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ABSTRACT 

 

Space radiation and nuclear reactors produce single event effects (SEE) in 

electronic circuits and impact their performance. The SEE phenomena cause circuits and 

electronic devices to fail by producing faulty results. Therefore, today’s circuit’s 

reliability is a significant concern for all circuit designers. 

This thesis suggests a new automated flow to measure the single-event-transient 

(SET) effects in combinational circuits in application-specific integrated circuits (ASIC) 

while reaching full fault coverage. The developed flow characterizes the whole circuit 

nodes by identifying the most sensitive paths to the propagated SET pulses from the node 

under test to an observable primary output, causing single event upsets (SEUs).  

The flow generates test vectors to reach the combinational circuit's highest 

possible fault coverage percentage. The generated test vectors guarantee that no logical 

masking for detected SET faults. Then, it analyzes each test vector independently to 

detect different sensitized paths possible for SET fault propagation. Then, the flow 

searches for the most sensitive path from the node under test to an observable primary 

output while measuring the minimal SET pulse characteristics that would produce SEU’s. 

This approach also suggests a new enhanced metric is to identify which test vector 

enhances the propagated SET pulse within a combinational circuit, which is vital to find 

worst-case test vectors.  
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Single Event Effects 

1.1 Introduction  

Single event effects (SEE) in electronics are the dominant source of soft errors in 

today’s commercial integrated circuit technology [1]. Also, commercial electronics 

operating in normal conditions like those existing in today’s cell phones suffer from 

radiative effects that degrade their reliability. The SEEs have a profound impact on the 

failure rates in current commercial products, which is why manufacturers and designers 

always investigate SEEs. In the latest microelectronic products where additional 

hardening and mitigation techniques are applied to reduce soft error rates, it is found that 

SEEs are the major contributor to reducing their reliability performance [1].   

SEE impacts all electronics either implemented for critical or non-critical 

applications. It might be acceptable to expect a high failure rate for a non-critical 

microelectronic device. However, it is crucial to rely on highly reliable circuits whose 

failure rates are minimal as possible for applications related to safety, health, and life-

required circuits. Unmitigated SEEs lead to significant soft error rates causing product 

failures. Companies that did not design reliable microelectronic devices for their 

applications would suffer market losses. For example, the phenomenon of SEE reached 

business news when Forbes, a highly reputable business magazine, reported that a 

mysterious glitch appeared in high-end servers manufactured by Sun Microsystems for 

no reason. These sudden glitches appeared due to cosmic rays affecting their SRAM 

memory inside their servers, generating a high soft failure rate enough, causing problems 

for Sun Microsystems' customers [2]. The root cause of the problem is that a low-energy 

neutron activates 10B-doped glass in SRAM cells, increasing the soft error rate in the 

servers, causing Sun Microsystems to suffer from a significant revenue loss.  

Another reported example in 2008, an Air-bus plane was traveling from 

Singapore to Australia, relying on its autopilot at an altitude of 37000 ft. One of the 

primary inertial references started generating wrong values of the “angle of attack.”, see 

Figure 1 [3], suggesting that the plane faced a stall. The “angle of attack” is a crucial 
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parameter that should always be correct to make safe decisions. When SEE caused a soft 

error, the computer believed that the chord line needed to be adjusted suddenly to keep 

the airplane steady. The computer then lowered the airplane's nose, suddenly injuring 

more passengers and crew in the process [4].  

The aircraft manufacturer started implementing extra strict measures to prevent 

this accident from occurring again even though the units met the manufacturer’s 

specifications earlier [1]. Therefore, understanding SEEs is an essential step for designers 

and manufacturers while building reliable electronic devices for critical applications such 

as automotive, airplanes, satellites, health ..etc.  

Through Chapter 1, a summary of SEE in combinational circuits, besides 

simulation and modeling approaches to SET. Chapter 2 presents the circuit-level 

characterization method implemented in this work. In Chapter 3, different types of VLSI 

faults and an introduction to the SET fault are presented. The SET sensitivity flow is 

explained in Chapter 4. Chapter 5 suggests a new metric to compare SET testing vector 

in terms of SET enhancement while SET pulse propagates through the circuit. Chapter 6 

suggests future work based on this thesis.  

1.2 Errors classification in Integrated Circuits 

There are three types of error events in manufactured microelectronic devices: 

soft, hard and intermittent. A soft error happens when an energetic radiative particle hits 

a circuit, causing charge disturbance in the affected element, leading to the corruption of 

Figure 1, Wind direction and the angle of attack relative to the airplane chord line [3] 
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the saved data. After a certain period, the circuit functions as well as expected, and the 

radiation still did not damage the affected element. On the other hand, the hard error 

happens when the device itself is permanently damaged and can not function as it is 

supposed to do anytime in the future. For example, power devices are susceptible to hard 

errors due to SEEs [1]. 

Furthermore, the third type is the intermittent error that happens when certain 

conditions exist; then, the same device cannot function as it is supposed to. However, in 

normal conditions, it operates well.  The intermittent error always happens at the exact 

location, but soft errors hit random locations and are not predictable. 

Another cause of soft errors is electromagnetic interference generated from 

capacitive and inductive elements in the circuit. Circuits suffer from noise and cross-

talks among different wires due to the nature of parasitic interconnects. Induced 

electromagnetic noise and cross-talks increase in the circuits when interconnect signals 

change at very high frequencies. Therefore, designers tend to genuinely shield the design 

and make sure that capacitive cross talks are below an acceptable threshold by applying 

decoupling techniques and separating noisy sources from the noise-sensitive circuit 

modules to reduce the induced faults in the circuit [5]. In the thesis, the main focus will 

be on radiative induced SEEs where an energetic radiative particle hits the circuit and 

induces a current pulse disturbing the circuit. The affected gate will return to function 

typically, but the functionality is not correct during the fault time window, causing a 

transient event. Sometimes, the circuit could take multiple hits affecting not only one 

gate but multiple gates, especially when the operating circuit is near radioactive stations 

or in outer space. The high-speed neutrons besides alpha particles are the primary sources 

of SEEs in microelectronics.  

High-energy particles reach earth from outer space consisting of primary protons 

(89%), hydrogen nuclei, helium nuclei (10%), and other heavy metal nuclei (1%), 

including uranium [6]. These energetic particles are known as cosmic rays. When cosmic 

rays enter the earth's atmosphere, they collide with the atoms in the atmosphere, causing 

many nuclear interactions. As a result of these interactions, high-speed neutrons are 

generated in the atmosphere [7]. The high-speed neutrons tend to collide more with 

available air molecules in the air and lose their kinetic energy after each collision. High-
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speed neutrons are abundant near outer space, but fewer neutrons exist when they are 

close to the surface of the earth. The neutron flux, the number of neutrons per time and 

per area, increases with the distance away from the earth's surface. For example, neutron 

flux in New York City is 13 neutrons per centimeter squared per hour 
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

𝑐𝑚2∗ ℎ𝑜𝑢𝑟
, but its 

144 
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

𝑐𝑚2∗ ℎ𝑜𝑢𝑟
 at an altitude 10 thousand feet above New York City [7].  

Neutron particles are neutral not have any charges. However, neutrons are very 

energetic, and they can collide with other molecules in the die resulting in generating 

energetic ions in the affected circuit. The energetic ions have a high speed, creating a 

charge disturbance while penetrating the CMOS gates' depletion region. This 

phenomenon results in the electron-hole generation and induces current flow in the 

CMOS gate. In NMOS, the electrons will move towards the high voltage while holes will 

Figure 2 An energetic neutron hits an active NMOS device [7]. 
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move towards the lower voltage transistor terminal; see Figure 2. Alpha particles α, 

helium nuclei, are generated because of the radioactive decay of packaging materials. 

They are charged particles able to cause ionization track in microelectronic devices, 

generating free electrons and holes, as seen in Figure 3. Alpha particles have low energy 

compared to neutrons, so the only source of alpha particles can penetrate the circuit until 

the silicon depletion region comes from materials used in die manufacturing.  

The chip's primary sources of alpha particles are circuit solder bumps, metals, the 

under-fill material used in flipped chips, and other packaging materials see Figure 4. The 

mold compound material used in wire bonding is the typical source for these alpha 

Figure 3, A charged alpha particle hits an active device [7]. 
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particles, as indicated in Figure 4. The single event upset (SEU) effect due to alpha 

particles emission is measured to be 1.5 
𝛼

ℎ𝑜𝑢𝑟
 𝑜𝑛 𝑎 300 𝑚𝑚 𝑑𝑖𝑎. 𝑤𝑎𝑓𝑒𝑟 [8]. 

1.3 SET Phenomenon and Modelling 

The Single Event Transient happens when an external incident particle strikes a 

circuit node and alters the charges in this node. This effect causes the voltage to change 

at this node. The charge trapped in this node will cause an additional current in this node. 

In digital integrated circuits (ICs), this would cause the logic gates voltage to be affected 

and sometimes be changed, causing a single event upset (SEU) when the voltage value 

at the output of the gate switches from 0 to 1 or vice versa.  

The single event transient (SET) can happen due to radiation coming from space, 

nuclear reactors, research facilities, and radiative medical setups [9]. Due to the random 

nature of such radiation, radiative energetic ionized particles could simply strike the 

surrounding circuit. These ionized particles inject extra charges in the circuit node, and 

it could easily perturb the voltage at the affected nodes. This perturbation in the voltage 

waveform is described as a SET.  The perturbation changes the shape of the voltage 

waveform during a certain amount of time, causing a voltage transient at the affected 

circuit node.  

Figure 4 The IC chip structure contains solder bumps, and metals which are the 

primary sources of alpha particles [8] 
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1.3.1 Physical Mechanism of SET—Device-level 

Some essential points in CMOS devices need to be highlighted to understand the 

physical mechanism behind SET. First, the reverse-biased junction in CMOS is very 

sensitive to ion strikes. Also, the junction in the NMOS transistor between n+ and p well 

is more affected by ion strikes than 𝑃 + to 𝑛 N-well in PMOS because separation and 

collection of electrons are more significant since the nature of electrons’ mobility is 

larger than holes. Furthermore, manufacturers usually use the p-type bulk, which 

enhances the collection of charges to appear deeper inside the p-bulk substrate [1].  

In Figure 5, a highly energetic ion strikes an NMOS transistor. The ion propagates 

through the n+|p junction that is reverse biased, leading to the deposition of the charge 

electron-hole pairs along the particle’s track in the device. The local electric field 

between the reverse-biased n+|p junction collects the carriers rapidly, generating a large 

voltage/current transient. Furthermore, Electric field distortion in the biased region 

occurs along the ion track and causes the depletion region to be extended in a funnel 

structure. The extension of the depletion region in the bulk region increases the collected 

Figure 5 Extra current at drain because of a radiative particle hit. [1] 
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charge by drifting. The extended funnel volume is a function of doping concentration in 

the substrate. In the “prompt” phase, the charge collection usually takes tens of pico-

seconds.  

Then, a second phase occurs when electrons start to diffuse in time into the 

depletion region. This process continues till all additional carries are collected, 

recombined, or diffused. The diffusion collection of charges process is much slower than 

the prompt collection of them, as illustrated in Figure 6 [1]. 

1.3.2 Physical Mechanism of SET—Gate Level  

In Figure 7, the CMOS inverter has a low input voltage when a highly energetic 

ionized particle strikes the NMOS transistor. The deposited charges caused by the 

incident particle are collected as described in the previous section and introduce a new 

SET current 𝐼𝑠𝑒𝑡. The load capacitance charges could now go to the ground through the 

ON NMOS, and the voltage value of the load capacitance starts to change. The PMOS is 

still in ON state and starts to drive current 𝐼𝑑𝑟𝑖𝑣𝑒 to dissipate the SET current besides the 

load current 𝐼𝑙𝑜𝑎𝑑. 

Figure 6 The current waveform after a strike by a radiative particle [1] 
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The output voltage is deformed, and it can be displayed as a pulse waveform. In 

the above case, the SET perturbation would cause a pulse from high “1” towards low “0”.  

If it has a large swing and operates for a considerable period, this pulsed-wave causes the 

logic value to be transitioned from 1 to 0. 

The amount of charge that appeared after particle radiation hit that can transform 

the output voltage value from 1 to 0 or from 0 to 1 is called the critical charge 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 

Therefore, the standard cell gates are immune to the SET phenomenon if they exhibit 

high 𝑄𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 values, and hence, only high energetic particles can produce single event 

upsets (SEU). If the induced charges by the radiative particle hit are not sufficient for the 

output signal voltage to flip, electrical masking occurs, and no SET pulse propagates 

through the gate [10]. 

Figure 7 A new current pulse generated by an incident radiative particle [9] 
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1.3.3 Logical masking and fault propagation 

In a large combinational circuit, studying the conditions to facilitate the single 

event transient error propagation through the IC circuit is another crucial aspect. The 

logic function of the AND gate and the input voltage values of the gate control the 

propagation of the SET fault at the gate output. For example, if a radiative particle strikes 

one of the input terminals of an AND gate while it has a “0” low voltage before the SET 

pulse, the radiative particle will cause a pulsed voltage waveform from “0” to “1” for a 

period 𝑡𝑠𝑒𝑡 . Suppose the non-affected AND gate terminal has a “1” high voltage, and the 

SET pulse is presented in the second terminal. In that case, the AND gate output exhibits 

SET pulse, as illustrated in Figure 8-b. Then, the gate output will return to its original 

logic value “0” after the end of the SET effect. On the other hand, if the non-affected 

terminal has a “0” voltage, it will not permit the SET pulse to appear in the gate output, 

as illustrated in Figure 8-a.  

The same scenario applies to different logic gates but with different input logic 

values. In Figure 8-c and Figure 8-d, the SET hits a NOR gate, and the affected node has 

a low “0” voltage value. If the other terminal has a high “1” voltage value, the SET pulse 

input will not propagate through the gate, and the output voltage will remain “1”. On the 

contrary, if the voltage is “0”, as in Figure 8-d, the SET will propagate.   

Figure 8 SET propagation dependance on the logic values at the gate inputs. “a” & 

“c” illustrates that the SET propagation while ”b & “d” no SET propagation.   
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Therefore, the logic function of the gates is also an essential factor determining 

the propagation of the SET fault in the circuit. Therefore, “Logical Masking” exists when 

the logic input stops the input SET pulse from propagating to the gate output [11].  

1.3.4 SET at P-MOS and N-MOS 

An experimental characterization experiment was conducted in [12] to 

distinguish the charge collection mechanism of the SET phenomenon happening in either 

N-MOS and P-MOS transistors in CMOS logic gates. In [12], they fabricated two custom 

CMOS circuits for N-hits and P-hits. Each circuit consists of a repetitive 100 unique 

blocks. The N-hit circuit consists of two inverters connected each at the terminals of a 

NAND gate, as shown in Figure 9. The input to each block is supposed to be voltage high 

“1”. On the other P-hit circuit, the two inverters are connected to a NOR gate while the 

voltage input is low “0”, as shown in Figure 10. The chip used  65nm bulk CMOS 

technology, and It was tested using a heavy-ion setup. The block design will logically 

mask ion-strikes inducing SET pulsed current at the inverter’s active area. Therefore, the 

only effect of propagating through the block is the ion hitting the active areas of the 

NAND and NOR gates. Considering the N-hit circuit, if the ion hits one of the inverters, 

causing the logic output to change from “0” to “1”, the other inverter should maintain its 

“0” low voltage value and prevent inverter SET induced pulse from propagation. 

Therefore, only ions hitting “off” NMOS transistors in the NAND gate would generate a 

SET pulse and change the block output voltage. The same methodology also applies to 

the P-hit block, with only ions hitting “off” P-MOS transistors to change the P-it block 

voltage.  

Figure 9 Two blocks of N-hit circuits connected in series [12] 
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The inverter, NAND, and NOR gates were designed to have the same current 

drive to lower the differences between both blocks [12].  The custom design of the two 

layouts considers separating both inverters away from each other by 3.5 𝜇𝑚 to prevent 

charge sharing in the active area between these two inverters [13]. A layout of two N-hit 

blocks illustrating how the backend design separates two inverters from each other was 

introduced in [14], as depicted in Figure 11. If both inverters were not separated, the 

heavy-ion could simultaneously induce SET pulsed current at both inverters, changing 

the block logic value. Also, each block is spaced 2.5 𝜇𝑚 behind the consecutive one to 

prevent charge sharing between NAND gates and the following inverters of the next 

block in a phenomenon known as “SET quenching” [15].  

