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ABSTRACT

The current practice of labor allocation in construction schedules assumes single-skilled
workforce; meaning that each worker is assumed to be skilled in only one trade. In such practice,
at any instance in the project lifecycle, some of the workforce become idle waiting for other labor
types to complete their work. Traditionally, companies may relocate idle workers to other projects
and return them back to their original project when needed again. This complicates the resource
management process and is not often performed successfully, leading to schedule and cost
overruns. Alternatively, project managers may keep the idle workforce at their projects because
they will be needed at a later stage and pay them in their idle days, which adds unnecessary costs
to the project. Another solution would be continuously hiring and laying off labor at need, which
has severe negative impacts on projects and firms. Due to the inefficiencies of these solutions,
some research discussed the idea of “multi-skilled” labor, where some of the workers may have
enough training to carry out different activity types. Multi-skilling decreases inefficiencies and
ensures a smooth and continuous progress of works whilst maintaining the workforce and keeping
their idle time to a minimum. Multi-skilling could be also used to speed up progress in construction

schedules.

Previous research efforts have been made to encourage contractors in pursuing multiskilling as a
solution to the non-smooth resource histograms. Yet, the literature falls short in providing a robust
multi-skilling framework; specifically, one that considers the cost of training labor and solves the
partial allocation problem. The objective of this research is to improve project duration and
minimize unnecessary costs through the utilization of multi-skilled labor. Through a multi-step
methodology, a model that optimizes the allocation of multi-skilled labor resources was developed.
The novelty of the presented model is that it further minimizes the idle times of labor when
compared to previous multi-skilled labor models, due to its capability in allocating resources
“partially” to segments of activities rather than to full activities. In other words, unlike previous
models, the developed model recognizes the fact that a crew can work for a period of time in an
activity, then some workers in that crew can be allocated to another activity, leaving the rest of the
crew to complete the first activity. The model allows the user to enter any number of activities and
up to ten different resource types. With the use of genetic algorithms idle resources are assigned

to activities that require additional manpower in order to reduce their durations, and in turn reduce



the project’s indirect costs. When applied to a case study, the model generated promising results,
where the reduction in duration between the single skilled allocation and multi-skilled labor
allocation was 31% and this reduction jumped to 44% when partial allocation was applied.
Multiskilling did not only reduce the idle labor days, but it will also shift the resource usage
histogram’s end point to the left, reducing the total project duration. This did not only reduce the
unnecessary costs being paid to workers on days where they have no work, but it also reduced the

total indirect costs which are directly proportional to the overall project duration.



TABLE OF CONTENTS

DediCatioNS ....uuuiiiiiiiiiiiiiiiiiiieecce e e e s e s s s s b s a s e e e e e e e aes 2
ACKNOWIEAZEIMENT ....veiiiiriiiiiiieiiteeeiteeeteeeteee et ee sttt eeeteee s ae e e e aeesessesessaesesaesesssesessasessssaennnns 3
ADSIIACE uuuiiiieiiiiiiiititiiieeeeenrreee e e e s e e e e s e s bbb e e e e s s e s bbb b r s e e e e s e s e ssnsaaaaes 4
List Of TADIES c..uvveeeiieeiiieietieectieccte ettt e e ae e s saa e s e aa e s s ssa e e e s aae e s saeesssaae s saaesssnaans 8
LiSt Of FAUIES..cuuiiiiiiiiiiiiiiiiiiiiiciiitiiiie et e e e s s ssssss s e s e e s s s s sssssnsasseesssnes 9
Chapter 1 - INtrodUCHION ....uuuuiiiiiiii e 11
1.1 ReSOULCE AllOCAtION . ..uuuuiiiieiiiiiiitiitieeeiiiciitiree et atrree e e e e es s sssaasae e e e e e s sssssssseesesssssssssssaseesesssnes 1
1.1.1  Single-skilled Resourcing (Traditional Resource AllOCAtion) ........ccouvieeeevieiniiriirienicineiniisiesieeieinens 11
1.1.2 Multi-skilled RESOULCING.......vuiiuciiciieciriciricreiree et saens 12
1,13 Partial AllOCATOMN eucvueecreeiiecirieciiecireeireee ettt sttt seae sttt sttt sttt ssaces 13
1.2 Previous Research on Multi-skilled Labor ........ceiivuiiiiiiiiiiiiniiiieiiniieiiiiiecnieeceineecnnneeeennnes 14
1.3 Problem Statement ....ciciiueeiriiiieeiniiitreiniiiteeiniiieeisiiteeteetreessiiteesssstsesssssssessssssnsssssssnssssssssesssssns 15
1.4 ReSEarCh ODJECHIVE .ccvviririririiiirirititiiiiiriiiiiiiiiiittiiititi .. 16
1.5 Research Methodolo@y ......ccouiiiiiiiiiiiiiiiiiiiiiieiiiieciiieeciieeceiieeessieecssssssessssssaeesssssasesssssns 17
1.6 Thesis OrganiZation .....cueeiiiiiuieiiiiiiiiiiiiiinieiniiieeiiiieeieenreeeessreesesssneesssssesssesssnssssssssesssssssssssssssns 18
Chapter 2 - Literature REVIEW ........uuuiieeiiiiiiiiiiiiiiieiiiiiiiiiieecccsennninieeeecsecnnsssseeesssessnnes 20
2.1 Multiskilling CategoriZation. ....ccuvuuereeeeiiiiiiiiiiiiiieiiiiiiiiiiieeecceesrrr e ssssarseeeeeesssssssssssseeseas 20
2.2 Problem-Solving Techniques for Multi-Skilled Labor Allocation.........ccouvueeeriiruneeininueecnissnneeenns 22
221 Heufistic MEthOdS . c.cuveciieciiciiciiciricccc e nans 22
222 Mathematical TeChNIQUES......ccouiiiiiiiiiiiiii e 25
223 Evolutionary AlZOIRIMS . .....cccuiiiiiciiciiciricircri et saens 29
2.3 Summary of Literature ReVIewW ........uuiiiiiiiiiiiiiiiiiiiiiittiinccccctrreee e 33
231 Optimization TeChNIGUES......ccoviiiiiiiiiiiiii e 33
232 ODJECHVE FUNCHOMS c.cvuveerreiieiiecieeeireecieeee sttt nssans 33
233 ReSEAICh GAP vt s 33
Chapter 3 - Model Formulation and Development...........ueieeeeiiiiiiiniiiieeeiniinnnnnieeeeenennn, 34
K2 LY oY e 1 B N 0§ T ot T TS 34
311 I0PULS MOAUIE ...t 36
3.1.2  Calculations MOAUIE.........c.ccuieeuicirieiricrecrte ettt sttt st sean 44
3.1.3  Optimization MOUIE ........ccviiiiiciicici e 45
314 Output ModUIe .. 46
3.2 Model DevElOPMENT c.ccivuuiieiiiiiieeiiiiieeiniiiieeniiieeisiiteetesiteessssssesessssessssssssessssssssssssssssssssssssssses 46
321  Model I — Single Skilled Labor......c.ccccviiiiiiiiiiiiciiciiiicice e senes 46
322  Model II — Multi-SKilled LabOT......c.vcuieiieiieirieiricireeireereeieeieee et eaeseeans 51



