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Abstract
The proliferation of cellular networks over the past two decades has encouraged the ex-

pansion of their use in many modern applications. These applications involve the use of data

traffic of different quality of service (QoS) requirements. Some of these requirements are quite

stringent such as in the case of critical Internet of Things (IoT) health care, military and home-

land security applications. This situation resulted in imposing a variety of resource allocation

requirements on the cellular network operation in a simultaneous manner.

In this thesis, we consider the challenging problem of mixed-traffic resource allocation, or

scheduling, in cellular networks. We focus our attention on 5G network as the most recent

version currently being deployed worldwide. In this regard, there are generally two, separate,

scheduling problems in communication systems, namely, the down-link (DL) scheduling and

the up-link (UL) scheduling. Each of these problems has separate requirements, even if they

both share some similarities. The DL focuses on scheduling the already received packets to the

intended receivers and informing the receivers with enough information to receive the data

correctly. This kind of scheduling is completely implemented by and controlled at the base sta-

tion of the system. On the other hand, the UL problem focuses on providing enough resources

to user devices to send their data, when they have any. In this thesis, we consider the problem

of uplink scheduling in 5G networks for mixed traffic that includes Ultra-Reliable Low and

Latency Communications (URLLC) devices and enhanced Mobile Broad-Band (eMBB) users.

Each of these types has different requirements and therefore a different mathematical model

based on the scheduling technique. There are three main scheduling techniques to be con-

sidered in this case, namely, the grant-based (GB), semi-persistent, and grant-free (GF) tech-

niques. Each of these scheduling techniques is suitable for a certain type of traffic and has its

own mathematical model that describes the associated traffic behavior. Furthermore, there are

three different techniques used in grant-free scheduling, namely, the reactive scheme, the k-

repetitions scheme and the proactive scheme. It has been concluded, in this study, that the

grant-based scheduling is the best scheme for the eMBB traffic while the grant-free scheduling

is best suitable for the URLLC traffic. For this purpose, we devise a mathematical model for
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the GF services using the k-repetitions Hybrid Automatic Repeat reQuest (HARQ) as the first

model to define such traffic in a single cell. In addition, the GB scheduling model for eMBB

traffic is adapted to fit our problem. We formulate the scheduling problem as a mixed-integer

non-linear programming optimization problem. This type of problem is, in general, a com-

plex problem due to its combinatorial nature. We introduce a complete system model that in-

cludes GF and GB subsystems. We introduce a novel mixed scheduler that combines the ad-

vantages of two well-known schedulers in the literature. We then introduce novel machine-

learning based scheduling algorithms and evaluate them in comparison to some well-known

algorithms in the literature in addition to the optimal bound that we also derive in this study.

The results show that the proposed algorithms produce near-optimal results in real-time.
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Chapter 1

Introduction

Currently, the existence of different traffic types that need to be carried by cellular networks

presents a major challenge. This is due to the difference in the nature and needs of these

traffic types which renders the resource allocation, or traffic scheduling, task quite challenging.

The scheduling problem can accordingly be described as follows. The cellular base station,

known as gNB in 5G systems, needs to receive the data from the senders and get it sent to the

intended receivers. It needs to schedule the senders on a 2-D time-frequency grid to inform

them when to send their data, which what is termed "uplink transmission". The receivers

will then get informed as to when on the 2-D grid the data will be received by them, in what

is called "downlink transmission". Since the resources (i.e. the bandwidth) are scarce, the

scheduling process needs to be optimized to ensure these resources are not wasted, in addition

to fulfilling the users’ requirements. The problem of scheduling the receiving of the data from

the transmitters is therefore called the uplink scheduling problem, while the transmission of

data from gNB to the receivers is called the downlink scheduling problem. Each of these

problems is solved separately and each has its own models. There are three types of users

in 5G systems, namely, the enhanced Mobile BroadBand (eMBB), the massive Machine Type

Communications (mMTC) devices, and the Ultra-Reliable and Low Latency Communications

(URLLC) users as shown in Figure 1.1. The number of URLLC devices is generally greater than

the eMBB nodes due to the wide number of applications supported by such traffic, as will be

discussed in the next sections. However, the mMTC devices number surpasses the number of

URLLC nodes as they are used in various applications in our daily life.

In the downlink direction, the eMBB users are scheduled first then the URLLC traffic is

1



Chapter 1. Introduction

punctured in such a way that the loss of the accumulated eMBB rate is minimal. In this case,

the gNB knows exactly the packets required to be transmitted and can be scheduled perfectly

based on each traffic requirement and the scheduling policy. In adddition, if there is any avail-

able resources, it is granted for the mMTC devices. However, the problem is different in the

uplink direction where the gNB does not know exactly when the URLLC nodes will send their

data due to their sporadic nature. On the other hand, the eMBB nodes send scheduling re-

quests to the gNB before transmission. As stated, each problem, the uplink, and downlink is

solved separately even if there are some similarities. In the following sections, the traffic re-

quirements of the main two traffic types, the eMBB and URLLC traffic, are studied, the na-

ture and applications of each type are discussed. The traffic scheduling problem is discussed

and its importance for any communications system is stated. Then, the problem addressed in

this thesis is stated to fully describe the main problem. Machine learning approaches and po-

tential for solving this kind of problems are discussed and different solution approaches are

suggested. Finally, the contributions of our work and the structure of the thesis are discussed.

1.1 eMBB Versus URLLC Traffic Requirements

There is a significant difference between the eMBB traffic requirements and those of the URLLC

traffic. The eMBB users require mainly high data rates while the URLLC users require, gener-

ally low data rates, with very low latency, in the order of 1 ms, and very high reliability, with a

probability of error that is less than 10−5 [1]. In addition, in the uplink direction, each of these

traffic types has its own way of communicating to the gNB. The eMBB requests a resource

grant before sending its data, Then the gNB sends the assigned time slot and bandwidth for

the node to send the data on. This handshaking needs about 10 ms to be established. This type

of scheduling is called Grant-Based (GB) scheduling and it is suitable with the eMBB traffic

requirements. The URLLC users, on the other hand, cannot use the handshaking techniques

because their latency constraint will be violated. Therefore, the URLLC sends the data in an

arrive-and-go manner. This is called the Grant-Free (GF) technique. To solve this problem, the

2



Chapter 1. Introduction
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FIGURE 1.1: A General Overview on 5G system Traffic Types
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Chapter 1. Introduction

gNB must have a resource in which the URLLC user can send all the time. Assigning a sepa-

rate resource to each user the whole time will lead to wasting the network resources. The pro-

posed solution is to make all the URLLC users share a common pool of resources. The main

problem in GF scheduling is collisions due to competition between the shared resources.

There are many well-established scheduling models and techniques for the eMBB traffic.

In contrast, the URLLC nodes are fairly new and their requirements are different. Precise mod-

eling will aid us to solve the network optimization problem that involve this kind of traffic.

1.2 URLLC Traffic Nature and Applications

The main reason for adopting the URLLC in communication systems is the Internet of Things

(IoT) critical applications requirements for connecting several communicating nodes with high

reliability and low latency. It is predicted that in the near future the number of URLLC devices

will surpass the normal data traffic [2]. The main reason is the high applicability of such traffic

in various scenarios such as in health care, automation, control, intelligent transportation sys-

tems and natural disasters predictions [3]. GF scheduling is considered the main scheduling

technique that has the potential to provide such requirements. There are three main types of

GF scheduling and each has a different model; reactive, k-repetitions, and proactive [4]. Each

of these type is suitable for and has its merits in different scenarios. As mentioned in the pre-

vious section, the latency requirements of the URLLC traffic is the main reason to adopt the

GF scheduling. The main reason for choosing the suitable model of the mentioned three mod-

els is the reliability requirements since allocating the same resources to more than one node

introduces collision and affects the system performance. There is a wide range of the latency

of the URLLC traffic, as shown in Table 1.1. Adoption for the URLLC traffic in the domain

of 5G systems is mainly due to the variety of applications from fire alarms, extreme phenom-

ena alarms, e-health to vehicle-to-vehicle communications and remote surgeries. All the men-

tioned services require very low latency and high reliability quality of service. URLLC is con-

sidered the IoT enabler for next-generation communications systems [5]. The main problem in

4



Chapter 1. Introduction

TABLE 1.1: Applications and Requirements of the URLLC Traffic
Application Latency Reliability

Vehicle-to-Vehicle 1 ms 99.9999%
Alarms and Geo-sensors 1 ∼ 5 ms 99.9999%

Factories of Future 10 ms 99.9999%
Automation and Control 10 ∼ 20 ms 99.99%

the URLLC traffic is the absence of a mathematical model that fully grasps its nature and re-

quirements. Therefore, the first goal in our thesis is to build a profound mathematical model

that mimics its behavior and different interactions in order to build a complete system model.

1.3 eMBB Traffic Nature

The eMBB traffic is considered the main traffic type of cellular communications. Requirements

of the eMBB users have evolved since the deployment of the first communication system.

The requirement has evolved, from human-to-human communications to data streaming and

multimedia traffic. As shown in Figure 1.2, the rate requirements for wireless traffic have

increased within the past few years [6]. In addition, it is anticipated that the data traffic size

will represent 71% of the total traffic by 2022 [7]. The mobile data traffic has increased seven

folds from 2016 to 2021 and the video traffic has increased three folds during the same period.

In fact, it is anticipated that wireless traffic will surpass the wired traffic by 2030. The eMBB

traffic is characterized by rate greedy requirements. The main usage of this type of traffic

is human-to-human communications, web surfing, streaming, and various other rate greedy

applications. In contrast with the URLLC traffic, eMBB users can tolerate delays while the low

rate is intolerable. The main quality of service requirements of such traffic are the minimum

rate guarantee, availability and coverage. These requirements require the usage of a certain

type of schedulers. The Grant-Based (GB) scheduling approach is usually used with this type

of traffic since it fulfills the rate requirements while the accompanied hand-shaking procedure

does not affect the delay requirements.
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1.4 The Need for Traffic Scheduling

As evident from the previous sections, traffic scheduling is a vital task in any communications

network. Any communications system cannot function properly without a good scheduler. A

scheduler provides, both the transmitters and receivers, with the required resources to estab-

lish and sustain a connection. Scheduling is therefore the task of allocating the resources of

the system among the different users [8]. The main reason that scheduling is a hot research

topic is due to the fact that both the design and functionality of the scheduler are left for the

network operator, i.e. it is not part of the standard. A good scheduler must utilize all the sys-

tem’s resources optimally in order to provide the users with their required quality of service

which results in the highest revenue for the network operators. In addition, providing a model

for URLLC traffic will enable the scheduler to optimize its resources and the IoT devices to be

accommodated perfectly within the 5G systems, and beyond, to fully utilize their potential.

1.5 Machine Learning Approach

Applications of Machine Learning (ML) in communication systems are wide and diverse. It is

used in traffic prediction and classification, routing, scheduling, radio control, and many other

topics [9]. One of the most promising fields that ML can aid communications engineers in, is

the optimization of traffic scheduling. Classical optimization techniques are too complicated to

use, if at all feasible, due to the variety and diverse types of traffic nowadays, as each type has

different requirements. These diverse requirements when modeled correctly leads to an NP-

hard optimization problem. Previously, engineers used to approximate the model and relax

the parameters in order to generate an easier problem that can be solved by the classical tools.

Most of the time, these simplifications lead to a model that does not fully cover the system

requirements.

Reinforcement Learning (RL) and deep Neural Networks (NN) are the most promising

solutions to solve network scheduling optimization problems. They can learn by themselves
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the optimum method, as closely as practical, of resource allocation to fulfill the requirements

of both types of traffic.

1.6 Problem Statement

The uplink scheduling problem in the 5G communications system includes many parameters

and requirements that need to be considered. The combination between the eMBB and URLLC

presents a much complicated problem in the uplink direction than in the downlink direction

since the gNB doesnot know when each URLLC user will need a Resource Block (RB) to send

the packet. Allocating an RB to each URLLC user in a GB scheduling will violate their strict

latency requirement. In addition, Allocating an RB to each URLLC user/node in a GF envi-

ronment wastes the network resources due to their sporadic, probabilistic, nature and mas-

sive numbers. Another approach is used where the URLLC users share a common pool of re-

sources and send their packets to gNB whenever they have data to transmit. This approach

causes collisions among users, which need to be analyzed to avoid violating the reliability re-

quirements. Three common HARQ techniques are used, namely, reactive, k-repetitions, and

proactive schemes. The first two schemes are the ones adopted by 3GPP as a solution for the

URLLC collision problem. In addition, the reactive scheme can be considered a special case of

the k-repetitions scheme.

Our goal is to devise a formulation that guarantees reliability for the URLLC traffic in a

single cell given a certain pool of resources and a repetition factor. This is an optimization

problem that considers the overall system requirements.

An exact solution to this optimization problem provides an insight as to what is the optimal

bound of the uplink scheduling problem. This can help determine the quality of non-optimal

solutions which will have to be devised in larger environments since the optimal solution in

such environments may not be feasibly possible to obtain. In addition, a comparison among

different machine-learning (ML) techniques, with approximate solutions, will show the ability

and the limitations of ML in solving the scheduling problem.
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1.7 Thesis Contributions

The objective of this thesis is to build a robust uplink system model that covers the mixture of

all the eMBB and URLLC traffic requirements of the system’s users and uses the RL and NN

techniques to solve the optimization problem and compare their results to find the optimal

approach.

