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Abstract

Technology scaling has increased the complexity of integrated circuit design. It has also led
to more challenges in the field of Design for Manufacturing (DFM). One of these challenges
is lithography hotspot detection. Hotspots (HS) are design patterns that negatively affect the
output yield. Identifying these patterns early in the design phase is crucial for high yield
fabrication. Machine Learning-based (ML) hotspot detection techniques are promising since
they have shown superior results to other methods such as pattern matching. Training ML
models is a challenging task due two main reasons. Firstly, industrial training designs contain
millions of unique patterns. It is impractical to train models using this large number of patterns
due to limited computational and memory resources. Secondly, the HS detection problem has an
imbalanced nature; datasets typically have a limited number of HS and a large number of non-
hotspots. This requires the use of data sampling techniques to choose the best representative
dataset for training. In this thesis, we explore the problem of hotspot detection using machine
learning. Specifically, we tackle the problem of data sampling where we introduce a method for
dataset selection that enables the reduction of the training dataset size and improves the data
balance between hotspot and non-hotspot patterns. In addition, we explore feature engineering

using image gradients as a method of improving ML HS detection models.
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Chapter 1

Introduction

1.1 Background on Lithography Hotspots

Optical lithography is the method by which an integrated circuit (IC) is printed on silicon.
Lithography steps are shown in Figure 1.1. First, a light-sensitive material called the photoresist
is placed on the substrate. Then, the mask of the IC design is placed between the substrate and
the light source. The substrate is exposed to light with a specific wavelength. This modifies
the solubility of the photoresist in certain areas that correspond to the mask. After exposure,
etching is carried out. Then, this substrate is immersed in a developer solution. Developer
solutions are used to dissolve away areas of the photoresist exposed to light. These areas can
then be deposited with metal to create the electrical connections [1].

Like any physical manufacturing process, optical lithography has many process variations
that lead to imperfect output. For example, the width of a metal track is usually not equal to
the width that was drawn by the designer. Due to process variations, the fabricated width may
be close to zero leading to a pinch hotspot (HS) or an open circuit. Other process variations
can lead to two metal tracks touching each other causing a short circuit or a bridging hotspot.

These two types of hotspots are shown in Figure 1.2.
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FIGURE 1.1: Optical Lithography Steps
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Hotspots cause functional defects that negatively affect the yield of the fabrication process.
Yield is defined as the ratio of the working chips to the total number of fabricated chips. In
order to maximize yield, it is important to detect hotspots as early as possible, preferably in the
design phase. This increases the confidence that the chip would be fabricated successfully.

Traditionally, design rule checking (DRC) was sufficient to ensure high yield fabrication.
Design rule checks are geometrical checks that are defined by the manufacturer. The basic
checks are shown in Figure 1.3. The first check is the minimum width check. Any metal that
has a width smaller than the allowed minimum width is not allowed because it would be
vulnerable to process variations. Hence, the designer should ensure that all metal widths are
within the requirements defined by the manufacturer. A similar check exists for the spacing
between metals and the distance between a contact and the metal layer which is known as the
enclosure. A designer should make sure that their layout is DRC-clean before sending it to

fabrication.

ar
Pinching Bridging

FIGURE 1.2: Scanning Electron Microscope (SEM) Images of Two Types of HS [2]
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The three basic DRC checks

Width

Enclosure

Spacing

FIGURE 1.3: Basic DRC Checks

As feature sizes decreased due to Moore’s Law [3], DRC checks on their own were not

enough for high yield, therefore, lithography hotspot detection became a necessity.

1.2 Methods of Hotspot Detection

There are several methods for HS detection. The first method is based on lithography process
models [4]. Using these models, simulation can run on a DRC-clean layout to identify hotspot
regions. The output of simulation is a process variation (PV) band. This band represents
variation in edge placement under different process conditions. From this band the minimum
contour can be used to perform measurements and detect pinch hotspots. On the other hand,
bridging hotspots can be detected from the maximum contour. Figure 1.4 shows an example
of a bridging hotspot. The metal layer is shown in yellow and the PV band in red. It can be
seen that the bridging hotspot occurs where the maximum contours touch each other causing a
short circuit. Using this information, the designer can then modify the layout to fix the hotspot
by moving the two edges highlighted in cyan further apart causing the short circuit to be
eliminated. Lithography simulation is the most accurate method for HS detection since it makes

use of calibrated process models, however, it is computationally expensive.
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Short Eliminated

FIGURE 1.4: Example of a Bridging Hotspot and its Fix [5]

The second type is based on pattern matching libraries [6, 7]. This flow is shown in Figure
1.5. First, a pattern matching library of previously seen hotspot patterns is collected from
multiple input layouts. This library is then used to run pattern matching on the test design to
match the known patterns. Lithography simulation is then run on the matching locations to
detect hotspots. The advantage of this method is that it does not require a large computational
power like full lithography simulation. This is because the pattern matching step eliminates
large areas which do not match the known HS library, so simulation only runs on a subset of
the layout. The expensive simulation step is thus reduced. The disadvantage of this method is

that it cannot detect new hotspots that are not part of the library.

Pattern
Matching

Pattern
Capturing

Input Designs
Containing HS

Known HS
Patterns

Pattern Litho

Locations Simulation Detected HS

Matching
Library

Matching Test Design

FIGURE 1.5: Pattern Matching HS Detection Flow



Chapter 1. Introduction

The last type is machine learning (ML)-based hotspot detection. In this method, a ML model
is trained on a set of known hotspot and non-hotspot patterns. The model is then used to
predict hotspots on a new design. This method is highly promising since it does not require as
much computational power as lithography simulation. In addition, the inherent fuzziness of
ML models can help them predict new hotspots [8]. More details on ML HS detection will be
described in the next section. In addition, several machine learning-based hotspot detection

techniques will be discussed in Chapter 2.

1.3 Problem Statement

This thesis explores the problem of lithography hotspot detection using machine learning. The
process of HS detection using machine learning techniques can be divided into three steps:
data generation, model training, and prediction. In the first step, patterns are captured from
the input layout and encoded into a set of features that can be used for training. Each feature
vector is then labeled as either corresponding to a hotspot (HS) or a non-hotspot (NHS). In the
training step, the model iteratively minimizes a pre-defined loss function that measures the
deviation from the model predictions during training from the actual labels. The learned model
(achieving the minimal loss), is then used to predict patterns on the test layouts to determine
whether they correspond to a hotspot or not.

There are three main challenges in the data generation step. The first challenge is that
industrial training layouts typically contain millions of unique patterns [9]. It is difficult to use
this amount of data to train a ML model due to computing and memory limitations. Hence, data
selection is needed to reduce the training set size. The second challenge is the imbalanced nature
of the problem; in a typical design, the ratio of hotspot to non-hotspots is very small, which
causes a class skew in the generated datasets for training. Machine learning models are sensitive
to imbalance in class distribution, which necessitates the employment of a sampling technique
to choose a representative dataset for training that is more balanced. The third challenge is
the existence of numerous non-hotspot patterns that are structurally and geometrically similar

to hotspot patterns, which makes them harder to predict by the machine learning model, and
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usually get classified as HS. These patterns are described as hard-to-classify (HTC) [10]. This
can lead to an increase in the false alarm rate of the model. Hence, it is important to develop an
efficient data sampling technique that addresses this issue, ensuring that the training dataset
contains such patterns to help the model learn the subtle differences between HS and NHS.
The problem can be stated as follows: Given a particular training dataset, find the most
representative patterns that can reduce the training cycle of any ML model while achieving

equal or better performance than the model trained using the full dataset.

1.4 Organization of the Thesis

¢ Chapter 2 presents a background on the various machine learning methods that are used
throughout the thesis. In addition, a literature review of the various ML HS detection
models is done to evaluate the current status. Moreover, the different pattern clustering
techniques are also studied and compared to determine the gaps and decide on how to

proceed with data reduction for ML model training.

¢ Chapter 3 presents several feature generation methods that are commonly used for ML HS
detection as well as pattern clustering. These methods are discussed in order to propose a

new method to enhance the performance of ML models.

¢ Chapter 4 builds on the previous chapters to present our proposed flow for pattern

clustering and dataset selection for training ML models.

* In Chapter 5, we explore a feature generation method based on image gradients to improve

the performance of ML models.

¢ In Chapter 6, the outcomes of this thesis are summarized and directions for future work

are proposed.
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1.5 List of Contributions of this Thesis

¢ The use of autoencoders for dimensionality reduction is explored. The dimensionality of
pattern images that are used to train machine learning-based HS detection models can be
reduced by training an autoencoder to learn latent features of a smaller dimension that

can be used to reconstruct them.

¢ The problem of data selection for training ML models is investigated by using encoded
features. We use the autoencoder features to run clustering to group similar patterns

together. Then, we propose two sampling approaches to prepare the training dataset.

* The use of the encoded features as input for ML-based HS detection models is also

explored. This could help create simpler models that are less prone to over fitting.

¢ Feature engineering using image gradients [11] is investigated as method of improving

the performance of ML-based HS detection models.



Chapter 2
Background and Literature Review

2.1 Background on Machine Learning

2.1.1 Basics of Machine Learning

In this section, we describe the basics of machine learning (ML) which is a branch of artificial
intelligence (AI) that deals with algorithms that can build models which make predictions

without being explicitly programmed [12]. There are three main types of ML algorithms:
* Supervised Learning
¢ Unsupervised Learning
* Reinforcement Learning

The typical supervised learning framework consists of several elements: train and test data
x and target labels y, where x and x are n and m-dimensional vectors respectively. The goal
of the framework is to find a function f which converts the input data into the labels, while
minimizing the error between the predicted and expected labels. This is expressed by Equation

2.1.

y = f(x) (2.1)

In unsupervised learning, the dataset is not labeled. The algorithm tries to discover patterns
in the training dataset on its own, without being guided by labels. An example of this is

clustering where similar training examples are grouped into different categories [13]. Another

9
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example is Principal Component Analysis (PCA) [14], where the most discriminating features
are obtained from the training dataset. These features can be used to reduce the dimensionality
of the input features.

Finally, in reinforcement learning, the computer program is known as an intelligent agent
(IA). It interacts with an environment in order to reach a certain goal. As the IA interacts
with the environment, it performs actions and based on these actions it can receive positive or
negative rewards [15]. In this way, it can learn the consequence of each action and update its
behavior. The goal of the IA is to maximize its reward. For example, an autonomous car is an
example of a reinforcement learning system. The car itself is the IA which interacts with the
environment and can learn how to stay inside a lane and how to avoid collisions. This can be
done by sensing the environment and learning by doing wrong actions. With several iterations,

it can update itself to perform the right actions to achieve the required goal [16].