In order to calculate the induced SET pulse width, an on-chip measurement 

circuit consisting of a long inverter chain is also implemented. The pulse width is to be 

measured in terms of inverter stage delays [12]. The inverter chain consists of 80 

consecutive inverters when each inverter delay is 25𝑝𝑠. Therefore, the pulse width will 

be multiple of the inverter delay. The measurement circuit could measure SET pulses 

ranging from 12.5 µ𝑠 to 2 𝑛𝑠. 

Figure 10 Two blocks of P-hit circuits connected in series [12] 
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Experimental testing with heavy ions with different linear energy transfer (LET) 

starting from 21.2 
𝑀𝑒𝑉 𝑐𝑚2

𝑚𝑔
 to 58.8 

𝑀𝑒𝑉 𝑐𝑚2

𝑚𝑔
. The energy of ions was measured at the 

silicon surface and the SET propagation pulse width. In Figure 12, the box plot shows 

the mean, minimum, maximum, and ±1 standard deviation of the measured SET pulse 

width data versus different input heavy-ion energies used in the experiment. It appears 

that at lower LETs, the SET pulse width originating from N-hits is larger than those P-

hits. The reason is that the perturbation of the well voltage is not considerable and only 

charge collection exists due to drift and diffusion charge collection contributes to the 

SET pulse. 

On the other hand, the perturbation of the well voltage becomes more significant 

after increasing the incident ion energy. The input heavy-ion penetrates deeply in the 

well, causing bipolar parasitics to contribute significantly to the charge collection process. 

Figure 11 The layout of a N-hit block [14] 
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Considering the n-well in the PMOS transistor, holes collected by the drain or the 

substrate cause electrons to lower the well potential, resulting in a lower source-well 

potential barrier, defined as parasitic bipolar action [12]. The parasitic bipolar action 

increases the induced current collected at the drain, resulting in larger SET pulse width 

measured in P-hit circuits larger than pulses from N-hit circuits. Circuits built using 

dynamic logic circuits, where only one type of transistor is used while designing the 

circuit, benefitted from this experiment because they could choose their type of transistor 

due to the expected operating conditions.     

 

 

1.3.5 Technology Scaling Trends in SET 

Two chips were fabricated using 130-nm and 90-nm CMOS technology to study 

the effect of transistor scaling for single event transient [16]. Their design consisted of a 

custom inverter target circuit and SET pulse capture circuit, and they were tested using 

Figure 12 A box plot of SET pulse width corresponding to LET ranging from 21.1 

to 58.8  
𝑀𝑒𝑉 𝑐𝑚2

𝑚𝑔
 [12]  
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heavy ions. The operating voltage of both circuits was the same, 1.2 V. The operating 

conditions were the same except for the transistor scaling of both technologies.   

Figure 13 compares the measured SET pulses as a function of the incident LET 

of the heavy ions. At low LET values, there is a significant difference between both 

technologies. The 90-nm circuit observes larger SET pulse width than the 130-nm circuit. 

On the other side where LET values are high, the results are comparable between the two 

technologies in terms of the SET pulse widths. Figure 13 proves that the SET effects are 

increasing with smaller technologies. In smaller technologies, the wider SET pulses 

prove that new future nodes will be more sensitive to SET events.  

1.4 Simulation and Modelling of SET  

Controlled irradiation experiments are essential to study the influence of 

energetic particles on operating circuits. Tested devices in the circuit should consider 

only the effect of the energetic particles after bombarding them with laser or heavy ions 

with a previously known energy and start to monitor the induced waveforms afterward. 

Figure 13 A comparison between 130nm and 90nm in terms of LET [16]. 
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However, there are considerable challenges to lab irradiation experiments [17]. First, 

controlling the bombarded particle to strike a specific position is a challenging operation 

that requires expensive characterization tools [12]. New small node technology increases 

the challenge level because of scaling down the transistors. Researchers tend to increase 

the device area as possible to increase controllability and prevent the energetic particle 

from unintentionally affecting another device [16]. Second, special circuit design 

requirements impose an extra load of difficulties. Monitoring the induced SET current or 

voltage pulses cannot be done using external probes because the induced pulse will 

change after moving through the highly parasitic wires. Therefore, built-in self-test 

circuits are proposed to measure SET pulse widths on the same chip using a chain of 

inverters [14]. Finally, the custom chip requires fabrication and sometimes custom 

packaging, so extra enhancements or refinements are unavailable. In brief, this lab testing 

requires time and resources, and it is not easy to implement. 

 

1.4.1 Classification of SET Modeling and Simulation Approaches.   

1.4.1.1 Device-Level Simulation 

On the other hand, doing a computer simulation of the circuits under test by 

modeling the SET effects on the circuits is the optimal approach used by everyone. There 

are different levels at which researchers study the SET effects. First, device-level 

simulation studies the SET effects by applying detailed physics mechanisms between the 

interactions of the energetic particle and the induced charges in the active device. It is 

the most accurate level of simulation [9]. Still, it can only be applied to a small number 

of connected transistors, not on a circuit level, because of the enormous computational 

resources required to perform such a simulation. Device-level simulation can only be 

applied to develop an electrical model or closed analytical equation to the charge sharing 

mechanism in the device. For example, TCAD simulations were implemented to study 

the quenching of SET in circuits in [15]. The developed TCAD structure in [15] to study 

the SET quenching is shown in Figure 14. Overall, the developed simulation will produce 

an abstract model of the SET-induced current or voltage waveform in the affected active 

devices and be used in SPICE circuit-level simulations.  
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1.4.1.2 Circuit-Level Simulation. 

The second level of SET simulation is SPICE simulations of circuit-level designs. 

The SPICE simulation, circuit-level, consists of two mechanisms for introducing the 

induced SET pulse in the circuit. The first mechanism is Micro-Modelling, where a 

pulsed current source is embedded inside the transistor under test in this mechanism [9], 

as shown in Figure 16. The effect of the SET pulse is monitored using real-time SPICE 

simulations at the circuit level.  

The second mechanism is known as Macro-Modelling, where a pulsed current 

source is injected at a circuit net between two different standard gates [9], as shown in 

Figure 15. This mechanism also uses real-time SPICE simulations, the SET pulse in the 

tested circuit, and monitors the propagated SET pulse until a primary output if no logical 

masking occurs. 

Figure 14 A 3D TCAD model of two adjacent PMOS transistors [15] 
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The Macro-Modelling mechanism is widely used in the literature because it is 

easier to implement in CAD simulators. The Micro-Modelling mechanism requires a 

modification to the predefined transistor model file produced by the foundry, which 

sometimes does not allow its users to make such changes. In this work, the Macro-

Modelling approach is to be used while applying circuit characterization or validating 

the SET effects on the whole combinational circuits.  

 

Figure 15 Macro-modelling of SET pulse in circuit-level [9]. 

Figure 16 Micro-modelling of SET pulse inside a transistor under test [9]. 
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1.4.1.3 Mixed-Mode Simulation. 

Sometimes, mixed-mode simulation is applied to take advantage of both previous 

schemes. An example of employed mixed-mode simulation is presented in [18]. They 

designed a chain consisting of four inverters. The energetic particle strikes the off-state 

NMOS transistor of the second inverter. The 3D-TCAD simulation was applied only on 

the affected NMOS to study the SET propagation in the four inverter chain shown in 

Figure 17, while the other inverters were simulated using SPICE simulation.  

Another vital contribution of the mixed-mode simulation was presented in [19]. 

The mixed-mode simulation performed by Davinci, a commercial mixed-level device 

and circuit simulator, was able to compute the voltage and current waveforms induced 

by the energetic particles. Previously, researchers could only measure the induced SET 

pulse width using inverter delay chains. Therefore, applying the mixed-mode simulation 

was a revolutionary step. The model implemented in [19] consists of a 10-inverter chain, 

followed by a broadening inverter and a set-reset latch. The broadening inverter consists 

of a strong NMOS and weak PMOS to stretch the negative-going (transition from VDD 

to GND) transient pulses. The latch’s objective is to measure the propagated SET pulse. 

The input of the 10-inverter chain is connected to ground “0”, as shown in Figure 18. 

The simulations included both bulk and SOI transistors.  

Figure 17 A mixed-mode simulation example [18]. 
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Figure 18 The schematic of the design implanted on Davinci mixed-mode simulator.  

Figure 19 The SET voltage waveform propagation from inv1 to the set-rest latch in 

a 180nm bulk CMOS technology [19]. 
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 An energetic ion hits the off-state NMOS in the first inverter. The NMOS 

transistor is simulated using the device-level scheme, while the circuit-level simulation 

is applied to the other devices. The SET propagates through the inverter chain and is 

latched at the end of the circuit, meaning it is captured by a sequential element leading 

to a single event upset (SEU). With 𝐿𝐸𝑇 =  7 𝑀𝑒𝑉 − 𝑐𝑚2/𝑚𝑔 , the mixed-mode 

simulation shows that propagated SET is captured by the set-rest latch causing a single 

event upset (SEU), as shown in Figure 19. Therefore, any particle with a LET of more 

than 7 can also cause SEU. Also, it shows that the propagated SET pulse is wider than 

the induced SET pulse at the struck node by 10 to 15 percent [19].   

Figure 20 Drain voltage waveform at different LET for bulk and SOI 180 nm 

CMOS transistor [19].    
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The mixed-mode simulation gives a degree of freedom to change the energy of 

the radiative particle, so the voltage waveform resulting from the different energy 

bombardment was generated, as shown in Figure 20.  

Also, the mixed-mode simulation predicted the critical LET value required for SET 

propagation in the circuit. The critical LET is plot versus different transistor feature sizes 

for bulk and SOI CMOS in Figure 21. It is shown that scaling transistor down causes 

CMOS to be more susceptible to energetic particles strikes and bulk CMOS below 100 

nm are susceptible to alpha particles hit. Furthermore, SOI CMOS shows more 

robustness to SET strikes.  

 

In Figure 22, an important plot is presented, showing the resulting SET pulse width 

at the struck node versus the linear energy transfer of the striking, energetic particle [19]. 

Figure 21 Critical LET of SET propagation versus different transistor feature sizes. 
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The plot shows different responses of different technology nodes, including the 180nm 

bulk CMOS technology.  

 

1.5 The SET Current Source Model. 

The current pulse developed in [20] is considered the most used current source 

model for SET simulations. The SET current can be modeled according to the following 

equation:  

𝐼𝑆𝐸𝑇(𝑡) =
𝑄𝐶𝑂𝐿𝐿
𝜏𝑓 − 𝜏𝑟

(𝑒
−
𝑡
𝜏𝑓 − 𝑒

−
𝑡
𝜏𝑟) 

Where 𝑄𝑐𝑜𝑙𝑙  is the collected charge, 𝜏𝑓  is the collection time constant of the 

junction, 𝜏𝑟 is the ion-track establishment time constant. The 𝜏𝑓 is responsible for the fall 

time of the pulse while 𝜏𝑟 is responsible for the rise time. A plot of the current pulse is 

illustrated in Figure 23. 

Figure 22 SET pulse width vs LET 
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There are different current source models developed by researchers, such as 

Freeman’s current model [21], Hu’s current model [22], diffusion current model [23] ..etc. 

However, the current model used in this work is based on the recent work done in [24]. 

An ideal SET voltage pulse is generated using double sinusoidal transition. The voltage 

waveform follows the following equation: 

𝑉(𝑡) =

{
  
 

  
 
0                                                                𝑡 ≤ 𝑡0 
𝐴

2
 (𝑠𝑖𝑛 (𝜔 (𝑡 − 𝑡0) −

𝜋

2
) + 1)  𝑡0 ≤ 𝑡 ≤ 𝑡1

𝐴                                                       𝑡2 ≤ 𝑡 ≤ 𝑡3 
𝐴

2
 (𝑠𝑖𝑛 (𝜔 (𝑡 − 𝑡2) +

𝜋

2
) + 1)  𝑡2 ≤ 𝑡 ≤ 𝑡3

0                                                                 𝑡3 ≤ 𝑡  

  

𝑉(𝑡)  is the voltage value at time 𝑡 . 𝑡, 𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑎𝑛𝑑 𝜔  are the controlling 

parameters to pulse waveform. 𝐴 is the SET pulse height, while the pulse width is the 

duration between two points in the pulse where both have voltage value 𝑉(𝑡) = 𝐴/2 . 

The double sinusoidal voltage waveform is illustrated in a VerilogA module developed 

in [25]. It is used to apply SET-induced pulse, as shown in Figure 24.  

The voltage waveform does not imitate the one produced by the ionizing particle 

as the double exponential current model. However, it follows the same waveform after 

the induced charge perturbation traverses a logic gate [24].  

Figure 23 The induced SET current pulse developed in [18] 
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Figure 24 Voltage waveform using double sinusoidal current source pulse [24]. 
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Standard Cell Characterization  

2.1 Introduction.  

This chapter illustrates how standard cells are characterized in terms of SET 

pulsed currents. Each standard cell needs to be stimulated electrically to determine if the 

induced SET current due to the energetic particle strike at the standard cell inputs will 

traverse through the gate and appear at the gate’s output or not. If the SET pulse did not 

appear at the gate’s output, it means that the gate is not affected by the hit, and the gate 

stops the SET pulse from propagation.   

These simulations are performed at the circuit level, and the SET current models 

explained in section 1.5 will be utilized to model the induced current at the standard cell’s 

input [25]. A testbench is constructed for each standard cell in the library, as shown in 

Figure 25. The characterization requires that each standard cell be subjected to multiple 

SET pulses with different pulse height 𝐴 𝑜𝑟 𝑉𝑖𝑛 and pulse widths 𝑇𝑤𝑖𝑛.  The standard 

cell performance is recorded after each transient simulation conducted on the cell under 

test. Instead of storing the whole circuit’s output waveform, only values of the propagated 

pulse height 𝑉𝑜𝑢𝑡 and pulse width 𝑇𝑤𝑜𝑢𝑡 are stored. If the input SET current pulse does 

not traverse throught the tested cell (gate), the 𝑉𝑜𝑢𝑡 and 𝑇𝑤𝑜𝑢𝑡 are equal to zero.  

Figure 25 A standard cell (gate) characterization test bench. 
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The input SET pulses are performed using a sweep over a range of 𝑉𝑖𝑛 and 𝑇𝑤𝑖𝑛 

in SPICE simulations. The Cadence Spectre circuit simulator is used to perform the 

required sweeps since each sweep is an independent transition simulation. The 

corresponding output waveforms are stored then analyzed by measuring the SET output 

characteristic of 𝑉𝑜𝑢𝑡 and 𝑇𝑤𝑜𝑢𝑡 as in Figure 25. After multiple sweeps, a set of input 

SET current pulse and their corresponding propagated SET characteristics are collected.  

2.2 Applied Fault Model 

In [24], a fault model for the SET output pulse propagating through a standard 

cell is proposed after applying numerous transient simulations using a test bench circuit 

similar to the one in Figure 25. The fault model consists of two transfer functions for 

both 𝑉𝑜𝑢𝑡 𝑎𝑛𝑑 𝑇𝑤𝑜𝑢𝑡 based on the input SET characteristics 𝑉𝑖𝑛 and 𝑇𝑤𝑖𝑛. The transfer 

functions of the output voltage permutation is given by the next analytical equations:  

𝜎𝑉  =  
𝑉𝑜𝑢𝑡
𝑉𝑑𝑑

= 
1

1 + 𝑒−𝑘(𝑉𝑖𝑛−𝑉0)
 

𝜎𝑉  is a sigmoid surface function, and 𝑘, 𝑎𝑛𝑑  𝑉𝑜 controls the shape of the 

sigmoid surface and are dependant on the input SET pulse width 𝑇𝑤𝑖𝑛 characteristic as 

shown in the following equations:  

𝑘 = 𝑐 (1 − 𝑒−
𝑡𝑤𝑖𝑛
𝑇 ) 

𝑉0 = 𝑉𝐷𝐶 (1 + (
𝑡𝑑1
𝑡𝑤𝑖𝑛

)
𝛼

) 

The 𝑉𝐷𝐶 coefficient is the voltage value where the input voltage equals the output voltage 

in the function. The rest parameters 𝑐, 𝑇, 𝑡𝑑1, and  𝛼 fitting parameters are used to fit 𝜎𝑉   

to the data generated by multiple transient simulations. 