The main contributions of this thesis can therefore be summarized as follows

• We present a novel model of the URLLC probabilistic traffic in the uplink direction for

a single cell in 5G systems. To the best of our knowledge, this is the first work done to

model the URLLC traffic in a single cell in order to include the URLLC requirements in

the scheduling problem.

• We formulate the uplink scheduling problem of both the eMBB users and the URLLC

devices in the form of an optimization problem. We aim to maximize the overall eMBB

rate while ensuring a minimum rate for each user. In addition, we aim to guarantee the

latency and reliability requirements of the URLLC devices.

• We analyze different system parameters and their effect on URLLC traffic. This will help

network designers to understand and develop better parameters to satisfy the traffic

requirements.

• We propose a novel scheduling algorithm that provides near-optimal solutions in real-

time.

• A reinforcement learning approach to solve the aforementioned scheduling problem in

real-time with different policies is proposed and discussed. The policies are compared

and discussed. The high dimensionality problem in large systems is also discussed.

• A neural network model is designed to fit our problem and utilized to solve the schedul-

ing problem in different types of environments.
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• We Compare different scheduling techniques for different scenarios in order to under-

stand their advantages and disadvantages. The results are simulated for different envi-

ronments and dimensions and their results are discussed.

1.8 Thesis Structure

The rest of this thesis is organized as follows

• Chapter 2 presents a literature review on recent advances in the traffic scheduling prob-

lem in 5G, both in downlink and uplink directions, in addition to the recent techniques

to solve the scheduling problem using Machine Learning techniques.

• Chapter 3 discusses the URLLC traffic modeling in the uplink direction. An analysis is

conducted to model the probabilistic nature of the URLLC traffic in the uplink direction.

Finally, the complete mixed traffic scheduling problem is formulated. Insights on how

to simplify the problem and different approaches are discussed. In addition, an algo-

rithm is proposed to solve the same problem in a more efficient manner with low com-

plexity requirements. Different simulation results are plotted to understand the interac-

tions between different system parameters with the URLLC traffic requirements. In ad-

dition, various operating environments are simulated to show the applicability of our

scheduling technique compared to the techniques in the literature.

• In Chapter 4, different Machine learning (ML) techniques are discussed. First, the rein-

forcement learning approach is discussed and analyzed. The scheduling problem is for-

mulated in the reinforcement learning domain, where the reward function, state-space,

and action space are defined. The dimensionality problem is discussed and analyzed.

Different environments are simulated for different learning policies to show their appli-

cability in our scheduling problem. Second, the Neural Network (NN) approach is pre-

sented and the problem transformation is discussed to fit the model. The model is tuned

to produce the best results and simulations are done to validate our selection. In addi-

tion, different environments are simulated to show the applicability of the technique. All

the results are compared to the well-known algorithms in literature.
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• In chapter 5, we provide the conclusions of this thesis and propose some directions for

future research.
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Chapter 2

Background and Related Studies

2.1 Introduction

In this chapter, we present and discuss the background as well as the previous work in the

area of resource allocation. Classification of traffic types is presented and their requirements

are discussed in detail. The traffic scheduling process is also discussed to fully understand the

scheduling problem especially in the uplink direction. We discuss the different approaches in

the literature to solve the scheduling problem in both the downlink and uplink. The downlink

problem is discussed as it provides many insights on the uplink problem.

2.2 Classification of Traffic Types

There are three main types of traffic in the 5G systems, namely, the eMBB traffic, the URLLC

traffic and the mMTC traffic. The eMBB traffic is characterized by its high data rate require-

ments and delay tolerance. It is considered as the human-centric data traffic for various multi-

media services. In contrast, URLLC traffic is extremely delay intolerant. However, its rate re-

quirements are minimal due to its small payload. On the other hand, the mMTC are a variant

of the URLLC traffic with moderate delay requirements [10].

There are three types of scheduling techniques for the uplink traffic adopted in literature,

namely, the Grant-Based (GB) scheduling [11], the Grant-Free (GF) scheduling [12] and the

Semi-Persistent Scheduling (SPS) [13]. The GB scheduling uses a hand-shaking procedure be-

tween the transmitter and gNB. The transmitter receives a packet from the upper layer, then
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sends to the gNB requesting for resources. The gNB replies with the timing and location to

send its packets on. The handshaking procedure is suitable for applications with delay toler-

ance since the hand-shaking requires about 10 ms [4]. On the other hand, SPS is suitable for the

periodic traffic where the gNB reserves some of the network resources every time period for a

specific device or user. Finally, the GF scheduling does not require a hand-shaking procedure

where the node sends directly its packets in an arrive-and-go manner without waiting for the

gNB to provide resources. These resources can be assigned to more than one user or device.

This type of scheduling is suitable for the sporadic traffic since the gNB does not know exactly

when it will receive a packet from the device, which is the main reason to schedule more than

one user on the same resources. The main drawback of the GF traffic is collision. When the

same nodes compete for the same resources, collisions occurs where the Signal-to-Interference

plus Noise (SINR) ratio decreases below a certain threshold rendering the decoder unable to

decode the packet thus leading to a transmission failure.

For the GF scheduling there are three Hybrid Automatic Repeat reQuest (HARQ) schemes

used to avoid and mitigate the collision problem, namely, the reactive scheme, the k-repetitions

scheme and the proactive scheme [4]. In the reactive scheme, the node sends a packet when-

ever it arrives and waits for an ACK/NACK packet from the gNB. If an ACK is received, the

packet is dropped, else the packet is resent if its latency requirement is not violated. In the k-

repetitions scheme, the node sends k replicas of the packet to the gNB and waits for the feed-

back to respond accordingly as shown in Figure 2.1. It is considered that the reactive scheme

is a special case of the k-repetitions scheme. Finally, in the proactive scheme, shown in Figure

2.2, the device sends the packet along with the replicas and at the same time senses if there is a

response from the gNB. The first two techniques are accepted by the 3GPP [14]. However, the

proactive scheme is not accepted due to the high processing requirements imposed by the al-

gorithm to transmit and receive at the same time which might not be available to the URLLC

nodes.
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FIGURE 2.1: k-repetitions scheme with 3 Repetitions

A. Tx1  Tx2 Tx3 Tx3Tx2Tx1

uRLLC

gNB

time

P P P P P

First (Intial) Transmission Second Re-Transmission

Tx4

P

Tx4

NACK Feedback

ACK Feedback

Packet Transmission

D

FIGURE 2.2: Proactive Scheme with 4 Repetitions

14



Chapter 2. Background and Related Studies

2.3 5G Background

Over the years, newly introduced communication systems provide a better upgrade in perfor-

mance and applications over the previous or existing systems. Although 5G is considered an

upgrade to the 4G LTE and LTE-A, it is considered as a revolution over all the previous com-

munications systems. It is highly expected that 5G will present the main building block for the

future of communication systems [15]. It provides a high boost in data rates as compared to

4G and past communications systems. It enables the use of other applications that were con-

sidered impossible in past communications system, or at least inefficient, as shown in Figure

2.3. In addition, it is considered the enabler of the IOT technology by merging the URLLC and

mMTC in the system [16]. The objective of 5G is to digitize every aspect of human lives to

provide comfort to all users in their daily life. It is predicted that 5G will support up to 7 tril-

lion devices or nodes with high availability and reliability provisions [17]. To that extent, the

5G system introduced the idea of the short Transmission Time Interval (sTTI) in the system

by chunking each Transmission Time Interval (TTI) into smaller blocks. The introduction of

sTTIs allows the introduction of the URLLC traffic in the system without resorting to under-

utilizing system resources. The URLLC node can send the packet in a single sTTI, due to its

small payload, 32 Bytes, without needing to reserve the whole TTI. This allows other nodes to

use the same resource on the same TTI without compromising the other payload or interfer-

ence. It is considered a merit as well in the downlink communications since it allows the con-

cept of puncturing of the eMBB traffic. The gNB punctures the eMBB traffic, through the use

of an sTTI, with the URLLC traffic to be sent on the same resource block within an acceptable

calculated reduction of the eMBB rate.

2.4 Traffic Scheduling Process

As discussed in the previous chapter, traffic scheduling is a vital step in communication net-

works. It is enabled by the network operator in order to satisfy a certain policy and revenue

targets. To do so, the traffic scheduling should be designed to satisfy the QoS requirements
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in addition to utilizing the system resources as optimally as practical. The traffic scheduling

starts at every TTI for both the downlink and uplink. For the downlink, the gNB schedules the

eMBB traffic on the time-frequency grid, resource grid, and notifies the receivers with their lo-

cations. Then it punctures the eMBB traffic with the URLLC packets in a way that minimizes

the QoS loss for the eMBB traffic. On the other hand, in the uplink direction the gNB does not

know when the URLLC traffic is received. However, it must broadcast the available resources

for all URLLC nodes in case a packet is received. If more than one node sends at a time, the

SINR decreases. If the SINR falls below a certain threshold, this signals the occurrence of col-

lision. The decoder cannot decode the packet and it is considered as a failure. In addition,

the gNB receives a scheduling request from the eMBB users before each TTI and tries to map

it on the resource grid to satisfy the QoS requirements in addition to optimizing the system

resources in order to avoid under-utilization.

As shown in Figure 2.4, at the start of each TTI, the gNB recieves all the traffic requests

from all nodes. It receives requests from the eMBB users and the mMTC devices, in order to

schedule the traffic optimally. On the other hand, it receives the data packets directly from

the URLLC traffic on the allocated RBs in the previous TTI. The gNB must decide the best

possible allocation for the eMBB users to provide their QoS requirements and optimize the

resources. It allocates the available resources to the URLLC traffic and broadcasts them to all

the devices based on their number without the knowledge of their channel. The number of

URLLC nodes is usually large and the massive overhead will impact the system performance

since the scheduling task must be established each 1 msec. The gNB must provide enough

resources to satisfy their reliability and latency requirements based only on the number and

path loss knowledge. If there is any remaining resources, they are left to the mMTC traffic.

The allocation at each TTI must be of the same shape as seen in Figure 2.5.

In our view, a good scheduler must maximize the accumulated rate of the eMBB users

as well as providing a minimum rate guarantee to each eMBB user to avoid starvation. In

addition, it should provide enough resources to the URLLC traffic to satisfy their latency and

reliability requirements.
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2.5 Related Studies

The scheduling process is divided into two parts, namely, uplink and downlink scheduling.

The uplink scheduling is responsible for giving access to different types of devices to send

their data depending on the network’s resources. These devices can be eMBB, URLLC, or

massive Machine Type Communications (mMTC) devices. The eMBB uses Grant Based (GB)

scheduling, while Grant Free (GF) is most suitable for URLLC traffic. The mMTC is given

the remaining network resources using the GB scheduling as the latency requirements of such

devices can withstand the handshaking procedure, if any exists. In the downlink direction,

the gNB re-transmits the packets to the intended receivers. This is done by scheduling the

eMBB traffic on the resource grid. The gNB then punctures it with the URLLC traffic. In

[18], the expected requirements for 5G systems are discussed in detail to demonstrate how the

demands of Machine-to-Machine (M2M) communications are accommodated.

In addition, machine learning approaches are used in several optimization problems to

produce near-optimal results in real-time. In the following sections, different techniques in

literature used for solving scheduling problems are discussed. The adopted approaches for

the network optimization problems are the reinforcement learning approach and the neural

network approach. In addition, similar scheduling problems with the combinatorial nature

are discussed to provide insights for solving our problem.

2.5.1 Downlink Scheduling

In the downlink, [19] differentiates between 2 types of M2M communication. The first is

mMTC which is the low-cost and energy device, considered the enabler of the Internet of

Things (IOT). This type of communication does not have delay constraints. The latter is the

URLLC, where the communication is required to be of low latency and the required reliabil-

ity is high. The authors split the requirements of URLLC into 3 main dimensions according to

the previously discussed issues, namely, reliability to guarantee packets transmissions within

the latency demands, latency which is the end-to-end time required to send the message from

the sender to the intended receiver correctly and availability. The paper discusses 3 ways to
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achieve the aforementioned demands, first to provide latency requirements, the Transmission

Time Interval (TTI) should be minimized compared to that of OFDM systems. Redesigning

the physical channel for fast channel estimation and processing. High order antennas’ diver-

sity to combat fading and channel uncertainties is used. Different ways of scheduling using

optimization techniques and near-optimal algorithms. Actually, this paper tackles various im-

portant problems concerning the scheduling in 5G system. It aims to maximize the rates of

eMBB as much as possible for assuring the quality of service for users while maintaining the

URLLC packets delay and reliability requirements. At the edge of each slot, the gNB divides

the resources in the downlink phase among eMBB users. After that, the incoming URLLC

traffic is punctured/superimposed over the eMBB traffic. Each URLLC traffic takes only one

mini-slot to prevent any latency. A joint eMBB/URLLC optimized scheduling is required to

consider the puncturing effects on the eMBB users rate. In this paper, the authors proposed 3

eMBB rate loss models for URLLC puncturing, namely linear, convex, and threshold rate loss

models. Each of the mentioned models has a placement, puncturing, policy for the URLLC

packets in the eMBB traffic. The joint scheduler for the eMBB and URLLC traffic is compared

to the separated traffic scheduler for each policy. The results shows that for the linear model

the joint scheduling can be decomposed, for faster processing, to separate schedulers for each

traffic type. In contrast, for both the convex and threshold models, the scheduling cannot be

separated.