2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNSs) are machine learning models that are inspired by biological
neurons. The basic building unit of an ANN is known as a perceptron. A perceptron can be
described as: f(x) = g(wx + b), where w € R" is a weight vector, x € R" is an input vector, n
is the number of inputs, and b is a bias coefficient. ¢(-) is an activation function that introduces
non-linearity. Examples of activation functions include: sigmoid [17], relu [18], and tanh. An
illustration of the perceptron is shown in Figure 2.1 and plots of commonly used activation

functions are shown in Figure 2.2.

g(wx +b)

FIGURE 2.1: Illustration of a Perceptron

10
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Sigmoid Tanh RelU Leaky RelLU

1 ef—e *

. B g(z) = max(ez, z)
C 14e= 9(z) = et +e *

withe << 1

9(2) g(z) = max(0, z)

FIGURE 2.2: Common Activation Functions

An ANN consists of several perceptrons stacked together in several layers. Each perceptron
is connected to every perceptron from the previous layer. This configuration is known as a fully
connected neural network. The ANN can be used for both classification tasks and regressions
tasks. In classification, each data point belongs to a class and the model is trained to distinguish
between different classes. In regression, the network is trained to predict a continuous value. For
example, a network can be trained to predict fuel efficiency of automobiles based on multiple
parameters such as the number of cylinders, displacement, and horsepower of the engine [19].

To train an ANN, a loss function is needed to represent the error between the predicted and
the expected labels. Then, the backpropagation algorithm runs to iteratively update the weights
of the network to minimize the loss [20]. In case of binary classification, binary cross-entropy
(BCE) loss is usually used. This is shown in Equation 2.2 where y is the ground truth label, and

y is a label predicted by a classifier.

1 nd i v
BCFE = - Zyzlog(y )+ (1 —y")log(1—17") (2.2)
i=1

More recently, a loss function known as Focal Sigmoid Cross Entropy was introduced for
classification problems on imbalanced datasets [21]. An imbalanced dataset is one where the
target classes have an uneven distribution of observations. For a binary classification task, one
class has a very high number of observations, while the other has much less. This can cause the

classifier to have poor predictive performance, especially on the minority class. This function

11
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gives tuning flexibility for the loss of each class via two parameters: a and 7. « represents
a weighting factor to give the minority class a higher loss value. v changes the gradient of
the loss function to reduce the loss for well-classified examples. For a larger value of ~, more
focus is put on misclassified examples. These parameters can be tuned to improve the model
performance. Focal loss is given by Equation 2.3 where p; is the probability of the positive class
that is output by the model. A graph of Focal Loss is shown in Figure 2.3 where the effect of v
can be observed.

Focal Cross Entropy is important for HS detection which is a typical example of an imbal-
anced dataset problem. As we will see in the later chapters, this loss will be used to account for
the imbalanced nature of the HS detection datasets Tuning its parameters will help improve the

performance of the ML model.

Focal Loss = —a(1 — py)"log(pt) (2.3)
5
(p) = —log(p) —7=0
—~ = 0.5
4 — —(1 —Pt)ﬁf log(pt) Y=
—,-Y - 2
3 —
w
w
o
2
well-classified
examples
1 A
)
0 ' — e ——

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

FIGURE 2.3: Sigmoid Focal Cross Entropy [21]

12
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For regression problems, a loss such as mean squared error can be used. It is represented by

Equation 2.4. Y; is the i-th expected label and Y; is the i-th predicted label.

n

1 ~
MSE = =~ Y; - Y;)? 2.4
S n;< ) (24)

2.1.3 Autoencoders

An autoencoder is a special type of ANN. It is an unsupervised learning method meaning that
the data points have no labels. The autoencoder is trained to reproduce its input [22]. The
loss function for the autoencoder is a reconstruction loss. For example, it can be the mean
square error between the input and output. The hidden layers of the autoencoder usually have
a smaller number of nodes than the input itself. This is shown in Figure 2.4 where the input
and output layers have 10 nodes and the latent layer in the middle has 4 nodes. This creates a
bottleneck in the autoencoder and forces the network to learn a compressed representation of

each data point. Hence, it learns an encoding for each data point.

-
XS XX

Input Layer € R'® Hidden Layer € R* Output Layer € R

FIGURE 2.4: Example of Autoencoder Architecture
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Autoencoders are powerful because they can learn key latent features that would enable it
to reconstruct the input. The non-linear activation functions in the autoencoder can generate

features that are more generic than other methods such as Principal Component Analysis (PCA).

2.1.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep neural network which takes 2-D objects
(usually images)! as input, and then updates its weights and biases based on the input features.
The difference between CNNs and fully connected neural networks is that the weights and
biases are in the form of convolution filters. This allows the network to capture spatial features
in the images. In addition, the number of trainable parameters in CNNs is much lower than
fully connected architectures because not every node is connected to all other nodes. The
reduced number of parameters helps reduce over fitting and has a smaller computational cost.
In addition, flattening images and using a fully connected neural network would lead to a huge
number of parameters and loss of spatial information. Hence, CNNs are highly suitable for

image datasets. CNNs typically contain of three types of layers:
¢ Convolutional Layers
* Pooling Layers
¢ Fully Connected Layers

A convolutional layer consists of a number of filters. Each filter is a small matrix which
is convolved with the image resulting in another image where each element is a weighted
combination of the entries of a region or patch of the original image; an example is shown in
Figure 2.5. As shown, the dot product between the image patch and the kernel (1 + 1+ 02 +
1#3+0%x4+1x5+1%x6+1x74+0+8+1x%9 = 31) gives the value of the top left pixel of the
output. The kernel is then shifted and the same calculation is repeated on the next patch. Based
on the size of the kernel as well as the stride, the size of the output image can be calculated.
While training a CNN, these filters are updated based on the loss function in order to learn the

key features to help predict a certain output.

!By abuse of notations in this section and throughout the thesis, we refer to these 2-D objects as images.
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FIGURE 2.5: The Convolution Operation [23]

Pooling layers reduce the size of the images, keeping only the more important features.
Pooling is done by also sliding a matrix across the input images with a certain stride. The most
important difference between pooling and convolution is that pooling does not have learnable
parameters. This means that the same operation is done regardless of back propagation. The
most common type of pooling is Max Pooling. In Figure 2.6 a 2-by-2 filter is used with a stride

of 2. In this case, the maximum value of each 2x2 block of the original image is calculated as the

output.

1 13(|1(2

219011 Max Pooling 9
f=2 >

1|5(2(1 = 613
s=2

3|63 ]2

FIGURE 2.6: Max Pooling [23]

Fully connected layers usually come before the output of a CNN. The outputs from the
previous layers are flattened and passed to one or more fully connected layers. These can then

be used to calculate the final output of the network whether it is a classification or a regression

network.
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FIGURE 2.7: Example of Convolutional Neural Network [23]

Figure 2.7 shows a simple CNN that consists of two convolutional, two pooling and two
fully connected layers. We can observe that the size of the image decreases while the number of
filters and number of channels increase as we go deeper into the network. We can also see that
towards the end of the network, the output of the second pooling layer is flattened and then
passed into two fully connected layers. Finally, the last layer is a softmax layer which is used

for classification problems.

2.1.5 Clustering
Overview

Clustering is a type of unsupervised learning where the data points are divided into a number
of groups, where each group contains points that are very similar to each other. In simple terms,
the objective is to segregate groups with similar features and assign them into clusters. Figure
2.8 shows a simple example of clustering, where we first start with a group of unorganized
shapes. By using the right features for each data point and having a distance measure, a
clustering algorithm can separate the data points into clusters where each cluster would contain
similar points. Note that each data point does not have a label i.e. circle, square, triangle, but

rather, each point is described by features such as the number of vertices and edges, and based
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on that it can calculate distances and assign cluster IDs. Hence, clustering is considered to be

an unsupervised machine learning algorithm.

A,
A A

°
A _A ®e
® A

o H%mA ¢
A
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® B g

Unorganized Objects Clustered Objects

FIGURE 2.8: Simple Clustering Example

k-means Clustering

k-means is one of the simplest and popular clustering algorithms. The input to the algorithm is
k which is the required number of clusters. The algorithm begins by initializing k centroids.
Then, each data point is assigned a cluster ID using the closest centroid based on some distance
measure. Next, the mean of the points is calculated for each cluster to update the location of
the k centroids. Then, the cluster IDs are updated based on the new centroids. This is repeated
until the centroids stop changing or a maximum number of steps is reached.

k-means is the basic clustering algorithm which can be used for many applications. However,

it has two issues:

¢ The number of clusters k is an input parameter. It can be difficult to choose the right value

and a wrong one can yield misleading results.

¢ It does not always converge to the global minimum, hence the result might be counter-

intuitive.

¢ [t assumes that the clusters are spherical with similar sizes. This might not be suitable for

all datasets.

e [t is sensitive to outliers due to the mean calculation.
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Hierarchical Clustering

Hierarchical clustering is an algorithm that builds a hierarchy of clusters. This algorithm starts
with each data point assigned to a cluster on its own. Then, the two nearest clusters are merged
into the same cluster. This process is repeated until the whole data is combined into one cluster.
Alternatively, the process can be halted when the required number of clusters is obtained.

Hierarchical Clustering is usually represented as a dendrogram as the one shown in Figure
2.9. At the bottom each point is in a cluster on its own. Then, the points are merged based on a
distance measure between clusters. This algorithm follows the agglomerative or bottom-up
approach. It can also be done in a top-down or divisive approach where we start with a single
cluster containing all the points.

Hierarchical clustering has a time complexity of O(n?) and space complexity of O(n?). This
makes it difficult to use for large datasets [24]. Hence, other methods are usually used in

practical situations.

FIGURE 2.9: Dendrogram Representing the Result of Hierarchical Clustering
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Density-based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a clustering algorithm that was proposed in 1996 [25]. It is described as "density-
based" because it can group points that are closely packed together. In addition, it can identify
outliers that are far away from dense regions.

DBSCAN requires two input parameters: radius of neighborhood around a point (¢) and
the minimum number of points required to form a dense region (minPts). Hence, the number
of clusters does not need to be specified as an input. It is automatically determined based on
the values of € and minPts.

DBSCAN classifies points into one of the following:

¢ Core Point: this is a point which has at least minPts data points (including itself) within

radius e

¢ Density-Reachable: this is a point that has at least one core point within its radius but is

not a core point itself
* Noise: this is point that is neither a core point nor density-reachable

This classification is shown in Figure 2.10.

