WFDM using 1000-pts encoded waveforms, DL-WFDM using 150-points encoded waveforms, 

separate DL-NLDM and 1000-pts and 150-pts encoded waveforms and 7x7 NLDM-LUT. The 

tables show that DL-WFDM using 1000-pts generally outperformed DL-WFDM in decoded 

waveform fidelity, and in average percentage delay error. However, the separate DL-NLDM and 
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1000-pts remain better than all the DL models, and better than 7x7 NLDM-LUT in maximum 

percentage error as mentioned before. 

Table 5.11 DL-WFDM NOR Falling-edge Model 

Cell Type NOR 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.49 0.75 6.57 0.94 1.26 10.40 0.7 1.3 34.7 0.39 0.66 8.7  

0.5 VDD% 0.45 0.59 3.91 0.61 0.86 7.82 0.5 0.8 8.4 0.29 0.54 9.37  

0.2 VDD% 0.51 0.67 3.79 0.58 0.85 8.79 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99962 0.99752 0.9995 0.99914  

MSE 3.78E-5 1.43E-4 5.2E-05 5.10E-05  

Delay 2.27 2.37 11.07 3.3 3.93 17.2 Mean: 0.48 Std: 0.51 Max: 3.56 0.53 0.91 15.46 

 
Table 5.12 DL-WFDM INV Falling-edge Model 

Cell Type INV 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.93 1.36 10.28 1.25 2.19 27.93 0.7 1.3 34.7 0.39 0.66 8.7  

0.5 VDD% 0.64 1.04 8.79 0.99 1.91 26.71 0.5 0.8 8.4 0.29 0.54 9.37  

0.2 VDD% 0.97 1.49 14.84 0.93 1.85 27.12 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99872 0.99235 0.9995 0.99914  

MSE 1.08E-4 3.55E-4 5.2E-05 5.10E-05  

Delay 4.22 5.75 32.3 5.95 8.28 59.43 Mean: 0.60 Std: 0.94 Max: 10.41 0.29 0.71 33.1 

 

Table 5.13 DL-WFDM NAND Falling-edge Model 
Cell Type NAND 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.89 1.18 12.89 0.82 1.21 12.35 0.7 1.3 34.7 0.39 0.66 8.7  
0.5 VDD% 0.68 0.79 5.32 0.59 0.78 10.33 0.5 0.8 8.4 0.29 0.54 9.37  
0.2 VDD% 1.00 1.12 7.87 0.51 0.72 6.93 0.7 1.1 34.9 0.49 0.85 12.0  

Mean corrcoef 0.99885 0.99804 0.9995 0.99914  
MSE 1.09E-4 1.39E-4 5.2E-05 5.10E-05  

Delay 3.04 2.93 21.47 2.57 2.61 13.19 Mean: 0.49 Std: 0.79 Max: 7.84 0.24 1.28 28.6 
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Table 5.14 DL-WFDM NOR Rising-edge Model 
Cell Type NOR 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.62 0.92 9.49 0.85 0.94 6.79 0.7 1.4 30.3 0.38 0.7 11.97  

0.5 VDD% 0.37 0.48 5.74 0.95 1.12 7.00 0.5 0.8 30.4 0.27 0.4 7.08  

0.2 VDD% 0.42 0.63 4.36 0.99 1.19 7.55 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.99936 0.99536 0.9994 0. 998632  

MSE 6.39E-5 1.74E-4 5.80E-05 7.27E-05  

Delay 2.83 2.88 14.53 6.02 4.92 25.59 Mean: 0.71 Std: 0.93 Max: 5.95 0.91 1.21 16.54 

 

Table 5.15 DL-WFDM INV Rising-edge Model 
Cell Type INV 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.97 1.42 13.01 0.94 1.95 33.58 0.7 1.4 30.3 0.38 0.7 11.97  
0.5 VDD% 0.43 0.72 8.28 0.98 2.04 33.58 0.5 0.8 30.4 0.27 0.4 7.08  
0.2 VDD% 0.48 0.71 7.88 1.02 2.14 33.62 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.9988 0.98901 0.9994 0. 998632  
MSE 9.99E-5 3.6E-4 5.80E-05 7.27E-05  

Delay 2.83 5.51 14.53 8.59 12.49 90.75 Mean: 1.41 Std: 2.67 Max: 42.25 2.82 3.72 51.53 

 

Table 5.16 DL-WFDM NAND Rising-edge Model 

Cell Type INV 

Model Type DL-WFDM 1000 pts DL-WFDM 150 pts 

DL-NLDM & 
1000pts Encoded 

ECSM 

DL-NLDM & 
150pts Encoded 

ECSM NLDM-LUT 7x7 

Model ID 4 4 6 & 2 6 & 2  

 Mean Std Max Mean Std Max Mean Std Max Mean Std Max Mean Std Max 

0.8 VDD% 0.55 0.86 5.11 0.83 1.19 11.96 0.7 1.4 30.3 0.38 0.7 11.97  
0.5 VDD% 0.36 0.52 4.48 0.87 1.16 12.30 0.5 0.8 30.4 0.27 0.4 7.08  
0.2 VDD% 0.42 0.71 4.95 0.91 1.23 12.33 0.7 1.5 31.4 0.37 0.7 5.44  

Mean corrcoef 0.99935 0.99387 0.9994 0. 998632  
MSE 5.93E-5 2.3E-4 5.80E-05 7.27E-05  

Delay 3.00 3.35 22.79 7.60 8.23 35.49 Mean: 1.79 Std: 1.34 Max: 12.30 1.88 2.58 27.38 

 
 

5.5.1 DL-WFDM: Multi-stage analysis 

DL-WFDM represents a radical change to the exiting NLDM-LUT, or the DL variants proposed 

in this research, therefore it’s important to evaluate the accumulation of model errors in multi-

stages. Six stages of modeled cells, NOR INV, NAND, are stacked in a way that ensures signal 

transition at each stage like Fig. 5.4 for INV cells, similar setup is created for NOR and NAND 

wired to operate as inverters to switch signal at each stage. The first waveform is encoded using 
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the corresponding DL waveform Autoencoder to produce the input waveform parameters. The 

input parameter is applied to the corresponding cell DL-WFDM with the input capacitance to 

produce the output encoded waveform parameter. The output waveform parameters are then 

decoded to calculate the delay between the input and output waveforms. The output waveform 

parameters and the next stage input capacitance are applied to the second stage to produce the 

second stage output waveform parameters. The process is repeated for all stages, and the average 

percentage delay is calculated at each stage output. 

 
FIGURE 5.4 Multi-stage INV cell setup 

 

Table 5.17 shows the results of this multi-stage experiment for each cell for different rising and 

falling starting edge. The results are not satisfactory compared with NLDM-LUT or DL-NLDM 

expected results but are promising to be enhanced with more training and powerful model. 

Table 5.17 DL-WFDM Multi-stage analysis results 
  Multi-stage Analysis 

Cell Type 
NOR Avg% 
Delay Error 

INV Avg% 
Delay Error 

NAND Avg% 
Delay Error 

Stage \ Input 
WF Edge Rising Falling Rising Falling Rising Falling 

1 2.6 3.2 5.1 4.0 4.1 2.9 

2 6.1 5.7 9.6 6.3 10.6 3.4 

3 6.3 4.9 7.1 7.4 4.2 8.9 

4 4.9 6.2 6.5 6.7 7.8 3.6 

5 6.2 5.3 6.6 6.3 3.6 6.9 

6 5.4 6.1 6.3 6.8 6.9 3.3 

 
5.5 Conclusions 

DL-NLDM retrieving time outperformed this of 7x7 NLDM-LUT by 1.69x, and outperformed 

100x100 NLDM-LUT by 12x using the outlined Python implementation. In addition, DL-NLDM 

outperforms 7x7 NLDM-LUT average percentage errors by ~1.24x better (delay time) and ~1.55x 

(transition time) for falling-edge waveforms. DL-NLDM has ~5x better delay time transition time 

average percentage errors for rising-edge waveforms. In addition, DL-NLDM outperforms 
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NLDM-LUT 100x100 maximum percentage errors by ~2.37x better delay time and ~2.x better 

transition time for falling-edge and by ~3.19x better delay time and ~2.75x better transition time 

for rising-edge waveforms. Compared to SPICE, DL-NLDM gives less than 0.60% average 

percentage delay and 1.91% average transition time percentage error, and it gives less than 1.41% 

average delay and 4.86% average percentage transition time error. 

Combined DL-NLDM and ECSM encoded models showed consistent results for NOR, INV and 

NAND models. However, separate DL-NLDM and ECSM encoded waveform models remained 

better in average percentage errors by ~2x for waveform values and by ~2x for delay and 

transition time. Combined models are still better than NLDM-LUT delay and transition time 

maximum percentage error. 

DL-WFDM shows promising results to propagate waveform parameters rather than 

transition/delay time. Separate DL-NLDM and ECSM encoded models remained better in 

average percentage errors by ~2x for waveform values and by another ~2x for delay and 

transition time. DL-WFDM models are still better than NLDM-LUT maximum delay time 

percentage error. 
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Chapter 6 

 

S-RNN MOR: Structured Recurrent 
Neural Network Model Order 
Reduction for SISO, SIMO and 
MIMO LTI Systems  

6.1 Overview 
Many research efforts are still dedicated to finding optimal model order reduction techniques as 

in [Schilders’08]. MOR techniques fall into different categories; 1) Proper Orthogonal 

Decomposition (POD) methods that use a small set of uncorrelated coefficients that represented 

the whole system, 2) balanced truncation, BT, methods that reduce the state-space system while 

preserving the observable states, 3) reduced basis methods that preserve the most important basis 

of the original system and 4) ANN-based methods that can model the input/output relationship. 

Baziyad at al. [Baziyad’19] obtained 4th order model using BT technique, and used J-RNN 

[Jordan’97] model to estimate 4th order transfer function and used instrument variable, IV, 

method to estimate a third transfer function model. They also created a MOR framework that 

cascades the reduced-order systems obtained by the BT technique, and the J-RNN method to 

reduce the errors and uncertainties in both models. Salah et al. [Salah’16] proposed a simple RNN 

model structure model single input single output LTI system to a reduced 2nd order system, their 

work was limited to 2nd order SISO LTI system reduction. Nguyen et al. [Nguyen’19] used deep 

learning neural networks to extract Volterra kernels for I/O buffers from input/output data. In 

this section, we propose RNN model structure, S-RNN, to model SISO LTI systems to a reduced 

system of order N trained only on the original system step response. We also proposed an S-RNN 

network structure to model SIMO systems of O outputs with a reduced model of order N. The 
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main advantage of this S-RNN model is that the weights of the trained S-RNN model directly 

map to the discrete-time state-space parameters of the reduced dynamic system. Therefore, the 

discrete-time state-space reduced model can be directly retrieved from the trained model 

parameters. The training data are obtained by applying a step function at the input and discretize 

the step response at the output of the original systems. The training process applies step input to 

the input layer of the S-RNN and train the network to produce the expected step response at the 

S-RNN network output. Though simulation time is spent to produce the step response of the 

original white box system, the reduced-order system model can be used instead of the original 

model in subsequent simulations for faster simulation time. In addition, the same methodology 

can be used to model black box systems if their step responses are known or measured. The main 

contributions of this research paper are: 

1. Proposed and trained an RNN network structure that models Nth order LTI SISO systems. 

2. Proposed and trained an RNN network structure to model Nth order LTI SIMO and MIMO 

systems of any number of outputs O.  

3. Modeled RLC interconnects with our proposed SIMO S-RNN model. 

4. Reconstructed the continuous time state-space model from the trained S-RNN model. 

6.2 Extracting Continuous-time Transfer Functions of RNN MOR Models  
The data used to train the RNN is a discrete time data that is basically a sampled-time data of the 

full system model. Therefore, training the RNN model on this data results in a discrete time state 

space model of the original system. As mentioned before, the weights of the trained RNN 

represent the discrete space parameters. The weights of the trained RNN can be easily extracted 

to recover the discrete-time state-space model of the reduced system.  
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FIGURE 0-1 S-RNN Model Training and Continuous TF Extraction Flow 
 

As shown in Fig. 6-1, we used Matlab function ss() to construct the reduced discrete-time state-

space model using the trained RNN model parameters and the sampling time used to discretize 

the step response during training. Many mathematical algorithms exist to convert the discrete-

time state-space model to its equivalent continuous-time model. Algorithms like zero-order hold, 

pole-zero match or Tustin algorithms [Beale’18] can be used to perform this task. We used Matlab 

function d2c() and Tustin algorithm to reconstruct the continuous-time model. Once the 

continuous-time state-space model is constructed, the continuous-time transfer function can be 

obtained. The transfer function of the trained RNN MOR systems can be obtained for any SISO, 

SIMO or MIMO systems of any order. 

6.3 Model Order Reduction of SISO LTI Systems 
6.3.1 Second order LTI SISO System 

The general state space representation of second order LTI system that has a single input signal 

U(t) and a single output signal Y(t) is: 

[
𝑋1(𝑡)
𝑋2(𝑡)

] =  [
𝑎11 𝑎21
𝑎12 𝑎22

] ∗  [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑏1
𝑏2

] ∗  [𝑢1 0] (1) 
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[𝑌(𝑡)] =  [𝑐1 𝑐2] ∗  [
𝑋1(𝑡)
𝑋2(𝑡)

] + [𝑑1 𝑑2] ∗  [
𝑈1(𝑡)

0
] (2) 

If we consider the case where the output signal is only a function of system states with no direct 

contribution of input signals, then the governing output signal equation is: 

[𝑌(𝑡)] =  [𝑐1 𝑐2] ∗  [
𝑋1(𝑡)
𝑋2(𝑡)

] (3) 

Fig. 6-2 shows our implementation of the RNN network structure that models a SISO LTI system 

of a second order. The activation function is linear in all the layers. The delay of the feedback loop 

used is one delay element as explained in Matlab neural network toolbox user’s guide. 

