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by
Maged Fayez Zaki Moawad

A THESIS SUBMITTED TO DEPARTMENT OF PHYSICS

September, 2002

ABSTRACT

In this thesis, a study of the scattering of ultra-wideband X-wave pulses by a sphere is
provided. We start by considering the scattering of acoustic X-wave pulses by a rigid
sphere and exame the effect of different parameters on the backscattered spectrum.
Moreover, we show how to determine the sphere size from the spectrum of the
backscattered signal and demonstrate that this approach is useful for the scattered
fields due to both on-center and off-center incidences. Then we extend our study to
include the scattering of acoustic X-wave pulses by a soft sphere and show that we
can identify the size and material of the sphere from the backscattered spectrum. As a
result, we outline a procedure by which we can characterize and identify unknown
spheres from their backscatterd spectra. Finally, we use a Mie series approach to
establish the tranverse electric electromagnetic X-wave scattered fields by a perfectly

conducting sphere.
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CHAPTER 1

INTRODUCTION

Localized waves are one class of ultra-wideband pulses that attracted considerable
attention in the past twenty years. The first localized wave to appear in literature was
known as the Focus Wave Mode (FWM) and it was introduced by Brittingham in
1983 when he suggested a mathematical non-separable electromagnetic solution to the
homogeneous Maxwell’s equations [1]. FWM had a three-dimensional pulse structure
that propagates with the velocity of light in straight line, and it was shown to be
continuous, nonsingular and nondispersive for all time, Nevertheless, this solution
was found to have infinite cnergy content [2,3]. Because of the pioneering work of
Brittingham, researchers began to look for other slow decaying solutions, Examples
of such solutions include: Wu’s electromagnetic missiles [4-15], Durnin’s Besse]
Beams [16-18], Moses and Prosser’s electromagnetic bullets [19-22], Ziolkowski’s
directed energy pulse trains (DEPTs) [23-25], Heyman and Felsen’s pulsed beams
[26-31], Overfelt’s Bessel-Gauss pulses [32,33], Lu and Greenleaf’s X-waves and
Saari’s Bessel X-pulses [34-36]. In order to understand the unusual decay properties
of Brittingham’s solution, Sezginer [37], Ziolkowski [38], and Belanger [39,40]
explained that FWM could be represented by a product of an envelope function and
an exponential modulation moving in opposite directions. Moreover, it was verified
that the envelope function could be denoted by a solution to 2 complex parabolic

Schrédinger like equation, Sezginer [37] and Belanger [39] proved also that F WM




solution could be represented in terms of Gaussian-Laguerre and Gaussian-Hermite
packet like solutions. Likewise, solutions to the homogeneous spinor wave equation
and the massless Dirac equation were discovered by Hillion [41,42] using

Brittingham’s modes.

To obtain finite energy localized waves, one can use a superposition of the source free
solutions, or otherwise use the infinite energy source free solutions as excitations to
finite size sources. The first approach was used by Ziolkowski who argued that finite
energy localized wave (L W) solutions could be obtained as a superposition of FWMs
[38], and he called these solutions “ Directed Energy Pulse Trains” DEPT [24,25].
The splash and Modified Power Spectrum (MPS) pulses are two examples of DEPTs.
Ziolkowski claimed that FWM could offer more suitable basis for the synthesis of
ultra-short time-limited pulses than the usual time-harmonic plane waves and studied
both acoustical as well as electromagnetic MPS pulses. He suggested that finite
energy MPS pulses could be reproduced using a source consisting of a finite planar
array of dipoles [23-25,38]. To establish the feasibility of the generation of these LW
pulses, Ziolkowski et al. [43,44] carried out an experiment demonstrating the
possibility of launching acoustical DEPT in a water tank. They used a linear array of
acoustical source elements driven by independent generators. The second approach
uses the infinite-energy LW solution to excite an aperture of a finite size. Shaarawi et
al. [45-51] suggested that a Gaussian dynamic aperture could be used to produce a
good approximation to the source-free FWM solution. Detailed investigations of the
decay patterns of several LW pulses produced by finite time dynamic apertures

illustrated that their spectral decay patterns are completely different from those of




quasi-monochromatic signals, as well as other broadband pulses [47-51]. These
investigations demonstrated that large dynamic apertures could produce narrow pulses
capable of traveling long distances with minimal decay [46-50]. It has also been
shown that the slow decay is due to the fact that the spectral depletion of LW pulses is
different from that of CWs. In applications that need continuous variable adjustments
of the field depth and beam waist, one could control the temporal focusing by
changing the time evolution of the waveforms exciting the various parts of the
aperture plane. By comparing the temporal and spatial focusing, it was found that the
former depends on the initial excitations of the various elements of the source while
the latter results from the geometrical shape of the source. As such, temporal focusing

is advantageous if the range and width of the focused field vary frequently.

Because LWs were characterized by a highly focused depth, and an ultra-wide
bandwidth, it was essential to develop new means to assess their propagation
characteristics. Traditionally, Rayleigh length, which is the carrier frequency
multiplied by the square of the width of the aperture, was used to measure the
bandwidth of a quasi-monochromatic signal that is generated by a finite aperture. This
method could no be applied to LWs since they do not have fixed carrier frequency
[23-25]; thus Ziolkowski suggested new methods to measure the decay patterns of the
LWs, and he pointed out that the characteristics of LWs, unlike the quast
monochromatic continuous waves (CW), depends on the type of transmitter-receiver
system [23-25]. Ziolkowski considered the problem of electromagnetic pulses
generated by an array of electrically short and thin, center-fed, linear dipole antennas.

By measuring the radiated field in the far field [23,25] it was shown that a new type of




array was required to generate such LW pulses; particularly, one that had independent
clements each excited by a specific broadband time-dependent signal. Afterward it
was verified that by manipulating the driving function of the source elements of an
array, a specific field representation at some predefined point in space could be

established [52].

Brittingham’s FWM solution can be perceived as a weighted superposition over
Bessel beams. Durnin [16-18] introduced the diffraction-free “Bessel beams” that are
excited from an infinite aperture. In contrast, with FWM pulses, an aperture used to
generate Bessel beam pulses require infinite power. To obtain a finite-size source,
Durnin [17,53-56] recommended cutting off the Bessel beam at a certain radial
distance on the generating aperture. Subsequently, he compared the finite Bessel
beams with the Gaussian beams and demonstrated that although both have central
spots with equal radii, the former had larger field depth. Durnin ef al. verified that the
differences in energy distribution over similar apertures increase the depth of the
generated beam on the expense of the power used. The spectral structure of FWM-like
pulses shows explicitly that they are weighted superpositions of Bessel beams.
However, one should always recall that the former are ultra-wideband pulses while

the latter are monochromatic fields.

In spite of the different nature of Bessel beams and LWs, some methods for
generating Bessel beams provide clues to the development of optical sources for LW
pulses. Several experiments were done to develop optical sources of Bessel beams

depending on the fact that an annular ring is a zero-order Bessel function. For
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example, Durnin excited an annular slit placed in the focal plane of a lens. Another
way was illuminating a point source of a Fabry-Perot interferometer and using a lens
behind the interferometer with an aperture that was designed to allow the Passage of
the ring only [57,58]. A further experiment was done by Armito ef al. and Vahimaa et
al. [59,60] in which they generated Bessel beams using a refractive axicon.
Alternative approaches for the production of Bessel beams employed holographic
techniques to construct diffractive axicons [61-63]. The acoustical Bessel beam
generator was invented by Hsu et al. [64] by using a three-ring narrow-band solid
piezoelectric (PZT) transducer to generate CW Bessel beams. Later, Lu and
Greenleaf, who considered the use of ultrasonic Bessel beams in medical imaging
applications, developed an improved acoustical transducer [65]. By comparing the
diameter of the Gaussian beam with that of a Bessel beam outside the depth of the
focal field, it was found that the former is larger. Consequently, Lu and Greenleaf
illustrated that Bessel transducers would have better resolution power and focusing
capabilities than traditional ultrasonic scanners and imaging instruments due to their

large field depths and small widths of the center lobes.

In 1992, Lu and Greenleaf [66,67] introduced a second class of non-diffracting pulsed
wave fields that are axially symmetric exact solutions for the scalar wave equation.
This new class was called X-waves because of geometrical shape of their field
distribution in a plane along their propagation axis, and they can travel in free space to
infinite distances without diffraction if they are generated by an infinite aperture.
Their space-time structure consists of a highly focused central part with the maximum

amplitude surrounded by an extended lower intensity background field [68]. When X-




waves are generated from a finite aperture, they are usually referred to as “limited
diffraction pulses”. Lu and Greenleaf were able to develop an ultrasonic transducer
consisting of multiple broadband circular piezoelectric PZT rings excited with distinct

time-dependent waveforms in order to emit acoustical X-waves [65-67].

The extended focus depth of the X-wave makes them suitable for applications
involving high resolution imaging, and detection of buried objects at varying depths
[69]. Because they do not need continuous refocusing at different depths, the use of
X-waves increases the repetition rate of the sent pulses in any practical imaging or
detection scheme. This property together with adequate focusing of the incident pulse
increases the level of the backscattered signals. Along such vein, Lu and Greenleaf
studied analytically and experimentally the use of X-waves in pulse-echo imaging
[70], and they compared the pros and cons of X-waves and Bessel beams as opposed

to the traditional focused beams used in biomedical ultrasonic imaging [71].

Lu [72] studied the design and generation of Bowtie beams that are higher order
derivatives of the X-wave with respect to one of its transverse spatial variables. He
developed a synthetic array design that eliminated the cross talk between all elements
because the side lobes are dramatically decreased. Besides, this design provided high
flexibility because the size of the elements and the inter-element spacing can be easily
changed. Lu et al. established a new approach for synthesizing LWs through utilizing
X-waves of varying orders as transformation basis, and called it X-transform. In
addition, similar to Hermandz er al. [52], Lu applied a least square method to design

limited diffraction beams from Bessel beams and X-waves [73].




Most of the work done on the generation of LW pulses used acoustical techniques.
For example, the experiments that were performed by Lu and Greenleaf were done on
ultrasonic X-wave sources. Similarly, Ziolkowski et al. [43,44], and Power et al. [74]
used linear acoustical array in their work. On the other hand, there were few attempts
to generate optical LW pulses [34-36]. The approach used in these attempts uses
pulsed illuminations of axicons or annular slits. As for microwave sources, the need
for ultra-fast independent excitations of the aperture elements makes it hard to achieve
sources. However, Mugani ef al. used an approach analogous to the optical methods
[75]. They illuminated an annular slit placed infront of a circular feed horn using a
microwave pulse. The radiated field was then focused by a spherical reflector to form

an X-wave pulse along the axis of the source [75].

It has been established that broadband pulses have appealing properties in relation to
applications such as Impulse Radar (IR) and Ground Penetrating Radar (GPR)
systems. This growing relevance is due to the high efficiency of broadband pulses in
detecting and identifying objects. As discussed before, Lu and Greenleaf
demonstrated that acoustic waves have higher resolution capabilities than typical
systems used for pulse-echo imaging and tissue characterization. The close
resemblance in the functions of GPR systems and those used for ultrasonic medical
imaging urges us to investigate the capabilities of LW pulses in applications involving
the detection and identification of scattering objects. Power et al. demonstrated the
capability of using back scattered MPS pulses from an object to determine its size

[74]. In addition, LW pulses do not need to be refocused several times at different




depths when used for detecting buried objects. Furthermore, they are be generated
from very large apertures in spite of being very narrow pulses. Since the waist of the
generated pulse can be controlled by the temporal excitation of the source elements,
wide LW pulses can be initially generated with in order to scan and find buried
objects buried in the ground. Once an object is found a narrower pulse would be
generated to identify the size, material and location of the scattering object. To
develop such a system one has to be able to design an adequate source and, as
discussed earlier, this path has been studied thoroughly. Furthermore, one has to study
the propagation of LW pulses through surfaces of discontinuity and in different types
of media [69,76-79]. Finally, comprehensive investigations of the scattering of LW
pulses from various objects are necessary. In a recent study, the scattering of X-waves
from a circular disk has been carried out using a high frequency approach [69]. A
method employing correlation measurements of the back-scattered signals taken from
four detectors demonstrates a significant improvement in resolution over typical

arrangements [69].

In the present work, we shall study the scattering of ultra-wideband X-waves by a
sphere. In Chapter 2, we review some of the properties of the acoustic X-wave.
Subsequently, we derive a series solution for the scattered X-wave field. This is done
for an X-wave incident with it peak passing through the center of the sphere and off-
center. We shall consider the scattered spectrum for different angles starting from the
backscattering angle 0 =m, to the forward scattering angle 6 =0 in multiples of

(n/6). Then we shall study the effect of different parameters, characterizing the

incident pulse and the scatterer, on the backscattered spectrum. These parameters are




the focused pulse width and frequency bandwidth, the spectral apex angle, and the
radius of the scattering sphere. We shall demonstrate how we can extract the sphere
size, using simulations of the backscattered spectra of spheres with different radii.
Finally, we shall demonstrate that, even if the pulse is incident off center, one can

obtain decent estimates for the radii of the scattering spheres.