@ Core Point
. Density-Reachable

. Noise

FIGURE 2.10: DBSCAN with minPts = 4 and ¢ of Each Point Shown
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DBSCAN runs as follows: First, a random point is selected. If the neighborhood of the point
contains at least minPts points a cluster is started, otherwise the point is labeled as noise. If
the point is part of a dense cluster, then it is added to the cluster as well as all the points in its
neighborhood. Noise points can later on be added to a cluster if they are found to be part of a
dense neighborhood. This process is done until a connected cluster is found. Then, another
unvisited point is obtained and the same process is repeated. An abstract version is described

in Algorithm 1 [26].

Algorithm 1 Abstract DBSCAN Algorithm

1: Compute neighbors of each point and identify core points

2: Join neighboring core points into clusters
3: foreach non-core point do
4:  Add to a neighboring core point if possible

5. Otherwise, add to noise
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2.2 Machine Learning-Based Hotspot Detection

A major part of our thesis work is focused on lithography hotspot detection using machine
learning as will be presented later in Chapters 4 and 5. Therefore, in this section, we will
introduce the available benchmark datasets for hotspot detection. Then, the literature be

examined to analyze and compare the different ML-based HS detection methods.

2.2.1 Benchmark Datasets for Hotspot Detection
ICCAD-2012 Benchmark

The ICCAD-2012 dataset was introduced as part of the computer-aided design (CAD) contest of
the ICCAD conference. Since its inception, this dataset has been the standard for comparing the
various machine learning HS detection models. As will be seen in the subsequent sections, this
dataset has been highly cited and is used almost exclusively for comparing machine learning

models. The benchmark statistics are shown in Table 2.1.

TABLE 2.1: ICCAD-2012 Benchmark Statistics

Training Dataset Testing Dataset
HS Count | NHS Count | HS Count | NHS Count
Benchmarkl | 99 340 226 319
Benchmark?2 | 174 5285 498 4146
Benchmark3 | 909 4643 1808 3541
Benchmark4 | 95 4452 177 3386
Benchmark5 | 26 2716 41 2111

ICCAD-2019 Benchmark

The ICCAD-2019 dataset [10] was introduced to tackle the shortcomings of the earlier ICCAD-
2012 dataset. The ICCAD-2012 dataset was shown to have some underlying structural issues
that led to inaccuracies in reporting the machine learning models performance. The dataset
showed that the false alarm rates for many of the machine learning models presented in the

literature were higher than what they were believed to be. In addition, it was shown that the
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ICCAD-2012 does not contain "truly not seen before" (TNSB) hotspots. Hence, measuring HS
accuracy might be misleading using this dataset.

The ICCAD-2019 dataset addresses these issues by introducing a single training dataset
and two test datasets. Test Dataset I addresses the issue of TNSB hotspots and Test Dataset II
addresses the problem of false alarm rates. The statistics for ICCAD-2019 dataset is shown in
Table 2.2.

TABLE 2.2: ICCAD-2019 Benchmark Statistics

HS Count | NHS Count
Training Dataset | 467 17758
Testing Dataset I | 1001 14621
Testing Dataset II | 64310 65523

2.2.2 SVM-based Methods

Early adoption of ML techniques for hotspot detection relied on feature engineering and the use
of support vector machines (SVM). In [27] the authors proposed a feature engineering method

where various layout pattern features are generated:
e Corner Information (convex or concave)
¢ External distances between polygon edges
¢ Internal distances between polygon edges

These features are shown in Figure 2.11.
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FIGURE 2.11: Examples of Layout Features

Each edge is divided into fragments and given a certain radius, the features outlined above
are calculated. These features are then used to train a support vector machine (SVM) and an
artificial nerual network (ANN). The two approaches are then compared. In addition, they also
introduce a process for iteratively refining the models using different classification thresholds.
Both ML models were tested using industrial layouts and have shown high HS recall (> 85%)
and high precision (99.9%) [27].

In [28], the same fragment-based layout features are used. They also use SVM as a classifier.
However, they employ principal component analysis (PCA) to reduce the dimensionality of the
feature vector. Moreover, due to the high imbalance between hotspots and non-hotspots which
can negatively affect the SVM, k-means clustering is used to group similar patterns. Then, the
center of each cluster can be used as a representative. The center here is defined as the mean of
the patterns in each cluster. In this paper, the ICCAD’12 dataset is used as a benchmark [29].
The results on the test set are shown in Table 2.3. The results are shown for the features with
and without PCA. It can be seen that using PCA improves precision, and therefore, improves
the F1 score of the SVM.

In [30], the input patterns are grouped into hotspot and nonhotspot clusters according to
the polygon topologies in their core areas. Then, an SVM is trained to classify patterns in each

cluster. Finally, the false alarms are used to train an additional SVM to fine tune the results by
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TABLE 2.3: Prediction Results on ICCAD’12 Test Set [28]

Without PCA With PCA
Recall | Precision | F1 Score | Recall | Precision | F1 Score
83.6% | 6.9% 12.7% 83.0% | 8.5% 15.5%

making use of the geometries outside the core area. This approach has shown to improve HS
accuracy when compared to training a single SVM. A recall of 92.7% and precision of 7.4% was
achieved.

In [31], the authors used a very similar approach to that used in [30]. The difference was in
the usage of an industrial pattern matching tool for classifying the patterns [32]. In addition,
this method uses fewer inputs features to describe the patterns. This method achieved 87.9%
recall and 10.7% precision.

Table 2.4 compares the recall, precision, and F1 scores of the various SVM-based models
on the ICCAD-2012 dataset. Note that the model in [27] does not have results on this dataset

because it was published before the dataset was introduced.

TABLE 2.4: Comparison of SVM-Based Models on the ICCAD’12 Test Set

Method Recall (%) | Precision (%) | F1 Score (%)
Hierarchical Approach [27] N/A N/A N/A
PCA-SVM [28] 83 8.5 15.5
Topological Classification [30] | 92.7 7.4 13.7

SVM and Clustering [31] 87.9 10.7 19.1

2.2.3 Deep Learning Methods

As integrated circuits became increasingly complex due to technology scaling, detection of
hotspots became more difficult. Hence, more sophisticated methods based on deep learning
were introduced. A comparison between the different models is shown in Table 2.5.

Shin and Lee were one of the first authors to use convolutional neural networks for HS
detection [33]. Their method is based on a sliding window to scan the input layout to obtain
various patterns. Then a CNN classifier is trained using images of the patterns from the training
layout. Their CNN model consists for four convolutional and pooling layers followed by two

fully-connected layers. For prediction on a test layout, the same sliding window approach is
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used to predict the probability of HS. The coordinates of the center of each image is used to
create HS probability map. DBSCAN clustering is then performed on this map to filter the
results to extract HS coordinates and remove outliers. This method has shown a recall of 95.5%
and precision of 22.2% on the ICCAD-2012 test dataset.

Another CNN based model was introduced by Borisov and Scheible [34]. In this paper, they
have used a model with two "basic blocks". Each basic block consists of three convolutional
layers, a batch normalization layer, followed by activation and then max pooling. They also
introduced used a skip connection between layers to improve the convergence of the model
and reduce the effect of vanishing gradients. This method was also tested on the ICCAD-2012
dataset. This method achieved a recall of 98.9% and precision of 97.1%.

Moreover, Matsunawa et al. have introduced a HS detection method using fully-connected
deep neural networks (FC-DNN) [8]. The input to the network is a density-based encoding
of each pattern. The network is trained in two steps: pre-training and then fine tuning. Pre-
training is an unsupervised training method was introduced by Hinton [35]. Instead of training
a sequence of fully-connected layers at once, the layers are trained iteratively as an autoencoder
to reconstruct its input. Then, in the fine-tuning phase, supervised training is performed to train
the network as a classifer to differentiate between hotspots and non-hotspots. This method was
also tested on the ICCAD-2012 dataset and has shown superior results with recall greater than
95% and false alarms very close to zero.

More recently, Yang et al. proposed a method for feature generation using discrete cosine
transform (DCT) [36, 37]. At first, each layout pattern image is divided into n — by — n blocks.
For each block, DCT is used to convert it into the frequency domain. Then, the upper-left
coefficients of each block are used to represent the block. These coefficients are low-frequency
components which are usually sufficient to reconstruct the block. In addition, the number of
coefficients needed is much smaller than the original block size, hence a high compression
ratio is achieved. The authors call this feature representation a "feature tensor". The feature
tensors are then used to train a convolutional neural network. This method was tested on the
ICCAD-2012 dataset and achieved a recall of 97.7% and a precision of 99.9%.

In a very recent paper, Huang et al. proposed two improvements in HS detection [38]. First,
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TABLE 2.5: Comparison of Deep Learning Models on the ICCAD’12 Test Set

Method Recall (%) | Precision (%) | F1 Score (%)
CNN [39] 95.5 22.2 36.0
FC-DNN [8] 95.0 99.0 97.0
CNN with Skip Connection [34] 98.9 97.1 98.0
CNN with DCT Features [36] 97.7 99.9 98.8
CNN with Ensemble Learning [38] | 97.4 94.8 96.1

a multi-input deep learning model is proposed, which includes a CNN model that takes input
images and a fully connected DNN model that takes input physical features such as the number
of polygons and number of corners. Second, an ensemble learning method is proposed based on
multiple submodels. This is done by doing a second round of training, combining the weights
of models that achieve highest recall, precision, and F1 score respectively into another network
to remove the redundant weights. In addition, they also used sigmoid focal loss [21] which is

more suitable for imbalanced datasets than the traditional binary cross entropy.

2.3 Layout Pattern Classification

2.3.1 Overview

Layout pattern classification is required for integrated circuit design. There are different appli-
cations for pattern classification such as design space analysis, design rule generation, and sys-
tematic yield optimization. On the other hand, this functionality is provided by very few ven-
dors, hence, there exists a need for an open source or academic solution. The pattern classifica-
tion contest in the ICCAD 2016 conference was an important enabler of pattern classification
solutions, as it provided a benchmark dataset that enabled fair companions between various
methods. In addition, it formulated the problem with clear inputs, outputs, and objectives [40].