 
FIGURE 0-2 Second Order Discrete SISO System RNN Implementation 

 

The Feedback loop from the output of layers 1&2 perceptron play as delay elements, hence the 

corresponding equations that govern the operation of this RNN are: 

 [
𝑋1(𝑡)
𝑋2(𝑡)

] =  [
𝑤11 𝑤21
𝑤12 𝑤22

] ∗  [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑢1
0

] ∗  [𝑈(𝑡) 0] (4) 

 

[𝑌(𝑡)] =  [𝑦1 𝑦2] ∗  [
𝑋1(𝑡)
𝑋2(𝑡)

] (5) 

Therefore, there is a direct mapping between this RNN implementation and the second order 

SISO LTI system. If we can train this RNN topology to represent a certain system, then the RNN 

weights can directly construct the discrete space second order model representing the trained 

system. This RNN implementation can be extended to third order model by introducing a third 

layer to the RNN connecting it to the other layers as shown in the following section. 
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6.3.2 Third order LTI SISO System 

 
FIGURE 0-3 Third Order Discrete SISO System RNN Implementation 

The state space representation of this third order model is: 

 [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] =  [
𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

] ∗ [

𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)
𝑋3(𝑡 + 1)

] + [
𝑢1
0
0

] ∗ [𝑈(𝑡) 0 0] (6) 

[𝑌(𝑡)] =  [𝑦1 𝑦2 𝑦3] ∗  [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] (7) 

6.3.3 Nth Order LTI SISO System 

We propose an RNN network structure in Fig. 6-4, that can model any SISO LTI system to a model 

of order N. The state space representation of this LTI system of order N and X of Nx1 state vector, 

U(t) single input and Y(t) single output is shown is equation (8) and (9). Thus, to model Nth order 

LTI system we need N+1 number of layers. 

We used Matlab 2018a neural network toolbox 7 [Beale’18] on a Core i7, 8 GB physical memory 

to model our RNN implementation. Bayesian Regularization (BR) as the training algorithm, and 

the mean-squared-error as the loss function as well as maximum of 5000 epochs for all 

experiments. We were able to use this experiment setup to construct and train S-RNN model 
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order as large as 15. Convergence of S-RNN model order greater than 15 remains a challenging 

task that needs further research. 

 
FIGURE 0-4 N Order Discrete SISO System RNN Implementation 

The state space representation of this RNN implementation of the Nth order LTI system is: 

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]
 
 
 
 

=  

[
 
 
 
 
𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮       ⋮    ⋮

𝑤𝑁3 … 𝑤𝑁𝑁 ]
 
 
 
 

∗  

[
 
 
 
 
𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]
 
 
 
 

+ 

[
 
 
 
𝑢1
0
0
⋮
0 ]

 
 
 

  (8) ∗  [𝑈(𝑡) 0 0 ⋯ 0] 

[𝑌(𝑡)] =  [𝑦1 𝑦2 𝑦3 … 𝑦𝑁] ∗ 

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

⋮
𝑋𝑁(𝑡)]

 
 
 
 

 (9) 

6.4 SISO LTI RNN Modeling Experiments  
6.4.1 Experiment 1 

We used the same transfer function G in equation (10), used by Baziyad et al. [Baziyad’19] to be 

reduced to a 4th order system and compared the performance of our S-RNN MOR technique with 

the results of the MOR techniques used in that research. In addition to bode magnitude and phase 
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MSE metrics, we added the step response MSE as another metric for the comparison.  

𝐺 − 𝑂𝑅𝐼𝐺 =
𝑠4 − 20𝑠3 + 180𝑠2 − 840𝑠 + 1680

𝑠6 + 22.5𝑠5 + 231𝑠4 + 1310𝑠3 + 3960𝑠2 + 5040𝑠 + 1680
         (10) 

 

Training of our 4th order S-RNN converged at MSE of 8.76e-6 in 25 seconds, resulting in the 

transfer function in equation (11).  

𝐺 − 𝑆𝑅𝑁𝑁, 4 =
0.002088𝑠4−0.2805𝑠3+2.293𝑠2−9.731𝑠+16.71

𝑠4+10.51𝑠3+36.07𝑠2+49.23𝑠+16.7
   (11) 

 

 

FIGURE 0-5 Step response of G-Orig, 4th Order S-RNN and Other Model Order Reduction Techniques  

 

Fig. 6-5 shows the step response of G-Orig, 4th Order S-RNN and the other model order reduction 

techniques used by Baziyad et al. [Baziyad’19]. Table 6.1 shows the comparison of different 

approaches with our S-RNN 4th order model. S-RNN model gives better results than the 

proposed 4th order model BT-JRNN model proposed by Baziyad et al. In addition, S-RNN model 

outperformed IV and JRNN 4th order models used to evaluate the BT-JRNN performance. 

Training S-RNN on a 2nd order model converged in 19 seconds at 2.19e-4 MSE with transfer 

function shown in equation (12). The 2nd order model still gives better magnitude and step 

response results than IV, JRNN and BT-JRNN models, but worse phase MSE results than all of 
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them. Yang et al. model [Yang’96] remained the best in terms of magnitude MSE, but our 

proposed S-RNN 2nd and 4th order models are better when it comes to phase MSE. 

Table 6.1 MSE Comparison of S-RNN Performance with Other MOR Techniques  

MOR Technique 
MSE Comparison 

Magnitude Phase Step 

IV [Baziyad’19] 0.0171 7.6253 0.414 

IV-JRNN [Baziyad’19] 0.0182 7.7917 0.419 

Yang et al. [Yang’96] 9.17e-7 95.59 NA 

BT-JRNN [Baziyad’19] 0.0031 7.6862 0.414 
S-RNN – 4th order 5.5917e-5 6.4191 8.6105e-6 

S-RNN – 2nd order 2.3672e-4 14.2582 1.1777e-4 

 

𝐺 − 𝑆𝑅𝑁𝑁, 2 =
0.002031𝑠2 − 0.2589𝑠 + 0.4322

𝑠2 + 1.234𝑠 + 0.4371
 (12) 

 

6.4.2 Experiment 2: Modeling Eady.mat Benchmark 

We also tested our S-RNN proposed MOR technique with selected Matlab benchmark systems 

created by Chahlaoui et al. [Chahlaoui’02]. We used Eady benchmark that is defined by dense 

matrices with N=598 states. This benchmark models the atmospheric storm track.  

6.4.2.1 S-RNN MOR of Order 5 

We attempted to model this benchmark with order 5 reduced model. The RNN converged at MSE 

of 9.0e-5 resulting in the reduced TF given in equation (13). Fig. 6-6 and Fig. 6-7 show the step 

response and pole-zero diagrams of the full and 5th order reduced order systems respectively. 

 
 

FIGURE 0-6 Step response of original “Eady” system and the 5th order MOR 
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FIGURE 0-7 Pole-zero map of original and 5th order MOR 

 

𝐺 − 𝑆𝑅𝑁𝑁 =

0.02242𝑠5 − 0.5401𝑒𝑠4

+24.66𝑠3 + 582.6𝑠2 + 487.2𝑠 + 213.6
𝑠5 + 65.1𝑠4

+1109𝑠3 + 1653𝑠2 + 561.9𝑠 + 128.6

         (13) 

 

6.4.2.2 S-RNN MOR of Order 10 

However, increasing the order of the reduced model resulted in better results. The new S-RNN 

model converged with 9.04e-6 MSE in 1000 iterations and 27 sec resulting in the reduced system 

TF in equation (14). Table 6.2 compares the step response, magnitude, and phase MSE of the 5th 

and 10th S-RNN models. Fig. 6-8 shows the step response of the full and 10th order reduced order 

systems, and Fig. 6-9 shows the pole-zero plot of the original and the reduced model. 

 
 

FIGURE 0-8 Step response of original Eady system and the 10th order 
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Table 6.2 MSE Comparison of 5th and 10th Order S-RNN Models 

 
 

S-RNN Model Order 

5
th

 Order 10
th

Order 

Magnitude  3.25E-4 4.87E-4 

Phase 34.75 23.64 

Step 0.037 2.147E-4 

 

 

FIGURE 0-9 Pole-zero plot of original and reduced 10th order system 

 

𝐺 − 𝑆𝑅𝑁𝑁 =

−0.01405𝑠10 − 2.771𝑠9 − 212.5𝑠8 − 6976𝑠7 +  656.8𝑠6 + 7.569𝑒6𝑠5 + 2.483𝑒8𝑠4

+3.492𝑒9𝑠3 + 1.905𝑒10𝑒10𝑠2 + 3.061𝑒8𝑠 + 5.514𝑒9
𝑠10 + 230.4𝑠9 + 2.275𝑒4𝑠8 + 1.249𝑒6𝑠7 +  4.118𝑒7𝑠6 + 8.158𝑒8𝑠5 + 9.02𝑒9𝑠4

+4.353𝑒10𝑠3 + 1.045𝑒10𝑠2 + 1.093𝑒10𝑠 + 2.872𝑒9

         (14) 

 

6.4.3 Experiment 3: Modeling pde.mat Benchmark 

6.4.3.1 S-RNN MOR of Order 3 

The second benchmark we used is pde.mat with 84 number of states. Trying MOR to a system of 

order 3, the RNN training converged with 2.11e-7 MSE error rate. 
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FIGURE 0-10 Step Response of the reduced 3rd order model 

 

 
 

FIGURE 0-11 Pole-zero plot of the 3rd order model 

𝐺 − 𝑆𝑅𝑁𝑁 = 0.1844𝑠3 − 5530𝑠2 + 3.947𝑒07𝑠 + 3.037𝑒10
𝑠3 + 1.642𝑒04𝑠2 + 1.585𝑒07𝑠 + 2.801𝑒09

         (15) 

 

6.5 Model Order Reduction of SIMO LTI Systems 
SIMO systems are of particular importance in modeling interconnects between an output pin of 

a certain gate to the driven input pins of the subsequent gates. We extended the RNN state space 

modeling technique to model SIMO LTI systems of a single input and any number of O outputs 

and Nth order. Fig. 6-12 shows our proposed structured RNN network that achieves this SIMO 

model. 
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FIGURE 0-12 Nth Order, Single Input, O Outputs Discrete MIMO System Implementation 

 

Equations 16 and 17 are the state space represented by this S-RNN given that: 

• N is the order of the system. 

• Single input signal. 

• is the number of output signals. 

 

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]
 
 
 
 

=  

[
 
 
 
 
𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮       ⋮    ⋮

𝑤𝑁3 … 𝑤𝑁𝑁 ]
 
 
 
 

∗  

[
 
 
 
 
𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]
 
 
 
 

+  

[
 
 
 
𝑢11
𝑢12
𝑢13
⋮

𝑢1𝑁]
 
 
 

∗  𝑈1(𝑡) (16) 

[

𝑌1(𝑡)
𝑌2(𝑡)

⋮
𝑌𝑂(𝑡)

] =  [

𝑦11
𝑦21
⋮

𝑦𝑂1

𝑦12
𝑦22
⋮

𝑦𝑂2

𝑦13
𝑦23
⋮

𝑦𝑂3

…
…
⋮
…

𝑦1𝑁
𝑦2𝑁

⋮
𝑦𝑂𝑁

] ∗  

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]
 
 
 
 

 (17) 

 

6.6 Experiment: Modeling RLC Interconnect SIMO LTI RNN 
We selected arbitrary sub-circuit RLC interconnect as in the Fig. 6-13. The resistors value is 

1.0e+03Ω, capacitances value is 1.76e-15F, and inductances value is 0.245e-6H. We connected 12 

such sub-circuits together denoted as TRn in Fig. 6-14. The whole RLC interconnect represented 

108 states. We then simulated this interconnect using a Spice simulator with a step response input 
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at v(1) node. The number of output pins is 4 at selected points, pins v(3), v(8), v(12) and v(14), in 

the RLC interconnect.  

 
FIGURE 0-13 RLC Spice sub-circuit 

 
FIGURE 0-14 RLC Transmission Line, v(3), v(8), v(12), v(14) 

 

Single input multiple output RLC interconnect is a common connectivity structure in VLSI 

circuits. The single input v(1) represents the output of an active element. The multiple output 

pins v(3), v(8), v(12) and v(14) represent the input pins of the next-stage active elements fed by 

v(1). The RLC passive elements represent the wires connecting the active elements. We sampled 

the output waveforms at 2ps. Our 1x4 RNN SIMO network is trained on those multiple outputs 

using different RNN state space MOR order. RNN with order 2 converged with MSE of 5.1e-3 

giving the following Fig. 6-15 and Fig. 6-16 results. 

 

 
 

FIGURE 0-15 v(3), v(8) Spice and 2nd order SIMO MOR response 
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FIGURE 0-16 v(12), v(14) Spice and 2nd order SIMO MOR response 

 

Training S-RNN of 5th order gave better results of MSE 9.1e-4 and the following Fig. 6-17 and 

Fig. 6-18 step response results. 