In [20], a downlink scheduling technique is proposed to protect the eMBB users with low

data rate while ensuring the URLLC latency requirements. They proposed adding an extra

factor called the Conditional Value at Risk (CVaR). Where the α-VaR is the α percentile of the

distribution of the random variable, i.e. the smallest value such that the probability that a ran-

dom variable is smaller or equals to this value is greater than or equal to α. By subtracting the

CVaR from the objective function the optimization problem became a mixed integer non linear

programming problem. This problem of exponential complexity order which requires search-

ing the state space. So the problem is decomposed into two sub-problems. First, the eMBB

users scheduling and, second, the URLLC placement. First, an optimal allocation for eMBB
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users is derived without considering the URLLC placement and in the second step the place-

ment is considered with regard to the CVaR. The two sub-problems are of a convex optimiza-

tion problems type so they can be solved using any convex optimization tool. The study in

[21] discusses the modeling of the URLLC downlink traffic as a queueing system. The arrival

process of the URLLC packets is modeled as a Poisson arrival process with an arrival rate that

they wish to maximize. However, the co-existence of eMBB traffic is not discussed. The goal in

[21] is to determine how much traffic the system can support and how to increase the arrival

rate as much as possible, given some system parameters and arrival rates of the URLLC ser-

vices. Two different approaches are discussed in the study. The first is the one-shot approach

where the gNB sends the URLLC packets once and drop them from the system. The other ap-

proach is to keep the packet and wait for feedback from the receiver to check if the packet is

received and decoded correctly for a specific number of trials. In both cases, the system was

divided to a set of classes with the same SINR. For the first case, the methods of allocation are

discussed in the time-frequency domain, namely, the tall allocation where the packet takes a

small fraction of time while taking a large bandwidth (BW) and the wide allocation where it

takes a large amount of time with low BW. It was shown that the wide allocation is better since

it satisfies the delay constraints. This technique decreases the probability of blocking of the

gNB to URLLC packets. The result reached after formulating the optimization problem is that

the maximum optimal arrival rate of each class is a concave function with the SINR of each

class. Also, for a large BW, the optimal arrival rate increases linearly with it.

In [22], an energy consumption model is built for the DownLink (DL) transmission and al-

location process. The goal is to minimize the expected energy consumption in DL transmis-

sions for the 5G system packets for all kinds of traffic, eMBB, mMTC and cMTC. In addition,

the Chase Combining Hybrid Automaitc Repeat reQuest (CC-HARQ) is applied, which is a

variation of HARQ, with a threshold on retransmissions to compare it with frequency diver-

sity transmissions energy usage since CC-HARQ is considered of the time diversity type. The
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outage probability measure is used, in order to measure the violation of URLLC delay require-

ments. The Nakagami m-channel model is adopted as their channel model. The optimiza-

tion problem is formulated with objective of minimizing the expected energy for transmis-

sions, subjected to outage probability threshold, maximum power threshold and minimum

rate to not violate the latency requirement. Since the optimization problem cannot be solved

analytically, an alternative problem is proposed to find the optimum number of retransmis-

sions to satisfy the latency and power constraints. A protocol is designed to fit the URLLC

requirements based on the alternative problem. The results show that this protocol provides

high energy savings compared with a benchmark obtained numerically by optimizing the av-

erage signal-to-noise ratio guaranteeing an outage probability. Also, it was shown that the CC-

HARQ outperforms the frequency diversity to provide better diversity with energy saving.

A joint scheduler is proposed in [23] for assigning the network resources for eMBB and

URLLC DL traffic in 5G systems. The model is based on maximizing the overall spectral effi-

ciency of the system while maintaining the URLLC requirements and providing a minimum

throughput for each eMBB user. The network, in their model, is based on separate slices for

eMBB and URLLC users and the scheduling is done every TTI. The optimization problem

was a mixed-integer non-linear programming optimization problem. Therefore, a relaxed ver-

sion is proposed that is based on [24] which is a convex optimization problem. The prob-

lem was solved using the Powell–Hestenes–Rockafellar (PHR) augmented Lagrangian algo-

rithm to find the optimal subcarrier and power allocation which is then fed to the Joint car-

rier Power and Subcarrier Allocation (JPSA) algorithm to obtain the optimal resource alloca-

tion and spectral efficiency. The results are compared to Equal Power Allocation (EPA), Equal

Subcarrier Allocation (ESA) and Adaptive Particle Swarm Allocation (APSA) algorithms. The

results show the superiority of their allocation algorithm in spectral efficiency for the whole

traffic, reliability for URLLC traffic and maintaining spectral efficiency for different eMBB rate

demands.

The DL resource allocation problem in [25] is solved by dividing it into two sub-problems.

The goal of the optimization problem is to maximize the minimum expected eMBB actual data

rate after puncturing URLLC traffic over different scheduling techniques. A model is provided
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for the actual rate of the eMBB users after puncturing and is set as an optimization objective

function with the URLLC requirements as constraints. Due to the fact that the main problem is

an NP-hard and requires a lot of computational time, they sub-divide the problem into 2 parts.

The first part is the scheduling of the eMBB users before puncturing and the objective is to

maximize the minimum rate before puncturing, this also requires a high computational power

that can not satisfy the time required for scheduling. A heuristic algorithm is used, where the

algorithm allocates the resources based on the eMBB users requirements in this slot and the

allocations that occurred in the previous slots, so in a way, it can know the actual rates given to

the eMBB users after puncturing in the previous time slots. The second step is puncturing for

URLLC in the scheduled eMBB slots. The authors assume that the gNB knows the CSI for each

eMBB and URLLC device and used a matching game in order to allocate the URLLC packets

to their preferred channels after arranging their preferences with taking in consideration not to

violate both the URLLC and eMBB requirements. Their techniques show better results for the

Minimum Expected Achieved Rate (MEAR) and the fairness among users is achieved better

than legacy algorithms.

In [26], the main optimization problem is to maximize the MEAR of eMBB while having the

requirements of URLLC as constraints. The authors divide the problem into two sub-problems

with the same objective. The first objective is assigning the resources to eMBB users and the

second objective is to puncture them using the URLLC packets. For the first sub-problem, the

Penalty Successive Upper bound Minimization (PSUM) is used. For the second problem, the

Transportation Model (TM) is used and defined as a cost function for puncturing the eMBB

users and the objective was to minimize that cost. Due to the high computational requirement

of the first algorithm used in the first sub-problem they use a heuristic algorithm in which, in

the first iteration, it assigns all the eMBB devices the same resources while in the subsequent

iterations it assigns the RB according to the punctured eMBB in the previous slots giving the

punctured eMBB more resources. The optimization function in [27] is based on maximizing

the eMBB rate after puncturing while satisfying the latency and reliability constraints of the

URLLC traffic, in addition to granting a minimum rate for eMBB UEs. Before puncturing, the

eMBB traffic is optimized to achieve the maximum rate while fulfilling a minimum rate for
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each user. In the puncturing process, two techniques are discussed, immediate scheduling

for URLLC packets upon arrival and waiting in a queue while served in another mini-slot,

without breaking the latency constraint, in order to achieve better eMBB performance. To

solve the problem in real-time, a matching system is proposed where each eMBB and URLLC

users arrange their preferred channels to send in descending order and the choice is based on

fulfilling the constraints.

In [28], Reinforcement Learning (RL) techniques are used to solve the joint resource allo-

cation scheduling problem for eMBB and URLLC demands of high speed vehicular devices

in the DL. A Deep Neural Network (DNN) model is designed that can predict the eMBB user

channel state information (CSI) using the CSI of the URLLC. The paper considers the environ-

ment of the moving vehicle that has URLLC and eMBB demands. The vehicle motion changes

the channel conditions so as to prevent additional CSI information overhead. The procedure

is as follows. The CSI acquired by the gNB when transmitting a URLLC packet to the vehicle

will be used to infer the CSI of the same vehicle when requiring an eMBB packet. It proposes

a heuristic resource allocation policy as the gNB satisfies the URLLC demands first and the re-

maining resources are given to satisfy the eMBB requirements. The non linear relationship be-

tween CSI for geographically separated areas is investigated. A DNN that can infer such a re-

lationship and enable the gNB to design a beam-former that provide spatial diversity, is pro-

posed. The DNN is trained using the beam-forming loss function offline, then this inferred

CSI is passed for the DL allocation algorithm. The results of the proposed DNN compared to

the ideal case where the actual CSI is known are given for two scenarios, namely, the sparse

scenario, where the gNB resources are more than the network requirement and the dense sce-

nario, where the network resources is less than the network requirement. Another approach

that uses RL is presented in [29], it proposes two ways of dynamic allocation for the DL phase

in a URLLC packets system. It proposes to solve the allocation problem using the Markov

Decision Process (MDP). The performance metrics they propose is to maximize the proposed

reward function which is based on the number of frequency slots given to each user in each

time slot, while minimizing the risk function, which is related to entering an absorbing state.

An absorbing state is the state in which the process might reach a policy that will violate the
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threshold requirements for URLLC traffic even for one user. The first approach assumes that

all the channel statistics are known to the controller (gNB). A finite horizon value iteration

algorithm is used. In the second approach, the CSI and channel parameters are not known,

which is more realistic because the delay requirements of URLLC packets will not allow the

controller to send pilot signal for channel estimation. They applied a reinforcement learning

algorithm, namely the Q-learning algorithm. The learning function is also related to the re-

ward and risk functions described in the first approach. However, in the learning process if a

risk state is entered, which might happen in the case of learning procedure, the learning stops

and the system is restarted with a non-risk state.

In [30], optimization problem is devised for DL resource allocation for both URLLC and

eMBB packets. It aims to maximize the average throughput of the eMBB users while decreas-

ing their variability. Decreasing the variability is advantageous for users that have bad channel

conditions, where if the variability in the optimization problem is disregarded the algorithm

will puncture the eMBB users with bad channel conditions with the URLLC packets and keep

the users with good channel conditions. This way the users with bad channel conditions will

have low rate compared to other eMBB users. The optimization goal is to find three main vec-

tors, the optimal RB allocation for eMBB users, the optimal power allocation for eMBB users

and the optimal number of punctured mini-slots in each time slot. The optimization problem

constraints are as follows. Ensuring a minimum reliability for URLLC packets, which is formu-

lated as an outage probability and decreasing the variance in rate among the eMBB users. This

optimization problem is a Mixed Integer Non-Linear Programming (MINLP) and an NP-hard

problem. A relaxation is done to the optimization problem in which all the integers are turned

into a real valued continuous variables and the complexity caused by the variance parameter

in the objective function is smoothed using an exponential function. The main optimization

problem is further sub-divided into three optimization problems, allocating the eMBB users,

optimal power allocation for eMBB users and URLLC packets allocation. The first two prob-

lems are convex optimization problems and can be solved with any convex optimization tool.

However, the third one is a combinatorial optimization problem which is NP-hard, and hence,

further relaxation is required for the third optimization sub-problem to a convex optimization
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problem. They devised a Decomposition Relaxation based Resource Allocation (DRRA) algo-

rithm to solve the three optimization problems. Due to the relaxations done in the third sub-

problem, the URLLC constraint might be violated in some cases. So the authors devised a

Deep Reinforcement Learning (DRL) algorithm to find the numbers of punctured mini-slots

in each RB, aided with the DRAA results for the first 2 optimization sub-problems. The Policy

Gradient actor-critic Learning (PGACL) algorithm is used for solving the URLLC scheduling

problem instead of Q-learning algorithm due to the slow learning of the latter where it takes

a lot of time till convergence. It is shown that using the DRRA in the DRL algorithm fastens

the convergence of the learning procedure compared to random initial learning. The Jain’s

fairness index is used for comparison purposes and shown that their algorithm outperforms

the sum rate algorithm in the fairness domain however the sum rate gives better average rate.

The algorithm proposed outperforms the sum-rate and sum-log algorithms in terms of relia-

bility for eMBB users for different URLLC loads and has a less rate variability for eMBB users

although it has the least average rate.

In [31], deep RL for the downlink scheduling is studied. The study did not define a model

for URLLC traffic and left the algorithm to train by itself. The optimization problem goal is

to minimize power and to take the reliability and latency constraints of URLLC traffic into ac-

count, as well as the eMBB rate. The approach was to train the agent on a virtual environment

first before deployment in order to gain experience before dealing with real traffic. The prob-

lem of the training data scarcity was solved using GANs where using samples of real data. It

mimics their behavior and generate as much data as required for training, in addition to gen-

erating extreme conditions which happens rarely in the network and needs the scheduler to

act upon.

2.5.2 Uplink Scheduling

As explained in previuos sections, the uplink problem is more complex, as the URLLC traffic

model is probabilistic in nature since the gNB does not exactly know when these devices send

their packets. In addition, the URLLC traffic requirements differ from the eMBB and hence a
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probabilistic traffic model should be established to fully understand and formulate the prob-

lem. [32] and [33] discuss the theoretical framework of the existence of different traffics in the

uplink channel and the GF URLLC scheduling. In [32], the uplink multiple access techniques

are discussed. Their model is composed of 3 different users; eMBB, URLLC and mMTC. The

co-existence of these services in the same Radio Access Network (RAN) is therefore discussed

[32]. The objective of the mMTC is not latency or throughput but the goal is to maximize the

ability to support a high arrival rate for a given radio resource. There are two main uplink mul-

tiple access techniques, namely, orthogonal multiple access (OMA) and non-orthogonal mul-

tiple access (NOMA). To simplify the study of the requirements of the heterogeneous service,

the paper discusses the co-existence of eMBB and URLLC together on the one hand and the

mMTC with eMBB on the other hand, as separate cases. In the first case, a Successive Interfer-

ence Cancellation (SIC) decoder is used at the gNB where the URLLC is decoded first because

the reliability requirement of the URLLC is higher than that of the eMBB. Hybrid NOMA (H-

NOMA) appears to be more efficient than Hybrid OMA (H-OMA) in regimes of high rates for

eMBB and vice versa. In the second case, the SIC decoder is used as well, the eMBB pack-

ets are decoded after one or multiple of mMTC packets received on the same Resource Block

(RB), according to the rate of eMBB users. The H-NOMA outperforms the H-OMA in the same

regime, moderate rates.