In Chapter 3, we include the scattering of acoustic X-waves by soft spheres. Again we
shall derive expressions for the scattered fields due to both on-center and off-center
incidence. The deduced expressions are different from those of the rigid sphere, but
reduce to the rigid sphere case when the product of the density of the material and the
speed of propagation inside the sphere is much larger than the product of those of the
surrounding medium. We shall also investigate the effect of varying the scattering
angle on the spectrum of the scattered pulses. Then, we shall test the effect of
changing the surrounding medium, radius of the sphere, density of the sphere, and the
speed of wave propagation inside it. In addition, we shall illustrate how we can
determine the radius of the sphere, as well as, the speed of wave propagation inside it
from the back-scattered spectrum. This means that from the frequency content of the
backscattered signal, one can determine both the size and the material of the scatterer.
We shall demonstrate that the accuracy of our results is still acceptable even for the

case of off-center incidence.

In Chapter 4, we derive expressions for the scattered field due to an incident
electromagnetic X-wave on a perfectly conducting sphere. The aim of this chapter is

to describe an approach for deducing a X-wave scattered fields using a Mie series

9




approach [80,81]. The extension of this approach to the case of a dielectric sphere is
straightforward. The solutions obtained for the scattered clectromagnetic pulses can
then be used to characterize the size and the material of the scattering object. The
details of this effort will be deferred to later work. In Chapter 5, concluding remarks

on this work are provided and future developments are discussed.
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CHAPTER 2

SCATTERING OF ACOUSTIC X-WAVES BY RIGID
SPHERE

2.1 INTRODUCTION

The scattering of acoustic ultra-wideband pulses from spheres has important
applications in fields such as high-resolution imaging, remote sensing, material
characterization, and detection of buried objects. Localized waves are one class of
ultra-wideband pulses that have distinct advantages when it comes 10 situations
involving the detection of buried objects [69]. Studies along these lines dealt with the
scattering of X-waves from a circular disc placed in free space and buried in the
ground [69]. The analysis used in this investigation was based on the high frequency
techniques in combination with the pulsed plane wave representation of the X-wave
solution [77]. In spite of the effectiveness of the methods used in the aforementioned
study, it has not been directed towards the possibility of using the scattered signal to
identify or characterize the scattering object. An important study of the possibility of
using LWs for identification purposes has been undertaken by Power et al. [74],
where they demonstrated the possibility of identifying the radii of various spheres
from the spectrum of the backscattered signal due to an incident MPS pulse. Their
analysis considered both the case of hard and soft spheres, although the method they
employed was applicable only to the identification of the radii of hard spheres, and

could not be used to find the speed or the density of the scattering material.
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Furthermore, they demonstrated experimentally the effectiveness of their

identification technique.

The objective of this chapter is to study the scattering of an acoustic X-wave (AXW)
by a rigid sphere. We start by providing expressions for the incident AXW field, and
use such expressions to calculate the scattered AXW field. We follow essentially the
analysis employed by Power ef al. to calculate the scattered field due to an AXW
incident on the center of the sphere. We extend the analysis to the case when the axis
of propagation of the incident AXW field is off-center. In such a case, one can
consider the two situations when the focused region of the AXW field is off-center
but hits the body of the sphere or passes outside the sphere. Our main objective in this
chapter is to provide a thorough investigation of the effects of changing the AXW
pulse width and axicon angle, the scattering angle and the radius of the scattering
sphere, as well as, the distance of the observation point from the sphere. Following a
technique similar to that used by Power et al., we show how to extract information
regarding the sphere size from the backscattered spectrum. The usefulness of this

approach is demonstrated for the scattered fields due to both on-center and off-center

incidences.

2.2 SOURCE FREE AXW SOLUTION

A spectral approach will be used to obtain the scattered field due to an incident AXW.
Thus, it is important to be able to choose the spectral representation most suitable to
the adopted analysis. As mentioned earlier, the AXW can be represented as a Fourier

superposition over plane waves having their wave vectors forming a conic surface as

12




shown in Fig. (2.1). The series solution of a plane wave scattered from a sphere [82]
can then be integrated over the Fourier spectrum of the X-wave solution to obtain the

AXW scattered field. To determine the AXW Fourier representation consider the 3-D

scalar wave equation

(vz —ii}y(r,r)w. (2.2.1)

The AXW solution can be represented as the Fourier superposition

W (7,1) = IdSkO]d(m/c)e_ik"e‘“’\I/(k, 0))6(0) — .kic), (2.2.2)
R0

where the AXW spectrum has the following [76]

2
)= e %qus(ek -£) 2.2.3)
sm

and k= (k> + k> +k>). The parameter & defines the apex angle of the spectral cone
x y z p

shown in Fig. (2.1) and is usually referred to as the axicon angle. The constant a
determines the frequency bandwidth of the AXW field, as well as the width of its

focused region [69,83]. Fig. (2.2) shows how the lateral and axial widths of the X-

wave pulse are determined from the two parameters a and & .

The Substitution of \T;(k,m) in Eq. (2.2.2) gives

T

© 2n
Wiy (,0,0,0)= [dk [dO, [db, k" sinb, 27
0 0 0

sin &

k728(0, —&)e e e (2.2.4)
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The spatial part of this plane-waves superposition depends on £ -r, which can be

expressed as

ker=kx+ky+kz
= kr(sin 0, cos¢, sin Bcos¢ +sin O, sin ¢, sin Osin ¢ +cosO, cos0)
= kr(cosB, cosO +sin 0, sin Ocos(d, — ¢)).

The spectrum given in Eq. (2.2.3) restricts 0, to the value 8, =& . Consequently, we

can define the angle y, as follows:
cosy, =cos0, cos& +sin 0, sin & cos(d, —(I)). (2.2.5)
Thus, it follows that

k-r =krcosy,. (2.2.6)

Using Egs. (2.2.6) and (2.2.5) in Eq. (2.2.4) and performing the integration over 6,,
we obtain

O

2
‘ 3 2 - iket _—ikr(cosOcosE+sinBsin € cos{ ¢, —
Wiy (70,0,0)= [k [dp k? sin g —— ¢ Hoere 1 (emoexsrmtsmicalon b)),
o 0 sin &

Rearranging terms, the expression for the incident wave becomes

0

2n
\P;IXW (r’e, (1),[) - J‘dk J.d(bkkqe—kae—ikr(cosecosZ;+sin05in£cos(¢k—¢))eikct i (227)
o 0
Let x = krsinOsin & , and using the definition of the zeroth order Bessel function [84]

R
Jo(x)=— [dse (2.2.8)
27 o

the incident AXW pulse can be written as
14




W ar (9,2,1) = 2m [k ], (kr sin O:sin & JeHler1(reosdemséerl
0

= 2m [dkk?.J, (kpsin € Je 1o+, (2.2.9)
0

The integration over k yields [85]

Ww = om0 [p2 sin® & + (a +i(z cos& —ct))’ }1/2 : (2.2.10)
oa’

The order of the derivative with respect to ¢ determines the order of the X-wave. A

3-D plot of this field is provided in Fig. (2.3) for ¢ =0, a=1um and £=2 . The

lateral and axial waists of the highly focused central part of the AXW field depend on

the values of the parameters a and &, as illustrated in Fig. (2.2).

2.3 SCATTERED AXW FIELD DUE TO ON-CENTER
INCIDENCE

To calculate the scattered AXW pulse, we shall consider a general expression for a

plane wave incident in a direction specified by a propagation vector k whose

direction is defined by the angular variables 6, and ¢,. Assuming a harmonic time

dependence of the form exp(iwt), the spatial part of the plane wave solution

(I)i(r,(b’e):e—ik-r ___efikrcosy (231)

represents the velocity potential of an acoustic field. Here, y is the angle between
k E(k,ek,d)k) and r E(r,G,d)). The specific choice 0, =& yields y =y, as defined

in Eq. (2.2.5).
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Following the standard series solution technique used in calculating the scattering of
plane waves from spheres, the incident plane wave is expanded in terms of Legendre

Polynomials and spherical Bessel functions, viz. [84],
71/(7‘0037,‘ Zan (Cosvyk Jn kr) (2.3.2)

The 0, & and (d) ) k) dependences in the argument of the function P,(cosy ;() can be

separated according to the following expression:

P (cosy, )= Zs P'"(cose)P (cos&)cos(m(d, —9)), (2.3.3)

m=0  (n+m)!

where €, =1 for m=0,and g, =2 for m#0.

The coefficient a, in Eq. (2.3.2) can be determined using the orthogonality relation of

the Legendre Polynomials as follows:

n=0

Je(_ikrmSY*)Pm(cosyk)sirl Yidy, = I(Zanjn(kr)l’n(cosyk)Pm(cosyk)sin yk)a‘yk .
0 0

The orthogonality condition of the Legendre Polynomials yields [84]

J.e(_ikrcosyk)Pm (COSYk)Sin Vel = 22am J‘m(kr)- (2.3.4)
: m+1

The integration on the left hand side of Eq. (2.3.4) gives

k4

J-e(_"’”"”" )Pm (cosy, )siny,dy, =2(=i)" j, (kr) (2.3.5)

<

From Egs. (2.3.4) and (2.3.5), we obtain
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a, =(~i)"Cm+1). (2.3.6)

The incident plane wave can thus be represented as a summation over functions of the

spherical coordinate variables (r, 0, ¢); specifically,

@'(r,0,¢)=e """ = i (-iy'2n+1)P (cosy,)j, (k). (23.7)

The scattered field is usually represented as a series of concentric spherical waves

diverging from the scatterer via the following mathematical expression:

@*(r,0,¢) = iAnPn(cosyk WD (k). (2.3.8)

n=0
Here, the spherical Bessel functions appearing in the expression for the incident plane
wave has been replaced by the spherical Hankel functions. The parameter 4, is

determined from the boundary conditions.

To find the expression for the scattered AXW pulse due to incidence on the center of
the sphere, we integrate the scattered field due to an incident plane wave over the

spectrum of the AXW field given in equation (2.2.3), viz.,

o T 2n
Wiy = [l [d0, [db,k sin 0, =7 k7250, —E)e e
o 00 sin &
%3 4,1 (kr)P, (cos ). (2.3.9)
n=0

The integration over 6, gives
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© hd 2n 0
Wiy = [dk [0, [do,2nk?e™ e Y 4,hP) (kr)P, (cosys ).
0 0 0 n=0

Using Eq. (2.3.3), the above expression can be written as

0

2n © .,
Yo (ra 0, d)’t) = J‘dk _[d¢k 2nk e e Z A,,h,fz)(kl”)z e (n—-m)!
0 0 n=0

m=0 (n+m)!

x P"(cos0)P" (cos&)cos(m(d, —0)). (2.3.10)

The integration over ¢, yields zero contributions to all terms having m#0.

Therefore, the scattered AXW reduces to

Wi (7,0,0,1) = (2n)" [d ke ™™ i A1 (kr)P, (cos8)P, (cosE). (2.3.11)
0 n=0

In order to determine the coefficient A4, , the appropriate boundary condition should

be applied. For a rigid sphere, the incident and scattered fields should satisfy the

condition that at the surface the gradient of the velocity potential should be

continuous. Specifically,

6_¢i_+8(D =0 atr=R. (2.3.12)
or or

At this point one should realize that the pressure amplitude is related to the potential

® through the relationship P(V,t):—po(é(b/at), where p, is the density of the

medium surrounding the sphere.

Differentiating Eqs. (2.3.7) and (2.3.8) with respect to the radial position and

substituting with » = R, we obtain
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7

(— z')" (Zn + I)Pn (cos Y, )kj”’ (kR) = —Ankh,fz) (kR)Pn (cos Y, )

Therefore, A4, acquires the following form:

’

4, =—(=i)"(2n+1) I ,(kR) (2.3.13)
) (kR)

Substituting Eq. (2.3.13) back in Eq. (2.3.8), we obtain the following scattered

potential:

' (r,0,6) = (i) 2+ LR 1011 (cosy. ). (23.14)

Consequently, the expression for the scattered AXW pulse due to on-center incidence

becomes

i (1,0,0,1) = () [k e S~ (i) (2 1) LR 00 p)
; A6 i)
x P.(cos0)P. (cos&). (2.3.15)

This expression can be used to calculate the scattered AXW field in configuration
space in various directions specified by the angle 6. In later sections, we demonstrate
how the information included in the spectrum of the scattered AXW field can be used
to determine the radii of various spherical scatterers. This type of information is
extracted from a study of several numerical examples illustrating the changes of the
shape of the scattered spectrum due to the variation of the values of the parameter a,
the axicon angle & and the radius of the sphere R. In addition, a study of the
alterations in the spectrum of the scattered field with the different observation points

(r,G) is also undertaken. Before such a goal is fulfilled, we calculate the AXW field

scattered due to an AXW pulse incident with its axis of propagation shifted away
19




from the center of the sphere. This calculation is important for determining the
reliability of the suggested technique when the incident AXW pulse is not passing

right though the center of the scattering sphere.

