
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations Student Research 

Winter 1-10-2022 

Multi-objective Optimization on Dimensional Accuracy, Edge and Multi-objective Optimization on Dimensional Accuracy, Edge and 

Surface Quality of 3D-Printed Parts by Fused Deposition Surface Quality of 3D-Printed Parts by Fused Deposition 

Modelling Modelling 

Islam Hamdy Salem 
The American University in Cairo AUC, ihamdys@aucegypt.edu 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

 Part of the Manufacturing Commons 

Recommended Citation Recommended Citation 

APA Citation 
Salem, I. H. (2022).Multi-objective Optimization on Dimensional Accuracy, Edge and Surface Quality of 3D-
Printed Parts by Fused Deposition Modelling [Master's Thesis, the American University in Cairo]. AUC 
Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1881 

MLA Citation 
Salem, Islam Hamdy. Multi-objective Optimization on Dimensional Accuracy, Edge and Surface Quality of 
3D-Printed Parts by Fused Deposition Modelling. 2022. American University in Cairo, Master's Thesis. AUC 
Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1881 

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge 
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC 
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=fount.aucegypt.edu%2Fetds%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1881?utm_source=fount.aucegypt.edu%2Fetds%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1881?utm_source=fount.aucegypt.edu%2Fetds%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu


i 

 

 THE AMERICAN UNIVERSITY IN CAIRO 

SCHOOL OF SCIENCES AND ENGINEERING  

 

Multi-objective Optimization on Dimensional Accuracy, Edge and 

Surface Quality of 3D-Printed Parts by Fused Deposition 

Modelling                                             

BY 

Islam Hamdy Salem  

A thesis submitted in partial fulfilment of the requirements for the degree of  

Master of Science in Mechanical Engineering  

Under the supervision of:  

Dr. Mohamed Fawzy Aly 

Associate Professor, Department of Mechanical Engineering  

The American University in Cairo 

 

January 2022 



i 

 

DEDICATION 

Special dedication to my beloved father Prof. Hamdy Salem who I wish he could witness 

these moments with me. This is your fruitful harvest. I pray to Allah to bliss your soul. I just 

miss you, and I hope you are proud of my dad. 

Also, dedicated to my belove family, mom, brother and my future beloved wife, who never 

gave up on me and supported me until the end of the journey.  



ii 

 

ACKNOWLEDGMENT 

Words cannot describe my gratitude to my supervisor Dr. Mohamed Fawzy Aly. Many thanks 

for his support and guidance. Much more thanks for his patience and appreciation through the 

obstacles I faced during my degree journey. Not only did he treat me as my supervisor, but he 

also was a supportive elder brother. 

I also would like to acknowledge Dr. Khalil El-Khodary for the precious knowledge he 

transferred to me during my degree courses I have attended with him. I am very grateful for 

the fruitful outcomes I gain from him. 

Also, I would like to thank Dr. Ahmed El-Kaseer for his priceless advice to save the last breaths 

of my degree journey. He was very generous and helpful to me. 

Special thanks to the PixeL Lab company technical support team who did not hesitate to 

support my experimental work and never let me down. 

Finally, I would like to thank all AUC members who supported me during my degree. Special 

thanks to AUC graduate office for their research funding that I would not have done this 

research without. 

  



iii 

 

ABSTRACT 

Fused Deposition Modelling (FDM) is one of most common additive manufacturing (AM) 

techniques used in manufacturing field. It has been increasingly used because of its low cost 

and simplicity. Although FDM can save time through eliminating pre-processing tooling-up to 

produce the end-user product, still a better final product quality, like mechanical properties, 

dimensional accuracy and surface finish, is needed. This thesis addresses the maximization of 

involved printing parameters in one reliable model. Hence, a wider investigation is conducted 

in this research via experimental work in order to obtain a comprehensive model that involves 

and relates more parameters in a single model. A full factorial 2-level DOE is used for 6 

printing parameters; layer height, wall thickness, bottom/top thickness, infill density, 

temperature and printing speed. The results of experiment were analyzed using ANOVA 

analysis, and the regression models were developed. The regression models showed some 

weakness in the goodness of fit due to the large number of hidden variables and uncertainty of 

the FDM process. Layer height, wall thickness, infill density, printing speed and their 

interactions were found to be the most influential on the dimensional accuracy, edge quality 

and surface quality.  Finally, the obtained regression models were optimized by two different 

multi-objective optimization techniques, and the optimal printing parameters were identified 

and tested. 
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CHAPTER ONE: INTRODUCTION 

1.1. Background 

Additive Manufacturing (AM) is considered a new terminology for many researchers in the 

manufacturing field. Intuitively, the term additive can explain the new terminology. AM is the 

building of the final part from zero material until full complex geometries without the need for 

removing extra material nor pre-process tooling up. Also, AM is commonly known as 3D 

printing, which was first developed by Charles W. Hull in the mid-1980s. In detail, AM process 

sequence starts with a computer aided design (CAD) model by means of 3D-modelling 

software. Hence, the model is converted to a .STL file in which the 3D model is sliced into 

very thin layers. Thereafter, the file is exported to a 3D slicer software to translate the sliced 

layers to a toolpath, like a G-code file. Finally, the part is ready to be printed by adding the 

material layer-by-layer until the complete geometry is created [1], [2]. The various 3D printing 

techniques can be categorized into three types, which are solid-based, liquid-based, and 

powder-based [3], [4]. Amongst the various 3D printing processes, fused deposition modeling 

(FDM) or fused filament fabrication (FFF) is the most commonly used, which will be the focus 

in this research. The creation of FDM was introduced by S. Scott Crump in the late 1988s [5]. 

FDM material is preferred to be a thermoplastic filament as a printing material. The filament 

is passed through an extruder to a hot end with a heater inside to heat the material to a specific 

temperature. The material is extruded through a heated nozzle to a platform (build bed) where 

the part is printed and created [5]–[8]. The FDM process schematic is shown in Figure 1. 
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Figure 1: FDM process schematic [8]. 

 The main advantages of AM are low cost as material wastes are almost zero, the availability 

of the core knowledge, the capability of creating complex and customized geometries in one 

step rather than conventional manufacturing processes [9], and the independence on pre-

processing. These advantages place AM as the first choice when it comes to job-shop or batch 

production, which strengthens the AM against the competition with the conventional 

manufacturing processes [10]. Recently, AM has been used in many applications and fields 

like rapid prototyping RP, biomedical, building and construction, aerospace and protective 

structures [2], [3]. Notwithstanding, AM still challenges many limitations that prevent the full 

replacement of conventional processes by AM. The remarkable drawbacks of AM can be 

concluded in processing time, surface defects (see Figure 2), voids creation on top surface, 

layers delamination, geometrical errors on edges, weak mechanical strength due to the 

anisotropic behavior of the printed parts, the limited number of material used in 3D printing, 

design of 3D printing and slicing software, hardware and maintenance issues, part orientation 

which involves overcoming the problem of overhanging and toolpath and, finally, post-

processing due to undesirable surface finish and inaccurate dimensions [3], [6], [7], [10]–[14]. 
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Figure 2: Stair case effect on surface quality [15]. 

 One of the critical challenges that can strengthen the AM in the manufacturing field is the 

elimination of post-processing, in particular, improving the dimensional accuracy, surface 

finishing and mechanical properties. Though, inaccuracy of dimensions cannot be neglected 

nor the mechanical strength in most engineering fields, contrarily, these two are most needed 

in biomedical, aerospace or any industry that requires specific fits and tolerances. Being able 

to print accurate 3D-geometries as demanded is one of the goals to be achieved in AM, 

particularly FDM. Finally, the optimization of FDM printed parts’ dimensional quality, surface 

and mechanical strength will greatly contribute in supporting many fields like complicated 

surgeries for unique patient-customized products [2], [3], micro and nano-electronics, 

automotive industry [12], …etc. There are many other researches that are conducted on the 

optimization of FDM process like building time and material behavior, however, dimensional 

accuracy, final surface quality and mechanical properties were found more critical to be 

optimized. 

1.2. Problem Statement 

The evolution of the FDM process amongst conventional manufacturing techniques is about to 

be achieved. Can the optimization of FDM final product quality and the other variable outputs 

place it as a competitive manufacturing technique? It is a wonder whether the FDM process 
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can reach an acceptable level of accuracy compared to the current state of manufacturing 

techniques accuracy. Meanwhile, the FDM process outputs are extremely unpredictable, 

though, if the involvement of a large number of parameters is achievable, can this adjust the 

uncertainty of the process? 

1.3. Thesis Objectives 

The objective of this research is to develop an optimization model that relates the maximum 

possible number of printing parameters to the dimensional accuracy, surface and edge quality 

of the 3D printed parts and searches for the optimum parameters. This can be concluded in the 

following: 

1. Gathering as much as possible parameters that are studied in the literature. 

2. Developing a DOE model of these parameters in order to develop a reliable model that 

is derived by these parameters and relates them to the outputs. 

3. Testing the model on experimental basis on a 3D printer using FDM approach. 

4. Conducting analysis of variance ANOVA in order to check the fitness of the developed 

model to promote it as an optimization model. 

5. Developing a multi-objective optimization model considering maximum number of 

parameters. 