The output pulse width 𝑇𝑤𝑜𝑢𝑡 equation is given by:  

𝑡𝑤𝑜𝑢𝑡 = 𝑎 𝑡𝑤𝑖𝑛 + 𝑡0 𝑒
−𝑡𝑤𝑖𝑛
𝑡𝑖 + 𝑏 

Where 𝑎 𝑎𝑛𝑑 𝑏 are given by:  

𝑎 = 𝑎0 + 𝑎1. 𝑉𝑖𝑛 

𝑏 = 𝑏0 + 𝑏1. 𝑉𝑖𝑛 
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The 𝑎0 , 𝑎1 , 𝑏0 , 𝑏1 are technology-dependent parameters. A plot of both 𝑉𝑜𝑢𝑡and 𝑇𝑤𝑜𝑢𝑡 

functions for an inverter build using 65nm CMOS technology, as shown in Figure 26. 

 

However, in [24], a different model fitting is applied on the collected SET 

characteristics by Cadence simulations to produce a SET fault model for each standard 

cell. The model fitting presented in [25] produced accurate results than the model 

developed in [24] for 180nm CMOS technology. The new fitting model generates two 

interpolated equations of the SET output pulse using MATLAB  algorithm; hence, more 

accurate results than the analytical transfer function presented in [24]. The proposed 

fitting is based on cubic interpolation to provide a smooth interpolation for both transfer 

functions. A comparison of the simulated date from Cadence transient simulation, the 

analytical model in [24], and the cubic interpolation developed in [25] is illustrated in 

Figure 27.   

The characterization described above relies on performing many transient 

simulations of different input SET characteristics of height and pulse width. Increasing 

the number of input sweep values enhances the fitting functions to find an optimal fault 

model. The characterization step requires computational memory resources; however, it 

is a one-time step for the whole technology that can be implemented using a generic 

Figure 26 SET output pulse transfer functions of 65nm CMOS inverter. 
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automation script, as shown in [25].  The fault model would not change as long as the 

physical properties of the standard cell remain constant.  

2.3 Characterization Review.  

In [24] and [25], they used the minimum standard cell as a loading instance at the 

output of the gate under test. The capacitance at the tested gate output affects the SET 

output characteristics 𝑉𝑜𝑢𝑡 and 𝑇𝑤𝑜𝑢𝑡 because increasing the load capacitance leads to 

attenuation of the output SET pulse; hence, lower measured values of 𝑉𝑜𝑢𝑡 and 𝑇𝑤𝑜𝑢𝑡. 

a) 

Figure 27  The transfer function of the SET output pulse width of the NO2HDSVTX4 

cell in 180nm CMOS. (a) simulation result, (b) model from [22] and (c) cubic 

interpolation. 

b) 

c) 
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In the SET sensitivity work explained in Chapter 4, the load capacitance will be minimum 

representing the worst-case scenario. Furthermore, the height of the transient pulse from 

0→1 and from 1→ 0 is assumed to be equivalent while performing characterization. 

Therefore, they applied only one type of transient pulse which from 0→1 through all the 

work in [24] and [25]. 

However, choosing only the smallest inverter as the typical loading capacitive 

element to perform standard cell characterization is very pessimistic because cells in 

ASIC chips can be followed by larger loading capacitive cells most of the time. Larger 

capacitive load results in less SET 𝑉𝑜𝑢𝑡. The graphs in Figure 28 show different transfer 

functions plotting after the characterization of the NA2HDLLX0 standard cell when the 

loading inverter width changes from INHDLLX0 to INHDLLX2.  

 

a) b) 
Figure 28 A comparison between using different loading inverters while 

characterizing NA2HDLLX0 cell. 
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Furthermore, another experiment was performed to test the assumption that the 

𝐴 voltage height difference is the same for transitions from 0 → 1 and 1 → 0. The similar 

loading inverter INHDLLX0 characterizes the Same NA2HDLLX0 standard cell, but the 

logic input to the gates is different. In the first case of  0 → 1 input to NAND gate, the 

pin A, where SET current source is connected, has a logic value “0,” and pin B has logic 

value 1. In contrast, inputting 1 → 0 to NAND gate, the pin A, where SET pulse occurs, 

is connected initially to logic “1”, and B is connected to logic 1. 

The graphs in Figure 29 show different plots of the SET output characteristics 

after the characterization of the NA2HDLLX0 standard cell for both transitions. In 

Figure 30, the difference is a plot between: 

𝑉𝑜𝑢𝑡(0 → 1) − 𝑉𝑜𝑢𝑡(1 → 0)  &  𝑇𝑤𝑜𝑢𝑡(0 → 1) − 𝑇𝑤𝑜𝑢𝑡(1 → 0)   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) (b) 

Figure 29 The SET characteristics after characterization of NA2HDDLLX0 when 

transition  (a) from 0 to 1 (b) from 1 to 0 
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2.4 Discussion.  

Characterization of SET output characteristics of each standard cell is affected by 

load capacitance and input logic. Characterization of standard cells using the smallest 

inverter as a capacitive load is the most pessimistic case because a small capacitance after 

the gate output requires a small charge to fill the capacitor. That is why the output voltage 

value increases rapidly. Characterization is required to consider different load capacitors 

to have less pessimistic results. The pessimistic results will influence the SET sensitivity 

measurements. Assuming all transitions are the same influence also influences the SET 

sensitivity measurements performed later in section 4.3.  

Characterization of each standard cell for different SET values, capacitive loads, 

and logic input values is a computationally complex operation. It will require time and 

significant memory and computation resources to characterize each gate. However, these 

operations can be performed to generate a 3D matrix for each possible input value to 

construct a fault model using the known liberty format. It is a massive advantage if two 

lookup tables are constructed to model SET_rise and SET_fall characteristics. The input 

to each lookup table is (𝑆𝐸𝑇 𝑉𝑖𝑛 , 𝑆𝐸𝑇 𝑇𝑤𝑖𝑛 , 𝐶𝑙𝑜𝑎𝑑  ) and the results are (𝑆𝐸𝑇 𝑉𝑜𝑢𝑡 , 

𝑆𝐸𝑇 𝑇𝑤𝑜𝑢𝑡). Furthermore, using the liberty format for SET is compatible with today’s 

Static timing analysis. 

Figure 30 Error between SET from 0 to 1 and SET from 1 to 0 in NA2HDLLX0 

with load INVHDLLX0 
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Types of VLSI Faults 

3.1 Introduction 

The current trend in the electronics industry is to enhance the performance of 

electronic chips by scaling them down. Decreasing the transistor size causes the 

transistors to operate faster and enables designers to put more transistors in the chip; 

hence, improving the performance of complex operations by achieving higher 

frequencies while consuming less power. However, there are many challenges to scaling 

down transistors due to process variations and manufacturing defects. These defects 

cause unplanned scenarios in the fabricated chips not accounted for during design. The 

process variations and manufacturing defects are defined as Deep Sub Micron (DSM) 

effects. These effects are increasing and becoming more complex with every smaller 

technology. They could be due to ion migration, crystal imperfections, contact 

degradation, dielectric breakdown ..etc. [26]. These unpleasant effects cause severe 

cross-coupling capacitances and inductances among circuit interconnects, substrate noise, 

thermal noise, dynamic and static voltage drops, and electromigration. These defects 

affect the functionality and the performance of the circuit and can cause chips to fail [27].  

Therefore, researchers tend to build fault models to predict the effects of these 

defects while designing the chip and protecting the chips from them. The fault is 

considered as an abstraction of the investigated failure not intended for the design. The 

fault can be built at any circuit level, such as transistor or gate level. The objective of the 

fault model is to model a large percentage of the defects at a higher abstraction value, 

reducing the complexity and number of operations required to investigate each defect. 

For example, a circuit consists of interconnected gates, and when an interconnect or a 

gate is not functioning correctly, a fault happens [28]. The Fault model is the essential 

step in generating test vectors. There are many types of faults, such as stuck-at faults, 

delay faults, Redundant Faults, Initialization faults ..etc. The two of most concerns 

regarding SET are the stuck-at-faults and the transition fault, which is a type of delay 

fault [29].   
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3.2 Stuck-At Faults  

The most popular fault model is the stuck-at fault. The stuck-at fault is a 

functional fault applied to a single Boolean function (standard cell gate) or multiple 

connected standard cell gates. The single stuck-at fault is the simplest abstract fault, and 

it has two types: stuck-at-0 and stuck-at-1. The effect of the fault is the same as if the 

faulty net is connected directly to VDD or ground. However, it is not a physical defect 

model meaning that the net in the fabricated chip is shorted to VDD or ground.  If the 

logic is fixed at 1 or “high,” it means that a logical error happens when the net or the 

node exhibits logic value 0 or “low,” and vise versa. 

The single stuck-at-fault considers only one faulty node in the circuit; hence, the 

number of faults in the circuit will be 2n, assuming the number of nets is n. The fault is 

considered permanent since the node will consistently exhibit the fault logic value, such 

as stuck-at-1 will always have logic 1. The fault can be at any net in the circuit.  

In Figure 31, a single-stuck-at fault is assumed at node G. G is the output of AND 

gate, while A & F are the inputs to it. To test if G is stuck-at-0, both A & F must exhibit 

a logic 1. This scenario is known as fault excitation, which can activate the fault stuck-

at-0 at node G through the application of logic 1 at the same net [30]. The fault needs to 

appear at the output of the combinational circuit and propagates through the following 

gates to an output port. In the same example in Figure 31, there is only one OR gate 

between node G and the output Y. The OR gate must be transparent to the logic value of 

G, so the other input node to it should exhibit a logic 0. Therefore, if G is stuck-at-0, Y 

will be 0, and if it has logic value 1 it will be 1. The Inputs at A, B, and C are responsible 

for activating the fault and propagating it to the output node; thus, the logic values 100 

used are considered a test vector.   

Figure 31 Test vector 100 is responsible for detecting a stuck-at-0 fault at node G [21].  
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3.3 Delay Faults 

The typical stuck-at-fault assumes that a net that is already stuck-at-0 consistently 

exhibits a 0 logic value and not 1. Therefore, these defects will remain permanent and 

tend to have this stuck-at-0 fault for an infinite time; thus, they will have an infinite time 

delay. Therefore, circuits exhibiting stuck-as faults suffer from an infinite delay. 

Unfortunately, some manufacturing defects do not change the functionality of the circuit 

gates. Still, they introduce an extra delay to the nodes, causing the logic transition from 

low-to-high or high to low to take more time. An example of manufacturing defects is 

undesired electrical connections between two or more nets in the integrated circuit as a 

result of extra conducting materials or missing insulating materials. This scenario is well-

known as bridging [31] [32]. These manufacturing defects exist because of the following 

scenarios:  

1. Under-design power grids are causing large IR drops.  

2. Interconnects are close, so capacitive and inductive couplings happen [27].  

3.  Extreme statistical variation in geometry.  

4. Significant gate threshold variations.  

Bridging can also happen after fabricating the integrated circuit because of oxide-surface 

conduction, lateral charge spreading, and electromigration. In Figure 32, there are two 

examples of bridging within the integrated circuits affecting logic transition. The circuit 

on the left shows a resistive path from Vdd to an output net. The Circuit shows slow-to-

Figure 32 The NOR gate output has a resistive path causing a slow to fall fault [24].  
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fall faults at the output of the NOR gate when the logic on A changes from 0 to 1. While 

the circuit on the right exhibits a large resistive path between the output of the NOR gate 

and the input of the inverter, causing both 0 to 1 and 1 to 0 transitions to be delayed [33]. 

The introduced extra delay of all possible faults should be less than the clock period so 

that the circuit could function correctly.  

The typical stuck-at faults are not capable of detecting such delay faults in the 

circuits since they can only detect faults that have an infinite delay to change the logic 

values from 0 to 1 or 1 to 0, as described early in section 3.2. Defects such as resistive 

power supply lines, process variations, and coupling faults cannot be detected by the 

stuck-at-faults because the logic values of the faulty nets are not fixed at a specific logic 

value. Defects that cause the wrong timing behavior of the circuit are modeled using 

delay fault models. The two most common delay models are transition fault and path 

delay fault. A typical test applicable for delay faults must have a sequence of two test 

vectors 𝑇1 & 𝑇2. The first test vector would initialize the faulty node to the opposite value, 

and the circuit is allowed to hold its states till it is stable. Then, the second test vector is 

applied, causing the faulty node to change its value from 0 to 1 in case of a slow to-rise 

fault. After the specified clock period, a measurement of the logic value is applied at the 

output ports or latches.  

3.3.1 Transition Fault Model 

The transition fault model assumes that the extra delay caused by a transition on 

a net is significant so that the delay of every timing path passing through this net exceeds 

the clock period [34]. In Figure 33, an example of a slow-to-rise fault at node C is under 

investigation.  In the beginning, an initialization vector “001” is applied at the input ports 

a, b and d, respectively, before time 𝑡1 and the “c” node exhibits a 0 logic value. At time 

𝑡2, a test vector “101” is applied to cause the transition from 0 to 1 to propagate from 

node “a” through node “c” till it reaches the output “e”. If the circuit is fault-free, the 

logic value 1 appeared on input port “a” will appear quickly at output port “e” at time 𝑡3, 

as illustrated by the solid line in Figure 33. However, the fault assumes that a 

considerable delay occurs at node “C”, so the logic value will not change from 0 to 1 

after this delay period. Therefore, the significant delay period will affect the logic 
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transition at node “e” so that when a logic measurement would take place at the time 𝑡3 

“e” would exhibit a logic value 0 or low instead of 1, as illustrated by the dashed line.  

The delay fault is a function of the logic of the input pins. Each net can have two 

delay faults slow-to-rise and slow-to-fall faults. The count of the possible delay faults is 

2𝑛, assuming that 𝑛 is the number of nets in the integrated circuit.  

The methodology of generating test vector pairs for transition faults is 

straightforward. In case of slow-to-rise faults (0 to 1), an initialization test vector is 

required to put a 0 logic value at the node under test. Then a stuck-at-0 test vector for the 

node under test is applied afterward.  While the slow-to-fall fault (1 to 0) is the initial test 

vector to put a logic value 1 to the node under test. Then, a stuck-at-1 test vector at the 

node under test is applied.  

The transition fault has many advantages since it detects many defects produced 

by cross-coupling and bridging. It also uses the stuck-at-fault test vectors to its benefit, 

meaning it is very friendly with a majority of CAD tools. On the other hand, transition 

faults miss some small delay defects.  These delay defects are modeled using the path 

delay fault model described in the next section.  

 

Figure 33 A transition fault example [25]. 
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3.3.2 The Path Delay Fault  

A path is a series of connected gates starting from a primary input and ending 

with a primary output. The path delay fault model starts to collect the small delays from 

the start of the path till the end of the path. A path delay fault model happens when the 

cumulative path delay is larger than the clock period and causes a faulty timing behavior. 

Therefore, the path delay fault is different than the transition delay fault.  

An example of the path delay fault is illustrated in Figure 34. An initialization 

vector 0010 is applied to the input ports “a”, “b”, “d”, and “f”, respectively. Then, a 

vector 1010 is then applied at the time 𝑡2. Pin “a” is the only pin to exhibit a logic 

transition from 0 to 1. According to the circuit functionality, the logic transition should 

appear in the path [a – c – e – g]. If the circuit is fault-free, the transition should propagate 

quickly and before the measurements conducted at the time 𝑡3, as depicted in the solid 

line. However, if a path delay fault exists, the transition delay after each consecutive gate 

adds to the existing delay of the circuit, causing a timing violation at the time 𝑡2, as 

indicated by the dashed line.   

Figure 34 An example of path delay fault [25]. 
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3.4 SET fault  

The SET fault at a circuit node exhibits a logic transition from 0 to1 and back to 

0 again and vice versa. The induced SET pulse will propagate through the circuit gates 

till it reaches a primary output. An induced current pulse propagates from the node under 

test to a primary output through the circuit gates when a SET fault happens. For the SET 

pulse to be present at the output, an input test vector should also sensitize the propagation 

path. Such a test vector is a stuck-at-fault test vector. If a stuck-at test vector is applied, 

the SET pulse has a path to propagate and appear at primary outputs. However, The SET 

happens for a certain period; a stuck-at test vector can still be manifested to propagate a 

transient fault and monitor the SET fault at a primary output.  