 

 
FIGURE 0-27 v(3), v(8) spice and 5th order SIMO MOR response 

 

 
 

FIGURE 0-3 v(12), v(14) spice and 5th order SIMO MOR response 

 

Modeling the RLC interconnect network using a single SIMO RNN network produces one 

network that models the whole system with all its outputs in one single training operation. 

However, the RNN weights are optimized to model all the outputs given a step input. Modeling 

each input/output as a single RNN model is expected to give better results, however it takes 
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training as many RNN networks as the number of outputs.  

Modeling each input/output as a SISO 5th order Model gave better MSE results as in Fig. 6-19 

and Fig. 6-20. Modeling output V(3) MSE is 2.0e-4, output V(8) MSE is 4.0e-4, output V(12) MSE 

is 3.0e-4, output V(14) MSE is 4.0e-4. Table 6.3 shows the MSE comparison of the three modeling 

experiments: 2nd order, 5th order SIMO and 5th order SISO models of the four output responses.  

 

 
 

FIGURE 0-19 v(3), v(8) spice and 5th order SISO MOR response 

 

 
 

FIGURE 0-20 v(12), v(14) spice and 5th order SISO MOR response 

 

Table 6.3 MSE Comparison of 3rd and 5th Order SIMO and 5th Order SISO S-RNN Models 
 

S-RNN Model Order 

Input V(3) V(8) 

 SIMO 2nd 
Order 

SIMO 5th 
Order 

SISO 5th 
Order 

SIMO 2nd 
Order 

SIMO 5th 
Order 

SISO 5th 
Order 

Step Response MSE 4.4E-3 5.53E-4 2.29E-4 6.9E-3 1.3E-3 9.55E-4 

Input V(12) V(14) 

 
SIMO 2nd 
Order 

SIMO 5th 
Order 

SISO 5th 
Order 

SIMO 2nd 
Order 

SIMO 5th 
Order 

SISO 5th 
Order 

Step Response MSE 3.0E-3 3.97E-4 2.03E-4 5.8E-3 1.1E-3 3.71E-4 
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6.7 Model Order Reduction of MIMO LTI Systems 
6.7.1 Second order 2x2 LTI MIMO system 

We extended the S-RNN state space modeling technique to model MIMO LTI systems of 2 inputs 

and 2 outputs second order system as illustrated in Fig. 6-21. The 2 inputs, 2 outputs second order 

LTI system is: 

[
𝑋1(𝑡)
𝑋2(𝑡)

] =  [
𝑎11 𝑎21
𝑎12 𝑎22

] ∗  [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑏11
𝑏21

𝑏12
𝑏22

] ∗  [
𝑈1(𝑡)
𝑈2(𝑡)

] (18) 

 

[
𝑌1(𝑡)
𝑌2(𝑡)

] =  [
𝑐11
𝑐21

𝑐12
𝑐22

] ∗  [
𝑋1(𝑡)
𝑋2(𝑡)

] + [
𝑑11
𝑑21

𝑑12
𝑑22

] ∗  [
𝑈1(𝑡)
𝑈2(𝑡)

] (19) 

 
Extending the idea of using RNN to represent 2 inputs, 2 outputs second order LTI system as 

follows: 

 
FIGURE 0-21 Second Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation 

 

The state space representation of such system is: 

 [
𝑋1(𝑡)
𝑋2(𝑡)

] =  [
𝑤11 𝑤21
𝑤12 𝑤22

] ∗  [
𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)

] + [
𝑢11 𝑢21
𝑢21 𝑢22

] ∗  [
𝑈1(𝑡)
𝑈2(𝑡)

] (20) 

 

[
𝑌1(𝑡)
𝑌2(𝑡)

] =  [
𝑦11 𝑦12
𝑦21 𝑦22

] ∗ [
𝑋1(𝑡)
𝑋2(𝑡)

] (21) 
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6.7.2 Third order 2x2 LTI MIMO Systems 

This 2x2x2 RNN state space modeling technique is generalized to model MIMO LTI systems of 3 

inputs and 3 outputs, and 3 order as shown in Fig. 6-22. 

 
FIGURE 0-42 Third Order, 2 Inputs, 2 Outputs Discrete MIMO System RNN Implementation 

The state space represented by this RNN is: 

 [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] =  [
𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

] ∗ [

𝑋1(𝑡 + 1)
𝑋2(𝑡 + 1)
𝑋3(𝑡 + 1)

] + [
𝑢11 𝑢21
𝑢12 𝑢22
𝑢13 𝑢23

] ∗ [
𝑈1(𝑡)
𝑈2(𝑡)

] (22) 

[
𝑌1(𝑡)
𝑌2(𝑡)

] =  [
𝑦11
𝑦21

𝑦12
𝑦22

𝑦13
𝑦23

] ∗  [

𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

] (23) 

6.7.3 Nth Order MxO LTI MIMO Systems 

We further generalized this 3x3x3 RNN state space modeling technique to model MIMO LTI 

systems of any number M inputs and any number of O outputs and any system order N as 

illustrated in Fig. 6-23. 
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FIGURE 0-53 Nth Order, M Inputs, O Outputs Discrete MIMO System Implementation 

Equations 24 and 25 are the state space represented by this S-RNN where: 

• N is the order of the system. 

• M is the number of input signals. 

• is the number of output signals. 

 

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)

𝑋3(𝑡)
⋮

𝑋𝑁(𝑡)]
 
 
 
 

=  

[
 
 
 
 
𝑤11 𝑤12 𝑤13 … 𝑤1𝑁
𝑤21 𝑤22 𝑤23 … 𝑤2𝑁
𝑤31

⋮
𝑤𝑁1

𝑤32
⋮

𝑤𝑁2

𝑤33 … 𝑤3𝑁
⋮       ⋮    ⋮

𝑤𝑁3 … 𝑤𝑁𝑁 ]
 
 
 
 

∗  

[
 
 
 
 
𝑋1(𝑡 + 1)

𝑋2(𝑡 + 1)

𝑋3(𝑡 + 1)
⋮

𝑋𝑁(𝑡 + 1)]
 
 
 
 

+ 

[
 
 
 

𝑢11 𝑢21 … 𝑢𝑀1
𝑢12 𝑢22 … 𝑢𝑀2
𝑢13 𝑢23 … 𝑢𝑀3

⋮        ⋮     ⋮  ⋮
𝑢1𝑁 𝑢2𝑁 … 𝑈𝑀𝑁]

 
 
 

∗  

[
 
 
 
 
𝑈1(𝑡)
𝑈2(𝑡)
𝑈3(𝑡)

⋮
𝑈𝑀(𝑡)]

 
 
 
 

 

(24) 

[

𝑌1(𝑡)
𝑌2(𝑡)

⋮
𝑌𝑂(𝑡)

] =  [

𝑦11
𝑦21
⋮

𝑦𝑂1

𝑦12
𝑦22
⋮

𝑦𝑂2

𝑦13
𝑦23
⋮

𝑦𝑂3

…
…
⋮
…

𝑦1𝑁
𝑦2𝑁

⋮
𝑦𝑂𝑁

] ∗ 

[
 
 
 
 
𝑋1(𝑡)
𝑋2(𝑡)
𝑋3(𝑡)

⋮
𝑋𝑁(𝑡)]

 
 
 
 

 (25) 

 

 

 

 

 



82  

6.7.4 Training of N*M*O MIMO S-RNN Models 

 The first attempt to train our proposed S-RNN MIMO followed the same approach we did to 

tarin SISO and SIMO S-RNN models, i.e., applying step response to the original system and use 

this step response to train the S-RNN model. The input data of the MIMO system is prepared by 

getting the step response at all outputs when a step function is applied on a single input having 

all other inputs wired to ground. This input is then wired to ground, and the step function is then 

applied to the next input to get the step response at all outputs for this input. If we apply the step 

function to different inputs of the S-RNN model in a sequence, the trained S-RNN will produce 

an output that is only correct if the input step function is applied in the same order used in 

training. To show this S-RNN MIMO training challenge, consider this example of the 7th order 

two-area power system described by the following state space matrices. 

A = [-0.05 6 0 -6 0 0 0; 

         0 -3.33 0 0 0 3.33 0; 

         0 0 -0.05 6 6 0 0; 

         0.45 0 -.545 0 0 0 0; 

         0 0 0 0 -3.33 0 3.33; 

        -5.21 0 0 0 0 -12.5 0; 

        0 0 -0.521 0 0 0 -12.5]; 

B = [0 0; 

        0 0; 

        0 0; 

        0 0; 

        0 0; 

        12.5 0; 

        0 12.5]; 

C = [0.178 0 0 1 0 0 0; 

        0 0 0 -1 -0.6 0 0];  

D = [0     0 

0 0]; 

Training the S-RNN MIMO model on the step function response of the first input followed by the 

step function response of the second input converged with 0.00116 MSE with 4th. order S-RNN 

model. Applying the step function on the generated MIMO transfer function resulted in the step 

response in Fig. 6-24 which clearly shows that there is a big deviation between the original and 



83  

the reduced systems. This deviation didn’t improve by increasing the S-RNN model order. 

 

 
 

FIGURE 0-64 Step response of the original and fourth order reduced MIMO System 

 

Training the proposed MIMO S-RNN requires a special input data preparation to avoid the 

problems of sequencing step responses in the training process. Instead of getting the step 

response of the original MIMO system, we get the MIMO system response to the sequence of 

input signals shown in Fig. 6-25 using Matlab lsim() function. 

 

FIGURE 0-75 Sequence input to generate training MIMO data 

 

This sequence guarantees that we train the S-RNN MIMO model on the response of individual 

input step functions while ensuring that the system is returned gracefully to its idle state during 

the period of which all input signals are set to ground. The input sequence also generates the 

MIMO response when all inputs are set to the step function. To make sure the input sequence is 
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not a factor of training the S-RNN model, the sequence is repeated with different combinations 

of which input is set to the step function and which inputs are set to ground. 

 

6.8 S-RNN MIMO Model Order Reduction Experiments 
6.8.1 Experiment 1: Jet Transport Aircraft example 

To test our proposed S-RNN MIMO model order reduction, we used the Matlab MIMO State-

Space Model of Jet Transport Aircraft example. The Jet example is 2x2 MIMO system. The inputs 

are the rudder and aileron, and the outputs are the yaw rate and the bank angle. There are four 

states defined for this model: beta, yaw, roll and phi. 

A = [-0.0558   -0.9968    0.0802    0.0415 

       0.5980    -0.1150    -0.0318         0 

      -3.0500    0.3880    -0.4650         0 

           0          0.0805    1.0000          0]; 

B = [0.0073         0 

       -0.4750    0.0077 

       0.1530     0.1430 

           0               0]; 

C = [0     1     0     0 

       0     0     0     1]; 

D = [0     0 

        0     0]; 

Matlab is used to generate the step response of this 2x2 MIMO system. Using the input sequence 

proposed in Fig. 6-25, we get the system response in Fig. 6-26 that will be used in training the S-

RNN. 

 

FIGURE 0-86 Response of the Original System to be Used in Training  
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6.8.1.1 Second Order S-RNN MIMO 

Starting with RNN MIMO network of order 2, the training phase converged after 2553 iterations 

in 49 seconds with MSE step response of 0.00147. The step response of the full system is plotted 

against the reduced order model according to the following Fig. 6-27. 

 
FIGURE 0-27 Step response of the original and second order reduced MIMO System 

 

 
FIGURE 0-98 Pole-zero of the original and second order reduced MIMO System 

 

Using the same technique used in our proposed SISO model, we obtained 4 different continuous 

time second order transfer functions. Those transfer functions describe the relationship between 

each output and each input of the MIMO system. 



86  

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.1436𝑠2 + 0.1202𝑠 − 0.0364
𝑠2 + 0.2193𝑠 + 0.001542

         (26) 

𝐺 − 𝐼1𝑡𝑜𝑂2 = −5.66𝑠2 + 3.611𝑠 − 0.576
𝑠2 + 0.2193𝑠 + 0.001542

         (27) 

𝐺 − 𝐼2𝑡𝑜𝑂1 = 0.01166𝑠2 − 0.009704𝑠 + 0.001902
𝑠2 + 0.2193𝑠 + 0.001542

         (28) 

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.4585𝑠2 − 0.2915𝑠 + 0.04634
𝑠2 + 0.2193𝑠 + 0.001542

         (29) 

 

6.8.1.2 Third Order S-RNN MIMO 

To obtain a higher order MIMO models of potential complex systems, we used the same data to 

train a 3rd order S-RNN MIMO model order reduction network. The training phase converged 

after 5000 iterations, in 2:39 mins, with better MSE step response of 1.07E-4. The step response of 

the trained 3rd order S-RNN MIMO network is plotted against the full system response in the 

following figure. 

 
FIGURE 0-109 Step response of the original and third order reduced MIMO System 
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FIGURE 0-30 Pole-zero of the original and third order reduced MIMO System 

 

The Matlab script we developed to extract the continuous-time transfer function generated the 

required 4 continuous time transfer functions of order 3. Table 6.4 shows MSE comparison of 2nd 

and 3rd order MIMO S-RNN models. The table shows that the 3rd order model didn’t improve the 

accuracy of the reduced system. 