2.4 SCATTERED AXW FIELD DUE TO OFF-CENTER
INCIDENCE

An X-wave moving in the z-direction with its axis of propagation shifted to a line
parallel to the z-axis and passing through x = x, can be represented in terms of the

following superposition:
P (7,1) = j A’k “jd(co/c)e"'(k-*(*‘*x“*"-v“"ﬂ)e"‘”'q‘/(/}', w)6(co - \/E[c) (2.4.1)
R 0

where \I/(E,(D) is given in Eq. (2.2.3). The incident pulse can be perceived as a

superposition over plane waves having the following spatial dependence:

D’ (F,l) _ \Ije-/(/c‘»(x—.\"))-f—kyyﬁ—kzz)eiw[

ihxy cos O sin By —ikrcosy _iof

= LI!e e e . (2_4.2)

Using the same procedure described for the case of the on-center incidence, we can

write the scattered field as

(7 1) = et et e S 4, h® (kr)P, (cosyy ). (2.4.3)

n=0

[n the above expression we have taken into consideration that for X-waves 0, =€ .

We can substitute Eq. (2.3.3), to rewrite Eq. (2.4.3) in the following form:

. 2 (n—m)!
o (F,f) _ eizl{,\'u $in & cos oy Z A,,]’l,(,2) (kr)z £ (n }’I’I)
n=0

m=0  (m+m)!

P (cos é)Pn”’ (cos&)cos(m(d, — b))

(2.4.4)
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The backscattered angle 6=0=m if the source is placed off-center, while the
detector is located in front of the sphere on the z-axis. However, in practical situations
the detector of backscattered signals is attached to the source. The backscattered

angle, according to Fig. (2.4.a), would be given by

] :E+cos“l(ﬁ]. (2.4.5)
2

Similarly, the forward scattered angle according to Fig. (2.4.b) would be:

6 =§—cos"(ﬁ]. (2.4.6)

7

Multiplying the scattered potential by the AXW spectrum and integrating over the

momentum space yields

2n 0 0
LPjXW (r’e, d),t) =27 J'd(bk J‘dk kqeikcte—kzleikxo singcos(tbk-wz An h,SZ) (kl”)
0 0

n=0

n —m)! -
x g, =) Py (cosB)P" (cos ) cos(m(y — b). 2.4.7)

m=0  (n+ m)!

Notice that for the detection scheme illustrated in Fig. (2.4.a) X, 1s positive for ¢ =0
and 1s negative for ¢ = . According to the symmetry of the problem, we expect that
both cases will give the same result. We shall try to simplify the expression given in
Eq. (2.4.7) using one of these two possibilities; namely, that x, is positive and $=0.

For this case, Eq. (2.4.7) can be written as
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\PAXW (7" e ¢ =21 J.dd)k Idkkq iket —/meikxusin&coscbk iAnhn(z)(kr)

<o

m=0 n+m)'

P"‘(cose)P (cos&)cos(m, ). (2.4.8)

Let u = kx, sin&, and replace cosm¢, by its definition
1/, By
cosmd)k :._2_(e:m¢;r + o M )

The integration over ¢, will have the following form:

12n

= J‘d(i) ezucosda/,( imdy +e—zm¢k (Jdd) e i{u cos by +moy. ) + Id¢ e: (ucos ¢y mqu)j
20

Using the following definition of the Bessel function

+7 Wn oq ,
Jin (X)-_: ( l) J‘eiz(xcosei-ne)de’
27n 0

the integration over ¢, yields

12n

5 [dgeem o g 4 7t ) = : ((i)'" 21T, () + (1) 20 (1)),

The negative orders of the Bessel function are related to the positive ones through the

relationship J_,, (u)=(~1)"J,, (). Therefore, the integration over ¢, reduces to

= tbon e 0o ) = () 17, 0+ (" 1) )

20
=2ni"J,,(u).

Using this result in Eq. (2.4.8), we arrive at the expression

22




Wiy (,0.0.0) = 42 [dk k0™ e Y 4 1O ()Y e, 1)
0 n=0 m=0 (I’l + m) '

x P" (cosé) "(cos&)J, (kx, sin€). (249

n

The AXW pulse scattered by a rigid sphere, due to incidence off-centered by a

distance x, or —x,, can be written explicitly as

i (7,6, 6, t) =4n’ Idk k™ eh Z.o: —(=i)" (2,1 + l)h,sz)(kr) I ’(kR)
0 n=0 h(Z) (kR)

n

« Z": e MP:’ (cos 5)}’,{" (cos&)J, (kx, sin&). (2.4.10)

m

m=0 (n+m)!

2.5 NUMERICAL RESULTS FOR ON-CENTER INCIDENCE

In this section, we discuss the behavior of the scattered AXW pulse due to on-center
incidence. Our primary aim is to study the effect of changing the parameters and
variables appearing in the spectrum of the scattered pulse given in Eq. (2.3.15). The
quantities of interest are 6, a, §, R and r determining the scattering angle, the pulse
width, the apex angle of the spectral cone, the radius of the scattering sphere, and the

observation distance, respectively.

2.5.1 Effect of Changing the Scattering Angle
We consider the spectrum of the scattered pulse at different scattering angles ranging
from 6=0 to 6 =7 in multiples of n/6 . As shown in Fig. (2.5), 0 = n determines the

position of detection of the backscattered signals, while ©6=0 is the forward

scattering angle. The plots shown in Figs. (2.6.a) to (2.6.g) give the absolute spectrum
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of the scattered field at each one of the aforementioned angles. The incident AXW
pulse is characterized by the parameters @ = 20 mm, ¢ =1 and & =2°. The spectra are
calculated at » =150 mm for a scattering sphere having a radius R =30 mm. If we
compare the backscattered spectrum of Fig. (2.6.a) with the forward scattered
spectrum of Fig. (2.6.g), we find that the amplitude of the spectrum is higher in the
case of the forward scattering. Another interesting observation is the smooth shape of
the spectrum of the forward scattered field. In contradistinction, the backscattered
spectrum contains a number of peaks and dips that carry specific information about
the scattering sphere. This indicates that the backscattered field can be more useful for
identification and characterization purposes. The details of how this is done are

provided in Sec. 2.5.4.

2.5.2 Effect of Changing the Pulse Width

The temporal frequency content of the X-wave is determined by the parameters a and

g . Specifically, the peak of the spectrum occurs at @ peat =gc/a. The maximum
frequency corresponds to the point at which the temporal spectrum decays to 1/e* of
the peak value. This criterion yields the following expression ®,,, = (¢g+4)c/a. The
axial and lateral widths of the AXW pulse depend on the parameter ¢ and are equal
to a/cos& and a/sin&, respectively [cf. Fig. (2.2)]. One should notice that the smaller

the pulse width the larger the frequency bandwidth.

In Fig. (2.7), plots of the backscattered spectra calculated at » =150mm for

R=30mm, ¢g=1 and & =2° are displayed. The various plots correspond to having
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a=20mm, 30mm, 40mm, and 50 mm. According to Fig. (2.7), the smaller the
value of a the more details we can get from the backscattered spectrum. This implies
that we should use pulses with very small width compared to the scatterer or
alternatively that ultra-wideband pulses are more effective for identification purposes.
However, possible problems might arise because reducing the pulse width by more
than five times the sphere radius causes the series solution to diverge. Therefore, it is
recommended to optimize the frequency bandwidth and pulse width that could be

chosen using a rough estimate of the size of the scattering sphere.

2.5.3 Effect of Changing the Apex Angle

The apex angle of the conic surface on which the pulsed plane waves are
superimposed is related to the pulse width. According to Fig. (2.2), the width of the

pulsed plane wave components that form the X-wave causes the lateral and axial
waists to be equal to a/sin& and a/cos, respectively. Changing the apex angle

affects the pulse width but does not influence the bandwidth of the AXW pulse.

In Fig. (2.8), we show the scattered spectra for different & angles. We started with an
apex angle £=0°, which corresponds to having an incident pulsed plane wave
instead of an X-wave. We chose apex angles equal to & =20° and 40°. For values of
€ <20° the backscattered spectra are almost the same; the only difference is a slight
decrease in the amplitudes. This is due to the fact that for £<20°, cosé ~1. On the
other hand, for & =40° the argument of the Legendre function in the series solution

differs appreciably from 1 and the shape of the spectrum changes noticeably.
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Physically, one can think of the condition € <20° to correspond to operating within a

paraxial regime, where all plane wave spectral components are coming in at small

angle relative to the axis of propagation.

2.5.4 Effect of Changing the Radius of the Sphere

In this subsection, we consider the variation in the shape of spectra of the
backscattered fields as the radius of the scattering sphere is changed. In Fig. (2.9), the
absolute spectra are plotted for R =30mm , 40mm, 50mm and 60mm. The
incident AXW pulse has a =20mm, ¢ =1 and & =2°. As the radius of the scattering
sphere is increased, the amplitude of the backscattered spectrum increases and the
average spacing of the dips decreases. This observation implies that we can extract
information about the size of the spheres from the backscattered spectrum by doing a
calibration curve between the radii of the spheres and the average spacing of the dips.
Fig. (2.10) shows this kind of calibration curve which is constructed using the
information taken from three known sphere sizes R =20mm, 40 mm, and 60 mm.

The calibration curve was drawn using MS Excel, where the best fit of the points

suggested the relationship R = 926.63(Akav )_0’908 between the radius of the sphere R in

mm and the separation between the spectral dips Ak,, givenin m™'. To establish that

the information included in the dips of the spectra can be used to determine the radii
of the scattering spheres, we calculated the average separation between the dips of the
spectra of the AXW fields scattered from spheres having radii R =30 mm, 50 mm,
and 80 mm . Subsequently, we went back to the calibration curve and found estimates

for these radii. A comparison between the estimated and actual radii is found in Table
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2.1. The tabulated results show that the percentage errors in our estimates of the sizes

of the spheres are minimal.

2.5.5 Effect of Changing the Observation Distance

Another issue we consider here is the relation between the decay of the scattered field
and the distance traveled. In Figs. (2.11.a-c), we have the backscattered spectrum for
an AXW pulse having ¢ =20mm, ¢g=1 and apex angle &=2°. The pulse is
scattered by a sphere of radius R =30mm at different distances of » =150 mm,
1500 mm, and 15000 mm, respectively. Comparing the amplitudes of the spectrum of
the three figures shows that the pulse spectrum decays as (/7). This indicates that the

scattered pulse is almost uniformly distributed in all directions.

2.6 NUMERICAL RESULTS FOR OFF-CENTER INCIDENCE

In practical situations, the source and detector may be sweeping behind or in front of
the sphere. This means that the pulse incident on the sphere might not be directed

towards the center of the sphere but shifted by a distance of *x,. In this case, we

cannot consider our problem azimuthally symmetric. Moreover, in such cases the
back and forward scattered angles are not simply 6=7 and =0 as previously
mentioned in the case of on-center incidence. They have to be recalculated according

to the new back- and forward-scattering schemes shown in Fig. (2.4). From this

figure, the back and forward scattered angles 0 are equal to ((71/ 2)+cos™ (x, /r))

and ((7[/2) —cos ™' (x, /r)), respectively.
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Figs. (2.12.a-c) show the effect of changing the source and detection distance by a

value of +x; from the center of the sphere. The incident AXW pulse is characterized

by a=20mm, g =1 and §=2°. We started with x, =0 which corresponds to the
case of on-center incidence and then increased the distance to x, =+15mm.
Subsequently, we doubled the value of x, until we reached a value of 120 mm .
Referring to the backscattered spectrum, shown in Figs. (2.12.a-c), we have good
results for distances that are less than Xo =*60mm which is about 40% of the
observation distance. For this range of off-center shifts, we only have a slight shift in
the positions of the peaks with minimal decrease in the amplitudes. However, for
Xo 2 60 mm , the shift in peak positions is increased causing high percentage error in
the calculated radii of the spheres as shown in Tables (2.2.a-c). Spectra resulting from
forward scattering are shown in Fig. (2.13). It can be seen that such spectra have no

dips and no information can be extracted from them.