3.2.3  Model IIT — Multi-skilled Labor with Partial AlOCAtION .....covieieviiiieiieiceicececeeee e 53
324 PrOJECt COStumiiiiiiiiiiiiiiic b 56

3.3 MoOdel VerifiCation ..cuuuiieuiiieniiieniiinneeianeetnneeeeneeraneeenseesaneesaseesssessasessssessssesssssssssessssesssssssnsessnssssnsassns DO

Chapter 4 — Case Study and Model Validation ........ccccoevvmiiiiiiiiiiiiiniinninneeeccininnnnneeeeeen. . 58
4.1 Project Information and Model INPULS ......ceeviriiiiiiiiiieinniiiieiniiieiniiieeeiieecsisieeesiseeessssssesees 58
4.2 Single-skilled Labor Model ........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiinecinninieeeecccsnssnsseeeecesssssssssssseeeeessses 02
4.3 Multi-skilled Labor Model......ccuuueiiiiiiiiiiinniiiiiiiiiniieeeciiieannreeeecesessssssseesessssssssssssessssssssssses 71
4.4 Multi-skilled Labor with Partial Allocation Model............ceeeeiiiiinniiiiiieiiiiiinnneeeeecccnsnnnneneeeeenns 77

4.5 Comparison and Analysis of ReSults ......ccccuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiineccccnrieeeccccenneeeeeeeees 83

Chapter 5 — Conclusion and Recommendation ........ccoouvvvummeeeeeeciiiiiinnnnneeeceecnnnnnnnnneeeeeeeennn. 91
5.1 Summary and ConcClUSION.....cuuiiiiiiiiiiiiiiiieeccrrre e e e aees 91
5.2 Outcomes and ContribUtiONS .....couieeiiiiieeiniiiieiiniiieeiniieeiiieeciieeeeniieeessseeessssseessssssesessssssse 91

5.3 Limitations and Recommendations for Future ReSEarCh ....cuuccuuireeireiireiieiireiieireeienieeeeneceneenecenees 92

J 20 (S (= 0 Lol < TR | ;)



LIST OF TABLES

Table 1: Coding RESOUICES DY Trade.......cceeiuiiiiiieieeie e 47
Table 2: Resource ReqUIreMENt IMALIIX .......couviieiieieeie et enee s 47
Table 3: Productivity ANNOTALION. .........ccveiieiieie et sre e enee e 48
Table 4: Total Productivity of ReSource per ACHVILY........ccccovviieiiieieiie e 48
Table 5: Maximum Available ReSOUICES MatriX.........cccocveiiiiieiieiiiiesie e e 49
Table 6: Partial Allocation Model Variables ... s 55
Table 7: Resources Needed for the ProjJECE.........ccoeiv i iic i 59
Table 8: ResoUrce INTOrMAtION .......c.coviieiieiieie et ene e 60
Table 9: Summary of Resource Durations on Site and Expenditure Efficiency..........c.cccovvenne. 69
Table 10: Summary of Resource Durations on Site and Expenditure Efficiency......................... 76
Table 11: Identification of No. of Resources Needing to Learn a New SKill..............c..cccovenn. 81
Table 12: Summary of Resource Durations on Site and Expenditure Efficiency...........c.ccoceevenee. 82
Table 13: Comparison of Resource Durations on Site and Expenditure Efficiency..................... 89
Table 14: Total Duration and Cost for Each Model .............ccooeiiiiiiiiiiee e 90



LIST OF FIGURES

Figure 1: Concept of Partial Resource Allocation (Abotaleb, et al., 2014) .......cccccevvevviiiiieenns 14
Figure 2: Resource Histogram Example Showing Working and Idle Days ..........ccccccoeeeviveivennnns 16
Figure 3: ThesiS OrganiZatiON..........c.civeiuieiieieeieeie s e se e seese e e e ste e e ssa e teeeesseesseaeesseesneeeens 19
Figure 4: Model Formulation (Wongwai & Malaikrisanachalee, 2010) .........ccccooeeviieveniinnennnnns 24
Figure 5: Mathematical Formulation of the Model Developed by Gomar et al. (2002)............... 27
Figure 6: Flow Chart of the GA Model Proposed by (Tam, et al., 2001)..........ccccccevveveriiesnennns 30
Figure 7: Model Development Methodology ........c.covveiiiiiiieiece e 35
Figure 8: Userform 2 — ACHIVILY INPUES........cviiiiiieiiieie e 37
Figure 9: Code Used to Transfer Activity Inputs from Userform to Worksheet................c......... 38
Figure 10:Sample of User Inputs Worksheet Receiving Activity Information ................c..c........ 38
Figure 11: Userform 3 - RESOUICE INPULS .....ccueeiuiiieiieieeic ettt e st sae e 39
Figure 12: Sample of User Inputs Worksheet Receiving Resource Information...............cc.e...... 39
Figure 13: Code Used to Transfer Resource Inputs from Userform to Worksheet ...................... 40
Figure 14: Userform 4 — Resource Productivity Conversion Factors...........cccevevvvevvereiiveseennens 41
Figure 15: Code to Transfer User Inputs to Worksheet (Part 1).........ccccccevveevieeveiieiievecie e 41
Figure 16: Code to Transfer User Inputs to Worksheet (Part 2)..........ccccoovvvienieinieiencnenee 42
Figure 17: Sample of User Inputs Worksheet Receiving Productivity Factors............c.cc.ccoeeee. 43
Figure 18: Userform 5 — Training Costs to Learn Each Trade INput..........c.cccovviiiiieiciieieenens 43
Figure 19:Change to matrix with annotations ONlY...........c.ccceevieiiiiciiccc e 51
Figure 20: Productivity CONVEISION RALES.........cceiiiiiiiiiiiiiiieieie e 61
Figure 21: Training COSES IMAIIIX ...c..oiviiiiiiiiieieeie et 61
Figure 22: Primary Resource Required by Each ACLIVILY ..........cccoovviiiiiciiiceee e 62
Figure 23: Primary Resource Identification Method ............ccccoveiiiiiiiciciiccece e 63
Figure 24: Identification of Maximum Allowable Number of Crews........c.ccccccvvviiieiieiiicinenn, 63
Figure 25: Maximum Allowable Number of Crews Identification ...........c.ccocvvvvviineniennnnn 64
Figure 26: Limitation on Number of Allocated Crews per RESOUICE ..........ccvvveeeeiierieniesenieneeans 64
Figure 27: ProducCtiVity PEr RESOUICE ......c.vicvieiieeiie ittt ettt sbae e sne e 65
Figure 28:User Inputs Sheet Where Productivities are Transferred From ...........cccccceevvivievinnnne, 65
Figure 29: Total PrOUUCTIVITY .......ooviiiiiiiiiiiieieee et 66