A real-time simulation is required to measure the SET pulse characteristic. In 

order to validate the results generated by FastScan algorithms, a Spectre simulation test 

was performed on one of the smallest benchmarks available online (ISCAS85 C17) [35]. 

The circuit was synthesized first using Genus, a Cadence synthesis tool. Then, Cadence 

Virtuoso read the netlist and generated the schematic shown in the following figure. The 

input and output nodes are recognized as circuit ports  

Figure 35 Building testbench to the C17 benchmark netlist on Cadence Virtuoso.  
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The conditions to have a SET fault are a large induced SET current pulse and 

input vectors that can sensitize at least one path to the output. In Figure 35, the circuit 

diagram to test the C17 benchmark against the SET fault is presented. In this test, a SET 

current source named DSVP is used to insert a SET pulse with a height of 1.8 volts and 

width of 180 picoseconds at net “n_1”. A stuck-at 0 test vector for net n_1 {10011} is 

applied at the primary input ports. A transient simulation is performed on the circuits. 

Then, the voltage waveform of the nets is plotted as in Figure 36. The induced SET pulse 

at net n_1 affects the circuit performance. Net “n_2” exhibits a logic transition from 1 to 

0 and back to 1 again after the SET pulse duration ends. Also, the output net “n_N23” 

has a logic transition from 0 to 1 and back to 0 again. The waveform at “n_N23” is not 

correct for almost 140 picoseconds. If a logic measurement is conducted during this 

period, it is clear that a faulty timing violation would occur.  

 

Figure 36 The voltage waveform of C17 circuit when a SET fault at net n_1. 
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The SET fault does not occur for an infinite time like stuck-at faults, so it is closer 

to its behavior to the transition fault. However, to test SET faults, the initialization vector 

is not required since the root cause of the SET fault is the energetic particle that induces 

SET current pulse in the circuit and not a typical primary input transition as in the 

transition delay. The required test vector is the deduced stuck-at vector because it can 

sensitize a path and make the SET observable at a primary output.  
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SET Sensitivity Flow  

4.1 Introduction  

A SET sensitivity flow is presented in this section, starting by generating possible 

SET propagating paths from nodes under test to primary outputs. Then, starting analyzing 

the produced paths with graph theory and measure SET sensitivity of each node in the 

circuit, producing SET sensitivity report besides identifying immune nodes. The whole 

flow is shown in Figure 37.  

Figure 37 The SET sensitivity flow. 
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In Figure 38, a helicopter view of the SET sensitivity measurement flow is 

presented.  The flow starts by running FastScan to generate test vectors to achieve full 

coverage of SET faults for all circuit nodes. Then, FastScan is utilized to analyze the 

effect of each test vector after performing some scripting procedures. Furthermore, 

FastScan generates possible sensitized paths from nodes under test to at least one primary 

output node.  

MATLAB starts to analyze FastScan generated paths. A directed graph is 

constructed for each path file. MATLAB algorithm extracts all possible propagating 

paths from the node under test to the primary output, using graph theory techniques. Then, 

the MATLAB algorithm measures the SET sensitivity of the node under test. After 

analyzing all circuit nodes, the MATLAB algorithm generates SET sensitivity reports 

for the whole circuit. The whole flow is explained in detail in this chapter. 

Figure 38 Steps and procedures applied in SET sensitivity flow. 
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4.2 FastScan Flow. 

4.2.1 Introduction. 

Tessent FastScan, a Siemens digital industries software, is an automatic test 

pattern generation (ATPG) responsible for analyzing different types of circuit fault 

models in integrated circuits such as stuck-at faults, delay faults ...etc. It is also capable 

of analyzing the circuit under test using user-preferred input test patterns. It can also 

produce input patterns to detect as many faults as possible and achieve full coverage. The 

most significant advantage of Tessent FastScan is automating the testing flow and its 

ability to be customized based on the user preferred flow [36].  

There are two possibilities for SET transitions to occur at any circuit node. First, 

if a node is at 1, “high” state and SET event occurs, changing the node voltage to 0,  “low” 

state. Second, if the node is at 0, “low” state, and SET transforms it to 1, “high” state. A 

logic simulator is required to suggest testing vectors to help circuit designers to observe 

such faults at primary outputs. FastScan can be employed to generate test patterns to 

study circuits in terms of possible SET faults because the nature of the SET fault is 

somehow very similar to the transition faults. Still, we are interested in the second stuck-

at generated vector, as described earlier in section 3.4. In this work, FastScan operates 

on synthesized Verilog netlists. Therefore, FastScan requires both the circuit under test 

and necessary technology files illustrating the equivalent Boolean functions of the 

synthesized gates beside the name of the top module to identify the primary I/Os.  

FastScan analyzes the logic of the input circuits starting from the top module. It 

is also asked to detect all possible transition faults (SET faults) for all circuit nodes. The 

tool starts to generate a two-input vector pair that would detect the faults at all nodes 

because all nodes were added to the possible fault sites in the circuit. The physical 

meaning is that when an energetic particle hits one of the nodes, given that the suitable 

test pattern is applied, an induced current pulse will propagate through the circuit to at 

least a primary output port. The induced transient pulse can change the logic at the output 

port for a sufficient period, causing a single event upset. This work considers only a 

single hit or fault during a specified period.  
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Finally, the FastScan generates a text file describing the primary input and output 

ports. It also writes the logic values for the input vector pairs used and the expected logic 

values for the primary outputs. The following figures show the type of reports generated 

by FastScan, reporting fault coverage, test vectors, and detected nets.  

In this step, it is assumed that an energetic particle could hit the node under test 

and change the voltage value for a sufficient time so that one can observe the change at 

a primary output. Also, since most of the analysis is made to combinational circuits, it 

is possible to ignore latching masks. When there are sequential gates, latching masks 

should be considered.    

 

Figure 39 The head of ”all.pattern” file generated for the C17 benchmark circuit. 
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Figure 41 The "all.stats" report generated by FastScan. 

Figure 40 The generated “all.fault” report, illustrating the detection status of each net. 
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4.2.2 FastScan Flow 

It is essential to get the conditions at which a SET could propagate from the faulty 

node to at least one primary output without possible logical masking in the combinational 

circuit under investigation to start the sensitivity flow. The role of FastScan is to generate 

test vectors that can show the SET faults at the outputs. The whole flow of FastScan, as 

illustrated in the flow chart in Figure 42.  

Figure 42 A flow chart of the FastScan flow 
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4.2.2.1 Initial FastScan Run. 

The first run of FastScan takes all nodes as possible faults nodes. The software 

will generate a set of test vectors trying to reach maximum coverage. A statistic report 

is also generated indicating the overall coverage of the whole set of the generated test 

patterns. FastScan generates another file, summarizing the status of each net in the 

circuit and whether it is detected or not. 

4.2.2.2 Second FastScan Run.   

The first run of FastScan only gives information about the collective effect of the 

whole generated test vectors. Furthermore, information about the sensitized paths during 

each test vector is not achieved. Therefore, the Second run of FastScan is essential to get 

more information about the individual effect of each test vector generated in the first run. 

However, the second run of FastScan requires some modifications to add each pattern 

individually to it. Therefore, an automation step is applied using a Perl script to build a 

custom second run on FastScan. The Perl script role is to:  

I. Parse all previous patterns and generate a pattern file specified for each test vector.  

II. Build a custom FasScan (.do) file that will run FastScan (n) times, where (n) is the 

number of the generated test vectors from the initial run. Each time, there will be 

one test vector applied to the netlist.  

This approach will help analyze the effects of each test vector in terms of its coverage 

and which nodes the test vector detects. Another statistic file and fault file will be 

generated after applying each test vector. The statistic file measures the coverage 

achieved by the applied test vector. This information is crucial to the MATLAB approach 

while comparing test vectors to identify the worst-case test vector. The fault file records 

the faulty detected nodes and the output ports where the SET fault should appear. Still, 

the second run does not directly give the sensitized paths information required because 

FastScan does not have a direct command to type the sensitized path directly. 

Unfortunately, the FastScan needs another run after indicating the detected nodes and 

asking explicitly the FastScan to identify the logic path from the node under test to the 

output.  



57 

 

4.2.2.3 Third FastScan Run 

Before running FastScan for the third time, additional information is required to 

be added in the FastScan (.do) file.  Using FastScan command [37] 

[ report_gates -path <fault node>  <detected_output_port> ] 

An automation Perl script is required to add this information explicitly in FastScan 

(.do) file. The Perl script tasks are: 

I. Open the fault file generated by each test vector and extract the faulty detected 

nodes and the detected primary output.  

II. Write an automated FastScan script to apply first the test vector and then type 

the report_gates command from each fault node to the observable primary 

output port.  

III. Save the reported sensitized paths in a .path file with a unique convection such 

as [pat<pattern_numer>_from_<fault_node>_to_<primary_output>.path] 

The third run of FastScan is the final one because the FastScan now will produce the 

sensitized path required to measure the SET sensitivity. Unfortunately, this way produces 

a lot of similar paths, and sometimes there are empty paths. The empty paths because the 

Perl script types command asking FastScan to report all possible paths from the detected 

nodes to a primary output at which the transition fault can be observed. That is why some 

filtration processing is applied afterward.  

A vital notation is that if there is no possible test pattern detecting a SET fault at 

a particular node, this node is undetectable at the primary output. This node has logical 

masking preventing the SET fault from observing at the primary output. The previous 

scenario shows a trade-off between hardening the design against SET faults versus the 

tendency to increase the observability of the combinational circuit.  

4.2.3 FastScan Flow Results Description.   

Different benchmarks netlists are investigated in this section, starting from the 

simplest netlist C17 to the largest netlist C7552. C432 benchmark is a channel interrupt 

controller. C499 is a 32-Bit single error correction (SEC) circuit. C7552 is a 32-bit 

adder/comparator, arithmetic logic unit, responsible for different 16 logic functions [38]. 

Using FastScan, SET fault coverage of 100% was achieved after synthesizing the 

ISCAS85 netlists with XFAB 180nm HDLL technology library using Genus synthesize 
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tool. The number of nets is extracted from the synthesis tool (Genus), while the number 

of faults is twice the number of standard cell pins, as illustrated in Figure 40.   

Table 1 FastScan results of different ISCAS85 benchmarks. 

# 
 

Source 

benchmark 

Test 

Vectors 

Number 

Of  

nets 

Total 

Faults 

Detected 

Faults 

Coverage 

percentage 

Number 

of path 

files 

      

1 C17 5 11 50 50 100% 88 

2 C432 57 152 810 810 100% 9302 

3 C499 93 215 1206 1203 99.75% 65462 

4 C7552 141 1197 6562 6560 99.97% 808138 

4.2.4 Validating FastScan results using C17 

This section conducts a validation experiment on the C17 circuit, shown 

previously in Figure 35. The experiment applies a large enough SET characteristic pulse 

with voltage height equal to 1.8 volts and pulse width equal to 300 picoseconds at all 

nodes in the C17 while applying the test vectors generated by FastScan. All waveforms 

show a logic transition at the corresponding detected primary output port due to the 

propagated SET fault. Since all waveforms experience a logic transition from low to high 

or from high to low in the graph experiment validates FastScan results using real-time 

simulation.  

Figure 43 All voltage waveforms measured at output primary ports after applying a 

large SET pulse on each node under test. 
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4.3 MATLAB sensitivity measurement flow 

The MATLAB flow objective is to measure and store the SET sensitivity of all 

nets related to the combinational circuit under investigation. The final analysis result is 

a table full of the minimum SET characteristics for each circuit net that can result in a 

SET propagation to a primary output and produce a single event upset. Before the 

beginning of the analysis, there are multiple information or files required:  

I. Knowledge of different possible sensitized paths from the node under test to 

at least one primary output. 

II. Cell map to identify the reference standard cells of each instance in the 

netlist. 

III.  SET characterized models for the standard cells mentioned in the 

combinational circuit. 

IV. The user provides the primary input and output ports.  

The first requirement of a set of sensitized paths is produced from FastScan using 

the flow described early. The FastScan reports all gates between the node under test and 

the primary output specified early in the command. The FastScan does not care if a logic 

transition happens while propagating through each gate. Therefore, the MATLAB 

algorithm does this extra analysis while reading the path file because it is crucial to get a 

propagating path.  

The second requirement is performed while performing synthesis of the nets 

under test. The synthesis tool is asked to build a map file reporting the standard cell 

reference for each instance in the generated gate netlist.  

The third requirement is performed early by exploring all or necessary standard 

cells used in synthesis and characterizing them in terms of the SET fault. This 

requirement does not depend on any preferred characterized models as any standard cell 

models can be implemented in the algorithm. However, the upcoming work uses the 

characterized model proposed by [25] since it records less error percentage with real-

time simulations performed on cadence virtuoso. The fourth requirement is I/O ports 

knowledge; the algorithm requires knowing the input and output ports while parsing the 

path files to help build a directed graph, as explained in the following sections.  
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Another essential premise is that the load instance used for characterization is the 

smallest instance load available in the technology. For the XFAB HDLL library, the 

smallest cell to be used as a load is INVHDLLX0, an inverter with width x0. This premise 

has a massive impact on results because the smallest cell has a small load capacitance, 

so the SET characteristic measured at the cell's output will be high compared to other 

cells in the technology. The sensitivity measurement will be on a pessimistic case 

scenario because of the use of the smallest inverter. For results to be less pessimistic, 

fault modeling of the library standard cells should be modeled with other different cell 

loads in the technology, which requires massive computational resources to finish such 

characterization in a reasonable time. However, the sensitivity flow is generic, and if 

such models exist, results will match real-time simulations.  

The MATLAB flow starts with parsing the cell reference map of the gate netlist. 

Also, all generated path files from FastScan are parsed and used to construct a direct 

graph. Each directed graph is analyzed to identify the possible SET propagating path 

from the faulty node to the primary output specified in the file. The cell map is used to 

identify the reference standard cells of each cell gate. Characterization of each path is 

performed using the input SET model. Then, the flow identifies the worst propagating 

path in terms of SET sensitivity. The following sections explain the performed operations 

in the MATLAB flow and their significance. Furthermore, a flowchart summarizing the 

steps applied in MATLAB flow is presented in Figure 44. 
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Figure 44 A Summary of the implemented steps in the MATLAB sensitivity flow. 
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4.3.1 Analyze “path” Files.  

The MATLAB algorithm uses the generated path files from FastScan to identify 

the propagation of the logic values through the combinational gates until it reaches a 

primary output. The algorithm starts with parsing all generated path files from FastScan. 

Each file contains all possible logic transitions from the node under test to a primary 

output. In large circuits, there are many possible paths for the fault to propagate from the 

node under test to the primary output, given this applied pattern. It is also possible that 

this node under test has other path files because its fault is observable at other primary 

outputs, using the same applied test pattern. Also, some patterns could share the 

observation of the same node so that there are sometimes other paths that could be a 

replica of old path files or they are new ones. In brief, there are multiple possible paths 

for the faulty node to be present at least one primary output. The best-case approach to 

cover all cases would be an exhaustive test to cover all possible patterns and analyze each 

sensitized path. However, this approach is redundant besides being time and 

computationally consuming. The optimal approach is to analyze the available 

propagating paths from a generated set of test vectors and identify the worst propagating 

path among them and save its sensitivity.  

The MATLAB flow could parse paths produced from synthesized netlists and 

non-synthesized netlists written in the format of ISCAS85 benchmark circuits. Two 

different writing styles were analyzed; hence two different parsers are implemented. The 

flow starts collecting all cell names exhibiting a logic transition at their inputs or outputs. 

Since the transition type is essential, the MATLAB code also records the transition values 

either started from 0 or 1.  FastScan sometimes reports unnecessary cells that do not 

exhibit a logic transition but share a circuit node with other propagating cells. Therefore, 

the code is implemented to filter out those unnecessary cells and records only gates with 

the logic transition.  