2.7 CONCLUDING REMARKS

In this chapter, we studied the scattering of acoustic X-wave by a rigid sphere. We
derived expressions for the scattered field due to an AXW pulse incident on the
sphere. Two cases are considered, where the pulse is incident on and off center. We
investigated the effect of changing the scattering angle on the spectrum of the
scattered field. Furthermore, we studied the effect of changing the pulse width, apex
angle, and the bandwidth of the incident AXW pulse. The influences of the radius of

sphere, and observation distance on the scattered field were also considered. It has
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been shown that backscattered fields exhibit spectra that contain more information
about the scattering sphere than the forward scattered ones. When the parameters
characterizing the incident pulse were considered, we have found that the axicon
angle has very little effect when it acquires values lesser than 20°. This is the case
because the plane wave spectral components of the AXW become paraxial in nature.
On the other hand, the parameter a, controlling the bandwidth of the AXW pulse,
appears to have decisive influence on the shape of the scattered spectra. The dips
appearing in the backscattered spectra become more pronounced as a gets smaller.
Furthermore, we have shown how an unknown radius of a scattering sphere could be
identified from the backscattered spectrum. This possibility can have important
applications in areas such as remote sensing and target identification. F urthermore, we
extended our study to off-center scattering where we recalculated the back and
forward scattering angles. We proved that even in case of off-center incidence, we
could still extract the sphere size. However, as the axis of propagation of the incident

pulse moves farther away from the center of the sphere we start getting higher errors.
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Figure 2.6.a Backscattered spectrum by a rigid sphere for
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an AXW pulse incident on center.
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Figure 2.6.b Scattered spectrum by a rigid sphere for R =30 mm,
r=150mm, a=20mm, and 0=>5n/6 due to an AXW

pulse incident on center.
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Figure 2.6.c Scattered spectrum by a rigid sphere for R =30 mm,
r=150mm, ¢ =20mm, and 6=2mn/3 due to an AXW

pulse incident on center.
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Figure 2,6.d Scattered spectrum by a rigid sphere for R =30 mm,

r=150mm, a=20mm, and 8=7/2 due to an AXW
pulse incident on center.
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Figure 2.6.e Scattered spectrum by a rigid sphere for R =30mm,
r=150mm, a=20mm, and 6=7/3 due to an AXW

pulse incident on center.
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Figure 2.6.f Scattered spectrum by a rigid sphere for R =30mm,
r=150mm, a=20mm, and O=1/6 due to an AXW

pulse incident on center.
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Figure 2.6.g Forward scattered spectrum by a rigid sphere for
R=30mm, r=150mm, a=20mm, and 6 =0 due to

an AXW pulse incident on center.
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Backscattered spectra by a rigid sphere for different
radii: R=30mm, 40mm, 50mm and 60mm;
r=150mm and a=20mm due to an AXW pulse

incident on center.
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Figure 2.10 Calibration curve between the average spacing of the
spectral dips and radius of sphere as obtained by an
AXW pulse incident on center for r =150 mm, and
a=20mm.

46




=
- N A O N
| 3 b ! | J

Abs(spectrum)

o @
o o™
| i

©o ©
o N E=N
] 1

l I T [ 1 1

100 200 300 400 500 600
k(m™)

o

Figure 2.11.a Backscattered spectrum by rigid sphere for R = 30 mm,
r=150mm, a=20mm due to an AXW pulse
incident on center.
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Figure 2.11.b Backscattered spectrum by rigid sphere for R =30mm,
r=1500mm, a=20mm due to an AXW pulse

incident on center.
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Figure 2.11.c Backscattered spectrum by rigid sphere for R =30 mm,
r=15000mm, a=20mm due to an AXW pulse

incident on center.
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Figure 2.12.a Backscattered spectrum by rigid sphere for
6 =(n/2)+cos(x,/r), R=30mm, r=150mm,
a =20mm and different values of x, due to an AXW

pulse incident off center.
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8 =(n/2)+cos'(x,/r), R=50mm, r=150mm,
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pulse incident off center.
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Figure 2.12.c Backscattered spectrum by rigid sphere for

8 =(n/2)+cos™'(x,/r), R=80mm, r=150mm,
a =20 mmand different values of x; due to an AXW

pulse incident off center.
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Figure 2.13 Forward scattered spectra by rigid sphere for

0=(n/2)-cos"'(x,/r), R=30mm, r=150mm,
a =20 mmand different values of x, due to an AXW

pulse incident off center.
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Average Spacing of Estimated Radius Actual Radius
% Error
the Dips (m)” (mm) (mm)
43.1250 30.38 30.00 1.27
24.5625 50.65 50.00 1.25
15.0000 79.27 80.00 091
Table 2.1 Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the dips that are obtained from the
backscattered spectrum due to on-center incidence.
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Average Spacing of | Estimated Radius Actual Radius
% Error
the Dips (m)* (mm) (mm)
43.1250 30.38 30.00 1.27
25.1250 49.62 50.00 0.76
15.0000 79.27 80.00 091
Table 2.2.a  Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the dips that are obtained from the
backscattered spectrum due to off-center incidence at a

distance x, =15mm.
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Average Spacing of | Estimated Radius Actual Radius
% Error
the Dips (m)?! (mm) (mm)
44.2500 29.68 30.00 1.07
25.1250 49.62 50.00 0.76
15.1900 78.37 80.00 2.03
Table 2.2.b Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the dips that are obtained from the
backscattered spectrum due to off-center incidence at a

distance x, =30mm.
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Average Spacing of | Estimated Radius Actual Radius
% Error
the Dips (m)™ (mm) (mm)
------ - 30.00 -
27.0000 46.40 50.00 7.20
16.5000 72.70 80.00 9.13

Table 2.2.c  Comparison between the estimated and actual radii of
the spheres as have been calculated from the average
spacing of the dips that are obtained from the
backscattered spectrum due to off-center incidence at a

distance x, = 60 mm.
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Average Spacing of | Estimated Radius Actual Radius
% Error
the Dips (m)™ (mm) (mm)
- - 30.00 -
------ - 50.00 -
20.2500 60.36 80.00 24.55

Table 2.2.d Comparison between the estimated and actual radii of
the spheres as have been calculated from the average
spacing of the dips that are obtained from the
backscattered spectrum due to off-center incidence at a

distance x, =120 mm.
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CHAPTER 3

SCATTERING OF ACOUSTIC X-WAVES BY SOFT
SPHERES

3.1 INTRODUCTION

In the previous chapter, we studied the scattering of acoustic X-waves by rigid
spheres and showed how we can extract the sphere size from the backscattered
spectrum. In this chapter, we shall consider the scattering of AXW by soft spheres.
For soft spheres the information contained in the backscattered spectrum does not
only include the sphere size, but also the density and speed of wave propagation
inside the sphere. This information may allow us to determine the material from
which the sphere is made. Therefore, we can benefit from the results of this

investigation in applications involving material characterization.

32 SCATTERED AXW FIELD DUE TO ON-CENTER
INCIDENCE

In this section, we derive an expression for an AXW pulse scattered from a soft
sphere. We use a series solution approach analogous to the one employed in Chapter
2. First, the scattered field due to an incident plane wave is provided, then the field
scattered due to an incident AXW pulse is calculated by superimposing Over the

spectrum of the X-wave as explained in Sec. 2.2.




To calculate the scattered AXW pulse we assume that the incident field has the form

given in Eq. (2.2.9). This representation is a spectral superposition over plane waves.
To be able to calculate the scattered field, consider a general expression for a plane

wave incident in the direction 0, ¢ . Specifically,
CD/ (1’,(1),9,1,‘) — e»xl;-Feiwl — e—lkrcosyeiml (321)

where v is the angle between & = (k,0,,0,), 7 =(r,0,9). In Sec. 2.2. it has been
shown that an AXW pulse has its entire spectral plane wave components propagating
with an angle 6; =&. Following the procedure described in Sec. 2.3, the plane wave
given in Eq. (3.2.1) can be expressed as a series in terms of Legendre Polynomials

and spherical Bessel functions
@' (r,0,0,0) =€ " et = 2 (=i)' (2n+1)P.(cos s )jo (kr)e™ (3.2.2)
n=0

where cosy, =cos0, cos& +sin0, sin&cos(d),( —d)).

Analogously to the analysis carried out in Sec. 2.3, the scattered field can be
represented as a series of concentric spherical waves diverging from the scatierer
having the following mathematical form:

@ (r.0,0.0)= Y AP (cosy, ) (kr)e™, (3.2.3)

n=0

where P,(cosy ,) is given by Eq. (2.3.3) and 4, canbe determined from the boundary
conditions. Since the center of the scatfering sphere lies on the axis of propagation of
the AXW pulse, the problem is azimuthally symmetric. Thus, m= 0, and the

expression for b, (cosyk) simplifies to:
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P, (cosy, )=P, (cos 0)P, (cosé’;) . (3.2.4)

As in Sec. 2.3, the scattered pulse due to on-center incidence reduces to the following

form:

Wi, (r.0,0,1)=(2n) [dk ke e i A 1D (kr)P, (cos©)P, (cosE). (3.2.5)
0 n=0

In case of the soft sphere, there are two regions of interest. We have the outside region
in which the incident and scattered fields exist, while the inside region contains the
transmitted field. For plane wave solutions, the incident and scattered fields are given

by Egs. (3.2.2) and (3.2.3). Similarly, the field inside the sphere can be written as

follows:
®" (r.0,¢,t)= Y CuP, (cosyy )jin(ker)e™, (3.2.6)
n=0

where k. = (w/c.) is the wave number of the material of the sphere. There are two
sets of coefficients associated with the inside and scattered fields. To be able to
determine these two sets of coefficients, we need two boundary conditions. However,
we have to bear in mind that we are more interested in determining 4, , which is the
coefficients for the series solution of the scattered field. The two boundary conditions
satisfied on the surface of the sphere is that the radial velocity at the first medium
should be equal to that of the second medium and that the pressures on the boundary
separating the inside and outside of the sphere should be equal. The two boundary

conditions could be written explicitly as

Vu(r = R,0.4.1) =Vio(r = R, 6,0, 1), where V(7,1) = VO(F,1) (3.2.7)
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and

Pi(r = R,0,0.1)= P(r = R,6,0,1), where P(F,t)=—p, écp(f,z) (3.2.8)
ot

Here, p, is the density of the medium. The first boundary condition indicates that the

gradient of the velocity potential in the first medium is equal to that of the second

medium; Viz.,

a@l 5@\ aq)ln
=+ =

at r = R, (3.2.9)
or or or

where ®',®*,®" are given in Egs. (3.2.2), (3.2.3), and (3.2.6). Substituting these

expressions in Eq. (3.2.9), we get

e Z P, (cosy, )((— i)' (2n+ 1), (kR)+ A, kh? (kR)) = e Z P,(cosy, )C,jn(k.R).

n=0 n=0

After simplification, we can obtain C, in terms of 4,

e iket k

ek i (k.R)

((— i)' (2n+1)j, (kR) + 4,1 (kR)) . (3.2.10)

To apply the second boundary condition, we need to calculate the pressure inside and

outside the sphere, viz.,

op' 2P’
P, :—po( +—]. (3.2.11)
ot ot

Using Egs. (3.2.2), (3.2.6) and (3.2.11) the pressure in the outside region can be

written as

P(r,0.4,) = —ipokce™ i P,(cosy, )((— i (2n+1)j, (kr)+ 4,8 (kr)). (3.2.12)

n=0
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Here, p, is the density of the surrounding medium. The pressure inside the sphere is

equal to

6@”’
P, =-p, , 3.2.13
2 =P (3.2.13)

which gives
Py(r,0,0,1) = —p.ik.c.e” "y C,P,(cos i ) jn(ker). (3.2.14)
n=0

The density and the wave speed of the sphere are given by p, and ¢, respectively.

Equating (3.2.12) with (3.2.14) at » = R, we obtain

k iket L'kL> ’ )l/\‘y(.l.l
PAC 5 b (cosy (1) (2n+1)ja (kR) + A, B (kR)) = pefce
i n=0 i
x ¥ P,(cosv; )C,ju(k.R)
n=0

Thus, the following relationship between C, and 4, is obtained from the second

boundary condition

k iket
€, =P (1) -+ 1) (kR) + A (kR). (6215)

p.k.c.e™ j,(k.R)

Equating Egs. (3.2.10) and (3.2.15) to solve for 4,, we get

Jn (kUR)((_ l.)n (2n + 1)]:7 (kR)+ Anhéz)’) — E‘_((— i)” (Zn + l)j,, (kR)+ A,,h,(,z)(kR)).
Ji(k.R) PeCe

Rearranging terms

'n kvR 2 ' 2 H .H k‘R
A{J (kK)o (kR)wﬁ?_hp(kR)J:(_i) (2n+1)( P Ry~ o iy )|
Jiu(k.R) pece PeCe o)




Therefore, A, becomes equal to

Jo(k.R) poc

[ ) 5 )= P (k)
In (kLR) pvce

(ke R) o

L,( )h’(f) (kR) - Poc h,(,z)(kR)]

Jn(k.R) p.Ce

A4, =—(=1)"(2n+1) [ (3.2.16)

Taking (j (k,R)/ j,’,(ch)) as a common factor from both the numerator and

n

denominator gives

PR, )

pece jn (keR)
poc Js (k:R)
pece ja(k.R)

(3.2.17)
WY (kR)-

A, =—(=i)"(2n+1) :
( hf,z)(kR)}

where &, =(o/c,), k= (0/c), and ¢, = \/E/E = m Here, p, is the density of
the medium surrounding the sphere, while p, is the density of the sphere. Similarly,
¢, and c, are the speeds of wave propagation outside and inside the sphere,
respectively. In addition, R is the radius of the sphere, x, is the adiabatic

compressibility of the material, and B is the bulk modulus, which is the reciprocal of

the compressibility.