file:///C:/Users/Amira/Downloads/Amira%20Saleh%20-%20Thesis%20Report.docx%23_Toc62555948
file:///C:/Users/Amira/Downloads/Amira%20Saleh%20-%20Thesis%20Report.docx%23_Toc62555959
file:///C:/Users/Amira/Downloads/Amira%20Saleh%20-%20Thesis%20Report.docx%23_Toc62555962

Figure 30: Duration Calculations Sample from Model...........cccooeiieiieiciiecce e 66

Figure 31: Direct Cost CalCUAtiONS...........cciiieiiiiesiese e 67
Figure 32: Model Window for Single-Skilled Labor Allocation Model ..............ccoccooiiiiinnnne. 67
Figure 33:Output of Total Duration and Costs (Single Skilled Labor Model).............cccccevenene. 68
Figure 34: Sample of Single Skilled Labor Calculations Module ............ccccocveviiieiievccicieens 70
Figure 35: Sample of Resource Allocation after Optimization ...........c.cccccvevieveiievieese e 71
Figure 36: Productivity CONVErSION FACIOIS .........cciiiiiiiiiiieieie e 72
Figure 37: Total Productivity CalCulations..............ocooiiiiiiiiii e 72
Figure 38: Sample of Final Durations 0f ACHIVILIES..........cccciveiiiiie i 73
Figure 39: Direct Cost CalCUIAtioNS...........ccveiieiiiieiecce e 73
Figure 40: Model Window with the Set Optimization Criteria ..........ccoccoovrviiirieienenese e 74
Figure 41: Output of Total Duration and Costs (Multi-Skilled Labor Model)............cccccovnrnnene. 74
Figure 42: Matrix Used to Calculate Training COStS........c.cciueiiiiieiiieiicie e 75
Figure 43: Direct Cost CalCUIAtioNS...........ccveiieiiiiecee e 77
Figure 44: Evolver Window with the Set Optimization Criteria...........ccooovvvrierieinienene e 78
Figure 45: Total Duration and Costs (Multi-Skilled Labor with Partial Allocation Model)......... 79
Figure 46: Matrix Used to Calculate Training COStS........c.ccieeiiiiieiiieii e 80
Figure 47: Comparison Between Resource A Usage for All Models.........c.ccccoovviiiiiciicieenns 83
Figure 48: Comparison Between Resource B Usage for All Models............cccooeviiiniiiieinnnne 84
Figure 49: Comparison Between Resource C Usage in All Models...........cooviiiiininiinnnen 84
Figure 50: Comparison Between Resource D Usage in All Models ..o, 85
Figure 51: Comparison Between Resource E Usage in All Models...........cccooovviiiiiiicicinens 86
Figure 52: Comparison Between Resource F Usage in All Models..........ccooviiiiiiniicinncnne 86
Figure 53: Comparison Between Resource G Usage in All Models ... 87
Figure 54: Comparison Between Resource H Usage in All Models ..........ccccoevviiiiccccicieens 88
Figure 55: Comparison Between Resource | Usage in All Models..........cccccovvviviiiiciicciicine, 88
Figure 56: Expenditure Efficiency Comparison for All MOdels ............ccoooeviniiciniicce 90

10



CHAPTER 1 - INTRODUCTION

Retaining and maintaining a skilled workforce on construction sites has always been one of the
commonly faced problems associated with construction projects (Wang, et al., 2009). This is due
to the fact that even during idle days, resources will still be assigned to the project since continuous
hiring and letting go of workers could lead to the difficulty of maintaining top-quality workers due
to unstable employment. This leads to unproductive levels of workforce on site that would keep
some workers idle during periods of time where their demand is low. Many researchers have
investigated different approaches to utilize workforce while increasing cost efficiency through the
adaptation and allocation of multi-skilled resource allocation. On the other hand, most of the
existing techniques for resource scheduling only consider single-skilled resource allocation. Even
though single-skilled labor allocation is commonly used, it largely contributes to several factors

leading to inefficient resource utilization in construction (Hegazy, et al., 2000).

1.1 Resource Allocation

1.1.1 Single-skilled Resourcing (Traditional Resource Allocation)

Resource allocation and scheduling has been widely studied and implemented in the construction
industry. Researchers who examined the resource allocation problem were mostly tackling only
single-skilled labor allocation. Single-skilled labor allocation utilizes the assignment of resource
where each resource has the skill of only one trade. This however can result in several idle days
where project managers may keep the idle workforce at their projects because they will be needed
at a later stage and pay them in their idle days, which adds unnecessary costs to the project.
Traditional resource allocation was tackled with the use of software programs such as Primavera
and Microsoft Project. More advanced methods were also developed to solve the resource
allocation problem. Such methods included but were not limited to Nassar (2005), who used
genetic algorithms, an evolutionary algorithm technique, to develop a model that was designed to
assign resources to a project with repetitive construction activities. Here the resource crew size
was the main parameter used to optimize the project duration. EI-Gafy (2006), on the other hand,
used a different evolutionary algorithm technique, which utilized the ant-colony method for the
allocation of resources in construction projects with activity repetition, ensuring that each of the