A simple example of a path file is in Figure 45. The propagating path starts from 

the input primary port and propagates through three gates. The MATLAB follows the 

propagating signal from the primary input and numerates the gates through which logic 

transition occurs either from (000-111) or from (111-000). MATLAB enumerates the I/O 

ports and the cell gates during parsing, as indicated in table1.    
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Table 2 Node Enumeration of the path cells 

NAME NODE NUMBER 

“/N3”  1 

“/G75__5526”  2 

“/G74__8428”  3 

“/G73__4319”  4 

“/G72__6260”  5 

“/G71__5107”  6 

“/G70__2398”  7 

“/N23”  8 

 

 

Figure 45 A generated FastScan path file from "N3" PI to PO "N23" 
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4.3.2 Extract SET Propagating Paths. 

The MATLAB code also records the circuit connections from the node under test 

to the primary output. These connections are essential while constructing a circuit-

directed graph. The objective of the directed graph is to extract all possible paths from 

the node under test until the primary output. A MATLAB function is implemented to 

quickly go over the graph and return an array of all possible paths.  

There are some gates at which no propagating signals appear, so the gates are left 

as leaf nodes, while other gates that experience logic propagation are considered parent 

nodes for the following paths. Each graph should end up with a leaf of a primary output 

node. The corresponding graph to the path file shown in Figure 45 is presented in Figure 

46. Each number presented in the graph represents a cell gate in the path file. The directed 

graph shows the electrical connections and the hierarchy of the sensitized path.  

 In this example, there are two paths from the primary input “/N3” to the primary 

output “/N23”. The MATLAB function analyzes the graph and extracts both paths.  A 

directed graph algorithm is applied to extract all possible paths from nodes 1 to 8. In the 

graph, there are two possible paths to SET propagation. The first one is from [ 1 – 2 – 4 

– 6 – 8], and the second path is [1 – 2 – 5 – 6 – 8]. The SET pulse propagates through 

three gates in each possible path in Figure 46, excluding the I/O ports. 

Figure 46 A directed graph to the path file shown in the Figure44 
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The MATLAB then stores the extracted paths after transforming node numbers 

to their original names in the gate netlist. With the information given from the cell map 

file produced from the synthesis step, the cell gates are translated to their original 

reference standard cell gate. For example, the cell ‘g75__5526’ is translated to 

NA2HDLLX0 standard cell. This translation is essential to the next step of characterizing 

the SET's possible propagating paths. Another complex directed graph from C432 from 

node 1 to node 23 is presented in Figure 47.  

4.3.3 Apply SET Tests 

The node under test will likely have more than one propagating path to the 

specified primary output in the path file. Therefore, it is essential to analyze all these 

paths and record the worst in terms of the minimum SET characteristics required to make 

a single event upset at the primary output. Two tests proposed in [31] will be manifested 

to measure nodes' sensitivity. In [39], there is no mention of the SET characteristics to 

obtain an SEU at the primary output. In this work, when the SET height at the primary 

output is larger than VDD/2, the SET input characteristics cause an SEU.  

The assumed input SET characteristics are applied to the SET model of the first 

cell gate. The output of the cell gates is used as input to the SET model of the second cell 

gate, and their output will be used for the third gate and so on. This operation stops at the 

Figure 47 An example of a complex directed graph built for a path in C432 



66 

 

last cell gate in the path. A flow chart of the operation to characterize each path or 

consecutive cell gates is presented in Figure 48.  

4.3.3.1 SET Test1 

The first test applies the maximum pulse width input used while characterizing 

the library standard cells. In our case, the maximum pulse width used is 300 picoseconds. 

The SET test searches for the minimum SET height or voltage possible besides the 300 

pico width to produce a single event upset (SEU) at the output. Starting from a small 

voltage, continue increasing the input voltage value until an SEU occurs. The operation 

of measuring the SET output pulse characteristics is mentioned in Figure 48. In the end, 

the minimum voltage value 𝑉𝑚𝑖𝑛 recorded is to be selected. Regarding this test, the worst 

propagating path among possible N paths is the corresponding path which records the 

minimum voltage.  

Figure 48 A flow chart identifies the procedure to characterize SET through 

consecutive gates. 
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𝑃𝑤𝑜𝑟𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖  {𝑉𝑚𝑖𝑛𝑖}; ∀ 𝑖 ∈ [0, 𝑁]   

 

4.3.3.2 SET Test 2  

The second test applies VDD, the maximum voltage available in CMOS, used 

while characterizing the library standard cells. The SET test searches for the minimum 

SET pulse width using defined models to produce a single event upset (SEU) at the output. 

Starting from small pulse width, the code continues increasing input SET value until an 

SEU occurs. In the end, the minimum input pulse width recorded (𝑡𝑤𝑖𝑛) is to be selected 

Figure 49 The flow chart of applied SET test 1. 
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as the 𝑡𝑤𝑚𝑖𝑛  required to cause an SEU. Regarding this test, the worst propagating path 

among possible N paths is the corresponding path which records the minimum voltage.  

𝑃𝑤𝑜𝑟𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖  {𝑡𝑤_𝑖𝑛𝑖}; ∀ 𝑖 ∈ [0, 𝑁]   

 

Figure 50 The flow chart of the second SET test 
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4.3.4 Characterization of Combinational Circuits.  

When the nets of the combinational circuit under test are fully tested, a report 

contains the most sensitive nets, and the least sensitive nets are produced. If nets have 

different SET propagation paths from different patterns, the worst SET propagation path 

is to be selected as a sensitive measure to the node. In the end, the MATLAB algorithm 

starts to analyze the results and record the worst tested SET propagating path for each 

node. As mentioned in section 4.3, the results are based on pessimistic SET standard cell 

models. Therefore, real-time simulations should produce SET pulses at the output with 

less than or equal pulse characteristics measured in MATLAB. 

 Table 3 summarizes the result of characterizing benchmark circuits in ISCAS 85 circuits 

when the pulse width is constant. At the same time, a sweep of the SET pulse changes 

till an SEU appears at the primary output. The nets in each benchmark recorded different 

sensitivity measures. Some nets are away from the primary output and report lower 

sensitivity voltage values. The minimum, mean, and maximum sensitivity values are 

reported with how many nets report each value. Furthermore, Figure 51 shows a boxplot 

representing the SET sensitivity of test1 for all nets in the ISCAS85 benchmarks.  

Table 3 Test1 SET sensitivity results. 

# 
 

Source 

benchmark 

Number  

of nets 

Sensitivity N.O nets 

repetitions  

Test 1  

Min. 𝑽𝒊𝒏  

    (𝑻𝒘𝒊𝒏 = 𝟑𝟎𝟎𝒑𝒔) 

1 C17 11 
Most sensitive 3 0.965 

Least Sensitive 6 1.015 

2 C432 152 

Most sensitive 61 0.94 

Mean sensitive 26 1.04 

Least Sensitive 2 1.39 

3 C499 215 

Most sensitive 32 0.94 

Middle sensitive 81 1.09 

Least Sensitive 55 1.14  

4 C7552 1197 

Most sensitive 439 0.99 

Middle sensitive 342 1.09 

Least Sensitive 29 1.89 
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In Table 4, the SET sensitivity results for Test2 are presented. The minimum 

induced SET pulse width required to produce an SEU at the primary output for each node 

is recorded. Figure 52 shows a boxplot representing the SET sensitivity of test1 for all 

nets in the ISCAS85 benchmarks. 

Table 4 Test2 SET sensitivity results 

# 
 

Source 

benchmark 

Number  

of  nets 

Sensitivity N.O paths 

repetitions  

Test 2 

Min. 𝑻𝒘𝒊𝒏  

    (𝑽𝒊𝒏 = 𝟏. 𝟖 𝑽) 

1 C17 11 

Most sensitive 3 70 

Middle sensitive 5 85 

Least sensitive 1 97.5 

2 C432 152 

Most sensitive 2 25 

Middle sensitive 15 70 

Least sensitive 1 195 

3 C499 215 

Most sensitive 16 30 

Middle sensitive 15 85 

Least sensitive 27 115 

4 C7552 1197 

Most sensitive 133 40.2 

Middle sensitive 115 101 

Least sensitive 29 304 

Figure 51 A box plot for the SET sensitivity results from 

test1 
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4.4 Discussion 

In [19], a graph between the SET transient pulse width measured at the struck 

node versus the corresponding linear energy transfer of the hit particle was introduced 

for multiple Bulk CMOS technology nodes. In Figure 53, the 180nm plot is extracted 
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Figure 53 SET pulse width versus LET specific for 180nm Bulk CMOS technology 

Figure 52 A boxplot of the sensitivity results for Test2 
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using the online tool, WebPlotDigitizer [40], for better visibility, while the original graph 

is presented in Figure 22.  

 

Furthermore, ions used for experimental results at the cyclotron facility at Texas 

A&M University reported in [16] are presented in Table 5. The corresponding transient 

pulse width extracted from the plot graph in Figure 53 is also added. The plot represents 

a golden reference to measure the relation between the struck particle energy with the 

SET pulse width induced at the struck node. 

Table 5 The energy of the experimental ions and their expected pulse width. 

 

The SET pulse width obtained from the MATLAB sensitivity flow in Test2 will 

be compared against the SET pulse width of the experimental lab ions reported in Table 

5. The number of nets immune to SET effects due to these ions is written in Table 6. The 

Xe ion with a pulse width of almost 700 picoseconds is not used because the window of 

pulse width for the characterized standard cell was 300 picoseconds.  

Table 6 Characterization of benchmark circuits relative to lab ions 

 

 

Ion LET  ( 𝑀𝑒𝑉
𝑐𝑚2

𝑚𝑔
 ) Transient Pulse 𝑻𝒘𝒊𝒏 (𝒑𝒔) 

Ne 1.8 27.009144 

Ar 5.7 86.764944 

Kr 20.6 330.637416 

Xe 40.7 698.734344 

# 
 

Source 

benchmark 

Number  

of  nets 

Number of nets immune to  

Ne Ar Kr 

1 C17 11 9 1 0 

2 C432 152 142 29 0 

3 C499 215 170 59 0 

4 C7552 1197 1044 566 29 
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4.5 Results Validation 

A generic MATLAB script is used to perform an exhaustive test on Cadence 

Virtuoso to validate the MATLAB flow. The simulation inputs are the minimum SET 

pulse characteristics predicted in Test1 and Test2. All SET faults predicted by the 

pessimistic MATLAB flow were simulated. SET faults from 0 to 1 and from 1 to 0 appear 

on the real-time simulation plot windows in Figure 54. In the graph, an exhaustive 

simulation was performed on all faults predicted in the C17 benchmark using the 

produced patterns in FastScan.  

The majority of the faults predicted in MATLAB do not appear at the primary 

output because of the pessimistic characterization model since C17 only consists of 

NA2HDLLX0 cells. The characterization based on the capacitance of the smallest 

inverter is a very rough condition since there is no accounting for the fanout capacitance 

or the larger load capacitance for standard cells other than NA2HDLLX0. Transitions 

that reach more than 0.5 ∗ 𝑉𝐷𝐷 are predicted by MATLAB with their pulse width.  

 

 

 

Figure 54 Real-time simulations of C17 benchmark 
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Identify Worst-Case Patterns to SET Faults   

5.1 Introduction 

In [39], Barcelo used two tests to measure the minimum SET sufficient for the 

SET pulse to propagate its way to an observable output. The first test is sweeping over 

the voltage values while maintaining the pulse width at a significant value. The second 

test maintains the voltage constant, usually at VDD, and sweeps over the pulse width. 

The sweeping stops once there is no more SET pulse at an observable output. The same 

two tests were performed in the SET sensitivity flow.  

Every trial of the cells characterization process aims to calculate the propagated 

SET height (voltage) and width (period). Measuring the final SET pulse that would 

appear at the output port is already performed in the MATLAB flow besides measuring 

the minimum input SET pulse at the fault node to determine its SET sensitivity. Each 

pattern can detect (n) SET faults out of all existing nodes (N). Furthermore, MATLAB 

already measures the SET sensitivity of each node using the two tests mentioned in [39]. 

However, the sweeping starts from a small value until a SET pulse appears at the 

observable output, and the search for SET propagation paths is not performed 

exhaustively. The pulse characteristics of the inserted SET pulse at different nodes under 

test are recorded in addition to the pulse characteristics of the resulting SET pulse at the 

output [41].  

There was no attempt to characterize functional patterns and analyze their SET 

sensitivity in the literature. Therefore, the objective is to find a methodology that would 

help characterize all test patterns and define the worst-case pattern. This approach has 

significant benefits while designing hardened circuits to SET because it will guide circuit 

designers about possible patterns that will increase the probability of SET faults. It can 

also propose excellent test patterns to be used while conducting lab SET experiments. 

The proposed methodology to characterize different circuit patterns and find the worst-

case vector pair is presented in the following section. 
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In [24], Gili presented a SET propagation model for CMOS logic gates. The 

model consists of two analytical equations to quantify the possible SET output 

characteristic (width and height) in terms of the input SET characteristics. The output 

characteristics are plotted against the input characteristics after characterizing a single 

CMOS 65 nm inverter, as shown in the following figures. Each cell gate can be 

characterized independently and have its models that describe how the CMOS gate 

behaves in response to the different input SET waveforms. These different tests are 

plotted as shown in the following graphs in the case of the CMOS 65nm inverter. 

As described before, only two tests were used to measure SET sensitivity in-

circuit nodes. Each CMOS gate will only be analyzed in two planes in the 3D plots 

presented.  The two planes are when:  

 𝑉𝑖𝑛 = 𝑉𝐷𝐷        &       𝑇𝑤𝑖𝑛 = 𝑇𝑚𝑎𝑥  

Where 𝑇𝑚𝑎𝑥 is the maximum pulse width used while characterizing cell gates 

In the following example, a propagating path consists of 𝑁 consecutive CMOS 

gates, as shown in Figure 56. The gates will be analyzed for the two different tests. The 

following plots describe the plots used for the SET characterized SET for teach gate. The 

set of planes used in the two tests is shown in Figure 57. The first test starts with 𝑉𝑖𝑛 =

𝑉𝑉𝐷𝐷 while sweeping over the input pulse width that would result in a SET pulse at the 

output, plots [a,b] represent the two plans used at the first CMOS buffers, and their output 

will be used in plots [c,d] and so on until the last CMOS gate, as shown in Figure 57.  

Figure 55 A plot of the SET transfer functions 
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TEST1   
  𝑤ℎ𝑒𝑛 𝑉𝑖𝑛 = 𝑉𝐷𝐷 , 𝑡𝑤𝑖𝑛;            𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡1, 𝑡𝑠𝑤𝑖𝑛 = 𝑡𝑤𝑜𝑢𝑡1;   𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡𝑁−1, 𝑡𝑖𝑛 = 𝑡𝑤𝑜𝑢𝑡𝑁−1 

 

The Second test starts with 𝑡𝑤𝑖𝑛 = 𝑡𝑤𝑚𝑎𝑥 while sweeping over the input pulse 

height 𝑉𝑖𝑛 would result in a SET pulse at the output. Plots [a,b] represent the two plans 

used at the first CMOS buffers, and their output will be used in plots [c,d] and so on until 

V  

T   

𝑆𝐸𝑇𝑖𝑛 V  

T   

𝑆𝐸𝑇𝑜𝑢𝑡 

Figure 56 An example of a SET pulse propagating through N buffers 

𝑉𝑜𝑢𝑡1(𝑉)  
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(𝑎)  
𝑡𝑤𝑜𝑢𝑡

𝑡𝑤𝑖𝑛(𝑝𝑠) 

(𝑏)  

𝑉𝑜𝑢𝑡2(𝑉)  

𝑡𝑤𝑖𝑛(𝑝𝑠) 

(𝑐)  

𝑡𝑤𝑜𝑢𝑡

𝑡𝑤𝑖𝑛(𝑝𝑠) 

(𝑑) 

𝑉𝑜𝑢𝑡𝑁(𝑉)  

𝑡𝑤𝑖𝑛(𝑝𝑠) 
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𝑡𝑤𝑜𝑢𝑡𝑁

𝑡𝑤𝑖𝑛(𝑝𝑠) 

(𝑓)  

Figure 57 Illustrative plot of Test1 (a & b) are the planes used at 1st gate. (c & d) 

planes used at 2nd gate. (e & F planes used at N gate) 
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the last CMOS gate, as shown in Figure 58. The illustrative plot shows that SET pulse 

starts to fade at the second gate and be small at the 𝑁𝑡ℎ  gate; however, if the the voltage 

at the output of 𝑁𝑡ℎgate larger than 𝑉𝐷𝐷, the set pulse width causes a single event upset.  

