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Abstract 

 

Background: SARS-COV2 virus detected in December 2019, and was 

considered a pandemic in March 2020 by the WHO. Symptoms range from 

asymptomatic to life threatening ones. Studying cell-cell interactions in patients' 

blood samples may lead to novel diagnosis and treatment approaches.  

Aim: This study aims to analyze single-cell RNA sequencing data to 

identify differences in cell-cell communications between healthy and COVID 

patients and differentially expressed T-cells genes that contributed to immune 

system antiviral activity.  

Materials and methods: Single-Cell RNA sequencing data from seven 

COVID patients and five healthy individuals were collected from (GEO 

accession GSE155673). Cell types were identified and cell-cell interactions were 

inferred for each condition (healthy, moderate and severe COVID patients). 

Additionally, T cells differentially expressed genes between the three conditions 

were identified and pathways enrichment were performed. 

Results: Eight cell types were identified. Percentage of T cells decreased 

from 32.76% in healthy individuals to 16% in severe COVID cases. Cell-Cell 

interactions analysis revealed significant alterations among healthy, moderate, 

and severe conditions such as reduction of overall incoming signaling in T cells 

of severe cases. Additionally, SN signaling pathway was identified only in 

COVID cases, which in turn was found to be in IFN-γ reduction in distinct cell 

types. Pathways enrichment analysis identified IFN-γ signaling to be upregulated 

in moderate cases, and to be downregulated in severe ones. Protein interacting 

with IFN-γ also shows downregulation such as IRF1. However, the negative 

regulator of  IFN-γ -SOCS3- was upregulated in COVID patients T cells. 

Conclusion: Cell-cell interactions alteration in COVID patients might 

have resulted in eliciting improper immune response. Not only, did T cells 

percentage decreased in severe COVID cases, but also T cells overall incoming 
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signaling was decreased. Additionally, cell-cell interaction alteration might have 

played a significant role in suppressing antiviral response through IFN-γ 

reduction which might contribute to the observed severity of COVID cases. 
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CHAPTER 1: Introduction 

1.1 COVID 

 1.1.1 Current Status 

More than 150 million confirmed cases of COVID-19 disease (with more than 79 

thousand daily new cases are reported as of 1st May 2021), and more than three million 

deaths were reported as of April 2021 [https://covid19.who.int]. According to Johns 

Hopkins Coronavirus Resource Center, India and Brazil reported the highest cases since 

March 2021 [https://coronavirus.jhu.edu/]. Due to the pandemic, the world economies are 

struggling even after more than one billion individuals are vaccinated (from which more 

than 200 million are fully vaccinated) with Food and Drug Administration (FDA) 

emergency authorized vaccines [https://www.fda.gov]. 

COVID-19 disease common symptoms include fever, fatigue, dry cough, headache, 

sore throat, hemoptysis, and diarrhea (Huang et al. 2021). Most patients are asymptomatic 

or show mild symptoms, while others show moderate to severe symptoms (Tang et al. 

2021). Individuals with risk factors (old age, obesity, or diabetes) develop a cascade of 

acute biological events that may lead to hospitalization and the need for ventilation 

(Laforge et al. 2020). Covid-19 has led to several complications, including lung injury, 

cardiac injury, myocardial damage, and ischemia (Bénard et al. 2021, Garcia-Beltran et al. 

2021), 

 

 1.1.2 SARS-CoV2 

SARS-CoV2 (similar to SARS-COV, MERS-COV) is a single-stranded positive 

RNA virus (Chen et al. 2020b). It belongs to the Orthocoronavirinae subfamily(Pal et al.), 

which causes coronavirus disease that became a global pandemic and health emergency in 

2019 (Dong et al. 2020, Huang et al. 2021). Coronavirus-2 has four structural proteins: 

envelope (E)  protein, membrane (M) protein, nucleocapsid (N) protein, and (S) trimeric 

protein, which consists of two main subunits (S1) and (S2) (Ou et al. 2020).  

https://www.fda.gov/
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 1.1.3 Classification of COVID-19 disease severity 

The WHO proposed a classification of Covid-19 patients that includes three main 

severity groups. The first group comprises Critical COVID-19 patients who mainly require 

life-sustaining therapies provisions such as vasopressor therapy or mechanical ventilation, 

with criteria of ARDS (Acute respiratory distress syndrome) and lung injuries. The second 

group is severe COVID-19 patients related to low oxygen saturation and respiratory rate 

levels and severe respiratory distress symptoms. On the other hand, non-severe COVID-

19 patients as the third group have none of the critical and severe defined 

criteria.  [https://www.who.int/] 

 1.1.4 Treatment and management 

There is an urgent need for novel treatments of COVID-19 disease in its early and 

late stages (Bose et al. 2020). Treatment and management should rely on the onset of 

infection and disease severity, which correlates with clinical symptoms and complications. 

For outpatient management of acute COVID-19 infected cases, the U.S. National 

Institution of Health (NIH) guidelines recommended treatment plans according to  patient's 

vital signs, physical examinations, and risk factors for disease progression. Anti-pyretic, 

analgesics, and anti-tussive drugs are used to relieve symptoms like fever, headache, and 

cough for outpatient cases' management. Rest is required in the early stages of infections, 

and then other activity forms should be increased during recovery. In mild to moderate 

COVID-19 outpatient cases with a high risk of developing severe progression, NIH 

guidelines recommended using a combination of anti-SARS-CoV2 monoclonal antibodies. 

The two FDA approved combinations of anti-SARS-CoV2 monoclonal antibodies are 

bamlanivimab plus etesevimab or casirivimab plus imdevimab. These combinations are 

highly recommended for outpatient COVID-19 cases with higher risk of clinical 

progression. However, with patients who received the antibody combination therapy, 

https://www.who.int/%5dpublications/i/item/WHO-2019-nCoV-clinical-2021-1
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vaccination should be deferred for at least 90 days after treatment; to avoid the disease 

progression resulted from antibody and vaccine interference [https://www.nih.gov/]. 

For the hospitalized COVID-19 patients, the only drug approved by the FDA is the 

antiviral Remdesivir in addition to supplemental oxygen (Eastman et al. 2020). Moreover, 

anticoagulant drugs are recommended for COVID-19 hospitalized cases with clinical 

indications of developing venous thromboembolism (VTE) or arterial thrombosis in 

COVID-19 cases. Despite the recommendations of WHO to use low doses of 

anticoagulants to prevent thromboses, there is no sufficient evidence for the requirement 

for prophylactic doses with hospitalized COVID-19 cases (Tiwari et al. 2020). Due to lack 

of sufficient data about safety and efficacy, the NIH guidelines recommended not to use 

Antibacterial therapies like Azithromycin with or without chloroquine against COVID-19 

disease in outpatient or hospitalized cases [https://www.nih.gov/]. Thus, current 

interventions and guidelines for COVID management are related to isolation, and 

supportive medicine for infected patients, besides symptomatic and respiratory failure 

management in severe cases (Marini and Gattinoni 2020).  

1.1.5 Vaccination against COVID-19 disease 

 Safe and effective vaccines for COVID-19 infection are crucial to building antiviral 

protection and very useful weapons to stop the pandemic (Menni et al. 2021). Different 

vaccine types show numerous immune-system stimulated responses. An effective vaccine 

should trigger the immune system to produce memory T-cells and B-cells (Teijaro and 

Farber 2021). Memory T-cells and memory B-cells are essential components of protective 

immunity against viral infection. So, the immune system will gain the ability to fight 

against future viral infections more precisely and effectively (Cox and Brokstad 2020). 

Different COVID-19 developed vaccines could be categorized according to the mechanism 

of triggering a future viral recognition by the immune cells, such as mRNA vaccines that 

contain specific genetic particles from the SARS-CoV2 virus. The viral genomic particles 

trigger the immune system to produce harmless viral proteins, stimulating the formation of 

memory T-cells and B-cells that will activate adaptive immune responses against the virus 
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(Teijaro and Farber 2021). Also, a formation of memory T-cells and B-cells could be 

gained via protein subunit-based vaccines, including harmless viral proteins or protein 

fragments (Pollet et al. 2021). A viral vector is a modified version of different virus that 

contains SARS-CoV2 genetic materials. The viral vector-based vaccines also activate 

specific antiviral immune responses (Lundstrom 2021).  

No FDA-approved vaccine prevents COVID-19 as of 10th May 2021 

[https://www.fda.gov/]. Despite that, the FDA had authorized the emergency usage of 

different vaccines such as Pfizer-BioNTech, Moderna and Johnson,  Johnson / Janssen,  

Novavax, and Vaxzevria (formerly COVID-19 Vaccine AstraZeneca) (Singh and Upshur 

2021). The types of currently FDA authorized vaccines are represented in Table 1. 