workers had only one skill, to guarantee that each resource does not surpass its maximum resource
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availability. An alternative model that was developed by Moselhi and Alshibani (2007) that
optimized resource allocation by integrating genetic algorithms with special technologies to
determine the optimal crew assignments during the progress of site works, while accounting for
the maximum available number of resources. Al-Bazi and Dawood (2010) presented a different
model using genetic algorithm-based simulation modeling. The model’s aim was to allocate
resources in the precast concrete industry, which was then further developed by Al-Bazi and
Dawood (2017) to optimize the resource costs, while of course taking into consideration
constraints such as the available resource limit, skills of resources, crew formations and nature of
the parallel repetitive layout of the manufacturing operations attributable to precast concrete. A
schedule model for repetitive construction was proposed by Bhoyar and Parbat (2014) where
precedence relationships were considered when assigning multiple crews, in addition to
accounting for crew availability all while working on minimizing the project’s overall time for
completion and maximizing the continuity of resources on site. Francis Siu et al. (2015)
recommended the utilization of a crew—job allocation model to facilitate resource management for

both project and workface levels.

Alternative models considered the various qualities and characteristics that laborers may have. The
characteristics of workers and how they interact to different site conditions is imperative when
being measured in the allocation and scheduling analysis in construction to ensure the ideal

deployment of each crew member.

1.1.2  Multi-skilled Resourcing

To optimize resources and account for practical considerations and limitations, resource leveling,
or resource allocation would need to be applied; however, they mainly consider a single-skilled
labor strategy. Single-skilled labor assumes that all the laborers on site are only capable of
completing any tasks requiring the knowledge and expertise of only one skill. Some research on
the other hand discussed the idea of “multi-skill” labor, where some of the workers may have
enough training to carry out different activity types. If implemented correctly, it would reduce the
project duration, since it would allocate idle laborers to other ongoing activities, which will
increase the productivity for that specific activity and in turn decrease the overall activity duration
(Cross, 1986).

12



Another problem would be determining where the worker/resource would be assigned if their skill
is not required for another proceeding activity requiring that same skill. This could lead to the
workers being hired, laid off, and then rehired again. However, when project managers assess
whether it is better to keep workers on site during demand gaps or to lay them off, they mostly
decide to keep them on site. This leads to the idle workers remaining on site, even though they are
not assigned any tasks, in turn increasing the indirect costs on site since they will be paid their
daily wages merely for showing up to work. It was found that the utilization of multi-skilled labor
allocation has also proved to benefit the laborers as well as the project. Documented benefits
include, lower turnover, and increased worker satisfaction as well as increased earnings for the
workers (Alster, 1989).

1.1.3 Partial Allocation

Conducted research has only considered the allocation of resources to activities only for the entire
activity duration, meaning that the resource must be assigned to the whole activity without the
allowance of any preemption. Partial allocation on the other hand could allocate a resource to only
part of an activity’s duration (Abotaleb, et al., 2014). Partial allocation was seldomly referred to
in previous literature, however Abotaleb et al. (2014) suggested that the application of partial
resource allocation would further benefit the optimization of resource allocation by decreasing
activity duration, enhancing the continuity of resources on site and in turn improve cost efficiency.
Figure 1 below demonstrates the difference between partial and non-partial resource allocation.
The figure represents three activities; A, B and C, where resource R1 and R2 have been assigned
to the whole durations of activities A and C. Given that R1 and R2 are available to be allocated to
activity B between days 4 and 6, in non-partial allocation of R1 and R2 to activity B is not possible
for two reasons: (1) the resources are already assigned to activity A during the first 2 days of
activity B and (2) the resources are already assigned to activity C during the last two days of
activity B. If partial allocation was permitted on the other hand, then resources R1 and R2 would
be allowed to be allocated to activity B for two days, increasing the total resource productivity
enough to reduce the duration of activity B by 33%. Therefore, the utilization of partial allocation
in construction projects would yield very promising results in significantly reducing project

durations, as will be further discussed in the upcoming sections.
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Figure 1: Concept of Partial Resource Allocation (Abotaleb, et al., 2014)

1.2 Previous Research on Multi-skilled Labor

Several papers and research were targeted on developing several scheduling techniques in order to
find the optimum solution for resource leveling and allocation in order to find the solution able to
result in the lowest indirect costs. Although the conducted research has achieved great results when
applied to multiple construction projects, they mostly only took into account single-skilled labor
as was demonstrated by Hegazy et al. (2000), where a framework was created in order to reduce
indirect costs on site using the Early Late Start method heuristic approach to reduce the project
durations by optimizing the allocation of resources. The Early Late Start method allocates
available resources activities based on their late start values. Resources are assigned to the

activities with the earlier late start values, until resource have been allocated to all activities.

Multi-skilled resourcing has been present in literature as early as the end of the 20" century,
however research on optimizing multi-skilled labor allocation in the construction field was lacking.
Nallikari (1995) employed a “multi-skill work team” techniques on shipbuilding facilities in
Finland, which led to doubling the overall labor productivity. Another study was conducted by
Carly in 1999 where approximately 1000 laborers in different locations and with different
profession were asked to fill out a survey regarding the usage of multi-skilling. The results made

it clear that multi-skilling would be preferred by the workers especially that it gave the workers
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stability knowing that they would stay on the project for longer and will learn new skills.

Additionally, learning new skills would reimburse them through additional wages and benefits.

Gomar et al. (2002) described multi-skilled labor as laborers who have the ability and skill to
participate in two or more different activities on site. This meaning that instead of only have the
skills of a steel fixer, for example, the laborer would also be able to carry out plumbing tasks. If
implemented correctly, this would reduce the project durations, since it would allocate idle laborers
to other ongoing activities, which will increase the productivity for that specific activity, in turn

decreasing the overall duration of the activity (Cross, 1986).

Wongwai and Malaikrisanachalee (2010) developed a model to reduce the total project cost and
duration using multi-skilled resourcing. This model was based on fitness values assigned to
determine the priority of rule-based parallel schedule generation on a local level and then proceeds
to a more global solution. Even though this model did not use optimization techniques, it took into
consideration additional overtime wages and the number of skills per worker were identified. The
gap in this research was that it did not compare the output results with those with a model that
could have been developed to show the costs and duration if a single-skilled labor model were

used.

