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Abstract 

The human microbiome is a main contributor for the health and welfare of the 

human body. It is affected by many factors like diet and hygiene. These factors differ between 

different populations. Testing the population-microbiome differences using healthy samples from 

different countries is the first objective of this study. This data was then used in training and testing 

machine learning models (Random Forest and L2-logistic Regression Classifiers) for the 

prediction of the geographical location based on the microbiome data. Random Forest Classifier 

had the highest accuracy. Feature importance analysis showed that the data for Proteobacteria, 

Actinobacteria, and Bacteroidetes improved the Random Forest Classifier’s performance. The 

second objective of the study was to compare the gut microbiome from healthy individuals and 

Coronavirus disease of 2019 (COVID-19) patients from China. COVID-19 caused lots of deaths 

besides an economic crisis. According to the World Health Organization (WHO), it has caused 

more than 227 million cases and more than 4.5 million deaths till September 16th, 2021. It was 

caused by severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) which can enter the 

cells through the receptor for Angiotensin-converting enzyme 2 (ACE2). Proteobacteria, 

Actinobacteria, and Bacteroidetes had the most distinguished patterns between healthy and patient 

samples. Proteobacteria contain many human pathogens. Actinobacteria can cause many 

respiratory disorders. Bacteroidetes can regulate the expression of ACE2 receptors in mice. In 

conclusion, there was a correlation between being infected with SARS-CoV-2 and modifications 

in the gut microbiome.  
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Chapter 1: Literature Review & Study Objectives 

1.1. The microbiome  

Metagenomics is the unbiased study of the genomes in a community within an 

ecosystem. Two definitions are used interchangeably in the study of microbial communities. They 

are the microbiota and microbiome. The microbiota is a term describing the microbial communities 

in a population, while the microbiome is combined genetic material of the microbiota of a specific 

habitat. Meta-transcriptomics study the expressed genes by the members of this community. 

Metabolomics determines the byproducts released in the environment by the members of this 

community as well as its host, in case of host-associated microbial communities, to give the whole 

picture (Aguiar-Pulido et al., 2016).  

The gastrointestinal tract in the human body has a vast and diverse community of 

microbes that can get to 100 trillion microorganisms (Thursby & Juge, 2017). The colon's bacterial 

cell density is estimated at 1011 to 1012 for each milliliter (Ley et al., 2006). The human genome 

has approximately 23,000 genes, while the gut microbiome has more than 3 million genes that 

encode thousands of proteins and metabolites (Valdes et al., 2018). The gut microbiome and its 

host have many intertwined interactions that result in the stability of a highly diverse and resilient 

community. This community has a symbiotic relationship with that host, transforming it into a 

"superaorganism" (Gill et al., 2006; Luckey, 1972). This superorganism can perform metabolic 

and immune functions (Thursby & Juge, 2017). Bacteria play a vital role in the regulation of 

digestion. The commensal bacteria are essential in synthesizing, extracting, and absorbing many 

nutrients and metabolites like bile acids, amino acids, vitamins, lipids, and short-chain fatty acids 

(SCFAs) (Rinninella et al., 2019). The gut microbiota prevents the invasion of bacteria by 

maintaining the integrity of the intestinal epithelium (Khosravi & Mazmanian, 2013). This 

microbiota enhances the host's immunity against pathogenic bacteria by inhibiting their growth, 

producing bacteriocins, and consuming available nutrients. They inhibit the colonization of the 

pathogenic bacteria through lots of competition processes: pH modification, nutrient metabolism, 

effects on the pathways for cell signaling, in addition to antimicrobial peptide secretion (Rinninella 

et al., 2019). They regulate the homeostasis, development, and function of both adaptive and innate 

immunity (Brestoff & Artis, 2013).  

The microbiota in the gut includes many types of microorganisms, including yeast, 

and bacteria. Fungi and viruses in the GI tract constitute the gut mycobiome and the gut virome, 

respectively (Berg Miller et al., 2012; Dollive et al., 2012; Lopetuso et al., 2016). The different 

species are classified taxonomically into phyla, and each phylum is divided into classes. Each class 

is divided into orders, an order is divided into families, a family is divided into genera, and finally, 

a genus is composed of different species. A few phyla of bacteria are identified, corresponding to 

more than 160 species (Laterza et al., 2016). Several microbial phyla are dominant in the gut 

microbiota, like Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, and 

Fusobacteria. Firmicutes and Bacteroidetes represent about 90% of the microbiota in the gut 

(Arumugam et al., 2011). Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria are the 

predominant four major phyla (Khanna & Tosh, 2014). Bacteroidetes have two main dominant 

genera in the gut: Prevotella and Bacteroides. The Firmicutes includes more than 200 genera like 
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Bacillus, Lactobacillus, Clostridium, Ruminococcus, and Enterococcus. The genera of Clostridium 

are almost 95% of the Firmicutes phylum. Actinobacteria phylum is less abundant and is 

represented mainly through the genus of Bifidobacterium (Arumugam et al., 2011).  

The gut microbiota can differ according to the anatomical region in the intestine. 

The GI tract is divided into different regions. These regions are different in their pH and O2 tension, 

physiology, the flow rate of the digested matter, and the host secretions (Flint et al., 2012). Small 

and large intestines are different in their habitability for the microbiota. The small intestine has 

high concentrations of bile and short transit times (3 – 5 h). At the same time, the large intestine 

has a slower flow rate and neutral to slightly acidic pH. The gut microbes' population displays 

what is called a rostrocaudal gradient; the stomach and duodenum have about 10-103 microbes per 

gram, the jejunum and ileum have 104 – 107 microbes per gram, and the colon has 1011 - 1012 

microbes per gram (Neish, 2009; O’Hara & Shanahan, 2006). Therefore, the large intestine has 

the largest microbial community, with the obligate anaerobes as the dominant microbiota (Flint et 

al., 2012). 

1.2. Microbiome-based population studies 

The study of healthy human microbiome is as important as the study of the 

microbiome associated with diseases. Many studies are investigating the links between the 

microbiome and disease. Enormous efforts are being made to understand how the microbiome 

changes with genetics, host lifestyle, age, medication, nutrition, and environment (Blaser et al., 

2008; Blekhman et al., 2015; Zhan Gao et al., 2008; Turnbaugh et al., 2006; A Zhernakova et al., 

2016). The study of the microbiome of different human populations is important. Variations in the 

microbiome based on the population depends on many factors. One example is the population of 

Netherlands, where people consume less antibiotics and more dairy products in comparison to 

other populations from Europe (Alexandra Zhernakova et al., 2016). Therefore, the population- 

based microbiome profile from healthy individuals should be considered for the identification of 

the different geographical and ethnic microbiome biomarkers, before studying other factors 

associated with a particular disease (Gupta et al., 2017). The geographical location gives a plethora 

of environmental, genetic, and cultural factors to which degree the microbiome is shaped by each 

of these factors remains to be explored.  

1.3. COVID-19 

The COVID-19 pandemic has changed the lives of most people around the world. 

