
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations Student Research 

Winter 1-31-2022 

Adding Temporal Information to LiDAR Semantic Segmentation Adding Temporal Information to LiDAR Semantic Segmentation 

for Autonomous Vehicles for Autonomous Vehicles 

Mohammed Anany 
moerafaat@aucegypt.edu 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

 Part of the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 

APA Citation 
Anany, M. (2022).Adding Temporal Information to LiDAR Semantic Segmentation for Autonomous 
Vehicles [Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1862 

MLA Citation 
Anany, Mohammed. Adding Temporal Information to LiDAR Semantic Segmentation for Autonomous 
Vehicles. 2022. American University in Cairo, Master's Thesis. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1862 

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge 
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC 
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu. 









Thesis Document

Figure 2.19: Proposed architecture. The LiDAR scan is projected into 2D images for the different channels
(depth, reflectance, x, y, z). The images are stacked and fed into the network, which outputs the segmentation

predictions.

After the network produces a prediction for a scan, the results are used with a bayes filter

to make the results temporally consistent. The scans are assumed to be fed in sequence with

significant overlap between consecutive frames. The filter uses a formulation that relies on

current and previous measurements to predict the current segmentation results. This requires data

association between points in consecutive frames which is achieved by aligning scans using

estimated motion and choosing the nearest point according to the Euclidean distance as the

corresponding point. The inference chooses the class with the highest probability.

Evaluation was performed on the KITTI tracking benchmark and on Semantic KITTI.

Tables 2.7 and 2.8 summarize the results for the datasets respectively.

Table 2.7: Results of evaluation on KITTI tracking benchmark.

32



Thesis Document

Table 2.8: Results of evaluating DBLiDARNet on Semantic KITTI. Single scan results (19 classes) for famous
architectures on sequences 11 to 21 (test set). All methods were trained on sequences 00 to 10, except for

sequence 08 which was used as a validation set.

2.3.2.3. 4D Point Cloud Semantic Segmentation: SpSequenceNet

SpSequenceNet [51] is a network that consumes a sequence of 3D point clouds, hence

converting it to 4D. The network is based on 3D sparse convolutions. The authors introduce 2

modules: Cross-frame Global Attention (CGA) and Cross-frame Local Interpolation (CLI). CGA

generates a global mask from previous frames and applies it to the current frame. CLI fuses the

information between 2 cloud frames. Together, they combine spatial and temporal information.

SpSequenceNet was benchmarked on Semantic KITTI’s full dataset (has 6 separate classes for

moving entities). SpSequenceNet beats TangentConv and DarkNet53Set with 43.1% mIoU,

which is 1.5% higher than the previous best, making it state-of-the-art. These results are

illustrated in Table 2.9.

33

https://www.zotero.org/google-docs/?yyhB2r


Thesis Document

Table 2.9: Results of evaluating SpSequenceNet on Semantic KITTI. Note: Table is broken into 2 parts for
easier viewing.

2.3.2.4. 4D Point Cloud Semantic Segmentation: MeteorNet

MeteorNet [52] introduces temporal information through introducing novel approaches

towards identifying spatiotemporal neighborhoods for the points in the point cloud. The module,

named Meteor, takes as input the sequence of point clouds and aggregates the information from

them to learn features for each point. Two methods were proposed to determine spatiotemporal

neighborhood: direct grouping and chained-flow grouping. Direct grouping relies on the intuition

of increasing grouping radius over time. Chained-flow grouping tracks object motions and uses

scene flow estimations to construct the neighborhoods. Figure 2.20 illustrates the architecture of

MeteorNet in both early fusion and late fusion scenarios. MeteorNet achieves 73.42% on KITTI

dataset, compared to PointNet++ which achieved 69.56% mIoU. It also achieved 81.8% mIoU

on Synthia dataset, compared to PointNet++’s 79.35%.

Figure 2.20: Architecture of MeteorNet. Left: early fusion with per-point output for all frames. Right: late
fusion with per-point output for last frame.

34

https://www.zotero.org/google-docs/?nm3IKa


Thesis Document

Chapter 3: Proposed Methodology

This section discusses the proposed methodology based on the literature review to tackle

the effect of adding temporal information on semantic segmentation of 3D point clouds. To

recap, the following are the research questions that need to be answered:

1. What is the effect of adding temporal information on semantic segmentation of 3D

point clouds?

2. How well does the proposed method of incorporating temporal information fare

against existing techniques?

To answer the first question, a comparison needs to be made between a model that

utilizes temporal information and a model that doesn’t, which will act as the baseline model. To

answer the second question, the proposed model should be contrasted against methods currently

in the literature.

Selection of the baseline model is based on the domain for which a model is developed,

the segmentation performance of the model, its real-time performance, and required memory

resources. The domain should be of direct relevance to automotive applications. As for

segmentation and real-time performances, a right balance is needed such that the segmentation

accuracy is as close as possible to state-of-the-art models while at the same time achieving good

real-time processing which is crucial for automotive applications. Required memory resources

are also important if the model is going to be considered for deployment on embedded targets

which are usually restricted on computational and memory resources.