1.3 Problem Statement

Traditional allocation of resources in construction projects usually leads to unnecessary costs being
paid just by keeping idle workers hired and paying their daily wage to keep them on site. Figure 2
below shows a traditional histogram of a labor resource, illustrating the frequency of idle days.
The allocation of multi-skilled labor has been tackled previously, but the lack of utilizing partial
allocation could restrict allocation of free resources that would lead to reductions in project
durations if it were implemented correctly. Modeling multi-skilled labor with partial allocations
would produce reliable and cost-effective results that could be implemented in real life projects to

reduce both durations and boost expenditure efficiency.

15



Resource Histogram

E - — —
8
r
(n]
: Idle Days
I/: | !
B 1 ! 1 |
i o= ol
= 1
= i I |
0 LDba b | b «___J
0 2 4 ] g 10 12 14 16 18 20 22 24 26 28
Time (Weeks)

Figure 2: Resource Histogram Example Showing Working and Idle Days

The existing gap in literature revolves around the lack of extensive research when it comes to
partial allocation in multi-skilled resourcing in construction projects. Previous research has also
not shown much validation or verification of whether multi-skilled labor is more time and/or cost

efficient than the traditional approach of single-skilled labor.

1.4  Research Objective

This research comprises of one goal, and several objectives as is listed below:
Research Goal:

- Improve project duration and minimize unnecessary costs through the utilization of multi-
skilled labor.

Research Objectives:

- Develop a model for optimal allocation of multi-skilled labor with an emphasis on partial
allocation of resources
- Study the impacts of partial allocation of multi-skilled labor on improving duration and

cost.
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The model would use the information entered by the user to create a framework that could
accurately identify the optimum allocation of idle labor using genetic algorithms, taking into
account the different labor costs and productivities entered by the user. This research will further
expand on the previously conducted studies by introducing partial resource allocation. Partial
allocation makes it more efficient to allocate resources during segments of activities - only during
idle period of the resource - and then allows the secondary resource to go back to its primary
activity. The model will calculate the labor costs if using multi-skilled skilled labor with and
without partial allocation and will compare it with the same data but when using single-skilled

labor.

It is also worth mentioning that multiskilling with not only reduce the idle labor days, but it will
also shift the resource usage histogram’s end point to the left, reducing the total time of each
resource on site and hence reducing the total project duration. In addition to reducing the number
of days idle labors are being paid, it will also reduce the total indirect costs which are directly

proportional to the overall project duration.

1.5 Research Methodology

To meet the objective of this research, the research methodology is comprised of the following

steps:

Part 1: Initial Investigation and Problem Identification
1- Review the literature to identify the gaps in research regarding multi-skilled resource
allocation

2- Set the research objectives to solve the identified problem statement

Part 2: Model Development
1- Develop three different models for labor allocations, a) single skilled, b) multi-skilled
without partial allocation and ¢) multi-skilled with partial allocation.
2- Integrate training costs with the multi-skilled resource allocation models
3- Determine the optimization technique to be used
4- Set the optimization procedure for the three models, by identifying the objective function,

variables, and constraints.
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Part 3: Verification, Validation and Analysis
1- Verify the developed models using standard verification tests
2- Validate the developed models using a case study,
3- Compare the outputs of each model to determine the efficiency of multi-skilling and partial

resource allocation.

1.6  Thesis Organization
This thesis comprises of five main chapters listed below and demonstrated through figure 3:

Chapter 1 — Introduction:
This chapter provides an introduction on resource allocation, and the advantages of applying multi-
skilled resource allocation, in addition to identifying the problem statement, research objectives

and methodology, and finally the thesis organization.

Chapter 2 — Literature Review:
In this chapter, an all-encompassing analysis of the previous research regarding multi-skilled labor

was conducted.

Chapter 3 — Model Development and Formulation:
Here, the model development is broken down to in-depth details, to demonstrate how to model is
used to satisfy the research objectives of developing a multi-skilled labor allocation model with

partial allocation, which has never been conducted before.

Chapter 4 — Case Study and Model Validation:
This chapter shows the application of the model through a case study, which represents a real

construction project. The results are compared to validate the model.

Chapter 5 — Conclusion and Recommendations:
The research is summarized and any recommendations for future research and improvement in

multi-skilled resource allocation are discussed.

18



Chapter 2: Literature

= Resource Levelling Review
and Allocation

Chapter 4: Case

Study

’ get_ﬂ Besearch * Project Data = Conclusion
* Project Statement .
i *Development * Recommendations
+ Results and Analysis for Future Research

+ Validation

Chapter 5:
Conclusion and
Recommendations

Chapter 3: Model
Introduction Development

Figure 3: Thesis Organization

19



CHAPTER 2 - LITERATURE REVIEW

2.1  Multiskilling Categorization

Different techniques have been identified and used in previous research to tackle the multi-skilled
resource allocation problem. The previous conducted research related to multiskilling was found
to have experienced academic, industrial in addition to governmental points of views. This chapter
aims to cover an extensive analysis of the current literature, covering the classifications of the
effects of multiskilling to present the concept in a clearer manner, and to identify any gaps in the
existing research. The papers discussed and presented in this chapter include papers from the initial
mentioning of the concept of multiskilling to the most recent papers where multi-skilled resource

allocation models have been developed and tested.

The concept of multiskilling goes back to the 1970°s where it was discussed to utilize workforce
organization in manufacturing plants. Bittel & Trepo (1979) and Liu & Ortsman (1979) both
recommended the application of multiskilling in a new production plant and a chemical plant,
respectively. The conducted research focused on the social impacts affecting the workers and was

intended to increase worker qualifications and salaries.

The concept of multi-skilled labor was first introduced to the construction industry domain by
Burleson et al. (1998). Multi-skilled labor was defined by Gomar et al. (2002) as laborers who
have the ability and skill to participate in two or more different activities on site. It was found that
some studies had retrieved their techniques in tackling multiskilling in construction project from
previous research conducted in the service/manufacturing industries (Arashpour, et al., 2017).

However, there are significant differences between the manufacturing and construction industries.