The input consists of a layout in GDS format. There are marker polygons that indicate the
hotspots on the layout. There are two types of clustering that are required: area-constrained
clustering (ACC) and edge-constrained clustering (ECC). Clustering can be performed using
either ACC or ECC but not both simultaneously [40].
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In ACC, the pattern similarity is determined based on the difference in area between two
patterns. Pattern similarity increases as the differnce in area decreases. ACC is given by
Inequality 2.5 where A and B are two patterns, w and & are the width and height of the pattern
extent, and « indicates the ratio of area match. « is a number between 0 and 1 where o = 1

indicates an exact match [40].

Area(XOR(A, B))
w-h

<l-« (2.5)

In ECC, the similarity is measured by how much the pattern edges are allowed shift. This is
indicated by a parameter e which is a positive floating-point number. e = 0 indicates an exact
match. Two patterns are considered to be part of the same cluster if the shifts between their
corresponding edges are < e [40].

The objective is to group the patterns into clusters based on ACC or ECC while at the same

time minimizing the number of clusters.

2.3.2 Pattern Classification in the Literature

In this section, we will explore several pattern classifications methods in the literature and
compare them. All of the methods use the ICCAD-2016 contest dataset as a benchmark.
Ishino et al. proposed that the pattern classification problem can be converted into a
minimum dominating set problem [41, 42]. This problem can be solved using Interger Linear
Programming (ILP) [43]. As the size of the problem increases, it would be difficult to solve in a
practical time, hence, an initial clustering step is done to divide the large problem into smaller
problems. Then, each cluster is fed into an ILP solver to obtain the final result. For the initial
clustering step, a feature extraction step is required. Two methods are used: density based,
and Fourier Transform based. The density based feature vector is basically a flattened vector
of pixels. The authors claim that this would be suitable for both ACC and ECC. The Fourier
Transform method is suitable for ECC. In addition, two clustering algorithms are explored:

k-means++ [44] and Agglomerative Clustering [24].
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Oliveira et al. proposed a greedy clustering algorithm that outperforms most of the ICCAD-
2016 contest winners [45]. They also incorporated a method to divide complex shapes into
rectangles to speed up comparisons between patterns.

Another clustering method was introduced by Woo et al. in 2017 [46]. This method is based
on transforming the classification problem into a Set-Covering Problem (SCP) [47]. Then, a
metaheursitic algorithm known as Greedy Randomized Adaptive Search Procedures (GRASP)
[48] is used to solve the SCP.

Moreover, Chang et al. introduced another clustering technique based on Markov clustering
[49]. In this method, a graph is constructed where the nodes represent a pattern and the edges
represent the similarity between two clips. The Markov Clustering algorithm is a stochastic
process which works based on the assumption that a random walk that reaches a dense cluster
with likely not leave the cluster until most of its nodes are visited. This process will discover a
partial grouping of the patterns. A post processing step is then performed on each cluster to
assign representative patterns and make sure that the clustering constraints (ACC or ECC) are
satisfied.

In addtion, Wu et al. proposed a MapReduce-based method that reduces the size of the
pattern classification problem [50]. Using this method they were able to minimize the number
of clusters and maximize the size of the largest cluster.

Recently, Xu et al. introduced a method to find the lower bound of the cluster count [51].
The lower bound calculation is converted into a Maximum Clique Problem (MCP) [52] which
is then solved to find the minimum number of clusters. Similar to the method in [46], the
authors formulate the problem as a SCP, however, they use the result of MCP to initialize the
SCP solution. They showed that this greatly improves the performance and the convergence of
the SCP. The final results show that this technique has a smaller run time when compared to
[46]. In addition, the results show that the cluster count obtained via this method is equal to the
lower bound that was determined via MCP which shows that the optimal value is reached.

Table 2.6 compares the different clustering approaches. n is the number of clusters, s,,,q, is
the size of the largest cluster, and ¢ is the run time in seconds. Note that the run time is reported

for reference only because they were tested on different machines.
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2.4 Chapter Summary

In this chapter, we have presented a background on various machine learning algorithms
that would be used in later chapters of this thesis. These algorithms include: artificial neural
networks, convolutional neural networks, and autoencoders. Then, a summary of several
clustering algorithms were discussed as this is one of the major themes related to our problem
statement.

Moreover, the problem of HS detection using machine learning was discussed. The well-
known ICCAD benchmarks were presented. Then, various ML methods were discussed and
compared. These methods include SVM-based methods as well as deep learning methods.

Finally, layout pattern classification was discussed to determine the state of the art tech-
niques and evaluate their performance. This would help us propose our own method for

clustering and sampling to prepare training datasets for ML HS detection.

2.5 Conclusion

The literature review showed that numerous efforts have been made to explore various tech-
niques to improve machine learning HS detection models. In addition, several methods were
proposed to tackle the problem of pattern clustering. However, there are many areas that

require further exploration:

* The benchmark datasets that are available to compare models are limited. The ICCAD-
2012 dataset [29] is the one that is most widely used to compare models. However, it has
been shown that it is not suitable for that purpose. The recent ICCAD-2019 dataset [10]
which was introduced to tackle the ICCAD-2012 dataset issues has not yet gained enough

traction in the literature.

* Most of the literature is focused on introducing new models or enhancing existing models,
but there is very little information on how to select the right samples for training the
models. Due to the imbalanced nature of the problem, dataset selection is highly important.

In addition, industrial training designs contain billions of patterns and thus, data sampling

30



Chapter 2. Background and Literature Review

is required since it would not be feasible to train a model using this large number of

patterns.

¢ There are many pattern classification algorithms available in the literature. However,
the effect of pattern clustering and sampling on machine learning models has not been

studied.
Based on the the identified gaps, the following ideas can be explored:

¢ Investigate methods for pattern clustering and sampling to prepare datasets for training

machine learning models.

¢ Use autoencoders to learn latent features that can be used for unsupervised clustering

and sampling of layout patterns.

¢ Explore the effect of sampling on the performance of machine learning HS detection

models and use the ICCAD-2019 dataset as a benchmark for the study.
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Chapter 3

Feature Generation Methods

3.1 Introduction

In Chapter 2, we have discussed various machine learning algorithms for hotspot detection.
These methods included traditional ML approaches like SVM and more sophisticated methods
like deep learning. In this chapter, we explore the most commonly used feature generation
techniques that enable these algorithms to be leveraged. The first method to be discussed
is rasterization, where a layout pattern is converted to an image. This enables the use of
convolutional and fully-connected neural networks as in [33, 34, 8, 38]. The second method is
using discrete cosine transform (DCT) which transforms images into the frequency domain and
enables the dimensions of the feature vectors to be reduced. This has been explored in [36]. The
third and last method is the use of image gradients to describe spatial properties of images.
This was discussed in [53] and will be further explored in Chapter 5 as an attempt to improve
model performance.

In the following sections, these three methods will be explained in more detail to give the
reader enough background. These methods will then be used in Chapters 4 and 5 to generate

input features for ML models.

3.2 Rasterization

The first method for feature generation is rasterization. This is basically converting a layout

pattern into an grey scale image. The layout pattern is usually represented in the form of
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vertices, edges, or polygons. The rasterization process converts an m — by — m nanometer
(nm) window into an n — by — n pixels image. There are numerous algorithms for performing
this task. One of the early techniques that is the basis of modern rasterization techniques was
presented by Juan Pineda in 1988 [54]. Assume that we have a triangle shape that needs to be

rasterized. There are two steps that should be performed:
® Determine which pixels overlap the rectangle
¢ Assign pixels with the intensity values based on whether they overlap the triangle or not

The main method to determine which pixels overlap the rectangle is known as the edge
function. This is illustrated in 3.1. To determine whether point P is inside the triangle, we loop
over the edges in a clockwise manner starting from vg. For each edge, if point P lies of the right
of the edge, then it is assigned a "positive" label, otherwise it is assigned a "negative" label. We
can see that point P has a positive label for all three edges. If the point P is the center of a
pixel then we can determine whether the pixel overlaps the triangle. In this manner, we can

determine which pixels overlap the triangle and then proceed to assign intensity values [54].

FIGURE 3.1: Illustration of the Edge Function

This method is the basis for more sophisticated algorithms that make use of graphics
processing units (GPUs). These algorithms leverage the parallelism provided by GPUs for high
performance graphics [55, 56].

For layout patterns, a square window of size m—by—m nm is converted into an n—by—n grey

scale image. As n increases, the resolution and the number of features increases. Depending on
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the technology node and the size of the window, the image resolution can be adjusted to obtain
a clearer representation of the pattern. Figure 3.2a shows the layout pattern and Figure 3.2b

shows the corresponding pattern image.

FIGURE 3.2: Example of a Layout Pattern and Its Corresponding Image

Pattern images can be used for HS detection purposes. They are suitable for use with fully-
connected and convolutional neural networks. However, their disadvantage is that the feature

size grows quadratically as the image size increases.

3.3 Discrete Cosine Transform

The second method for feature generation is DCT. It was first introduced by Nasir Ahmed in
1974 [37]. DCT transforms a sequence of data points into a summation of cosine functions of
different frequencies. Essentially, the sequence of points is converted from the spatial domain
into the frequency domain. This has allowed the development of data compression standards
for digital media. An example of this is the Joint Photographic Experts Group (JPEG) format
which is widely used to store digital images [57].

Given a sequence of N real numbers xg, z1, ..., zxy—1, DCT transforms it into a sequence of
N real numbers X, X1, ..., Xy_1 given by Equation 3.1. The inverse DCT is given by Equation
3.2.

N-1
s 1
X = E n — — |k k=0,1,.., N-1 3.1
k nioa: cos[N <n+2> } for (3.1)
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N-1
1 T 1
_ = £ - = ... N- 3.2
Ty 2XO+,§_1 X}, cos [N <n+2>k] for n=0,1,..., N-1 (3.2)

For an image, DCT can be applied in a two dimensional way by applying the one dimen-
sional version along the rows and then along the columns or vice versa. Forann — by — n
image, a corresponding N — by — N matrix of DCT coefficients can be obtained. These coef-
ficients can be used to reconstruct the image by performing inverse DCT. In many cases, the
DCT components have different magnitudes thus, not all of them have the same effect on the
reconstructed image. In the case of JPEG compression, the high frequency components can
be discarded without affecting how the user sees the image, therefore, giving room for data
compression [57].

The nature of DCT components can be helpful for dimensionality reduction, where a high
dimensional feature vector can be represented in a lower dimensional space. This can be used
for the application of HS detection using ML. Pattern images can be divided into m — by — m
blocks and the DCT coefficients for each block can be calculated. The components with small
magnitude can be discarded, leaving only the relevant components which can then be used as
input features to a ML algorithm. This has been explored by Yang et. al and has shown good

results on the ICCAD-2012 dataset [36].