It has caused many losses in human lives besides an economic crisis. According to the WHO, more 

than 227 million cases of COVID-19 were recorded and resulted in more than 4.5 million deaths 

till September 16th of this year, 2021. It is caused by the severe acute respiratory syndrome 

coronavirus - 2 (SARS-CoV-2). Although many people have been infected by the virus, most cases 

are mild. Severe cases can result in hospitalization, respiratory system failure, or death (Onder et 

al., 2020). In the early reports from Wuhan, there were symptoms in the gastrointestinal tract in 

2% to 10% of the patients with COVID-19, like diarrhea, but in a meta-analysis, results showed 

that the GI symptoms were in at least 20% of the COVID-19 patients (Chen et al., 2020; Cheung 

et al., 2020; Huang et al., 2020; Liang et al., 2020). It is mainly transmitted through either 

respiratory droplets or aerosols from the breath of the infected individuals and inhaled by another 
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person. Other ways of transmission were reported, like fecal-oral transmission (Gallardo-Escárate 

et al., 2021; Y. Xu et al., 2020) and transmission by fomite (Sia et al., 2020). Many studies have 

found that SARS-CoV-2 can be detected in the stool samples and anal swabs in about 50% of the 

COVID-19 patients, which indicates that virus replication and activity can occur out of the 

pulmonary system (Wölfel et al., 2020; Y. Xu et al., 2020).  

The bacteria in the gut can control the infectivity of human viruses that can be 

transmitted by fomite through improving their thermostability (Berger et al., 2017), improving the 

environmental stability (Robinson et al., 2014), in addition to encouraging the diversity and fitness 

of viruses (Erickson et al., 2018). The interaction between a virus and a bacterium was observed 

in infections in the upper respiratory tract like influenza A (Tashiro et al., 1987) and the infection 

by oral human papillomavirus (Pavlova et al., 2019). In the human microbiome, prevalent bacteria 

were found to alter the human glycocalyx to control the capability of binding SARS-CoV-2 to the 

host cells (Martino et al., 2020).  

Angiotensin-converting enzyme 2 (ACE2) receptor is highly expressed in the 

respiratory system and the GI tract (Shang et al., 2020; J. Wang et al., 2020; Xiao et al., 2020). 

SARS-CoV-2 enters the host through (ACE2) receptor (Shang et al., 2020). It is important in 

controlling both the inflammation and microbial ecology in the gut (Hashimoto et al., 2012). The 

microbiota in the gut is dynamic. It is regulated by infection with viruses to allow for stimulatory 

or suppressive response (N. Li et al., 2019). Many studies have shown that viral infections in the 

respiratory system can be associated with changes in the gut microbiota, which results in 

predisposing patients to infections with bacteria (Hanada et al., 2018; Yildiz et al., 2018). 

Alterations in the phyla of Bacteroidetes and Firmicutes were found to be associated with 

comorbidities associated with severe cases of COVID-19 (Emoto et al., 2016; Ley et al., 2006; 

Turnbaugh et al., 2006; Yang et al., 2015), and both phyla were found to regulate ACE2 expression 

in mice (Geva-Zatorsky et al., 2017). A study from Hong Kong (Zuo et al., 2020) concluded that 

approaches that aim at altering the microbial communities in the intestine might reduce the severity 

of COVID-19. They found that there were constant alterations in the fecal microbiome during the 

hospitalization time. In addition, they found these alterations were related to the levels of SARS-

CoV-2 in the fecal samples and the disease's severity. 

1.4. Bioinformatics 

In the last two decades, technology advanced at a swift rate in the biological 

sciences. The tremendous and quick advances in DNA sequencing significantly impacted 

biological research. This led to many applications in medicine, plant science and agriculture, and 

environmental sciences. One of the significant fields impacted by these advances in microbiology. 

The classical way of researching microbiology was to isolate the samples and culture the microbial 

species from the sample. This approach was unsuccessful with most of the samples as many 

species, primarily anaerobic species, cannot be grown in the lab (Bradshaw et al., 1996). The 

advances in DNA sequencing and the associated advancements in bioinformatics software to 

analyze these data lead to a significant change in this approach to microbiology. Now, there is no 

need to culture the microbes in the lab to do the analysis or taxonomic analysis. Using Marker 

genes like the internal-transcribed-spacer regions in fungi, 16S rRNA genes for bacteria and 



11 | Page 
 

archaea, and 18S rRNA genes in eukaryotes, the microbiota can be taxonomically and 

phylogenetically profiled with varying degrees. The integration of other types of data such as 

metaproteome (Verberkmoes et al., 2009), meta-transcriptome (Barr et al., 2018), and metabolic 

profiles (Kapono et al., 2018) will increase and enhance the specificity of the analysis.  

The study and 

characterization of the microbiome are done 

through targeted sequencing of conserved 

genes like the hypervariable regions in the 

16S ribosomal RNA gene (Huse et al., 2012) 

figure (1). 16S rRNA sequencing is one of 

the most used housekeeping genetic markers 

to study the microbiome. It is present in 

almost all bacterial species, existing as a 

multigene family or operons. Its function has 

not changed over time. It is large enough to 

be used in bioinformatics analysis (Patel, 

2001). Between 1980 and now, there has 

been an explosion in the number of 

recognized taxa. This explosion directly 

relates to how easily 16S rRNA sequencing 

can be performed compared to manipulating 

DNA-DNA hybridization experiments. 

DNA-DNA hybridization is considered the 

golden standard for identifying and 

proposing a new species and confidently 

assigning it to a suitable taxonomic unit 

(Janda & Abbott, 2007). The improvement 

and the costs are getting lower over the years 

for sequencing nucleic acids. These are two 

main reasons for the spread and utilization of 

sequencing-based analysis. 

Two standard classification methods are used for sequences from a microbial 

community: operational taxonomic unit (OTU) and Amplicon sequencing variant (ASV). 

Clustering with OTU was proposed based on that related or similar organisms have similar gene 

sequences that can be targeted. Sequencing errors are rare and may not have any contributions or 

just trivial contributions to the consensus sequence of these clusters (Blaxter et al., 2005). There 

are three main methods to generate OTUs from the data. Clusters are usually generated using 97% 

sequence identity as similarity threshold. This may lead to grouping many similar species into the 

same OTU, and so their individuality may be lost. Some researchers tried to use higher similarity 

thresholds like 100% to lower the risk of diversity loss due to clustering, but this created an 

increased risk of assigning new species to sequencing errors and so get false diversity (Kunin et 

al., 2010). OTU clustering has the advantage of minimizing the influence of the sequencing errors 

Figure 1: 16S rRNA with the hypervariable regions. Reprinted 
with permission of the American Thoracic Society. Copyright © 
2021 American Thoracic Society. All rights reserved. Cite: Lijia 
Cui, Alison Morris, Laurence Huang, James M. Beck, Homer L. 
Twig 
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in the reads' pool through clustering the similar sequences into the abstracted consensus sequence. 

ASV determines which exact sequences were read and how many times every sequence was read. 

Then the data is combined with a model for error in the sequencing run. This would allow the 

researcher to compare similar reads and determine the probability that a given read with a specific 

frequency is not due to randomness or sequencing error (Caporaso et al., 2010).  