The study in [33] discusses the uplink scheduling for both the URLLC and eMBB users

in both the Orthogonal Multiple Access (OMA) and the Non-Orthogonal Multiple Access

(NOMA) schemes from an information-theoretic point of view. The model was based on a

Cloud RAN (C-RAN) with a BaseBand unit (BBU) connected to the Edge Nodes (ENs). The

model for OMA was based on dividing the time slots for URLLC and eMBB users, which is

not efficient due to the sporadic nature of the URLLC traffic as well as the low utilization of

network resources. On the other hand, in the NOMA technique, the GB scheduling is used for

eMBB traffic while the GF scheduling is used for URLLC traffic. Therefore, puncturing in the

eMBB traffic occurs. This hybrid technique is efficient if it can be mitigated in EN due to the

delay constraint of the URLLC traffic. In NOMA, it is proposed that the C-RAN receives the
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eMBB data through the front haul connection which will be responsible for interference mit-

igation for eMBB traffic, while the URLLC traffic decoding will be the ENs responsibility. In

NOMA, there are two approaches to deal with URLLC traffic while decoding in ENs. The first

approach discards the punctured slots and treats them as erasures so the quantized versions

of the data sent in the front-haul are of high resolution. The other approach deals with them as

noise and forward them to the C-RAN. The first approach can be applied using a SIC decoder

which shows significant results compared to the second one.

2.5.2.1 GF Scheduling

In [4], the authors discuss the common types of the GF HARQ access schemes in the 5G New

Radio (NR) to mitigate the latency and reliability requirements of the URLLC packets. The

schemes are reactive, proactive and theK-repetitions schemes. Each of them is modeled math-

ematically in order to show which of them is more suited in each scenario. The main differ-

ence between the GF and GB schemes is the collision between the packets due to the free grant

given to all URLLC users. It is shown that the k-repetitions scheme is better in avoiding col-

lision between URLLC devices especially if the duplicates are sent with different pilots or on

different RB. However, it takes more time compared to the previous scheme, and hence, some

measures need to be taken in consideration while applying this scheme, e.g. the maximum

number of allowed repetitions. The proactive scheme provides the benefits of both the previ-

ous schemes. This technique is more complex than the aforementioned techniques. The main

problem in GF schemes that should be considered is the collision probability. The interference

in the GF is composed of intra-cell and inter-cell interference. The results show that the proac-

tive scheme provides the lowest latent access failure probability than the reactive scheme in

the high SINR threshold scenario. For lower SINR threshold and high density URLLC devices

K-repetitions provides lower access failure probability.

In [34], two ways of GF access in 5G are discussed; separate band for URLLC transmis-

sion and overlaying the eMBB and URLLC traffic. The outage probability for the two modes

of operation is calculated analytically and the achievable rates are plotted for both cases. It

is shown that the SIC decoder provides a good performance in the overlaying mode in low
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or high SNR scenarios. In [35], the uplink Random Access (RA) procedures in 5G communi-

cations are discussed. It discusses the URLLC traffic requirements for the industrial domain,

Factories of the Future (FoF). The main requirements for URLLC traffic in FoF are the 10 ms la-

tency and 99.99% reliability. The standard RACH procedure is reviewed and compared with

the 3GPP Early Data Transmission (EDT) RACH procedure discussed in 3GPP release 15 [14].

In the standard RACH procedure the message is considered a failure if the gNB detects a col-

lision when two URLLC devices use the same preamble. The failed devices tries to reconnect

after the Back-Off (BO) time. The 3GPP added 3 enhancements to the standard RACH proce-

dure. Two of these enhancements are to decrease the access delay, EDT and flexible numerol-

ogy. The last enhancement is to decrease the collision probability and the reserved preamble.

Three types of enhancement to the EDT are discussed to decrease the probability of collision

and access delay. For decreasing collision, the authors suggested using DC where the URLLC

device sends two different preambles to two different gNBs and it connects with whichever

responds first. By sending two different preambles the probability of collision will decrease.

The enhanced back-off technique is used when the URLLC devices detect its failure where the

authors suggest that it shouldnot wait for 20 ms as provided by 3GPP release 15 and sends di-

rectly while the non-URLLC devices send after a back-off equal to 10 ms. The third and final

enhancement is the dynamically reserved preambles where the gNB dynamically changes its

reserved preambles according to the number of failed connections and the numbers of estab-

lished connections for both URLLC and non- URLLC users. The results show that their tech-

niques combined together provide lower access delay, lower collision probability, and better

preamble utilization for both mixed traffic and URLLC only traffic environments compared to

the reserved preamble, EDT or both combined. They also state that the requirements can be

met if the 5G numerology with 2 symbols/ slot with 15 KHz spacing.

In [36], the GF procedure is discussed in detail along with its requirements when shar-

ing the resources to enable multi-users decoders. The authors also show that the performance

can be enhanced by using frequency hopping for HARQ and advanced receivers. In [37], the

power-boosting technique in GF uplink scheduling for URLLC is discussed to fulfill its re-

quirements. The used GF transmission scheme is the reactive scheme with power-boosting
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with each transmission. The two techniques compared in this paper are full path loss compen-

sation and partial path loss compensation. The results show that the power-boosting with full

path loss compensation achieves better performance than the partial path loss. Also, using the

boosting technique doubles the system capacity and provides 20% outage gain. In [38], differ-

ent enhanced GF NOMA uplink techniques are discussed, besides the 3 main candidates re-

active, proactive and k-repetition techniques, to satisfy the URLLC requirements. The 2 main

components of delay, as suggested in the paper, are scheduling and transmission delays. GF

schemes can overcome the first problem by sending the packets directly. However, collisions

might occur especially in a high-density system. The first enhancement scheme, repetition

with hybrid resource allocation, the scheme begins by giving each user a dedicated channel

to send the first packet then they send the same packet multiple times over shared channels.

The second approach is to use advanced receivers. Coded Random Access (CRA) schemes

are used to resolve the collision problem. In this matter, they propose 3 receiving techniques

that can be used in gNB; selection combining, where the packets are repeated and the receiver

chooses the best slots for decoding. Chase combining; where the packets are repeated and the

receiver performs MRC before decoding. Low rate channel coding performs packet encoding

over all the transmission slots and the receiver considers all slots for decoding.

A GF algorithm to mitigate the collision problem between URLLC packets is discussed in

[39]. The gNB offers each URLLC device a dedicated RB and/or a shared pool with other

URLLC devices. The algorithm assigns the RB based on the number of repetitions the system

can offer, the channel conditions, and the traffic loads. The two repetition scenarios consid-

ered are the k-repetitions and proactive, each one the probability of success is calculated ana-

lytically. Given the mode of operation and the available resources, the algorithm’s goal is to

try different allocation algorithms to achieve the reliability constraint with the least possible

resources. In [40], an analysis is done on GF K-repetitions scheduling where the URLLC traf-

fic takes a separate band without the interference with eMBB traffic. The analysis is done for

different modulation schemes; QPSK 1/8, 1/4, 1/2, and 2/3 where the difference is the num-

ber of RBs the URLLC device will take at each time of transmission. Frequency hopping is

adopted and collision can occur due to the number of URLLC devices in each RB can be more
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than one. Collisions probability is analyzed as a function of the coding scheme adopted. By in-

creasing the number of sub-bands, the probability of collisions decreases but the transmission

power of URLLC device needs to be increased or the number of repetitions will increase.

In [41], a RL environment is built to optimize the network Energy Efficiency (EE). The

RL problem is divided into states, actions and rewards. States are the channel state, Signal

to Interference and Noise Ratio (SINR) and traffic load. Actions are channel allocation and

transmission power. And the reward is defined as the network energy efficiency with a cost

subtracted when transmission of URLLC fails or SINR exceeds the threshold. Using the Q-

learning algorithm, a Q-table is calculated and the optimum policy is found. It is worth noting

that the original optimization problem in [41] was NP-hard and cannot be solved by normal

optimization methods. This approach outperform other heuristic and ML approaches. It is

clear that the RL approach performs better that other techniques which make it one of the

most promising techniques to solve network optimization problems.

2.5.2.2 GB Scheduling

In [42], an optimization problem for uplink GB scheduling is discussed. In this paper, the

power requirements of the URLLC devices are taken into consideration. An objective function

with an aim to decrease the power consumption of URLLC and maximizing the system util-

ity function is formulated. The authors develop a qeueuing model for each service for both

eMBB and URLLC. The latency requirements for URLLC packets are translated to a maximum

queue length for each service, where some services might require latency of 1 ms and other of

10 ms. The optimization problem created was a stochastic optimization problem which is dif-

ficult to solve given the time constraints in scheduling. To mitigate the difficulty of the prob-

lem, the authors use Lyapunov optimization decision algorithms. Two algorithms are devel-

oped, namely, the short and long time scales algorithms. The long time scale is used for dy-

namic resource allocation subjected to URLLC time constraints while the short time scale is

used to optimize the power consumption of URLLC devices and the Qos of eMBB users and

services. The results show that their algorithm nearly reaches the optimal solution for the pro-

posed optimization function. In addition to balancing between latency and power constraints
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compared to other scheduling algorithms. Another GB uplink scheduling technique using the

matching process is discussed in [43]. The adopted model depends on the assumption that the

gNB is of massive numbers of antennas greater than the number of users in the cell (HTC and

cMTC), so more than one user can use the same RB. An uplink optimization problem is formu-

lated for maximizing the rate of eMBB users while satisfying the constraints of URLLC. The

authors use the concepts of effective BW and effective capacity to model the Qos requirements

of URLLC devices. The optimization problem is BNLP which is NP-hard. In order to solve

the problem with lower complexity, the concepts of matching theory are applied to reach near-

optimal results. The matching was based on each user to select their preferred RB taking into

consideration the other links that will share the channel with them; this means that each user,

both the URLLC and eMBB must know the CSI of all other devices, as well as a preference list

for each RB of the users so the gNB should know the CSI of all the devices.

2.5.2.3 Mixed Traffic Scheduling

The overlaying between eMBB traffic and URLLC traffic is discussed in [44]. The authors

discuss how the power control for both types of traffic will affect the throughput of eMBB

and the reliability of URLLC. The high power level of URLLC in transmitting will increase the

SINR for eMBB traffic and affects the throughput as well, and vice-versa. According to their

results, the overlaying is feasible for low URLLC loads however it will affect the capacity of

eMBB.

In [45], a deep learning technique is adopted and tuned to solve the mixed traffic problem

for the eMBB and URLLC with puncturing for eMBB traffic. The designed model generated

near-optimal solutions to the uplink scheduling optimization problem defined in their work

with the aim to increase the accumulated rate for eMBB traffic after puncturing.

It is evident from the above discussions that the work in literature for mixed traffic is quite

limited. An optimization problem for the uplink traffic is scarce in literature due to the absence

of a mathematical model for the URLLC traffic.
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2.5.3 Other Scheduling Problems using ML Techniques

In [46], a scheduling technique is discussed to solve the scheduling problem of big data using

deep reinforcement learning and long short-term memory. The technique used to automate

the scheduling task proved efficient in CPU usage compared to other big data scheduling

techniques. In [47], deep learning is used to bypass the channel estimation for wireless links

and use only the geographical location of the device for the scheduling step. The results show

that the adopted technique reaches near-optimal solutions for different environments.

Similar studies adopted the NN approach to solve similar scheduling problems. In [48],

The NN approach is adopted in the task scheduling problem with the aim to minimize en-

ergy consumption. It is shown that the adopted NN approach decreases the energy consump-

tion and required overhead compared to the other adopted algorithms. In [49], the NN ap-

proach is used in smart grids to provide a scheduler for energy management scheme and a

corresponding pricing scheme based on the model derived.

In [50], the NN approach is used to predict the video streaming rate in the uplink predic-

tion. It is used to predict the uplink traffic rate for the upcoming 100 ms based on historical

values, to provide insights for the network operators of the quality of service provided to the

user. In [51], the deep learning approach is used to schedule edge services at real-time. It used

to schedule the tasks received from edge devices that does not have the processing capabil-

ities to perform the provided tasks. The proposed scheme provides higher accuracy and no

deadline misses compared to legacy algorithms.

In [52], a deep learning approach is used to increase the energy efficiency in fog and cloud

computing using a two step approach. It is used to schedule what resources are given to

which task to minimize the energy consumption. In [53], a NN approach is used to schedule

the resources for edge device to use the cloud resources efficiently. The results show that the

NN approach reduced energy consumption by a third compared to algorithms in literature.

As discussed, the literature is rich with different scheduling problems and many algo-

rithms that aim to solve the problem in real-time. The main obstacle with the scheduling prob-

lem is its combinatorial nature which prevents the real-time algorithms to solve it optimally.
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In addition, different ML techniques are used as a tool to generate sub-optimal results in real-

time. RL and NN approaches are the most known approaches to solve the scheduling prob-

lems as discussed.