According to the Centers for disease control and prevention (CDC), everyone 12 years old 

or older is recommended to be vaccinated the first available vaccine from the currently 

authorized and available vaccines [https://www.cdc.gov]. 

 

Table1: FDA authorized vaccines against COVID-19 for emergency use. 

Company Type Doses Storage 

Oxford Uni-

AstraZeneca 

Viral vector Two doses 2°-8° C 

Pfizer - BioNTech mRNA based Two doses -70° C 

Moderna mRNA based Two doses -20° C 

Novavax Protein based Two doses 2°-8° C 

Janssen Viral vector One dose 2°-8° C 
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1.2 Immune response 

 1.2.1 Immune response against viral infection 

The innate and adaptive antiviral immune responses play critical roles against viral 

invasions through cellular components, immune molecules, and intrinsic blood 

components (Huang et al. 2021). The immune system antiviral response alteration 

significantly affects disease severity (Ren et al. 2021). Innate immunity is the host's first 

line defense mechanism against viral infections (Dzananovic et al. 2018). The innate 

immune response could be activated within minutes to several hours after pathogen 

recognition. Depending on the type of activated cells after the pathogen infection, the 

innate immune response could be further classified into an immediate innate immune 

response or early induced innate immune response. In most RNA viruses like 

coronaviruses, the innate immune response is activated by viral antigens recognition with 

pattern recognition receptors (PRRs). PRRs are expressed by the innate immune system 

cells like monocytes, neutrophils, and epithelial cells (Iwasaki and Medzhitov 2015). 

During innate immunity response, infected cells produce cytokines like interferons (IFNs) 

molecules, especially The IFN-α (alpha) and IFN-β (beta), which act as signaling 

molecules to activate other immune cells surrounding those who were infected (Rao et al. 

2020). 

 1.2.2 Immune response in COVID-19 patients 

Immune responses against SARS-CoV2 include hyper-inflammatory responses 

involving CD4+ T-cells and CD8+ T-cells differentiation and reactivity with viral antigens 

(Azkur et al. 2020, Catanzaro et al. 2020). CD4+ T-cells responses were directed against 

S, M, and N proteins and partially against non-structural protein 3 (nsp3), nsp4, and open 

reading frame 8 (ORF8) (Grifoni et al. 2020). Also, CD8+ T-cells responses were 

significantly reactive with antigens like nsp6, ORF3a, and the N protein (Grifoni et al. 

2020). 

Within a specific period of unsuccessful elimination of the pathogen by the innate 

immune system, the host activates adaptive immune responses against the invasion (Rao 
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et al. 2020). During the adaptive immune response, the antigens are translocated to the 

lymphoid organs where B-Cells and T-Cells recognize them. B- and T-Cells become 

activated through released cytokines and differentiate into effector cells (Chaplin 2010, 

Marshall et al. 2018, Ghaffari et al. 2020).  

 

 

Figure 1. Schematic diagram of SARS-CoV2 activation of host adaptive immune response. SARS-

CoV2 molecular structure, (M) membrane proteins, (S) spike proteins, (N) nucleocapsid proteins, (E) 

envelope proteins, and viral genomic RNA. (1) SARS-CoV2 viral entry to the host cell through interaction 

between viral (S) proteins and the angiotensin-converting enzyme inhibitor 2 (ACE2) receptors of the host 

cell. (2)  Viral replication and release from the host cells. (3) Antigen fragments presentation to T helper 

cells by the antigen-presenting cells like macrophages and dendritic cells (DCs) after viral engulfment and 

digestion. (4) Activated T helper cells release cytokines that activate B cells. (5) Activated B cells 

differentiation into plasma or memory B cells with high-affinity binding receptors to the SARS-CoV2. (6) 

Plasma B cells secrete IgM, IgG, and IgA antibodies that mediate neutralization when bind to SARS-CoV2 

antigens and prevent viral entry into host cells (Ghaffari et al. 2020). 

 1.2.3 Effect of Disease Severity on eliciting immune response 

Crevia et al., 2021 suggested four antibody response grades depending on COVID-

19 disease severity include (1) mucosal antibody response (IgA) during mild cases that 
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show few symptoms of COVID-19 disease; (2) delayed systemic IgA and IgG production 

in mild to moderate cases; (3) elevated serum levels of IgA and IgG in severe cases; and 

(4) critical COVID-19 cases shown very high serum titers of IgA and IgG (Cervia et al. 

2021). The high titers of SARS-CoV2 specific antibodies are consistent with higher B-cells 

expression of the genes encoding for the constant regions of immunoglobulins IgA1, IgA2, 

IgG1, or IgG2 (Ren et al. 2021). Furthermore, serological analysis of innate and adaptive 

immune responses reported that the highest antibodies' levels were observed in severe 

COVID-19 patients (Carsetti et al. 2020).  Innate and adaptive immune responses were 

reported to be related to disease severity. Other factors like age, obesity, and diabetes may 

also alter immune responses against COVID-19 disease. Elderly patients showed decreased 

production of IFNs, which led to altered immune responses (Sridharan et al. 2011, Rao et 

al. 2020). Also, significantly higher antibodies' responses were detected in severe COVID-

19 cases than in mild ones (Rao et al. 2020, Zhang et al. 2020b, Cervia et al. 2021, Garcia-

Beltran et al. 2021). Previous studies described differences between COVID-19 disease 

stages in peripheral immune cells (Su et al. 2020, Ren et al. 2021). Such differences 

revealed novel biological signatures of disease severity, such as dysregulation of 

JAK/STAT, MAPK/mTOR, and NF-.B immune signaling networks (Feyaerts et al. 2021). 

Multi-omics of 139 COVID-19 patients significantly correlated a loss of specific 

metabolite classes and metabolic processes to the shift from mild to moderate disease state. 

The same study reported emerging and amplifying multiple unusual immune cell 

phenotypes due to disease severity (Su et al. 2020). Moreover, immune system responses 

to COVID-19 disease severity are accompanied by changes in B-cells subsets frequencies, 

subpopulation, and differentiation (Sosa-Hernández et al. 2020, Su et al. 2020). Another 

extensive analysis of 32 COVID-19 patients' immune responses reported a significant 

increase in mature natural killer (NK) cells, low T-cell numbers, and exhausted T-cell 

overexpressed mucin domain-3 (TIM-3) (Varchetta et al. 2021). Henry et al. (2020) 

described the prediction of in-hospital mortality via neutrophil to lymphocytes ratio, which 

is significantly increased in critical COVID-19 patients. Thus, altered immune responses 

due to COVID-19 severity with the contribution of the cytokine storm can be detrimental 
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and cause immune-mediated tissue injury (Song et al. 2020, Ren et al. 2021). Much work 

has been aimed to clarify the clinical characteristics (Chen et al. 2020a) and virological 

features (Lu et al. 2020, Wu et al. 2020). However, little is known about COVID-19 

severity association with patients' immunological and inflammatory profiles. 

 1.2.4 T-cells and cytokines production 

Two types of T lymphocytes are involved in the adaptive immune response: CD8+' 

killer' or 'cytotoxic' (CD8+Tc) cells and CD4+' helper' (CD4+Th) cells (Kos and Engleman 

1995). CD8+Tc cells can directly destroy the pathogen-infected cells and recruit different 

types of immune cells through cytokine signaling. CD8+Tc cells recognize specific viral 

antigens with their expressed T-cell receptors (TCRs). An infected cell displays the antigen 

on its surface with class I major histocompatibility complex (MHC), which recruits the 

binding with a specific type of CD8+Tc cell TCR. This binding activates the cytotoxic role 

of CD8+Tc cells (Varela-Rohena et al. 2008). CD4+ Th cells bind with class II MHC on 

the antigen-presenting cell. An important function of CD4+ Th cells is to recruit B-cells 

(lymphocytes that produce antibodies). Also, CD4+ Th cells release cytokines that activate 

CD8+ TC cells and their proliferation (Oxenius et al. 1998).   

The excessive level of released cytokines (cytokine storm) in response to SARS-

CoV2 infection is related to COVID-19 severity complications, hospitalization, and even 

mortality (Skinner et al. 2019, Sanli et al. 2021). Patients with the severe progression of 

COVID-19 showed signs of hyperinflammatory secondary hemophagocytic 

lymphohistiocytosis (HLH) syndrome. This syndrome is accompanied by a fatal cytokine 

storm and multiorgan failure (Skinner et al. 2019, Ruan et al. 2020). Significant increases 

in circulating cytokine levels such as TNF-α, IL-6, IL-2, IL-7, IL-10, TNF-a, G-CSF, IP-

10, MCP-1, and MIP-1A were reported among the more severely COVID-19 patients 

compared to mild and moderate cases (Huang et al. 2020a).  

Effector T-cells are vital for an effective immune response against viral infections. 