Many different tools and pipelines were developed to analyze metagenomic data 

(Kim et al., 2013). Many problem-solving environments allow the user to use user-friendly 

workbenches and develop analysis pipelines that are flexible and easy from available software 

tools (Gallopoulos et al., 1994). Some of these platforms are Galaxy (Goecks et al., 2010), Mothur 

(Schloss et al., 2009), Pathoscope (Hong et al., 2014), and Quantitative Insights Into Microbial 

Ecology (QIIME) (Caporaso et al., 2010). Galaxy provides the user with a framework for genomic 

analysis and the needed tools and file formats for various steps in the pipeline. It allows the remote 

execution of jobs, halting and repeating individual steps, and permitting intermediate processes 

and results' inspection. Galaxy's main disadvantages are the high computational and storage 

requirements. Mothur supplies the user with a functionally accessible and extensible package 

through a domain-specific language (Aguiar-Pulido et al., 2016). Pathoscope gives the user a 

specialized pipeline to identify bacterial strains from the raw sequences and generate statistics like 

percentages, protein products, and gene locations. It is open-source and able to accommodate any 

user, tool, or developer. QIIME allows the user to integrate scripts to analyze raw microbial DNA 

samples, for example, taxonomic classification using marker genes like 16S rRNA. QIIME also 

enables the construction of flexible pipelines. 

The platform used in this study is QIIME2. QIIME2 is a system developed with a 

plugin architecture, and it allows the contributed functionality by a third party (Bolyen et al., 2019). 

QIIME2 provides a large set of plugins ranging from the latest generation of tools for sequence 

quality control like DADA2 (Callahan et al., 2016) and Deblur (Amir et al., 2017). In addition to 

plugins for taxonomic assignment (Bokulich, Kaehler, et al., 2018) and phylogenetic insertion 

(Janssen et al., 2018). Recently, there were new plugin releases that provide support for 

metabolomics analysis and shotgun metagenomics data analysis like q2-cscs (Sedio et al., 2018), 

q2-shogun (Hillmann et al., 2018), q2-metaphlan2 (Truong et al., 2015), q2-metabolomics (M. 

Wang et al., 2016), and q2-picrust2 (Langille et al., 2013). In addition, QIIME2 has plugins for 

machine learning (Bokulich, Dillon, et al., 2018). QIIME2 has excellent potential for becoming a 

multidimensional platform for data science and being easily and rapidly used to analyze different 

microbiome features (Bolyen et al., 2019). QIIME2 also provides interactive visualization tools. 

The visualization results from the pipeline can be viewed using (https://view.qiime2.org). It is a 

free and unique service that allows different users to share and manipulate the results securely 

without installing QIIME2 (Bolyen et al., 2019). 

CuratedMetagenomicData R package (Pasolli et al., 2017) is the source of most of 

the data in the study. The CuratedMetagenomicData provides standardized and curated human 

microbiome data. It is distributed through the Bioconductor ExperimentHub platform. It allows 

the user to access human microbiome data that is processed uniformly. It includes the taxonomic 

abundance of bacteria, viruses, archaea, and fungi. Also, it provides the user with the metadata for 
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each sample and the metabolic functional profiles. The resources for the data are available to users 

with the very low knowledge of bioinformatics and can be integrated easily with the R 

programming environment (Team, 2020). R programming language is considered one of the 

easiest and most flexible programming languages. Therefore, CuratedMetagenomicData R 

package provides a great opportunity for clinicians, biologists, epidemiology statisticians to do 

novel analyses and develop methodologies that can integrate the results in novel ways. 

1.5. Machine learning 

Machine learning is a technology with great potential. It has been used in many 

different fields, from engineering to medicine. It has been popular in microbiome research as it 

can account for the interpersonal variations in the microbiome and the disease's ecology. Machine 

learning can be used with different types of data. The relative abundance of bacterial populations 

can be considered for each population while considering the other populations (Topçuoğlu et al., 

2020). Machine learning models enhance the research about the differences in the available data 

and allow predictions about the new data.  Machine learning models were developed to diagnose 

a variety of diseases like liver cirrhosis (Qin et al., 2014), inflammatory bowel diseases (Mossotto 

et al., 2017), type 2 diabetes (Walters et al., 2014), colorectal cancer (Baxter, Koumpouras, et al., 

2016; Baxter, Ruffin, et al., 2016; Dadkhah et al., 2019; Zackular et al., 2014; Zeller et al., 2014), 

obesity (Sze & Schloss, 2016; Walters et al., 2014), and skin cancer (Soenksen et al., 2021).  

In a recent study (Topçuoğlu et al., 2020), multiple machine learning models were 

trained on 16S rRNA sequence data to predict the presence or absence of colonic neoplasia. The 

study aimed to assess the predictive performance, the time needed for training the models, and the 

interpretability of the results to show the effects of model selection. Both the random forest model 

and the L2-logistic regression model gave the best results. The random forest model had the best 

performance but a long time for training and hard interpretability. L2-logistic regression model 

followed random forest in the performance, but it had shorter training time and better integrability.  

Logistic regression is a statistical method that learns a specific model that can 

predict the outcome of a binary variable from one or multiple response variables that are 

continuous or categorical (Hoffman, 2019). It is a type of supervised learning; it both trains and 

evaluates the models based on data input supplemented with labels to indicate the outcomes for 

the given information. There are many supervised learning approaches, including statistical 

classification and regression analysis (Marcos-Zambrano et al., 2021). Logistic regression 

classification can be used with multivariable classification problems by turning it from being a 

binary classifier into a multinomial logistic regression classifier. This can be done through 

different techniques. One technique is to divide the multi-class classification problem into many 

more minor binary classification problems, known as one-vs-rest (Rifkin & Klautau, 2004). 

Another approach is to modify the logistic regression classifier to support the classification and 

prediction of multiple class labels through using a multinomial probability distribution. 

Multinomial probability distribution allows the logistic regression classifier to define multi-class 

probabilities (Starkweather & Moske, 2011). Logistic regression was used in the research of 

bacterial vaginosis to classify and predict the microbial signatures (Beck & Foster, 2015). It was 

used in an extensive study of 300 biomarkers and the relative gene abundance from the 
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microbiomes of individuals from China. It could achieve outstanding performance and accuracy. 

This study could show that the microbiome biomarkers from the gut can distinguish abnormal 

cases from the controls with high specificity (H. Wu et al., 2018). 

Random forest is a type of ensemble learning which combines multiple classifiers 

to get better performance than using a single classifier. The simple models in the random forests 

are decision trees. It uses bootstrapping on the dataset to derive individual decision trees. The final 

result is the majority voting of the single decision trees (Marcos-Zambrano et al., 2021). It has 

been used to classify pediatric patients with Crohn's disease (CD) (Douglas et al., 2018). It was 

used to find biomarkers (Koohi-Moghadam et al., 2019; Thomas et al., 2019; Wirbel et al., 2019) 

and analyze host-microbial signatures to detect the contamination of feces from environmental 

samples (Roguet et al., 2018). 