2.6 Chapter Summary

In this chapter, different types of traffic that are enabled by the 5G systems are discussed. The

requirements of each traffic are discussed. In addition, the suitability of each traffic type with

the appropriate scheduling technique is discussed. Furthermore, different HARQ techniques

are discussed along with their merits and applicability. Moreover, the 5G system and traffic

scheduling process are discussed in a way that paves the way for the introduction of our prob-

lem. Finally, a thorough literature review on both the scheduling of the downlink and uplink

scheduling is conducted, followed by a literature review on recent advancements on the ML

applications in the domain of scheduling. The discussion in this chapter revealed the strong

need to address the problem of the uplink scheduling of mixed traffic in 5G cellular networks,

which is what we discuss in the upcoming chapters.
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System Model, Problem Formulation

and Solution Approaches

3.1 Introduction

In this chapter, our system model is introduced, the GB and GF traffic for eMBB users and

URLLC nodes respectively will be analyzed. A model for GF traffic is derived to satisfy the la-

tency and reliability requirements for URLLC nodes. In addition, the eMBB traffic model is de-

fined based on our model. Our resource allocation scheduling problem is defined as an opti-

mization problem and sub-divided into two sub-problems without affecting the optimization

problem optimality. The effect of various system parameters on the URLLC requirements is

analyzed and simulated. Different algorithmic approaches in the literature are discussed and

analyzed. Moreover, a novel scheduling technique is proposed and its results are compared to

the aforementioned algorithms.

3.2 System Model

Our system is composed of Na URLLC nodes and E eMBB users with a single gNB. At each

TTI, the gNB receives the requests from the eMBB users, updates its information about the

number of URLLC devices in the system and their latency and reliability requirements, decides

on the suitable number of resources to satisfy their requirements, R. Finally, it allocates, on

the grid with Nf frequency slots and Nt sTTIs, both the eMBB and URLLC traffics in a way
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that maximizes the eMBB rate. Then, it broadcasts the new locations to the URLLC nodes

and transmits individually the granted resources for eMBB. The HARQ technique adopted is

the k-repetitions technique as it is considered the general case of the reactive scheme with no

repetitions. In addition, the proactive scheme is not yet accepted by the 3GPP.

3.2.1 URLLC Traffic

In this section, the Probability of Delay Bound Violation (PDBV) for the GF model is derived

for our system with k-repetitions as our HARQ protocol as discussed in the previous sections.

In this scheme, the node receives a packet from higher layers with probability pa, the packet

arrival probability, modeled as a Bernoulli arrival process, the Bernoulli arrival process is con-

sidered the best fit than other arrival models since the traffic of the URLLC devices is both dis-

crete and sporadic and the transmission of the packets is in an arrive and go manner. In ad-

dition, the probability of an arrival of more than one packet is low, negligible, since the appli-

cations associated with the URLLC traffic has low packet arrival probabilities [5]. It is sent to

the gNB in an arrive and go manner with the k − 1 replicas. If an ACK is received, the packet

is dropped, else the packet is re-transmitted with the k − 1 replicas again if the latency thresh-

old, τ , is not violated. Since all the URLLC nodes share a common pool of resources, there will

be interference between the transmitted packets. If the SINR is below a certain threshold, γth,

a collision occurs and the transmission is considered as a failure, however, if only one packet

of the k replicas is decoded correctly, the transmission is considered as a success and an ACK

is transmitted to the node. As shown in Figure 3.1, the transmission time to and from the gNB

is one sTTI and the processing time is one sTTI. As discussed, the gNB does not know the lo-

cations of the URLLC nodes, so the path loss is taken for the worst-case scenario. The full path

loss inversion power control, ρ, is used to compensate for the worst-case scenario. A power

level control mechanism, gm is defined to ensure that the URLLC nodes can change the power

level at each re-transmission. Based on the discussed power scheme, the targeted received sig-

nal power at the gNB is gmρ. The channels are modeled as flat fading Rayleigh channels with

channel gains h since the Orthogonal Frequency Division Multiplexing (OFDM) is the mod-

ulation scheme adopted in 4G and 5G systems. In addition, it is assumed to be constant for
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FIGURE 3.1: k-repetitions Diagram with k = 3

each TTI since each TTI is 1 ms. The receiver noise is modeled as white Gaussian noise with

variance σ2 = N0B.

The round trip transmission time, TRTT can be calculated directly from the discussed pro-

cedure for any k as

TRTT = k + 3 sTTIs, (3.1)

the extra 3 sTTIs included in Equation (3.1) are based on our assumptions of the packet trans-

mission time and the processing time at the gNB. The maximum allowable re-transmissions,

M , can be calculated as

M =
⌊
(τ − 1)/TRTT

⌋
, (3.2)

where τ is the URLLC latency threshold, in sTTI units. The PDBV is calculated as the comple-

ment of all the possible re-transmissions that can be done by the URLLC

PF = P (T ≥ τ) =


1 M = 0

1−
∑M

m=1Ampm M ≥ 1

, (3.3)

whereAm is the probability that the URLLC node is still active at them-th re-transmission and

pm is the GF access success probability, as defined in [4]. The probability Am can be calculated
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as the failure of the past m− 1 re-transmissions

Am =


1 m = 1

1−
∑m−1

i=1 Aipi m ≥ 2

, (3.4)

and the GF access success probability of a single URLLC node, pm, can be calculated as the

probability of the number of interfering nodes multiplied by the probability of success trans-

mission

pm =

Na∑
n=0

(
Na

n

)
(Ampa/R)n(1−Ampa/R)Na−n

.Θ[n,m, k](1−Θ[n,m, k])n,

(3.5)

where Θ[n,m, k] is the probability of successful transmission of the m-th re-transmission for k

replicas given that the number of interfering nodes is n. And the number of allocated resources

for URLLC traffic is denoted by R. The probability of success transmission can be written as

Θ[n,m, k] =
k∑
l=1

(−1)l+1

(
k

l

)
exp(−lγthσ2/gmρ)

(1 + γth)ln
. (3.6)

Proof. To prove Equation (3.6), recall that the packet transmission is considered successful if

at least one of the k replicas is received correctly with SINR > γth. The simplest form of

Equation (3.6) can be written as

Θ[n,m, k] = 1−
k∏
l=1

(1− Prob(SINRml ≥ γth), (3.7)

where SINRml is the SINR of the mth re-transmission of the lth replica.

Equation (3.7) can be rewritten using the Binomial theorem as [4]

Θ[n,m, k] =
k∑
l=1

(−1)l+1

(
k

l

)
Prob(SINRm1 ≥ γth, SINRm2 ≥ γth, ..., SINRmk ≥ γth|N = n),

(3.8)
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and,

Prob(SINRm1 ≥ γth, SINRm2 ≥ γth, ..., SINRmk ≥ γth|N = n) = exp(− lγthσ
2

gmρ
)Lmintra(

γth
gmρ
|N = n),

(3.9)

where Lmintra is the Laplace Transform of the aggregate intra-cell interference of the mth re-

transmission, and it is derived as

Lmintra(s|N = n) = E[exp(−s
n∑

Q=1

gmρ

k∑
l=1

hlQ)] = (
1

1 + sgmρ
)ln. (3.10)

Substituting Equation (3.10) in Equation (3.9), then substituting in Equation (3.8) yields Equa-

tion (3.6).

In the next section, the eMBB traffic model is derived to fit our model. However, it is

important to note that the model developed for the URLLC traffic in this section is the only

model, to the best our knowledge, that is derived in the context of a single cell in order to

provide the gNB with enough information to schedule the traffic efficiently.

3.2.2 eMBB Traffic

In this section, the eMBB rate equations are formulated. As discussed in the previous sec-

tions, the main requirement for eMBB users is increasing the data rate. To that extent, the rate

equation for each eMBB user is defined as

Re =
∑
i,j

SeijB log(1 + SNReij), (3.11)

where Re is the rate of the eMBB user e, and Seij is the gNB scheduling parameter for user e on

the (i, j) RB, ie:

Seij =


1 eMBB user e is allocated the (i, j) RB

0 elsewhere.
, (3.12)
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and the SNReij is the SNR of the e-th eMBB user on the (i, j) RB, defined as

SNReij =
|hij,e|2Pe
N0B

, (3.13)

where hij,e is the channel gain of the e-th eMBB user on the (i, j) RB. Pe is the transmission

power of the e-th eMBB user and N0B is the noise variance. Equation (3.11) calculates the rate

of the e-th eMBB user, where it accumulates the rates of each RB scheduled for that user, ie:

when Seij = 1.

In the next section, the optimization problem is formulated for our system based on the

derived equations in this and the previous section. Then, a transformation for the problem is

done to ease the calculations and solution approaches are discussed.

3.3 Problem Formulation and Proposed Algorithms

In this section, the optimization problem is formulated and the solution approaches are dis-

cussed. In addition, an algorithm is proposed to overcome the shortcomings of the other algo-

rithms.

According to the discussions in the previous section, a good scheduler should provide the

URLLC nodes with enough resources, based on their requirements, to satisfy their latency and

reliability requirements. In addition, it should maximize the accumulated eMBB users’ rate to

avoid the under-utilization of the system’s resources. To avoid starvation, a minimum rate for

each eMBB user should be guaranteed. In our system, there is no overlapping between differ-

ent types of traffic, and no puncturing process is adopted. Based on the previous discussion,

the resource allocation optimization problem can be formulated as

max
Se
ij ,R,k

∑
e

Re, (3.14)

subject to
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p(T ≥ τ) ≤ ε, (3.14a)

Seij ∈ {0, 1}, ∀i, j, e (3.14b)

Re ≥ Rmine , ∀e (3.14c)∑
e

Seij = 1, ∀i, j (3.14d)

R ∈ {0, 1, 2, ..., Nf}, (3.14e)

Seij = 0, for i ∈ {i1, i2, ..., iR}.∀j, e (3.14f)

Equation (3.14) aims to maximize the accumulated eMBB users’ rate based on the optimiza-

tion parameters. Equation (3.14a) ensures that the PDBV for a certain latency, τ , is below the

reliability threshold, ε. Equation (3.14b) ensures that the scheduling decision is a binary pa-

rameter. Equation (3.14c) prevents starvation for each eMBB user by providing a minimum

rate, Rmine . Equation (3.14d) ensures that each RB is scheduled for one eMBB only and Equa-

tion (3.14f) ensures no overlapping between both types of traffic. Equation (3.14e) limits the

number of the allocated RBs for URLLC traffic based on the system’s resources.

In the problem formulated, some decision variables are integers, k, and R, while Seij is

binary. It can be further simplified, without relaxation, in order to simplify the operating

algorithms. If we consider the mapping of Seij to Ŝij as

Seij = 1 −→ Ŝij = e. (3.15)

The new, integer, decision variable Ŝij can be defined as

Ŝij =


e eMBB user e is allocated the (i, j) RB

0 URLLC nodes are allocated the (i, j) RB
. (3.16)
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Using Equation (3.16), the resource allocation optimization problem can be simplified to

max
Ŝij ,R,k

∑
e

Re, (3.17)

subject to

p(T ≥ τ) ≤ ε, (3.17a)

Ŝij ∈ {0, 1, ..., E}, ∀i, j (3.17b)

Re ≥ Rmine , ∀e (3.17c)

R ∈ {0, 1, 2, ..., Nf}. (3.17d)

Equation (3.17) is the same as Equation (3.14) except for changing the binary decision pa-

rameter into an integer parameter using Equation (3.15). Equations (3.14d) and (3.14f) are re-

moved since the new scheduling parameter cannot take two values on the same RB by defi-

nition. The resource allocation optimization problem defined in (3.17) is an integer non-linear

optimization problem. The combinatorial nature of this problem makes it, in general, hard to

solve and mostly requires exhaustive search to reach the optimal solutions. Exhaustive, grid,

search becomes cumbersome and unrealistic when the dimensions of the problem increase.

The two main factors that affect the problem dimensionality are the number of RBs, Nf , and

the number of eMBB users, E.

The problem can be further divided into two smaller sub-problems. The first problem

is choosing the two URLLC parameters, the number of RBs for URLLC traffic, R, and the

repetition factor, k, to satisfy Equation (3.17a). This, of course, requires a good understanding

of the PDBV behavior based on the system’s parameters. To that extent, Equation (3.17a) is

studied when varying several system parameters to aid designers and network engineers in

choosing the optimal decision variables. The second step is to use the values of the previous

step to optimally allocate the eMBB users’ traffic to maximize their accumulated rate while

satisfying their minimum rate requirements.
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3.3.1 Solution Approach

In solving the first sub-problem, Algorithm 1 is used. Algorithm 1 requires the system’s pa-

rameters to be known in order to calculate the PDBV. Due to the iterative nature of Equation

(3.17a), Algorithm 1 calculates each instance of Am and pm then calculates the PDBV. Equation

(3.17a) requires high computational power especially if the number of URLLC nodes is large.

This is the main reason for the problem separation, as the resource allocation problem needs

to be done each TTI, it will be time-consuming and unrealistic to calculate it each time. Equa-

tion (3.17a) can be calculated once and used each TTI if all the system’s parameters included

remained the same. In addition, Equation (3.17a) is irreversible as the repetitions factor, k, and

the number of allocated RBs for URLLC nodes, R, cannot be calculated directly. That is the

main reason this equation is studied separately in the next section to give network designers

insights to choose the optimum values based on the network parameters.