TEST2  

𝑤ℎ𝑒𝑛 𝑡𝑤𝑖𝑛 = 𝑡𝑤𝑚𝑎𝑥 , 𝑉𝑖𝑛  ;  𝑡𝑤𝑖𝑛 = 𝑡𝑤𝑜𝑢𝑡1, 𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡1 ;     𝑡𝑤𝑖𝑛 = 𝑡𝑤𝑜𝑢𝑡𝑁−1, 𝑣𝑖𝑛 = 𝑉𝑜𝑢𝑡𝑁−1 

 

 

5.2 Generalization of SET Testing. 

Using only two tests to start characterizing CMOS gates restricts investigation to 

only two planes from the whole 3D space. That is why it is possible to add more plans 

(tests) until all 3D space is covered. Applying this approach to get the worst-case pattern 

is very significant.  

After analyzing each pattern and identifying the SET sensitivity of nodes under 

test, it is possible to get all the height and width of minimum output SET to each node 

𝑉𝑜𝑢𝑡1(𝑉)  

𝑉𝑖𝑛(𝑉)  

𝑡𝑤𝑜𝑢𝑡

𝑉𝑖𝑛(𝑉)  

𝑉𝑜𝑢𝑡2(𝑉)  

𝑉𝑖𝑛(𝑉)  

𝑡𝑤𝑜𝑢𝑡

𝑉𝑖𝑛(𝑉)  

𝑉𝑜𝑢𝑡𝑁(𝑉)  

𝑉𝑖𝑛(𝑉)  

𝑡𝑤𝑜𝑢𝑡𝑁

𝑉𝑖𝑛(𝑉)  

Figure 58 Illustrative plot of Test2 (a & b) are the planes used at 1st gate. (c & d) 

planes used at 2nd gate. (e & F planes used at N gate) 
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that the investigated pattern can detect. It is essential to measure the area under the 

𝑉, 𝑇 curve of the output SET pulse detected from each node under test. The mean of these 

output SET pulses could be considered a measure of the average SET pulses that occur 

when the SET pulse strikes while this pattern is applied in the circuit. Also, the minimum 

input SET characteristic could be employed to calculate the average input SET pulse that 

can cause propagation of SET pulse to an observable output leading to a single event 

upset. The ratio is a key distinguishing factor between the average input SET pulse and 

the output SET pulse. It helps identify how much the SET pulse can increase or decrease 

after propagating in the circuit.   

5.3 Pattern Comparison  

Constructing a figure of merit is required to compare different test patterns and 

identify the worst-case candidate among them. The two factors should be unitless, as 

mentioned before. They also have to be able to quantify the SET effect in the circuit 

under test. The first factor is the pattern coverage ratio. It is very intuitive to include 

pattern coverage because it directly measures how many circuit nodes can be affected 

when a SET happens while this pattern is applied. Each pattern has a coverage ratio that 

is always less than or equal to 1. The coverage ratio is measured firstly in the flow using 

FastScan during the second iteration when each pattern is analyzed alone to know the 

detected faults given while the pattern is applied. The coverage ratio is:  

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑎𝑙𝑙 𝑛𝑒𝑡𝑠
 

The second factor should consider how much change in SET pulse while it 

propagates through circuit gates until it reaches an observable output. Therefore, one can 

define 𝛥 as the mean ratio between input and output SET pulse as follows:    

pulse 𝛥 ;  (𝛥) =
𝑚𝑒𝑎𝑛 ∫ 𝑆𝐸𝑇𝑜𝑢𝑡

 𝑚𝑒𝑎𝑛 ∫ 𝑆𝐸𝑇𝑖𝑛
=

𝑚𝑒𝑎𝑛 [ ∑  (𝑤𝑖𝑑𝑡ℎ∗ℎ𝑒𝑖𝑔ℎ𝑡)𝑜𝑢𝑡 𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 ] 

𝑚𝑒𝑎𝑛 [ ∑  (𝑤𝑖𝑑𝑡ℎ∗ℎ𝑒𝑖𝑔ℎ𝑡)𝑖𝑛𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠  ]
   

The 𝛥 expression is a direct indication of how much change occurs for SET pulse 

through circuit gates. If 𝛥 value is greater than 1, the majority of the measured SET 

pulses from each node under test until the observable outputs continuously increase. It 

also indicates that this pattern sensitizes circuit paths that enhance the SET propagated 

pulse. On the other hand, if 𝛥 is smaller than 1, it reflects that the measured pattern turns 
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on CMOS gates that resist the propagation of SET pulses and try to reduce their effect in 

the circuit. The higher the 𝛥 expression, the more critical the pattern becomes.  

Each test used contributes to a different 𝛥 value for the pattern because each test 

is independent of other tests. Therefore, adding more tests and investigating different 𝛥 

values for the patterns help differentiate more among them and make it easier to identify 

the worst-case candidate pattern. In the example of the two tests applied earlier, each 

pattern has two 𝛥 values. The worst-case pattern should always be an enormous value, 

indicating that the pattern is the least resisting of the SET propagation through effective 

CMOS gates.    

The second unitless factor is the sum of all 𝛥 values measured after each applied 

test. If we have 𝑁 𝑡𝑒𝑠𝑡𝑠 for a particular pattern, then the second unitless factor is: 

∑𝛥𝑗

𝑗=𝑁

𝑗=0

 

Finally, the expression of the figure of merit for a pattern is the coverage factor 

times the enhancement factor:  

𝑐𝑜𝑣𝑒𝑟𝑔𝑎𝑒 𝑟𝑎𝑡𝑖𝑜 ∗∑∆𝑗 

𝑗=𝑁

𝑗=0

 

Therefore, the worst-case test vector is given by: 

𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒 =  arg𝑚𝑎𝑥𝑝𝑎𝑡𝑡𝑒𝑟𝑛  { 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∗ [∑𝛥𝑗  

𝑗=𝑁

𝑗=0

]

𝑝𝑎𝑡𝑡𝑒𝑟𝑛

} 

 

In Table 7, the three most patterns with high coverage ratio, 𝛥 values, and worst-

case metric values are presented for the benchmark circuits previously analyzed in 

Chapter 4. The test vector with the most coverage percentage does not necessarily 

enhance the SET propagation; however, other patterns that achieve average coverage 

percentage show high SET propagation enhancement. The metric in the last column 

presents how patterns can be compared in terms of both coverage and SET enhancement. 

The table also shows patterns with higher coverage percentages, and his SET 

enhancement values are the best candidates to be worst-case test vectors.  
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The test vector suggested by the presented flow can be utilized for experimental 

trials to test SET pulses while applying this pattern. The same method can be applied to 

analyze the most applied vectors in combinational circuits and expect their performance 

against SET phenomena.  

Table 7  Test vectors characterization for ISCAS85 benchmarks. 

 

 

 

 

 

 

 

 

# 
 

Source 

benchmark 

No. Test 

Vectors  

Coverage Ratio of 

highest 3 patterns 

𝜟 values of highest 

3 patterns 

Worst case metric of 

highest 3 patterns 

 Pattern 

number 

Ratio Pattern 

number 

Value Pattern 

number 

Value 

1 C17 7 

Pat1 0.34 Pat5 1.2127 Pat1 0.3573 

Pat3 0.34 Pat2 1.1593 Pat6 0.3483 

Pat6 0.32 Pat6 1.0885 Pat3 0.3476 

2 C432 57 

Pat54 0.1864 Pat3 3.4738 Pat3 0.5061 

Pat3 0.1457 Pat28 3.1550 Pat35 0.3321 

Pat12 0.1383 Pat26 3.0937 Pat55 0.3292 

3 C499 93 

Pat50 0.2255 Pat62 3.6242 Pat50 0.6437 

Pat3 0.1965 Pat65 3.488 Pat3 0.5565 

Pat12 0.1907 Pat12 3.4095 Pat28 0.5513 

4 C7552 141 

Pat49 0.2033 Pat23 4.4260 Pat129 0.6446 

Pat94 0.1914 Pat134 4.2620 Pat88 0.6111 

Pat119 0.1894 Pat135 4.1533 Pat49 0.5909 



81 

 

  

Conclusion and Future Work 

In this work, a review was made for ASIC standard cell characterization flow in 

terms of input SET and automated flow to cover all possible faulty nodes in 

combinational circuits fully, and generating sensitized paths for SET faults is tested. Also, 

full use of sensitized paths and SET characterized standard cells to measure entire 

combinational circuits SET sensitivity is also presented along with a validation flow 

performing real-time simulation to validate the flow results. A new metric studying SET 

enhancement to compare different test vectors is also presented and tested. Although the 

proposed analysis focuses on combinational circuits, it can also be expanded to include 

sequential circuits by applying circuit partitioning methods. 

 Reviewing the available characterization methods showed that SET 

characterization is only performed on pessimistic cases; however, it can be applied to 

produce a SET lookup table considering different capacitive loads and different SET 

transitions. Path sensitization automation flow extracts sensitized path for all circuit 

nodes aiming to achieve full SET fault coverage in combinational circuits using a 

commercial ATPG tool. Furthermore, an implemented SET sensitivity measurement tool 

is introduced to characterize full combinational circuits, illustrating SET fault analysis 

for propagating paths and extracting the worst propagating path for each node under test. 

A full automation flow to validate the pessimistic sensitivity results is implemented to 

execute real-time simulations on Cadence virtuoso with minimal human intervention. 

The proposed sensitivity flow would help circuit designers to immune their circuits to 

SET events and guide them during lab experiments. 

To fully use the sensitivity flow, a more extensive set of SET characterized 

standard cells should be considered to obtain less pessimistic results. A liberty 

implementation to the extracted SET characteristics should be available and used while 

doing static timing analysis to study the SET robustness using the EDA tool and identify 

critical timing paths after place and route or synthesis. 
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Appendix A 

This appendix records the necessary scripts used all over this work. 

I. Perl 

Perl is a scripting language that defines an automatic script's repeated execution. 

It is derived from the IEEE 1364 Verilog HDL specification. Perl is used to generate 

custom FastScan do files to analyze each test vector independently and obtain its 

corresponding covered nets due to its application. Also, it is used to generate another 

custom FastScan do file to write down the possible paths from the node under test to 

primary outputs as described in Chapter 4.  

A. Perl script to produce a FastScan file to analyze each test vector.  

#!/usr/bin/perl 

use strict; 

use warnings; 

open (PAT_FILE, 'all.patterns') or die("Could not open  file."); 

my $setup_flag = 0; 

my @setup; 

my $count = 0; 

my $end = "end;\n"; 

my $pattern_flag = 0; 

my @pattern; 

my $pat_file_name = "patterns/my_ext_pat"; 

my $extension = ".txt"; 

my $name; 

while (my $line = <PAT_FILE>) { 

# get the setup part  

    if ( $line =~ /SETUP =/ ) { 

      $setup_flag = 1; 

      #print ("reached setup \n"); 

    } 

    if ($setup_flag == 1) { 

     push(@setup,$line); 

    if ( $line =~ /SCAN_TEST =/ ) { 

    #print ("reached SCAN_TEST\n"); 

     $setup_flag = 0; 

    } 

    } 

# get patterns  

    if ( $line =~ /pattern/ ) { 
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      $pattern_flag = 1; 

      #print ("reached pattern \n", $count); 

    } 

    if ($pattern_flag == 1) { 

     push(@pattern,$line); 

    if ($line =~ /measure/) { 

# need to erase all pattern info  

        $name = $pat_file_name . $count . $extension; 

        open(DES, '>', $name) or die $!; 

        #print($name);  

        push( @pattern, $end); 

        print ( DES @setup);     

        print ( DES @pattern); 

        @pattern = (); 

        $pattern_flag = 0; 

            $count = $count + 1; 

    } 

    } 

} 

close (PAT_FILE); 

# write tut.do  

my $dofile = "tut.do"; 

my $ext_file_name; 

my $cnt = 0; 

open(DO_FILE, '>', $dofile) or die $!; 

print( DO_FILE "set system mode atpg \n"); 

while ($cnt < $count) { 

    print( DO_FILE "set pattern source external "); 

    $ext_file_name = $pat_file_name . $cnt . $extension; 

    print( DO_FILE $ext_file_name); 

    print( DO_FILE "\n"); 

    print( DO_FILE "set fault type Transition \n"); 

    print( DO_FILE "add faults -all \n"); 

    print( DO_FILE "run \n"); 

    print( DO_FILE "report statistics > stats/$cnt.stats \n"); 

    print( DO_FILE "write fault faults/mypats.flt$cnt -replace  \n\n\n"); 

    $cnt = $cnt + 1; 

} 

print( DO_FILE "save patterns Junk_pattern_to_quit.patterns - Ascii -replace\nexit 

\n"); 

close(DO_FILE); 

exit; 

 

 



87 

 

B. Perl script to generate custom FastScan file to generate paths from fault 

under test to primary ouptuts.   

#!/usr/bin/perl 

use strict; 

use warnings; 

open(my_compare_FILE, '>', "compare_files.txt") or die $!; 

print( my_compare_FILE "pat_file \t\t flt_file \n"); 

my @pat_files   = glob("patterns/my_ext_pat*.txt"); 

my @fault_files = glob("faults/mypats.flt*");        

my $num_files = scalar @pat_files; 

my $num_files2 = scalar @pat_files; 

my $print_files = 1;  

if ($num_files != $num_files2) { 

    print "the pattern files do not match the fault files"; 

}  

if ($print_files == 1) { 

foreach my $pat_file (@pat_files) { 

    print( my_compare_FILE "$pat_file \t"); 

    print "$pat_file \n"; 

}  

foreach my $flt_file (@fault_files) { 

    print( my_compare_FILE "$flt_file \n"); 

    print "$flt_file \n"; 

}  

} 

close(my_compare_FILE); 

my @primary_outputs; 

my @nodes; 

my @observable_outputs; 

my $end_observable_outputs = 0; 

open(DO_FILE, '>', "generate_paths.do") or die $!; 

print( DO_FILE "set system mode atpg \n"); 

open( OUT_ports, '>', "my_outs.txt") or die $!; 

for (my $cnt = 0; $cnt < $num_files; $cnt = $cnt + 1) { 

    print "$cnt \n"; 

# open pattern_file + record outputs 

    open(PAT, @pat_files[$cnt]); 

    while (my $line = <PAT>) { 

        if ($line =~ /declare output bus "PO" =/ ) { 

            while ($end_observable_outputs == 0) { 

                my @temp_outputs = ( $line =~ m/"(\/[^\s]+)"/g) ; #  /N22 

                push( @primary_outputs,@temp_outputs); 

                my $size_a = scalar @primary_outputs; 
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                foreach my $flt_file (@primary_outputs) { 

                    print "$flt_file --> $line\n"; 

                }  

                if ($line =~ /end;/) { 

                    $end_observable_outputs = 1; 

                } 

                $line = <PAT> 

            } 

            $end_observable_outputs = 0; 

        }    

    } 

    close(PAT); 

    foreach my $pat_file (@primary_outputs) { 

        print( OUT_ports "$pat_file \t"); 

        print "$pat_file \n"; 

    }  

    my $size_a = scalar @primary_outputs; 

    print( OUT_ports "$size_a"); 

    print( OUT_ports "\n"); 

# open fault_file + record detected outputs 

    open(FLT, @fault_files[$cnt]); 

    while (my $line = <FLT>) {  

        if ($line =~ /0,  DS,|1,  DS,/) { 

            my @node = ($line =~ m/"(\/[^\s]+)"/g); 

            #print ("@node\n"); 

            push( @nodes,@node); 

        }    

    } 

    foreach my $net (@nodes) { 

        if ({ map { $_ => 1 } @primary_outputs }->{$net}) { 

            push( @observable_outputs,$net); 

        } 

    } 

# start filter observable outputs from nodes (nodes - observable_outputs = new_nodes) 

    my %total; 

    $total{$_} = 1 for @nodes;  

    delete $total{$_} for @observable_outputs;  

    @nodes = keys %total; 

# start  wiritng the DO file for the FASTSCAN 

    print( DO_FILE "set pattern source external @pat_files[$cnt] \n"); 

    print( DO_FILE "set fault type Transition \n"); 

    print( DO_FILE "add faults -all \nrun \n"); 

    print( DO_FILE "set_gate_report pattern 0 \n"); 

    print( DO_FILE "set_gate_level design \n"); 
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    my $l_nodes = scalar @nodes; 

    my $l_obs_outputs = scalar @observable_outputs; 

    for (my $n_cnt = 0; $n_cnt < $l_nodes; $n_cnt = $n_cnt + 1) { 

        for (my $n_outpts = 0; $n_outpts < $l_obs_outputs; $n_outpts = $n_outpts + 1) 

{ 

            my $file_ext = "pat" . $cnt . "\_from_" . @nodes[$n_cnt] . "_to_" . 