Determining the essential features in the datasets used in machine learning is an 

important step for analyzing the data and increasing the model's accuracy. Feature selection uses 

correlation analysis to analyze the different features in the data and determine the best feature that 

should be used to increase the accuracy of the model. Random forest classifier has an attribute 

called feature importance that allows for analyzing the importance for each column or variable in 

the dataset. It measures the information gain or impurity for each node in a decision tree. As the 

random forest model produces multiple decision trees, it calculates the average information gain 

or impurity over all the trees in the model based on each variable. The most important feature is 

the one with the highest decrease in impurity. However, this method has advantages like the speed 

of computation. It has some disadvantages, like preferring numerical features over categorical 

features. In addition to that, it may neglect one feature over the other in the case of correlated data 

(Pedregosa et al., 2011). There are different methods for determining feature importance like 

Permutation importance and calculating feature importance using Shapley values. Permutation 

importance shuffles each feature in a dataset randomly then computes the performance of the 

model. Then the features that improve the performance of the models are declared the most 

important (Pedregosa et al., 2011). The third method relies on calculating Shapley values from 

game theory to estimate how each feature affects the predictivity of the model (Lundberg & Lee, 

2017). It has better figures as it provides for examining each feature according to the different 

categories of the output. 

1.6. Objectives 

The objectives of the study were to 

-   Test the correlation between the geographical location and the gut microbiome from 

healthy individuals and develop a predictive machine learning model that can use the data 

as biomarkers. 

-   Compare the gut microbiome from healthy individuals and COVID-19 patients from 

China. 
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Chapter 2: Materials & Methods 

2.1. Study subjects and Design 

The data and metadata for 16 studies with 1445 healthy subjects from Italy, 

Netherlands, Canada, Sweden, China, Denmark, USA, Finland, China, Madagascar, and Russia 

was extracted from the curated metadata R package (Pasolli et al., 2017). In addition, the relative 

abundance data for healthy subjects from Egypt and the relative abundance data for COVID-19 

patients from China was generated directly after analyzing 16S rRNA Fastq samples using 

QIIME2, as illustrated below. All healthy individuals in the study were naïve to antibiotic therapy. 

The subjects' age was as follows and divided into categories: 1 – 12 years old were denoted Child, 

12 – 19 years old were denoted School age, 20 – 65 years old were denoted Adult, and 65 years 

old < were denoted Seniors. 

Table 1:Metadata of all dataset sets used in the study. 

Country Dataset   

 

PMID Subjects’ age 

category 

Sex 

F/M/NA 

 

Health state 

Italy 1) ThomasAM_

2018b.metap

hlan_bugs_li

st.stool 

(Thomas et 

al., 2019) 

Unpublished ● Adult  NA Healthy 

The 

Netherlands 

2) LiSS_2016.

metaphlan_b

ugs_list.stool 

(S. S. Li et 

al., 2016) 

27126044 

 

● Adult 0/5 Healthy 

3) SchirmerM_

2016.metaphl

an_bugs_list.

stool 

(Schirmer et 

al., 2016) 

27984736 

 

● School age 

● Adult 

● Senior 

265/200 Healthy 

Canada 4) RaymondF_2

016.metaphla

n_bugs_list.s

tool 

(Raymond et 

al., 2016) 

26359913 

 

● Adult 21/15 Healthy 



16 | Page 
 

Sweden 5) BackhedF_2

015.metaphla

n_bugs_list.s

tool 

(Bäckhed et 

al., 2015) 

25974306 

 

● Child 

● Adult 

40/30 
 

Healthy  

China 6) Temporal 

dynamics of 

human 

respiratory 

and gut 

microbiomes 

during the 

course of 

COVID-19 

in adults (R. 

Xu et al., 

2020) 

BioProject 

ID 

PRJNA6392

86 

● NA NA COVID-19 

patients 

7) LiJ_2017.me

taphlan_bugs

_list.stool 

(Jing Li et 

al., 2017) 

28143587 

 

● Adult NA Healthy 

8) JieZ_2017.m

etaphlan_bug

s_list.stool 

(Jie et al., 

2017) 

29018189 

 

● Adult  

● Senior 

● Na 

101/69/1 

 

Healthy 

9) LiJ_2014.me

taphlan_bugs

_list.stool 

(Junhua Li et 

al., 2014) 

24997786 

 

● Adult NA Healthy 

10) YeZ_2018.m

etaphlan_bug

s_list.stool 

(Ye et al., 

2018) 

30077182 

 

● Adult 

● Senior 

11/34 Healthy 

Denmark 11) HansenLBS_

2018.metaphl

an_bugs_list.

30425247 

 

● Adult 

● Senior 

116/92 Healthy 
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stool 

(Hansen et 

al., 2018) 

Egypt 12) A 

comparative 

study of the 

gut 

microbiome 

in Egyptian 

patients with 

Type I and 

Type II 

diabetes 

(Radwan et 

al., 2020) 

BioProject 

ID 

PRJNA6293

82 

● Adult  NA Healthy 

Finland 13) VatanenT_20

16.metaphlan

_bugs_list.st

ool (Vatanen 

et al., 2016) 

27259157 

 

● Child 13/22 Healthy 

USA 14) HanniganGD

_2017.metap

hlan_bugs_li

st.stool 

(Hannigan et 

al., 2017) 

Unpublished ● Adult NA Healthy 

15) HMP_2012.

metaphlan_b

ugs_list.stool 

(Huttenhowe

r et al., 2012) 

22699609 

 

● School age 

● Adult  

65/82 Healthy 

16) Obregon-

TitoAJ_2015

.metaphlan_b

ugs_list.stool 

(Obregon-

Tito et al., 

2015) 

25807110 

 

● Child  

● Adult  

8/14 Healthy 

Russia 17) VatanenT_20

16.metaphlan

_bugs_list.st

27259157 

 

● Child 11/13 Healthy 
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ool (Vatanen 

et al., 2016) 

Madagascar 18) PasolliE_201

8.metaphlan_

bugs_list.sto

ol (Pasolli et 

al., 2017) 

Unpublished ● School age 

● Adult  

● Senior 

46/51/15 Healthy 

 

2.2. Downloading and installing the required software 

Linux Ubuntu 18.04 LTS operating system (OS) was downloaded and installed 

beside windows 10. Then Anaconda (Inc., 2020) was downloaded and installed on Ubuntu 18.04 

LTS to install and use QIIME2 on Ubuntu 18.04 LTS. Then Kemi add-on was installed on google 

sheets to check and confirm that metadata files can be used with QIIME2. SRA toolkit (the SRA 

Toolkit Development Team., n.d.) was downloaded and installed on Ubuntu 18.04 LTS to be able 

to download the Fastq files from the Sequence Read Archive database (SRA) on National Center 

for Biotechnology Information (NCBI) to the local computer. Then R and the R language 

integrated development environment (IDE); R studio (Team, 2020) were downloaded and installed 

on Ubuntu 18.04 LTS and Windows 10. Curated Metagenomic Data R package was then installed 

on R on Windows 10. Curated Metagenomic Data allows the user to use and share preprocessed 

human microbiome data that is uniformly processed. These data include archaeal, viral, bacterial, 

and fungal taxonomic abundance, besides functional quantitative profiles and standardized 

metadata that is standardized (Pasolli et al., 2017). 

2.3. Downloading and installing the required data 

From (SRA) on NCBI (Leinonen et al., 2010), a text file with sample IDs for the 

Egyptian dataset from the study (Salah et al., 2019) was downloaded and used to download the 

16S rRNA for each sample (BioProject ID PRJNA629382) using SRA toolkit software - Ubuntu 

18.04 LTS edition. In addition, 48 COVID-19 samples for the Chinese dataset (R. Xu et al., 2020) 

were downloaded the same way (BioProject ID PRJNA639286). 