Algorithm 1: Calculating the PDBV in Equation (3.14a)
Require: τ , Na, k, γth, σ, gm and ρ

Calculate M using Equation (3.2)
if M = 0 then

PDBV=1
else

for m = 1 to M do
Calculate Am using Equation (3.4)
Calculate pm using Equation (3.5)

end for
end if
Calculate PDBV using Equation (3.3)

The second sub-problem is of combinatorial nature, which generally requires exhaustive

search methods to find the optimal solution. The exhaustive search method becomes unrealis-

tic when the dimensions of the problem increase. That is why many algorithms are developed

in the past few years to find sub-optimal solutions in real-time. The Best Channel Quality In-

dicator (Best CQI) algorithm and the Proportional Fair (PF) algorithm [54] are the most well-

known algorithms in the literature. The Best CQI solves the resource allocation optimization

problem without taking into consideration the minimum rate constraint. It aims to maximize
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the the accumulated rate of the eMBB users without taking in consideration to the actual rate

granted to each eMBB user. This might cause starvation for the eMBB users with bad channel

conditions, however, it serves as a threshold line for the other scheduling algorithms. On the

other hand, the PF algorithm provides fairness among the eMBB users, where the eMBB users

are allocated channels to have approximately equal resources. The most common parameter

used to define fairness is known as the Allocation Fairness (AF) parameter and it is defined as

AF =
(
∑E

e=1N
e
f )2

E ×
∑E

e=1(N
e
f )2

, (3.18)

where N e
f is the number of RBs allocated to the eth eMBB user and the system has E eMBB

users. The aim of the PF to maintain the AF equals to unity, providing equal resources to all

the eMBB users. This might decrease the accumulated rate of the system especially if at least

one of the users has bad channel conditions on all the available RBs. It aims to maximize the

minimum rate of the eMBB user, in addition to, decreasing the rate variances among them.

Another well-known approach that is used in solving the same kind of problems is the Ge-

netic Algorithms (GA) [55]. GA uses reproduction and mutation to reach a sub-optimal solu-

tion. In addition, in our design, GA ensures the starvation problem is resolved, unlike the Best

CQI algorithm. In our design, the GA objective function is maximizing accumulated eMBB

rate. The constraints are satisfying the minimum eMBB user rate, the integer property of the

selection parameters and the number of slots allocated to the URLLC traffic. If the minimum

rate constraint is violated, the objective function is set to zero. In addition, if the number of

slots dedicated for the URLLC traffic is greater than or less than number chosen by Algorithm

1, the objective function output is set to zero. It is clear that this setup will produce, at least, a

sub-optimal solution satisfying all the problem constraints. On the other hand, as the dimen-

sions of the problem become larger, the GA becomes less accurate and consumes a lot of time

that is not suitable for real-time operation.
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3.3.2 Proposed Resource Allocation Mixed-Scheduling Algorithm

To avoid the shortcomings of the Best CQI, PF and GA schedulers, a novel scheduling algo-

rithm, the mixed scheduler, is proposed. The proposed scheduler combines both the benefits

of the Best CQI and PF algorithms. The real-time operation is also taken into consideration

since it depends solely on both the aforementioned scheduling techniques which are consid-

ered the fastest possible schedulers. The first step is to divide the number of channels equally

between the eMBB users, by allocating Nch to each user. It is calculated as Nch = NF−R
E , where

NF is the available number of RBs, R is the number of assigned slots to the URLLC traffic and

E is the number of eMBB users. The second step is to choose the best channel for user one then

the best channel for user two and so on till each eMBB user is allocated the required number

of channels, Nch, with the described allocation scheme. The remaining R RBs are allocated to

the URLLC traffic. In some cases, the ordering of the eMBB user might matter, however, on

the long run it is nearly the same and the ordering step is considered as a time-consuming ex-

tra processing step. The ordering of the users can be done randomly to decrease the process-

ing time. Algorithm 2 explains each step in the adopted scheduling process. The proposed

scheduler is evaluated and compared to the Best CQI, PF and GA schedulers and it will be

shown that the proposed scheduler provides the best sub-optimal results in different scenarios

without violating any of the problem’s constraints.

Algorithm 2: Proposed Mixed Scheduler for the Channels Assignment problem
Require: R and CSI

Calculate Nch, the number of channels assigned to each eMBB users to ensure minimum
rate requirements
for j = 1 to Nch do

for i = 1 to E do
Choose the best jth channel for user i using CSI

end for
end for
Reserve the worst R channels for URLLC traffic

The algorithm developed in this section aims to balance between two important aspects;

the satisfaction of all the users requirements and the fast processing time. In the next sections,
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TABLE 3.1: PDBV Analysis Parameters [4]
Parameter Value Parameter Value Parameter Value

BW 100 MHZ Na 50 Nt 10
γth 0.1 ε 10−5 τ 1 ms
Pa 10−4 gm m σ2 -114 dbm

the results for various scenarios are discussed to show the applicability of our mixed scheduler

in different scenarios and environments.

3.4 Simulation Results and Discussions

In this section, different scenarios are implemented and the scheduling results of the aforemen-

tioned schedulers are discussed. The Probability of delay bound violation is analyzed when

varying different system parameters to understand their effect. Next, a comparison between

all the aforementioned schedulers is simulated for different environments. The first environ-

ment simulated is of small dimensions in order to compare the schedulers with the optimal so-

lution. Next, a comparison between the schedulers in a large dimensions environment is sim-

ulated and the results are discussed. In this chapter, all the schedulers implementations and

simulations are done using MATLAB in addition to the genetic algorithm solver tool imple-

mented in the aforementioned programming platform.

3.4.1 PDBV Analysis for GF Traffic

In this section, we analyze The PDBV for URLLC devices, Equation (3.14a), when varying

different parameters, the repetition factor, k, the number of assigned frequency slots, R, the

SINR threshold, γth, and the latency threshold, τ . Unless stated otherwise, the simulations

parameters adopted from table 3.1.

Figure 3.2 shows that, at a low delay threshold, increasing the value of k will negatively

affect system performance. In contrast, increasing the repetition factor k for c-MTCDS that

have a higher latency threshold will decrease the PDBV and increase the reliability, as in the

case of the 2 ms delay threshold. In the case of the 2 ms delay threshold, the optimal number

of repetitions is 2 or 3. However, in the case of a low delay threshold, 1 ms and 1.5 ms, the
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optimal number of repetitions is 1 which implies that the packet is sent one time with no

replicas. If the number of repetitions, k, is increased beyond optimal values, the collision

probability increases due to the contention between URLLC nodes. On the other hand, if the

number of repetitions is less than the optimal value, the transmission reliability decreases as

the system resources are not fully utilized. In addition, Figures 3.2a and 3.2b look nearly the

same, however, 2 resource blocks are granted for URLLC traffic in 3.2b instead of one resource

block only. This suggests that broadcasting all the granted resource blocks to all URLLC nodes

is not the optimal technique. Instead of broadcasting all the resource blocks to all URLLC

nodes, the gNB should divide the nodes equally and multi-cast to each group individually the

assigned RBs.

Figure 3.3 shows that increasing the latency threshold, τ , will not increase the PDBV. In fact,

increasing the latency enable the URLLC nodes to re-transmit their packets if NACk is received

which increases the reliability. It is important to understand that sometimes increasing the

latency will not affect the PDBV, because the maximum number of re-transmissions, M , is not

changed. To put it in other words, if the latency threshold is increased slightly, as in 1.2 ms

to 1.4 ms in Figure 3.3, the number of available re-transmissions remains the same implying

that the PDBV remains constant. Also as the activation probability, pa, decreases along with

the latency threshold, τ , a larger difference between PDBV curves increases. This is due to the

fact that for higher activation probability, the system appears congested as the packets can be

retransmitted several times for a longer period of time which affects the PDBV.

Finally, Figure 3.4 shows that as the SINR threshold increases, the decoding of the URLLC

packets becomes difficult and the PDBV increases. As the SINR threshold increases, it becomes

harder on the decoder at the gNB to decode the received packets which decrease the system

reliability and increases the PDBV. In addition, the gap between one reserved frequency slot

and two frequency slots, R = 1 and R = 2, curves decreases as the SINR threshold, γth,

increases. It should be noted that at medium SINR thresholds, some repetition values, k > 1,

have better performance, but this analysis is out of our scope.
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3.4.2 Optimal Scheduling for GB eMBB Traffic

In this section, we compare different scheduling algorithms with the optimal grid search tech-

nique. In this setup, we assume the number of frequency slots, Nf , equals 6 and the mini-

mum rate requirement for each eMBB user is 2 Mbps with the rest of the parameters adopted

from Table 3.2. Unless stated differently, The system parameters are given in Table 3.2. The

goal of the scheduling algorithm, after knowing the number of frequency slots allocated for

URLLC devices, is to choose the suitable channels that maximize the eMBB rate, while main-

taining the minimum rate requirements for eMBB users. As explained previously, the goal of

Algorithm 1 is to find the optimal number of resource blocks to satisfy the latency and relia-

bility constraints of the URLLC traffic. Next, the number of resources chosen by Algorithm 1

is fed to the schedulers to choose the optimal allocation for both the eMBB and URLLC traffic.

This separation will not affect the resource allocation optimization problem optimality since

the PDBV is only affected by the number of resource blocks, R. The GA scheduler operation

is explained in the previous section and the parameters adopted are as shown in Table 3.3. As

seen in Table 3.3, the population size is 100 to allow the scheduler to choose the best 100 ac-

tions. The scheduler must choose integer values, as discussed before, to allocate the channels

to the suitable eMBB user and the URLLC traffic. The constraint-dependent function is used to

allow only the choice of the integer numbers within the suitable range, from 0 to the number

of eMBB users, E. The generations limit is set to 1000 in order to avoid the scheduler search-

ing for suitable allocation more than the intended time. This limit is important especially for

environments with high dimensions, a large number of RBs.

Figure 3.5 shows a comparison between the aforementioned algorithms, with a 95% Con-

fidence Interval (CI). In this scenario, 50 simulations runs are done for each solution point

and the results are averaged along with calculating the 95% Confidence Interval (CI) for each

scheduler. Figure 3.5a shows the accumulated eMBB rate when varying the number of eMBB

users, E, and reserving one frequency slot for URLLC traffic, R = 1. In Figure 3.5b, the num-

ber of allocated URLLC frequencies, R, is changed, while maintaining the number of eMBB

users fixed, E = 3. The Best CQI algorithm shows a higher accumulative rate than the optimal
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TABLE 3.2: system Parameters [4]
Parameter Value Parameter Value Parameter Value

BW 100 MHZ Na 150 Nt 10
Nf 100 ε 10−5 τ 1.4 ms
γth 0.1 Pe 0.5 W σ2 -114 dbm
Pa 10−5 gm m Rmine 12 Mbps

TABLE 3.3: Genetic Algorithm Parameters
Parameter Value Parameter Value

Population Type Double Vector Population Size 100
Creation Function Constraint D ependent Selection Criteria Stochastic Uniform
Generations Limit 1000 Scaling Function Rank Function

search grid since it ignores the minimum rate constraint for eMBB users. The GA performs

near-optimal as for a small search space the GA converges to near-optimal results. The pro-

posed mixed scheduler performs slightly lower than the GA to maintain the fairness condi-

tion among eMBB users. Since the available resources are limited, the mixed scheduler aims to

keep the fairness condition among the eMBB users than maximizing the overall accumulated

eMBB rate. The PF performs the least due to the strict fairness condition.

In the next section, an operational scenario is discussed and it will be shown the shortcom-

ing of the GA scheduler in large dimensions problems. In addition, the results show that the

proposed mixed scheduler performs better than any of the mentioned techniques as it reaches

the highest sub-optimal results.

3.4.3 Operational Scenario Results

In this section, a full operational scenario is discussed. The system parameters are summarized

in Table 3.2.

First, PDBV is calculated for different repetition factor, k, and different number of allocated

frequencies, R. Figure 3.6 shows that for k = 1, 2, 3 and R = 1 or R = 2, the reliability

threshold, accepted by 3GPP [14], for URLLC devices, ε = 10−5, is satisfied.

Next, Best CQI, PF, GA, and our proposed mixed scheduler are used for the scheduling

step. In addition, to show the drawbacks of Best CQI an error percentage is calculated in each

case where the results are taken by averaging several simulation runs, precisely 10 simulations

runs for this environment due to the high dimensionality of the problem. In addition, a CI of
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95% is calculated for each case. The same setup for the GA is adopted, as shown in Table

3.3. Figure 3.7a shows the accumulated eMBB rate when varying the number of eMBB users,

E, and reserving one frequency slot for URLLC traffic, R = 1. While Figure 3.8a shows the

accumulated eMBB rate when varying the number of allocated URLLC frequencies, R, and a

fixed number of eMBB users, E = 15.

As shown in Figures 3.7 and 3.8, The best CQI algorithm results in the highest data rate.

Our proposed mixed scheduler comes second in terms of data rate, with all the requirements

satisfied. The GA approach produces results that are lower than our approach, due to the

high dimension of the problem. The PF algorithm remains the least one in terms of the overall

achieved data rate due to its strict fairness condition. In addition, all the schedulers are tested

for satisfying the eMBB minimum rate constraint and it is evident from Figures 3.7b and 3.8b

that the best CQI scheduler is the only scheduler that violates the minimum rate requirements,

and this violation increases as the number of eMBB users increases.

3.5 Chapter Summary

In this chapter, our system model is presented and each of the GF and GB scheduling models is

analyzed. The optimization problem defining the scheduling task is introduced and discussed.

The effect of different systems parameters on the GF traffic is presented and analyzed. Differ-

ent scheduling techniques are discussed and compared to our proposed techniques in sev-

eral environments with different dimensions and compared with the optimal solution when-

ever possible. The results show that the proposed mixed scheduler outperforms the other al-

gorithms in the literature without violating the system’s constraints. In addition, at high di-

mensions the mixed scheduler results remains consistent and outperforms other schedulers in

terms of performance, accumulated data rate and providing the eMBB traffic minimum rate

guarantee.