Letting o, = i(poc/pec. \ju(k.R)/ jn(k.R)) reduces 4, to the following form

U3 06R) iy, 4R

; (3.2.18)
(hf,” (kR)+ z'ocnh,(,z)(kR)j

A, =—(-i) (2n+ 1)
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Substituting for A4, from Eq. (3.2.18) in Eq. (3.2.3) gives the following expression for

the field scattered by a soft sphere:

o (ju (kR) + ict,, j, (kR))

O (r,0,4,1) = ™Y —(=1)"(2n+1) P, (cosy, ) (kr).
=0 (h,‘,” (kR) + ic,, h? (kR))

n

(3.2.19)
Using this result, the scattered AXW pulse can be written as
Wi (r,6,0,1) = (21) j dk ke ™
0
» i (kR)+io, (kR .
<Y (i) (2n+1) U (RR) + ot o (R)) 1O (kr)P, (cos8)P, (cosE).
n=0 (h,&” (kR)+ io, h{?) (kR)j
(3.2.20)

It will be shown that the spectrum of this field can be used to determine the radii,
density of the scattering sphere, as well as, the speed of propagation of sound in the

material of the scatterer.

3.3 SCATTERED FIELD DUE TO INCIDENCE OFF CENTER

In this section, we are interested in providing an expression for the scattered field
when the center of the scattering sphere does not lie on the axis of propagation of the
incident AXW pulse. Following the analysis given in Sec. 2.4, we obtain the same
expression given in Eq. (2.4.9). However, we have to use the expression for the

coefficient 4, given in Eq. (2.3.18) instead of that given in Eq. (2.3.13). Explicitly,

the off-center scattered field can be written as follows




(o (kR) + icv,, /., (KR))
(hP' (kR)+ ict,, h,S”(kR))

Wi (r,0,0,1) = 4n” J.dkkqewe_ka 2.~ @n+1)
0 n=0

n — ! ~
S 1 o0 L B cosB)B (cosEM, (ke sin).

m=0 (n — m) '

(3.3.1)

The spectrum appearing in this expression will be used to show how off-center
incidence can affect the method advocated in this work for characterizing the size and

material of the scattering sphere.

3.4 NUMERICAL RESULTS DUE TO ON-CENTER INCIDENCE

In this section, we discuss the influence of the different parameters characterizing the
scattering sphere on the spectrum of the scattered AXW pulse. The effects of
changing the bandwidth of the AXW pulse and its axicon angle will not be discussed
because their effects are similar to the ones demonstrated for the case the rigid sphere.
Specifically, small axicon angles, corresponding to paraxial incidence, have little
effect on the shape of the spectrum of the scattered field. On the other hand, smaller
values of «a increase the bandwidth and make the dips of the scattered spectrum more
pronounced. However, we consider the effect of changing the detection angle on the
spectrum. In addition, we are going to concentrate on the influences of changing the
medium surrounding the scatterer, the radius and the density of the sphere, and the
speed of sound propagation in the sphere. Using the information gained from
investigating the effects of the various attributes of the scattering spheres on the
spectra of the scattered fields, we propose a method by which we can identify the size

and material of an unknown spherical object.
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3.4.1 Effect of Changing the Scattering Angle

As previously done in Chapter 2, the scattering angle is changed from 0to = in steps
of n/6 where 6 =0 and 0 = are the forward scattering and backscattering angles.
The spectra shown in Figs. (3.1.a-g) are plotted for R=30mm, r=150mm,
a=20mm, g=1 and &=2°. It should be noted that the backscattered spectrum
looks like that of the rigid sphere in the low frequency range up to approximately 35
KHz. However, after 35 KHz, the spectrum becomes different and more spectral-dips
appear. As for the spectrum of the forward scattered field, it is almost the same as that
of the rigid sphere with higher amplitude than the backscattered. The plots in Fig.
(3.1) show that the forward scattered field is smooth and contains no dips. As such,
the measured spectra in the forward direction cannot be used in characterizing the

sphere or determining its material.

3.4.2 Effect of Changing the Medium Surrounding the Sphere

In order to classify a certain material as rigid or soft, it is important to consider the
medium surrounding the scattering object. Fig. (3.2) shows that the backscattered
spectra of two spheres, Mn and Pb, placed in air are identical and they look almost the
same as that of a rigid sphere. On the other hand, comparing Figs. (3.3.a) and (3.3.b)

implies that Mn, and Pb have different backscattered spectra when placed in water. If

we recall the expression (3.18) for 4,, we notice that o, — 0 if the ratio (p,c/p, ¢, )

is very small. In case of air, p, =1-2Kg/m*and ¢=350m/s while for water
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p, =1-0x10° Kg/m* and ¢ =1500 m/s approximately. Thus, the product of poC I8

of the order 10* for air and 10° for water. All the materials of Table (3.1) have

p.c, =10°; thus o, — 0 only in case of air. Therefore, the spheres made of the

materials considered in Table (3.1) are dealt with as rigid or soft spheres depending

on whether the medium surrounding them is air or water, respectively.

3.4.3 The Effect of Changing the Radius of the Sphere

It has been shown in Chapter 2 that more details appear in the backscattered spectrum
if the radius of the sphere gets bigger keeping the pulse width constant. In addition, as
the radius of the sphere becomes bigger, the average spacing of the spectral dips gets
smaller [cf. Fig. (2.9)]. However, it is important to note that the backscattered
spectrum of the soft sphere looks as that of the rigid sphere in the low frequency range
(approximately up to 30 KHz). On the other hand, in the high frequency portion of the
spectrum, we get more pronounced dips. The plots in Figs. (3.2), (3.3.a), and (3.3.b)
show that the average spacing of the spectral dips in the low frequency range is
almost identical for Mn and Pb spheres placed in water. However, the average spacing
between the dips in the high frequency ranges are different. In Figs. (3.4.a-j), we
provide spectra of AXW pulses scattered from spheres of different materials placed in
water. To be able to extract information about the size of the sphere, we need to
generate a “calibration” curve that relates the average spacing of the spectral dips
calculated from the low frequency range to the radii of the spheres. In Fig. (3.5.a), we
provide such calibration curves using the low frequency dip separations for four

materials; specifically, Ti, Mn, Ni, and Mo. This figure shows that the calibration
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curves for the four materials are very close to each other. Consequently, we can start
with an arbitrary calibration curve that does not depend on the material. Such an
arbitrary “radius calibration” curve is shown in Fig. (3.5.b). This curve is done using
the average spacing of the spectral dips obtained from the low frequency range of the
backscattered spectra of three different spheres having radii equal to 30, 40, and 50

mm. The spectra of the scattered fields for these radii are evaluated for » =150 mm ,
a=15mm, p,=1-0x10°Kg/m’, p,6 =7-8x10°Kg/m*, ¢=1500m/s, and
¢, =3000 m/s. The points are plotted using MS Excel and a trend line is drawn to

give the mathematical equation R =1041.1(Ak,, )***" for the calibration curve. Tables

(3.2.a-c) give the estimated radii for different materials as obtained from the
aforementioned relation deduced from Fig. (3.5.b). Table (3.2.a) shows the estimated
radii of the various scattering spheres from the information contained in the spectra of
the different materials. The spectra are originally calculated for a sphere of size
R =25 mm. The estimated radii values, deduced from the simulated spectra when
matched up to the calibration curve [cf. Fig. (3.5.b)], differ from the theoretical ones
by less than 4% for all materials except Al that differs by 11%. This is because the
backscattered spectrum of Aluminum does not contain enough details at low
frequencies to calculate the average spacing of the spectral dips. On the other hand,
Table (3.2.b) shows that for R =35 mm the percentage error decreases to values
below 2% for all materials except Al stays at 7%. Finally, for R =40 mm all the
materials have less than 2% error as shown in Table (3.2.c). The reason for this
decrease in percentage error is due to the fact that as the radius of the sphere increase

with respect to the pulse width more details appear in the entire backscattered
spectrum. In all calculations, we have used ¢ =15mm, ¢g=1 and £ =2".
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3.4.4 Effect of Changing the Density of the Material

The plots in Figs. (3.4.a-j) show the simulated backscattered spectra of different
materials immersed in water for constant radius, and pulse width but at three different
observation distances. From these figures, it is obvious that each material gives
different amplitudes, however, the amplitudes are not only susceptible to the density
of the material but also the radius of the sphere, observation distance, and the power
of the received signal which is proportional to the power of the source. Thus, if we
know the power of the source and the observation distance we can do a calibration
between the density of the material and the amplitude of the backscattered spectrum at

different radii. We propose that the relation between the amplitude and the density
takes the form of A « 1/ \/E , where 4 is the amplitude and p, is the density of the

material of the sphere. In addition, we argue that the amplitude of the first peak in the
spectrum yields the best results. Fig. (3.6) provides calibration curves relating the
amplitudes of the first peaks in the backscattered spectra of four different materials
(Ti, Mn, Ni, and Mo) to their densities; for radii of 30, 35 and 45 mm. The data are
plotted using MS Excel and trend lines are drawn to give the mathematical form of

these curves. For example the equation of the line at R=35mm, r=150mm,

a=15mm, p=1-0x10°Kg/m>, and c, =1500m/s is  given by
1/\/p7(,:—0-0228/1+0-0603. In Fig. (3.7), we present typical calibration curves

between density and amplitude at different observation distances. The relationship
between the amplitude and observation distance, shown in Fig. (3.8), is 4« 1/r as

suggested by the trend lines of the MS Excel.
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3.4.5 The Effect of Changing the Speed of Wave Propagation

In Sec. 3.4.3, we discussed the effect of changing the radius and we pointed out that
varying the speed of wave propagation inside the sphere affects the average spacing
of the spectral dips in the high frequency range. However, from Fig. (3.5.a) we can
deduce that the speed has also a small effect on the low frequency range since the four
curves do not overlap completely. Therefore, we recommend that the average spacing
of the spectral dips of the whole back-scattered spectrum be calculated when doing
the calibration curve for the speed of sound in the material. Fig. (3.9) provides a
typical calibration curve for the average spacing of the spectral dips of the entire
spectrum with the speed of wave propagation inside the sphere for different radii.
Again, we have used the back-scattered spectra of Ti, Mn, Ni, and Mo with the same
values of parameters used in Sec. 3.4.4. We plotted the average spacing of the spectral
dips obtained from the whole spectrum against the speed of propagation inside the
spheres, the best fit of the points suggested the following mathematical equation for

the R=35mm line; c, =35 225(Ak., )+606-45. The average spacing of the

ave

spectral dips increases linearly with the speed of propagation inside the spheres.

3.4.6 Size and Material Identification

We shall consider specific numerical calculations to present a recipe for identifying
the size and material of an unknown sphere using the back-scattered spectra of an
acoustical X-wave. First, we shall find the average spacing of the spectral dips at low

frequencies Ak, (up to 30 KHz), the amplitude of the first peak A4, and the average
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spacing of the spectral dips of the whole spectrum Ak, . Subsequently, we insert the
value Ak,, in the relation obtained from the arbitrary “radius calibration” curve to
obtain an estimate for the radius of the scattering sphere. Knowing A and the
predicted radius, we use the appropriate calibration curve of the density versus the
amplitude to find the density of the material. Similarly, using the predicted radius and
Ak, we find the speed from the appropriate calibration curve. Let us consider the
simulated backscattered spectra of the different materials shown in Figs. (3.4.e-j); one
should recall, in the meanwhile that the four figures given in Figs. (3.4.a-d) have been
used to generate the calibration curves. From the spectra in Figs. (3.4.e-j), we
calculate Ak, , 4, and Ak;, . Using Ak, and the “radius calibration” curve provided
in Fig. (3.5.b), the radii of the spheres are found to be about 35 mm as shown in Table
(3.2.b). Estimated values agree with theoretical ones with a variation of +2% for all
materials except Al. Then, we find the density of the materials using 4 and the
calibration curve of the density with the amplitude of the first peak at R =35 mm that
is given in Fig. (3.6). The results are tabulated in Table (3.3) and they agree with the
theoretical values within a margin of error of +5% for all materials except Al, which
has a percentage error of 9%. Finally, we find the speed of the sound in the material
of the sphere using Ak,, with the calibration curve for the speed versus the average
spacing of the spectral dips for the entire spectrum given in Fig. (3.9) at R =35 mm.
The results are shown in Table (3.4) and they agree with the theoretical values within

an error margin of 2% for all materials except Pb that has an error of 4.6%.
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3.5 NUMERICAL RESULTS DUE TO INCIDENCE OFF CENTER

We already know from Sec. 2.6 that even if the pulse is incident off center, and
detected at an angle 6 = ((n/2)+cos" (x, /r)), we can still have enough details in the

backscattered spectrum from which we can extract information about the spheres

We shall consider the same example mentioned in Sec. 3.4.6 but in this case both the

source and detector are displaced for two different distances x, =15mm and
x, =45mm; i.e. the pulse is once displaced from the center but is still inside the

sphere then the peak of the pulse is assumed to pass outside the sphere. The obtained

data are tabulated at x, =15 mm in Tables (3.5.a), (3.6.a) and (3.7.a), for the radius,

for the density and for the speed, respectively. While Tables (3.5.b), (3.6.b), (3.7.b)
provide estimates of the radius, density and speed, respectively, when the peak of the

X-wave is displaced at x, =45 mm . Comparing Tables (3.5.a) and (3.5.b), we find

that the accuracy in estimating the radius, using Fig. (3.5.b) is almost the same,
approximately 2% for all materials except for Al that increased slightly from 7% to
8%. Thus, for a pulse incident on center or off center but inside the sphere, the
accuracy of estimating the radius is almost the same. On the other hand, the error
increases to 4%, for all materials except Al that has an error of 12%, when the pulse is
incident outside the sphere. As for the density and the speed, the accuracy of the
results remains the same independent of whether the pulse is incident on center or off

center for both cases when the peak passes through or outside the sphere.