2.4. Data analysis with QIIME2 

To start the analysis on QIIME2, we imported the Fastq files for the using a file 

manifest which a tab-delimited format (tab-separated values, tsv) text file. This manifest file 

contains two or three columns according to the type of the reads: the sample id column, the paths 

to the forward reads, and the paths to the reverse reads for paired-end reads and the sample id 

column, and the paths to the reads for Single-end reads. To automate the process of importing the 

data into QIIME2, we developed and executed a code using R studio (Team, 2020) on Linux 

Ubuntu 18.04 LTS. After importing the data into QIIME2 version 2020.11, three steps were done. 

For the Egyptian samples, the samples were already demultiplexed paired-end sequences. So, they 

were joined and denoised according to the quality scores using DADA2 (Callahan et al., 2016) 

plugin with a truncation length of 160, and bases with quality less than 30 were removed as 
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mentioned in the parent paper (Salah et al., 2019). For the Chinese COVID-19 samples (R. Xu et 

al., 2020), The samples were also demultiplexed but single end sequences, and so they were 

denoised directly according to the quality scores using DADA2 (Callahan et al., 2016) plugin with 

a truncation length of 160 and bases with quality less than 30 were removed. For both studies, 

Taxonomic analysis using OTUs was done using gg-13-8-99-515-806-nb-classifier trained on the 

green genes database (DeSantis et al., 2006). The results were as in figure (3) and figure (35) based 

on the absolute abundance of the phyla. Then the absolute abundance was turned into the relative 

abundance using QIIME2 feature-table plugin that was also used for OTU picking. 

2.5. Data processing and development of machine learning models. 

Then, the relative abundance of the following microbial phyla (Firmicutes, 

Actinobacteria, Bacteroidetes, Euryarchaeota, Verrucomicrobia, and Proteobacteria) for all the 

healthy samples (1452 samples) -including Egyptian samples- was added to a comma-separated 

format file (CSV) with the mentioned countries. These phyla were specifically chosen because 

they included the four major phyla in addition to other shared phyla that ranged from bacteria to 

archaea. 

As mentioned above, the data was stored in a CSV file and then randomized -to 

avoid the bias in the models- through assigning a random ID for each sample then sorting the 

samples based on this ID from lowest to highest. Then this dataset was used for training machine 

learning models. The random forest classification model and L2-logistic regression classification 

model were developed and trained based on the dataset, with the data divided randomly into 75% 

training set and 25% testing set.  

The random forest classification model allows for determining the essential features 

in the dataset. These critical features are the most relied on in the classification. The feature 

importance was determined using three methods; feature importance attribute in random forest 

classifiers from sci-kit learn library (Pedregosa et al., 2011). The feature importance attribute from 

the random forest classifier allows for analyzing the importance of each column or variable in the 

dataset. It measures the information gain or impurity for each node in a decision tree. As the 

random forest model produces multiple decision trees, it calculates the average information gain 

or impurity over all the trees in the model based on each variable. The most important feature is 

the one with the highest decrease in impurity. Grid search (LaValle et al., 2004) was used to 

increase the accuracy of the random forest model. 

All the codes including the codes for the models can be accessed and viewed on 

this GitHub Repository.

https://github.com/AhmedAboushanab/Masters
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Figure 2: Flow chart depicting the whole method used in the study. 
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Chapter 3: Results and Discussion  

Geographical Location and the microbiome 

The 16S amplicon sequence datasets were used from 11 countries, with samples ranging from 7 

(Egypt) to 470 (Netherlands) per country (median = 70 samples per country and a total of 1452 

samples) (Table 2). This data was then combined into one dataset for training and testing the 

machine learning models. 

Table 2: Metadata for the combined datasets. 

Country  Population by July 2020 No. of samples Age range 

Italy 60,003,471 28 NA 

The Netherlands 17,280,397 470 12 – 65 and over 65 years old 

Canada 38,005,238 36 20 – 65 

Sweden  10,360,869 70 1-12 and 20 – 65 years old 

China 1,394,015,977 268 20 – 65 and over 65 years old 

Denmark 5825337 208 20 – 65 and over 65 years old 

Egypt 104,124,440 7 20 – 65 years old 

Finland 5,571,665 35 1- 12 years old 

USA 332,639,102 194 1 – 65 years old 

Russia 141,722,205 24 1 - 12 years old 

Madagascar 26,955,737 112 12 – 65 and over 65 years old  

Total 1452 
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The relative abundance of the highest phyla for each dataset was compared to their relative 

abundance in the whole dataset (Figures 3 through 25). In addition, stacked bar plots represent the 

relative abundance in each sample according to the dataset. The observed results indicate that 

although countries differ in their geographical location, they can be categorized according to the 

relative abundance of the different phyla in their microbiome. In addition, upon this categorization, 

similar patterns of phyla can be observed. 

 

Figure 3:Phyla in healthy population from Italy. 
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Figure 4: Relative Abundance of the different phyla in Italy. 

The relative abundance of seven microbial phyla in healthy samples from 28 adults 

from Italy (Thomas et al., 2019) was checked (figures 3 and 4). Firmicutes represent the most 

abundant taxon in the six phyla, with Bacteroidetes and Actinobacteria as second and third 

abundant phylum, respectively.  
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Figure 5: Phyla in healthy population from The Netherlands. 
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Figure 6: Relative Abundance of the different phyla in the Netherlands. 

  

The data from two studies from Netherlands (S. S. Li et al., 2016; Schirmer et al., 

2016) was retrieved (figures 5 and 6). The data included the relative abundance and metadata of 

470 healthy individuals -205 males and 265 females in three age categories (School age, Adult, 

and Seniors). It followed a similar pattern to the data from Italy. Firmicutes had the highest 

abundance, with a median of almost 60%. Bacteroidetes and Actinobacteria had identical 

abundance. Proteobacteria, usually one of the four major phyla, had a very low abundance near 

0%. 
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Figure 7: Phyla in healthy population from Canada. 
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Figure 8: Relative Abundance of the different phyla in Canada. 

The data analyzed was for 36 adult healthy individuals -21 females and 15 males- 

(Raymond et al., 2016). These individuals had Bacteroidetes as their most abundant phylum, 

with a median of almost 65% (Figures 7 and 8). Firmicutes had the second-highest abundance, 
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with a median of 28%. The other three phyla (Actinobacteria, Euryarchaeota, and 

Proteobacteria) had low relative abundance near to 0%. 

 

Figure 9: Phyla in healthy population from Sweden. 
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Figure 10: Relative Abundance of the different phyla in Sweden. 

 

The relative abundance data and metadata of 70 healthy individuals (adults and 

children) — 40 females and 30 males —was obtained from a study in 2015 (Bäckhed et al., 2015) 

(figures 9 and 10). The Bacteroidetes had the highest relative abundance in the samples, with a 

median of 49%. Firmicutes had the second-highest relative abundance in the samples, with a 

median of 37.5%. Actinobacteria came third, and proteobacteria had the lowest relative abundance 

in the four phyla. 
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Figure 11: Phyla in healthy population from China. 

 



31 | Page 
 

 

Figure 12: Relative Abundance of the different Phyla in China. 