3.4 Image Gradients

The third method for feature generation is based on image gradients. Gradients represent
the rate of change in pixel intensity. A gradient vector has two components: magnitude and
orientation. The magnitude represents the rate of change and the orientation represents the
direction of the change. Figure 3.3a shows a small patch of a pattern image where the metal
polygon is represented by white pixels. The gradient vectors are shown in grey. It can be seen
that the vectors point to the left where the intensity increases from black to white. The length of
the vector indicates the magnitude of the change; arrows closer to the metal polygon have a

bigger length and vice versa.
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() (b)

FIGURE 3.3: Illustration of Image Gradients

Pixel intensities on their own lack spatial information. Figures 3.3a and 3.3b have equal
average densities. However, the first one has a metal polygon on the left and the other one has
the metal on the right. Using gradient vectors, these two patterns would be differentiated since
they have opposite gradient orientations. Hence, image gradients provide additional spatial
information that would be useful for HS detection applications.

The most common way to calculate gradients is using the Sobel filter [58]. The input image
is convolved with the Sobel kernel in two directions to obtain the horizontal and vertical
components of the gradients. There are two kernel sizes: 1x3 and 3x3. These are represented by
the matrices in 3.3 and 3.4. G, is used to calculate the gradient in the x direction and G is used

for the y direction.

—1
Gx:[—l 0 1} Gy=10 (3.3)
1
-1 0 1 -1 -2 -1
G:=|-2 02 Gy=]|0 0 0 (3.4)
-1 0 1 1 2 1

The overall magnitude and orientation for each pixel can then be calculated using Equations
3.5 and 3.6. The OpenCV library for image processing contains several functions that can

easily calculate these quantities [59]. cv::Sobel() can be used for the convolution operation and
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cvicartToPolar() can be used to calculate the overall magnitude and orientation from the x and

y components.

G| = /G2 + G2 (3.5)

S atan2(gy) (3.6)

T

Based on image gradients, several image descriptors were proposed. These methods include:
Scale Invariant Feature Transform (SIFT) [60], Speeded Up Robust Features (SURF) [61], and
Histogram of Gradients (HOG) [11]. These methods have many applications including object

recognition, image classification, and feature matching.

3.5 Conclusion

In this chapter, the most commonly used feature generation methods for ML-based hotspot
detection were discussed. These methods are important because they enable the transformation
of layout patterns into features that could be used as input to various ML algorithms. In
addition, methods such as DCT can enable dimensionality reduction by only keeping the most
representative features. In the following chapters, some of these methods would be used to

generate features that will be fed into ML algorithms for hotspot detection.
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Data Sampling for ML-based Hotspot

Detection

As mentioned in Section 1.3, our goal is to reduce the size of the training dataset and at the
same time tackle the issue of data imbalance in ML-based hotspot detection systems. Industrial
datasets typically contain millions of unique patterns [9]. This makes it difficult to train ML
models in a feasible amount of time, therefore, data reduction is needed. This will be done
via clustering and data sampling techniques. To start this chapter, the next section will define
the ML system that will be used. Then, a sampling method will be introduced to enhance the
training dataset selection. This method is divided into three steps: dimensionality reduction,

clustering, and then sampling. Each step will be explained in detail in the following sections.

4.1 ML System for HS Detection

Figure 4.1 shows the different blocks of a general machine learning HS detection system. It
is divided into three steps. The first step is data generation, where we have an input training
layout in OASIS or GDS format. From this layout, we can obtain n — by — n images of patterns.
These patterns are then fed into the training step. In this step, the model is trained to minimize
a certain loss function and then it outputs the probability of HS. In the prediction step, we
obtain n — by — n images from the test layout and feed it into the trained model. The model then
outputs a probability for each pattern and if the probability is greater than 0.5, it is considered
as a HS.
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FIGURE 4.1: ML-based Hotspot Detection System

This system will be used in the following sections to describe the proposed sampling

approach.

4.2 Proposed Data Sampling Approach

421 Feature Reduction using Autoencoder

In our ML system the input feature vector has a size of n? which can quickly become large,
making clustering difficult. Therefore, a dimensionality reduction step is required before
clustering of the input patterns can be performed.

An autoencoder-based feature reduction method is proposed. An autoencoder can be
trained to reconstruct the input images using a lower dimension feature vector. It learns
different relations between the data points and can encode the high dimensional data into a
lower dimensional space without a significant loss of information.

Figure 4.2 shows the general autoencoder architecture. The input and output layers have
equal sizes. While the layer in the middle has a smaller number of nodes. This layer is latent
space where the autoencoder would learn non-linear features that would allow it to reconstruct

the input feature vector.
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In our proposed flow, we will use an autoencoder with a single layer between the input
and output. The size of this layer will be less than the input feature size. This is the simplest
autoencoder that can be used. However, it would be shown that this would give us useful
features that can be used for clustering. Deeper networks can be used depending on the
complexity and size of the input dataset.

The size of the latent layer is determined empirically. In our proposed flow, we will train
an autoencoder with a latent size of n? until the loss is minimized. Then, another autoencoder
is trained with half the latent size. This process repeated for several iterations until the latent
size approaches zero. A curve of reconstruction loss against latent size is then plotted. depncodea
is selected to minimize the loss. The dimension of each data point is thus reduced from n?to
dencoded- Each pattern from the training dataset is then encoded using the trained autoencoder.
This encoded dataset can then be used in the next step of the flow which is clustering of the

patterns using the DBSCAN algorithm [25].

Latent
Representation H

FIGURE 4.2: Autoencoder Architecture

4.2.2 DBSCAN Clustering

The next step of the proposed flow is to reduce the size of the dataset, by clustering the encoded
dataset. The DBSCAN algorithm is used [25]. It required two input parameters: radius of

neighborhood around a point (¢) and the minimum number of points required to form a dense
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region (minPts). Figure 4.3 shows an illustration of DBSCAN parameters. In the proposed flow,
minPts will always be equal to one. This means that any point that does not have neighbors
will be assigned a cluster on its own. This is done to simplify the flow where only a single
parameter (e) is varied. Clusters which have single points will then be handled in the sampling
module of the flow. They can either be included in the sampled data or discarded based on
the user’s preference. The distance measure used is the Euclidean Distance defined over the

autoencoder feature space [62].

(a) (b)

FIGURE 4.3: DBSCAN Illustration where minPts = 1. (a) These points form a
dense region beacause the number of points is greater than minPts (b) This is
also considered as a dense region because minPts = 1.

Due to the binary nature of the HS detection dataset, there exists three different types of

clusters:
¢ Clusters containing HS only (pure cluster)
¢ Clusters containing NHS only (pure cluster)
¢ Clusters containing both HS and NHS (hybrid cluster)

Each type of cluster will be handled in a different way when performing the sampling step.

This will be discussed in the next section.

41



Chapter 4. Data Sampling for ML-based Hotspot Detection

4.2.3 Sampling from Clustered Data

After clustering is done at a certain value for ¢, sampling of the data is performed. For this
purpose, another parameter is introduced to the flow which is called the sampling percentage
per cluster (P). This allows the user to control how much data is sampled from each cluster.
The goal of the sampling step is to select patterns that maximize the cluster coverage.

The proposed sampling technique starts by obtaining the median point of the cluster. Next,
the furthest point from the median is obtained. Then, the furthest point from the previous
two points is obtained. This is done by summing the distances to all points from these two
points and then getting the point which has the largest distance. This process is repeated until
the required number of points is obtained. This gives good cluster coverage because sample
contains a pattern from the center of the cluster (median) and then several patterns at the
boundary of the cluster. This method can be used for pure clusters. For hybrid clusters, the
algorithm is slightly modified to ensure that hard-to-classify (HTC) patterns are included in the
output sample. For each point sampled, the closest pattern with the opposite label is obtained.
This enhances the sampling by including HS and NHS that are close to each other to allow the

model to differentiate between them.

0 0 i —
."-\_ \dos ’. o, . "‘-dz ‘:.J‘ .'4 l d 9
d R ~. \ — ~ 1d1 6 S
01 @ dys d @ d ds 4
P ]
dos d, dy
- ¥//
{
(a) (b) (c)
argmin (Z ‘di.j) argmax(dy, dz, ds, dy) argmax(d; +da,d3 + dy, ds + ds)
i j

FIGURE 4.4: 2D Illustration of the Sampling Algorithm. (a) Median Selection. (b)
and (c) Selection of Next Furthest Point.

Fig. 4.4 shows an illustration of the algorithm using 2D points. The sampling method
for pure clusters is explained in Algorithm 2 while the one for hybrid clusters is explained in

Algorithm 3.
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Algorithm 2 Sampling Pure Clusters

Input: (Required Number of Samples)
Output: (List of Patterns)
- Get the Median Pattern of the Cluster
- Add Median to Output
while there are still unprocessed patterns and the required number of samples is not obtained
do
- Get the furthest pattern relative to the currently selected set of patterns so far
- Add Pattern to Output
end while

4.3 Experimental Procedure and Results

4.3.1 Experiment Description

In this subsection, the experimental procedure used to evaluate the proposed method will
be outlined. The first step is to perform feature reduction as described in Section 4.2.1. An
autoencoder with a single hidden layer is used. The activation function is the rectified linear
unit (relu) [18] and the cost function is binary cross-entropy. To find the size of the encoded
features, several autoencoders with varying hidden layer sizes are trained using the training
dataset dataset. The size of the hidden layer starts at 3600 and is reduced by half on each
iteration. A graph of loss against the hidden layer size is then plotted. An example of this plot
is shown in Figure 4.5. It can be seen that the loss starts to increase rapidly after a layer size of
225. By examining the reconstructed images, we have decided to use an encoded feature size
(dencodea) of 150 to give us a compressed representation at the expense of a slightly larger loss.

The next step is to generated the encoded dataset to be used for clustering. Then, different
reduced datasets would then be generated by running DBSCAN and sampling using various
combinations of e and P. For each dataset a ML model would be trained for 100 epochs using a
90-10 training-validation split. The model with the highest validation F1 score would then be
used to run prediction on the test dataset. In order to have a baseline for comparison, reduced
datasets will also be generated using random sampling. Each random sampling experiment
would be repeated 50 times and the average statistics would be calculated. Finally, the models
trained using the clustered dataset versus random sampling are then compared to evaluate

how the two sampling methods affect the HS recall, precision and F1 score.