In the next chapter, the ML approaches are discussed. The transformation from our re-

source allocation optimization problem domain to different ML domains is done based on the
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approach adopted, reinforcement learning or neural networks. The limitations of reinforce-

ment learning are discussed. Different environments for reinforcement learning are simulated

to show the validity and the potential of the approach. Next, the neural network approach

is considered to mitigate the shortcoming of the reinforcement learning approach. The solu-

tion approach and the problem transformation are discussed. Different environments are con-

sidered with different dimensions to show the soundness of the approach. In addition, all the

aforementioned schedulers are compared with both approaches.
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Machine Learning Scheduling

Approaches

4.1 Introduction

Machine Learning (ML) is proven to be one of the vital tools for solving different communi-

cations systems problems [9]. It is applied in many domains like signal processing, network

security and control, mobility analysis, and many other topics. Scheduling is one of the top-

ics whose limits and applicability with ML techniques are still vague. To that extent, we aim

to solve our scheduling problem defined in the previous chapters in different ML domains.

First, we use reinforcement learning techniques to solve our scheduling problem in different

environments with different policies. We discuss the limitations imposed by the reinforcement

learning techniques. To mitigate the limitation imposed, we use neural network techniques

to solve the same problem. Different simulation environments are simulated and discussed to

show the validity of our approach in different scenarios.

4.2 Reinforcement Learning Approach

In this section, the reinforcement learning approach is introduced and analyzed. The schedul-

ing problem is transformed to fit the RL approach. The motivation behind the choice of the

reward function and action space is tackled in order to satisfy all the resource allocation op-

timization problem constraints and reach the highest possible rates. The shortcomings of the
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RL approach are discussed and the limitations of the approach are analyzed.

As discussed in the previous chapters, RL showed great promise in solving different schedul-

ing problems and combinatorial optimization problems in general [56, 57, 58, 59]. The RL

model contains two building blocks; the agent and the environment. The agent takes deci-

sions, action, at every instant and the environment responds with feedback with its state to

take proper action in the next time instant. The policy the agent tracks, for selecting an ac-

tion, is based on maximizing the reward function defined for the system. The three main in-

gredients of any reinforcement learning are the action space, the state space, and the reward

function. The action space is the set of all the possible actions the agent could take in a spe-

cific environment. The state space is the space with all the environment feedback depending

on the action take in the previous time instant. Finally, the reward function is the function that

defines to the agent how to give a proper action to maximize the system output.

In this chapter, the transformation of the resource allocation optimization problem to the

RL problem is discussed. In addition, the limitations of the RL in solving scheduling problems

are discussed. Finally, various environments are simulated for different learning policies and

their results are discussed.

4.2.1 Problem Transformation

The main three parameters of any RL model are the state space, s(t), the reward function,

r(t), and the action space, a(t). In the RL approach, there is no explicit way to define our

scheduling problem constraints. It needs to be defined implicitly in the reward function in

order to avoid violating these constraints. The reward function, r(t) should be designed in a

way that increases when the rate sum of eMBB users increases and decreases when the PDBV

or the problem’s constraints are not satisfied.

r(t) =
∑
e

Re − c1ζ1 − c2ζ2 (4.1)

where
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ζ1 =


1 if R < Rassigned

0 otherwise

and

ζ2 =


1 if Re < Rmine

0 otherwise

where Rassigned is the assigned number of resources that provide the latency and reliability re-

quirements of the URLLC traffic as estimated by Algorithm 1. In addition, ζ1 and ζ2 implicitly

define the reliability and latency requirements of the URLLC traffic as well as the minimum

rate constraints for each eMBB user. It is important to note that a good weighting is needed to

balance the constraints variables, ζ1 and ζ2, with the accumulated rate.

The action space, a(t), is the space of all the decisions the agent, gNB, can take. In our

formulation, it is the scheduling for eMBB users, and the frequency slots allocated for the

uRLLC traffic. In this setup, the agent will function as the scheduler in the gNB. The agent

must choose the best possible allocation that maximizes the reward function, i.e., maximizing

the eMBB rate and satisfying the constraints. If we assume we have 4 eMBB users and one

RB assigned to the URLLC traffic with 10 RBs in total, we can find the action space vary from

all the resources to URLLC traffic to all resources for user 4 with all the different possible

allocations in between, i.e., from

S = [0, 0, 0, 0, ..., 0]

to

S = [4, 4, 4, ..., 4, 4]

The state space, s(t), is the environment that gives feedback for learning and building

the Markov decision process and transition probabilities. The feedback is the channel state

information, the individual rate of each eMBB user, the overall rate of the eMBB users, and the
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PF .

s(t) = [h1XNF ∗E
i ] (4.2)

In the Markov Decision Process (MDP), the agent chooses the policy, π that will increase

both the present and the future rewards based on the transition probabilities. The policy can

be considered as a mapping from the state space to action space; π(s) : S → A. The discounted

accumulative reward function using a policy π and a starting state s is defined by:

V π(s) = {
∞∑
t=1

γtrt(st, at)|s0 = s, π} (4.3)

The goal is to find the optimal accumulative reward function

V ∗(s) = max
π

V π(s) (4.4)

The optimal policy can then be calculated as

π∗(st) = arg max
at∈A

Ūt(st, at) +
∑
st+1

p(st+1|st, at)V ∗(st+1) (4.5)

Since the state space is continuous, infinite, deep RL is adopted. A Neural Network (NN)

layer is added to find the optimal policy based on the reward function.

There are several learning policies in the RL and each policy differs in the exploration-

exploitation factor. The greedy policy [60], aims to find the highest rewards with no extra ex-

ploration. Another variation is the epsilon-greedy policy [61] which modifies the exploration

from the greedy policy to avoid reaching a sub-optimal result. Boltzmann and max-Boltzmann

policies [62] balance exploration and exploitation using statistical distributions to reach better

results.

The greedy action at any time instant, t, can be defined mathematically by the following

equation

agreedy(t) = arg maxQ(a(t)), (4.6)
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where Q(.) is the action-value function. As discussed, the greedy policy aims to maximize the

reward at any time instant. This might affect the agent by choosing a sub-optimal path due to

the absence of the exploration factor.

The ε-greedy action modified the greedy policy by adding an exploration factor in the

training policy. It can be defined mathematically as

aε−greedy(t) =


arg maxQ(a(t)) with probability 1− ε

any random action a(t) with probability ε
. (4.7)

Based on Equation(4.7), the ε-greedy chooses the optimal action with probability 1− ε. On the

other hand, there is a probability of choosing a random action that enables the agent to explore

the action space.

In the Boltzmann policy, the aim is to exploit all the available information from the Q-

table. Instead of choosing the optimal action or a random action, a distribution for all available

action is designed based on Boltzmann distribution, to choose the most probable action to

produce better results. The main difference in this policy compared to the previous ones is

that it construct a belief table. The information of other actions in the belief table can be taken

into consideration. The max-Boltzmann policy offers a slight modification compared to the

Boltzmann policy. It allows to control the exploration parameter for the high probable actions,

producing good results, gathered from the belief table.

4.2.2 Dimensionality Problem

The main problem in the RL approach is the dimensions of the problem. If we consider a

small setup with only 3 eMBB users and 6 RBs with one reserved for URLLC traffic, with a

simple calculation, the number of possible actions is 4096 actions. In general the number of

actions for any number of eMBB usersRwithNf RBs andR of them assigned to URLLC traffic

equals (E + 1)Nf . The number of actions increases rapidly with any of the aforementioned

parameters and for a moderate or large environment, the training becomes cumbersome and

time-consuming.
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TABLE 4.1: Scenario 1 System and Tuning Parameters
Parameter Value Parameter Value

BW 1.4 MHz Na 150
Nf 6 ε 10−5

γth 0.1 Pe 0.5 W
Pa 10−5 gm m

learning rate 10−4 no. of layers 2

c1 108 c2 108

Rassigned 1 Activation Function RELU
Nt 10 τ 1.4 ms
σ2 -114 dbm Rmine 3 Mbps

no. of neurons/ layer 64 loss function MAE

4.2.3 Simulation Results and Discussions

As stated in the previous sections, different policies are tested in order to find the best policy

to fit each situation. Google Colab notebook is used with keras-rl package. Adam optimizer is

used, with a learning rate 10−4 and the Mean Average Error (MAE) is used for error calcula-

tions. Two hidden layers are used to train the model with Rectified Linear Unit (RELU) as an

activation function and 64 neurons each. To the best of our knowledge, this setup and the tun-

ing parameters in Table 4.1, produced the best achievable results. Following the work of the

previous chapters, two different scenarios are discussed with different dimensions to check

the validity of our approach.

4.2.3.1 Scenario 1 Results

In this system, different policies are tested in a small environment with 6 RBs. This system is

adopted by the 3GPP [63]. The system and the deep RL parameters are shown in Table 4.1.

The results of scheduling of this system from the Deep RL are compared with 2 different

algorithms, the optimal algorithm and the Best CQI algorithm as shown in Figure 4.1. To

show the robustness of the results, a 95% CI is done for different numbers of trials, 50 trials,

for each algorithm. Figure 4.1b shows the percentage of times the schedulers did not satisfy

the minimum eMBB rate constraint. The Best CQI is the only scheduler that does not satisfy

the eMBB minimum rate constraint, however, all the adopted policies satisfy the minimum

rate constraint for each eMBB user. In Figure 4.1c, the deviation percentage between different
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policies rate with the optimal rate is plotted. It is evident that all the RL policies produce

near-optimal results with only a 2% deviation. However, it is clear that the Epsilon Greedy

policy is the best choice amongst the other policies. The Epsilon Greedy policy has the highest

robustness as its deviation from the 2% line is minimal. So, in small environments, the Epsilon

Greedy is the best choice due to its high robustness compared with other policies.
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FIGURE 4.1: Comparison among Different RL Policies for Scenario 1

4.2.3.2 Scenario 2 Results

In this section, a larger environment is adopted in order to understand the influence of dimen-

sionality on the system. The system and the RL parameters are the same as scenario 1, for com-

parison purposes, except the BW = 20 MHz and the RBs Nf = 10. In this scenario, the optimal
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solution is dropped due to the high processing power required for larger dimensions, and all

the comparisons are done with the Best CQI algorithm. In addition, 50 trails are used to check

the robustness of all the policies and to produce the 95% confidence interval.
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FIGURE 4.2: Comparison among Different RL Policies for Scenario 2

As shown in Figure 4.2, the 2% deviation is maintained for all RL policies. However, as in

the previous scenario, the Epsilon Greedy policy has the highest robustness.

In the next section, the neural network-based algorithm is discussed. The transformation

to the NN is analyzed to fit our problem. Finally, the results for different operating scenarios

are simulated and compared to the RL-based techniques.
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4.3 Neural Network Approach

In this section, the neural network approach using the multi-layer perceptron architecture is

introduced and analyzed. The transformation of our main resource allocation optimization

problem to the NN domain is discussed and the shortcoming of using the modified resource

allocation optimization problem is analyzed. Next, the tuning of the NN parameters are dis-

cussed and the effect of each parameter on the results is simulated and analyzed. Finally, three

different environments with different dimensions are tested using the NN-based scheduler

after training with the optimized parameters.

From an engineering standpoint, neural network treats the system as a black box with

inputs and outputs. The interactions between different system elements are imitated by the

neurons in the hidden layers. The main advantage of the neural network in our problem is

bypassing the action space expansion. In this section, the problem transformation to the neural

network domain is discussed. In addition, simulation showing the insights on how to tune the

neural network parameter is done separately before training, where various parameters of

the neural network system are manipulated to show the effect on the network output. Next,

environments with large dimensions are simulated that cannot be tackled by the RL approach.

4.3.1 Problem Setup

Unlike the RL approach, Neural Network (NN) needs a different treatment for scheduling

problems. One of the biggest limitations of the NN approach is the integers output problems

[64]. Due to this issue, the reduced resource allocation optimization problem defined in 3.17

cannot be used to generate good results, however, the main resource allocation optimization

problem defined in 3.14 has the potential to generate good results. The problem in this setup

is as follows, the neural network takes the channel gains for all eMBB users as input and

outputs the scheduling for each eMBB user for each channel. The problem in this setup is

the massive number of inputs and outputs along with the binary output constraint in the

NN. The input and output layer is of the same size E.Nf while the number of hidden layers,

the number of neurons per layer, the learning rate, and the number of training epochs can be
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FIGURE 4.3: A NN Diagram with a Hidden Layer and the same size
Input/Output layers.

varied to generate good results. The main framework of our approach can be seen in Figure 4.3.

The numbers of neurons in the input and output layers are the same and at least one hidden

layer, with a different number of neurons, is adopted to understand the interactions between

the input and the output. This method is used to overcome the dimensionality problem in

the RL approach. If a comparison is done between each approach dimension, it can be seen

clearly that if the RL approach is used, the dimension of the problem is exponential to both

the number of resource blocks and the eMBB users while it is linear for the NN approach.

The mathematical model of the neural network is well established in the literature [65]. The

neurons in the hidden layers try to understand the interactions between the input and output

through non-linear activation functions. To generate the training samples, MATLAB is used

with the Best CQI scheduler. A sample size of 10,000 samples is generated for each training

instance on MATLAB and it is converted into a csv file to be used in Google Colab for the

training and testing steps. Finally, a split of 70%-30% for training and testing for our neural

network scheduler is done.
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TABLE 4.2: NN Training Parameters
Parameter Value Parameter Value

BW 20 MHz Rassigned 1
Nf 100 loss function MSE
E 12 Pe 0.5 W

Activation Function Sigmoid Nt 10

4.3.2 Results and Discussions

In this section, different parameters of training are varied, number of training epochs, number

of hidden layers, learning rates, and number of neurons per hidden layer. Each effect of the

training parameters is plotted individually against the maximum achievable rate by the Best

CQI algorithm for the given scenario. In addition, a simulation is done on the highest dimen-

sion environment adopted by the 3GPP in order to show the validity of our claim. Finally, dif-

ferent smaller dimensions environments are simulated to show that the adopted approach is

applicable for any dimension. Google Colab notebook is used in training the NN scheduler

using the free CPU and GPU resources.