 

The analyzed data was for 268 healthy individuals from four studies (Jie et al., 2017; 

Jing Li et al., 2017; Junhua Li et al., 2014; Ye et al., 2018). Bacteroidetes had the highest relative 

abundance with a median of almost 55% (Figures 11 and 12). Bacteroidetes were followed by 

Firmicutes with a median of 30%. In contrast, Actinobacteria and Proteobacteria were rare, with 

Proteobacteria slightly more abundant than Actinobacteria. 
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Figure 13: Phyla in healthy population from Denmark. 
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Figure 14: Relative Abundance of the different phyla in Denmark. 

 

From the data of 208 healthy individuals in Denmark—116 females and 92 males—in 

the adult and senior age categories (Hansen et al., 2018), phylum Firmicutes had the highest 

relative abundance, with a median of 69% while Bacteroidetes had the second-highest relative 

abundance with a median of 20% (Figures 13 and 14). Other phyla had low abundance, in the 

descending order of: Actinobacteria, Proteobacteria, and Verrucomicrobia (Figures 13 and 14).  
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The percent abundance of different microbial phyla in seven stool samples from 

Egyptian adults (Radwan et al., 2020) was recomputed by QIIME 2 (Figures 13 and 14). Unlike 

all the past data sets, these data from Egypt was generated by 16S rRNA amplicon sequencing. It 

had high quality of 99.9%, and so using appropriate sampling depth resulted in keeping all the 

samples. The phylum of Firmicutes was the most abundant, followed by Proteobacteria and 

Bacteroidetes (Figures 14). The data was then combined to allow phylum comparison in all 

samples (Figures 16 and 17) to compare them to data from other countries. 

Figure 15: Absolute abundance Analysis of healthy microbiome from 7 Egyptian 
samples using QIIME2. 
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Figure 16: Phyla in healthy population from Egypt. 
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Figure 17: Relative Abundance of the different phyla in Egypt. 

 

Firmicutes dominated the microbiome in the Egyptian samples with a median of 

about 55% (Figure 17). In addition, Proteobacteria was found to have an unusually high 

presence, with a median of almost 16%. Bacteroidetes had a much lower abundance with a 

median of nearly 10%. The other phyla were rare (almost 0%), including Actinobacteria (Figure 

17). This may be odd compared to other countries, specifically for Actinobacteria, one of the 

four major gut phyla. Due to the low number of samples for Egypt and the reliance on data from 

only one study -despite being the only microbiome study from Egypt with data on SRA-, this 

may not be generalized over the whole Egyptian population. 
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Figure 18: Phyla in healthy population from Finland. 
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Figure 19: Phyla in healthy population from Finland. 

 

The microbiome of 35 healthy individual children -13 females and 22 males- from 

Finland (Vatanen et al., 2016) was examined (figures 18 and 19). As shown in the figures, 

Bacteroidetes dominate the microbiome with a median of over 62%. Then Firmicutes came second 

with a median of 26%. The other phyla (Actinobacteria, Proteobacteria, and Verrucomicrobia) had 

very low relative abundance. 
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Figure 20: Phyla in healthy population from USA. 

 



40 | Page 
 

 

Figure 21: Phyla in healthy population from USA. 

 

The microbiome of 194 healthy individuals (adults, child, and school-age) -males and 

females- from the USA (Hannigan et al., 2017; Huttenhower et al., 2012; Obregon-Tito et al., 

2015) was examined. As shown in the figures (20 and 21), Bacteroidetes had the highest relative 

abundance in the samples with an extensive range that had a median of 73%. Then, Firmicutes had 

the second-highest relative abundance, spanned a vast field with a median of 24%. The other phyla, 

including Actinobacteria and Proteobacteria, had very poor abundance that was slightly above 0%. 
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Figure 22: Phyla in healthy population from Russia. 
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Figure 23: Phyla in healthy population from Russia. 

 

The relative abundance data for 24 healthy individuals (Vatanen et al., 2016) was 

retrieved and used for the analysis as shown in figures (22) and (23). Both Firmicutes and 

Bacteroidetes had almost the same abundance with a very wide range with medians of 37% and 

34%, respectively. In addition, both Actinobacteria, Verrocomicrobia, and Proteobacteria also 

had the same low relative abundance, with medians very close to 4%. 
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Figure 24: Phyla in healthy population from Madagascar. 
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Figure 25: Phyla in healthy population from Madagascar. 

 

The microbiomes of 112 healthy individuals from Madagascar (Seniors, Adults, and 

School-age)—males and females— (Pasolli et al., 2017) indicated that Firmicutes had the highest 

relative abundance, with a median of 52% (Figures 24 and 25). Proteobacteria was the second most 

abundant, with a median of 14%Bacteroidetes (median = 7%). Finally, Actinobacteria had a 

median relative abundance, close to 0%.
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Figure 26: Prevalence of the different phyla in the samples from the countries in the study. 
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The prevalence of seven types of phyla was used to train the machine learning models 

(Figure 26). These were the phyla with the highest levels and were shared between the samples 

from the countries used in the study.  

 

 

 

Figure 27: Comparison between the different countries used in the study for the prevalence of Firmicutes in their healthy 
microbiome. 
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Each of the major phyla was separately compared, for a better clarify (Figure 27) shows 

the relative abundance of the Firmicutes in the different countries used in the study. Firmicutes is 

one of the major phyla. As shown in the figure, it had a very high abundance in all countries. It 

was highest in Denmark followed by Egypt, Italy, Madagascar, and The Netherlands. It had lower 

abundance in Canada and Finland. Figure (28) shows the relative abundance of Bacteroidetes. It 

was highest in the USA followed by Canada. It was low in Egypt, Madagascar, and the 

Netherlands. 

 The gut microbiota plays a rule in the energy homeostasis through extracting the energy 

from food by fermentation and the formation of short chain fatty acids, SCFAs (Jumpertz et al., 

2011; Turnbaugh et al., 2006). Based on many studies on animals and humans (Armougom et al., 

2009; Bäckhed et al., 2004; Bervoets et al., 2013; Krajmalnik‐Brown et al., 2012; Ley et al., 2005; 

Turnbaugh et al., 2009; P. Xu et al., 2012), it has been proposed that Firmicutes were more efficient 

in the extraction of energy from the food than Bacteroidetes. These data suggests that the changes 

in the bacterial composition/diversity are associated with the changes in the metabolic profile of 

the microbiota which affects the host’s health. In the last decades, the Firmicutes/Bacteroidetes 

ratio was proposed as a hallmark for Overweight (De Bandt et al., 2011; Zou et al., 2020). Some 

studies (De Wit et al., 2012; Hildebrandt et al., 2009; Ley et al., 2006) proposed that the increase 

Figure 28: Comparison between the different countries used in the study for the prevalence of Bacteroidetes in their healthy 
microbiome. 
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of the abundance of Firmicutes over the abundance of Bacteroidetes leads to Overweight  and 

when Bacteroidetes’ abundance increases over Firmicutes there would be weight loss. 

 

Figure 29: Firmicutes/Bacteroidetes ratio. 
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Figure 30: Bacteroidetes/Firmicutes ratio. 