43



Chapter 4. Data Sampling for ML-based Hotspot Detection

Algorithm 3 Sampling Hybrid Clusters

Input: (Cluster Size (n), Sampling Percentage (), HS/NHS ratio in the Training Dataset
(hs_nhs_ratio), #HS (input_hs_count), #NHS (input_nhs_count))
Output: (List of Patterns)
- Calculate the total number of sampled patterns: total_count = P x n
- Calculate the number of HS:
out_hs_count = min(hs_nhs_ratio X total_count, input_hs_count)
- Calculate the number of NHS:
out_nhs_count = min(total_count — out_hs_count, input_nhs_count)

- Get the Median Pattern of the Cluster
- Add Median to Output
- Get the furthest pattern relative to the Median
- Add Pattern to Output
while there are still unprocessed patterns and the required number of samples is not obtained
do

- Get the furthest pattern relative to the currently selected set of patterns so far

- Get the closest pattern with the opposite label

if out_hs_count is not exceeded then

- Add HS pattern to Output

end if

- Add NHS pattern to Output
end while

The model used for the experiments is the Mobilenet CNN model which is known for its
efficiency in Mobile Vision applications [63]. In addition, it has been recently used for HS
detection on the ICCAD-2012 dataset and has shown good results [38]. The loss function
used for training is the Focal Loss which is suited for problems with data imbalance [21]. The
optimizer used during training is the Adam Optimizer [64].

The experiments described above will be performed on two datasets: ICCAD’19 and

ICCAD’12 datasets. The results will be described in the following subsections.

4.3.2 Results using ICCAD’19 Dataset

Table 4.1 shows how the size of the reduced data as a percentage of the full dataset size varies
with € and sampling percentage per cluster. For example, at € = 35 and P = 20, 54.5% of the
full dataset is used for training. From the table, it can also be seen that the size of the sampled
dataset decreases as € increases and P decreases. Moreover, as € approaches infinity, all the

patterns are assigned to the same cluster. Hence, at large values of ¢, the size of the dataset
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FIGURE 4.5: Plot of Binary-Cross Entropy against Hidden Layer Size of the
Autoencoder

approaches the value of sampling percentage. This is observed at € = 50 where the dataset size
is very close to the value of P.

An important point to note is that at small values of ¢, most of the clusters will contain a
single pattern. In that case, it was decided to include the pattern output sample. Hence, at small
values of € (10-15), the achieved data reduction will be small. Higher reduction can be observed
as e increases.

To compare the proposed sampling method against random sampling, Test Set I is examined
first. The difference in F1 score between the models trained with clustered data and the ones
trained with random data is plotted in a contour plot as shown in Fig. 4.6. The plot indicates
an increase in F1 score relative to the random sampling method. The model with the largest
positive difference of 5.7% is at (80,50). This corresponds to a dataset size of 81.1% and F1 score
of 68.2. The second-best model at (10, 35) has a difference in F1 score of 5.4%. The dataset size is

48.8% and the F1 score is 64.6.
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TABLE 4.1: Dataset Size (%) as a Function of ¢ and P

/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
10 [ 932 | 93.8 | 96.1 [ 96.3 | 96.7 | 96.9 | 97.0 [ 99.4 | 99.9
15 | 89.0 [ 902 | 93.4 | 93.8 | 947 | 95.0 | 955 [ 98.6 | 99.8
20 | 83.7 [ 85.6 | 89.8 [ 90.6 | 92.1 | 92.7 [ 93,5 | 97.7 | 99.6
25 [ 762 | 79.1 | 842 | 85.8 [ 88.1 [ 89.3 | 91.0 | 96.1 | 98.9
30 | 639680 | 739 [ 772 | 809 | 83.8 [ 872 | 93.1 | 97.2
35 [ 48.8 | 545 | 61.8 | 67.0 [ 72.3 | 77.1 | 822 | 89.6 | 95.3
40 | 326 [ 402 | 49.1 | 56.1 | 632 | 69.9 | 77.0 | 859 | 93.4
45 | 188 [ 279 | 37.6 | 464 | 552 | 639 | 72.7 | 82.4 | 91.5
50 | 135 | 23.1 | 33.2 [ 42.7 | 522 | 61.5 | 71.0 [ 81.1 | 90.7

]l%% 20% 30% 40% 50% 60% 70% 80% 90%
Sampling Percentage per Cluster (P)

FIGURE 4.6: Plot of the Difference in F1 Score Between Clustering and Random
Sampling on Test Set L

Fig. 4.7 and Fig. 4.8 show the recall and precision values obtained on Test Set I for each
combination of e and P. These plots provide a way to choose different models that suit various
applications. For example, when the detection of HS is more important (e.g., defect analysis),
models having the highest recall can be used such as the one at (90, 25) which has a recall
of 87%. For applications where the cost of false alarms is high (e.g., design), then models
having high precision can be selected. An example of this is the model at (70, 15) which has the
highest precision of about 60%. A trade-off between recall and precision can also be made by

maximizing F1 score. Hence, clustering and sampling enable customization of the training data

46



Chapter 4. Data Sampling for ML-based Hotspot Detection

50
85
45 20
40 75
35 70
—65

w 30
—60
20! 50
15 45
40

]1%% 20% 30% 40% 50% 60% 70% 80% 90%
Sampling Percentage per Cluster (P)
FIGURE 4.7: Recall on Test Set I

50
60
45 58
56
40 54
35 52
—50
© 30 ( —48
—46
25 — 44
20 42
40
15 38
36

—\
]1%% 20% 30% 40% 50% 60% 70% 80% 90%

Sampling Percentage per Cluster (P)

FIGURE 4.8: Precision on Test Set I

to achieve different outcomes.

Tables 4.2 and 4.3 show the time taken for DBSCAN clustering and sampling steps. Note
that the sampling step was implemented using a single thread only, so it is possible to obtain a
smaller run time by making use of parallelism. The overhead introduced by this step might

not be trivial, however, this step is only done once for any given training dataset. It will also
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TABLE 4.2: DBSCAN Time as a Function of € Using ICCAD-2019 Training Dataset

€ | Time (s)
10 4.8
15 5.4
20 6.3
25 7.0
30 7.2
35 8.9
40 9.0
45 9.7
50 10.3

allow us to obtain a reduced dataset that is representative of the full dataset, hence shortening
the training cycle significantly as seen in Table 4.4. Training a ML model is an iterative process
that requires multiple steps of tuning, so any run time reduction in this cycle would be highly
beneficial.

Table 4.4 lists several models trained using different datasets. The first model was trained
using the full ICCAD-2019 data set. The following models were trained using data obtained via
our proposed approach in addition to the random sampling approach. The datasets for Models
2 and 3 are 20% smaller than the full dataset. This reduces the training time to around 66% of
the full dataset time. For models 4 and 5, the dataset size is more than 50% smaller and the
training time is reduced to 33%. Model 2 achieves a higher F1 score than the baseline model,
while model 4 almost achieves the same F1 score with half the dataset size. When examining
models 3 and 5, the same data reduction is obtained but the F1 score is lower than the baseline.
This shows that the clustering and sampling steps result in choosing better representatives
of the training dataset, thus, reducing the time needed for training and improving the data
balance.

For Test Set II, the difference in F1 score between clustering and random sampling is not
significant as shown in the contour plot in Fig. 4.9. This proves that the lack of coverage in the
training dataset is the dominating factor, hence our proposed method of data selection will not
influence the final trained model. Therefore, data enrichment of the training dataset is needed
to improve the model and show the value of dataset selection. Synthetic pattern generation

can be used to enrich the training dataset. In [65], a new method was introduced where subtle
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TABLE 4.3: Sampling Time (s) as a Function of ¢ and P

/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
10 4 [ 14 [ 53 [ 53 | 53 |53 [ 53 ] 13 ] 4
15| 5 |24 |77 |77 77 |77 77 ]2 ] 5
20 | 8 | 35 | 103 [ 103 | 103 | 103 | 103 | 35 | 8
25 | 10 | 45 | 117 | 117 [ 117 | 117 [ 117 | 45 | 10
30 | 17 | 45 | 103 [ 105 | 109 | 110 | 113 | 58 | 35
35 | 21 | 52 | 113 | 124 | 136 | 147 | 161 | 124 | 116
40 | 16 | 45 | 142 | 177 | 204 | 236 | 258 | 242 | 247
45 | 18 | 43 | 82 [ 105 | 118 | 140 | 162 | 174 | 385
50 [ 20 | 42 | 78 [ 95 | 127 [ 140 | 177 [ 184 | 211

TABLE 4.4: Comparison of Mobilenet Models Trained with Different Sampled
Datasets using ICCAD-2019 Test Set I

# Description Dataset Size | Relative Training Time | Recall | Precision | F1

1 Baseline 100% 100% 86.7 52.2 65.2
2 P=280,e=50 81.10% 66.67% 80.9 58.9 68.2
3 | Random Sampling 81.10% 66.67% 80.4 51.2 62.5
4 P=10,e=35 48.80% 33.33% 81.3 53.5 64.6
5 | Random Sampling 48.80% 33.33% 84.8 454 59.2

- ‘ - ——
— \\ T— . I

0 _ ——_—
]10% 20% 30% 40% 50% 60% 70% 80% 90%
Sampling Percentage per Cluster (P)

FIGURE 4.9: Plot of the Difference in F1 Score Between Clustering and Random
Sampling on Test Set 11

differences between patterns were generated by randomly moving pattern edges. Exploring

similar techniques is needed to create richer datasets for ML-based hotspot detection models.
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4.3.3 Results using ICCAD"12 Dataset

TABLE 4.5: Dataset Size (%) as a Function of € and P

/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% [ 80% | 90% |
10 [ 932 [ 93.7 | 962 [ 963 | 96.3 | 96.8 | 97.0 | 99.4 [ 99.9
15 [ 89.0 | 90.1 | 93.6 [ 93.9 | 94.0 | 95.0 | 95.3 | 98.7 | 99.8
20 | 837 | 855 | 90.1 [ 90.7 | 91.0 | 92.6 | 93.2 | 97.8 | 99.6
25 [ 76.8 | 79.5 | 85.1 [ 86.3 | 87.1 | 89.6 | 90.8 | 96.4 | 99.1
30 | 671 | 71.0 | 774 | 79.8 | 81.6 | 853 | 87.7 | 941 | 98.0
35 | 523 | 57.6 | 65.0 | 69.4 | 735 | 787 | 83.1 | 90.5 | 95.8
40 | 36.6 | 43.8 | 52.6 [ 589 | 64.8 | 71.7 | 78.0 | 86.8 [ 94.0
45 | 222 [ 31.1 | 408 [ 489 | 56.7 | 655 | 735 | 832 [ 92.1
50 | 153 | 24.8 | 349 | 439 [ 529 | 623 [ 714 | 815 | 91.0

Table 4.5 shows the dataset size as a function of € and P for the ICCAD’12 dataset. We can
see a similar behavior to the ICCAD’19 dataset. The dataset size decreases as € increases and P
decreases. We can also see that the size of the dataset approaches P as ¢ tends to infinity.