Despite that, recent studies showed relatively low circulating T-cell count in COVID-19 
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patients (Diao et al. 2020a, Zhang et al. 2020a). Cytokine storm and the marked reduction 

in T-cells counts, growth, and viability might be highly correlated to COVID disease 

fatality (Kang et al. 2021). However, T cells' number and functional state in COVID-19 

patients need to be more investigated (Diao et al. 2020b). 

 1.2.5 Interferons 

Interferons (IFNs) are autocrine and paracrine secreted proteins. IFNs regulate 

several intercellular and intracellular molecular mechanisms, like tumor cell fate, innate 

and adaptive antiviral immune responses (Ahmed and Xiang 2011). The main three types 

of IFNs are type I, II, III, which are structurally and functionally different in humans 

(Hoffmann et al. 2015). Type I interferons consist of IFN-α, β, ε, κ, and ω and are produced 

by infected cells and the immune system (Ivashkiv and Donlin 2014). Type II is also 

produced by immune cells; however, it includes only one member, IFN-γ. Type III 

interferons consist of 3 subtypes of IFN-λ, produced by some immune cells and cells in the 

developmental pathway of epithelial cells or epithelial cells themselves (Lazear et al. 

2019). IFNs were initially described as molecules that interfere with viral replication (Seo 

and Hahm 2010). The three types activate distinct STAT (signal transducer and activator 

of transcription) complexes in addition to several signaling cascades, such as immune 

response signaling pathways (Figure 2) (Takeuchi and Akira 2010, Schoggins et al. 2011, 

Garcia-Diaz et al. 2017). IFNs activate cellular interactions among other immune cells such 

as macrophages and natural killer cells (Huang et al. 2019). 
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Figure 2. Schematic diagram of the three types of interferons (I, II and III) receptor activation 

signaling pathways. Type I interferons (IFNs) include 13 types in mammalian cells such as (α, β ω, κ, ε, 

δ, and, τ) that interact with IFN receptor 1 (IFNAR1) and IFNAR2. Type II has only IFN-γ that interacts 

with IFN-γ receptor 1 (IFNGR1) and IFNGR2. Type III IFN-λs include three types that interact with IFN-

λ receptor 1 (IFNLR1) and interleukin 10 receptor 2 (IL10R2). Type II IFN-γ binding to IFNGR1 form a 

complex which is stabilized by two IFNGR2 chains. The IFNs binding to IFNs receptors causes 

confirmational changes associated with two kinases from JAK family: JAK1 and TYK2 for IFNs type I and 

III; JAK1 and JAK2 for IFN-γ. Phosphorylated STAT1/2 bind to (GAS) interferon-gamma activated site. 

(IRF9) interferon regulatory factor 9; (ISGF3) interferon-stimulated gene factor 3; (ISRE) IFN-stimulated 

response element ;(P) phosphate; (STAT1/2) signal transducer and activator of transcription 1/2 (Zhang 

2017). 

 

1.3 Single-Cell RNA Sequencing 

The first single-cell transcriptome analysis based on next-generation sequencing 

was published in 2009 (Tang et al. 2009).  In recent years, single-cell RNA sequencing 

(scRNA-seq) had advanced our knowledge of biological systems as it opened the gate for 
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studying cellular heterogeneity (Plass et al. 2018) and discovering previous hidden cellular 

populations (Montoro et al. 2018). scRNA-seq inspired computational biologists to evolve 

a wide range of analysis tools (Rostom et al. 2017). Accurate gene expression differences' 

assessment between individual cells helped identify more cellular populations and cell-cell 

communications that cannot be detected from pooled cells' analysis (Shaffer et al. 2017). 

 

Several protocols are generating transcriptomic information from an isolated 

sample. The general scheme incorporates the following steps, single-cell isolation, 

complementary DNA (cDNA) library construction, and sequencing (Rostom et al. 2017, 

Vieth et al. 2017). 10x Genomics is a Droplet-based method that involves capturing each 

single cell from the sample in a microfluidic droplet. Computational methods are being 

applied to overcome detecting and excluding stressed cells or droplets containing more 

than one cell. Each droplet contains the necessary enzymes and chemicals to reversely 

transcribe the mRNAs for each cell while labeling them with a unique barcode of 16 

nucleotides. Next, all cDNAs are pooled together for sequencing (Olsen and Baryawno 

2018).  

1.4 Cell-cell Interactions 

Cell to cell communications via soluble and membrane-bound factors is 

fundamental for many cellular decisions, such as activating the cell cycle, programmed cell 

death, and immune response pathways against pathogens (Hermanowicz et al. 2020). 

Moreover, ligand-receptor interactions mediate other physiological and pathological 

signaling like cell adhesion, cellular recognition, and communication (Zhang et al. 2021). 

These regulated communications significantly impact many disease severity like cancer, 

autoimmune, and viral infection-related diseases (Oviedo‐orta et al. 2000, Fruman and 

Walsh 2007, Rouse and Sehrawat 2010, Oktay et al. 2015). Thus, the coordination between 

cellular activities during cell infection by microorganisms directly affects the multicellular 

response, starting from the initial sensing of infection, mediated by innate PRRs, including 

Toll-like, RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors (Takeuchi 
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and Akira 2010). Continuously, the intracellular signaling cascade following this 

recognition triggers the expression of inflammatory mediators that act as signaling 

molecules in the process of pathogen elimination (Takeuchi and Akira 2010). 

Moreover, cell-cell communications between immune cells such as macrophages, 

DCs, T-cells, and others are essential for the induction of antiviral responses through innate 

and adaptive immune responses, as well as the prevention of undesired immune system 

effects like hyperinflammatory lung disease in the case of COVID infected patients 

(Melenotte et al. 2020). So far, available treatment options for severely diagnosed COVID-

19 patients are limited (Bénard et al. 2021). Thus, understanding such communications 

may lead to a better understanding of the disease progression, leading to better diagnosis, 

treatment, and disease prevention. Fortunately, single-cell RNA-seq data analysis 

approaches open the gate for closer insights into cell types and cellular differentiation 

trajectories. Several approaches have been developed recently to infer cell-cell 

communication from scRNA-seq data (Kumar et al. 2018, Raredon et al. 2019, Wang et al. 

2019, Browaeys et al. 2020, Ren et al. 2020). 
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CHAPTER 2: Hypothesis and Objectives 

2.1 Hypothesis:  

The clinical picture of COVID-19 patients is ranging from developing mild and 

moderate symptoms to severe ones. The immune response in severe cases is believed to be 

altered, and patients suffer from serious symptoms accordingly. The interaction between 

blood immune cells plays a vital role in eliciting an efficient immune response to defeat 

infections. However, immune system alteration might happen in severe COVID-19 cases 

resulting in life-threatening symptoms. 

Therefore, it is hypothesized that single-cell RNA sequencing data could identify 

blood cell-cell interactions in healthy individuals and the alteration that happened to 

COVID-19 patients in moderate versus severe cases to identify the proper immune 

response versus the alteration that happened in severe cases. 

 

2.2 Objectives: 

1. To cluster blood cells from healthy and COVID-19 patients and to identify cluster 

markers. 

2. To assign cell types to the identified clusters. 

3. To identify incoming and outgoing cell-cell interactions among blood cells. 

4. To identify disruption in cell-cell interactions in COVID-19 cases compared to healthy 

individuals 

5. To identify the differentially expressed genes in T cells from healthy and COVID-19 

patients 

6. To analyze pathways activity in T cells in healthy and COVID-19 patients. 
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CHAPTER 3: Materials and Methods 

3.1 Data source 

 The data (12 RNA-seq samples) were obtained from the GEO 

[http://www.ncbi.nlm.nih.gov/geo] under the accession number GSE155673. The data was 

produced by Arunachalam et al., a research group in the USA, in 2020 (Arunachalam et al. 

2020). Their paper is entitled "Systems biological assessment of immunity to mild versus 

severe COVID-19 infection in humans." The paper was published in Science Journal, 

Volume 369, Issue 6508, 2020. Cellular Indexing of Transcriptomes and Epitopes by 

Sequencing (CITE-seq) is a multimodal single-cell phenotyping technique. CITE-seq, 

besides RNA sequencing, was performed with DNA-barcoded antibodies for protein 

quantification and immune-phenotyping of cells, benefiting from current advances in 

single-cell sequencing approaches. (Stoeckius et al. 2017). The authors performed CITE-

seq to profile the gene and protein expression in PBMC samples of seven patients with 

COVID-19 and five healthy controls at both RNA and protein levels. Three out of the seven 

patients showed moderate disease symptoms, and the rest showed severe symptoms 

according to the WHO classification. 

3.2 Single-Cell RNA-Seq Data Preprocessing 

 The count matrix of the 12 samples was processed with a quality check, and further 

downstream analyses were performed using the Seurat package (v.4.0.1) in R (v.4.0.4) 

(Butler et al. 2018, Stuart and Satija 2019). 