3.6 CONCLUDING REMARKS

In this chapter, we studied the scattering of AXW by soft spheres. We showed that in
order to identify the material as soft or rigid, we have to consider the medium
surrounding the scatterers. In addition, we found that the backscattered spectrum is
function of the observation distance and the power of the detected signal, which is
proportional to that of the source. Thus, if we have a source of known power, we can
identify the size of the scattering sphere from an arbitrary calibration curve relating
the low frequency average spacing of the spectral dips to the radius of the sphere.
Subsequently, we can identify the material using the amplitude of the first peak in the
spectra and the average spacing of the spectral dips in the whole spectrum. These two
pieces of information can help us determine the density and the wave speed of the
material of the scattering sphere. We found that our evaluations remain valid with
acceptable estimates for the size and material of the scatterer if the pulse is incident

off center.
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Figure 3.1.a Backscattered spectrum by a soft sphere for R = 30 mm ,
r=150mm, p,=1-0x10’Kg/m*, ¢=1500m/s,

¢, =3000m/s, p, =7-8x10° Kg/m*>, a=20mm and
0=7 due to an AXW pulse incident on center.
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Figure 3.1.b Scattered spectrum by a soft sphere for R=30mm,
»=150mm, c=1500m/s, p,=1-0x10*Kg/m*,

¢, =3000m/s, p, =7-8x10° Kg/m’, a=20mm and
8=5n/6 due to an AXW pulse incident on center.
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Figure 3.1.c Scattered spectrum by a soft sphere for R =30mm,

r=150mm, ¢=1500m/s, p,=1.0x10°Kg/m®,
¢, =3000m/s, p, =7.8x10° Kg/m*, a=20mm, and
0=2m/3 due to an AXW pulse incident on center.
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Figure 3.1.d Scattered spectrum by a soft sphere for R =30mm,

r=150mm, ¢=1500m/s, p,=1.0x10°Kg/m*,
¢, =3000m/s, p, =7.8x10* Kg/m*, a=20mm, and
8=m/2 due to an AXW pulse incident on center.
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Figure 3.1.e Scattered spectrum by a soft sphere for R =30mm,

r=150mm, c¢=1500m/s, p,=1-0x10°Kg/m’,
c, =3000m/s, p, = 7-8x10* Kg/m*, a=20mm, and
8=m/3 due to an AXW pulse incident on center.
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Figure 3.1.f Scattered spectrum by a soft sphere for R =30mm,
r=150mm, c=1500m/s, p,=1-0x10’Kg/m’,

¢, =3000m/s, p, = 7-8x10° Kg/m’, a =20 mm, and
8=m/6 due to an AXW pulse incident on center.
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Figure 3.1.g Forward scattered spectrum by a soft sphere for
R=30mm, r=150mm, p,=1-0x10°Kg/m*

c=1500m/s, c,=3000m/s, p,=7-8x10°Kg/m?®,
a=20mm, and 0=0 due to an AXW pulse incident on
center.
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Figure 3.2
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Backscattered spectra by Mn and Pb spheres in air for
R=35mm, r=150mm, a=15mm, ¢=350m/s, and

po=1-2Kg/m’due to an AXW pulse incident on
0

center.
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Figure 3.3.a Backscattered spectra by a Mn sphere placed in air and
water for R=35mm, r=150mm, c, =2824-64 m/s,

p, =7-47x10°Kg/m®, and a=15mm due to an
AXW pulse incident on center.
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Figure 3.3.b Backscattered spectra by a Pb sphere placed in air and
water for R=35mm, r=150mm, ¢, =1947-28 m/s,

p, =1-13x10* Kg/m3 ,and a =15mm due to an AXW
pulse incident on center.
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Figure 3.4.a Backscattered spectra by a Ti sphere for R =35mm,
p, =1-0x10°Kg/m*, ¢=1500m/s, c, =4827 40

m/s, p, =4-51x10° Kg/m*, a=15mm, and different
values of 7, due to an AXW pulse incident on center.
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Figure 3.4.b Backscattered spectra by a Mn sphere for R =35mm,
p, =1-0x10° Kg/m3 , ¢=1500m/s, ¢, =2824-64

m/s, p, =7-47x10° Kg/m® , a=15mm, and different
values of r, due to an AXW pulse incident on center.

86




—r=150 mm
—r=160 mm

Abs(spectrum)

Figure 3.4.c Backscattered spectra by a Ni sphere for R =35mm,
po =1-0x10°Kg/m*, ¢=1500m/s, c, =4568-96

m/s, p, =8-91x10° Kg/m® , a=15mm, and different
values of r, due to an AXW pulse incident on center.
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Figure 3.4.d Backscattered spectra by a Mo sphere for R =35mm,
po =1-0x10°Kg/m*, ¢=1500m/s, ¢, =5163-66

m/s, p, =1-02x10* Kg/m?, @ =15mm, and different
values of 7, due to an AXW pulse incident on center.
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Figure 3.4.e Backscattered spectra by an Al sphere for R =35mm,
po =1-0x10°Kg/m*, ¢=1500m/s, c, =5171-14
m/s, p, =2-7x10* Kg/m*, a=15mm, and different
values of r, due to an AXW pulse incident on center.
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Figure 3.4.f Backscattered spectra by a Cr sphere for R =35mm,
po =1-0x10°Kg/m*, ¢=1500m/s, c, =5141-93
m/s, p, =7-19x10° Kg/m3 , a=15mm, and different
values of », due to an AXW pulse incident on center.
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Figure 3.4.g Backscattered spectra by a Cu sphere for R =35mm,
p, =1-0x10°Kg/m*, ¢=1500m/s, ¢, =3916-83

m/s, p, =8-93x10° Kg/m*, a =15mm, and different
values of r, due to an AXW pulse incident on center.
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Figure 3.4.h Backscattered spectra by a Fe sphere for R =35mm,
p, =1-0x10°Kg/m*, ¢=1500m/s, c, =4624-39
m/s, p, =7-87x10° Kg/m*, a=15mm, and different
values of r, due to an AXW pulse incident on center.
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Figure 3.4.j Backscattered spectra by an Ag sphere for R =35mm,
p, =1-0x10°Kg/m’>, ¢=1500m/s, c, =3096-85

m/s, p, =1-05x10* Kg/m*, a=15mm, and different
values of », due to an AXW pulse incident on center.
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Figure 3.4.i Backscattered spectra by a Pb sphere for R =35mm,
po =1-0x10°Kg/m*, ¢=1500m/s, c, =1947-28

m/s, p, =1-13x10* Kg/m*, a=15mm, and different
values of r, due to an AXW pulse incident on center.

93




45 -
43 -

41

39 -
£ 37 -

g 35

31

29

27
25

< 33

20

Figure 3.5.a

T T T

30 40 50 60
Average Spacing of the spectral dips

Calibration curves relating the radius of the sphere to
the average spacing of the spectral dips by different
materials: Ti, Mn, Ni, and Mo, immersed in water for
r=150mm, a=15mm.
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Figure 3.5.b

T T l T T 1

25 30 35 40 45 50
Average spacing of the spectral dips

Calibration curve between the radius of the sphere and
average spacing of the spectral dips of the backscattered

spectrum for r=150mm, p0=l»0x103Kg/m3,
c=1500m/s, p, =7-8x10°Kg/m’, ¢, =3000 m/s,
and a =15 mm.
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Figure 3.6  Calibration curves relating the density of the material to

the amplitude of the backscattered spectrum for
different radii, r=150mm, p,= 1-0x10° Kg/m3 R
¢=1500m/s, and a=15mm.
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Figure 3.7  Calibration curves relating the density of the material to
the amplitude of the backscattered spectrum for
different  observation  distances, R=35mm,
po =1-0x10° Kg/m*, ¢=1500m/s, and a =15 mm.
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Figure 3.8  Calibration curves relating the amplitude of the
backscattered spectrum to the observation distance for
different materials: Ti, Mn, Ni, and Mo, immersed in
water for R =35 mm, and a =15 mm.

99




Speed of wave propagation inside the

sphere (m/s)

3000 -

2500 -

40mm 35mm 30 mm
A L

-
-
-

40 mm 35mm 30 mm

2000
20

Figure 3.9

70 120
Average sapcing of the spectral dips

Calibration curves relating the speed of wave
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of the spectral dips of the backscattered spectrum for
different radii, »=150mm, p,=1-0x10’Kg/m®,

¢=1500 m/s, and a=15mm.
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Bulk Modulus (B) | Density (p,) c.=+/Blp,
Material
10" N/m? 10° Kg/m® (m/s)
Titanium 1.051 4.51 4827.40
Manganese 0.596 7.47 2824.64
Nickel 1.860 8.91 4568.96
Molybdenum 2.725 10.22 5163.66
Aluminum 0.722 2.70 5171.14
Chromium 1.901 7.19 5141.93
Copper 1.370 8.93 3916.83
Iron 1.683 7.87 4624.39
Lead 0.430 11.34 1947.28
Silver 1.007 10.50 3096.85
Table 3.1 Tabulated bulk modulus, density, and the calculated

speed of sound propagation in different materials [86].
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Average Spacing | Estimated Radius | Actual Radius
Material % Error
of Spectral Dips (mm) (mm)
Aluminum 59.00 22.25 25.00 11.00
Chromium 54.50 24.09 25.00 3.64
Copper 53.50 24.55 25.00 1.81
Iron 54.00 24.32 25.00 2.73
Lead 53.50 24.55 25.00 1.81
Silver 53.00 24.78 25.00 0.89
Table 3.2.a  Comparison between the estimated and actual radii of

the spheres as have been calculated from the average

spacing of the

spectral dips of the simulated

backscattered spectra obtained for different materials
due to incidence on center.
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Average Spacing | Estimated Radius | Actual Radius
Material % Error
of Spectral Dips (mm) (mm)
Aluminum 40.50 32.45 35.00 7.29
Chromium 37.50 35.06 35.00 0.17
Copper 37.25 35.29 35.00 0.83
Iron 37.50 35.06 35.00 0.17
Lead 37.50 35.06 35.00 0.17
Silver 37.00 35.53 35.00 1.51

Table 3.2.b Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the spectral dips of the simulated
backscattered spectra obtained for different materials
due to incidence on center.
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Average Spacing | Estimated Radius | Actual Radius
Material % Error
of Spectral Dips (mm) (mm)
Aluminum 32.50 4047 40.00 1.17
Chromium 33.00 39.85 40.00 0.37
Copper 32.50 40.47 40.00 1.17
Iron 32.50 40.47 40.00 1.17
Lead 32.50 40.47 40.00 1.17
Silver 32.50 40.47 40.00 1.17
Table 3.2.c  Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the spectral dips of the simulated
backscattered spectra obtained for different materials
due to incidence on center.
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Amplitude of the | Estimated Density | Actual Density
Material % Error
spectrum (ke/m’) (kg/m’)
Aluminum 1.7587 2.45x10° 2.70x10° 9.2
Chromium 2.1334 7.36x10° 7.19%x10° 23
Copper 2.1817 8.97x10° 8.93x10° 0.5
Iron 2.1546 8.01x10’ 7.87x10° 1.7
Lead 22216 1.07x10* 1.13x10* 4.9
Silver 2.2120 1.03x10* 1.05x10* 1.9
Table 3.3 Comparison between the estimated and actual densities

of the spheres for R =35 mm, as have been calculated
from the amplitudes of the simulated backscattered
spectra obtained for different materials due to incidence

on center.
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Average Spacing | Estimated Speed | Actual Speed
Material % Error
of Spectral Dips (m/s) (m/s)
Aluminum 128.67 5138.85 5171.14 0.62
Chromium 129.33 5162.10 5141.93 0.39
Copper 94.62 3939.44 3916.83 0.58
Iron 114.50 4639.71 4624.39 0.33
Lead 40.62 2037.29 1947.28 4.62
Silver 72.25 3151.46 3096.85 1.76
Table 3.4 Comparison between the estimated and actual speeds of

propagation inside the spheres for R =35mm, as have
been calculated from the average spacing of the spectral
dips of the simulated backscattered spectra obtained for
different materials due to incidence on center.
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Average Spacing | Estimated Radius | Actual Radius
Material % Error
of Spectral Dips (mm) (mm)
Aluminum 41.00 32.06 35.00 8.41
Chromium 38.00 34.59 35.00 1.16
Copper 37.50 35.06 35.00 0.17
Iron 37.75 34.82 35.00 0.50
Lead 38.00 34.59 35.00 1.16
Silver 37.00 35.53 35.00 1.51
Table 3.5.a  Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the spectral dips of the backscattered spectra
obtained for different materials due to incidence off
center by a distance x =15 mm.
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Average Spacing | Estimated Radius | Actual Radius
Material % Error
of Spectral Dips (mm) (mm)
Aluminum 43.00 30.56 35.00 12.68
Chromium 39.00 33.70 35.00 3.70
Copper 38.50 34.14 35.00 2.45
Iron 39.00 33.70 35.00 3.70
Lead 39.50 33.28 35.00 4.92
Silver 38.50 34.14 35.00 245