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.3032𝑠3 +  0.1716𝑠2 − 0.02053𝑠 − 0.001076
𝑠3 +  0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05          (30) 

𝐺 − 𝐼1𝑡𝑜𝑂2 = −6.381𝑠3 +  3.744𝑠2 − 04628𝑠 − 0.02623
𝑠3 +  0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05          (31) 

𝐺 − 𝐼2𝑡𝑜𝑂1 = 0.02664𝑠3 − 0.0143𝑠2 + 0.0015853𝑠 + 8.613𝑒−05

𝑠3 +  0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05          (32) 

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.543𝑠3 − 0.3105𝑠2 + 0.03723𝑠 + 0.002111
𝑠3 +  0.2852𝑠2 + 0.01167𝑠 + 7.022𝑒−05          (33) 

 

Table 6.4 MSE Comparison of MIMO 2nd and 3rd Order S-RNN 

Input 1- 

Output 1 

S-RNN Model Order Input 1- 

Output 2 
S-RNN Model Order 

2nd Order 3rd Order 2nd Order 3rd Order 

Magnitude  3.13 2.97 Magnitude  2.407 2.28 

Phase 0.056 0.057 Phase 28.71 28.75 
Step 0.1030 0.1229 Step 1.09E-4 6.3E-4 

Input 2- 

Output 1 

S-RNN Model Order Input 2- 

Output 2 

S-RNN Model Order 

2nd Order 3rd Order 2nd Order 3rd Order 
Magnitude  38.25 38.29 Magnitude  10.51 10.51 

Phase 3.37E-4 4.55E-4 Phase 0.1901 0.1907 

Step 30.64 39.04 Step 0.1983 0.2804 
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6.8.2 Experiment 2: Two-area power system example 

6.8.2.1 Third Order S-RNN MIMO 

The second selected example is the same system used to illustrate the training challenges 

presented in section 6.7.4. Using the input sequence proposed in Fig. 6-25, we get the system 

response in Fig. 6-31 that will be used in training the S-RNN.  

 

FIGURE 0-31 Response of the Original System to be Used in Training  

 

The trained model gave better results at MSE step response of 1.36E-3. This model converged in 

7:46 mins, at 2327 iterations. 
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FIGURE 0-32 Step response of the original and 3rd order reduced MIMO System 

𝐺 − 𝐼1𝑡𝑜𝑂1 = −0.003258𝑠3 +  0.8751𝑠2 + 4.215𝑠 + 4.618
𝑠3 +  4.185𝑠2 + 8.369𝑠 + 9.858

         (34) 

𝐺 − 𝐼1𝑡𝑜𝑂2 = −0.003413𝑠3 +  0.9459𝑠2 − 3.524𝑠 − 0.3328
𝑠3 +  4.185𝑠2 + 8.369𝑠 + 9.858

         (35) 

𝐺 − 𝐼2𝑡𝑜𝑂1 = −0.001326𝑠3 +  0.3673𝑠2 − 1.286𝑠 − 5.075
𝑠3 +  4.185𝑠2 + 8.369𝑠 + 9.858

         (36) 

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.008092𝑠3 − 2.206𝑠2 − 1.516𝑠 + 3.473
𝑠3 +  4.185𝑠2 + 8.369𝑠 + 9.858

         (37) 

 

6.8.2.2 4th Order S-RNN MIMO 

Modeling the same using a 4th order S-RNN gave better results with MSE step response of 4.17E-

4 as table 6.5 clearly shows. This model converged in 9:54 mins, at 2031 iterations. 
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FIGURE 0-33 Step response of the original and 4th order reduced MIMO System 

 
FIGURE 0-34 Pole-zero plot of the original and 3rd order reduced MIMO System 

 

𝐺 − 𝐼1𝑡𝑜𝑂1 = 0.002522𝑠4 − 0.7023𝑠3 + 3.492𝑠2 + 9.647𝑠 + 16.5
𝑠4+ 3.804𝑠3 +  16.82𝑠2 + 24.2𝑠 + 35.48

         (38) 

𝐺 − 𝐼1𝑡𝑜𝑂2 = −0.006871𝑠4 + 0.186𝑠3 + 0.5341𝑠2 − 8.929𝑠 − 1.663
𝑠4+ 3.804𝑠3 +  16.82𝑠2 + 24.2𝑠 + 35.48

         (39) 

𝐺 − 𝐼2𝑡𝑜𝑂1 = −0.003076𝑠4 + 0.8474𝑠3 − 1.806𝑠2 − 1.283𝑠 − 18.27
𝑠4+ 3.804𝑠3 +  16.82𝑠2 + 24.2𝑠 + 35.48

         (40) 

𝐺 − 𝐼2𝑡𝑜𝑂2 = 0.006893𝑠4 − 1.875𝑠3 − 2.433𝑠2 − 10.22𝑠 + 12.85
𝑠4+ 3.804𝑠3 +  16.82𝑠2 + 24.2𝑠 + 35.48

         (41) 
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Table 6.5 MSE Comparison of S-RNN of 3rd and 4th Models Performance 

Input 1- 

Output 1 

S-RNN Model Order Input 1- 

Output 2 
S-RNN Model Order 

3rd Order 4th Order 3rd Order 4th Order 

Magnitude  0.0327 0.0074 Magnitude  0.0171 0.0035 

Phase 12.67 12.41 Phase 5.71 5.6916 
Step 0.0025 6.2089e-04 Step 0.0027 4.5344e-04 

Input 2- 

Output 1 

S-RNN Model Order Input 2- 

Output 2 

S-RNN Model Order 

3rd Order 4th Order 3rd Order 4th Order 
Magnitude  0.0080 0.0085 Magnitude  0.0065 0.0028 

Phase 4.58 4.577 Phase 4.922 4.9267 
Step 0.0016 6.9822e-04 Step 5.8632e-04 4.9368e-04 

 

6.8.3 Modeling MIMO LTI system using multiple 4th order S-RNN SISO Models 

The SISO S-RNN MOR is used to generate reduced order models for the same MIMO system 

used in experiment 2 to compare the SISO performance with the MIMO S-RNN model order 

reduction. This approach requires M*O number of S-RNN models and training processes. Table 

6.6 shows that while the 4 SISO S-RNN models gave better MSE step response, MIMO S-RNN 

model gives better magnitude and phase MSE. 

6.8.3.1 Input 1 to Output 1 S-RNN SISO Model 

Training a SISO 4th order S-RNN on the step response of input 1 to output 1 gave a MSE step 

response of 5.288e-04. 

 
 

FIGURE 0-35 Step response of the original and fourth order input 1 to output 1 reduced MIMO System 
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𝐺 − 𝐼1/𝑂1 = −0.0147𝑠4 + 0.5256𝑠3 + 5.219𝑠2 − 326.5𝑠 + 2439
𝑠4 +  50.4𝑠3 + 673𝑠2 + 1157𝑠 + 5117

         (42) 

6.8.3.2 Input 1 to Output 2 S-RNN SISO Model 

Training a SISO 4th order S-RNN on the step response of input 1 to output 2 gave a MSE step 

response of 4.4828e-05. 

 
 

FIGURE 0-36 Step response of the original and fourth order input 1 to output 2 reduced MIMO System 

𝐺 − 𝐼1/𝑂2 = 0.003778𝑠4 − 0.1421𝑠3 + 1.573𝑠2 − 8.273𝑠 − 1.345
𝑠4 +  2.842𝑠3 + 14.68𝑠2 + 19.96𝑠 + 30.27

         (43) 

6.8.3.3 Input 2 to Output 1 S-RNN SISO Model 

Training a SISO 4th order S-RNN on the step response of input 2 to output 1 gave a MSE step 

response of 5.856e-04. 
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FIGURE 0-37 Step response of the original and fourth order input 2 to output 1 reduced MIMO System 

𝐺 − 𝐼2/𝑂1 = −0.001894𝑠4 + 0.1314𝑠3 − 0.3114𝑠2 − 3.446𝑠 − 12.67
𝑠4 +  3.12𝑠3 + 14.58𝑠2 + 24.34𝑠 + 23.98

         (44) 

 

6.8.3.4 Input 2 to Output 2 S-RNN SISO Model 

Training a SISO 4th order S-RNN on the step response of input 2 to output 2 gave a MSE step 

response of 4.5314e-04. 

 
 

FIGURE 0-38 Step response of the original and fourth order input 2 to output 2 reduced MIMO System 

𝐺 − 𝐼2/𝑂2 = −0.001429𝑠4 − 0.05972𝑠3 + 157.6𝑠2 − 9470𝑠 + 9478
𝑠4 +  344.9𝑠3 + 5199𝑠2 + 1.121𝑒04𝑠 + 2.59𝑒04

         (45) 
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Table 6.6 MSE Comparison of S-RNN of 3rd and 4th Models 

Input 1- 

Output 1 

S-RNN Model Order Input 1- 

Output 2 
S-RNN Model Order 

4th O SISO 4th O MIMO 4th O SISO 4th O MIMO 

Magnitude  0.002 0.0074 Magnitude  0.0228 0.0035 

Phase 123.05 12.41 Phase 43.06 5.69 
Step 5.288e-04 6.2089e-04 Step 4.4828e-05 4.5344e-04 

Input 2- 

Output 1 

S-RNN Model Order Input 2- 

Output 2 

S-RNN Model Order 

4th O SISO 4th O MIMO 4th O SISO 4th O MIMO 
Magnitude  0.0232 0.0085 Magnitude  0.0025 0.0028 

Phase 26.61 4.577 Phase 35.58 4.926 
Step 5.856e-04 6.9822e-04 Step 4.5314e-04 4.9368e-04 

 

 

6.9 S-RNN Model Order Reduction Applications 
We identified two main applications for our proposed S-RNN model order reduction technique: 

• Modeling a black-box LTI system. Using the step response of the black-box system, the 

RNN can produce state space discrete model that models the system to a certain 

percentage error. If the percentage error is acceptable, then the state space model can be 

used to generate the corresponding continuous time transfer function of the black box 

system. 

• Producing less computationally intensive model of a white-box complex LTI system. 

Using the step response of the complex system, the RNN can remodel the full system to 

lower order discrete time state space model. The corresponding continuous time state 

space models the full system according to a calculated percentage error. 
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FIGURE 0-39 Using RNN model order reduction in black box identification 

The proposed S-RNN model technique can be used in an algorithm to find the S-RNN model 

order that gives a desired mean-squared-error between the original and the reduced system 

response. The flow chart in Fig. 6-39 summarizes the proposed algorithm: 

• The algorithm is fed with the step response of either the black box or the known complex 

LTI system. A desired percentage error is given as an input to the algorithm. 

• The algorithm starts with N=2 as an initial value. The RNN of N=2 is trained, and the 

percentage error is calculated. 

• If the percentage error is less than or equal the desired error, then the weights of the RNN 

are extracted. The weights directly map to the discrete time state space model matrices as 

it was explained in the previous sections. 
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• The discrete time state space model is converted to the continuous time and the transfer 

function is constructed from this model. 

If the RNN percentage error is greater than the desired error, then the current model order is not 

enough to generate an acceptable reduced order model. The order N is incremented and the RNN 

is re-trained. The process continues until we reach an acceptable reduced model of order N, or 

we exceed the maximum allowed order given by clients of the algorithm. 
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Chapter 7 

 

Conclusion and Future Work 

 
In this research, DL-NLDM model is proposed, designed, and trained on input and output 

waveform delay and transition time in addition to capacitive load values. Two cell-delay models 

are trained on rising and falling edge waveform transitions. The proposed DL-NLDM generally 

outperformed the standard 7x7 NLDM-LUT in mean, standard deviation and maximum 

percentage errors compared to SPICE simulation. In addition, the proposed DL-NLDM 

outperformed the non-standard 100x100 LUT in maximum percentage errors. Waveform 

compression allows storing more complex waveforms data to raise the accuracy of the current 

source models without increasing the technology file size or degrading the performance. In this 

research, deep learning non-linear Autoencoders are used to compress voltage-time waveforms 

used in effective current source model. The performance of several deep learning Autoencoder 

models at different number of encoding parameters is evaluated against the SVD compression 

technique. Compression ratio of 104 at below ~1.5% percentage error standard deviation 

compared to SPICE simulation is achieved after encoding 1000-points sampled voltage-time 

waveforms. These compression ratios are 1.67x better than the nearest rank SVD results and ~39 

to ~45x better than gzip and bz2 compression techniques. Better compression ratios are also 

achieved at less accuracy figures with other Autoencoder models and number of parameters. 

Autoencoding 150-points varying-time sampled waveforms with 2 parameters gives 1.79x better 

compression ratio than the nearest rank SVD compression with below 0.85% standard deviation 

of percentage error compared to SPICE simulation. Those Autoencoders gave ~40 to ~55x better 

than gzip and bz2 compression techniques. Autoencoders require large time to be trained, and 
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larger compression and decompression time compared to the SVD algorithm, however training 

and compression are offline operations that can be accepted for the sake of better compression 

and accuracy. The decompression time can be enhanced with better hardware resources and 

smaller encoding models. Building on both DL-NLDM and waveform compression, a combined 

DL-NLDM ECSM waveform model is proposed to produce both delay/transition time 

information as well as the compressed waveform parameters. Experiments show that separate 

DL-NLDM and Autoencoder ECSM waveform parameters are better than the combined ones. In 

addition, DL-WFDM is proposed to radically change transition/delay propagation to a full 

waveform propagation that can be used to measure the delay or perform ECSM delay 

calculations. Experiments show that separate DL-NLDM and Autoencoder ECSM waveform 

parameters still perform better than the proposed DL-WFDM models. 