6. Validating the optimal parameters to the developed experiment-based model. 

1.4. Thesis Layout 

The first chapter take a leap insight into the history of additive manufacturing AM since its 

birth. Also, a glance about the categories of AM techniques is presented, while the addressed 

technique FDM is one of the solid based AM techniques. In addition, a brief description of the 

FDM process is explained. Eventually, the objectives of this thesis are highlighted. In the 
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following chapter, the exploration of printing parameters and their influence on the FDM 

variable outputs is conducted. Mainly, the review of the literature focuses on the dimensional 

accuracy and appearance quality of the FDM 3D printed parts. Next, in chapter three, the 

experimental work of this thesis is presented. This chapter includes the experiment setup and 

used material, also, the design of experiment and running procedure are presented. At the end 

of this chapter, the measurements of the outputs are illustrated and explained carefully, in 

addition to the measuring tool used. Chapter four starts with the presentation the results of the 

conducted experiment tests. Then, ANOVA analysis is conducted on the effect of parameters 

on the outputs followed by the quadratic regression modeling of the mathematical experiment-

based model on MATLAB 9.10 2021a [16]. The final part of the chapter includes the multi-

objective optimization model of the extracted mathematical model from chapter 4, which is 

discussed and analysis in detail. The final chapter presents the outcomes and conclusions of 

the thesis, in addition to the require investigation and recommendations for future work.  
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CHAPTER TWO: LITERATURE REVIEW 

Fusion deposition modelling is a 3D printing method, while 3D printing is one of the AM 

techniques. The definition “fused deposition modelling (FDM)” comes from the process itself 

by depositing semi-molten, or fused, material in layers form in top of each other [5], [6], [17]. 

Thermoplastics like, acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA), are 

considered to be the most commercial used materials in FDM because they result in good 

mechanical properties of the output, and they are considered safe to the environment [18]. 

Although, there are various remarkable investigations done on new materials to be added to 

the FDM materials paradigm [3], [19]. The printing parameters of FDM and their impact on 

the quality and strength of the output parts were discussed in depth in [2], [5], [6], [20]–[26]. 

For example, build orientation, nozzle diameter by which other parameters like layer thickness, 

contour width, number of contours and raster width are determined, raster angle, infill density, 

extruder and printing chamber temperature, toolpath and the distance between the nozzle tip 

and the in-process layer. Although, the literature shows that FDM is capable of fabricating 

complex 3D geometries in many industries with lower cost on reasonable time [12], Oropallo 

et al. [11] and Ngo et al. [3] listed in their studies the critical limitations that make FDM hinder 

behind. Unlike any other process of 3D printing, because FDM suffers from the absence of 

supporting medium for the in-process printed part, and it is considered a material extrusion 

process, therefore many considerations are to be taken before processing. According to [2], in 

order to achieve the desired quality of the output, complicated procedures to calculate the 

printing parameters and surrounding conditions are considered by engineers. Masood [27] 

proposed a framework called intelligent rapid prototyping (IRP) which helps in the 

determination of all the printing parameters starting from the design for 3D printing on CAD 

software until the selection of nozzle diameter and the optimization of the extruder road 
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parameters. This IRP framework showed improvement in the efficiency and productivity of 

FDM, not only that, but also the quality of the printed products. The most remarkable 

parameters found in the review which has been experimented and simulated in order to relate 

their influence on the final product dimensional accuracy and surface finish are build 

orientation, layer thickness (or height), forced cooling, printing speed, toolpath (or deposition 

pattern), temperature, and infill density. 

An experimental study on a modified commercial 3D printer was presented by Lee and Liu 

[14]. The modification they have added was an extra cooling system attached to the extruder 

of the 3D printer. Though, the parameters that were tested are air cooling speed and building 

orientation of the part on the printer platform. This study demonstrated that building direction 

has a good influence on dimensional accuracy, also mechanical properties when the layers are 

built in the transverse direction. For the cooling speed, it showed that zero and very high 

cooling speed result in high dimensional accuracy errors, and it is optimum to keep the cooling 

rate moderate, while Costa et al. [28] showed lower cooling rates lead to good surface finish 

but inferior dimensional quality. In addition, another optimization model was developed by 

Pandey et al. [29] using non-dominated sorting genetic algorithm II (NSGA II). The model 

highlighted that orientation of the part is the most important factor to obtain good surface finish. 

Moreover, the building orientation showed significant influence on dimensional quality and 

repeatability in [30]. Furthermore, in a computational simulation performed by Armillotta [15] 

to study the effect of three different angles on the platform of the 3D printers considering radius 

of sharp edges and staircase effect in addition to the layer thickness on final part quality. This 

simulation concluded that proper positioning of the part will help in the avoidance of edge 

errors and swelling of layers. The influence of building orientation on dimensional accuracy 

and surface roughness has not appeared to be low in the literature even in the most recent 
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review in [2]. Contrarily, it is one of the most influential parameters on final part geometrical 

accuracy. 

The second noticeable influencing parameter is the layer thickness (LT). In 2001, a Taguchi 

model optimization was developed by Anitha et al. [25] on LT, printing speed and road width. 

After obtaining the optimum parameters, statistical analysis was performed using Analysis of 

Variables (ANOVA) and Signal to Noise (S/N) ratio to verify the results from the model. The 

analysis showed that LT has a high significant effect on surface finish and dimensional 

accuracy whether there is a pooling with other parameters or not. Moreover, Taguchi’s 

approach research was proposed by Moza et al. [31]. LT was experimented by FFF Duplicator 

4X 3D printer to have a good influence on dimension quality in z-direction rather than x-y 

plane. Furthermore, combining Taguchi’s method with fuzzy logic technique showed that part 

orientation and LT are the most affecting parameters in the FDM printing process [32]. 

Recently, another experimental optimization model was presented by Alafaghani et al. [8] in 

2017. Also, the model proposed a new design for manufacturing or FDM approach by using 

finite element analysis FEA. The parameters involved in this research are layer thickness LT, 

building pattern, extrusion temperature, printing speed and infill density. The results of this 

study showed that good final part dimensions are greatly influenced by LT, temperature and 

building pattern. In addition, they suggested that the critical dimension in the printed part 

should be parallel to the layer orientation using low extrusion temperature and higher LT. In 

[5], LT and staircase effect were related in an intuitive concept. That is the more sliced layers 

(lower LT) the best dimension quality can be obtained. More parameters beside the LT were 

examined in Pérez et al. [33], printing speed, temperature, wall thickness (WT) and toolpath 

(concentric, zig-zag, grid). This examination was carried out through an experiment on FDM 

printed samples. Thus, ANOVA revealed that LT and WT are combined factors that enhance 

surface quality. If one of the latter two increases while the other is fixed, or both increase 
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greatly, that results in low surface quality. More revelation, the toolpath or printing path had a 

low impact on the quality of the surface. Remarkable recent research is conducted to investigate 

the effect of layer thickness, filament color, raster angle and build orientation on the accuracy 

of dimensions in the FDM process. The experimental tests are performed on cylinders and dog 

bone shapes, as shown in Figure 3, on a commercial 3D printer. The results are unexpectable 

that the filament color shows high impact on the dimensional accuracy of both samples 

geometry. Also, the layer thickness LT and build orientation dominated other parameters to 

affect the quality of the final output. However, the raster angle is found to have no impact on 

dimensional accuracy [34]. 

 

Figure 3: (a) Print orientation of cylinder parts, and (b) parameters used to print dog bone 

samples [34]. 

Another impressive experimental-based study on the effect of five printing parameters on the 

dimensional accuracy and surface quality of the FDM printed parts is carried out using Taguchi 

array (L50) DOE [35]. The PLA test samples included various geometries in order to 
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investigate the dimensional accuracy as illustrated in Figure 4. Surprisingly, the most 

influential parameters on dimensional accuracy and surface quality are the layer thickness (LT) 

and printing speed. To conclude, LT has always been an obvious parameter that affects the 

quality of surface or dimension accuracy, particularly on edges or curved surfaces [1]. 

 

Figure 4: (a) CAD model of test sample including various geometries, and (b) final printed 

samples [35]. 

 As for the other printing conditions, temperature investigations have contradictory opinions. 

In [28], it was concluded that envelope temperature is a critical parameter as it has some 

beneficial characterization which is the lasting effect. Moreover, as mentioned previously in 

[8], proper selection of temperature produces fine dimensional accuracy. On the other hand, 

temperature compared to LT and build orientation has a lower influence on geometry quality 

[33]. Also, there have been many corrections operated on the slicing software output parameter, 

which is the .STL file. Roschli et al. [1] showed the limitations facing the slicing process, 

especially for curved 3D models. Meanwhile, a compensation method on STL files is applied 

on two different machines, FDM 3000 and SLA 50. The correction of the STL file showed 

30% reduction in the volumetric error due to shrinkage in FDM 3000 rather than the SLA 50 

with smaller error reduction [36].  Other parameters like infill density have lower influential 

sense on dimensional accuracy and surface quality, however it records higher expectations on 

mechanical properties [8], [22]. 
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Research Aims 

Most studies reported in the literature were carried out through optimizing from three up to six 

printing parameters and analyzing the influence of these parameters on the objective, which is 

usually a single or double objective. Meanwhile, the other printing parameters and conditions 

were set as fixed values. Unluckily, the results often showed that often two parameters, which 

are building orientation and layer thickness, are the most influential to the output. In this thesis 

as an initial step, most of the effort will be exerted on investigating and maximizing the usage 

of other parameters. The literature offers various parameters that affects the dimensional 

accuracy and surface quality of the FDM prints, hence, in this research, the selected printing 

parameters as follow; layer height, wall thickness, bottom/top thickness, infill density, 

temperature and printing speed. Following, experimental work will be operated upon those 

parameters. Finally, a multi-objective optimization model will be developed considering the 

maximization of printing parameters, or decision variables in order to enhance the dimensional 

accuracy, edge quality and surface quality of the 3D printed parts by FDM.  
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CHAPTER THREE: EXPERIMENTAL WORK 

3.1. Equipment Setup and Material 

The material used in this research is polylactic acid plus (PLA+) filament of 1.75 mm diameter. 