Other studies targeted their focus on dual resource constrained systems, where the selected
resources could learn a maximum of only two different skills, i.e., one additional skill to the main
skill that the worker is already proficient at (Treleven, 1989; Hottenstein & Bowman, 1998). It
was found that there is a wide range of existing methods and conducted research on the
implementation of multiskilling with several tools such as dynamic scheduling and work study to

enhance productivity rates (Pagano & Heathcote, 2003).
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Multiskilling is a strategy used to manage construction workforce to increase flexibility in the
allocation of resources by enhancing a certain skill set to broaden out and include additional skill
sets to be assigned whenever needed (Haas, et al., 2001). Multitasking has proved to play a

noticeable part in the improvement of construction performance (Ahmadian Fard Fini, etal., 2017).

Even though there are several different adopted strategies and techniques that were developed
when it comes to multi-skilled labor scheduling, they more or less only target a fixed set of
objectives which include, but are not restricted to: improving prospects of labor employment
(Haas, et al., 2001; Wang, et al., 2009), reducing of labor costs to a minimum (Gomar, et al., 2002;
Srour, et al., 2006), overcoming workforce shortages (Pollitt, 2010), improving of safety (MOM,
2016), and finally boosting labor productivity (Florez, 2017).

Benefits:

According to Tatum (1989), Nonaka (1990) and Ettlie & Rezo (1992) there are several benefits to

multi-skilled resource allocation which include but are not limited to the following:

= Considerable reductions in project costs, primarily due to the savings of project labor costs
= Reduction in the number of workers assigned to the project

= Implied benefit of increase in annual employment rates

= Average durations of employment increased which results in higher job stability for the

workers
Limitations:

Although multitasking can indeed bring several benefits to both the employer and the workers, the
implementation of multi-skilled resource scheduling also has limitations and collateral effects. For
example, a worker with a certain skill may be unwilling to undergo additional training for several
reasons, with those reasons including not accepting to the idea of learning another skill that the
worker would regard to be unsuitable of his skills (Ho, 2016), or that the worker believe that they
already have sufficient knowledge to carry out the task requiring the other skills, or that the worker
would worry that they might not receive enough compensation in exchange for the additional
training (Carley, et al., 2003). Other limitations that would most likely be faced include decreased

efficiency in productivity when carrying out a task that required the newly attained skills (Wang,

21



et al., 2009). The main limitation, however, was found to be insufficient funding to cover the

expenses of training costs (BCA, 2016).

2.2 Problem-Solving Techniques for Multi-Skilled Labor Allocation

Several methods have been developed to solve the resource allocation problem, including multi-
skilled resourcing. These techniques include mathematical heuristic methods, linear programming,
mixed-integer linear programming, and evolutionary algorithms. Several papers and research were
targeted on developing several scheduling techniques to find the optimum solution for multi-
skilled resource leveling and allocation to find the solution able to result in the lowest indirect
costs. According to conducted research, the most widely used optimization techniques that could
be implemented are genetic algorithms and heuristic techniques (Project Management Institute ,

2017), which are further elaborated on in the upcoming sub-sections.

2.2.1 Heuristic Methods

Heuristics are problem solving experience-based methods that provide solutions in limited time
frames based on a series of consecutive steps. In other words, heuristics reduce the need to do
complex calculations for large problems through segmenting the solving methodology into a series
of steps to reach the final solution. The solutions obtained by heuristics are not necessarily optimal,
however they provide sufficient and satisfactory solutions (Pearl, 1984). Although multiple
research papers have tackled the problem of resource-constrained scheduling, Hegazy et al. (2000)
and Wongwai & Malaikrisanachalee (2010) were of the few who developed heuristic models that
solved the multi-skilled allocation alternative. The heuristic approach demonstrated by Hegazy et
al. (2000), essentially modified the single-skill resource allocation technique to create a framework
directed at reducing indirect costs on site using the Early Late Start method heuristic approach to
reduce the project durations by optimizing the allocation of resources. There were resource
substitution rules that needed to be satisfied for the model to work. For example, resource
allocation was only applied for activities with higher priorities (early late start dates), irrespective
of the any concurrent activity’s resource requirements. Here the model does not allow the
allocation of any resources to an activity except if resources necessary for the completion of that
activity can be entirely met. All available resources in the resource pool are only directed towards
the activity with the lowest early start, and in turn any other activities cannot start unless it becomes

the activity with the highest priority and its required resource is available. The model was tested
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on a case study that proved its powerful capabilities as the overall project duration was reduced
from 49 days with single skilled resource constraints to 39 days when multi-skilled resource

constraints were applied, giving a 20% reduction in duration.

Wongwai & Malaikrisanachalee (2010) approached multi-skilled resourcing from another
perspective, overcoming the “all-or-nothing resource assignment concept” improving the resource
substitution technique. Here, resource allocation is also implemented using the Earliest Late Start
method, where resources are assigned vertically. Each of the current eligible activities are assigned
with their resource requirements, depending on priority order irrespective of any resource
limitations. An activity will only be delayed if the number of qualified resources is not sufficient
to satisfy the required resources needed for an activity. In this case the activity is delayed until the
nearest day where more resources that were allocated to other concurrent activities become
available. Any remaining resources not required by the delayed activity are then released back to
the resource pool to be allocated to the next eligible activity, until enough resources are available
to fulfil the requirements of the previously delayed activity. The model formulation is

demonstrated further through figure 4.
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Figure 4: Model Formulation (Wongwai & Malaikrisanachalee, 2010)

The concept that was developed to determine the progress work from the proportional between

assigned and required labor were as follows:

gy = —0 (Wongwai & Malaikrisanachalee, 2010)
T dan*da

Pijy =min{Eq;lr=12,..,N;;} (Wongwai & Malaikrisanachalee, 2010)

C(»y = min {100%, Zji:s(i) Pij} (Wongwai & Malaikrisanachalee, 2010)

Where:

E(, ;) = earned progress of activity i on day j from resource r
ag, - = humber of assigned resources r to activity i on day |
q») = daily requirement of resource r for activity i
d ;) = original duration of activity i
P(; j) = progress of activity i on day j
N; ; = the last resource that is assigned to activity i on day j

C(;) = the cumulative progress of activity i
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S() = start date of activity i

¢; = current date of activity i

Furthermore, in order to improve the final results in terms of project duration, two additional steps
were applied before starting resource substitution, with the first step being assigning resources to
all of the activities that are eligible to start, after which qualified resources would be taken back
from a lower priority if the remaining qualified resources are insufficient. The second step would
be constraining the start of each activity with a certain number of resources. An activity that is not
team constrained would start regardless of the insufficiency of resources. This increases the
starting opportunities of activities at earlier times, which did indeed achieve better results than the

previously existent heuristic approach.