Table 3.5.b  Comparison between the estimated and actual radii of

the spheres as have been calculated from the average
spacing of the spectral dips of the simulated
backscattered spectra obtained for different materials
due to incidence off center by a distance x =45mm.
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Amplitude of the | Estimated Density | Actual Density
Material % Error
spectrum Kg/m’) (Kg/m’)

Aluminum 1.7601 2.46x10° 2.70x10° 8.9
Chromium 2.1338 7.37x10° 7.19x10° 25
Copper 2.1819 8.98x10° 8.93x10° 0.6
Iron 2.1549 8.02x10° 7.87x10° 1.91
Lead 2.2217 1.07x10* 1.13x10* 6.0
Silver 22121 1.03x10* 1.05x10* 1.9

Table 3.6.a Comparison between the estimated and actual densities

of the spheres for R=35mm as have been calculated
from the amplitudes of the simulated backscattered
spectra obtained for different materials due to incidence
off center by a distance x=15mm.
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Amplitude of the | Estimated Density | Actual Density
Material % Error
spectrum (kg/m’) (ke/m’)
Aluminum 1.7719 2.52x10° 2.70x10° 6.7
Chromium 2.1373 7.47x10° 7.19x10° 3.9
Copper 2.1841 9.07x10° 8.93x10° 1.6
Iron 2.1579 8.12x10° 7.87x10° 32
Lead 22225 1.08x10* 1.13x10* 4.4
Silver 22137 1.03x10* 1.05x10* L9
Table 3.6.b  Comparison between the estimated and actual densities

of the spheres for R=35mm as have been calculated
from the amplitudes of the simulated backscattered
spectra obtained for different materials due to incidence
off center by a distance x =45mm.
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Average Spacing | Estimated Speed | Actual Speed
Material % Error
of Spectral Dips (m/s) (m/s)
Aluminum 128.83 5144.60 5171.14 0.51
Chromium 129.33 5162.22 5141.93 0.39
Copper 94.62 3939.62 3916.83 0.58
Iron 114.67 4645.58 4624.39 0.46
Lead 40.62 2037.47 1947.28 4.63
Silver 72.12 3147.05 3096.85 1.62
Table 3.7.a  Comparison between the estimated and actual speeds of

propagation inside the spheres for R =35mm as have
been calculated from the average spacing of the spectral
dips of the backscattered spectra obtained for different
materials due to incidence off center by a distance
x=15mm.
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Average Spacing | Estimated Speed | Actual Speed
Material % Error
of Spectral Dips | (m/s) (m/s)
Aluminum | 129.33 5162.22 5171.14 0.17
Chromium | 129.50 5168.09 5141.93 0.51
Copper 94.62 3939.62 3916.83 0.58
Iron 114.67 4645.58 4624.39 0.46
Lead 40.62 2037.47 1947.28 4.63
Silver 72.12 3147.05 3096.85 1.62

Table 3.7.b  Comparison between the estimated and actual speeds of
propagation inside the spheres for R =35mm as have
been calculated from the average spacing of the spectral
dips of the backscattered spectra obtained for different
materials due to incidence off center by a distance

x=45mm.
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CHAPTER 4

SCATTERING OF ELECTROMAGNETIC X-WAVESBY
A PERFECTLY CONDUCTING SPHER

4.1 INTRODUCTION

In the previous two chapters, we studied the scattering of acoustic X-waves by rigid
and soft sphere. In this chapter, we shall deal with the scattering of transverse electric
(TE) electromagnetic X-wave (EMXW) by a rigid conducting sphere. We start by
assuming a plane wave incident on a rigid conducting sphere such that the wave is
propagating in the z-direction. The electric and magnetic field components are
directed along the x-axis and y-axis, respectively, as shown in F ig. (4.1). X-waves are
composed as superpositions over plane waves propagating along a direction tilted at a
fixed angle relative to the axis of propagation such that the associated wave vectors
form a conic surface. In order to study the scattering of X-waves, we need to derive
first expressions for the scattering of an electromagnetic plane wave incident at a
tilted angle relative to the z-axis and then integrate over the azimuthal angular

direction to include all vectors lying on the spectral cone.

4.2 SCATTERING OF A PLANE WAVE BY A CONDUCTING
SPHERE

Starting with a plane wave traveling in the z-direction, we use appropriate counter
clockwise (CCW) rotation matrices [87] to rotate the coordinate system around the x-
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direction by an angle ¢"then about the new z-axis, namely z’, by an angle 6,. The

indicated rotations are shown in Fig. (2). The £, E ,and H vectors before rotation

would have the following forms:

k=i k (4.2.1)
E=ii Ee™" (4.2.2)
H=ii,He™*’ (4.2.3)

The rotation CCW rotation matrix would be as follows:

cosd’ sing’ 0 1 0 0
2'X =|-sin¢g’ cos¢’ 0|0 cosO, sin0,
0 0 11{0 -sinB, cosH,

The rotation angle ¢' is related to the azimuthal angle ¢, of the k vector in the new

coordinate system as follows:

o' =(n/2)—¢,. (4.2.4)
Therefore,

cos’ =cos((n/2)- ¢, )= cos(n/2)cos ¢, +sin(n/2)sing, =sin, , (4.2.5)
and

sin ¢’ =sin((n/2)— ¢, )= sin(n/2)cos ¢, —cos(n/2)sin¢, = cos e, . (4.2.6)

Using Eqgs. (4.2.5) and (4.2.6) in the previously mentioned rotation matrix yields

sing, cosd, O] 1 0 0
Z'X =|-cos¢, sing, 00 cos®, sind,
0 0 110 —sinB, cosO,
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Therefore, the wave vector after rotation would look like

0
k"=2'X] 0| =k{@,sin0, cos¢, +ii,sin0, sin, +ii, cos0, ). (4.2.7)
k

Similarly, the incident electric field after rotation would be

E'=7'X| 0 |=Ee ™ (i, sing, —ii,cosp, ), (4.2.8)

and the rotated incident magnetic field would be

0
H"=27'X| He ™" :Hoe”’g'F(ﬁx cos ¢, cosO, +1u,sing, cosd, —ii_sin 0,). (429
0

In order to be sure that the rotated results are correct we should verify that £”-k" =0

and H"-k"=0. Moreover, E”-F”:krcosy, [cf. section 2.2] where cosy is given by
Eq. (2.2.5). Along these lines, using Egs. (4.2.7) and (4.2.8)
E"-k"=E,e™ (sin0, sind, cosd, —sin0, sing, cosd, )=0.

Similarly, using Eqs. (4.2.7) and (4.2.9)

H" k"= Hoe'”“i:(sin 0, cosB, cos® ¢, +sin6, cos, sin’ ¢, —sin@cosé): 0.

Since F”(r,e,d)) =rsinBcosd +rsinOsin ¢ +7cosB, hence,

k"7 = kr(sin©, cos ¢, sin O cos ¢ + sin 0, sin ¢, sin Osin ¢ + cosO, cosO)
= kr(sin©, sinOcos(d, — )+ cos 0, cosb).




By verifying the above three relations we established that the incident plane wave
components are rotated to form a family of plane waves having their wave vectors

lying on a conic surface with a half apex angle 0, .

We calculate the incident electric field components of Eq. (4.2.8) in spherical

coordinates, viz.,

E, =E sinfcos¢+ E, sinOsin ¢+ E! cos 0
= Eye™"*(sin 0 cos ¢ sin ¢, —sin Osin pcos, )

= E,e™" " sin Osin(¢, — ¢), (4.2.10)

Ey = E} cosOcos+ E| cosOsin — E! sin 0
= Eje """ (cosBcoshcosd, —cosOsin$cos ¢, )

= EOGWCOSV cos@sin(q),( —(b), 4.2.11
and

E, =—E,sin¢+E, cos¢ = Ee ™" (sin¢sin ¢, —cospcosg, )

_ __Eoe—l'krc()SY COS(d)k _ ¢)- (4-2_12)

From Chapter 2, [cf. Egs. (2.3.2) and (2.3.3)], we have

o

e =3 (—i)"(2n+1)j, (kr)P, (cosy) (4.2.13)

n=0

and

) P (cosB)P" (cos, Jeos(m(p, —9)), (4.2.14)

X

X (n“m
PM(COSY)_ ng (n+m

m=0

where €, =1 for m=0, or g, =2 otherwise.

Considering that
O treosy O _itr(cosse in 0si - o o ikrcos
e ikr cosy — e ikr(cos §cos B +sin Osin 0 cos(p,—¢)) — ikr Slnek Sm@sm(d),{ —¢')(3 ikrcosy
00, 00,

116




Therefore,

1 a e —ikrcosy

T 4.2.15
ikrsin®, 00, ( )

sin Bsin(q)k - ¢)e—f/fl‘cosy _

Using Egs. (4.2.13) and (4.2.15) in Egs. (4.2.10-12), the spherical components of the

incident electric field becomes

i E YR _ oP, (cosy)
E =—2—%(-i)'2n+1)j, (kr) ", 2.
= iirsing, 2 @ ()= (4.2.16)
E} = E, cosBsin(¢ i 2n+1 )j, (kr)P, (cosy), (4.2.17)
n=0
El =—E, cos(, —0)> (- i)' (2n+1);, (k)P (cosy). 4.2.18)
n=0

Analogously, we can derive the magnetic field components of Eq. (4.2.9) in spherical
coordinates
H. = HsinBcos¢+ H, sinBsin ¢+ H cosd

= Hye"*(cos 0, cos ¢, sin 6 cosd +cosO, sin ¢, sinOsinp —cosOsin 0, )

= H,e ™" (cos 0, sinOcos(¢p, —)—sin 0, coso).

But
e~l/rrco>*/ — a e/lcr(sinesine,l cos(d;,‘ —¢)+cosﬁcosek)
ae/" ae/{
= —ikr(sin©cos 0, cos(9, —¢)—cosOsinO, Je .
Hence,

(sinBcosh, cos(dp, —d)—cosOsin®, Je ™7 = —~]—ie"""°°s".

42.19
ikr 80, (*2.19)
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Using Eq. (4.2.19) in the expression for the radial component of the incident magnetic

field gives
Hy & w , 0P, (cosy)
H =——2% (~i)'2n+1)j, (kr)—— 4.2.20
, ik,,;( i)' (2n+1);, (kr) %, (4.2.20)

As for the magnetic field component in the 6 direction

Hgy = H cosBcosd+ H, cosOsin¢ — H, sin 6

= H,e ™" (cos®, cosd, cosOcos +cosh, sind, cosOsin p +sinOsin 6, )

@0

= H,(cos®cos®, cos(o, —~¢)+sin0sin®, )" (=)' (2n+1)j, (kr)P, (cosy),

n=0
(42.21)
and the magnetic field component in the azimuthal direction would be
H,=-H sin¢+H cosd
= H,e ™ (~cos0, cosd, sin+cos@, sind, cos)
 H,c030, sin(6, )3 (1) Cn+1)j, (k)P cos)
n=0
(42.22)

Following the procedure described in Chapter 10 of Ref. 80, The TE and TM

potentials ¥ and 4. for the incident field can be calculated as follows:

B=— [a—;+k2}A,’; (42.23)
iope | Or

Substituting Eq. (4.2.16) in (4.2.23) and letting J, (k)= (kr), (kr). we obtain

Ey &y s \OP(cosy) 1 [az ),
———— > (i) 2n+1)J, (& g = —+k” |4
i(kr) sin@, ;( ) (n+1)J, i) o0, iope | or’ v ’

Using the fact that
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we obtain

E, & iy (2n+1)

4, =— ——
osin®, 7= n(n + 1)) o,

(4.2.24)

Similarly, we can derive F from H'

je— (5; +k2]F,f (4.2.25)
iope | or-

Substituting for H! given in Eq. (4.2.20)

8

"n+1)J, (kr )ap"(COSY):_l [a—;+k2JF,‘.
00 iope |\ Or”

k

Solving for F, we obtain

(4.2.26)

s

2n+1) P, (cosy)
] kr) =
wn; n(n+1) 7.0k7) o0,

where n=,/n/¢ .