The filament is purchased from SHENZHEN eSUN industrial CO., LTD with a manufacturer 

recommendations of best practice printing parameters as printing temperature of 205-220 ⁰C 

and the heated bed temperature of 25-70 ⁰C. The physical and mechanical material properties 

are presented in Table 1. The selected filament colour is brown as shown in Figure 5. 

Table 1: Physical and mechanical properties of (PLA+). 

Density 

(g/cm3) 

Heat 

Distortion 

Temp 

(⁰C, 

0.45MPa) 

Tensile 

Strength 

(MPa) 

Elongation 

at Break 

(%) 

Flexural 

Strength 

(MPa) 

Flexural 

Modulus 

(MPa) 

IZOD 

Impact 

Strength 

(kJ/m2) 

1.24 56 65 8 97 3600 4 

 

 

Figure 5: Brown color PLA+ filament of 1.75mm diameter. 
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In this research, a custom-made commercial 3D printer MakerX Pro 200mm x 200mm is used 

in the experimental operation. The machine chassis and structure are produced from aluminium 

sheet metals of 1.25 mm thickness and aluminium V-shaped cross-section. A 24V heated bed 

is installed on the printer machine that can reach 110 ⁰C. The installed stepper motors are Nema 

17 high torque. For the controller unit, it is combined of ramps 1.4+ Arduino Mega 2560 + 

a4988 drivers. The hot end type is E3DV6, while the extruder type is MK8. Overall, the 

machine can reach 50 µm resolution. Regarding the movement of the axes of the machine, the 

build bed is mounted on Y-axis, and moves forward and backward while remaining at Z = 0. 

The X-axis is assembled on a V-shape cross-section member that is moving left and right 

starting from x=0, meanwhile, the X-axis subassembly is coupled with the Z-axis movement 

through a power screw of 5 mm diameter, hence, the Z-axis movement carries the X-axis 

subassembly along. Though, the printed part is built from zero layer to the final layer without 

moving the build bed up. The details of the machine components and movements are presented 

in Figure 6. 
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Figure 6: MakerX Pro 3D printer details. 

3.2. Design of Experiment (DOE) 

In this study, involving a larger number of printing parameters in one experimental-based 

mathematical model is of interest. The effect of each parameter individually on variable outputs 

of the FDM process is minimal. Though, the effect of the interaction between printing 

parameters is addressed. The selected printing running conditions are layer height 𝐿𝐻 (mm), 
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wall thickness 𝑊𝑡 (mm), bottom/top thickness 𝐵𝑇𝑡 (mm), infill density 𝐼𝑛𝐷 (%), temperature 

𝑇 (⁰C) and printing speed 𝑉 (mm/s). The selection is based on the outcome of the review of the 

literature as these parameters are the most highlighted influential conditions on the FDM 

process. Meanwhile, the DOE is selected to be a 2-level full-factorial design. The parameters 

levels are presented in Table 2. Consequently, the experimental tests that are conducted in this 

research are 26 tests for each case of different geometry; cube and cylinder, which means 128 

test samples. The cube is 20x20x20 mm, and the cylinder is 20 mm diameter and 20 mm height. 

However, the single test included a cube and a cylinder in order to assure that the parameters 

set and conditions are fixed for both geometries as shown in Figure 7, hence, the uniaxial and 

biaxial movement of the printing hot end are tested simultaneously. 

Table 2: Table of parameters and levels. 

Parameters Levels Unit 

Layer height (𝑳𝑯) [0.1 0.2] mm 

Wall thickness (𝑾𝒕) [0.4 1.2] mm 

Bottom/top thickness (𝑩𝑻𝒕) [0.8 1.6] mm 

Infill density (𝑰𝒏𝑫) [25 50] % 

Temperature (𝑻) [190 210] ⁰C 

Printing speed (𝑽) [30 60] mm/s 

The selection of the levels of temperature and printing speed parameters considers one level 

inside the manufacturer recommendation, and the other level is below the lower bounds. For 

the layer height levels, the used nozzle diameter is 0.4 mm, hence the layer height is preferred 

not to exceed 0.2 mm. Meanwhile, the infill density of greater than 50% has no further effect 

on dimensional accuracy and final part appearance quality, unless the mechanical properties 

are addressed to be enhanced. The last two parameters’ levels; wall thickness and bottom/top 

thickness, are selected based on experimental trials on previously printed samples. 
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3.3. Parameters and Slicing 

Although the selected number of parameters are quite large, however, some primary parameters 

are assumed constant. For example, the nozzle diameter, the heated bed temperature, the type 

and geometry of used filament, cooling rates, initial layer height, infill pattern and wall speed 

are fixed parameters through all the experimental tests, except wall speed is set to be equal to 

the printing speed. The fixed parameters are presented in Table 3. 

Table 3: Fixed running conditions. 

Fixed Conditions Value Unit 

Nozzle diameter 0.4 mm 

Bed temperature 65 ⁰C 

Filament PLA+ mm 

Filament diameter 1.75 mm 

Cooling rates No cooling - 

Initial layer height 0.2 mm 

Infill pattern Grid - 

Wall printing speed Equal printing speed (𝑉) mm/s 

Brim width 4 (10-line count) mm 

In order to construct a 3D model in the format of .STL file, SolidWorks 2020 [37] is used. 

While, the used slicer software is Ultimaker Cura 4.12.1 [38]. In Figure 7, a preview shot of 

the Cura software slicing process is illustrated. The preview mode shows the building progress 

of the printed samples before starting the process. Mainly, the 3D model is exported to the 

.STL file extension that is the input file for the slicer software. Then, Cura generates a .gcode 

file in order to operate the 3D printer similar to any other CNC machine. 
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Figure 7: Ultimaker Cura slicing preview mode (Copyrights reserved to Ultimaker company). 

3.4. Measurements and Measurement Tool 

At this stage, the final parts are measured on the basis of main axial dimensions [x y z] and 

planer dimensions [xy zx zy]. In case of cube samples, 16 measurements are collected out of 

each cube. The considered dimensions of the cube are shown in Figure 8. Three dimensions 

for x and y, three dimensions for zx and zy planes, and four dimensions for the z direction are 

measured as shown in Figure 8. The center of the cube is determined by the intersection of the 

x and y faces diagonals. 
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Figure 8: Measured cube dimensions. 

The other case of cylinders, the measurement of 9 dimensions, three for each axis x, y and z is 

performed. These dimensions are illustrated in Figure 9. Overall, the measurement of these 

dimensions is input independent for the dimensional variation output. The measurement tool is 

INSIZE digital caliper “Code 1108-150” that can measure up to 150 mm with a resolution of 

0.01 mm, see Figure 10. 
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Figure 9: Measured cylinder dimensions. 

 

Figure 10: INSIZE digital caliper "Code 1108-150". 

For the other two output variables; edge quality and surface quality, a level of scores is 

considered. The edge quality score levels are the interval [0 3], while the surface quality 

interval is [0 5]. Before mentioning how these levels are calculated, the edge and surface 

defects are discussed. The objective of edge and surface quality outputs is to enhance the 

defects that occur during the printing process. In this study, 3 edge defects and 5 surface defects 

are addressed. The edge defects are the appearance of elephant foot “so called blistering”, 

curling or rough edges and warping edges. The elephant foot occurs when the recent printed 
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layers solidifies faster than the base layers. Also, the curling or rough edges is the appearance 

of wavy edges or saw tooth shaped edges. Whenever the bed temperature is no sufficient to 

adhere the initial layer to the build plate, the warping of edges takes place. In addition, the 

surface defects are top surface finish “appearance of gaps or incomplete surface”, staircase 

phenomena, surface waviness “ghosting”, under/over extrusion and layer cracking. The edge 

and surface defects are categorized in Figure 11 and Figure 12. Hence, each defect is given an 

equal score of 1. 

 

Figure 11: Printing parts edge defects. 

The edge quality is determined by (1). 

 𝐸𝑑𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 3 − ∑ 𝑒𝑑𝑔𝑒 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (1) 

While the surface quality is determined by (2). 
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 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 5 − ∑ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (2) 

 

 

Figure 12: Printing parts surface defects. 
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

4.1. Results of Cube Samples 

As mentioned before, a number of 16 dimensions is measured for each cube. Then, the obtained 

dimensions are reshaped in the matrix form as follow: 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠𝑐𝑢𝑏𝑒 = [

𝑥1 𝑦1 𝑧1 𝑥𝑑1 𝑦𝑑1

𝑥2 𝑦2 𝑧2 𝑥𝑑2 𝑦𝑑2

𝑥3 𝑦3 𝑧3 𝑥𝑚 𝑦𝑚

] 

Where 𝑧3 term in the previous matrix is the average of 𝑧𝑚𝑥 and 𝑧𝑚𝑦. 

After that, the standard deviation for each column is calculated in a vector form as follow: 

𝑆𝑐𝑢𝑏𝑒 = [𝑆𝑥 𝑆𝑦 𝑆𝑧 𝑆𝑥𝑑 𝑆𝑦𝑑] 

In order to reach an indicator of the dimensional variation, the Euclidean norm [39] of the 

standard deviation column is calculated. Let 𝐷𝑉𝑐𝑢𝑏𝑒 be the dimensional variation of the cube: 

𝐷𝑉𝑐𝑢𝑏𝑒 = 𝑛𝑜𝑟𝑚(𝑆𝑐𝑢𝑏𝑒) = √𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 + 𝑆𝑥𝑑

2 + 𝑆𝑦𝑑
2  

The results of the edge quality and surface quality are obtained from the score matrices 

mentioned in the previous chapter. The final results of cube samples are shown in appendix 

(A). 