4.3.2.1 Tuning the Neural Network Model

As discussed, several parameters need to be tuned in order to find a model that will generate

the best results. To that extent, 10000 samples are generated using the Best CQI algorithm and

used for training and validation for the NN scheduler. The system parameters used are in

Table 4.2.

To know the best tuning for each parameter, the rest are left fixed and a range of values is

plotted versus the rate and compared with the Best CQI algorithm rate. The number of input

and output neurons, as stated earlier, is large, it is 1200 in our system. First, the system is tuned

for the number of training epochs, as seen in Figure 4.4, it requires at least 550 epochs to begin

to converge to a suitable value. A large number of epochs is related to the fact of the large

dimensions of the input and output layers. In addition, the system used is stable as it keeps

the results to about 250 epochs, as opposed to other systems which diverge quickly from the

optimal.
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Secondly, the number of hidden layers is tested as shown in Figure 4.5. It is clear that the

optimal number of layers is 2 since it generates the highest rate. It is clear that for only one

hidden layer, the NN did not grasp the system behavior to reach a good performance due to

the lack of enough non-linearity. In contrast, when increasing the number of hidden layers,

the system will require a larger number of epochs to train and converge, as in the case of the 4

hidden layers.

Next, the number of neurons per layer is tested. A small number of neurons are tested at

first, however, it showed inefficiency in training so it is neglected. As shown in Figure 4.6, the

optimal number of neurons per hidden layer is 1700 as it generates the highest rate. Both 1500

and 2100 generate near-optimal results however not as high as the 1700. Unlike the previous
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plots, Figure 4.6 shows a fluctuation as opposed to a fixed trend. Due to this fact, a large range

is plotted to make sure that our choice is optimal.

Lastly, the rate is plotted versus the neurons learning rate. As shown in Figure 4.7, the

optimal learning rate is 10−4. In the case of a low learning rate, the system did not have enough

time to learn the optimal policy to reach a solution. In contrast, for high learning rate increases,

the results keep fluctuating and do not reach the optimal or near-optimal performance, in

addition, fluctuation decreases the robustness and reliability of the system.

Based on the above discussions, the optimal parameters used for training is 600 epochs

with 2 hidden layers and 1700 neurons per layer with a learning rate equals 10−4.
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4.3.2.2 Scheduling Results

In this section, the neural network results are discussed based on the model defined in in the

previous section. As previously discussed, the model parameters are tuned to produce the

best sub-optimal results for our system. The system and the NN scheduler parameters are as

shown in Table 4.3.

As shown in Figure 4.8, the NN scheduler is compared with the Best CQI results after

training for a different number of eMBB users, E. In Figure 4.8b, the deviation between the

NN scheduler and the Best CQI algorithm is 6%, which makes sense as there is no reward

function or policy to direct the model to the optimal scheduling.
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4.3.2.3 Neural Network Scheduler Results for Lower Dimensions

To make sure that our proposed technique works better or at least the same for other environ-

ments, additional 2 operational scenarios, are tested with different dimensions [63]. For the

first scenario, a BW of 5 MHz is used with 25 RBs Several testing is done to tune the parame-

ters as in the previous section, with the goal to change the least number of parameters possible.

The adopted system parameters and the NN parameters are summarized in Table 4.4.

It is clear from Table 4.4 that the main difference is using fewer neurons per layer compared

to the larger scale scenario. Figure 4.9 shows a comparison among different scheduling tech-

niques along with the NN scheduler. As shown in Figure 4.9(a), the NN scheduler achieves

nearly the same as the GA approach with a real-time operation after training. In Figure 4.9(b),
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TABLE 4.3: NN Training Parameters for Scenario 3
Parameter Value Parameter Value

BW 20 MHz Rassigned 1
Nf 100 loss function MSE

Learning Rate 10−4 Pe 0.5 W
Activation Function Sigmoid Nt 10

Epochs 600 Hidden Layers 2

Neurons/Layer 1700 Number of Trials 10
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FIGURE 4.8: Comparison Among Different Scheduling Algorithms with the NN
Scheduler for 100 RBs.
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TABLE 4.4: NN Training Parameters for Scenario 4
Parameter Value Parameter Value

BW 5 MHz Rassigned 1
Nf 25 loss function MSE

Learning Rate 10−4 Pe 0.5 W
Activation Function Sigmoid Nt 10

Epochs 600 Hidden Layers 2

Neurons/Layer 400 Number of Trials 30

TABLE 4.5: NN Training Parameters for Scenario 5
Parameter Value Parameter Value

BW 15 MHz Rassigned 1
Nf 75 loss function MSE

Learning Rate 10−4 Pe 0.5 W
Activation Function Sigmoid Nt 10

Epochs 600 Hidden Layers 2

Neurons/Layer 1000 Number of Trials 10

it is shown that the maximum deviation from the Best CQI algorithm is 1.2%.

Secondly, a larger environment compared to the previous one is tested and compared to

other algorithms. The BW of the adopted system is 15 MHz and the system is composed of

75 RBs. The rest of the parameters along with the NN scheduler parameters are summarized

in Table 4.5. It is shown from Table 4.5 that the only NN scheduler parameter changed is

the number of neurons per layer which makes sense since the system’s dimensions increased

significantly.

Figure 4.10 shows a comparison among different scheduling techniques compared to the

NN approach. In Figure 4.10(a), the NN approach reaches approximately the same results as

the GA approach, the same as the previous scenario. In addition, Figure 4.10(b) shows the

deviation of the NN scheduler from the Best CQI algorithm is maintained at 3.4%.

From the previous results, it can be concluded that the NN approach is a powerful tool

and applicable for different scenarios and system dimensions. In addition, the NN scheduler

reaches nearly the same results as GA with no processing time after training.

The main comparison points between both schedulers, the RL and NN scheduler, is de-

scribed in Table 4.6. As shown in Table 4.6, the dimensions of the RL scheduler is of exponen-

tial complexity as opposed to the linear relationship between each factor for the NN scheduler.
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FIGURE 4.9: Comparison among Different Scheduling Algorithms with the NN
Scheduler for 25 RBs.
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FIGURE 4.10: Comparison Among Different Scheduling Algorithms with the
NN Scheduler for 75 RBs.
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TABLE 4.6: Comparison between the RL and the NN schedulers
RL NN

Dimensions (E + 1)Nf E.Nf

Learning Rate 10−4 10−4

Activation Function RELU Sigmoid
Training Samples None 10,000 (70-30 split)
Training Time 100,000 steps 600 epochs
Loss Function MAE MSE
Hidden layers 2 with 64 Neurons

Each
2 with Massive
Number of Neurons

Suitable Optimiza-
tion Problem

Integer Combinato-
rial (3.14)

Binary Combinato-
rial (3.17)

Real-time Operation Yes Yes
Applicability Low Dimensions Low, Medium and

High Dimensions
Deviation 2-2.5% Low: 1%, Medium:

3% and High: 6%
Loss Function MAE MSE

To that extent, the RL scheduler is applicable only in low dimensions environments, 6 RBs till

10 RBs. On the other hand, the NN scheduler is applicable for all dimensions. In our simu-

lated environments, we adopted the 25 RBs, 75 RBs, and 100 RBs for the NN scheduler which

generated near-optimal results. It is evident that both schedulers have a real-time operation,

which is the main reason for adopting the ML approach. The main advantage of the RL sched-

uler compared to the NN scheduler is the number of neurons in the hidden layers, however,

we were able to train the largest environments using, the open-source, Google Colab GPU. It

is clear that the NN scheduler has a lower deviation percentage compared to the RL scheduler.

The NN scheduler achieves up to 99% of the performance of the Best CQI scheduler in the 25

RBs environment compared to 98% for the RL scheduler in the 10 RBs environment.

If we compare between the three proposed schedulers in this thesis, the mixed scheduler,

the RL-based scheduler and the NN- based scheduler, each of them has certain advantages

and disadvantages that need to be considered. The mixed scheduler produces the highest ac-

cumulated eMBB rate while satisfying all the system’s requirements, however, it lacks the real-

time operation of the ML-based schedulers. On the other hand, the RL-based schedulers have
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a good potential since they produce consistent deviation percentage for the adopted environ-

ments and produce good sub-optimal results in real-time. However, the dimensionality prob-

lem due to the expansion of the action space remains the main issue in the RL approach. Fi-

nally, the NN-based schedulers remains the only adopted scheduler that can produce real-

time results in all the dimensions and environments adopted by the 3GPP, however, it requires

a massive number of neurons per layers and the highest training time. However, the advan-

tages of the NN-based schedulers overcomes the drawbacks of such approach especially that

these drawbacks are before the deployment of such schedulers.

4.4 Chapter Summary

In this chapter, Various ML approaches are discussed; the RL approach and the NN approach.

Two types of novel schedulers are implemented based on the RL and NN approaches. The

results of each approach are simulated and discussed. The shortcoming of the RL approach

is discussed and the NN approach is used to overcome the dimensionality issue. The results

show that the RL technique approaches optimal solution with 2-2.5% deviation in any of the

simulated environments which shows the robustness and reliability of the approach. How-

ever, the dimensionality problem cannot be mitigated to allow such an approach for larger di-

mensions environments. The NN approach is adopted and showed great promise after tuning

the parameters carefully. The results show that the NN maximum deviation from the highest

rate is 6% for the largest environment accepted by the 3GPP. The main shortcoming of the NN

scheduler, unlike the RL scheduler, is the number of neurons in the hidden layers.
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5.1 Conclusions

In this thesis, the mixed scheduling problem for emerging traffic in 5G systems is discussed.

Different solution methods are devised and their advantages and disadvantages are discussed.

A comparison between different scheduling techniques in literature is done and the genetic al-

gorithm scheduler and the mixed-scheduler, a combination between the best channel qual-

ity indicator and the proportional fair schedulers, are adopted to produce sub-optimal results.

Most importantly, a mathematical model for URLLC traffic in a single cell for 5G communica-

tion is derived; to the best of our knowledge, this is the first work to mathematically model the

URLLC traffic in a single cell. The derived equations aided in formulating a resource allocation

optimization problem for the uplink mixed traffic in 5G systems.

Next, different ML techniques are adopted to check their applicability in different types of

environments and different dimensions. The reinforcement learning based scheduler is dis-

cussed first and the reward function and the action space are defined. The dimensionality

problem is discussed and explained. It is shown that the reinforcement learning based sched-

uler can achieve up to 98% of the performance of the optimal technique. The main drawback

of the RL approach is the dimensionality problem; as the system’s dimensions increase, the

action space explodes and training becomes cumbersome.

Next, a neural network approach is adopted to solve the scheduling problem in a large

environment to overcome the shortcomings of the reinforcement learning approach. In the

largest environment, in terms of dimensions, the neural network scheduler achieved up to
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94% in terms of accumulated throughput. The scheduler is tested for smaller environments,

in terms of dimensions, to check its reliability for different systems and achieved up to 99%

of the throughput upper bound. However, The neural network based scheduler requires very

good tuning before learning, as a slight change in any of the parameters might lead to very bad

results. It is important to note that the processing time of the neural network and reinforcement

learning schedulers, after training, is negligible compared to the genetic algorithm scheduler

and the mixed scheduler. One of the most important aspects of schedulers is the processing

time, as discussed in the previous chapters, which strongly justifies our choice of using the

ML approaches in general and the neural network approach in specific. It is evident that the

neural network based scheduler surpasses all the other tested schedulers in different aspects. It

surpasses the reinforcement learning approach in the complexity reduction and performance.

In addition, it surpasses both the mixed scheduler and the genetic algorithm scheduler in the

processing time.

5.2 Future Directions

In this thesis, many topics and tools are discussed which open multiple research directions.

The URLLC model can be reformulated to include puncturing or soft decoding. Another ap-

proach is to use dedicated resource blocks for each set of URLLC nodes instead of broadcast-

ing all the allocated resources to all the URLLC nodes. However, this might need extra over-

head to use multi-casting instead of broadcasting. In addition, the third HARQ technique,

the proactive scheme, does not have a mathematical model for a single gNB in literature till

now. Having a concrete mathematical model for it might enhance our understanding of such

approach.

On the other hand, the resource allocation optimization problem developed can be modi-

fied to overlap different types of traffic on the same resources using puncturing after modify-

ing the equations of the URLLC traffic.

Since the reinforcement learning domain showed great promise in small environments, an

approach can be developed to mitigate the dimensionality problem. This approach can be
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based on the fact that a lot of actions in the action space are useless. The action space contains

all the possible actions the scheduler can take including the actions that does not satisfy the

resource allocation optimization problem constraints. Allocating all the resource to the URLLC

traffic is one on the actions that is included in the action space that is considered non-realistic,

allocating resources to a specified set of users instead of all the users are actions that does not

satisfy the resource allocation optimization problem constraints as well. Based on that, a good

approach is to remove these actions to allow training. For the neural network approach, a

lot of experiments can be done to tune the model parameters and find a relation between the

system parameters and the learning parameters with less trial and error.
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