3.2.1 Data Integration 

 Integration of the twelve samples was performed. Data were first normalized to 

identify and integrate anchors among cells using log transformation of the expression 

values for each gene and 10,000 molecules for each cell. The standardization value for each 

gene was calculated, shifting its expression; so the variance and mean were 1 and 0, 

respectively, across all cells.  

http://www.ncbi.nlm.nih.gov/geo
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 Canonical correlational analysis (CCA) and data dimensionality reduction were 

done on the highly variable 2000 genes in the twelve samples to detect cells with similar 

biological states. K-nearest neighbors (KNNs) were identified and each pair of cells from 

the twelve samples represented an anchor. A calculated score for each anchor allowed for 

anchor filtering using shared nearest neighbor (SNN) graphs. The defined anchors were 

used to integrate all samples (Haghverdi et al. 2018). 

3.2.2 Filtering low-quality cells 

 Because of the positive correlation between the expression level of detected 

mitochondrial genes and apoptosis (Detmer and Chan 2007, Galluzzi et al. 2012), the cells 

that showed “mitochondrial contamination”, defined as >25% of transcripts are 

mitochondrial genes, were excluded. Such cells were considered of low-quality because 

they may represent apoptotic cells. The cells with abnormal gene counts (more than 30,000 

or less than 500) were excluded from downstream analysis to avoid any doublets, 

multiplets, empty droplets, or premature cell rupture. Finally, cells with a total number of 

detected genes of less than 200 or more than 6,000 genes were also excluded to avoid false-

positive reads from downstream analysis. 

3.2.3 Dimensionality Reduction 

 Principal component analysis (PCA) was employed to emphasize variations among 

gene sets. Each gene set's information was represented in a corresponding principal 

component. An elbow plot was then generated using a heuristic method based on the 

standard deviation of each gene set to estimate the number of principal components used 

for further analysis. Twenty-five principal components were chosen for the data 

dimensionality reduction because more principal components added more features and 

fewer variability among gene sets.  
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3.3 Clustering of Single Cells 

 For cell clustering, a graph-based approach was performed using the function 

FindClusters implemented in Seurat with a resolution of 0.3. Based on the cell euclidean 

distance in the PCA space, cells were embedded in a graph structure (KNN graph). The 

edge weights between any pair of cells were refined based on their similarity and variability 

represented by their Jaccard similarity coefficient. Following edge refinement, using the 

previously determined first 25 PCs, edges were drawn between cells with similar gene 

expression patterns. Louvain algorithm was applied to group cells together as a modularity 

optimization technique. Finally, t-Distributed Stochastic Neighbor Embedding (TSNE) 

was used for cell visualization. 

3.4 Identification of cell types 

 SingleR and Celldex packages implemented in R (Aran et al. 2019) were used to 

assign a cell type identity to the identified 22 clusters. The algorithm computed the 

similarity between each identified cluster against a reference dataset: The Human Primary 

Cell Atlas (HPCA), containing data from 713 microarrays which have been classified into 

37 main cell types and 157 subtypes. For gene expression of each cluster and each sample 

of the reference dataset, the Spearman coefficient was computed. Eighty percent of the 

correlation values were used to perform correlation analysis, followed by multiple 

correlation coefficients aggregation per cell type. Another correlation analysis was 

performed incorporating the top cell types generated from the last step and the variable 

genes between those cell types. Several repeats of the previous step were performed until 

the top cell type was assigned to the cluster. Then clusters with the same cell types were 

merged. To identify whether an increase or a reduction in a specific cell population 

occurred because of the disease or the disease severity, GraphPad Prism software v6.0 was 

used for analysis of the percentage of each cell type among other cell population in each 

sample between healthy individuals, moderate and severe COVID-19 cases. Multiple 

comparison analysis was performed using one-way ANOVA followed by Tukey's post hoc 

test.   
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3.5 Identification of cell type Markers 

 Wilcoxon Rank-Sum Test was performed to compare gene expression values from 

each cell type with the rest of the cells to identify the identified cells' types markers. Log 

fold change cutoff value > 0.5 and an adjusted p-value less than 0.05 were used to identify 

the cell type positive markers (upregulated genes compared to all other cells). For the gene 

to be considered in the differential expression analysis in each comparison, the minimum 

gene expression percentage should be more than 20% in either the cell type or the rest of 

the cells. Ingenuity pathways analysis (IPA) software was used to retrieve gene's location 

and family for all the identified genes in the dataset [QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis]. The 

annotation was merged with the resulting cluster markers using CytoTalk web application 

"Integrate Excel" [https://cytotalk.com/] as represented in supplementary file 1.  

3.6 Cell-cell communication analysis 

To infer the intercellular communications between cell types in each condition 

(healthy individuals, moderate and severe COVID-19 cases), CellChat library in R was 

used  (Jin et al. 2021). CellChat database is a manually curated database of human 

literature-supported ligand-receptor interactions. It contains (As for March 2021) 1,939 

interactions, consists of 61.8%, 21.7% and 16.5% of paracrine/autocrine signaling 

interactions, extracellular matrix (ECM)-receptor interactions and cell-cell contact 

interactions, respectively (Jin et al., 2021). All interactions were classified into 229 

signaling pathways. Firstly, Wilcoxon rank-sum test was performed to identify each cell 

type markers in each condition with the significance level of < 0.05. To avoid the noise 

effect, CellChat used a statistically robust mean method as described in the following 

equation:  

 

EM= (1/2) Q2+1/4((Q1+Q3)) 

https://cytotalk.com/
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Where EM refers to the Ensemble mean. Q1, Q2, and Q3 are the first, second, and third 

quartiles of the expression levels of a signaling gene in a cell group. Then, interactions 

probabilities were calculated between different cell groups across multiple signaling 

pathways in each condition. To identify significant interactions with a p-value < 0.05, 

CellChat permuted group labels of cells 100 times and recalculated the interactions 

probability described in the previous step. It calculates the aggregated cell-cell 

communication network by summarizing the interactions probability, which means 

calculating the number of significant interactions between any two cell types. To identify 

significantly differential pathways between healthy and COVID-19 cases, CellChat 

calculated the signaling pathways probability score for each condition alone by 

summarizing all the ligand-receptor interactions probabilities associated with each 

signaling pathway from the curated CellChat database. Next, the relative contribution of 

specific ligand-receptor pairs to the overall signaling pathways was calculated for the 

significantly differential pathways between healthy individuals and severe COVID-19 

cases, between healthy individuals and moderate COVID-19 cases and between moderate 

and severe COVID-19 cases. Next, each signaling pathway between each two conditions 

was compared based on the information flow which is the sum of communication 

probability among all pairs of cell groups in the inferred intercellular network. Manifold 

learning and information flow are used for ranking all the significant signaling pathways 

based on their differences within the inferred networks between the moderate and severe 

datasets. The overlapping signaling pathways between each two conditions were ranked 

based on their pairwise Euclidean distance in the shared two-dimensional manifold. A more 

considerable distance implies a more significant difference.  

3.7 T cells Analysis 

 T cells were subsetted from the Seurat object, which includes all the cells. The top 

2,000 highly variable genes among T cells were identified. Then, PCA was performed, and 

the first 20 principal components were chosen for the downstream analysis. Three 
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comparisons were performed to identify the disease effect and its severity effect on T cells: 

severe COVID-19 cases T cells versus healthy individuals T cells, moderate COVID-19 

cases T cells versus healthy individuals T cells, and severe versus moderate COVID-19 

cases T cells. All analyses were performed using Wilcoxon Rank Sum Test using adjusted 

p-value < 0.05 and logFC cutoff ±0.2. The resulting differentially expressed genes among 

T cells of healthy, moderate and severe COVID-19 cases were used for pathways' 

enrichment using the Reactome database (Jassal et al. 2020). Furthermore, IFN-γ protein 

interactors were retrieved from STRING database (Szklarczyk et al. 2019). 
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CHAPTER 4: RESULTS 

The authors in the original study from which the data were retrieved performed 

CITE-seq using 10x Genomics technology and performed the demultiplex and transcripts 

quantification using CellRanger software v3.1.0 against the 10x Genomics GRCh38 

reference v3.0.0 (Arunachalam et al., 2020). The current study aims to study cell-cell 

signaling interactions between blood cells in healthy individuals and COVID-19 patients 

in moderate and severe cases (Figure 3). 

 

Figure 3. Schematic diagram of the analysis workflow. 12 RNA-seq samples were obtained from GEO 

database with the accession number GSE155673. Cells were clustered and cell types were assigned to 

the identified clusters. Cell-cell interactions were inferred. Then, T cells were plotted and differential 

expression analysis were performed on T cells followed by Reactome pathways enrichment. The above 

labeling boxes represent the tools used to perform each step in the analysis. (Created with BioRender.com).  