In addition, we proposed a structured RNN network that models SISO LTI system of any order 

N. A complex benchmark system of 598 states was reduced to a system of 10 states at 9.04e-6 

mean square error rate, using the proposed S-RNN SISO network. SISO 4th order S-RNN 

outperformed the reported MOR techniques using the same original transfer function. We also 

proposed an S-RNN network that can be trained to model any number of outputs, O, and order, 

N, of a SIMO system. This SIMO S-RNN network is used to model an RLC interconnect of 108 

states in a reduced system of order 5 at 9.1e-4 mean square error rate in a single training operation. 

Training individual interconnect outputs using SIMO S-RNN models gives better results but 

requires several training operations equals to the number of system outputs. The trained S-RNN 

weights are directly mapped to the discrete-time state-space model of the reduced system. Using 

the step-response sampling time and the trained network weights, the discrete-time state-space 

model is obtained and used to derive the continuous-time transfer function of the reduced model. 

Scaling S-RNN above 15th order system requires further research in RNN training algorithms. 
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Developing an S-RNN network to model a MIMO system of any number of inputs M, outputs O 

and order N is possible in theory. Training this MIMO S-RNN network is successful using the 

system response to a sequence of inputs that ensure the system is gracefully returned to the idle 

state after applying step input to each MIMO input. 

Future work will focus on enhancing both training time and run time of the proposed DL-NLDM 

and DL-WFDM models which is key to adopt these models in practical digital design flows. 

Future work also includes enhancements to Autoencoders models and training algorithms to 

achieve higher compression ratios in less offline training time and less decoding time with lower 

error rates. In addition, some modern neural network could perform lossless compression, like 

bits-back coding, these models need to be examined and compared to the performance of the 

Autoencoder based compression. Developing new RNN training techniques is also 

recommended to guarantee S-RNN convergence for model order greater than 15.  
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APPENDIX A 

 

Artificial Intelligence, Machine Learning 
and Deep Learning Background 

 

Machine learning, neural networks and deep learning are all concerned with producing a 

program that can learn from experience. Those programs usual tackle problems that don’t scale 

linearly with increased complexity level or data size. Such problems are usually named NP-

Complete problems. Machine or deep learning approach usually trades accuracy with 

performance. In other words, those ML/DP programs perform certain tasks in less time than 

conventional programs to a certain accuracy level. Fig. A-1, [Goodfellow’16], describes the 

relationship between artificial intelligence, machine learning, neural networks, and deep 

learning. Artificial intelligence is the science that encloses all the others as the superset.  

 

 
FIGURE A-1 Artificial Intelligence Categories Relationships [Goodfellow’16] 

 

An artificial intelligence program that doesn’t belong to machine learning is usually a hand 

designed program that models the knowledge and experience in the form of rules. Machine 

learning programs that don’t belong to neural networks or deep learning depend on hand-
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engineered features. Those features abstract the most important information from the knowledge 

and experience. Programs that are performing automatic features extraction are typically neural 

networks. Neural networks that have many hidden layers are said to be performing deep 

learning. Those deep learning programs usually work on huge data set. Fig. A-2, [Goodfellow’16], 

describes different artificial intelligence categories categorized based on features extraction. 

 
FIGURE A-2 Artificial Intelligence Categories [Goodfellow’16] 

A.1 Rule-based Systems 
Rule-based systems are hand-designed by engineers. In these systems, developers program past-

experience, useful information, and facts in the form of rules. The rule-based system usually has 

an inference engine that infer new rules and information from given ones. Queries are used as 

input to the inference engine to draw conclusions based on the facts and rules provided to the 

engine. Though those systems had a lot of potential, they failed to solve complex problems. The 

most famous languages and inference engines are Prolog and Lisp. 
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Reinforced learning is another type of artificial intelligence where there are no predefined rules, 

however a rewarding-based learning system is established to learn the good behavior just like a 

child. Q-Learning, Fig. A-3, is an example of reinforced learning that beats pre-programmed rule-

based system. 

 

FIGURE A-3 Q-learning Reinforced Learning 

 

A.2 Machine Learning, ML 
A.2.1 ML Definition  

Machine learning here means the classic machine learning techniques, artificial neural networks, 

and deep learning techniques. Goodfellow at al., [Goodfellow’16], formally define machine 

learning as “A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E”. 

The main keywords in the definition are tasks, performance, and experience. The program is said 

to be learning if its performance during performing a task improves by introducing new 

experience. 

A.2.2 ML Tasks 
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The main tasks to be performed by machine learning techniques are:  

i. Regression: 
Regression task falls under supervised machine learning category. In this task, the program is 

trained on pervious data to generalize the data trends and predict the system response given new 

system input. In the training phase, the pervious data input, a.k.a. experience, together with the 

corresponding known system output are presented to the machine learning program. The 

program adapts its parameters to learn from previous experience and reduce the system error 

predicting new output. 

ii. Classification: 
Classification task also falls under supervised machine learning category. However, the program 

in this task is trained to classify given input into a known set of categories. Previous experience 

in addition to its known category is applied to the program during the learning phase. The 

program adjusts its parameters to reduce the error of classifying input data. After training phase, 

the program can classify new experience input into one of the known categories. 

iii. Clustering 
Clustering task falls under unsupervised machine learning category. In this task, the program is 

given experience as input only without specifying any output information. The program is 

trained to categorize input experience according to similar features they share into clusters. After 

training, the program is supposed to categorize new experience into an appropriate cluster 

according to its feature similarity with experience inputs belonging to this cluster. 

iv. ML Experience 
Experience, information, data, or machine learning input is usually represented in the form of 

vectors as Fig. A-4 shows. In case of supervised machine learning, each experience vector is 

associated with given output. Experience output can be represented in vector format as well. In 

classical machine learning techniques, important features are extracted from raw data before 

using them in either training or generalizing output given new experience. 
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FIGURE A-4 ML Experience [Wang'17] 

v. ML Performance 
Just like any learning process, performance measure is crucial to monitor and adjust the learning 

process. The performance measure provides learning error measures to guide the learning 

process, it also provides testing error measures to evaluate the performance of the ML model. The 

most famous error rate is the mean square error MSE, Euclidian distance and variance. Mean 

square error is usually used with regression tasks. 

 
Hit rate or 0-1 loss is another famous performance measure used with classification tasks. 

Performance measures can be carefully designed according to the performed ML task. 

vi. Data Pre-processing 
For all types of machine learning, data pre-processing is an important step to put raw input data 

in a suitable format for machine learning techniques. Standardizing on consistent data format is 

an essential step to ensure the learning process produces meaningful results. If the machine 

learning problem relates to image classification or clustering the all the images must be in the 

same image format, size, etc. If the machine learning is learning from raw data numbers, the 

numbers must have the same units standardized using the mean and standard deviation using 

the following formula. 

                                 



111  

Data scaling and normalization are also recommended to achieve better results for machine 

learning. This step avoids having one input variable dominating the other inputs. 

                              
Whenever the case of having some missing input data for any reason, there is a need to amend 

the missing using the mean, median or the most frequent of the rest of the data. Categorical data 

requires special data processing setup to convert them into number suitable for machine learning. 

Enumeration and one-hot encoding are usually utilized in this situation. 

vii. Learning, Testing and Validation Data Set Distribution 
Information data is usually divided into three portions. One for training purpose called the 

training dataset. Usually, the training dataset is 80% of the data size. The second dataset is the 

validation set, for validating the training process and adjusting its parameters. Usually, the 

validation dataset is 10% of the dataset size. The third dataset is the testing dataset. The testing 

dataset is used after the training phase to evaluate the machine learning program and its error 

rate. The testing dataset usually constitute the rest 10% of the original dataset. 

viii. Capacity, Under-fitting and Over-fitting 
One of the most important problems facing machine learning is matching the data complexity 

and features with the capacity of the learning ML program. A ML program that has more capacity 

than the data feature complexity results in a memorizing program that produces almost 100% 

error rate on the training data but produces very poor testing error rate. This is referred to the 

over-fitting problem. 
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FIGURE A-5 Machine Learning Over-fitting and Under-fitting [Goodfellow’16] 

 

The reason is that the ML program over fitted itself to the training data and lost the ability to 

generalize on the important features extracted from the training data. A ML learning program 

that has less capacity than the data feature complexity results in poor training rate and poor 

testing rate. This is referred to the under-fitting problem. The choice of appropriate capacity 

results in acceptable training error rate and testing error rate. It’s said that the ML can generalize 

on the main features of the input dataset in this case. 

 
FIGURE A-6 Machine Learning Capacity versus Training and Generalization Error Rates [Goodfellow’16] 

 

The above figure describes the relation between the capacity and the error rate. The increased 

capacity results in lower training error rate, and higher testing or generalization rate. This is 

typically called the generalization gap. The less capacity than appropriate results in larger 

training and generalization rates. The choice of the optimal capacity is crucial for a successful 

training and generalization process. However, the optimal capacity choice is a trial-and-error 
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process. It depends mainly on the experience of the ML program designer as well as some de-

facto best practices. 

A.2.3 Classic Machine Learning Algorithms 

In classic machine learning, [Mitchell’97], the main features of data are hand-picked and designed 

by engineers. The main target of features extraction is to select the best features that abstract the 

dense information into simpler but important information. The quality of the hand-designed 

features maps directly to the quality of the classic machine learning programs that are produced. 

Engineers responsible for selecting the important features must have strong domain knowledge 

to be able to select high quality features. 

The role of the classic machine learning program is to map and transform extracted features to 

the desired output. When new input is introduced to the classic machine learning program, the 

same features are extracted from the input data and those features are mapped to produce the 

output. The machine learning program can be designed to perform the same tasks of ML, 

regression, classification, or clustering tasks. There are several classic machine learning 

algorithms: 

• Regression – Supervised Learning 

o Simple linear regression, multiple linear regression, and polynomial regression are 

famous classic machine learning technique. Fig. A-7, [Eremenko’17], shows the 

different types of regressions. The experience, input data x, and the known 

response y are used to find the parameters of the line/curve that will be used later 

to produce new response of new input data. 
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FIGURE A-7 Linear Regressions [Eremenko’17] 
 

o Decision tree regression. Starts with plain dataset as in Fig. A-8. Information 

Entropy is utilized to determine data “splits” as in Fig. A-9. Decision tree is formed 

based on the splits as in Fig. A-10. Locate new instance leaf node. Calculate the 

average of nodes belonging to this leaf node 

 

FIGURE A-8 Start with plain dataset [Eremenko’17] 

 
FIGURE A-9 Categorize data based on information entropy [Eremenko’17] 
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FIGURE A-10 Decision Tree formation [Eremenko’17] 

 

o Other regression techniques are random forest regression and support vector 

regression. 

• Classification – Supervised Learning 

o Support Vector Machine, SVM, is widely used in supervised classification 

problems. The goal of the SVM technique is to find the optimal hyperplane that 

separates dataset categories with maximum margins that guarantees an enhanced 

classification accuracy. Support vectors are created, Fig. A-11, between the initial 

hyperplane and the data points near it. A cost function is defined to maximize the 

margin between the hyperplane and the known categories of the dataset with help 

of the support vectors.  

 

FIGURE A-11 Support Vector Machine in Classification [Eremenko’17] 
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o K-nearest Neighbor. Assuming there are two categories A and B and there is a 

need to classify a new data point as in Fig. A-12, the algorithm starts by selecting 

the number K of the neighbors then calculates the Euclidean distance of the new 

data point with all the existing points and takes the K nearest neighbors based on 

the calculated Euclidean distance. Among these k neighbors, the algorithm counts 

the number of the data points in each category. Finally, the algorithm assigns the 

new data point to the category that has a maximum number of the neighbors. 

 

FIGURE A-12 K-nearest neighbor [Eremenko’17] 
 

o Naïve Bayes. The algorithm starts with Class 1 and Class 2 already defined as in 

step 1 of Fig. A-13. To classify a new instance X, the algorithm draws a circle of 

radius r around the new instance, calculates P(Class1|X) and P(Class2|X), and 

finally assigns X to the class of higher probability. 
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FIGURE A-13 Naïve Bayes Classification Steps 
 

o Other supervised learning techniques are logistic regression, decision tree 

classification and random forest classification. 

• Clustering – Unsupervised Learning 

o K-Means Clustering. The algorithm starts with plain dataset as in step 1 of Fig. A-

14, determine number of classes K, random pick of K centroids as in step 2, assign 

points to closest centroid as in step 3 based on constructing equi-distance planes 

to K centroids, then calculate new centroid of each cluster as in step 4, reassign 

points to new closest centroids as in step 5 then go to step 3, repeat until no 

reassignments of points occur to clusters as in step 6. 
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FIGURE A-14 K-Means Clustering Steps [Eremenko’17] 

o Hierarchical Clustering. The algorithm starts by making each data point a cluster 

N points which results in N clusters as in step 1 of Fig. A-15. Then step 2 combines 

the closest two clusters in one cluster which results in N-1 clusters as in step 2. The 

algorithm keeps every clustering step in memory, and step 2 is repeated until 

everything point becomes in one cluster as in step 5. The number of clusters K is 

determined, and the algorithm goes back K steps in memory to get K-clusters 

formation as in step 6. 
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FIGURE A-15 Hierarchical Clustering Steps [Eremenko’17] 

A.3 Artificial Neural Networks, ANN 
Single perceptron is a simple summation function of all input signals multiplied by a weight value 

for each input. The summation is applied to what is called an activation function to produce the 

perceptron output. The ANN learning process is basically an optimization process to find the set 

of weights that minimize the training error rate. Once trained, the ANN structure and weights is 

ready to perform the regressions, classification or clustering task trained to do. 