3.1. Baseline Model

Referring back to the literature review, it is important to select a model that has been

benchmarked on a popular dataset and has been compared to other models in the literature. The

study conducted in August of 2019 [12] that introduced Semantic KITTI is one that deserves

consideration for selecting potential baseline models for multiple reasons. Firstly, Semantic

35

https://www.zotero.org/google-docs/?IxsU48


Thesis Document

KITTI, is the strongest dataset introduced to date, and this is demonstrated in Table 3.1. Another

reason is that the study has benchmarked the most popular state-of-the-art models in the

literature to the date of the study, which was conducted very recently. The results of this

benchmark are outlined earlier in Table 2.2.

Table 3.1: Overview of point cloud datasets with semantic annotations. Semantic KITTI is by far the largest
dataset with sequential information. 1Number of scans for train and test set, 2Number of points is given in
millions, 3Number of classes used for evaluation in the study and number of classes annotated in brackets.

Referring to Table 2, the best performing architectures were introduced in [12] which are

DarkNet21Seg and DarkNet53Seg. Both architectures are built on SqueezeSegV2. While their

segmentation accuracies are the highest (47.4% and 49.9% mIoU respectively), their real-time

performance isn’t as great (0.055 and 0.1 seconds per inference respectively). The required

memory resources are also very high (25 and 50 million parameters in each model respectively).

TangentConv achieves a mIoU of 40.9%, has an inference time of 3 seconds, and uses 0.4

million parameters. Of course this model is not suitable given the unreasonable inference time.

SqueezeSegV2 is the next best performing model in terms of segmentation (39.7%). It

has an inference time of 0.02 seconds which is excellent compared to the other models. It also

utilizes 1 million parameters which is also good. Given this, SqueezeSegV2 is selected as the

baseline model, and comparison to this model will be performed on Semantic KITTI as the

dataset of choice.

In the latest iteration of literature review in this work, SqueezeSegV3 was published,

showing additional potential. Table 3.2 benchmarks it against other networks running on

Semantic KITTI dataset. The experimental work in this thesis was initially performed with

SqueezeSeg V2, and the best performer was re-evaluated on SqueezeSeg V3.

36

https://www.zotero.org/google-docs/?5dOS6y


Thesis Document

Table 3.2: The benchmarking results of SqueezeSeg V3 on Semantic KITTI dataset. SSGV3-53 is the
implementation of SqueezeSeg V3 using RangeNet53 and SSGV3-21 is using RangeNet21. The * indicates

KNN post-processing from RangeNet++.

3.2. Proposed Model

Given that SqueezeSegV2 has been chosen as the baseline model, the proposed model

will be designed to build upon SqueezeSegV2. There are two reasons for this design choice. The

first reason is that SqueezeSegV2 is a state-of-the-art model that best fits the selection criteria in

terms of segmentation performance, real-time performance, and memory requirements. The

second reason is to be able to compare between the baseline model and the proposed model in a

controlled experiment where the only variation is the introduction of components that enable the

utilization of temporal information.

To summarize the previously introduced models that tackle temporal information for

semantic segmentation of 3D point clouds, 2 approaches were explored. The first approach was

the one adopted in the study by [12] where temporal information is enabled by cascading

multiple consecutive scans into one. The second approach was introduced in March of 2020 [50]

in a study following the one in [12]. This approach utilizes a bayes filter to make the scans

temporally consistent. The first approach didn’t perform as expected, scoring a mIoU of 41.6%

37

https://www.zotero.org/google-docs/?h0q0XW
https://www.zotero.org/google-docs/?50acRW
https://www.zotero.org/google-docs/?Fb50fj


Thesis Document

on Semantic KITTI compared to the base model it operates on which is DarkNet53Seg that

scored a mIoU of 49.9% without using temporal information. As for the results of the second

approach, it scored 37.6% on Semantic KITTI.

The authors of the first approach [12] state future work in the following quote: “We

expect that new approaches could explicitly exploit the sequential information by using multiple

input streams to the architecture or even recurrent neural networks to account for the temporal

information, which again might open a new line of research.” Based on this recommendation, the

proposed model will introduce a recurrent unit in the base model that was chosen

(SqueezeSegV2). This choice is also recommended because successful approaches that utilized

temporal information for semantic segmentation of 2D images utilized recurrent components

such as LSTMs, Conv-LSTMs, and GRUs. As mentioned previously, experiments were also

performed on SqueezeSegV3 since it was published during the workings of this thesis.

3.3. Methodology

As discussed in the previous section, the proposed model will be integrating a recurrent

component within SqueezeSegV2. Figure 3.1 demonstrates the network architecture. The

recurrent components to be experimented with are the LSTM and Conv-LSTM. Theoretically,

Conv-LSTMs are favorable to normal LSTMs in the current context because Conv-LSTMs don’t

lose the spatial context as they accept the input as a grid. On the other hand, LSTMs require the

input to be a flattened feature vector which loses the spatial context in the process.

Figure 3.1: SqueezeSegV2 architecture. This is an encoder-decoder architecture. The encoder ends at
FireModule 9, which marks the beginning of the decoder. The connection arrows represent “skip”

connections.