4.1 Clustering of cells and identification of cell types markers 

 A total of 63,469 cells were analyzed from three groups (five healthy samples: 

30,870 cells, three moderate COVID-19 cases samples: 13,269 cells, and four severe 

COVID-19 cases samples: 19,330 cells) as represented in Figure 4A. After excluding low-

quality cells (as described in methods section 3.2.2; Figure 4B), 56,381 cells remain for the 

downstream analysis (five healthy samples: 29,213 cells, three moderate COVID-19 cases 

samples: 11,083 cells, and four severe COVID-19 cases samples: 16,085 cells). A total of 

25 principal components were used to abstract the data (Figure 4C).  
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Figure 4. Preprocessing and quality control of single cells. (A) Violin plots representing the total number 

of detected genes per cell (left panel), total number of counts per cell (middle panel) and the percentage of 

mitochondrial genes expression each cell (right panel). Cutoffs used for excluding low quality cells are 

marked with red color (upper limit) and green color (lower limit). (B) Elbow plot showing the variance 

among the first 40 principal components. The first 25 principal components were used for the downstream 

analysis. (C) t-distributed stochastic neighbor embedding (t-SNE) projection of the data before excluding 

low quality cells (63,469 cells). Each cell is represented as a dot. 

 

 Clustering analysis identified 22 clusters, as shown in Figure 5A. The identified 22 

clusters were assigned to 8 cell types using SingleR and celldex packages after calculating 

the similarity between each cell type markers and the human primary cell atlas database 

(Monocytes: 19,973, T cells: 16,768, NK cells: 8,538, Platelets: 5,332, B cells: 4,193 cells, 

CMP: 722, Pre-B cells CD34-: 493 and HSC: 362) as shown in Figure 5B.  
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Figure 5. Identification of eight cell types among blood samples. (A) t-SNE projection of the filtered 

data (56,381 cells) clustered into 22 clusters. Each cell is represented as a dot. (B) t-SNE projection of the 

cells color coded with the assigned cell types. (C) Heatmap representing the top 3 markers relative gene 

expression for each cell type. Red color denotes higher expression, while green color denotes lower 

expression. Each row represents one gene and each column represents one cell. 

 

 Differential expression analysis identified markers (genes) to be upregulated in each 

cell type with logFC > 0.5 and adjusted p-value < 0.05 as follows: 137 markers for NK 

cells, 117 markers for B cells, 296 markers for monocytes, 115 markers for CMP, 117 

markers for T cells, 459 markers for platelets, 17 markers for HSC and 28 markers for pre-

B cells CD34-. Top three markers identified for each cell type were represented in Figure 

5C and all cell types markers were provided in supplementary file 1. Compositional 
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analysis identified that percentage of T cells significantly decreased from 41.5% in 

moderate COVID-19 cases to 16% in severe COVID-19 cases. On the other hand, cell 

percentage in all identified eight cell types were represented in supplementary file 2. 
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Figure 6. Compositional analysis. (A) tSNE projection representing each cell types in blue color and the 

rest of the cells in grey color. (B) Barplots representing percentage of each cell types among other cell types 

of each condition. Stars denote significant adjusted p value. 

4.2 Signaling pathways' alterations through cell-cell interaction analysis 

A total of 586 interactions in healthy, 603 in moderate COVID-19 cases, and 606 in 

severe COVID-19 cases were inferred using the CellChat package in R (as described in 

methods section 3.2.2). When comparing the total strength of incoming signaling patterns 

in moderate COVID-19 cases versus healthy individuals, there was an increase in T cells 

and a reduction in NK cells' incoming signaling. On the other hand, when comparing the 

total strength of incoming signaling patterns in severe COVID-19 cases versus healthy 

individuals, there was a reduction in T cells and an increase in NK cells incoming signaling 

as shown in Figure 7A, B and C and Figure 8A, B and C. Additionally, incoming signaling 

to platelets increases in severe COVID-19 cases when compared to healthy or moderate 

COVID-19 cases. Analysis of relative information flow at pathways level identified 

pathways to be found in healthy individuals, not in COVID-19 moderate or severe cases 

such as TNF pathway. On the other hand, pathways identified to be present in COVID-19 

cases and not found in healthy individuals included SN, IL16, and JAM signaling 

pathways. Surprisingly, CD6 and ALCAM were found to be present in moderate COVID-

19 cases, but not in severe ones. Furthermore, Resistin. THBS and MPZ signaling were 

identified in severe COVID-19 cases, but not in moderate ones.  
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Figure 7. Interaction signaling patterns in blood cells of healthy and COVID-19 patients. (A, B and 

C) Heatmaps representing probabilities of incoming signaling interactions in healthy, moderate and severe 

cases respectively. (D, E and F) Heatmaps represent outgoing signaling interactions in healthy, moderate 

and severe cases respectively. Rows represent signaling pathway and columns represent cell types. X-axis 

bar-plots represent sum of signaling interactions probabilities in each cell for all inferred signaling 

pathways. Y-axis bar plots represent sum of signaling interactions probabilities in each signaling pathway 

in all cell types. 

 

The relative information flow between severe COVID-19 cases versus healthy 

individuals, moderate COVID-19 cases versus healthy individuals, and severe versus 

moderate COVID-19 cases were represented in Figure 8D, E and F.  
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Figure 8. Differential interactions among blood cells between healthy, moderate and severe COVID-

19 cases. (A, B and C) Differential number of the overall interactions between severe cases and healthy 

(left), moderate cases and healthy (middle) and severe cases and moderate ones (right). Red color denotes 

a greater number of interactions respectively. While blue color denotes a smaller number of interactions. 

(D, E and F) Relative information flow of inferred signaling interactions in severe cases versus healthy 

(left), moderate cases versus healthy (middle) and severe cases versus moderate ones (right) respectively. 

 

SN signaling pathway, which was identified to be present in moderate and severe 

COVID-19 cases only, included the interaction between the pair SIGLEC1- SPN as shown 

in Figure 9. SIGLEC1 was found to be expressed in monocytes of moderate and severe 

COVID-19 cases. SIGLEC1- SPN signaling was identified to be directed from monocytes 

towards monocytes, T cells, NK cells, multipotent common myeloid progenitor (CMP) 

cells and hematopoietic stem cells (HSC) (Figure 9D). 
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Figure 9. SN signaling pathway induction in moderate and severe COVID-19 cases. (A) tSNE 

projection representing monocytes as black dots and other cell types as grey dots. (B) Expression level of 

SIGLEC1 in different conditions (healthy, moderate and severe cases). (C) Violin plot representing 

SIGLEC1 expression level in all cells from healthy, moderate and severe COVID-19 cases. (D) Network 

representing SIGLEC1-SPN signaling in moderate cases (left panel) and in severe cases (right panel). 

Signaling are outgoing from monocytes to monocytes, NK cells, T cells, CMP and HSC cells. (E) Violin 

plot representing IFNG expression level in different cell types in healthy (left), moderate (middle) and 

severe cases (right). 

4.3 T cells differential expression analysis 

Clustering of T cells identified different distribution of cells on the tSNE plot based 

on the disease condition (Figure 10A and B). The differential expression analysis identified 
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201 upregulated genes and 76 downregulated genes when comparing severe COVID-19 

cases T cells versus healthy individuals T cells. When moderate COVID-19 T cells were 

compared to healthy ones, 181 genes were found to be upregulated, and 78 genes were 

found to be downregulated. Finally, comparing T cells in severe versus moderate COVID-

19 cases identified 34 upregulated genes and 39 downregulated genes (Figure 10C). Top 

15 upregulated and downregulated genes in each comparison were represented in Figure 

10D, E, and F and all differentially expressed genes resulting from the three comparisons 

were represented in supplementary file 3. The top 25 genes identified to be upregulated in 

T cells of moderate COVID-19 cases compared to healthy individuals were represented in 

table 2 one along with their logFC in severe versus moderate COVID-19 T cells. 

Interestingly, some of the genes upregulated in moderate COVID-19 T cells when 

compared to healthy individuals were found to be downregulated in severe COVID-19 T 

cells when compared to moderate ones such as IRF9, STAT1, HLA-C, IFITM, IFI6 and 

ITGA4.  
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Table 2: Top 25 upregulated differentially expressed genes in moderate COVID-19 

cases compared to healthy individuals and their logFC in severe vs moderate cases. 