@observable_outputs[$n_outpts] . ".path"; 

            $file_ext =~ tr/\//_/; 

            print( DO_FILE "report_gates -path @nodes[$n_cnt] 

@observable_outputs[$n_outpts] > paths/$file_ext \n"); 

        } 

    } 

    print (DO_FILE "\n"); 

    close(FLT); 

    @observable_outputs=(); 

    @primary_outputs=(); 

    @nodes=(); 

} 

print( DO_FILE "save patterns Junk_pattern_to_quit.patterns - Ascii -replace\nexit 

\n"); 

close(DO_FILE); 

close(OUT_ports); 

II. MATLAB 

MATLAB analyzes the path files generated from FastScan and constructs 

directed graphs to obtain possible SET propagation paths. Also, MATLAB utilizes the 

standard cell characterization step by producing SET models. Implemented algorithms 

in MATLAB to extract possible SET propagating paths and measure SET sensitivity with 

the help of SET characterized gate models.  In addition, it is also used in producing a 

testing OCEAN script to validate the MATLAB results with real-time simulations 

performed on Cadence Virtuoso.  

i. The Top (set_charactrize)   

clear;clc; 

tic; 

%%%%%%%%%%%% Parameters  

global v_syn; v_syn = 0.1; % volt 

global t_syn; t_syn = 7.55;   % pico second 

 

%%%%%%%%%%%% Parameters not to change for SET synsitivity  

global tw_max_period; tw_max_period=300; 

global tw_min_period; tw_min_period=10; 
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global v_max; v_max=1.8; 

global v_min; v_min=v_max/20; 

  

%%%%%%%%%%%% Models directory 

global models_path; models_path = 'new'; 

 

global synth; synth = 1; 

% HDL VDD 1.8 

% NA2_3VX0 3.0 

 

%%%%%%%%%%%%  

circuit_name = string("c432"); 

if circuit_name == string("c17") 

    path_dir = pwd + "/synth_paths/c17/paths"; 

    stats_path = pwd + "/synth_paths/c17/stats"; 

    cell_map_dir = pwd + "/synth_paths/c17/syn_output/c17_cell_map.txt"; 

    input_ports = ["N1" "N2" "N3" "N6" "N7"]; 

elseif circuit_name == string("c17_DS1") 

    path_dir = pwd + "/synth_paths/c17_1_DS_only/paths"; 

    stats_path = pwd + "/synth_paths/c17_1_DS_only/stats"; 

    cell_map_dir = pwd + "/synth_paths/c17_1_DS_only/c17_cell_map.txt"; 

    input_ports = ["N1" "N2" "N3" "N6" "N7"]; 

elseif circuit_name == string("c432") 

    path_dir = pwd + "/synth_paths/c432/paths"; 

    stats_path = pwd + "/synth_paths/c432/stats"; 

    cell_map_dir = pwd + "\synth_paths\c432\syn_output\c432_cell_map_x4.txt"; 

    input_ports = ["N1" "N4" "N8" "N11" "N14" "N17" "N21" "N24" "N27" "N30" "N34" 

"N37" "N40" "N43" "N47" "N50" "N53" "N56" "N60" "N63" "N66" "N69" "N73" "N76" "N79" 

"N82" "N86" "N89" "N92" "N95" "N99" "N102" "N105" "N108" "N112" "N115"]; 

else 

    path_dir = pwd + "/synth_paths/c432_dontuse/paths"; 

    stats_path = pwd + "/c432_stats"; 

    cell_map_dir = pwd + "\synth_paths\c432_dontuse\c432_cell_map_x2.txt"; 

end 

files = dir(fullfile(path_dir, '*.path')) ; 

SET_results = cell(length(files),16); 

SET_results_new = cell(length(files),16); 

non_physical_paths = 0; 

no_output_transition = 0; 

no_path_transition = 0; 

no_start_gate_in_file = 0; 

no_TO_DEBUG_FILES = 0; 

starts_from_output_pin =0; 

TO_DEBUG_FILES = []; 
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TO_DEBUG_start_gate = []; 

n_files_100x = length(files) / 100; 

current_mod = 0; 

% build cell mapping --> map cell in a netlist name to reference name 

[cell2ref] = parse_cell_map(cell_map_dir); 

fault_type = cell(length(files),2); 

% loop over all file pattern files 

for n_file = 594737:length(files)%594737  451836  283038:length(files) 

    n_file; 

    current_path_file = path_dir + "/" +files(n_file).name; 

    str=split(files(n_file).name,["_from_","_to_",".path"]); 

    SET_results(n_file,1)={files(n_file).name}; 

    SET_results(n_file,2)={str{1}}; 

    SET_results(n_file,3)={str{2}}; 

    SET_results(n_file,4)={str{3}}; 

    fault_type(n_file,1); 

    fault_type(n_file,1) = SET_results(n_file,1); 

    % generate propagation paths 

    if (synth == 0) 

        [prop_path_gates,status] = parse_pathfile_2(current_path_file); 

    else  

        [prop_path_gates,status,DS_type] = 

parse_pathfile_6(current_path_file,input_ports); 

    end 

    SET_results(n_file,16) = {DS_type}; 

    SET_results(n_file,11) = {status}; 

    if (isempty(prop_path_gates)) 

        switch(status) 

            case 'no_gates' 

                non_physical_paths = non_physical_paths +1; 

            case 'no_output_transition' 

                no_output_transition = no_output_transition +1; 

            case 'no_path_transition' 

                no_path_transition = no_path_transition +1; 

            case 'it is output pin' 

                starts_from_output_pin = starts_from_output_pin +1; 

            case 'no_start_gate in path file' 

                no_start_gate_in_file = no_start_gate_in_file + 1; 

                TO_DEBUG_start_gate = [TO_DEBUG_start_gate n_file]; 

            case 'ok' 

                no_TO_DEBUG_FILES = no_TO_DEBUG_FILES + 1; 

                TO_DEBUG_FILES = [TO_DEBUG_FILES n_file]; 

        end 

        continue; 
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    end  

    %%% transform gates to one model  

    dut_cells = cell(size(prop_path_gates,1),size(prop_path_gates,2)); 

        dut_cells = {}; 

        for path = 1 : size(prop_path_gates,1)  

            emptyCells = cellfun(@isempty,prop_path_gates(path,:)); 

%             prop_path_gates(emptyCells)=[]; 

            for i=1:(length(prop_path_gates(path,:))-sum(emptyCells)) 

                %char(prop_path_gates(path,i)); 

                dut_cells{path,i} = cell2ref(char(prop_path_gates(path,i))); 

            end 

        end 

    if (length(dut_cells) ~=0 ) 

        [SET_results, SET_results_new] = 

measure_synsitivity(SET_results,SET_results_new,n_file,dut_cells); 

    end 

    % display progress  

     new_mod = floor(n_file./n_files_100x); 

     if (new_mod > current_mod) 

         current_mod = new_mod; 

         disp( ['completed ',num2str(current_mod),'% files']) 

     end 

end  

disp( ['there are ',num2str(non_physical_paths),' files that have no gates in 

files']) 

disp( ['there are ',num2str(no_output_transition),' files that have 

no_output_transition']) 

disp( ['there are ',num2str(no_path_transition),' files that have 

no_path_transition']) 

disp( ['there are ',num2str(no_TO_DEBUG_FILES),' files that have of status while no 

paths exist']) 

disp( ['there are ',num2str(no_start_gate_in_file),' files that have no mentioned 

start exist']) 

real_paths = -(non_physical_paths +no_output_transition + no_path_transition + 

no_TO_DEBUG_FILES + no_start_gate_in_file) + size(SET_results,1); 

real_paths_percent = 100 * (1 - (non_physical_paths +no_output_transition + 

no_path_transition) / size(SET_results,1)); 

SET_results(TO_DEBUG_FILES,:) = []; 

SET_results_new(TO_DEBUG_FILES,:) = []; 

% filter out (no gates + no_output_transition + no_path_transition) 

SET_results_real = SET_results(find(string(SET_results(:,11)) == 'ok'),:); 

 

%% Analyze the number of faults  

% Number of Detected faults after removing outputs in all. Faults should 
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% equal these DS_faults of received files.  

DS_faults = unique(string(SET_results(:,3))); 

DS_faults_that_ok = unique(string(SET_results_real(:,3))); 

%% adjust 'SET_results_new' for all values in graph  

SET_results_new(:,1:4) = SET_results(:,1:4); 

SET_results_new(:,15) = SET_results(:,11); 

SET_results_new(:,16) = SET_results(:,16); 

SET_results_real_new = SET_results_new(find(string(SET_results_new(:,15)) == 

'ok'),:); 

paths_with_absolute_immune_to_technology = 

SET_results_real_new(find(cell2mat(SET_results_real_new(:,12)) > 150),:); 

paths_not_immune_to_technology = 

SET_results_real_new(find(cell2mat(SET_results_real_new(:,6)) > 1.3),:); 

save("c432") 
 

 

ii. Parse path file (parse_pathfile_6) 

function [prop_path_gates,status,fault_type_invistigated] = 

parse_pathfile_6(pathfile_dir,input_ports) 

    str=split(pathfile_dir,["_from__","_to_",".path"]); 

    start_gate_port = {str{2}}; 

    idx = ismember(input_ports,start_gate_port); 

    idx = sum(idx); 

    not_include_first_gate = 0; 

    starts_from_input_pin = 0; 

    start_gate_port = char(start_gate_port); 

    if (idx == 0) 

        if (start_gate_port(end) == 'Q') 

           not_include_first_gate = 1; 

        elseif (regexp(start_gate_port(end),"[ABCD]") == 1) 

            starts_from_input_pin =1 ; 

        end 

        start_gate_port = start_gate_port(1:end-2); 

    end 

    % 1st open for file  

    status = 'ok'; 

    gate2num = containers.Map('KeyType','char','ValueType','double'); 

    num2gate = containers.Map('KeyType','double','ValueType','char'); 

    collect_parent = []; 

    collect_child = []; 

    collect_transition = []; % starts from 0 --> means start from 1 to 0 -- DS1 --  

                       % while starts from 1 --> means start from 0 to 1 -- DS0 

    PI_flag = 0; 
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    remove_primary_input_node = 0; 

    first_gate = 0; 

    primary_output = 0; 

    no_path_exists = 0; 

     

    % start parsing 

    fid = fopen(pathfile_dir); 

    my_line =  fgetl(fid); 

    while ischar(my_line) 

        % Search for the input of the gate 

        match_IN = regexp(my_line,'//  /(\w*)\s+(\w*)','tokens'); 

        if (~isempty(match_IN)) 

            % get current parent gate name + value 

            gate = string(match_IN{1}(1,1)); 

            type = string(match_IN{1}(1,2)); 

            [gate2num,num2gate,parent_idx] = 

return_gate_id(gate2num,num2gate,gate); 

            if (isempty(collect_child) && PI_flag) 

                collect_parent=[1]; 

                collect_child=[parent_idx]; 

                PI_flag = 0; 

                first_gate = parent_idx; 

            elseif (isempty(collect_child)) 

                first_gate = parent_idx; 

            end 

            if (type == "primary_input") 

                PI_flag = 1; 

                remove_primary_input_node = 1; 

            end 

            if (type == "primary_output") 

                primary_output = parent_idx; 

            end 

        end  

        %%% parse the nodes after ("primary_input") 

        [primary_match_OUT, port_output_nodes] = regexp(my_line,'O  \(\d*-

\d*\)  ','match','split'); 

         if (PI_flag && ~isempty(primary_match_OUT)) 

            PI_flag = 0; 

            tokens = 

regexp(string(port_output_nodes(2)),'/(\w+)/[ABCDEF]\d*','tokens'); 

            child_v = zeros(1,length(tokens)); 

            for i=1:length(tokens) 

                [gate2num,num2gate,child_v(i)] = 

return_gate_id(gate2num,num2gate,string(tokens(i))); 
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            end 

            parent_v = ones(1,length(tokens)) * parent_idx; 

            collect_parent = [collect_parent parent_v]; 

            collect_child = [collect_child child_v]; 

            [primary_match_OUT, port_output_nodes] = regexp(my_line,'\(\d*-

\d*\)','match','split'); 

            if (primary_match_OUT == "(000-111)") 

                my_transition = ones(1,length(child_v)); 

                collect_transition = [collect_transition my_transition]; 

            elseif (primary_match_OUT == "(111-000)") 

                my_transition = zeros(1,length(child_v)); 

                collect_transition = [collect_transition my_transition]; 

            end 

         end 

          

        %%% parse the line  

        [match_OUT, output_nodes] = regexp(my_line,'//      Q      O  \((000-

111|111-000)\)  ','match','split'); 

        if (~isempty(match_OUT)) 

            output_nodes(1)=[]; 

            tokens = regexp(string(output_nodes(1)),'/(\w+)/[ABCDEF]\d*','tokens'); 

            tokens2 = regexp(string(output_nodes(1)),'/N(\w+)','tokens'); 

            if (length(tokens2) > 0) 

                for i=1:length(tokens2) 

                    tokens2(i) = {"N" + string(tokens2(i))}; 

                end 

                tokens = [tokens tokens2];  

                tokens2 = {}; 

            end 

            if (length(tokens) == 0 ) 

                tokens = regexp(string(output_nodes(1)),'/(\w+)','tokens'); 

            end 

            child_v = zeros(1,length(tokens)); 

            for i=1:length(tokens) 

                [gate2num,num2gate,child_v(i)] = 

return_gate_id(gate2num,num2gate,string(tokens(i))); 

            end 

            parent_v = ones(1,length(tokens)) * parent_idx; 

            collect_parent = [collect_parent parent_v]; 

            collect_child = [collect_child child_v]; 

            [primary_match_OUT, port_output_nodes] = regexp(my_line,'\(\d*-

\d*\)','match','split'); 

            if (primary_match_OUT == "(000-111)") 

                my_transition = ones(1,length(child_v)); 
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                collect_transition = [collect_transition my_transition]; 

            elseif (primary_match_OUT == "(111-000)") 

                my_transition = zeros(1,length(child_v)); 

                collect_transition = [collect_transition my_transition]; 

            end 

        end 

        % get the number of gates 

        tokens = regexp(string(output_nodes(1)),'//  Number gates in trace = 

(\d+)\.','tokens'); 

        if( ~isempty(tokens) && str2double(string(tokens(1))) == 0) 

            display('no path exists'); 

            no_path_exists = 1; 

        end 

        my_line = fgetl(fid); 

    end 

    fclose(fid); 

    if (no_path_exists) 

        prop_path_gates = []; 

        status = 'no_gates'; 

        fault_type_invistigated='';  

        return; 

    end 

    if (length(collect_parent) ~= length(collect_child)) 

        error('nodes are not matched correctly'); 

    end 

    graph = digraph(collect_parent, collect_child); 

    primary_output; 

    first_gate; 

    % find if the output point has a transiotion (000-111) or (111-000) and 

reported in graph ? 

    if (~(findnode(graph,primary_output))) 

        prop_path_gates = []; 

        status = 'no_output_transition'; 

        fault_type_invistigated='';  

        return; 

    end 

    check_if_key_exists = isKey(gate2num,start_gate_port); 

    if (check_if_key_exists == 0) 

        prop_path_gates = []; 

        status = 'no_start_gate in path file'; 

         fault_type_invistigated='';  

        return; 

    end 

    first_gate = gate2num(start_gate_port); 
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    if (remove_primary_input_node) 

        idx = ismember(input_ports,start_gate_port); 

        idx = sum(idx); 

        if (idx == 0) 

            remove_primary_input_node = 0; 

        end 

    end 

    %% 

    % find if there is a path existing  

    %plot(graph); 

    short_path = shortestpath(graph, first_gate, primary_output); 