4.2. Results of Cylinder Samples 

Similarly, the obtained dimensions from each cylinder are reshaped in a matrix form. Unlike 

the cube samples, the faces diagonal 𝑥𝑑𝑖 and 𝑦𝑑𝑖 dimensions are neglected; hence, the matrix 

size is 3x3 accommodating for the three dimensions only as follow: 
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𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = [

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

] 

Where 𝑧3 is the average of 𝑧𝑥 and 𝑧𝑦. 

Again, the standard deviation of each column is calculated in a vector form, also, the Euclidean 

norm of the standard deviation vector is calculated to obtain the dimensional variation of each 

cylinder as follow: 

𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = [𝑆𝑥 𝑆𝑦 𝑆𝑧] 

𝐷𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝑛𝑜𝑟𝑚(𝑆𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟) = √𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 

The other required results are obtained from the score matrices. The complete results of the 

cylinder samples are presented in appendix (B). 

4.3. Analysis of Variance (ANOVA) 

In this section, the analysis of the relationship between the results and the parameters is 

illustrated in detail. This analysis is carried out by using MATLAB 2021a and Minitab 19.1 

software [40]. The analysis of the cube and cylinder model is performed separately. First, the 

main effects of parameters on the desired results are plotted on Minitab in order to visualize 

the influence of the parameters on each result. Then, a quadratic regression method on 

MATLAB is used to obtain the regression fit of the parameters and results. Finally, the normal 

probability of residuals, the histogram of residuals and the parameters interactions are plotted 

for each regression model. 

4.3.1. CUBE MODEL ANALYSIS 

The main effects of parameters on dimensional variation, edge quality and surface quality are 

plotted in Figure 13, Figure 14 and Figure 15, respectively. 
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Figure 13: Main effects plot for dimensional variation of cube samples. 

The main effects plot shows that the most effective parameters on the dimensional variation of 

cube samples are infill density InD, speed V and layer height LH in order. Surprisingly, the 

three parameters attain the same disproportional behavior to the 𝐷𝑉𝑐𝑢𝑏𝑒, as it decreases with 

the increase of each parameter. Meanwhile, the edge quality is affected greatly by layer height 

LH followed by infill density InD and temperature T. Unlike the 𝐷𝑉𝑐𝑢𝑏𝑒, the parameters are 

proportional to the output. Last, the surface quality of cube samples is influenced by wall 

thickness Wt remarkably, in addition to the speed V and layer height LH.  
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Figure 14: Main effects plot for edge quality for cube samples. 

 

Figure 15: Main effects plot for surface quality for cube samples. 
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Next, the quadratic regression model is developed by MATLAB for each output. In order to 

enhance the model behavior, the parameters are normalized to an interval value of [-1,1] as 

shown in (3). Hence, all parameters are given the subscript n for normalization. 

 𝑥́ = 2
𝑥 − min 𝑥

max 𝑥 − min 𝑥
− 1 (3) 

The first output (𝐷𝑉𝑐𝑢𝑏𝑒) is shown in (4). The regression R-Square is 70.5% with a p-value of 

0.026. The ANOVA table of the first output is presented in Table 4. The table shows that the 

most significant terms in the model are 𝐼𝑛𝐷𝑛, the interaction between 𝑊𝑡𝑛𝑉𝑛 and  

𝑉𝑛 with p-values of 0.003414, 0.009752 and 0.02317, respectively.  

 

𝐷𝑉𝑐𝑢𝑏𝑒 = 0.2206 − 0.0243𝐼𝑛𝐷𝑛 − 0.0212𝑊𝑡𝑛𝑉𝑛 − 0.0184𝑉𝑛

− 0.0156𝑊𝑡𝑛𝑇𝑛 + 0.01383𝑊𝑡𝑛𝐵𝑇𝑡𝑛 + 0.01316𝐼𝑛𝐷𝑛𝑉𝑛

+ 0.01012𝐿𝐻𝑛𝐼𝑛𝐷𝑛 − 0.01004𝑊𝑡𝑛𝐼𝑛𝐷𝑛

+ 0.00952𝐿𝐻𝑛𝐵𝑇𝑛 − 0.0086𝐿𝐻𝑛 − 0.007𝐵𝑇𝑡𝑛𝑉𝑛

+ 0.00678𝐼𝑛𝐷𝑛𝑇𝑛 + 0.00573𝐿𝐻𝑛𝑉𝑛 − 0.005𝑇𝑛

+ 0.00421𝐿𝐻𝑛𝑊𝑡𝑛 + 0.00372𝐵𝑇𝑡𝑛 

(4) 

Table 4: ANOVA table of dimensional variation of cube samples. 
 

Estimates SE t-stat p-value 

Intercept 0.220602 0.007765 28.41061 3.00E-26 

𝑰𝒏𝑫𝒏 -0.02434 0.007765 -3.13492 0.003414 

𝑾𝒕𝒏: 𝑽𝒏 -0.02119 0.007765 -2.72954 0.009752 

𝑽𝒏 -0.01842 0.007765 -2.37181 0.02317 

𝑾𝒕𝒏: 𝑻𝒏 -0.01563 0.007765 -2.0124 0.051705 

𝑾𝒕𝒏: 𝑩𝑻𝒕𝒏 0.013834 0.007765 1.781619 0.083249 

𝑰𝒏𝑫𝒏: 𝑽𝒏 0.013165 0.007765 1.695432 0.098627 

𝑳𝑯𝒏: 𝑰𝒏𝑫𝒏 0.010125 0.007765 1.30391 0.200541 

𝑾𝒕𝒏: 𝑰𝒏𝑫𝒏 -0.01004 0.007765 -1.2935 0.204078 

𝑳𝑯𝒏: 𝑩𝑻𝒕𝒏 0.009525 0.007765 1.226658 0.227914 

𝑳𝑯𝒏 -0.00861 0.007765 -1.10897 2.75E-01 
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𝑩𝑻𝒕𝒏: 𝑽𝒏 -0.00704 0.007765 -0.90674 0.370576 

𝑰𝒏𝑫𝒏: 𝑻𝒏 0.006784 0.007765 0.873738 0.388052 

𝑳𝑯𝒏: 𝑽𝒏 0.005727 0.007765 0.737604 0.465536 

𝑻𝒏 -0.00498 0.007765 -0.6415 0.525263 

𝑳𝑯𝒏: 𝑾𝒕𝒏 0.004212 0.007765 0.542468 0.590839 

𝑩𝑻𝒕𝒏 0.003716 0.007765 0.478557 0.635148 

The normal probability of residuals plot is shown in Figure 16. Fortunately, the plotted 

residuals are close to the 45-degree line, which means the data have appropriate fit. 

 

Figure 16: Normal probability plot of residuals for the dimensional variation regression of 

cube samples. 

In order to check the fitness of the model, the histogram of residuals shows that the residuals 

are normally distributed as shown in Figure 17. Also, the interaction between all model 

parameters is plotted in Figure 18. 
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Figure 17: Histogram of residuals for the dimensional variation regression of cube samples. 
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Figure 18: Parameters’ interactions of the dimensional variation regression of cube samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, (d) 

LH and T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD and T, 

(n) InD and V and (o) T and V. 
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The next model regression of cube samples is the edge quality. The obtained quadratic 

regression model from MATLAB in (5) has R-Square of 69.6% and a p-value of 4.13x10-5. 

 

𝐸𝑑𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑢𝑏𝑒

= 1.8593 + 0.3281𝐿𝐻𝑛 + 0.3281𝐼𝑛𝐷𝑛𝑉𝑛 − 0.2968𝐿𝐻𝑛𝑉𝑛

− 0.2968𝐿𝐻𝑛𝑇𝑛 + 0.2031𝑊𝑡𝑛𝑉𝑛 − 0.1718𝐼𝑛𝐷𝑛𝑇𝑛

+ 0.1406𝐼𝑛𝐷𝑛 − 0.1406𝐿𝐻𝑛𝐼𝑛𝐷𝑛 + 0.1093𝑇𝑛

+ 0.0781𝑊𝑡𝑛 − 0.0781𝑊𝑡𝑛𝐵𝑇𝑡𝑛 − 0.0781𝑊𝑡𝑛𝐼𝑛𝐷𝑛

+ 0.0781𝑊𝑡𝑛𝑇𝑛 

(5) 

Moreover, the ANOVA analysis of edge quality regression is shown in Table 5. Remarkably, 

the parameters 𝐿𝐻𝑛, interaction between 𝐼𝑛𝐷𝑛𝑉𝑛 and interaction between 𝐿𝐻𝑛𝑉𝑛 has the first 

three place order in significance on the edge quality regression model of cube samples. 

Table 5: ANOVA table of edge quality of cube samples. 
 