2.2.2 Mathematical Techniques

Mathematical optimization is defined as the selection or determination of the best solution from a
set of alternatives or variables, while considering some constraints or criteria. An optimization
problem can simply be described as maximizing or minimizing a set value by choosing the best
possible value from variables through conducting multiple different iterations. Due to the ability
of mathematical techniques to solve complex engineering problems, several multi-skilled labor
allocation models were developed using mathematical techniques such as linear programming,

evolutionary algorithms and integer programming.

2.1.2.1 Linear Programming

One of the major subfields of mathematical techniques is linear programming, which is a type of
convex programming. In convex programming the objective function is defined by either
minimizing or maximizing a certain parameter. Linear programming was developed in by George
Dantzig in 1947, who discovered that there was generalization in the mathematics of scheduling

and planning problems (Pike, 1986). Here, the relationships are represented in a linear manner.

Some of the conducted research tackled the multi-skilled labor allocation problem using linear
programming. Gomar et al. (2002) recognized the need of cross-skilled labor to overcome the drop
in labor availability in the market with multiple objectives; minimizing hires, maximizing usage
of each resource throughout project duration, and minimizing resource reallocation. Gomar et al.

(2002) described multi-skilled labor as laborers who have the ability and skill to participate in two
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or more different activities on site. This meaning that instead of only have the skills of a steel fixer,
for example, the laborer would also be able to carry out plumbing tasks. The aim of that research
was to test the multi-skilled optimization problem and validate its results using the Construction
Industry Institute Model Plant data and a commercial linear programming software. The Model
plant was developed by the CII, and its role is to provide a standard reference to physical
productivity measurements. One of the studies conducted using the Model Plant was in the
development of an economic model for a multi-skilled workforce. The model formulation was
based on the model formulated in an earlier report by Gomar (1999). Briefly speaking, the model
allocates resources from a predefined resource pool in the database. The model has the capability
of determining which resources to hire when, and when to lay off a resource completely if it has
completed all the activities that it could be assigned to. The model’s mathematical formulation is
extensively presented through figure 5, with the objective function being determined through three
factors: (1) to minimize the total number of workers, (2) minimize switching of resources between
activities, and (3) minimizing hiring and firing of resources, and in turn minimizing the project
cost. The model’s results showed that it could optimize the allocation of a partially multi-skilled
workforce and that the project gains the benefit of multiskilling if only 10-20% of multiskilling is

applied, anything after that is marginal.

Srour et al. (2006) also developed a linear programming model and verified it using the CIl1 model
plant data, in which the model was able to provide a strategy for training and hiring workers to
satisfy schedule requirements. The objective function was also to minimize the construction labor
costs while ensuring that the labor demand profile is met over the duration of the project. This
model improved on the model developed by Gomar et al. (2002) by considering that single skilled
labor could still be trained on site, and in turn also considering training costs. The constraints were:
(1) the training capacity of each skill, (2) meeting the demand required by each resource, (3) hiring
limit, and finally (4) resource availability. The model’s results showed that the benefit-to-cost
analysis after the implementation of the model significantly increased. The model however, like
several other previous models, did not try to tackle the reduction of project durations through the
allocation of multi-skilled labor. The model was applied to a case study which showed that the
model saved around $32,000 in labor costs (after deducting all training costs) from approximately
$9 million total labor costs. (Hyari, et al., 2010).
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2.1.2.2 Mixed Integer Linear Programming

Integer programming is also a mathematical formulation which is very similar to linear
programming, with the only difference being constraining the variables to being integers only.
Mixed Integer Linear Programming on the other hand is a hybrid between both, where some of the

variables must be integers only, while other variables can be non-integers.

This technique was used by Hyari et al. (2010) in presenting a different approach to tackling the
multi-skilled labor problem. The objective was to minimize the cost of labor required to perform
the project activities. The unit cost of performing an activity is a function of the hourly wage the
worker resources and their productivity. The objective function was accomplished by minimizing

the cost of labor using the equation below:

L, Wi )
Minimize ¥} _, Z§=1 Xijx ?Zj (Hyari, et al., 2010)
Where:

X;j = Quantity of activity i carried out by resource |
W; = hourly wage of resource j
Pr;; = productivity rate of resource j in carrying out activity i

Subsequently, the number of resource crews required by each activity was achieved by dividing
the quantity assigned to each resource by the corresponding productivity of that resource. Model
constraints were put into effect to ensure that the model is practical enough and can correspond to
with actual multi-skill tasking on site. There were five constraints set in the model: (1) work
assigned to the resource should be equal to the quantity of the activity, (2) the number of resources
assigned per activity is in integers, (3) resources selected for a job should only be within the
resources that can perform the activity, (4) all variables need to be greater than or equal to zero
and (5) the number of crews assigned from each resource should not surpass the limit of available

resources.

The model used mixed integer programming, which is an extension to the linear programming
method. The variables were constrained to having only integer values at the obtained optimal
solution, which was implemented using Excel Solver. The model’s results were compared with a

previously developed model. The new model yielded better results since it produced results in a
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shorter period and the results were guaranteed to produce a globally optimal solution, and best of

all the model attained a total project cost that was less than that reached by the other model.

2.2.3 Evolutionary Algorithms

Evolutionary algorithms are advanced heuristics techniques that require higher processing power
and the use of computer intelligence to generate near-optimum solutions. There are several
problems in the construction industry that require the use of computer intelligence to solve them.
These computer intelligence techniques can be categorized into evolutionary algorithms, neural
networks, and fuzzy logic. Throughout the several research efforts conducted regarding this aspect,
it was found that many of the proposed methods using evolutionary algorithms opted for the
genetic algorithms method in order to find the most suitable option in terms of allocating the right
resources to the most suitable activities, as opposed to the limited resource leveling abilities of

Primavera (Gomar, et al., 2002).

Tam et al. (2001) defined genetic algorithms as being a “heuristic random search technique based
on the concepts of natural selection and natural genetics of a population; therefore they are a
‘population-based’ method of searching large combinatorial spaces to find the near optimal
combination”. When the resource allocation problem is converted to strings, genetic algorithms
can be utilized to support solving the problem. Genetic algorithms derive their power from the
mechanics of natural selection and the survival-of-the-fittest principles (Goldberg, 1989). Genetic
algorithms was used in the development of an optimization model that optimized the deployment
of labor. The developed model was designed to minimize the labor costs by allocated resource

crews to different skill types to carry out a set number of trades in a specified time limit.