 
FIGURE A-16 Single Perceptron 

Y = Ø(∑ 𝑥𝑘 

𝑛

𝑘=0

∗ 𝑤𝑘) 

The choice of the activation function is an important design parameter for ANN success. The 

activation function can be as simple as a linear function,Ø(𝑥) = 𝑥, or non-linear function. Non-

linear like threshold function, rectifier function, hyperbolic function or sigmoid function allows 
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the ANN to learn non-linear problems and extract features that are hard to be extracted using 

classic machine learning techniques. 

 
FIGURE A-17 Threshold and Rectifier Functions 

 
FIGURE A-18 Sigmoid and Hyperbolic Functions 

Threshold activation function is usually used in output layer for ANN that performs classification 

tasks. Whereas the rectifier and sigmoid activation functions are usually used in the hidden 

layers. Hyperbolic activation function is usually used with ANN dealing with probability 

distributions. There are more non-linear functions used in research and in practice. Artificial 

neural network, ANN is composed of three layers: input layer, one hidden layer of many 

perceptron, and an output layer. 
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FIGURE A-19 Artificial Neural Network 

A.3.1 Neural Networks Learning Algorithms 

Back propagation is the most famous neural network learning algorithm. The algorithm 

initializes the different weights randomly then applies input to the ANN in the forward activation 

flow. The cost function is defined, and the error rate is calculated between the actual and desired 

values. The error is propagated back from the output layer to the input layers adjusting the 

different weights to reduce the gap between desired and actual output.  

 
FIGURE A-20 Back Propagation Learning Algorithm 
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The process is repeated for all the input/output values in the learning dataset. The learning 

process converges as the gradient of the cost function descends and stabilizes to a minimum value 

as in Fig. A-21. The result of the learning phase is updated weight values that minimize the overall 

error rate across all the values of the learning set. 

 

FIGURE A-21 Gradient descent algorithm [Eremenko’17] 

A.3.2 Recurrent Neural Networks, RNN 

The presented artificial neural network is a feedforward network. No output is fed back to 

neurons input. Thus, it’s better suited for regression analysis and classification problems of 

independent datasets. When the input data is time series data, feedback from the neurons’ 

outputs to neurons’ inputs introduces a neural network that is capable of learning time series 

data.  

 
FIGURE A-22 Recurrent Neural Network 

This type of neural networks is called recurrent neural networks. Recurrent neural network can 

learn data dependencies over time and generalize based on this information. Some researchers 

focused on optimizing the learning algorithms of RNN network as in [Williams’95]. 
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A.3.3 Deep Learning, DL 

The notion of deep learning refers to artificial neural networks that has several hidden layers of 

large number of neurons. The extremely large capacity of these networks can learn and extract 

larger number of small features. Deep learning depends on having huge dataset to be used in the 

training phase. This huge data is necessary to be able to find an optimized set of weights of these 

huge networks.  

 
FIGURE A-23 Recurrent Neural Network 

Deep learning became possible in recent years because of the availability of huge data, powerful 

processing machines, and advanced learning algorithms. There are many business driving forces 

that enforce a successful echo system that empowers deep learning. 

A.3.4 Convolutional Neural Network, CNN 

Convolutional neural networks are typically used in image recognition and classification 

problem. The input image is represented by 2D matrix as in Fig. A-24, then it’s applied to a 

convolutional layer followed by a pooling layer. The role of convolutional and pooling layers is 

to reduce the size of the data representing the image by applying filters on the dataset without 

losing important features or losing the information about the dependencies between objects in 

the image. The convolutional layer is responsible for extracting the high-level features of the 
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image, there could be more than one convolutional layer in the CNN. On the other hand, the 

pooling layer is responsible for extracting the dominant features of the image. The output of the 

pooling layer is flattened before it gets applied to deep learning feed forward neural network. 

Referring to AI/ML categorization in Fig. A-2, each layer of the DL neural network extracts more 

features of the image at a certain level of abstraction. 

 
FIGURE A-24 Convolutional Neural Networks, CNN [Eremenko’17] 

A.3.5 Autoencoders 

Feed-forward neural network is used to encode large data into a smaller set of parameters 

representing the original data. The core idea of Autoencoder is to train a deep neural network to 

produce an output that matches the input data to a certain degree of error, [Goodfellow’16] and 

[Zhang’18]. The output layer must have the same size of the input layer. If the Autoencoder 

middle layer size is smaller than the number of inputs as shown in Fig. A-25, then the 

Autoencoder can perform dimensionality reduction of data. 
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FIGURE A-25 TRAINING of DEEP LEARNING AUTOENCODER 

After training, the autoencoder is split into two models at the middle layer: an encoder model 

and a decoder model. Fig. A-26 shows the trained Autoencoder after being split into the two 

models. The layers from the input layer to the middle layer represent the encoder model. When 

the original data is presented as input to the encoder model, the output values of the middle layer 

neurons are the encoded, compressed data of the original data. Therefore, we refer to number of 

neurons in the middle layer as the number of encoding parameters. The layers from the middle 

layer to the output layer represent the decoder model with the middle layer playing as the input 

layer to the decoder model.  

 
FIGURE A-26 AUTOENCODER Split to Encoder and Decoder 

The compressed encoded data – the output of the middle layer, are presented as input to the first 

decoder model layer to be decoded to reproduce the original data within certain degree of error. 

Encoding large data points into a smaller number of parameters can be used in performing the 
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required waveform data compression. The decoder model must be provided with the compressed 

data to be able to decompress and restore the original data. 

A.4 Machine and Deep Learning Applications 
ML and DL learning algorithms can generally address problems of type: 

• Classification 

• Regression (Modeling, Prediction) 

• Clustering 

• Anomaly Detection 

• Dimensionality Reduction  

ML and DL techniques are typically used when there is no conventional algorithm to solve a 

problem with adequate accuracy is adequate time, or accuracy and performance of conventional 

algorithms deteriorates don’t scale up with increased data size and problem complexity. Classic 

ML techniques are typically used with when there are small or medium training data, and the 

domain knowledge is known such that it’s extracting reliable and important features can be 

achieved. DL techniques are typically used when there is large training data and less domain 

knowledge to extract the important features. 
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APPENDIX B 

Model Order Reduction of Non-Linear 
Systems using Recurrent Neural 
Networks 

B.1 Overview 
In the proper orthogonal model technique, the most important modes are selected to perform 

model order reduction based on the singular value decomposition analysis. The main hurdles of 

the model order reduction using this method is the non-linear term. This non-linear term makes 

the computation expensive even if we select few modes for the model order reduction. The more 

modes we must include the more computation power and time it needs to calculate the time 

dependent factors that complete the reduced order model definition. The proper orthogonal 

model-based model order reduction depends on having high fidelity measurements of the actual 

system or simulation results from detailed full order model that takes huge efforts to develop and 

simulate. Given that data, our approach is to train a recurrent neural network to lean the system 

behavior and hence represent a reduced order model of the system. 

Using RNN to model non-linear systems doesn’t require explicitly selecting certain modes and 

sacrificing other upfront. The RNN learning mechanism is responsible for learning important 

modes and ignoring others to minimize its cost function. The RNN topology, the learning 

algorithm and the dataset will define the accuracy of the reduced model. 

To obtain training data, we used Matlab to implement exact solution of selected non-linear 

systems. The data obtained from the exact solution is used twice. Once to create a POD based 

reduced order model using the first couple of important modes, and the second time to train our 

RNN to produced neural network based non-linear reduced order model. The RNN topology we 

selected looks like the MIMO RNN we proposed in section 5.2. We treated the initial values at 
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different grid points of the x dimension as the multi-inputs for the non-linear system. In addition, 

we treated the system output at different points of the grid as the multi-outputs. As the time 

advances, the RNN learns the expected multiple output at each point of the x axis grid. 

The main contributions of this research are: 

• Applying RNN modeling techniques to non-linear systems. 

B.2 One-dimensional non-linear Schrodinger equation 
The first selected non-linear system is the one-dimensional non-linear Schrodinger like wave 

equation with x and t independent variables: 

𝑖
𝜕

𝜕𝑡
(𝑢(𝑥, 𝑡)) +

1

2

𝜕
2

𝜕𝑥2
(𝑢(𝑥, 𝑡)) + |𝑢(𝑥, 𝑡)| 

2
 𝑢(𝑥, 𝑡) = 0 

Re-writing the equation: 

𝜕

𝜕𝑡
(𝑢(𝑥, 𝑡)) =

𝑖

2

𝜕2

𝜕𝑥2 (𝑢(𝑥, 𝑡)) + 𝑖|𝑢(𝑥, 𝑡)| 
2
 𝑢(𝑥, 𝑡) 

Utilizing Fourier basis, we get: 

(û𝑡) =
−𝑖

2
 𝑘 2 (û) + 𝑖 ∗ 𝑓𝑓𝑡 (|𝑢| 

2
 𝑢(𝑥, 𝑡)) ; k is (2*pi/L)*[0:n/2-1 -n/2:-1] :  

Where L is the length of x dimension and n is the number of discrete points taken along the length 

L. We can utilize Matlab ode45 function to solve the above equation. The initial value can take 

any shape, we selected, sech(x), 2sech(x), and 𝑠𝑒𝑐ℎ (𝑥 
2) to study the neural network behavior at 

different conditions. This Matlab solution generates the non-linear system data that is used to 

perform POD-based model order reduction and our proposed S-RNN model order reduction. 

init_vals = sech(x); ut = fft(init_vals); 
t=linspace(0,2*pi, 41); k = (2*pi/L)*[0:n/2-1 -n/2:-1].'; 
[t, utsol] = ode45('nls_rhs',t,ut,[],k); 

The Matlab function nls_rhs is defined as: 

 function rhs= nls_rhs(t,ut,dummy,k) 
u = ifft(ut); 
rhs=(-i/2)*(k.^2).*ut + i*fft((abs(u).^2).*u); 

end 
The solution is retrieved by doing inverse fft to utsol;  
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for j=1:length(t) 
  usol(j,:) = ifft(utsol(j,:));   
end 

The solution can be plotted using: 

surfl(x, t, abs(usol)), shading interp; 

B.3 POD-based reduced order model 
The solution data of the full system is contained in the usol array. As the size of the system 

increases the computation power increases. It’s required to get a reduced size model of the full 

system. Using the data obtained from full model system simulation or actual system 

measurements, we can utilize the proper orthogonal decomposition method to get a reduced 

order model. Section 2.4 outlined the steps required to perform POD-based reduced order model.  

1. The first step is to perform the singular value decomposition matrices. Using Matlab svd() 

function this can be calculated as: 

2. [u,s,v] = svd(usol, 'econ'); 

3. The singular matrix s is a diagonal matrix ordered by values. The matrix is examined, and 

the most important number of modes are identified.  

4. The corresponding number of vectors are selected from the basis matrix u. Selecting the 

first couple of modes can be done using Matlab as: phi=u(:,1:2); 

5. Taking advantage of the orthonormal basis of the matrix u, and applying the general 

equation mentioned in section 2.4 to the wave equation problem: 

𝑑

𝑑𝑡
(𝑎(𝑡) ) = ф𝑟 𝐿ф𝑟 ∗ 𝑎(𝑡) + ф𝑟 𝑁(ф𝑟 ∗ 𝑎(𝑡) ) 

B.4 RNN Model Order Reduction Results 

B.4.1 Experiment 1: Sech(x) as an initial function: 

B.4.1.1 Full System Solution Using Matlab 

Using sech(x) as initialization function as an input to the Matlab ode45() solution outlined above, 

produces the below solution. It’s clear that there is a single mode dominating the waveform.  
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FIGURE B-1 Matlab Simulation with Sech(x) initial function 

 

The single mode observation is confirmed by performing singular value decomposition. The 

following figure plots the diagonal values divided by their summation. There is only one value 

dominating the diagonal matrix as expected. 

 
FIGURE B-2 SVD Analysis 

The first three modes of the matrix u are plotted in the following figure. The first mode in blue is 

the dominating mode, while the rest have negligible contribution and are considered numerical 

errors. 
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FIGURE B-3 First three modes plot 

B.4.1.2 POD-based MOR with 1 Mode 

Selecting only one mode to perform model order reduction produced satisfactory results. 

 
FIGURE B-4 One Mode POD MOR 

 

B.4.1.3 S-RNN MIMO of 2nd Order MOR 

Our implementation of model order reduction using MIMO is utilized to perform machine 

learning based model order reduction. The grid values of the solution at the x dimension 

represent the multi-input values. The output values are the system response after one time 

iteration. During the learning phase the RNN is fed with the usol data obtained from the exact 
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Matlab solution. As time advances, the RNN learns the system behavior. After only 9 iterations, 

the RNN learned the system behavior with a very good MSE of 1.48e-11. 

 
FIGURE B-5 Second order S-RNN MOR 

 
The trained RNN is then subjected to the same initial value function, to produce similar results 

to Matlab exact solution and the POD-based reduced model order solution. 

 
FIGURE B-6 SVD analysis of Second order S-RNN solution 

 
To double check the dominating modes of RNN reduced order model response, we perform 

singular value decomposition analysis to RNN solution data array. Plotting the singular diagonal 

matrix values divided by their summation confirmed that there is only one mode dominating the 

RNN system response as expected. 
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B.4.2 Experiment 2: 2*Sech(x) as an initial function: 

B.4.2.1 Full System Solution Using Matlab 

Applying a different initialization function to the same wave equation produced the following 

waveform solution using Matlab ode45() function. It’s expected that more than one mode 

contributes to the full system solution.  