38

https://www.zotero.org/google-docs/?VF88wf


Thesis Document

As highlighted previously, SqueezeSegV2 is an encoder-decoder architecture.

SqueezeSegV2 is a model that performs projection of 3D point clouds to 2D image views that

are commonly known as Polar Grid Maps (PGMs). These PGMs are fed as input into the

network, and the final output is the segmentation map of the PGMs. SqueezeSegV2 uses “skip”

connections during the up-sampling process to recover the features that are lost during the

down-sampling process.

Adjusting the network to include the recurrent unit can be achieved in multiple ways.

One possible location is at the end of the pipeline after the decoding process has completed.

Another more favorable approach is to insert the recurrent unit right after the encoder and before

the decoder. At this point, the input to the recurrent unit will be the features that are extracted

from the PGM. Another factor to consider is the number of consecutive frames to be considered

for temporal information extraction. The experiment conducted in [12] clustered 5 frames into 1.

For our experiments, we are going to try using 4 consecutive frames at a time. Of course this

value is subject to changes during the experimental runs to figure out the optimal value. Another

structural issue that will be challenging is handling the “skip” connections between the encoder

and the decoder. If these are left as is, the temporal information acquired by the recurrent unit

will be “overwritten” by the information coming from the skip connections. One possible way to

adjust the network is to remove the skip connections, however, this would certainly impact the

segmentation performance in a negative way. The other possibility is to use recurrent units on

these connections as well. Figure 3.2 illustrates the proposed adjustment.

Figure 3.2: Proposed architecture. RU stands for the recurrent units. These could be LSTMs or
Conv-LSTMs. A recurrent unit is introduced between the encoder and the decoder. They are also introduced

over the skip connections.

39

https://www.zotero.org/google-docs/?RMAAyy


Thesis Document

As for the parameterization of the Conv-LSTM, table 3.3 highlights the important values

used in its construction.

Parameter Value Description

Input_dim 5 Number of channels in input

hidden_dim 16 Number of hidden channels

kernel_size 3 Size of kernel in convolutions

num_layers 1 Number of LSTM layers stacked on each other

batch_first true Whether or not dimension 0 is the batch or not

bias true Bias or no bias in Convolution

return_all_layers false Return the list of computations for all layers

Table 3.3: Parameters used for Conv-LSTM layer in all experiments.

The best performing experiment on SqueezeSegV2 will be repeated on

SqueezeSegV3 and benchmarked in the same manner.

To answer the first research question, the proposed architecture will be evaluated on

Semantic KITTI and compared against the baseline model. If it improves over the baseline

model, then a claim could be made that adding temporal information improves semantic

segmentation of 3D point clouds. To answer the second research question, the proposed

architecture will be contrasted against the studies that were previously discussed.

3.4. Data Analysis

This section discusses the distribution of Semantic KITTI and analyzes the dataset to

come up with the optimal distribution for the training, validation, and test sets. Semantic KITTI

is divided into 22 sequences, however, only the first 11 are publicly available. The rest can only

be used for testing and are concealed behind a portal. For our purposes, we will use sequences 00

to 10 to conduct our training, validation, and testing.

First, we analyse the number of scans and points in each sequence to figure out the size

distribution. Table 3.4 and Figure 3.3 illustrate the distribution of scans and points respectively.

40



Thesis Document

Sequence Number of Scans Percentage
00 4541 19.57
01 1101 4.75
02 4661 20.09
03 801 3.45
04 271 1.17
05 2761 11.90
06 1101 4.75
07 1101 4.75
08 4071 17.55
09 1591 6.86
10 1201 5.18

Table 3.4: Distribution of scans in each sequence of Semantic KITTI.

Figure 3.3: Number of points per sequence of Semantic KITTI.

Another important distribution is the class distribution. Figure 3.4 illustrates the class

distribution across the whole dataset. This is important to note which classes are dominating the

dataset and which classes are scarce to watch out for when making the training, validation, and

testing sets. The most scarce classes are observed to be: motorcyclist, moving-other-vehicle, and

bicycle. We plot the distribution of these classes among the sequences to know where they are

distributed. Table 3.5 shows this distribution.

41



Thesis Document

Figure 3.4: Class distribution across Semantic KITTI sequences 00 to 10.

Sequence Motorcyclist Moving-Other-Vehicle Bicycle
00 2220 36175 223610
01 2891 66830 0
02 82668 0 15419
03 0 0 14279
04 0 0 0
05 0 0 13718
06 0 0 65524
07 0 0 51533
08 22737 2540 247796
09 0 0 4042
10 0 0 3641

Table 3.5: Distribution of scarcest classes in Semantic KITTI.

Given the previous information, we notice that sequences 1, 7, and 8 have the size and

diversity needed to split our data. Figures 3.5, 3.6, and 3.7 provide the class distribution for these

sequences respectively.

42



Thesis Document

Figure 3.5: Class distribution in sequence 1 of Semantic KITTI.

Figure 3.6: Class distribution in sequence 7 of Semantic KITTI.

Figure 3.7: Class distribution in sequence 8 of Semantic KITTI.

43