Bacteroidetes and Firmicutes produce different metabolites that have different effects on 

the host’s body. Firmicutes produce butyrate while Bacteroidetes produce acetate and propionate 

(Fei & Zhao, 2013). In the colon, propionate stimulates GLP-1 and PYY release by L-entero-

endocrine cells which leads to the inhibition of appetite (Chambers et al., 2015).  It probably 

reaches the portal circulation, where it is captured by the liver and participates in gluconeogenesis 

and inhibit the expression of enzymes that are involved in the de novo synthesis of fatty acids and 

cholesterol (Demigné et al., 1995). Butyrate is a promoting the health (Den Besten et al., 2013) as 

it increases insulin sensitivity (Zhanguo Gao et al., 2009), exert anti-inflammatory activities 

(Säemann et al., 2000), regulate the metabolism in addition increasing the expression of leptin 

gene (Soliman et al., 2011). Acetate is absorbed and reaches the systemic circulation and the 

peripheral organs like the muscles, adipose tissue, and the brain. It works in contrast to propionate 

as it stimulates the synthesis of lipids (X. Gao et al., 2016). It activates the parasympathetic nervous 

system in the brain to promote the activation of insulin and ghrelin by the pancreas and the gastric 

mucosa, respectively (Perry et al., 2016). These events leads to the increased fat storage and 

appetite which contribute to Overweight (Magne et al., 2020). Relative abundance differences in 

Firmicutes and Bacteroidetes among countries (Figures 27 and 28) may indicate a possible 

correlation between the Firmicutes/Bacteroidetes ratio (Figures 29 and 30) and Overweight. 

Countries like the USA, Canada, and most of the European countries are known to have a large 

proportion of their population to be overweight, while many African countries like Madagascar 

are known to have a lower proportion of their population to be overweight (Sahned et al., 2019). 

Egypt can be excluded from this as the prevalence of overweight in Egyptian adults reached more 
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than 40% by 2019 (Aboulghate et al., 2021). This may be due to many factors like the type of diet 

and the health systems. The developed countries like the USA and The European countries depend 

high-protein high-fat diet in addition to better sanitation and hygiene practices (Greenhill et al., 

2015; Mardanov et al., 2013; Sankaranarayanan et al., 2015; Tyakht et al., 2013).  

 

 Actinobacteria was most abundant in the Netherlands followed by Italy (Figure 29). 

Despite being one of the major phyla, it was very low in Egypt, Canada, and the USA. The 

relationship between diet and Actinobacteria is still under investigation. Some studies 

demonstrated that the abundance of Actinobacteria is positively associated with a diet of high fats 

and negatively associated with the intake of fibers (Turnbaugh et al., 2008; G. D. Wu et al., 2011). 

On the contrary, other studies proposed an opposite correlation in which the increase abundance 

of Actinobacteria was positively correlated with being lean, the high consumption of complex 

carbohydrates, the improvements in glucose homeostasis, and reduction of obesity and 

inflammation (Cani, Neyrinck, et al., 2007; Geurts et al., 2014; Teixeira et al., 2013; Zimmer et 

al., 2012).  

 

Figure 31: Comparison between the different countries used in the study for the prevalence of Actinobacteria in their healthy 
microbiome. 
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Figure 32: Comparison between the different countries used in the study for the prevalence of Euryarchaeota in their healthy 
microbiome. 

Euryarchaeota was most abundant in Italy followed by the USA, and China (Figure 30). It 

was low in all the other countries. Archaea are known to constitute a low proportion of the human 

microbiome with low diversity. Only the phylum of Euryarchaeota is found to be part of the human 

microbiome with (Methanobrevibacter smithii, M. oralis, and Methanosphaera stadtmanae) as the 

main members. Methanobrevibacter smithii is the primary colonizer of the gut in humans (Horz 

& Conrads, 2010). A study proposed that despite being low in the human microbiome, archaea 

play a supporting role for the bacteria in the microbiome. The methanogens may aid in the process 

of interspecies hydrogen transfer to support fermenting bacteria in the gut which can be pathogens 

or at least opportunistic pathogens (de Macario & Macario, 2009). The data shown in the figure 

was from healthy subjects therefore this may explain the observed low abundance of archaea in all 

the samples.  
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Figure 33: Comparison between the different countries used in the study for the prevalence of Verrucomicrobia in their healthy 
microbiome. 

Verrucomicrobia was most abundant in Russia followed by Finland, Denmark, the 

Netherlands, Italy, and Egypt (Figure 31). It was lowest in Canada, Sweden, and Madagascar. 

Verrucomicrobia is a phylum with important members like Akkermansia muciniphila which is a 

mucin-degrading bacterium. It is believed play a role in the homeostasis of glucose and intestinal 

health (Belzer & De Vos, 2012; Johansson et al., 2011). It can represent 3% - 5% of the bacterial 

community (Santacruz et al., 2010). It resides mainly in the intestinal mucosa (Karlsson et al., 

2012). According to many studies , its abundance is negatively correlated with body mass (Collado 

et al., 2008; Dao et al., 2016; Everard et al., 2011, 2013). 
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Figure 34: Comparison between the different countries used in the study for the prevalence of Proteobacteria in their healthy 
microbiome. 

Proteobacteria had its highest relative abundance in Madagascar followed by Egypt, 

China, Sweden, Finland, Russia, Demark, and Canada (Figure 32). It was low in The Netherlands, 

The USA, and Italy. Although proteobacteria is one of the major phyla, it is associated with many 

human diseases. Proteobacteria is a phylum of Gram negative bacteria with lipopolysaccharide in 

the outer membrane (Rizzatti et al., 2017). There is an established correlation between low-grade 

inflammation sustained by lipopolysaccharides and the metabolic disorders (Hotamisligil, 2006). 

The production of lipopolysaccharides is sustained by gram negative bacteria in the gut -

endotoxemia- and is reduced by the administration of antibiotics (Cani et al., 2008; Cani, Amar, 

et al., 2007). They have higher abundance mainly in countries from Africa and which have low 

quality health systems and higher consumption of antibiotics. 
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Machine learning models for geographical differences: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Random Forest vs Logistic Regression Classifiers. 

 Logistic Regression Classifier Random Forests Classifier  

Mean Accuracy Score 58.499 % 61.4331 % 

Standard Deviation 2.8901 % 2.3457 % 

 

The random Forest classifier performed better than the Logistic Regression model, with a lower 

standard deviation (Table 3). Grid search was then used to optimize the Random Forest classifier’s 

parameters. Random Forest classifier’s performance was then improved from a mean accuracy 

score of 61.431% to a mean accuracy score of 65.84%. 

Figure 35: Comparison of the mean accuracy of Logistic Regression (LR) Classifier and random forests 
Classifier (RF). 
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Figure 36: Using feature importance attribute in Random Forest classifier model method. 

Table 4: Phylum vs Correlation Coefficient. 

Phylum Correlation Coefficient 

Bacteroidetes 0.23594675 

Proteobacteria 0.22206124 

Actinobacteria 0.22203626 

Firmicutes 0.16312876 

Verrucomicrobia 0.12293449 

Euryarchaeota 0.0338925 

 

The most important features in the random forest classifier are Bacteroidetes, 

Proteobacteria, and Actinobacteria as the three most important phyla that affect the predictivity of 

the machine learning model, respectively. Phylum Firmicutes was fourth, followed by 

Verrucomicrobia, and Euryarchaeota, respectively. 