We shall deduce the scattered TE and TM potentials from the incident ones by

assuming that they should have the same form but with different series coefficients.

Zb e M (4.2.27)
wsin O, =0 ob,
o B O )_LI(COSY) 42.28)
(Dn n=0 ” ! aek
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Both field potentials have the same form as the incident ones except that the spherical
Bessel function .}” (kr)has been replaced by spherical Hankel function f],(,z)(kr) to

represent the spherical waves traveling away from the scatterer.

The series coefficients have to be calculated from the boundary conditions. For the
case of scattering by a perfectly conducting sphere, there are two boundary conditions

that should be satisfied:

E/(r=R0<06<m0<$p<2n)=0,and (4.2.29a)

El

r=R0<0<7m,0<¢<2m)=0 (4.2.29b
o

where £’ stands for the total field.

The total field components could be calculated using the following expressions:

. (6' +k2JA,f, (4.2.30a)

. 2
ioue | or°

Eé:_l 104 1 1 aF", (4.2.30b)
ioue » Orod g rsind O

| 1 04 110F

E, = : + : (4.2.30¢)
iope rsin® orodp er 00

= (a; +k2jF,,’, (4.2.30d)
iopue \ Or”

gt oA 11O (4.2.30¢)

6 T . +- 5
LLrsin® o0  iwpe r Orod
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, 1104 1 1 &’F!
H=——=""t4 : (4.2.301)

wr 80  iope rsind ooy

where
A =4+ 4 = i( J, (kr)+ b, H (kr ))%C—’S—Y) (4.2.31a)
® sin ek n=0 ad),(
Fo=F v B == 2S00 (k) e, 19 (ke ))M (4.2.31b)
wn =0 00,

Using Eq. (4.2.30b) with the boundary condition given by Eq. (4.2.29a), we get

I 104, 1 1 0oF

)

iope r Oroo g rsind o

Therefore,
! i( ‘(kR)+ b, B (kR)jm
i(ops R wsinB, 0004,

L i(anjn (kR)+ cnﬁljz)(kR))M _
one Rsin O »=0 50,50

Here, a, =(~i)' (2n+1)/n(n+1). The boundary condition of Eq. (4.2.29a) is satisfied

provided that

/7 n (kR)+ b H (kR) = O
and

a,J (kR)+c,H®(kR)=0.

These conditions imply that




b= o 4232
a(n+1) 70 (kR) (4.2.32a)
and
_ v @n+1) J(kR)
K n(n+1) HO(kR) (4.2.32b)

4.3 SCATTERING OF X-WAVES WAVE BY A CONDUCTING
SPHERE

Similarly to the acoustic case, we construct the X-wave solution as a superposition of

the following form:

2n

E(F,1)= [dk [db, _J‘dekk“” sin0,e5(0, ~E)e E(k). 43.1)
0 0 0

where m:!k]c. For the incident field it can be directly shown that the above
superposition yields

E =E,=0.

Therefore, the incident X-wave is polarized in the transverse ¢ -direction, specifically,

%] o

E,=-E, | dkHJ' do, [d k" sin0,e e 5(0, —E)cos(d, — )Y (i)' (2n+1)j, (kr)
0 0

0 n=0

0

* D

m=0

n—m)!

—

P (cos&)P" (cos©)cos(m(, — b).

—

n+m)!

(4.3.2)
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The integration over ¢, gives zero values for m#1, and the integration over 6, picks

the value 0, =& . Therefore, the incident electric field becomes

Ej =—E,2nsin& fdkk“*z sin@,ee™8(0, —&)cos(dp, —¢)

0

Z "(2n+1)j, (k)P (cosB)P! (cos&). (4.3.3)

The scattered field components would acquire the following form:

Zb JE cosy)

- Ujdszdm njdekkw sinB,e™8(0, — &
0 0 0

zk sin@, =0 09,
. [m__a'H ), f},(,”(kr)].
or’

(4.3.4)

Carrying out the integration over 6,, we obtain

) 27 25} 270 (2) A —
Er\. _ 5 J‘dk J'dd)kkwﬂe#(uzb”[kz m k}" ngm ”1 )
0 n=0 2

io or~ m=0 (n+m)'

x sin (m(d) ¢)P" (cos&)P" (cos 6))
(4.3.5)

The integration over ¢, yields E; =0. As for the component in the O -direction

E} = ’Jdk:qu)k [d0, k" sin6,e5(0), —5)5
0 0 kr

w 72 (1) = "
an aHn (kl ) ng (}’l - m)’ (_ m)sin(m(¢k _ (1)))101;" (COS@k )aP,, (COSG)

isin®, "= or 0 (n+m) 0

5 e, 100) £, L= (n)sin(m(o, - 6)2 cos e)—(i)

sin O #=0 m=0 (n + m)!

(4.3.6)
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The inegration over ¢, gives E; =0. As for the E, component

- J.dk__‘.dd)k ‘JdekkLl+2 Sine/ceukus(ek - &)ﬁ
0 0 0

)'( )cos(m( )P (cos0, )P " (cos 0)

Z bn

5.

isin©, sin ©7=0 or m)!
- i c, PA],(,Z) (kr)i €, (n — m)! cos(m(d)k _ ¢)) or, (0059/( ) oP, (005 9) '
n=0 m=0 (]’] + ’71)! aek ae

(4.3.7)

Integrating over 0, then ¢, reduces the above expression to the following form

E; ~2nsm§J‘dkk“” e OZC H(kr)P! (cosE)P! (cosb) (4.3.8)

Similarly, one can calculate the scattered magnetic field components; viz.,

o 2 » )
H = J.dd)k fde k2 sing,e™ « X c, [w + H (kr )J
usn FO 0’ = or’

XZ ) (n—m) oP" (cosh,)

Z " (nrm) 08,

P (cos8)cos(m(d, —d))

(4.3.9)
Performing the integrations over 6, then ¢, gives
| e e [ OPH (K )
H: _iznogine [dkkr e e, # H®(kr) |P (cosE)P (cos).
n 0 n=0 a}"
(4.3.10)
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Hy = [dk [db, [d0,5 sin6,e (0, —&)
0 0 0

8
—~—

n—m)

| AP (), (" Jeos(m(o, —9))P"(cos6, )P (cos0)

OUrsing, sin §#=0 w0 (n+m)!
2] 3 (2) @D _ m m
 Ek ch OH, (kr)zgm (n m)! cos(m(6, —)) oP." (cos0, ) or! (cos6) .
io’uenr =0 or  m=0 (n + m)! a0, o0
The integration over 6, and ¢, yields
=2 g E_,c]'dkk“”e"’“’ lic wﬂ(cos&)}"(cose) (4.3.11)
0 T]]” ; k prs n ar n n . R

Following similar steps, the ¢ component of the X-wave gives

H =0. (4.2.44)

4.4 CONCLUDING REMARKS

In this chapter, a Mie series approach to the evaluation of the scattered X-wave from a
conducting sphere has been used. This has been done by determining first the
scattered field of a plane wave incident in a direction tilted at an angle 0, with the z-
axis. Subsequently, the azimuthal superposition over all plane waves making the same
angle with the z-axis composes the incident X-wave. The scattered field can then be
found by evaluating the azimuthal superposition of the scattered fields. The extension
of this approach can be easily extended to the case of dielectric spheres. Further work

should be undertaken to show that an approach analogous to the one used in Chapter 3

could be employed to determine the size and material of dielectric scatterers.




Y
<

Figure 4.1 Electromagnetic plane wave incident on a perfectly
conducting sphere.
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Figure 4.2 Rotations around the x and z' axes.
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CHAPTER 5

CONCLUSION

In this work, we investigated thoroughly the scattering of X waves by spherical
objects. We studied the scattering of acoustic X-waves from rigid and soft spheres. In
both cases, we considered the possibilities that the X-wave is incident with its axis
passing through the center of the sphere and off center. We extended our analysis to
the case of an electromagnetic X-wave incident on a perfectly conducting sphere.
From the analysis of the shapes of the spectra of the scattered fields, we suggested a
new identification method by which one can specify the radii and materials of

unknown spherical scatterers.

In Chapter 2, we derived the expression for the incident AXW from the scalar wave
equation, and then we derived an expression for the scattered field due to on-center
Iincidence. In addition, we also obtained the expression for the scattered pulse in case
of off-center incidence. We investigated the effect of changing the parameters and
variables appearing in the spectrum of the scattered pulse, which are 0, ¢, £, R and
r determining the scattering angle, the pulse width, the apex angle of the spectral
cone, the radius of the scattering sphere, and the observation distance, respectively.
From our study to the effect of changing the scattered angle, we deduced that the
backscattered spectrum is more useful for identification because it contains a number

of peaks and dips that reflect specific information about the scattering spheres.
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Regarding the effect of the pulse width, we verified that although the smaller the
value of a the more details we can get from the backscattered spectrum, possible
problems might arise because reducing the pulse width by more than five times the
sphere radius causes the series solution to diverge. As for our study to the effect of
changing the apex angle, we realized that, physically, the condition £ <20°
corresponds to operating within a paraxial regime, where all plane wave spectral
components are coming in at small angle relative to the axis of propagation. Studying
the effect of changing the radius of the sphere showed that as the radius of the sphere
increases, the average spacing between the spectral dips decreases. Thus, following
the method described by Power et al. [74], we suggested doing a calibration curve
relating the radius of the scattering sphere to the average spacing of the dips. Such a
calibration curve can be used in determining the radii of unknown spheres. Moreover,
our investigation for the effect of changing the observation distance demonstrated that

the pulse decays as (1/r). Finally, we considered the case of off-center incidence. We

obtained good results for shifts outside the sphere for up to about 40% of the
observation distance. It appears that within this range of off-center shifts, we only
have a slight shift in the positions of the peaks with minimal decrease in the
amplitudes. However, for larger distances, the shift in peak positions increases

causing high percentage error in the calculated radii of the spheres.

In Chapter 3, we considered the scattering of AXW by soft spheres. We used the same
expressions for the incident pulse. The scattered fields were derived in a series form
where the coefficients appearing in the series solution were derived using the

appropriate boundary conditions. We verified that this coefficient is function of the
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density of the surrounding medium and the material, and the speed of sound waves in
the medium and the scattering sphere. As done in Chapter 2, we studied the effect of
changing the scattering angle on the backscattered spectrum, and showed that the
backscattered spectrum contains a number of peaks and dips that carry information
describing the scattering material. Hence, it is more appropriate in the identification
and characterization of the material of the scatterer. In addition, we established that
the medium surrounding the sphere is the main reason for classifying the sphere as

rigid or soft, depending on the ratio (p,c/p,c,). For all the materials considered in

our study, they are considered as soft spheres if immersed in water, but as rigid if
placed in air. We also showed that the amplitude of the backscattered spectrum by
soft spheres varies with the density of the material and contains pronounced peaks and
dips in the high frequency range that are sensitive to any change in the speed of wave
propagation inside the sphere. Moreover the average spacing of the spectral dips at
low frequencies is susceptible to different sphere radii, and minimally affected by the
speed of propagation inside the sphere. Consequently, we proposed that we could do
an arbitrary calibration curve, which is independent of the material, between the
average spacing between the spectral dips at low frequencies and the radius of the
sphere. Besides, similar calibration curves are suggested between the amplitude and
the density, and the average spacing of the dips of the entire spectrum with the speed,
at different radii. Thus utilizing the previously mentioned curves we can extract the
radius of the scatterer and estimate its density as well as the speed of wave
propagation inside it; i.c. we identify its size and characterize its material. Yet, we
have to bear in mind that since the amplitude of the backscattered spectrum is
dependent not only on the density of the sphere, but also on the observation distance

and the power of the source. As a result, we should calibrate our system in such a way
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to include the information about the radiated power of the source and the approximate
location of the scatterer. We extended our investigation to the off-center case. We
demonstrated that for a pulse incident on center or off center but inside the sphere, the
accuracy of the estimates of the radii is almost the same. On the other hand, the
precision starts to decrease when the pulse is incident outside the sphere. As for the
density and the speed, the accuracy of the results remains the same no matter the pulse

1s incident on center, off center but inside or outside the sphere.

In Chapter 4, we derived a Mie series solution for the scattering from an
electromagnetic plane wave incident at a tilted angle with respect to the z-axis. This
solution was then used in a superposition over all azimuthally symmetric plane waves
tilted at the same angle relative to the z-axis. The result wavefield represented the
field scattered due to an electromagnetic X-wave incident on a perfectly conducting
sphere. In future work, this analysis should be extended to the case of dielectric
spheres and a procedure similar to the one used for soft spheres could be developed to

identify the size and material of the unknown scatterers.
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