Estimates SE t-stat p-value 

Intercept 1.859375 0.079013 23.53258 1.88E-23 

𝑳𝑯𝒏 0.328125 0.079013 4.152807 0.000193 

𝑰𝒏𝑫𝒏: 𝑽𝒏 0.328125 0.079013 4.152807 0.000193 

𝑳𝑯𝒏: 𝑽𝒏 -0.296875 0.079013 -3.7573 0.000608 

𝑳𝑯𝒏: 𝑻𝒏 -0.296875 0.079013 -3.7573 0.000608 

𝑾𝒕𝒏: 𝑽𝒏 0.203125 0.079013 2.570786 0.014427 

𝑰𝒏𝑫𝒏: 𝑻𝒏 -0.171875 0.079013 -2.17528 0.036256 

𝑰𝒏𝑫𝒏 0.140625 0.079013 1.779775 0.083556 

𝑳𝑯𝒏: 𝑰𝒏𝑫𝒏 -0.140625 0.079013 -1.77977 0.083556 

 𝑻𝒏 0.109375 0.079013 1.384269 0.174798 

𝑾𝒕𝒏 0.078125 0.079013 0.988764 0.329378 

𝑾𝒕𝒏: 𝑩𝑻𝒕𝒏 -0.078125 0.079013 -0.98876 0.329378 

𝑾𝒕𝒏: 𝑰𝒏𝑫𝒏 -0.078125 0.079013 -0.98876 0.329378 

𝑾𝒕𝒏: 𝑻𝒏 0.078125 0.079013 0.988764 0.329378 

The normal probability plot and histogram of residuals are plotted in order to confirm the 

fitness of the model as shown in Figure 19 and Figure 20, respectively. The normal probability 

plot shows that the data is scattered and close to the 45-degree line, in addition, the histogram 
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of residuals follows a normal distribution. Hence, the fitness of the available experimental data 

can be reliable.  

 

Figure 19: Normal probability plot of residuals for the edge quality regression of cube 

samples. 

 

Figure 20: Histogram of residuals for the edge quality regression of cube samples. 

The interaction between the model parameters is depicted in Figure 21. 
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Figure 21: Parameters’ interactions of the edge quality regression of cube samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, (d) LH and 

T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD and T, (n) InD 

and V and (o) T and V.
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Last, the regression model of the surface quality output is given by (6) as follow: 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑢𝑏𝑒

= 3.453 + 0.5468𝑊𝑡𝑛 − 0.3593𝐿𝐻𝑛𝐼𝑛𝐷𝑛 − 0.3281𝑉𝑛

− 0.2968𝐿𝐻𝑛 + 0.2656𝑇𝑛𝑉𝑛 − 0.1718𝐵𝑇𝑡𝑛

− 0.1406𝐿𝐻𝑛𝑇𝑛 − 0.1406𝐼𝑛𝐷𝑛𝑇𝑛 + 0.1406𝑊𝑡𝑛𝑉𝑛

− 0.1093𝑊𝑡𝑛𝑇𝑛 − 0.1093𝐼𝑛𝐷𝑛 + 0.1093𝑊𝑡𝑛𝐼𝑛𝐷𝑛

− 0.0781𝐿𝐻𝑛𝑉𝑛 − 0.0781𝑇𝑛 

(6) 

The obtained R-Square value is 71% and a p-value of 6.24x10-6. The ANOVA analysis shows 

that the wall thickness 𝑊𝑡𝑛, the interaction between layer height 𝐿𝐻𝑛 and infill density 𝐼𝑛𝐷𝑛 

and the printing speed 𝑉𝑛 are the most influential parameters on the surface quality output, in 

addition to the layer height 𝐿𝐻𝑛 as shown in Table 6. 

Table 6: ANOVA table of surface quality of cube samples. 

 Estimates SE t-stat p-value 

Intercept 3.453125 0.090533 38.14234 1.04E-30 

𝑾𝒕𝒏 0.546875 0.090533 6.040642 6.13E-07 

𝑳𝑯𝒏: 𝑰𝒏𝑫𝒏 -0.35938 0.090533 -3.96957 0.000329 

𝑽𝒏 -0.32813 0.090533 -3.62439 0.000888 

𝑳𝑯𝒏 -0.29688 0.090533 -3.27921 0.002314 

𝑻𝒏: 𝑽𝒏 0.265625 0.090533 2.934026 0.005791 

𝑩𝑻𝒕𝒏 -0.17188 0.090533 -1.89849 0.065671 

𝑳𝑯𝒏: 𝑻𝒏 -0.14063 0.090533 -1.55331 0.129098 

𝑰𝒏𝑫𝒏: 𝑻𝒏 -0.14063 0.090533 -1.55331 0.129098 

𝑾𝒕𝒏: 𝑽𝒏 0.140625 0.090533 1.553308 0.129098 

𝑾𝒕𝒏: 𝑻𝒏 -0.10938 0.090533 -1.20813 0.234874 

𝑰𝒏𝑫𝒏 -0.10938 0.090533 -1.20813 0.234874 

𝑾𝒕𝒏: 𝑰𝒏𝑫𝒏 0.109375 0.090533 1.208128 0.234874 

𝑳𝑯𝒏: 𝑽𝒏 -0.07813 0.090533 -0.86295 0.393878 

𝑻𝒏 -0.07812 0.090533 -0.86295 0.393878 

In addition, the normal probability plot and histogram plot of residuals of the edge quality 

regression of the cube samples are graphed in Figure 22 and Figure 23. Fruitfully, the graphs 

show that the data are in good fit with model. 
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Figure 22: Normal probability plot of residuals for the surface quality regression of cube 

samples. 

 

Figure 23: Histogram of residuals for the surface quality regression of cube samples. 



35 

 

Finally, the interaction between the model parameters for the edge quality output is illustrated in Figure 24. 

 

Figure 24: Parameters’ interactions of the surface quality regression of cube samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, (d) LH 

and T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD and T, (n) 

InD and V and (o) T and V.
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4.3.2. CYLINDER MODEL ANALYSIS 

Similarly, the same procedure considered in the cube model is followed. The main effects plots 

of the parameters on the three outputs are shown in Figure 25, Figure 26 and Figure 27. 

 

Figure 25: Main effects plot for dimensional variation of cylinder samples. 

Obviously, all the three outputs are affected greatly by three or more parameters. This can be 

explained as the multi-axis movement of the printer head with a certain speed to create a single 

layer is crucial. Moreover, the infill connection with the walls of the printed samples is 

considered additional reason. Almost all parameters except the bottom/top thickness 𝐵𝑇𝑡 and 

the temperature 𝑇 are significant to the main outputs. 
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Figure 26: Main effects plot for edge quality of cylinder samples. 

 

Figure 27: Main effects plot for surface quality of cylinder samples. 
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Moving forward to the quadratic regression of the cylinder model, the first model is the 

dimensional variation regression with normalized parameters, see Equation (7). The regression 

R-Square is 69.8% and the p-value is 6.19x10-5. Then, the ANOVA analysis is carried out and 

shown in Table 7. 

 

𝐷𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 0.1542 − 0.0327𝑉𝑛 − 0.0234𝐼𝑛𝐷𝑛 − 0.0188𝑊𝑡𝑛𝑉𝑛

− 0.01486𝑇𝑛 − 0.01486𝐿𝐻𝑛 + 0.0122𝑊𝑡𝑛

− 0.0107𝐼𝑛𝐷𝑛𝑉𝑛 + 0.0086𝐿𝐻𝑛𝑇𝑛 + 0.0058𝐿𝐻𝑛𝑉𝑛

− 0.0056𝑊𝑡𝑛𝑇𝑛 + 0.0052𝐵𝑇𝑡𝑛 − 0.0048𝐵𝑇𝑡𝑛𝐼𝑛𝐷𝑛 

(7) 

Table 7: ANOVA table of dimensional variation of cylinder samples. 

 Estimates SE t-stat p-value 

Intercept 0.154267 0.005867 26.2949 4.29E-25 

𝑽𝒏 -0.03279 0.005867 -5.5895 2.46E-06 

𝑰𝒏𝑫𝒏 -0.02349 0.005867 -4.0035 0.000298 

𝑾𝒕𝒏: 𝑽𝒏 -0.01883 0.005867 -3.20901 0.002799 

𝑻𝒏 -0.01486 0.005867 -2.53214 0.015842 

𝑳𝑯𝒏 -0.01424 0.005867 -2.4271 0.020352 

𝑾𝒕𝒏 0.012217 0.005867 2.082449 0.044468 

𝑰𝒏𝑫𝒏: 𝑽𝒏 -0.01076 0.005867 -1.83471 0.074823 

𝑳𝑯𝒏: 𝑻𝒏 0.008609 0.005867 1.467341 0.150966 

𝑳𝑯𝒏: 𝑽𝒏 0.005849 0.005867 0.997028 0.325406 

𝑾𝒕𝒏: 𝑻𝒏 -0.00559 0.005867 -0.95298 0.346955 

𝑩𝑻𝒕𝒏 0.005241 0.005867 0.893333 0.377612 

𝑩𝑻𝒕𝒏: 𝑰𝒏𝑫𝒏 -0.00483 0.005867 -0.82398 0.415375 

In this case, the first 6 terms, excluding the constant term, in Table 7 are the most significant 

terms in the regression model of the cylinders’ dimensional variation. The range of p-value 

for the mentioned parameters varies between [2.46x10-6 0.044468]. Furthermore, the normal 

probability and histogram plots of residuals is obtained to check the fitness of the model with 
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the date as show in Figure 28 and Figure 29, respectively. Fortunately, the graphs indicate a 

good fit of the data. 

 

Figure 28: Normal probability plot of residuals for the dimensional variation regression of 

cylinder samples. 

 

Figure 29: Histogram of residuals for the dimensional variation regression of cylinder 

samples. 
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Similarly, the interactions between the model parameters are shown in Figure 30. Only the interaction between Wt and V and the interaction 

between BTt and InD are found significant.   