 

COVID-19 related analysis 
As the COVID-19 pandemic continues, the fight against SARS-CoV-2 will 

continue and even after the pandemic. The search for a correlation between the changes in the 

microbiome due to a specific disease is not a new objective. In this study, the aim was to test the 

changes that occur to the microbiome in patients with COVID-19 compared to healthy individuals 

from China.  
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Figure 37: Absolute abundance of Phyla in Covid-19 population from China using QIIME2. 
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Figure 38: Phyla in Covid-19 population from China. 

Figure (35) represents the absolute abundance on the phylum level for 47 COVID-19 

patients from China. Figure (36) represents the relative abundance of these same phyla after 

transforming the absolute abundance into relative abundance. The microbiome of COVID-19 

patients was analyzed in this study using the QIIME2 platform (Bolyen et al., 2019). Using the 

16S rRNA amplicon sequencing data for stool samples from a study by Rong Xu and colleagues 

(R. Xu et al., 2020), The samples were isolated using anal swabs from 47 patients. As shown in 

figure (36), COVID-19 patients had Firmicutes as the bacteria with the highest relative abundance 

with a median of 37%, followed by Proteobacteria with almost 27%. Bacteroidetes came in third 

place with a relative abundance that has a median of 15%. Finally, Actinobacteria had the lowest 

relative abundance in the four major phyla, with a median of almost 9%. As shown in the figure, 

some other phyla had a feeble presence in the microbiome of the patients, with Fusobacteria having 

a higher presence than the other phyla except for the four major phyla. 
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Figure 39: Comparison between shared phyla between healthy samples and Covid-19 patients from China. 

 

Upon comparison with the data from the healthy individuals’ studies figure (37), it was 

observed that Firmicutes was slightly higher in the COVID-19 patients than in healthy individuals. 

In addition, Actinobacteria had a higher abundance in the microbiome of the COVID-19 patients 

compared with healthy individuals. Also, Proteobacteria had a much higher abundance in the 

COVID-19 patients. On the contrary, Bacteroidetes had a much higher abundance in the healthy 

individuals with a median of 55% compared to 19% median in COVID-19 patients. 
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Figure 40: Relative Abundance of Rothia Genus in healthy samples vs COVID-19 samples from China. 

 

The relative abundance of the Rothia genus in the healthy microbiome and patients 

with COVID-19 from China (Figure 38) suggests that the higher abundance of Actinobacteria in 

COVID-19 patients compared to healthy individuals can be due to the increase in the abundance 

of Rothia dentocariosa, which is a species of Actinobacteria that as found to be associated with 

infection of SARS-CoV-2 by many studies (R. Xu et al., 2020; Zou et al., 2020). Rothia Genus is 

known to be in the oral microbiome of humans (Zaura et al., 2009). They were also classified as 

opportunistic pathogens (Boudewijns et al., 2003). 
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ACE2 is expressed abundantly in the intestines, specifically in the colonocytes of 

healthy individuals and patients with inflammatory bowel disease (J. Wang et al., 2020). It is able 

to regulate microbial ecology, amino acid transport, and gut inflammation (Hashimoto et al., 

2012). Bacteroidetes were found to downregulate the expression of ACE2 in the colon of mice 

models. In addition, Firmicutes species had variable effects on the modulation of ACE2 expression 

(Geva-Zatorsky et al., 2017). A study on the microbiome of COVID-19 patients from Hong Kong 

(Zuo et al., 2020) found that some Bacteroidetes species had baseline abundance correlated 

negatively with the severity of COVID-19. In addition, Bacteroidetes had a higher abundance in 

the healthy samples from China compared with COVID-19 patients from China. 

Proteobacteria were observed to have higher abundance in COVID-19 patients 

compared with Actinobacteria (Figure 38). This may indicate that the relative abundance of these 

phyla in healthy individuals and patients can be used as a marker for their infection with SARS-

CoV-2. It needs further investigation as it may be a result for Dysbiosis and use of antibiotics. 

Actinobacteria is a phylum that can be associated with many health problems. It has some 

characteristics like fungi, as it can produce spores (Stackebrandt et al., 1997). Previous research 

has found that Actinobacteria can be very immunoactive, and so it can cause many respiratory 

disorders. For example, being exposed to high concentrations of some types of Actinomycete 

species can lead to allergic alveolitis (Falkinham III, 2003; Lacey & Crook, 1988; McNeil & 

Brown, 1994). In addition, Mycobacterium and Streptomyces species has been found to induce the 

production of proinflammatory cytokines and cause cytotoxicity in vitro and some systemic effects 

in vivo (Huttunen  Maija-Riitta Hirvonen, Eila Iivanainen, Marja-Leena Katila, Kati, 2001; 

Huttunen et al., 2003; J Jussila et al., 2001, 2003; Juha Jussila et al., 2002). These studies would 

indicate a possible increase of Actinobacteria in COVID-19 patients, which was observed in the 

results of this study.  

Proteobacteria phylum encompasses many human pathogens like Rickettsia and 

Brucella, both genera from the Alphaproteobacterial class, Neisseria and Bordetella, which belong 

to Betaproteobacteria class in addition to others in Gammaproteobacteria class and Epsilobacteria 

class like Escherichia and Helicobacter, respectively. Proteobacteria are found in many places in 

the human body, such as skin, tongue, oral cavity, and vaginal tract, in addition to the human gut 

and stool (Huttenhower et al., 2012). When comparing their abundance in the COVID-19 patients, 

it had higher abundance as mentioned above, which can be explained due to the alterations that 

occur in the microbiome of COVID-19 patients due to the infection. This point is in agreement 

with different studies that detected changes in the microbiome of COVID-19 patients compared to 

healthy samples (R. Xu et al., 2020; Zuo et al., 2020). 
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Chapter 4: Conclusions and Future Perspectives  
Both machine learning models had high predictivity, which indicates a correlation 

between the differences in healthy microbiomes and their population of origin. It may also indicate 

batch and age effects. 

The microbiome predisposes individuals to infection to different diseases. There are 

many factors contributing to the differences in the population-based microbiome variations. These 

factors are like diet, exposure to pathogens, age, psychological stress and anxiety, smoking and 

alcohol consumption. On the country level, these factors can be summarized as the differences in 

their lifestyles and their health systems. The study of the phyla can indicate new markers for the 

microbiome changes due to SARS-CoV-2. As observed in this study, the trend of Actinobacteria, 

Proteobacteria and Bacteroidetes in healthy individuals was almost flipped in the COVID-19 

patients. This relationship needs further investigation. 

The study may have some limitations that require further investigations in the future. 

The data should have been for the same age categories. More countries should be added to widen 

the training and test sets so the machine learning models would have better predictivity. In 

addition, more samples for countries like Egypt would have made the analysis more accurate and 

will reduce the batch effect.  

In addition, working on more profound microbiome levels, like working on Class, 

Order, Family, Genus, and Species levels, would make the analysis more accurate and specific. In 

addition, it may indicate new relations between particular genera or species and the microbiome 

changes due to SARS-CoV-2 infection. This may be easier using deep learning and neural 

networks techniques, which would help indicate which taxa are relevant than others. 

All codes and machine learning models are available on GitHub repository. 
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