 

Gene Description 
LogFC in Moderate 

vs  Healthy 

LogFC in Severe 

vs Moderate 

IGKC Immunoglobulin kappa constant 1.90 0.81 

IGLC2 Immunoglobulin lambda constant 2 1.36 0.32 

IGLC3 Immunoglobulin lambda constant 3 

(Kern-Oz+ marker) 

1.14 0.47 

IFI44L Interferon induced protein 44 like 1.13 
 

ISG15 ISG15 ubiquitin like modifier 1.07 
 

IGHA1 Immunoglobulin heavy constant alpha 1 0.93 0.68 

IFI6 Interferon alpha inducible protein 6 0.91 -0.25 

XAF1 XIAP associated factor 1 0.90 
 

MX1 MX dynamin like GTPase 1 0.80 
 

JCHAIN Joining chain of multimeric IgA and IgM 0.72 0.41 

IGHM Immunoglobulin heavy constant mu 0.65 
 

IFITM1 Interferon induced transmembrane protein 

1 

0.62 -0.36 

XIST X inactive specific transcript 0.59 -0.74 

EIF2AK2 Eukaryotic translation initiation factor 2 

alpha kinase 2 

0.58 
 

MTRNR2L8 MT-RNR2 like 8 0.57 -1.34 

LY6E Lymphocyte antigen 6 family member E 0.57 
 

IRF7 Interferon regulatory factor 7 0.48 
 

SP100 SP100 nuclear antigen 0.47 
 

EPSTI1 Epithelial stromal interaction 1 0.47 
 

SMCHD1 Structural maintenance of chromosomes 

flexible hinge domain containing 1 

0.47 
 

RNF213 Ring finger protein 213 0.46 
 

MTRNR2L12 MT-RNR2 like 12 0.45 
 

STAT1 Signal transducer and activator of 

transcription 1 

0.43 -0.23 

ITGA4 Integrin subunit alpha 4 0.41 -0.23 

OAS1 2'-5'-Oligoadenylate Synthetase 1 0.40 
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4.4 Pathways activity analysis in T cells 

Pathways enrichment analysis using Reactome identified seven upregulated and 48 

downregulated pathways in severe versus healthy comparison. Twenty-two upregulated 

and 40 downregulated pathways in the moderate versus healthy comparison, while 7 

upregulated and 48 downregulated in severe COVID-19 cases compared to healthy and 24 

upregulated and 20 downregulated pathways in the severe versus moderate comparison 

using false discover rate < 0.001 (tables 3,4 and 4; supplementary file 3). The top two 

pathways resulted from each comparison were represented in Figure 10G and the top ten 

upregulated and downregulated pathways were represented in tables three, four and five 

for severe COVID-19 compared to healthy individuals, moderate COVID-19 compared to 

healthy individuals and severe compared to moderate COVID-19 cases respectively. 

Interferon-gamma signaling and ISG15 antiviral mechanism were upregulated in T cells of 

moderate Covid-19 patients compared to healthy ones. However, the interferon signaling 

pathway was downregulated in severe cases T cells compared to moderate ones. 
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Table 3: Top 10 upregulated and downregulated pathways in severe COVID-19 

cases compared to healthy individuals. 

Pathway name Status 
Reactions found/ 

Total reactions 

FDR Adjusted P-

Value 

Cytokine Signaling in Immune system Upregulated 218/708 2.14021E-10 

Interferon alpha/beta signaling Upregulated 4/22 4.23205E-10 

Interferon Signaling Upregulated 24/69 2.52897E-09 

Immune System Upregulated 395/1621 6.39654E-07 

Interleukin-4 and Interleukin-13 signaling Upregulated 25/47 5.30247E-05 

ATF6 (ATF6-alpha) activates chaperone 

genes 
Upregulated 3/5 5.30247E-05 

ATF6 (ATF6-alpha) activates chaperones Upregulated 4/10 9.3349E-05 

Interleukin-6 signaling Upregulated 17/20 0.001647834 

Signaling by Interleukins Upregulated 173/493 0.004010453 

Apoptosis induced DNA fragmentation Upregulated 3/12 0.007979309 

Nonsense Mediated Decay (NMD) 

independent of the Exon Junction Complex 

(EJC) 

Downregulated 
1/1 2.44249E-15 

Formation of a pool of free 40S subunits 
Downregulated 

2/2 2.44249E-15 

Viral mRNA Translation 
Downregulated 

2/2 2.44249E-15 

SRP-dependent cotranslational protein 

targeting to membrane 
Downregulated 

5/5 2.44249E-15 

L13a-mediated translational silencing of 

Ceruloplasmin expression 
Downregulated 

3/3 2.44249E-15 

GTP hydrolysis and joining of the 60S 

ribosomal subunit 
Downregulated 

3/3 2.44249E-15 

Major pathway of rRNA processing in the 

nucleolus and cytosol 
Downregulated 

6/7 2.44249E-15 

Nonsense-Mediated Decay (NMD) 
Downregulated 

5/6 2.44249E-15 

Peptide chain elongation 
Downregulated 

4/5 2.44249E-15 

Nonsense Mediated Decay (NMD) enhanced 

by the Exon Junction Complex (EJC) 
Downregulated 

4/5 2.44249E-15 
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Table 4: Top 10 upregulated and downregulated pathways in moderate COVID-19 

cases compared to healthy individuals. 

Pathway name Status 
Reactions found/ 

Total reactions 

FDR Adjusted 

P-Value 

Interferon gamma signaling Upregulated 11/16 1.4988E-14 

Interferon Signaling Upregulated 46/69 1.4988E-14 

Interferon alpha/beta signaling Upregulated 11/22 1.4988E-14 

Cytokine Signaling in Immune system Upregulated 182/708 1.4988E-14 

Immune System Upregulated 411/1621 1.4988E-14 

Phosphorylation of CD3 and TCR zeta chains Upregulated 5/7 1.66103E-11 

Generation of second messenger molecules Upregulated 6/17 3.28804E-11 

Translocation of ZAP-70 to Immunological 

synapse 
Upregulated 4/4 9.85558E-11 

PD-1 signaling Upregulated 1/5 1.89771E-10 

Endosomal/Vacuolar pathway Upregulated 3/4 1.89771E-10 

Formation of a pool of free 40S subunits Downregulated 2/2 1.66533E-15 

Nonsense Mediated Decay (NMD) independent 

of the Exon Junction Complex (EJC) 
Downregulated 1/1 1.66533E-15 

L13a-mediated translational silencing of 

Ceruloplasmin expression 
Downregulated 3/3 1.66533E-15 

GTP hydrolysis and joining of the 60S 

ribosomal subunit 
Downregulated 3/3 1.66533E-15 

Viral mRNA Translation Downregulated 2/2 1.66533E-15 

SRP-dependent cotranslational protein targeting 

to membrane 
Downregulated 5/5 1.66533E-15 

Translation initiation complex formation Downregulated 2/2 1.66533E-15 

Ribosomal scanning and start codon recognition Downregulated 2/2 1.66533E-15 

Eukaryotic Translation Elongation Downregulated 8/9 1.66533E-15 

Major pathway of rRNA processing in the 

nucleolus and cytosol 
Downregulated 6/7 1.66533E-15 
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Table 5: Top 10 upregulated and downregulated pathways in severe COVID-19 

cases compared to moderate ones. 

 

Pathway name Status 
Reactions found/ 

Total reactions 

FDR Adjusted P-

Value 

Scavenging of heme from plasma Upregulated 1/12 0.00015359 

Apoptosis induced DNA fragmentation Upregulated 2/12 0.000483111 

Binding and Uptake of Ligands by Scavenger 

Receptors 
Upregulated 1/33 0.000483111 

Classical antibody-mediated complement 

activation 
Upregulated 2/2 0.000483111 

Eukaryotic Translation Elongation Upregulated 6/9 0.000483111 

FCGR activation Upregulated 6/6 0.000483111 

Formation of Senescence-Associated 

Heterochromatin Foci  
Upregulated 1/2 0.000483289 

Creation of C4 and C2 activators Upregulated 2/8 0.000483289 

Formation of the ternary complex, and 

subsequently, the 43S  
Upregulated 1/3 0.000483289 

Initial triggering of complement Upregulated 4/21 0.000599555 

Endosomal/Vacuolar pathway Downregulated 3/4 7.99361E-15 

Interferon gamma signaling Downregulated 9/16 7.99361E-15 

Interferon alpha/beta signaling Downregulated 9/22 7.99361E-15 

Interferon Signaling Downregulated 20/69 7.99361E-15 

Cytokine Signaling in Immune system Downregulated 94/708 7.99361E-15 

Antigen Presentation: Folding, assembly and 

peptide loading of class I MHC 
Downregulated 13/16 2.26485E-14 

rRNA processing in the mitochondrion Downregulated 1/6 2.26485E-14 

tRNA processing in the mitochondrion Downregulated 1/3 6.4948E-14 

ER-Phagosome pathway Downregulated 4/10 9.72555E-13 

Immunoregulatory interactions between a 

Lymphoid and a non-Lymphoid cell 
Downregulated 14/44 2.06635E-12 
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Figure 10. T cells differential expression analysis. (A) tSNE projection representing monocytes as black 

dots and other cell types as grey dots. (B) tSNE projection of T cells alone from healthy and COVID-19 

cases. (C) Bar plot representing number of differentially expressed genes in T cells from 3 comparisons: 

severe COVID-19 cases versus healthy, moderate COVID-19 cases versus healthy and Severe versus 

moderate COVID-19 cases. (D, E and F) Heatmaps representing the top 15 upregulated and downregulated 

genes from the three comparisons mentioned in A respectively. (G) The top 2 upregulated and 

downregulated pathways identified in the three comparisons mentioned in A resulting from Reactome 

enrichment analysis. Genes used for enrichment were chose based on the following criteria: adjusted p 

value < 0.05 and logFC +-0.2. 