 
Figure 30: Parameters’ interactions of the dimensional variation regression of cylinder samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, 

(d) LH and T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD 

and T, (n) InD and V and (o) T and V.
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The second model is the edge quality of cylinder samples, see Equation (8). The R-Squared 

value of this model is 64.5%, and the p-value is 0.00728. The model terms show close 

significance as shown in the ANOVA analysis in Table 8. The normal probability plot and 

histogram plot of the residuals are show in Figure 31 and Figure 32, respectively. 

Unfortunately, the graphs show slight lack of fit of the data, however, the model is acceptable 

for the given design of experiment as the parameters’ levels are limited to 2 level full-factorial 

design. 

 

𝐸𝑑𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

= 2.625 − 0.15625𝐿𝐻𝑛𝐼𝑛𝐷𝑛 + 0.15625𝐿𝐻𝑛𝑉𝑛

+ 0.125𝐿𝐻𝑛 − 0.125𝐵𝑇𝑡𝑛𝐼𝑛𝐷𝑛 − 0.125𝐵𝑇𝑡𝑛𝑇𝑛

+ 0.125𝑊𝑡𝑛 − 0.125𝐿𝐻𝑛𝑊𝑡𝑛 − 0.125𝑉𝑛 + 0.0937𝐼𝑛𝐷𝑛

− 0.0973𝐿𝐻𝑛𝐵𝑇𝑡𝑛 − 0.0937𝑇𝑛 − 0.0625𝑊𝑡𝑛𝑉𝑛 

(8) 

Table 8: ANOVA table of edge quality of cylinder samples. 

 Estimates SE t-stat p-value 

Intercept 2.625 0.059449358 44.15522858 5.96E-33 

𝑳𝑯𝒏: 𝑰𝒏𝑫𝒏 -0.15625 0.059449358 -2.6282874 0.012535853 

𝑰𝒏𝑫𝒏: 𝑽𝒏 1.56E-01 0.059449358 2.63E+00 0.012535853 

𝑳𝑯𝒏 0.125 0.059449358 2.102629932 0.042554919 

𝑩𝑻𝒕𝒏: 𝑰𝒏𝑫𝒏 -0.125 0.059449358 -2.1026299 0.042554919 

𝑩𝑻𝒕𝒏: 𝑻𝒏 -0.125 0.059449358 -2.1026299 0.042554919 

𝑾𝒕𝒏 0.125 0.059449358 2.102629932 0.042554919 

𝑳𝑯𝒏: 𝑾𝒕𝒏 -0.125 0.059449358 -2.1026299 0.042554919 

𝑽𝒏 -0.125 0.059449358 -2.1026299 0.042554919 

𝑰𝒏𝑫𝒏 0.09375 0.059449358 1.576972449 0.123549948 

𝑳𝑯𝒏: 𝑩𝑻𝒕𝒏 -0.09375 0.059449358 -1.5769724 0.123549948 

𝑻𝒏 -0.09375 0.059449358 -1.5769724 0.123549948 

𝑾𝒕𝒏: 𝑽𝒏 -0.0625 0.059449358 -1.0513149 0.3001201 
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Figure 31: Normal probability plot of residuals for the edge quality regression of cylinder 

samples. 

 

Figure 32: Histogram of residuals for the edge quality regression of cylinder samples. 
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Last, the interactions between model parameters for the edge quality regression is illustrated in Figure 29. 

 

Figure 33: Parameters’ interactions of the edge quality regression of cylinder samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, (d) LH 

and T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD and T, (n) 

InD and V and (o) T and V.
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The last regression model in this study is the surface quality of cylinder samples. The obtained 

R-Squared value is 65.5%, and the p-value is 0.000115. The model is presented in Equation 

(9).  To wrap up this analysis, the ANOVA analysis is presented in Table 9. Furthermore, the 

normal probability plot and histogram plot of the residuals show a good fit of the data as shown 

in Figure 34 and Figure 35, respectively. 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

= 3.2812 + 0.4062𝑊𝑡𝑛 − 0.25𝐿𝐻𝑛 + 0.2187𝑇𝑛𝑉𝑛

− 0.2187𝐼𝑛𝐷𝑛 − 0.2187𝑉𝑛 + 0.125𝐿𝐻𝑛𝑊𝑡𝑛

− 0.125𝐿𝐻𝑛𝐼𝑛𝐷𝑛 + 0.125𝐿𝐻𝑛𝑉𝑛 − 0.0937𝑊𝑡𝑛𝐼𝑛𝐷𝑛

− 0.0937𝐿𝐻𝑛𝐵𝑇𝑡𝑛 + 0.0937𝐼𝑛𝐷𝑛𝑇𝑛 − 0.0625𝑊𝑡𝑛𝐵𝑇𝑡𝑛

− 0.0625𝐵𝑇𝑡𝑛 

(9) 

Table 9: ANOVA table of surface quality of cylinder samples. 

 Estimates SE t-stat p-value 

Intercept 3.28125 0.075937 43.21038 1.28E-32 

𝑾𝒕𝒏 0.40625 0.075937 5.349857 5.13981E-06 

𝑳𝑯𝒏 -0.25 0.075937 -3.29222 0.002233397 

𝑻𝒏: 𝑽𝒏 0.21875 0.075937 2.880692 0.006645893 

𝑰𝒏𝑫𝒏 -0.21875 0.075937 -2.88069 0.006645893 

𝑽𝒏 -0.21875 0.075937 -2.88069 0.006645893 

𝑳𝑯𝒏:𝑾𝒕𝒏 0.125 0.075937 1.64611 0.108445186 

𝑳𝑯𝒏: 𝑰𝒏𝑫𝒏 -1.25E-01 0.075937 -1.65E+00 0.108445186 

𝑳𝑯𝒏: 𝑽𝒏 0.125 0.075937 1.64611 0.108445186 

𝑾𝒕𝒏: 𝑰𝒏𝑫𝒏 -0.09375 0.075937 -1.23458 0.224984068 

𝑳𝑯𝒏: 𝑩𝑻𝒕𝒏 -0.09375 0.075937 -1.23458 0.224984068 

𝑰𝒏𝑫𝒏: 𝑻𝒏 0.09375 0.075937 1.234582 0.224984068 

𝑾𝒕𝒏: 𝑩𝑻𝒕𝒏 -0.0625 0.075937 -0.82305 0.415895769 

𝑩𝑻𝒕𝒏 -0.0625 0.075937 -0.82305 0.415895769 
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Figure 34: Normal probability plot of residuals for the surface quality regression of cylinder 

samples. 

 

Figure 35: Histogram of residuals for the surface quality regression of cylinder samples. 
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Finally, the interaction between parameters for the surface quality regression model is depicted in Figure 36. 

 

Figure 36: Parameters’ interactions of the surface quality regression of cylinder samples: (a) LH and Wt, (b) LH and BTt, (c) LH and InD, (d) LH 

and T, (e) LH and V, (f) Wt and BTt, (g) Wt and InD, (h) Wt and T, (i) Wt and V, (j) BTt and InD, (k) BTt and T, (l) BTt and V, (m) InD and T, (n) 

InD and V and (o) T and V.
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4.4. Multi-Objective Optimization 

In this section, the obtained regression models from the ANOVA analysis are optimized using 

multi-objective optimization techniques on MATLAB 9.10 2021a. The used techniques in this 

study are multi-objective genetic algorithm (MOGA) and multi-objective pareto search 

algorithm (MOPSA). Although, the study includes two different geometries; cube and cylinder, 

hence, the optimization study is carried out separately. The aim of this research is to optimize 

three different outputs in the process of 3D printing by fused deposition modelling (FDM). The 

objectives are the dimensional accuracy, edge quality and surface quality. First, the cube model 

mentioned in section 4.3.1 presents the three desired objective functions (4)-(6). However, the 

objective of the model is to minimize the dimensional variation (4) and to maximize the edge 

quality (5) and the surface quality (6). Meanwhile, MATLAB optimization functions search 

for the minimal values of the input objective, hence, the multiplicative inverse of (5) and (6) is 

considered the second and the third objectives. The upper and lower bounds of the model 

parameters are common between cube and cylinder models. The developed multi-objective 

optimization model is shown in Table 10. 

Table 10: Optimization model of cube samples. 

Item  

No. of variables 6 

Variables 𝐿𝐻, 𝑊𝑡, 𝐵𝑇𝑡, 𝐼𝑛𝐷, 𝑇, 𝑉 

Objectives 

min(𝐷𝑉𝑐𝑢𝑏𝑒) 

min(
1

𝐸𝑑𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑢𝑏𝑒
) 

min(
1

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑢𝑏𝑒
) 

Lower bounds [0.1, 0.4, 0.8, 0.25, 190, 30] 

Upper bounds [0.2, 1.2, 1.6, 0.50, 210, 60] 
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For the MOGA simulation, the initial starting point is the average vector of the lower and upper 

bounds; 𝑥0 = [0.15 0.8 1.2 0.375 200 45]. The number of populations and the 

maximum generations are set to 500 and 2000, respectively. It is found that the pareto plot 

function is limited to visualize the algorithm search, in addition to the lack of a 2-D 

representation. Hence, the parallel plot function on MATLAB provides a sufficient 

visualization of the optimization output. In Figure 37, the results of the optimal solution scheme 

are provided, also, the optimal solution is marked in green. The optimal solution can be found 

in Table 11. 

 

Figure 37: Parallel Plot of MOGA simulation for cube samples. 

Table 11: MOGA optimal solution for cube samples. 