 

    if (~isempty(short_path)) 

        % get all paths from first_gate to primary_output 

        pth=pathof(graph,first_gate,primary_output); 

     

        prop_path_gates = cell(length(pth),1);  

        for i = 1 : length(pth) 

            my_path = cell2mat(pth(i)); 

            %% TODO remove path when primary input   

            collect_parent; 

            collect_child; 

            collect_transition; 

            if (remove_primary_input_node == 1) 

               for j = 2 : length(my_path)-1 % to remove the (primary input [1] + 

primary output [end]) from the path 

                    prop_path_gates(i,j-1) = {num2gate(my_path(j))}; 

                end 

            else  

               for j = 1 : length(my_path)-1 % to remove the (primary output [end]) 

from the path 

                    prop_path_gates(i,j) = {num2gate(my_path(j))}; 

               end 

            end 

     

        end 

    else 

        status = 'no_path_transition'; 

        prop_path_gates = {}; 

    end 

    if (size(prop_path_gates,1) == 0) 

    end 

    if  (status == "no_path_transition") 
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        fault_type_invistigated='';  

    elseif (size(prop_path_gates,1) == 0) 

        status = 'it is output pin'; 

        fault_type_invistigated=''; 

        return; 

    else 

        if (not_include_first_gate == 1) 

            prop_path_gates = prop_path_gates(:,2:end); 

        end 

        if (not_include_first_gate || remove_primary_input_node || 

starts_from_input_pin) 

            transition_from_parent = collect_transition(find(collect_parent == 

first_gate)); 

            fault_type_invistigated =  transition_from_parent(1); 

        else 

            transition_to_child = collect_transition(find(collect_child == 

first_gate)); 

            fault_type_invistigated =  transition_to_child(1); 

        end 

    end 

    end 

    function di_graph_with_names(num2gate,collect_parent,collect_child) 

        collect_parent_name = cell(1,length(collect_parent)); 

        collect_child_name = cell(1,length(collect_child)); 

        for point = 1:length(collect_parent) 

            collect_parent_name(point) = {num2gate(collect_parent(point))}; 

            collect_child_name(point) = {num2gate(collect_child(point))}; 

        end 

        graph_name = digraph(collect_parent_name, collect_child_name); 

        plot(graph_name); 

    end 

 

iii. Measure SET sensitivity (measure_synsitivity) 

function [SET_results,SET_results_new] = 

measure_synsitivity(SET_results,SET_results_new,n_file,dut_cells) 

    global v_syn t_syn v_max v_min tw_max_period tw_min_period; 

    local_SET_results = cell(1,4); 

    % local_SET_results_new = {min v_in, tw_max_period, V_out, t_out} {v_max, min 

t_in, v_out, t_out} 

    local_SET_results_new = cell(1,8); % new one to include {test} {test2} 

    for path = 1:size(dut_cells,1) 

        %% Test1 

        found_v_min = 0; 
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        v_in = v_min; 

        [~,v_th] = charactrize_path(tw_max_period,v_in,dut_cells(path,:)); 

        % record min voltage synsitivity  

        while (found_v_min == 0) 

            [tw_out_v,v_min_out] = 

charactrize_path(tw_max_period,v_in,dut_cells(path,:)); 

            if (v_min_out > v_max/2) 

                found_v_min = 1; 

                break; 

            end 

            v_in = v_syn + v_in; 

            if (v_in > v_max) 

                found_v_min = 1; 

                break; 

            end 

        end 

        local_SET_results(path,1) = {v_in};local_SET_results(path,2) = {v_min_out}; 

        local_SET_results_new(path,1) = {v_in} ;     local_SET_results_new(path,2) 

= {tw_max_period}; 

        local_SET_results_new(path,3) = {v_min_out} ;local_SET_results_new(path,4) 

= {tw_out_v};  

        %% Test2 

        % record min pulse width  

        found_t_min = 0; 

        tw_in = tw_min_period; 

        [t_th,~] = charactrize_path(tw_in,v_max,dut_cells(path,:)); 

        while (found_t_min == 0) 

            [tw_min_out,v_out_t] = charactrize_path(tw_in,v_max,dut_cells(path,:)); 

            if ((tw_min_out > tw_max_period/4) && (v_out_t > v_max/2)) 

                found_t_min = 1; 

                break; 

            end 

            tw_in = t_syn + tw_in; 

            if (tw_in > tw_max_period) 

                found_t_min = 1; 

                break; 

            end 

        end 

        local_SET_results(path,3) = {tw_in};local_SET_results(path,4) = 

{tw_min_out}; 

        local_SET_results_new(path,5) = {v_max} ;  local_SET_results_new(path,6) = 

{tw_in}; 

        local_SET_results_new(path,7) = {v_out_t} ;local_SET_results_new(path,8) = 

{tw_min_out};  
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    end 

     

    %%%%%%%%%% record the v_min when large time period exists. 

    [~,v_min_index]= min(cell2mat(local_SET_results(:,1))); 

    SET_results(n_file,6 : 7) = local_SET_results(v_min_index,1:2); 

    SET_results(n_file,5)={length(dut_cells(v_min_index,:))}; 

     

    %%%%%%%%%% record the t_min when full VDD exists. 

    [~,t_min_index]= min(cell2mat(local_SET_results(:,3))); 

    SET_results(n_file,9 : 10) = local_SET_results(t_min_index,3:4); 

    SET_results(n_file,8)={length(find(~cellfun(@isempty,dut_cells(t_min_index,:)))

)}; 

    %% SET_results_new 

    [~,v_min_index]= min(cell2mat(local_SET_results(:,1))); 

    SET_results_new(n_file,5)={length(dut_cells(v_min_index,:))}; 

    SET_results_new(n_file,6 : 9) = local_SET_results_new(v_min_index,1:4); 

    [~,t_min_index]= min(cell2mat(local_SET_results(:,3))); 

    SET_results_new(n_file,11 : 14) = local_SET_results_new(t_min_index,5:8); 

    SET_results_new(n_file,10)={length(find(~cellfun(@isempty,dut_cells(t_min_index

,:))))}; 

     

     

    end 
 

 

iv. Characterize each propagating path (characterize_path) 

function [tw_out,v_out] = charactrize_path(tw_in,v_in,dut_cells) 

    global v_syn t_syn v_max v_min tw_max_period tw_min_period models_path; 

    tw_temp = tw_in; 

        v_temp=v_in; 

        for i = 1:length(dut_cells) 

            if (isempty( dut_cells{i})) 

                continue; 

            end 

            dut_name = dut_cells{i}; 

            if (strcmp(models_path,'new')) 

                load(['./new_models/',dut_name,'_model.mat']); 

            else  

                load(['./models/',dut_name,'_model.mat']); 

            end 

            if (strcmp(dut_name,'NA2_3VX0')) % (dut_name == 'NA2_3VX0') 

                v_out = v_model(tw_temp,v_temp); 
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                tw_out = tw_model(tw_temp,v_temp); 

            else 

                v_out = v_model1(tw_temp,v_temp); 

                tw_out = tw_model1(tw_temp,v_temp); 

            end 

            if (v_out <= v_min) 

                v_out = v_min; 

            elseif (v_out >= v_max) 

                v_out = v_max; 

            end 

            if (tw_out <= tw_min_period) 

                tw_out = tw_min_period; 

            elseif (tw_out >= tw_max_period) 

                tw_out = tw_max_period; 

            end 

            tw_temp = tw_out; 

            v_temp=v_out; 

        end 

    end 
 

 

v. Charactrize each pattern (measure_pattern_mean_areas_test_ratios) 

function [my_patterns] = 
measure_pattern_mean_areas_test_ratios(SET_results_real_new,patterns_count,index_al
l_group) 
  
%we have two tests 1: test V height in  --  T width in 
%the idea is to get the change of areas in 1st trial and 2nd trial and the worst 
will be the max_xum :) 
%my_patterns =    {count --> should be coverage} {mean(area_in (V_in*t_in)), 
mean(area_in (V_out*t_out)), mean_A_in/mean_A_out} 
%                                                   {mean(area_in (V_in*t_in)), 
mean(area_in (V_out*t_out)), mean_A_in/mean_A_out} 
%                                                      {sum of 2 areas} {area1 / 
area2} (sum teas1_A_ratio + teas2_A_ratio) 
%              1 --> pattern0   {} 
%              2 --> pattern1   {} 
%              N --> pattern{N) {} 
  
properties_count = 10; % this variable responsible for the number of properties 
needed to compare 
my_patterns = zeros(patterns_count, properties_count); 
  
for i=1:patterns_count 
    idx_nodes_under_tests = find(index_all_group == i); 
    pat_invistigated = SET_results_real_new(idx_nodes_under_tests,:); 
  
    % delta height and width 
    area_in_t1  = cell2mat(pat_invistigated(:,6)) .* 
cell2mat(pat_invistigated(:,7)); 
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    area_out_t1 = cell2mat(pat_invistigated(:,8)) .* 
cell2mat(pat_invistigated(:,9)); 
  
    area_in_t2  = cell2mat(pat_invistigated(:,11)) .* 
cell2mat(pat_invistigated(:,12)); 
    area_out_t2 = cell2mat(pat_invistigated(:,13)) .* 
cell2mat(pat_invistigated(:,14)); 
  
    % 1 - put the count of nodes under test 
    my_patterns(i,1) = length(idx_nodes_under_tests); 
  
    % 2 - put the mean (V_in  * tin)  -t1 
    % 3 - put the mean (V_out * tout) -t1 
    % 4 - put mean_A_in/mean_A_out 
  
    % 5 - put the mean (V_in  * tin)  -t2 
    % 6 - put the mean (V_out * tout) -t2 
    % 7 - put mean_A_in/mean_A_out -t2 
    my_patterns(i,2) = mean(area_in_t1); 
    my_patterns(i,3) = mean(area_out_t1); 
    my_patterns(i,4) = my_patterns(i,3)/my_patterns(i,2); 
  
    my_patterns(i,5) = mean(area_in_t2); 
    my_patterns(i,6) = mean(area_out_t2); 
    my_patterns(i,7) = my_patterns(i,6)/my_patterns(i,5); 
  
    % 8 - put the sum of 2 area -out 
    % 9 -  put the area ratio b/w area1/area2 -out 
    % 10 - put the sum of 2 area ratios 
    my_patterns(i,8) =  my_patterns(i,3) +  my_patterns(i,5); 
    my_patterns(i,9) =  my_patterns(i,3) / my_patterns(i,5); 
    my_patterns(i,10) =  my_patterns(i,4) +  my_patterns(i,7); 
  
end 
 
 

 

III. Ocean 

OCEAN script analyzes the benchmark after adding some edits to the benchmark 

gate netlist by changing the connection of the SET pulse source to the netlist. The primary 

output where the SET pulse upset occurs is monitored. The SET pulse characteristic at 

the output port is measured as the SET height and pulse width.  

i. Ocean Script 

sh("mkdir /home/vlsi/Desktop/wael_validation/c17/netlists") 

sh("rm -rf /home/vlsi/Desktop/wael_validation/c17/netlists/*") 

sh("mkdir /home/vlsi/Desktop/wael_validation/c17/output") 

sh("rm -rf /home/vlsi/Desktop/wael_validation/c17/output/*") 

; save a backup for the netlist  

sh("mv 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist_backup") 
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sh("cp -rf 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist_backup 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist") 

out_f = outfile( "../c17_DS1.out" "w" ) 

  

  

;-----------------------------------------------------; 

  

; copy the original netlist to a my directory - apply netlist modification - 

return it back to simulation directory \n 

sh("cp -rf 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist 

/home/vlsi/Desktop/wael_validation/c17/netlists/netlist_pat1_from__g73__4319

_A_to__N23") 

sh("sed -i --null-data 's/Pulse_1 (n_1 0 control_SET)/Pulse_1 (n_1 0 

control_SET)/g' 

/home/vlsi/Desktop/wael_validation/c17/netlists/netlist_pat1_from__g73__4319

_A_to__N23") 

sh("cp -rf 

/home/vlsi/Desktop/wael_validation/c17/netlists/netlist_pat1_from__g73__4319

_A_to__N23 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist") 

;; row : 4 ;;;; test : 1 ;; 

  

simulator( 'spectre ) 

design(  "/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schemati

c/netlist/netlist") 

resultsDir( "/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schem

atic" ) 

modelFile( 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/xh018.scs" "tm") 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/param.scs" "3s") 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/config.scs" "default") 

) 

;;;;;;;;;;;;; variables in ADEL ;;;;;;;;;;;;  

;;;; these variables are equal --> A = set_height 

desVar(   "A" 1.015 ) 

desVar(   "set_height" 1.015 ) 

;;;; these variables are equal --> tw_in = set_width 

desVar(   "tw_in" 300p  ) 

desVar(   "set_width" 300p  ) 

;;;; these two are equal for SET_PULSE --> start_from_0_or_1 = ref   

desVar(   "start_from_0_or_1" 1.8 ) 

desVar(   "ref" 1.8 ) 

;;;;;;;;;;;;; variables to stimuli ;;;;;;;;;;;  

desVar(   "t_pulse" 50p  ) 

desVar(   "t_period" 2000p ) 

;;;;;;;;;;;;; variables to stimuli ;;;;;;;;;;;  

desVar(   "t0" 300p  ) 

  

stimulusFile( ?xlate nil 
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"/home/vlsi/Desktop/wael_validation/c17/stimulus/pat_1_graphical_stimuli.scs

") 

analysis('tran ?stop "2000p"  ) 

envOption( 

    'analysisOrder  list("tran") 

) 

; first run 

temp( 27 ) 

run() 

selectResult( 'tran ) 

plot(getData("n_N23")) 

out=outfile("/home/vlsi/Desktop/wael_validation/c17/output/pat1_from__g73__4

319_A_to__N23_test1_outputs_waveform.out" "w" ) 

ocnPrint(?output out ?numberNotation 'engineering VT("n_N23")) 

inv_wave = getData( "n_N23") 

fprintf(out_f " 1 4 1 ") 

;; row : 4 ;;;; test : 2 ;; 

  

simulator( 'spectre ) 

design(  "/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schemati

c/netlist/netlist") 

resultsDir( "/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schem

atic" ) 

modelFile( 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/xh018.scs" "tm") 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/param.scs" "3s") 

    

'("/home/vlsi/Desktop/xh018_xenv_dir/XKIT_ROOT_DIR/xh018/cadence/v8_1/spectr

e/v8_1_2/lpmos/config.scs" "default") 

) 

;;;;;;;;;;;;; variables in ADEL ;;;;;;;;;;;;  

;;;; these variables are equal --> A = set_height 

desVar(   "A" 1.8 ) 

desVar(   "set_height" 1.8 ) 

;;;; these variables are equal --> tw_in = set_width 

desVar(   "tw_in" 85p  ) 

desVar(   "set_width" 85p  ) 

;;;; these two are equal for SET_PULSE --> start_from_0_or_1 = ref   

desVar(   "start_from_0_or_1" 1.8 ) 

desVar(   "ref" 1.8 ) 

;;;;;;;;;;;;; variables to stimuli ;;;;;;;;;;;  

desVar(   "t_pulse" 50p  ) 

desVar(   "t_period" 2000p ) 

;;;;;;;;;;;;; variables to stimuli ;;;;;;;;;;;  

desVar(   "t0" 300p  ) 

  

stimulusFile( ?xlate nil 

"/home/vlsi/Desktop/wael_validation/c17/stimulus/pat_1_graphical_stimuli.scs

") 

analysis('tran ?stop "2000p"  ) 

envOption( 

    'analysisOrder  list("tran") 

) 

; first run 

temp( 27 ) 

run() 

selectResult( 'tran ) 

plot(getData("n_N23")) 
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out=outfile("/home/vlsi/Desktop/wael_validation/c17/output/pat1_from__g73__4

319_A_to__N23_test2_outputs_waveform.out" "w" ) 

ocnPrint(?output out ?numberNotation 'engineering VT("n_N23")) 

inv_wave = getData( "n_N23") 

fprintf(out_f " 1 4 2 ") 

sh("cp -rf 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist_backup 

/home/vlsi/Desktop/wael_validation/simulation/c17/spectre/schematic/netlist/

netlist") 

  

;-----------------------------------------------------; 
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