 

4.5 Interferon-gamma protein-protein interaction 

 Protein-protein interactions of IFN-γ was retrieved from STRING database 

including interactions with SOCS1, SOCS3, STAT1, STAT4, IFNGR1, IFNGR2, TNF, 

FOXP3, IRF1 and RELA as shown in Figure 11A. SOCS3, the negative regulator of IFN-

γ showed upregulation in both moderate and severe COVID-19 cases, while the 

downstream of IFN-γ signaling such as STAT1 and IRF1 had lower level of expression in 

severe COVID-19 cases and in both moderate and severe COVID-19 cases respectively 

(Figure 11C). 
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Figure 11. Interferon gamma protein-protein interactions. (A) Interferon gamma and its protein-protein 

interactions retrieved from STRING database. (B and C) Violin plots representing IFNG and its protein-

protein interactors expression level in T cells of healthy, moderate COVID cases and severe COVID cases. 
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CHAPTER 5: DISCUSSION 

Intensive care and hospitalization may be a necessity for some COVID-19 patients. 

The more the number of hospitalized patients, the more the strain on health care systems. 

So, understanding the critical activators of the disease severity could reduce hospitalization 

rates and an economic burden worldwide (Laforge et al. 2020, Sayan et al. 2021). An in-

depth evaluation of the hospitalized patients' immune systems and illustrating differences 

between mild, moderate, and severe COVID-19 cases help identify such activators (Tang 

et al. 2021). Previous studies described differences between COVID-19 disease stages in 

peripheral immune cells (Su et al. 2020, Ren et al. 2021). Such differences revealed novel 

biological signatures of disease severity, such as dysregulation of JAK/STAT, 

MAPK/mTOR, and NF-B immune signaling networks (Feyaerts et al. 2021). The current 

study aims to address the alteration of interactions between blood cells in moderate and 

severe COVID-19 cases.  

 

5.1 COVID-19 Severity influence on cell counts 

 

Clustering of scRNA-seq data of blood samples from five healthy, three moderate, 

and four severe COVID-19 cases resulted in identification of eight blood cell types: 

monocytes, T cells, NK cells, platelets, B cells, CMP, Pre-B cells CD34-and HSC (Figure 

5B). T cells percentage among all population in severe COVID-19 cases was found to be 

significantly reduced. T cells percentage decreased from 32.76% in healthy individuals to 

16% in severe cases as shown in Figure 6A and B. T cells were reported previously to be 

significantly reduced in COVID-19 patients with correlation to disease severity  (Diao et 

al. 2020b, Huang et al. 2020b, Zhang et al. 2020b). A previous study on CD3+ T-cells' 

response to COVID-19 revealed suppression in their counts, which may be an underlying 

mechanism for disease progression and fatality (Xu et al. 2020). Both CD4+ and CD8+ T-

cells are lower in severe COVID-19 patients than in mild and moderate cases (Song et al. 

2020, Zhang et al. 2020c). Additionally, in a study by Song et al., CD3+ T-cells involved 
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in activating CD4+ and CD8+ T-cells were decreased in the severe group compared to a 

mild clinical presentation (Song et al. 2020). A retrospective review of the T-cells and 

serum cytokines concentration of 522 COVID-19 confirmed cases and 40 healthy controls 

also revealed a dramatic reduction of T-cells, especially in the intensive care unit admitted 

cases. Counts of total T cells, CD4+ T or CD8+ T cells lower than expected, were positively 

correlated with disease severity (Diao et al. 2020b). The definite mechanism by which 

some patients develop severe immune reactions to SARS-CoV2, like an exhausted 

phenotype and T-cell reduction, is still not fully understood.  

 

5.2 Cell-cell interactions alteration in COVID-19 cases 

 

In addition to detecting lower count of T cells in severe COVID-19 cases, analysis 

of cell-cell interactions identified less overall incoming signaling to T cells in severe cases 

when compared to healthy individuals and when compared to moderate COVID-19 cases 

as shown in Figure 7. On the other hand, more incoming signaling was identified to occur 

to NK cells in severe COVID-19 cases compared to moderate cases (Figure 7). Comparing 

signaling interactions between the three groups (healthy, moderate and severe COVID-19 

cases) identified alteration of signaling between healthy and disease states and between 

moderate and severe COVID-19 cases. 

 

Our results inferred CD6 signaling to occur among cells from moderate COVID-19 

cases, but not in severe ones through CD6-ALCAM interaction. CD6 and ALCAM 

interaction was the first described example of an interaction between a scavenger receptor 

cysteine-rich domain and an immunoglobulin-like domain (Hassan et al. 2004). The 

CD6/ALCAM interaction is involved in T-cell activation and proliferation and is essential 

for optimal immune response (Chappell et al. 2015). This indicates lack of T cells activation 

in severe COVID-19 cases that might be related to the observed clinical picture. 
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 Resistin signaling through RETN-CAP1 and RETN-TLR4 was inferred to occur in 

severe COVID-19 cases, but not in moderate ones (Figure 8F). RETN is one member of 

the RELMs (Resistin-Like Molecules) molecules expressed by macrophages, monocytes, 

and neutrophils (Jang et al. 2015). Resistin-Like Molecules (RELM) are mainly associated 

with metabolic disorders like diabetes and are also expressed in a wide range of microbial 

and inflammatory diseases (Pine et al. 2018). Our results identified RETN to have logFC 

of 1.44 when comparing T cells from severe COVID-19 cases with moderate ones. 

However, RETN role during inflammatory response is not clear. A study reported that 

RETN binds to the Toll-like receptor 4 (TLR4) to trigger a switch from proinflammatory 

to anti-inflammatory responses through STAT3 signaling induction (Jang et al. 2017). 

Other studies reported that Resistin has an inflammation promotion role through release of 

cytokines like IL-6, TNFα, and IL-1β in human monocytes (Jiang et al. 2014, Lee et al. 

2014). 

 

 Interestingly SN signaling through SPN-SIGLEC1 was identified to occur in both 

moderate and severe COVID-19 cases, but not in healthy individuals. Sialic acid-binding 

immunoglobulin Ig lectin-1 (SIGLEC1) is a sialoadhesion macrophage receptor that 

modulates interactions with some immune cells, hemopoietic, and T-cells (Jans et al. 

2018). Our results showed overexpression of SIGLEC1 in monocytes as shown in Figure 

9B and C. This increase in its expression level allowed SPN signaling to occur through 

SPN-SIGLEC1 from monocytes to monocytes, NK cells, T cells, CMP and HSC cells 

(Figure 9D). Previously, it was reported that upregulation of SIGLEC1 expression through 

macrophages had negative correlation with IFN-γ production from T cells  (Zheng et al. 

2015, Jans et al. 2018). Another microarray study reported that IFN-γ inhibited production 

by CD4+T cells was due to RSV-induced  SIGLEC1 upregulation in human adult RSV 

infected monocytes (Jans et al. 2018). Our results showed a reduction in IFN-γ in some cell 

types including T cells as shown in Figure 9E. Although the SPN signaling promotes the 

expression of IFN-γ by CD4+T cells during TCR activation (Ramírez-Pliego et al. 2007), 
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there is a possibility that the Siglec-1 dependent reduction of IFN-γ is due to Siglec-SPN 

cell-cell adhesion and communication (Kirchberger et al. 2005, Jans et al. 2018).  