Figure 4.10 shows the difference in F1 score between models trained using clustered data
and the ones trained with random data. Unlike the ICCAD’19 results, we can see no significant
difference between the two methods. This can be explained by the fact that the ICCAD"12
training and test datasets are very similar as described in [10]. It has been shown that the training
and test patterns are close to each other when examining the first three PCA components. Hence,
random sampling was enough to obtain a representative training sample. From Table 4.6, it
can be seen that even at high reduction ratios using random sampling, the F1 score of the
model is greater than 90% for most cases. This shows that the data coverage is good enough, so

clustering would not show further improvement.
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TABLE 4.6: F1 Score of the Model using Random Sampling on the ICCAD’12
Dataset

¢/P | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
10 | 984 | 985|985 | 986|984 | 985987 [ 985 ] 983
15 [ 982 [ 985 | 98.1 | 985 | 98.6 | 98.3 | 98.4 | 98.7 | 985
20 | 987 [ 985 | 984 | 98.1 | 98.6 | 982 | 984 | 985 | 985
25 [ 98.2 982|985 | 985|984 | 984 | 983 | 984 | 986
30 (983 | 98 | 983|983 984|985 |985]983 | 984
35 [ 981|977 1981|982 981|981 | 98 | 984 | 984
40 [ 96.4 | 96.9 | 975 | 97.8 | 97.8 | 97.8 | 98.2 | 985 | 985
45 | 927 937 | 955 | 97 [ 972971 | 98 | 983 | 984
50 | 69.6 | 879 | 93.1 | 945|958 | 965 | 97.7 [ 979 | 98
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FIGURE 4.10: Plot of the Difference in F1 Score Between Clustering and Random
Sampling on the ICCAD"12 Test Set

4.4 Conclusion

Based on the results described in the previous sections, we have seen that clustering and
sampling can reduce the dataset size while maintaining or improving the F1 score of the model.
This shortens the training cycle and enables training using a representative dataset when the
full dataset is too large for training in a feasible amount of time. For datasets such as the
ICCAD’12 where random sampling does not show deteriorating results, clustering would not

give additional benefits in terms of model metrics. The proposed clustering and sampling
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method provides two parameters (e and P) which can be varied to tune the performance of
the model to cater to the needs of different applications. For example, if the application gives
higher importance to recall, sampling can help maximize the recall of the model. The same is
also true for precision. A trade-off can also be made by maximizing F1 score. This fine tuning
cannot be done via random sampling which shows the benefit and strength of our proposed

method.
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ML Hotspot Model Enhancement

In Chapter 4, we discussed a data sampling technique based on autoencoder features and
DBSCAN clustering. In this chapter, we extend our work on data sampling and explore other

options for improving ML-based hotspot detection models. Two methods will be explored:

¢ Using the previously generated autoencoder features for training HS detection models.
The benefit of this method is that the latent feature vectors have a smaller number of
dimensions which would make the models simpler. We will also explore whether this can

improve the model performance in terms of recall, precision and F1 score.

¢ In addition to density-based features, image gradients will be used as a descriptor which

can help maintain the spatial information of the pattern image.

For each method, hyperparameter optimization would be done to choose the best model
architecture and training parameters in an attempt to maximize the F1 score of the model. A
fully connected neural network will be used and compared to another model from the literature
that uses raw image features for HS detection [8]. The models will be compared for their
performance on the test set and the number of trainable parameters which represent the model
complexity. For hyperparameter tuning, the popular Optuna framework will be used [66].

These experiments will be done using the ICCAD-2019 dataset [10].
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5.1 HS Detection using Autoencoder Features

5.1.1 Experimental Procedure

In this section, the encoded features that were used for pattern clustering in Chapter 4 will
be used as an input to train a hotspot detection model. These features are a compressed
representation of each pattern and can be used to reconstruct it. Using these features to train
a hotspot classifier could enable us to build simpler models with fewer trainable parameters.
Moreover, the effect of using these features on the model performance metrics should be
analyzed.

Based on the autoencoder loss in Figure 4.5, it can be seen that the loss value is almost con-
stant from 3600 features to 900 features and then starts increasing gradually. From this observa-
tion, two experiments would be performed. The first one would use 900 encoded features in an
attempt to use the smallest number of features without significant loss of information. The sec-
ond experiment would use 300 features which is the point at which the loss starts to increase.
Two fully connected neural networks would be trained using these features and then compared
to the model in [8] which uses raw images. The model used for comparison is a fully connected
neural network that consists of 4 hidden layers. The sizes of the layers are: 196-196-144-144.
The input to the network is a 60x60 pixels flattened image (3600 features).

As mentioned earlier, Optuna framework will be used for hyperparameter optimization
[66]. Table 5.1 lists the different hyperparameters considered for optimization and the range of

values for each parameter. decycoded represents the size of the encoded input features.

TABLE 5.1: List of Hyperparameters Considered for Optimization

Hyperparameter Range

Batch Size 128, 256, 512, 1024, 2048
Optimizer RMSprop, Adam, SGD
Learning Rate [1e-5, 1e-1]

Number of Hidden Layers [1,4]

Number of Nodes for Layer 1 [dencodeds dencoded/2]
Number of Nodes for Layer 2 [dencoded/2, dencoded/4]
Number of Nodes for Layer 3 [dencoded/4, dencoded/ 8]
Number of Nodes for Layer 4 [dencoded/8, dencoded/16]
Weight Decay (L2 Regularization) | [1le-10, 1e-3]
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As for the loss function for training, the Sigmoid Focal Loss would be used. In addition, the
initialization method described in [21] is also used so that the starting loss is dominated by the
hotspot patterns which can help improve the convergence of the model. The training would be

performed with the ICCAD-2019 dataset and 10% of the data would be used for validation.

5.1.2 Experimental Results

Tables 5.2, 5.3, 5.4, and 5.5 summarize the results of experiments using the encoded features.
Different values for a and ~ for the Focal Loss function were used to tune the F1 score of the
model. Note that the F1 Scores on Test Set II in Tables 5.3 and 5.5 are very similar to the baseline
model. This confirms the findings in [10], where the authors have concluded that in order to
improve the F1 Score, the training dataset should be enriched with more patterns so that the

precision can be improved. Hence, for all of our comparisons we will only focus on Test Set I

(Tables 5.2 and 5.4).
TABLE 5.2: Results of Models Trained Using 300 Encoded Features on ICCAD’'19
Test Set I
Model e" ¥ Trial Number of Nodes per Ba.tch Optimizer Number of Recall | Precision | F1
Layers Layer Size Parameters

Baseline [8] | N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 74.2 56.2 63.9

1 0.6 2 97 3 219-83-70 128 Adam 90k 79.1 40.6 53.7

2 0.6 3 17 3 258-93-41 512 Adam 106k 67.9 47.9 56.2

3 0.7 2 83 4 217-77-34-25 128 Adam 86k 77.7 42.7 55.1

4 0.7 3 98 4 168-98-32-23 128 Adam 71k 73.8 44.2 55.3

TABLE 5.3: Results of Models Trained Using 300 Encoded Features on ICCAD’19

Test Set II
Model fe" ¥ Trial Number of Nodes per Ba.tch Optimizer Number of Recall | Precision | F1
Layers Layer Size Parameters

Baseline [8] | N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 98.1 49.8 66.1
1 0.6 2 97 3 219-83-70 128 Adam 90k 97.2 50.7 66.6
2 0.6 3 17 3 258-93-41 512 Adam 106k 91 51.3 65.6

3 0.7 2 83 4 217-77-34-25 128 Adam 86k 97.4 50 66
4 0.7 3 98 4 168-98-32-23 128 Adam 71k 95.9 50.4 66.1

Table 5.2 shows the results of models using 300 encoded features. For each model, the
values of o and y of the Sigmoid Focal Loss is shown. In addition, the architecture is outlined in
terms of the number of hidden layers, number of nodes per layer, and the number of trainable
parameters. Moreover, the batch size and optimizer that were selected by Optuna are also

listed. Finally, the performance metrics on the validation and Test Sets are shown. The four best
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TABLE 5.4: Results of Models Trained Using 900 Encoded Features on ICCAD’19

Test Set I
Model a ¥ Trial Number of Nodes per Ba'tch Optimizer Number of Recall | Precision | F1
Layers Layer Size Parameters
Baseline [8] | N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 742 56.2 63.9
1 0.55 1 68 4 400-332-143-93 | 128 Adam 554k 66.5 52.8 58.9
2 055 | 1.5 41 3 544-358-114 128 Adam 726k 71 45.7 55.6
3 0.55 2 47 4 423-237-158-91 | 512 Adam 534k 73.2 46.6 56.9
4 0.6 2 44 3 451-341-117 2048 Adam 601k 77.8 44.9 56.9
5 0.6 3 34 4 766-250-147-81 128 Adam 930k 77 449 56.7

TABLE 5.5: Results of Models Trained Using 900 Encoded Features on ICCAD'19

Test Set II
Model fe" ¥ Trial Number of Nodes per Ba.tch Optimizer Number of Recall | Precision | F1
Layers Layer Size Parameters

Baseline [8] | N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 98.1 49.8 66.1
1 0.55 1 68 4 400-332-143-93 128 Adam 554k 91.7 51.3 65.8

2 055 | 1.5 41 3 544-358-114 128 Adam 726k 92.5 51.3 66
3 0.55 2 47 4 423-237-158-91 512 Adam 534k 96.1 51 66.7
4 0.6 2 44 3 451-341-117 2048 Adam 601k 97.7 50.6 66.7
5 0.6 3 34 4 766-250-147-81 128 Adam 930k 96.6 50.8 66.6

models from our experiments are shown in the table. Models 1 and 2 have 3 hidden layers with
sizes: 219-83-70, and 258-93-41 respectively. Models 3 and 4 have 4 hidden layers with sizes:
217-77-34-25, and 168-98-32-23 respectively.

By examining Table 5.2, the following observations can be made:

¢ The number of trainable parameters for Models 1-4 is much smaller than the baseline.
The smallest model was about 11x smaller than the baseline. This is because the size of

the input features was reduced from 3600 to 300.