 
FIGURE B-7 Matlab Simulation with 2*Sech(x) initial function 

 
Performing singular value decomposition analysis on the usol matrix confirms this observation 

as clear in the following figure. The relative value of the singular values diagonal matrix shows 

that there are two main modes dominating the full system behavior. 
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FIGURE B-8 SVD analysis of Matlab solution  

 
The following figure shows the first three modes of the matrix u. The first mode is the blue curve, 

the second is the red curve. The third mode is less significant mode compared to the first two and 

considered numerical errors. 

 
FIGURE B-9 Mode plot Matlab solution  

B.4.2.2 POD-based MOR with 2 Modes 

Selecting the first two modes and performing POD-based reduced model order reduction 

resulted in a solution that has the following waveform.  
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FIGURE B-10 Matlab simulation of POD solution  

 

B.4.2.3 S-RNN MIMO of 2nd Order MOR 

Our proposed MIMO RNN of order 2 is used to model this non-linear full system response. The 

training phase stopped after 122 iterations with MSE of 0.0133. Plotting the RNN response to the 

same initialization function showed that the results are not satisfactory. The RNN reduced order 

model didn’t manage to model important system behavior. Performing singular value 

decomposition and plotting the relative values of the singular matrix diagonal values shows that 

the RNN response model almost only one mode. 

 
FIGURE B-11 Second-order S-RNN MOR  
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FIGURE B-12 SVD analysis of S-RNN MOR  

 

B.4.2.4 S-RNN MIMO of 5th Order MOR 

Raising the order of the RNN MIMO order to 5 produces satisfactory results with better MSE of 

0.00183 after 1000 iterations. Plotting the RNN response of the trained network shows that the S-

RNN reduced order model was able to retain important system characteristics.  

 
FIGURE B-13 5th-order S-RNN MOR 

 
Performing SVD and plotting the relative singular matrix diagonal values shows that the RNN 

response has 2 dominating modes like the full system response. 
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FIGURE B-14 SVD analysis of 5th-order S-RNN MOR 

 

 
FIGURE B-15 5th-order S-RNN MOR mode plot 

 

B.4.3 Experiment 3: Sech(x^2) as an initial function: 

B.4.3.1 Full System Solution Using Matlab 

Applying sech(x^2) as an initialization function to the same system produces different response. 

The full system response in the following figure shows more involving characteristics. It’s 

expected that more than 2 modes will dominate the system behavior. 
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FIGURE B-16 Matlab Simulation with Sech(x^2) initial function 

 
The singular value decomposition analysis confirms the observation, more than two modes are 

contributing to the system behavior. 

 
FIGURE B-17 SVD analysis of Matlab solution 

 
The following figure plots the first three dominating modes. 
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FIGURE B-18 Mode plot of Matlab solution 

 

B.4.3.2 POD-based MOR with 2 Modes 

Utilizing two modes to perform POD-based singular value decomposition reduced order model 

results in losing important system behavior. The following figure shows the POD-based reduced 

order model using only two mode. 

 
FIGURE B-19 POD analysis with 2 modes 

 
Using more than two modes to perform POD-based model order reduction requires more 

expensive processing power.  

B.4.3.3 S-RNN MIMO of 3rd Order MOR 
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Using our proposed MIMO based RNN of order 3 to be trained on the full system response 

consumed 1000 iterations and stopped at MSE of 0.00590. However, plotting the RNN response 

to the same initialization function showed that the reduced order model lacked important system 

characteristics. 

 
FIGURE B-20 SVD Analysis of POD solution 

 
The singular value decomposition analysis of the RNN system response confirmed these 

observations. The trained RNN was able to capture only three modes as shown in the following 

figure. 

 

B.4.3.4 S-RNN MIMO of 5th Order MOR 

Increasing the order of the S-RNN MIMO model order to 5 resulted in better results. The training 

phase finished after 1000 iterations with better MSE of 0.000876. The trained RNN response to the 

same initialization function resulted in similar behavior to the full system.  



141  

 
FIGURE B-21 5th order S-RNN solution 

 
The singular value decomposition analysis of the RNN response shows 4 dominating modes. 

 
FIGURE B-22 SVD analysis of 5th order S-RNN solution 
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APPENDIX C 

Detailed trained models result 
C.1 Autoencoding fixed time 1000-points ECSM Waveforms Detailed Results 

Similar measures are used to evaluate the performance of the Autoencoders trained to encode 

1000-points sampled ECSM waveforms. Two encoding parameters give mean correlation 

coefficient greater than 0.999 and less than 1% average percentage error with a compression ratio 

104.06. Fig. C-1 shows reconstructed rising and falling-edge waveforms after encoding with 2 

parameters and model ID#2. Tables C.1 and C.3 list the best encoding results at different encoding 

parameters. Tables C.2 and C.4 show the SVD compression results at different Sigma rank 

number. The 2-parameters Autoencoder model gives 3.37x better compression ratio than the 

nearest SVD compression results at sigma rank equals 8. However, SVD runtime decoding is 14x 

faster than Autoencoders decode time. 

 
FIGURE C-1 DECODED ECSM FALLING AND RISING-EDGE WAVEFORMS VS. SPICE WAVEFORMS 

 
Table C.1 Autoencoding 1000-points Falling-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 3 2 2 2 

Decoder size (KB) 4320 4249 4249 4249 

Avg % error 0.8VDD 0.2936 0.3169 0.4676 0.5362 

Avg % error 0.5VDD 0.1957 0.1962 0.3755 0.3318 

Avg % error 0.2VDD 0.2383 0.2425 0.4363 0.4247 

Mean corrcoef 0.99998 0.99997 0.99992 0.99987 

Model Loss (MSE) 1.46E-06 1.60E-06 4.10E-06 5.9E-06 

Compression Ratio 42.13 64.06 86.13 104.06 

 



143  

 
Table C.2 SVD 1000-points Falling-Edge ECSM Waveform Results at Different Sigma 

Rank Number 

Falling-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.1599 1.9487 0.6635 11.7535 3.1479 99.8715 10.8588 386.27 

Avg % error 0.5VDD 0.1314 1.6828 0.4421 7.5705 1.2438 47.2797 3.90126 69.87 

Avg % error 0.2VDD 0.1675 3.3921 0.9593 17.5298 4.3191 74.2143 13.1785 190.324 

Mean corrcoef 0.99993 0.99908 0.99313 0.97136 

Model Loss (MSE) 6.2216E-06 8.294E-05 6.3932E-4 2.626E-3 

Compression Ratio 31.25 62.5 125 250 

Table C.3 Autoencoding 1000-points Rising-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 2 4 2 2 

Decoder size (KB) 4320 4249 4249 4249 

Avg % error 0.8VDD 0.2476 0.2925 0.3005 0.3356 

Avg % error 0.5VDD 0.1915 0.2105 0.2063 0.2451 

Avg % error 0.2VDD 0.2927 0.3202 0.3153 0.3732 

Mean corrcoef 0.99997 0.99996 0.99996 0.99995 

Model Loss (MSE) 1.75E-06 2.50E-06 2.60E-06 3.8E-06 

Compression Ratio 42.35 62.52 86.13 104.06 

Table C.4 SVD 1000-points Rising-Edge ECSM Waveform Results at Different Sigma 

Rank Number 
 

Rising-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.4669 8.9164 2.2491 26.4061 6.9245 92.2892 17.3397 234.75 

Avg % error 0.5VDD 0.1877 4.3850 0.6449 10.6402 1.4726 57.5539 4.6693 168.95 

Avg % error 0.2VDD 0.3235 7.1173 1.6261 26.5724 5.7295 36.5229 14.7416 88.2501 

Mean corrcoef 0.99959 0.99634 0.98484 0.95517 

Model Loss (MSE) 3.663E-5 3.2E-4 1.351E-3 4.006E-3 

Compression Ratio 31.25 62.5 125 250 

 

C.2 Autoencoding variable time 50,100,150-points ECSM Waveforms Detailed 
Results 

 
C.2.1 Falling-edge 50-samples 

Table C.5 Autoencoding 50-points Falling-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 16 15 15 15 

Decoder size (KB) 75 39 39 39 

Avg % error 0.8VDD 1.9486 2.0433 1.8758 2.316 

Avg % error 0.5VDD 1.9841 1.9792 1.861 2.1428 

Avg % error 0.2VDD 1.9922 2.0084 1.8777 2.0736 

Mean corrcoef 0.99995 0.99990 0.99982 0.9996 
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Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

4 

Model Loss (MSE) 
2.99E-06 6.09E-06 1.24E-05 

3.87E-
05 

Compression Ratio 3.11 6.19 12.28 24.15 

 
Table C.6 SVD 50-points Falling-Edge ECSM Waveform Results at Different Sigma Rank 

Number 

 

Falling-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.3278 42.53 0.3117 118.001 0.3942 5.4991 0.7765 15.1329 

Avg % error 0.5VDD 0.1809 9.0276 0.1878 5.9907 0.19088 1.9743 0.4008 2.4779 

Avg % error 0.2VDD 0.1073 3.9161 0.1171 1.5579 0.1590 2.1628 0.4604 26.6131 

Mean corrcoef 0.99999 0.99993 0.99951 0.99586 

Model Loss (MSE) 9.513E-8 1.889E-6 1.5075E-5 1.53E-3 

Compression Ratio 1.56 3.125 6.25 12.5 

 

 
FIGURE C-2 SPICE vs reconstructed 50-points sampled falling edge waveform 

 
C.2.2 Rising-edge 50-samples 

Table C.7 Autoencoding 50-points Rising-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 16 17 17 15 

Decoder size (KB) 75 86 86 39 

Avg % error 0.8VDD 2.0579 2.0365 2.0015 2.1108 

Avg % error 0.5VDD 2.0528 2.0463 1.9264 2.0596 

Avg % error 0.2VDD 2.1393 2.0543 1.9350 2.1574 

Mean corrcoef 0.99997 0.99996 0.99991 0.99966 
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Rising-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model Loss (MSE) 
2.57E-06 2.71E-06 4.96E-06 

3.00E-
05 

Compression Ratio 3.09 6.13 12.03 24.15 

 
Table C.8 SVD 50-points Rising-Edge ECSM Waveform Results at Different Sigma Rank 

Number 

 

Rising-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.1344 1.3921 0.13929 1.3921 0.17956 2.02019 0.37226 4.305 

Avg % error 0.5VDD 0.02621 0.6596 0.03957 0.6596 0.08648 1.00776 0.3875 3.7750 

Avg % error 0.2VDD 0.04936 1.0029 0.09402 1.4019 0.20546 3.5549 0.44435 5.9104 

Mean corrcoef 0.99999 0.99999 0.9937 0.99323 

Model Loss (MSE) 3.27E-8 1.379E-6 1.366E-5 1.416E-4 

Compression Ratio 1.56 3.125 6.25 12.5 

 

 
FIGURE C-3 SPICE vs reconstructed 50-points sampled rising edge waveform 

 
C.2.3 Falling-edge 100-samples 

Table C.9 Autoencoding 100-points Falling-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 16 14 17 14 

Decoder size (KB) 100 33 111 33 

Avg % error 0.8VDD 1.0134 1.2019 0.8707 1.3110 

Avg % error 0.5VDD 0.9884 0.9656 0.9338 0.8739 

Avg % error 0.2VDD 1.0057 1.0476 0.9652 1.0262 

Mean corrcoef 0.99997 0.99984 0.99994 0.99948 

Model Loss (MSE) 
2.65E-06 1.28E-05 6.18E-06 

6.18E-
05 
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Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Compression Ratio 6.18 12.4 23.8 48.58 

 
Table C.10 SVD 100-points Falling-Edge ECSM Waveform Results at Different Sigma 

Rank Number 

 

Falling-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.07631 3.2092 0.0988 1.27973 0.2062 1.8925 0.5987 15.3771 

Avg % error 0.5VDD 0.04704 1.2790 0.0551 0.75622 0.12005 1.3618 0.3688 2.6508 

Avg % error 0.2VDD 0.04425 0.4861 0.5997 0.86481 0.1426 1.8896 0.46007 10.9180 

Mean corrcoef 0.99999 0.99993 0.99953 0.99627 

Model Loss (MSE) 2.804E-7 2.15E-6 1.706E-5 1.64E-4 

Compression Ratio 3.125 6.25 12.5 25 

 

 
FIGURE C-4 SPICE vs reconstructed 100-points sampled falling edge waveform 

 
C.2.4 Rising-edge 100-samples 

Table C.11 Autoencoding 100-points Rising-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 14 15 17 15 

Decoder size (KB) 33 51 86 51 

Avg % error 0.8VDD 0.9356 0.9321 0.9643 1.1525 

Avg % error 0.5VDD 0.9492 0.9436 0.9889 0.9409 

Avg % error 0.2VDD 0.9939 0.9538 1.0649 1.2043 

Mean corrcoef 0.99988 0.99992 0.99992 0.99954 

Model Loss (MSE) 
8.57E-06 6.21E-06 6.03E-06 

5.01E-
05 

Compression Ratio 6.22 12.35 23.81 47.81 
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Table C.12 SVD 100-points Rising-Edge ECSM Waveform Results at Different Sigma 