Parameters Results Comp. Time 

𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 
(s) 

0.1 0.8 0.8 50 210 60 0.13367 3 5 19.7 
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On the other hand, the MOPSA does not require initial starting point, however, the maximum 

iterations are set to be 10000.  The MOPSA results are the same as the MOGA results for the 

cube samples except MOPSA is 28 times faster than MOGA in computational time. The 

parallel plot graph that is obtained from the results of MOPSA simulation is shown in Figure 

38. Also, the optimal printing parameters of MOPSA are shown in Table 12. 

 

Figure 38: Parallel Plot of MOPSA simulation for cube samples. 

Table 12: MOPSA optimal solution for cube samples. 

Parameters Results Comp. Time 

𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 
(s) 

0.1 0.8 0.8 50 210 60 0.13367 3 5 0.72 

In the other case of cylinder samples, the same procedure is considered. The optimization 

model is shown in Table 13. Moreover, the two optimization techniques are carried out with 

the same options mentioned in the cube case. 
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Table 13: Optimization model of cylinder samples. 

Item  

No. of variables 6 

Variables 𝐿𝐻, 𝑊𝑡, 𝐵𝑇𝑡, 𝐼𝑛𝐷, 𝑇, 𝑉 

Objectives 

min(𝐷𝑉𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟) 

min(
1

𝐸𝑑𝑔𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
) 

min(
1

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
) 

Lower bounds [0.1, 0.4, 0.8, 0.25, 190, 30] 

Upper bounds [0.2, 1.2, 1.6, 0.50, 210, 60] 

The optimal printing parameters are different from the obtained parameters in the cube 

samples. In Figure 39, the optimal solution gives lower surface quality level at 4, while the 

edge quality level is 3, and the dimensional variation is 0.05951. The optimal parameters can 

be shown in Table 14. 

 

Figure 39: Parallel Plot of MOGA simulation for cylinder samples. 
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Table 14: MOGA optimal solution for cylinder samples. 

Parameters Results Comp. Time 

𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 
(s) 

0.2 0.8 0.82 50 210 60 0.05951 3 4 23.5 

The other technique MOPSA records different optimal solution with a slight effect on the 

objective as shown in Figure 40, however, the MOPSA remains faster than the MOGA 

technique. Finally, the optimal solution for cylinder samples using MOPSA technique is shown 

in Table 15. 

 

Figure 40: Parallel Plot of MOPSA simulation for cylinder samples. 

Table 15: MOPSA optimal solution for cylinder samples. 

Parameters Results Comp. Time 

𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 
(s) 

0.2 0.8 0.8 50 210 60 0.05948 3 4 0.86 
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4.5. Discussion 

The FDM process is considered one of the most complicated and unpredictable additive 

manufacturing techniques. For many reasons, relating certain printing parameters to the final 

printed samples quality is challenging. First, the printer machine hardware related issues are 

unpredictable, for example, the motors vibrations and movement steps. No matter how motors 

are aligned and calibrated, there will be some negative effects on the printer performance and 

accuracy. Another reason, the printer structure stability can disturb the printing process. In 

addition, the printing parameters are enormously various which complicates the mathematical 

model development. These reasons are crucial to be mentioned as presented in this study, the 

lack of fit of the regression between printing parameters and final product quality is remarkable. 

In addition, the design of experiment that accommodates for full factorial design with 2-level 

and 6 factors tends to eliminate the nonlinearity of the parameters effect on the output. That’s 

why all the polynomial terms of the second degree were removed from the presented models. 

However, involving as much as possible parameters in one model is one of this research 

priorities. Obviously, the influence of each single parameter on the final product’s quality 

seems to be week, however, the interactions between parameters attain higher levels of 

influence. Though, the optimization results are compared to find the optimal printing 

conditions for cubes and cylinders, see Table 16. The optimal solutions of both cases presented 

in this study are tested, see Figure 41. The cylinder part remains having a stair case issue on 

the surface; hence, the surface quality level is 4 as expected. The printed samples results are 

close to the model results, see Table 17. The dimensional variation relative errors between the 

printed samples and the optimized model are 11.6% and 13.48% for the cube and cylinder, 

respectively. Meanwhile, the edge quality and surface quality levels are matching the 

optimization model results. 
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Figure 41: Printed samples using the optimal parameters obtained in the study. 

Finally, in the next chapter, the conclusions will be illustrated carefully. Furthermore, a deeper 

insight in the required future work will be presented. 
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Table 16: Comparison between different optimization techniques on cube and cylinder cases. 

Case 
Opt. 

Method 

Parameters Results 
Comp. 

Time 
𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Dimensional 

Variation 
Edge Quality Surface Quality 

Cube 
MOGA 0.1 0.8 0.8 50 210 60 0.13367 3 5 19.7 

MOPSA 0.1 0.8 0.8 50 210 60 0.13367 3 5 0.72 

Cylinder 
MOGA 0.2 0.8 0.82 50 210 60 0.05951 3 4 23.5 

MOPSA 0.2 0.8 0.8 50 210 60 0.05948 3 4 0.86 

Table 17: Comparison between printed samples with optimal parameters and the obtained model. 

Case 

Parameters 
Dimensional 

Variation 

Error 

Edge 

Quality 

Error 

Surface 

Quality 

Error 𝑳𝑯 

(mm) 

𝑊𝑡 

(mm) 

𝐵𝑇𝑡 

(mm) 

𝐼𝑛𝐷 

(%) 

𝑇 

(⁰C) 

𝑉 

(mm/s) 

Cube 0.1 0.8 0.8 50 210 60 0.1486 +11.16% 3 0% 5 0% 

Cylinder 0.2 0.8 0.8 50 210 60 0.0675 +13.48% 3 0% 4 0% 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

The aim of this study is to develop an extensive model of the FDM 3D-printing process. The 

difficulty of developing such model is the presence of enormous number of parameters whether 

the running conditions, the software issues or external factors. The involved parameters: layer 

height, wall thickness, bottom/top thickness, infill density, temperature and printing speed, are 

modeled in order to obtain three important concerns; the dimensional variation, edge quality 

and surface quality of the FDM printed parts by experimental-based model. To achieve deeper 

insight into the process, the resulted models are optimized by two different techniques; MOGA 

and MOPSA. 

Obviously, the price of including 6 of printing parameters, which is considered weak number 

compared to the total parameters of the process, in one model affected the regression 

significance and fitness negatively. However, the models confirm that not a single parameter 

is influential on the process, though, the interaction between the parameters is found to be more 

influencing. For both cases, cubes and cylinders, it is found that the most influential terms on 

the dimensional variation are the infill density, the interaction between wall thickness and 

printing speed, and the printing speed, whereas the edge quality depends on the interaction 

between the infill density and printing speed, the interaction between layer height and infill 

density and the interaction between layer height and printing speed. The surface quality is 

primarily influenced by wall thickness, the interaction between layer height and infill density 

and the interaction between temperature and printing speed. Generally, the infill density, the 

wall thickness, printing speed, the layer height and their interaction are found to be the most 
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effecting parameters in the FDM process, while the bottom/top thickness and temperature show 

low significance in this study. 

Furthermore, the MOPSA technique outperformed the MOGA technique in the computational 

time to investigate the optimal parameters of the model, however, the final solutions obtained 

of both of them are nearly equal. Unexpectedly, the optimization of the two cases of cubes and 

cylinders resulted the same optimal parameters except the layer height 0.1 mm and 0.2 mm for 

the cubes and the cylinders, respectively. The difference between the results of the two cases 

was expected to be the trade-off between wall thickness and printing speed, though, the layer 

height dominated. Eventually, the optimal printing parameters in this research scope are wall 

thickness of 0.8 mm, bottom/top thickness of 0.8 mm, infill density of 50%, temperature of 210 

oC, printing speed of 60 mm/s and the compensation of the layer height levels [0.1 0.2]. 

5.2. Future Work 

Satisfactorily, the developed model includes 6 printing parameters, however, further 

investigation on the constant parameters in the FDM printing process is necessary. In addition, 

many slicing software contain adaptive approaches in providing variable parameters, for 

example, variable temperatures and printing speeds during the process. To enhance the 

regression model, higher factors’ levels need to be accounted for in order to explore the non-

linearity effects of parameters on the FDM process. In addition, the form tolerance analysis 

might be needed in order to present deeper insight into the final part surface and edge quality. 

Overall, it is clearly apparent that FDM process needs more investigations on final printed parts 

quality. In order to promote FDM as dependable, sustainable and competitive manufacturing 

process, investigations on input parameters and various outputs such as production time and 

cost, mechanical properties and surface topography can be analyzed, modeled and optimized.   
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APPENDIX 

A. Experimental Results of Cube Samples 

Run 

No. 