¢ For Models 1-4, the precision on Test Set 1 is around 10% lower than the baseline while
recall was comparable to the baseline. This low precision caused the F1 score to drop

below 60% which shows that these features have some information loss.

¢ Even though the encoded features helped reduced the size of the model, the performance

was not improved. This set of features is not suitable enough to be used for HS detection.

Table 5.4 shows the results of models using 900 encoded features. The fives best models
from our experiments are shown. Models 1, 3, and 5 have 4 hidden layers with sizes: 400-332-
143-93, 423-237-158-91, and 766-250-147-81 respectively. Models 2 and 4 have 3 hidden layers
with sizes: 544-358-114, and 451-341-117 respectively.
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By examining Table 5.4, the following observations can be made:

¢ The number of trainable parameters for Models 1-4 is at the same order of magnitude as

the baseline model.

* Models 1-5 have slightly higher precision than the ones which used 300 features, while
recall was similar. This has caused the F1 score to increase slightly but it did not reach the

levels of the baseline.

Overall, even though the encoded features have allowed smaller models to be built, these
models were not able to achieve the F1 scores of the baseline model. Hence, it can be concluded
that these features cannot be used for HS detection. However, they are still suitable for pattern

clustering purposes as we have seen in Chapter 4.

5.2 HS Detection using Image Gradients

5.2.1 Introduction

In this section, image gradients based on the Sobel filter [58] will be used as input features to
train ML-based hotspot detection models. Gradient vectors have two components: magnitude
and angle. The magnitude gives the rate of change and the angle shows the direction of the
largest change. When using pixel values as input to fully-connected DNNSs, the network tries to
learn correlations between the individual pixels to determine the features that cause hotspots.
However, using a fully-connected network causes the number of parameters to increase rapidly.
In addition, the flattened input to the network causes loss of spatial information, therefore
image gradients would provide a better way of describing the patterns by including this spatial
information in the form of gradient vectors.

To test this method, we use 60x60 images to represent the patterns. Then, the image is
divided into m — by — m windows and for each window the average pixel density is calculated.
In addition, the Sobel filter is applied in the x and y directions for each window giving us two
gradient matrices g, and g,. Then, the overall magnitude and direction are calculated using

Equations 5.1 and 5.2. In Equation 5.2,  is in degrees between 0 and 360. For each window,
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we now have the density as well as the gradient magnitude and angle for each pixel. This

information will be used to generate different feature representations for the input patterns.

9| = \/ 9% + g (5.1)

0 = atan2(%)  where 0°< 6 < 360° (5.2)
9z

5.2.2 Experimental Procedure

Four experiments will be performed with different input feature configurations:

1. Window size = 3x3. For each window, 2 features would be calculated: average density,

orientation of the middle point of the window.

2. Window size = 5x5. For each window, 2 features would be calculated: average density,

orientation of the middle point of the window.

3. Window size = 5x5. For each window, 2 features would be calculated: average density
and the orientation of the middle point of the window. Then, four 3x3 sub-windows
are created and the orientation of the middle point of each sub-window is added to the

features. This results in a total of 6 features for each window.

4. Window size = 5x5. As in the previous configuration, four 3x3 sub-windows are created.
For each sub-window, the orientation of the middle point of the window and the average
density are added to the features. Then, the orientation of the middle point of the 5x5

window is added. This results in a total of 9 features for each window.

Table 5.6 gives a summary of the inputs of each experiment. Figures 5.1, 5.2, 5.3, and 5.4, show
the different features that are generated from each window. D; ; and 0; ; are the density and
orientation at row i and column j. The red and green rectangles shows the regions where

average density is calculated. The blue circles show the orientations used as input features.
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TABLE 5.6: Summary of Image Gradient Experiments Using 60x60 Pattern

Images
4 Window Number Features Total Number
Size of Windows | per Window | of Features
1 3x3 400 2 800
2 5x5 144 2 288
3 5x5 144 6 864
4 5x5 144 9 1296

FIGURE 5.1: Experiment 1: The average density is calculated for the whole
window and the orientation of the middle pixel is used.
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FIGURE 5.2: Experiment 2: The average density is calculated for the whole
window and the orientation of the middle pixel is used.

FIGURE 5.3: Experiment 3: The average density is calculated for the whole
window and the orientations of the pixels circled in blue are used.
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FIGURE 5.4: Experiment 4: Four average densities are calculated for the sub-
windows shown in red and green. Five orientations are used as indicated by the
blue circles.

Similar to Section 5.1, Optuna would be used for hyperparameter optimization [66]. The
loss function used is also the Sigmoid Focal Loss. Different values for a and v were used in

order to tune the F1 score for each model.

5.2.3 Results

Table 5.7 and 5.8 show the results of the best models using different input configurations.
Models 1-4 have a single hidden layer with sizes: 156, 701, 538, and 738 respectively, while
Model 5 has 2 hidden layers with sizes: 505-322.

By examining Table 5.7, the following observations can be made:

* Models that use image gradients as input features show that a smaller network depth is
needed. This is seen in Models 1-4 which only consist of a single hidden layer, and Model
5 which consists of two hidden layers. On the contrary, the baseline model which uses

raw images consists of four hidden layers.
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TABLE 5.7: Results of Using Image Gradients on ICCAD’19 Test Set I

Model Number of a ¥ Trial Number of Nodes per Ba.tCh Optimizer Number Recall | Precision | F1
Features Layers Layer Size of Parameters
Baseline [8] 3600 N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 74.2 56.2 63.9
1 288 (5x5) 0.6 2 99 1 156 1024 Adam 45k 712 53.5 61.1
2 800 (3x3) 0.6 2 47 1 701 2048 Adam 560k 73.3 55.5 63.2
3 864 (5x5) 0.6 2 73 1 538 256 Adam 465k 71.6 56.5 63.1
4 864 (5x5) 0.6 3 93 1 738 128 Adam 639k 66.8 61.9 64.3
5 1296 (5x5) 0.6 1 59 2 505-322 128 Adam 818k 73.3 54.9 62.8
TABLE 5.8: Results of Using Image Gradients on ICCAD’19 Test Set 11
Model Number of a 5y | Trial Number of Nodes per Ba.tCh Optimizer Number Recall | Precision | F1
Features Layers Layer Size of Parameters
Baseline [8] 3600 N/A | N/A | N/A 4 196-196-144-144 | 256 Adam 793k 98.1 49.8 66.1
1 288 (5x5) 0.6 2 99 1 156 1024 Adam 45k 94 50.9 66
2 800 (3x3) 0.6 2 47 1 701 2048 Adam 560k 97.5 50.4 66.5
3 864 (5x5) 0.6 2 73 1 538 256 Adam 465k 96 51.3 66.9
4 864 (5x5) 0.6 3 93 1 738 128 Adam 639k 95.7 51 66.6
5 1296 (5x5) 0.6 1 59 2 505-322 128 Adam 818k 96.7 51 66.8
¢ The model size, which is represented by the number of trainable parameters, can be

significantly reduced when using image gradients. This is seen in Model 1 where the
number of parameters was reduced from 793k to 45k, and the F1 score on Test Set 1 only

decreased by about 3%.

* Model 2 which uses a 3x3 window performs as good as the baseline model. However, it
uses a much smaller feature size (4.5x smaller) which would speed up the training time
significantly and can allow more data to be used. Model 3 also shows a similar behavior

where the feature size is around 4x smaller.

* Models 3,4, and 5 used larger windows and more features as attempts to improve the
model results. However, the final results on Test Sets I are similar to the baseline model.

This indicates that more training data is needed which aligns with the findings in [10].

From Table 5.8, it can be seen that the results on Test Set II for all models are almost identical
to the baseline. This also confirms the same finding in [10] that data enrichment is needed to

improve the precision on Test Set II.

5.3 Conclusion

In this Chapter, two methods were explored to improve ML-based hotspot detection models.

The first method made use of autoencoder features. The following outcomes were found:

62



Chapter 5. ML Hotspot Model Enhancement

e The autoencoder features were useful to reduce the size of the model.

¢ The encoded features were not enough to obtain a good model. The precision was

negatively affected.

¢ Autoencoder features are suitable for pattern clustering purposes. For hotspot detection,
better performance is obtained when the neural network learns the features from raw

images.

The second method made use of pixel-based features in addition to image gradients. The

following outcomes were found:
* Model size can be significantly reduced by augmenting pixel values with image gradients.

¢ Pixel densities and image gradients can obtain the same performance as models that use
raw images, however, this is done with a fewer number of input features which can ease

the training process.

¢ This method did not improve the results on the ICCAD-2019 Test Sets. More training data

is required and this can be done by exploring various data enrichment techniques.
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Conclusions and Future Work

6.1 Conclusions

In this thesis, we have explored the problem of lithography hotspot detection. It is a critical step
that needs to be performed to ensure high yield. We have also discussed various methods for
hotspot detection like lithography simulation, pattern matching, and machine-learning based
methods. As integrated circuits became larger and more complex, traditional HS detection
methods became difficult. The community has now steered towards ML based methods.

There are two main issues that occur while training ML-based HS detection models:

* Training datasets have millions of patterns and it is difficult to use all of the data for

training due to computational and memory limitations.

* Data imbalance between HS and NHS patterns makes training more difficult since models

can tend to predict the majority class or suffer from high false alarm rate.

We have introduced a data sampling method to tackle these issues based on using autoen-
coder features and the DBSCAN algorithm. We have shown that this method can reduce the
dataset size while maintaining the model performance metrics.

Moreover, we have explored the two methods for enhancing HS detection models. The first
method made use of the encoded features to train ML models. However, the performance was
not satisfactory. The second method made use of image gradients to provide additional spatial

information to the ML models. This experiment showed that the model size can be significantly
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reduced while maintaining performance. In addition, the input feature size was reduced which

can speed up the training phase.

6.2 Future Work

As part of future work, the proposed methods in Chapters 4 and 5 should be tested on larger
benchmark datasets. The difference between random sampling and clustering methods should
become more apparent with a larger dataset. In addition, feature engineering using image
gradients can be further explored by using larger window sizes and more features.

Another problem that is worth exploring is the idea of data enrichment. In some cases,
even though the training data has a larger number of patterns, the variations might not be
enough to train a model that can generalize well. In this case, the training dataset would require
enrichment to improve results. One of the possible ways of doing this is to generate DRC-clean
patterns from existing patterns by introducing random shifts in the pattern edges [65]. Another
way is to generate random patterns based on a set of defined unit patterns while making sure

that the generated patterns follow the design rules [67].
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