Rank Number 

 

Rising-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.02674 0.3859 0.05112 0.83632 0.11525 1.9355 0.36684 4.0784 

Avg % error 0.5VDD 0.01025 0.2249 0.03264 0.44025 0.08862 1.3399 0.4364 4.2364 

Avg % error 0.2VDD 0.02754 0.65583 0.07973 1.3464 0.20594 3.6207 0.4608 6.6813 

Mean corrcoef 0.99999 0.99992 0.99945 0.99356 

Model Loss (MSE) 1.878E-7 2.005E-6 1.664E-5 1.746E-4 

Compression Ratio 3.125 6.25 12.5 25 

 

 
FIGURE C-5 SPICE vs reconstructed 100-points sampled rising edge waveform 

 
C.2.4 Falling-edge 150-samples 

Table C.13 Autoencoding 150-points Falling-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Falling-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 16 17 16 16 

Decoder size (KB) 125 136 125 125 

Avg % error 0.8VDD 0.7010 0.5637 0.8729 1.2061 

Avg % error 0.5VDD 0.6733 0.5478 0.7194 0.7247 

Avg % error 0.2VDD 0.6749 0.6433 0.6641 0.7709 

Mean corrcoef 0.99996 0.99993 0.99992 0.99961 

Model Loss (MSE) 
3.31E-06 6.59E-06 6.52E-06 

4.72E-
05 

Compression Ratio 9.24 18.19 35.51 67.45 
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Table C.14 SVD 150-points Falling-Edge ECSM Waveform Results at Different Sigma 

Rank Number 
 

Falling-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.04299 1.01357 0.77262 0.91243 0.19899 1.7279 0.58807 16.449 

Avg % error 0.5VDD 0.02473 0.47767 0.03946 0.65335 0.12546 1.7001 0.3929 3.347 

Avg % error 0.2VDD 0.02975 0.25947 0.05113 0.69059 0.14689 1.7784 0.4865 15.279 

Mean corrcoef 0.99999 0.99993 0.99953 0.99632 

Model Loss (MSE) 3.0967E-7 2.2919E-6 1.9E-5 1.786E-4 

Compression Ratio 4.6875 9.375 18.75 37.5 

 
 

 

 
FIGURE C-6 SPICE vs reconstructed 150-points sampled falling edge waveform 

 
C.2.5 Rising-edge 150-samples 

Table C.15 Autoencoding 150-points Rising-Edge ECSM Waveform Results at Different 

Number of Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 

Parameters 

16 8 4 2 

Model ID 15 15 16 17 

Decoder size (KB) 64 51 125 136 
Avg % error 0.8VDD 0.6854 0.7104 0.6484 0.7136 

Avg % error 0.5VDD 0.6891 0.6756 0.6564 0.6939 

Avg % error 0.2VDD 0.7286 0.7422 0.6800 0.8106 

Mean corrcoef 0.99996 0.99992 0.99993 0.99983 

Model Loss (MSE) 3.28E-06 5.89E-06 5.32E-06 1.9E-05 

Compression Ratio 9.3 18.48 35.51 66.85 

 
Table C.16 SVD 150-points Rising-Edge ECSM Waveform Results at Different Sigma 

Rank Number 
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Rising-Edge WF 
SVD Sigma Rank Number 

32 16 8 4 
 Mean Max Mean Max Mean Max Mean Max 

Avg % error 0.8VDD 0.02157 0.3424 0.04969 0.76387 0.12358 1.90699 0.41759 4.9855 

Avg % error 0.5VDD 0.01063 0.2024 0.03594 0.78928 0.09710 1.69376 0.48040 4.42509 

Avg % error 0.2VDD 0.02639 0.67071 0.08528 1.45211 0.21191 3.5906 0.48052 6.33794 

Mean corrcoef 0.99998 0.99992 0.99945 0.99317 

Model Loss (MSE) 2.849E-7 2.219E-6 1.926E-5 2.15E-4 

Compression Ratio 4.6875 9.375 18.75 37.5 

 
 

 
FIGURE C-7 SPICE vs reconstructed 150-points sampled rising edge waveform 

 

C.3 Autoencoding 21-points ECSM Voltage Waveforms  
To evaluate the accuracy of the ECSM Autoencoders, we used multiple measures to compare the 

original waveform with the decoded one. Time-voltage 21-points samples must be normalized to 

time value between 0 and 1. This is as simple as dividing all the time values by the simulation 

time used to measure the sample data. Mean correlation coefficient, average percentage error at 

the key waveform points; 0.2VDD, 0.5VDD and 0.8VDD as well as the overall decoder loss. The 

best results at different number of encoding parameters are reported in tables C.19 and C.21 for 

21-points time-voltage sampled waveforms. Two Autoencoder encoding parameters give less 

than 1% average percentage error at the key waveform points and average correlation coefficient 

greater than 0.999 at effective compression ratio of 7.77. Tables C.20 and C.22 shows the SVD 

compression results at different Sigma rank number. The 2-parameters Autoencoder model gives 

1.46x better compression ratio than the nearest SVD compression results at sigma rank equals 4. 



150  

Better Autoencoder compression ratio of 15.96 can be achieved at less than 5% average percentage 

error at key waveform values. On the other hand, SVD runtime decoding is more than 470x faster 

than Autoencoders decode time because of the small data involved in the SVD analysis, and the 

large model used for Autoencoders. However, 21-points sampled waveforms don’t capture 

overshoots, undershoots and multiple crossings. 

Table C.17 Autoencoding 21-points Falling-Edge ECSM Waveform Results at Different Number of 

Encoding Parameters 

Falling-Edge WF 

Autoencoder Number of Encoding 
Parameters 

8 4 2 1 

Model ID 3 2 4 2 

Decoder size (KB) 248 176 391 176 

Avg % error 0.8VDD 0.4701 0.4682 0.8755 4.8877 

Avg % error 0.5VDD 0.2949 0.2545 0.3878 3.7616 

Avg % error 0.2VDD 0.4211 0.4486 0.7502 4.5249 

Mean corrcoef 0.99982 0.99981 0.99911 0.96553 

Model Loss (MSE) 1.5E-06 1.4E-06 9.3E-06 4.3E-04 

Compression Ratio 2.48 4.86 7.77 15.96 

Table C.18 SVD 21-points Falling-Edge ECSM Waveform Results at Different Sigma Rank Number 

Falling-Edge WF 
SVD Sigma Rank Number 

8 4 2 1 

Avg % error 0.8VDD 0.1984 0.7575 5.0746 8.2802 

Avg % error 0.5VDD 0.1168 0.3724 1.4202 5.1151 

Avg % error 0.2VDD 0.2273 0.4463 4.5582 6.4531 

Mean corrcoef 0.9997 0.99964 0.98072 0.8738 

Model Loss (MSE) 4.20E-07 5.10E-06 2.80E-04 3.6E-03 

Compression Ratio 2.62 5.24 10.49 20.99 

Table C.19 Autoencoding 21-points Rising-Edge ECSM Waveform Results at Different Number of 

Encoding Parameters 

Rising-Edge WF 

Autoencoder Number of Encoding 
Parameters 

8 4 2 1 

Model ID 2 3 4 2 

Decoder size (KB) 176 248 391 176 

Avg % error 0.8VDD 0.2979 0.4329 0.4197 1.9021 

Avg % error 0.5VDD 0.3665 0.2757 0.3281 3.0917 

Avg % error 0.2VDD 0.3616 0.8221 0.8341 6.4361 

Mean corrcoef 0.99991 0.99945 0.99952 0.96948 

Model Loss (MSE) 1.40E-06 4.50E-06 4.70E-06 8.6E-04 

Compression Ratio 4.86 2.48 7.77 15.96 

Table C.20 SVD 21-points Rising-Edge ECSM Waveform Results at Different Sigma Rank Number 

Rising-Edge WF 
SVD Sigma Rank Number 

8 4 2 1 

Avg % error 0.8VDD 0.1414 0.262 1.5299 1.8536 

Avg % error 0.5VDD 0.0948 0.305 0.8058 3.4004 

Avg % error 0.2VDD 0.182 0.7886 3.21 6.9688 

Mean corrcoef 0.99998 0.99984 0.99489 0.96318 

Model Loss (MSE) 2.25E-07 1.88E-06 5.74E-05 9.8E-04 

Compression Ratio 2.62 5.25 10.49 20.99 
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C.4 NLDM-LUT Results 
 

Table C.21 Falling Edge Mean Percentage Error NLDM-LUT versus Spice 

 

Table C.22 Rising Edge Mean Percentage Error NLDM-LUT versus Spice 

 

C.5 DL-WFDM results 

Table C.23 DL-WFDM Model Training Results using 1000-points Sampled Waveforms 

 

Table C.24 DL-WFDM Model Training Results using 150-points Sampled Waveforms 

 

Cell NOR INV NAND 

LUT Size 100x100 50x50 100x100 50x50 100x100 50x50 

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

Delay Time 0.16 18.08 0.41 57.15 0.29 33.13 0.55 57.77 0.24 28.60 0.46 51.55 
Tr Time 0.51 52.27 0.97 54.74 0.62 59.75 1.23 59.75 0.46 50.76 0.79 50.76 

LUT Size 25x25 7x7 25x25 7x7 25x25 7x7 

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 
Delay Time 0.22 15.46 0.53 15.46 0.37 26.31 0.70 26.31 0.26 23.44 0.61 23.44 

Tr Time 0.89 33.49 1.65 33.49 1.42 41.58 2.67 39.85 0.65 38.10 1.32 38.10 

Cell NOR INV NAND 
LUT Size 100x100 50x50 100x100 50x50 100x100 50x50 
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

Delay Time 0.19 19.04 0.46 55.56 0.40 43.39 0.85 80.48 0.29 27.94 0.67 75.15 
Tr Time 0.91 89.17 1.67 89.17 1.01 142.5 2.28 202.7 0.78 54.47 1.62 133.4 

LUT Size 25x25 7x7 25x25 7x7 25x25 7x7 

% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 
Delay Time 0.34 16.54 0.91 16.54 0.97 31.51 2.82 51.53 0.68 22.97 1.88 27.78 

Tr Time 2.12 48.06 4.24 43.85 3.94 153.7 9.25 128.6 2.29 110.5 5.54 57.94 

 Falling Edge Waveform Output, Model ID=4 Rising Edge Waveform Output, Model ID=4 
Cell NOR INV NAND NOR INV NAND 
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

@ 0.8VDD 0.61 5.77 0.87 16.38 1.06 14.90 0.59 4.89 1.02 18.13 0.57 7.78 
@ 0.5VDD 0.42 5.44 0.72 13.17 0.93 4.95 0.38 2.45 0.54 10.08 0.35 5.46 
@ 0.2VDD 0.62 3.48 1.14 17.3 1.21 7.41 0.41 4.20 0.58 4.61 0.41 4.39 

Avg 
Corrcoef 0.9995 0.9986 0.9985 0.96435 0.9636 0.9643 

MSE 4.8E-05 1.14E-04 1.41E-04 6.99E-05 1.4E-04 6.72E-05 

Disk size-KB 38 38 

Time - (s) Training time = 40s – Retrieving time = 0.4s Training time = 40s – Retrieving time = 0.4s 

 Falling Edge Waveform Output, Model ID=3 Rising Edge Waveform Output, Model ID=4 

Cell NOR INV NAND NOR INV NAND 
% error Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max 

@ 0.8VDD 0.82 10.63 1.33 13.94 0.99 9.5 0.87 5.15 0.94 19.31 0.88 9.04 
@ 0.5VDD 0.49 6.62 1.05 9.98 0.79 7.93 1.02 6.14 0.94 18.96 0.83 10.08 
@ 0.2VDD 0.55 6.41 0.91 8.47 0.66 6.14 1.00 6.06 1.05 20.57 0.93 10.28 

Avg 
Corrcoef 0.9962 0.9886 0.9976 0.9943 0.9893 0.9932 

MSE 2.21E-4 5.04E-04 1.69E-04 2.42E-04 4.57E-04 2.9E-04 

Disk size-KB 15 38 

Time - (s) Training time = 20s – Retrieving time = 0.11s Training time = 20s – Retrieving time = 0.1s 
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APPENDIX D 

Published and accepted papers 
We have two published papers at one refereed IEEE conference as an outcome of work done in 

this thesis, and one journal paper is under review at Ain-Shams Engineering Journal. 

• Published: W. Raslan and Y. Ismail, "Deep Learning Autoencoder-based Compression for 

Current Source Model Waveforms," 2021 28th IEEE International Conference on Electronics, 

Circuits, and Systems (ICECS), 2021, pp. 1-6, doi: 10.1109/ICECS53924.2021.9665573. 

o https://ieeexplore.ieee.org/document/9665573 

• Published: W. Raslan and Y. Ismail, "Structured Recurrent Neural Network Model Order 

Reduction for SISO and SIMO LTI Systems," 2021 28th IEEE International Conference on 

Electronics, Circuits, and Systems (ICECS), 2021, pp. 1-6, doi: 

10.1109/ICECS53924.2021.9665593. 

o https://ieeexplore.ieee.org/document/9665593/  

• Accepted: W. Raslan and Y. Ismail, “Deep-learning cell-delay modeling for static timing 

analysis”, Ain-Shams Engineering Journal. Manuscript Ref# ASEJ-D-21-01477R1 

o https://authors.elsevier.com/tracking/article/details.do?aid=101828&jid=ASEJ&
surname=Raslan 
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