Parameters Results 

LH Wt BTt InD T V 
Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 

B1 0.1 0.4 0.8 0.25 190 30 0.1282 2 4 

B2 0.2 0.4 0.8 0.25 190 30 0.2110 3 3 

B3 0.1 1.2 0.8 0.25 190 30 0.3120 3 5 

B4 0.2 1.2 0.8 0.25 190 30 0.1878 3 4 

B5 0.1 0.4 1.6 0.25 190 30 0.1999 3 4 

B6 0.2 0.4 1.6 0.25 190 30 0.1607 3 3 

B7 0.1 1.2 1.6 0.25 190 30 0.2726 3 5 

B8 0.2 1.2 1.6 0.25 190 30 0.2172 3 4 

B9 0.1 0.4 0.8 0.5 190 30 0.1963 3 3 

B10 0.2 0.4 0.8 0.5 190 30 0.0948 2 3 

B11 0.1 1.2 0.8 0.5 190 30 0.2192 3 4 

B12 0.2 1.2 0.8 0.5 190 30 0.2218 3 4 

B13 0.1 0.4 1.6 0.5 190 30 0.2063 2 4 

B14 0.2 0.4 1.6 0.5 190 30 0.1452 3 2 

B15 0.1 1.2 1.6 0.5 190 30 0.3195 3 4 

B16 0.2 1.2 1.6 0.5 190 30 0.1945 3 4 

B17 0.1 0.4 0.8 0.25 210 30 0.1135 2 3 

B18 0.2 0.4 0.8 0.25 210 30 0.1561 3 3 

B19 0.1 1.2 0.8 0.25 210 30 0.2209 3 5 

B20 0.2 1.2 0.8 0.25 210 30 0.1753 3 4 

B21 0.1 0.4 1.6 0.25 210 30 0.2322 2 4 

B22 0.2 0.4 1.6 0.25 210 30 0.1212 3 2 

B23 0.1 1.2 1.6 0.25 210 30 0.2342 3 3 

B24 0.2 1.2 1.6 0.25 210 30 0.2538 3 3 

B25 0.1 0.4 0.8 0.5 210 30 0.1415 3 3 

B26 0.2 0.4 0.8 0.5 210 30 0.1457 3 2 
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B27 0.1 1.2 0.8 0.5 210 30 0.1746 2 4 

B28 0.2 1.2 0.8 0.5 210 30 0.1752 3 3 

B29 0.1 0.4 1.6 0.5 210 30 0.1512 2 3 

B30 0.2 0.4 1.6 0.5 210 30 0.0923 2 3 

B31 0.1 1.2 1.6 0.5 210 30 0.1922 3 4 

B32 0.2 1.2 1.6 0.5 210 30 0.1190 3 3 

B33 0.1 0.4 0.8 0.25 190 60 0.1766 0 3 

B34 0.2 0.4 0.8 0.25 190 60 0.1029 3 3 

B35 0.1 1.2 0.8 0.25 190 60 0.2902 2 3 

B36 0.2 1.2 0.8 0.25 190 60 0.1215 3 5 

B37 0.1 0.4 1.6 0.25 190 60 0.2354 2 2 

B38 0.2 0.4 1.6 0.25 190 60 0.1845 3 2 

B39 0.1 1.2 1.6 0.25 190 60 0.2216 3 4 

B40 0.2 1.2 1.6 0.25 190 60 0.1047 3 4 

B41 0.1 0.4 0.8 0.5 190 60 0.1156 3 3 

B42 0.2 0.4 0.8 0.5 190 60 0.0635 3 2 

B43 0.1 1.2 0.8 0.5 190 60 0.0538 3 3 

B44 0.2 1.2 0.8 0.5 190 60 0.1252 3 2 

B45 0.1 0.4 1.6 0.5 190 60 0.0785 3 4 

B46 0.2 0.4 1.6 0.5 190 60 0.1215 3 2 

B47 0.1 1.2 1.6 0.5 190 60 0.0457 3 2 

B48 0.2 1.2 1.6 0.5 190 60 0.0836 2 2 

B49 0.1 0.4 0.8 0.25 210 60 0.1842 2 3 

B50 0.2 0.4 0.8 0.25 210 60 0.1380 3 3 

B51 0.1 1.2 0.8 0.25 210 60 0.0231 2 3 

B52 0.2 1.2 0.8 0.25 210 60 0.1415 2 4 

B53 0.1 0.4 1.6 0.25 210 60 0.1348 2 3 

B54 0.2 0.4 1.6 0.25 210 60 0.1781 2 3 

B55 0.1 1.2 1.6 0.25 210 60 0.1048 2 4 

B56 0.2 1.2 1.6 0.25 210 60 0.1496 2 4 

B57 0.1 0.4 0.8 0.5 210 60 0.1036 3 3 

B58 0.2 0.4 0.8 0.5 210 60 0.0545 3 2 

B59 0.1 1.2 0.8 0.5 210 60 0.1356 3 4 

B60 0.2 1.2 0.8 0.5 210 60 0.0651 3 4 
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B61 0.1 0.4 1.6 0.5 210 60 0.1154 2 3 

B62 0.2 0.4 1.6 0.5 210 60 0.0622 2 2 

B63 0.1 1.2 1.6 0.5 210 60 0.0588 3 4 

B64 0.2 1.2 1.6 0.5 210 60 0.1130 2 3 

B. Experimental Results of Cylinder Samples 

Run 

No. 

Parameters Results 

LH Wt BTt InD T V 
Dimensional 

Variation 

Edge 

Quality 

Surface 

Quality 

B1 0.1 0.4 0.8 0.25 190 30 0.1282 2 4 

B2 0.2 0.4 0.8 0.25 190 30 0.2110 3 3 

B3 0.1 1.2 0.8 0.25 190 30 0.3120 3 5 

B4 0.2 1.2 0.8 0.25 190 30 0.1878 3 4 

B5 0.1 0.4 1.6 0.25 190 30 0.1999 3 4 

B6 0.2 0.4 1.6 0.25 190 30 0.1607 3 3 

B7 0.1 1.2 1.6 0.25 190 30 0.2726 3 5 

B8 0.2 1.2 1.6 0.25 190 30 0.2172 3 4 

B9 0.1 0.4 0.8 0.5 190 30 0.1963 3 3 

B10 0.2 0.4 0.8 0.5 190 30 0.0948 2 3 

B11 0.1 1.2 0.8 0.5 190 30 0.2192 3 4 

B12 0.2 1.2 0.8 0.5 190 30 0.2218 3 4 

B13 0.1 0.4 1.6 0.5 190 30 0.2063 2 4 

B14 0.2 0.4 1.6 0.5 190 30 0.1452 3 2 

B15 0.1 1.2 1.6 0.5 190 30 0.3195 3 4 

B16 0.2 1.2 1.6 0.5 190 30 0.1945 3 4 

B17 0.1 0.4 0.8 0.25 210 30 0.1135 2 3 

B18 0.2 0.4 0.8 0.25 210 30 0.1561 3 3 

B19 0.1 1.2 0.8 0.25 210 30 0.2209 3 5 

B20 0.2 1.2 0.8 0.25 210 30 0.1753 3 4 

B21 0.1 0.4 1.6 0.25 210 30 0.2322 2 4 

B22 0.2 0.4 1.6 0.25 210 30 0.1212 3 2 

B23 0.1 1.2 1.6 0.25 210 30 0.2342 3 3 

B24 0.2 1.2 1.6 0.25 210 30 0.2538 3 3 
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B25 0.1 0.4 0.8 0.5 210 30 0.1415 3 3 

B26 0.2 0.4 0.8 0.5 210 30 0.1457 3 2 

B27 0.1 1.2 0.8 0.5 210 30 0.1746 2 4 

B28 0.2 1.2 0.8 0.5 210 30 0.1752 3 3 

B29 0.1 0.4 1.6 0.5 210 30 0.1512 2 3 

B30 0.2 0.4 1.6 0.5 210 30 0.0923 2 3 

B31 0.1 1.2 1.6 0.5 210 30 0.1922 3 4 

B32 0.2 1.2 1.6 0.5 210 30 0.1190 3 3 

B33 0.1 0.4 0.8 0.25 190 60 0.1766 0 3 

B34 0.2 0.4 0.8 0.25 190 60 0.1029 3 3 

B35 0.1 1.2 0.8 0.25 190 60 0.2902 2 3 

B36 0.2 1.2 0.8 0.25 190 60 0.1215 3 5 

B37 0.1 0.4 1.6 0.25 190 60 0.2354 2 2 

B38 0.2 0.4 1.6 0.25 190 60 0.1845 3 2 

B39 0.1 1.2 1.6 0.25 190 60 0.2216 3 4 

B40 0.2 1.2 1.6 0.25 190 60 0.1047 3 4 

B41 0.1 0.4 0.8 0.5 190 60 0.1156 3 3 

B42 0.2 0.4 0.8 0.5 190 60 0.0635 3 2 

B43 0.1 1.2 0.8 0.5 190 60 0.0538 3 3 

B44 0.2 1.2 0.8 0.5 190 60 0.1252 3 2 

B45 0.1 0.4 1.6 0.5 190 60 0.0785 3 4 

B46 0.2 0.4 1.6 0.5 190 60 0.1215 3 2 

B47 0.1 1.2 1.6 0.5 190 60 0.0457 3 2 

B48 0.2 1.2 1.6 0.5 190 60 0.0836 2 2 

B49 0.1 0.4 0.8 0.25 210 60 0.1842 2 3 

B50 0.2 0.4 0.8 0.25 210 60 0.1380 3 3 

B51 0.1 1.2 0.8 0.25 210 60 0.0231 2 3 

B52 0.2 1.2 0.8 0.25 210 60 0.1415 2 4 

B53 0.1 0.4 1.6 0.25 210 60 0.1348 2 3 

B54 0.2 0.4 1.6 0.25 210 60 0.1781 2 3 

B55 0.1 1.2 1.6 0.25 210 60 0.1048 2 4 

B56 0.2 1.2 1.6 0.25 210 60 0.1496 2 4 

B57 0.1 0.4 0.8 0.5 210 60 0.1036 3 3 

B58 0.2 0.4 0.8 0.5 210 60 0.0545 3 2 
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B59 0.1 1.2 0.8 0.5 210 60 0.1356 3 4 

B60 0.2 1.2 0.8 0.5 210 60 0.0651 3 4 

B61 0.1 0.4 1.6 0.5 210 60 0.1154 2 3 

B62 0.2 0.4 1.6 0.5 210 60 0.0622 2 2 

B63 0.1 1.2 1.6 0.5 210 60 0.0588 3 4 

B64 0.2 1.2 1.6 0.5 210 60 0.1130 2 3 
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