5.3 Gene expression alteration in T cells of COVID-19 cases 

Genes identified to be downregulated in severe COVID-19 cases’ T cells compared 

to moderate ones and at same time were found upregulated in moderate COVID-19 cases’ 

T cells compared to healthy individuals might play a role in the altered immune response 

in severe COVID-19 cases. They included STAT1, IRF9, HLA-C, IFITM, IFI6 and 

ITGA4. Phosphorylated STAT1 translocates to the nucleus, binds to a regulatory DNA 

element termed gamma-activated sequence (GAS), then induces transcription of 

interferon-stimulated genes (ISGs). The ISGs include several other transcription factors 

such as interferon response factor 9 (IRF9) and others. The IRFs have a role in recognizing 

pathogens, the expression of IFNs, and pro-inflammatory cytokines (Honda and Taniguchi 

2006). Moreover, IFN-γ is involved in the upregulation of MHC-I molecules, contributing 

to the APCs in promoting the NK cells activity, Th cells regulation, expression of MHC-II 

molecules, and B cells function antiviral immune response (Schroder et al. 2004). The 

interferon-inducible transmembrane protein1 (IFITM1), which was also downregulated in 

T cells of severe cases compared to moderate ones, inhibits the viral invasion of some 

viruses that enter via the host cell plasma membrane (Smith et al. 2019). Furthermore, the 

downregulation of Interferon-inducible protein 6 (IFI6) might also contribute to the 

severity of the infection. Ectopic expression of IFI6 has shown to impair CD81/CLDN1 

interaction and significantly reduced HCV viral entry (Meyer et al. 2015). Moreover, IFI6 

was reported to reduce apoptosis in HBV infected cells caused by type 1 interferon (Park 

et al. 2013). Additionally, Integrins alpha-4 (ITGA4) receptor was reported to have a role 

in cytotoxic T-cell interaction with target cells (Fujita et al. 2015). It is also expressed on 

immune cells and showed a role in T cells migration in different organs (Glatigny et al. 

2011). The relationship between those altered genes in severe COVID-19 cases might need 

further investigation. 
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5.4 IFN-γ signaling alteration in severe COVID-19 cases 

 

Comparing T cells pathways activity in healthy and disease statuses identified IFN-

γ (interferon gamma) signaling pathway to be upregulated in moderate COVID-19 cases 

when compared to healthy individuals. However, IFN-γ signaling pathway was 

downregulated in severe COVID-19 cases when compared to moderate ones, and not 

significantly detected when compared to healthy individuals (Figure 10G). IFN-γ receptor 

(IFNGR) complex consists of two distinct chains, high-affinity IFNGR1 (alpha) and a low-

affinity IFNGR2 (beta) (Pestka et al. 2004). Once The IFNGR complex binds to IFN-γ, it 

undergoes a conformational change that recruits the receptor-associated Janus protein 

tyrosine kinases 1 (JAK1) and JAK2 to the complex. IFN-γ binding to IFNGR receptors 

induces JAK2 phosphorylation, which in turn transphosphorylates JAK1 (Lasfar et al. 

2014). IFN-γ can exert direct (Hwang et al. 2012) and indirect antiviral effects on infected 

cells (He et al. 2004). Direct activation of neighboring immune cells like natural killer cells 

and macrophages triggers proinflammatory and antiviral activities of those cells (Lee et al. 

2000). Moreover, IFN-γ modulates the differentiation and maturation of T-cells and B-

cells (Vazquez et al. 2015). The indirect effect includes induction of the expression of 

HLA-DR, ICAM-1, IL-18BP, and other genes that mediates the antiviral on an IL-1 

expression dependent manner (Hurgin et al. 2007). IFN-γ inhibits viral invasion and 

replication of a variety of viruses including HIV type-1 virus, hepatitis C virus, the porcine 

reproductive and respiratory syndrome virus (PRRSV), BK virus (BKV), herpes simplex 

virus type 1 (HSV-1) and EBOV virus (Dhawan et al. 1995, Rowland et al. 2001, Pierce et 

al. 2005, Abend et al. 2007, Wei et al. 2009, Rhein et al. 2015). 

 

However, viruses may inhibit IFNs production through preventing the entry of IFN-

regulating transcription factors (IRFs) to the nucleus (Devasthanam 2014). COVID-19 has 

recently been reported to interfere with TBK1 and RNF41 proteins, which are mediators 

of the IFNs' activities (Gordon et al. 2020). Furthermore, insufficient activation time of 

IFN signaling was reported to contributes to COVID-19 disease progression or even 
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lethality (Rao et al. 2020). The reduction in IFN-γ signaling in severe COVID-19 cases 

compared to moderate ones (Figure 10G) indicates improper immune response activation 

in T cells from severe COVID-19 patients. 

  

IFN-γ have protein-protein interactions with the following molecules (retrieved 

from STRING database): IRF1, SOCS1, SOCS3, STAT1, STAT4, RELA, TNF, IFNGR1, 

IFNGR2 and FOXP3 (Figure 11A). Interestingly, SOCS3 (The suppressor of cytokine 

signaling 3) level was found to be upregulated in moderate and severe COVID-19 cases 

compared to healthy individuals with logFC of 0.28 and 0.63; respectively as shown in 

Figure 11C, while SOCS1 expression level was not significantly altered. SOCS1 and 

SOCS3 down-modulate the response of the immune cells to IFN-γ during the innate 

immune response (Jager et al. 2011). For example, the lymphocytic choriomeningitis virus 

(LCMV) induces expression of SOCS3 in T-cells, resulting in impaired antiviral response 

and viral resistance. Moreover, LCMV-infected mice were treated with IL-7 repressed 

SOCS3 expression and supported T-cells antiviral functions via mediating T-cells' survival 

and differentiation (Pellegrini et al. 2011). In the same context, the infection of human cells 

by either Epstein–Barr virus or Herpes simplex virus (HSV) stimulated SOCS3 expression 

and IFN-I production and function (Yokota et al. 2005). Additionally, SOCS3 expression 

may have a role in HIV-1 evasion to the innate immune response in the central nervous 

system by preventing the effect of IFN-β on HIV-1 replication within the macrophages 

(Akhtar et al. 2010). SOCS protein family members inhibit the activation of STAT proteins 

by either binding JAK kinases and inhibit their phosphorylation activities or by inhibiting 

STAT proteins' recruitment to the cytokine receptor complex (Liau et al. 2018).  STAT1 

was found in our results to be downregulated in severe COVID-19 T cells when compared 

to moderate ones (Figure 11C).  

 

Our results showed also that IRF1 (interferon regulatory factor 1) was 

downregulated in T cells in severe COVID-19 cases when compared to healthy individuals 

(Figure 11C). IRF1 was reported to be highly correlated to IFN-γ exposure more than other 
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IFNs (Garcia-Diaz et al. 2017). Also, IRF1 restricts the chikungunya virus (CHIKV) and 

Ross River virus (RRV) infections in stromal cells, especially muscle cells (Nair et al. 

2017). IRF1 downregulation in severe COVID-19 cases' T cells might also have a 

contribution to the elicited improper immune response compared to moderate COVID-19 

cases. 

 

The tumor necrosis factor-alpha (TNF- α) enhances IFN-γ activity by stimulating 

Jak2 kinase activity, which triggers STAT1 phosphorylation (Kim et al. 2015). Increased 

Jak2 and STAT1 phosphorylation was observed within minutes upon TNF- α treatment as 

well as (IFNGR1) tyrosine phosphorylation (Kim et al. 2015). Also, the IRF1 and IRF8 

transcription factors overexpression by IFN-γ induces the transcriptional activity of the 

human TNF-α in mouse macrophages (Sol et al. 2008). TNF expression level showed a 

little reduction in severe COVID-19 cases (Figure 11C) and TNF signaling was not 

identified to occur in moderate nor severe COVID-19 cases as shown in Figure 8. 
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CHAPTER 6: CONCLUSION  

Some COVID-19 patients might have mild symptoms or even be asymptomatic, 

while others may suffer from severe symptoms and irreversible complications resulting in 

life threatening conditions. More than three million deaths were reported till April 2021 

worldwide with no effective treatment available. Understanding how patients’ immune 

system responds to the infection in moderate versus severe COVID-19 cases might identify 

new therapeutic targets. ScRNA-seq analysis of blood samples from five healthy 

individuals, three moderate and four severe COVID-19 cases was performed to identify 

cell-cell interactions alteration between blood cell types and to identify differentially 

expressed genes and pathways in T cells of the three groups. T cells percentage among 

other identified eight cell types decreased from 32.76% in healthy individuals to only 16% 

in severe COVID-19 cases. Cell-cell interactions analysis identified a reduction in the 

overall T cells incoming signaling as well. Besides, activation of SN pathway through SPN-

SIGLEC1 interaction resulted in reduction of IFN-γ gene expression level. At pathways 

level, IFN-γ signaling was identified to be upregulated in moderate COVID-19 cases’ T 

cells, but was downregulated in severe cases’ T cells. Downstream targets of IFN-γ such 

as STAT1 and IRF1, which play critical roles in antiviral activity, showed also 

downregulation in their gene expression level. On the other hand, the negative regulator of 

IFN-γ signaling -SOCS3- showed significant increase in severe COVID-19 cases 

compared to healthy individuals and moderate COVID-19 cases. Altogether, COVID-19 

severe cases showed improper antiviral activity from T cells number reduction and T cells 

incoming signaling decrease to alteration of IFN-γ response, which might contribute in the 

observed symptoms severity compared to moderate COVID-19 patients. 
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