Figure 6 presents the framework of the proposed model, which shows that the process is comprised
of 15 steps. The first few steps define the inputs module which includes the following: the daily
wages of each resource, the nature of the resource’s skill, the productivity rates of each resource
type when carrying out a certain activity type, daily quantity requirements that need to be met and

resource availability limits.
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Figure 6: Flow Chart of the GA Model Proposed by (Tam, et al., 2001)

Once these inputs are defined, the data is then transferred to the optimization module, where the

chromosomes for the number of workers required to complete a certain task are defined. With this
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step complete, the chromosomes are then mapped and transferred to calculate the man-hours. Other
chromosomes are generated for the percentage allocation of man-hours per task. When these
chromosomes are mapped, the number of man hours is calculated as well as the quantity of
production for the workers. The sum of productivity of workers of all skill types was constrained
to being greater than or equal to the quantity of work. The fitness function is then calculated and
evaluated. For the crossover and mutation stage, a single point continuous crossover is selected as
the crossover operator. Finally, a near optimal solution is reached when the termination condition

is met.

The model was tested out using a case study where three scenarios were simulated and compared
together, with the scenarios being: (1) the available resource surpasses the number of required
resources, (2) some skill types are lacking and (3) the supply of work of a particular trade was
increased, with the objective function being the minimization of the labor costs for all three
simulations. The model showed effective results in attaining optimal allocation of resources, by
utilizaing the use of the existing resource pool giving an optimal total labor cost in multi-skilled

labor procedures.

Long & Ohsato (2009) also used the genetic algorithm technique to determine suitable start times
of activities in repetitive construction. This model had three objectives: minimizing project
duration, minimizing total project cost, in addition to minimizing the combined performance of
the total project cost and project duration, as per the equation below. The overall project objective
is calculated by assigning weights that signify the importance of project durations and total project

cost.

Min Min
Tp Cp

T _TMin 2 C _CMin 2 1/2
TC = [Wt.< P D ) +WC.< LD ) l (Long & Ohsato, 2009)

TC represents the total combined performance of the project in terms of duration and cost. Wt
represents the weight assigned to the duration factor and Wc is the weight assigned to the cost
factor. The paper indicated that the weights were based on the user’s preference. If both weights
were 50%, this would mean that both cost and time have equal weights. The model is run a number
of times, while setting different objectives each time. The first objective function was to find the

minimum cost (CB’[“‘), and a second yet separate objective function was to find the minimum
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project duration (TI’,"““). With the minimum cost and minimum duration values determined, the

model is run a third time to minimize TC.

Liu & Yang (2011) developed a model to reduce the total project cost and duration through the
use of multi-skilled resourcing. This model was based on fitness values assigned to determine the
priority of rule-based parallel schedule generation on a local level and then proceeds to a more
global solution. Even though this model still done not work on optimization techniques, it took
into consideration additional overtime wages and the number of skills per worker was identified.
These inputs were not taken into consideration in previous models. The gap in this research was
that it did not compare the output results with those of a model that could have been developed to
show the costs and duration if a single-skilled labor model were used. The results showed that the
model performs accurately and efficiently for small-sized problems and can obtain exact solutions

for most cases.

Abotaleb et al. (2014) on the other hand, also developed a multi-skilled labor allocation model
utilizing the deployment of labor using genetic algorithms but with the single objective function
to minimize project duration. The model contained two constraints, with the first being setting a
limitation on the available number of resources per day to ensure proper resource leveling and to
avoid over-allocation in any activities. The second constraint was the number of different resource
types that can be assigned to any one activity. This was defined as a soft constraint, and its only
role was to avoid over-crowding. Furthermore, the research conducted compared the results from
a single-skilled labor model with a multi-skilled labor model demonstrated the jump in cost
efficiency and duration reduction after the deployment multi-skilled labor. When comparing the
results of single-skilled with the multi-skilled labor allocation models, it was found that there was

a 31% and 30% reduction in project duration and overall project cost respectively.
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2.3  Summary of Literature Review

2.3.1 Optimization Techniques

Several different methods were used to tackle the allocation of multi-skilled labor to reduce project
costs and/or duration. Heuristic techniques may not result in near optimum solutions, however
mathematical methods, such as linear programming, mixed integer programming and genetic
algorithms were able to recognize and solve the problem through setting the objective function (by
either minimizing or maximizing it), depending on a certain set of variables and constrained by

another set of boundaries.

2.3.2 Objective functions

Further to categorizing conducted research based on the technique used, it can also be categorized
according to the objective function of the model. The three main objective functions that were
targeted were (1) minimizing total project duration, (2) minimizing total project cost through the
minimization of labor costs, and (3) social sustainability. Social sustainability takes into
consideration the social impacts affecting the workers in terms of increased qualifications and

salaries.

2.3.3 Research Gap

The existing gap in literature revolves around the lack of extensive research when it comes to
partial allocation in multi-skilled resourcing in construction projects. Previous research has also
not shown much validation or verification of whether multi-skilled labor is more time and/or cost

efficient than the traditional approach of single-skilled labor.
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CHAPTER 3 - MODEL FORMULATION AND DEVELOPMENT

This chapter details the formulation of the model structure in which the algorithm that optimized
multi-skilled labor with and without partial allocation was developed. The model targets the
utilization of multi-skilled labor to minimize the presence of idle labor on site. The model is
intended to be generic and therefore would allow the user to input as many activities and as is
required by the project. As the user enters the necessary inputs, the model would use genetic
algorithms to allocate the idle resources to activities that require additional manpower in order to
reduce their durations, in turn reducing the indirect costs impacted onto the project. The purpose
of the model is to utilize all the resources in an efficient manner, since not only does it allocate
resources for the entire duration of an activity, but it also allows for partial allocation, which will

be further detailed in the upcoming sections.

3.1  Model Architecture

The point of this research is to develop a program which efficiently allocates idle labors to ongoing
activities from other trades while ensuring that the project cost remains within the assigned budget.
The allocation of idle resources during partial durations of activities also reduces the duration
assigned to activities that were generated after applying the single-skilled labor algorithm. The
developed model is mainly formed of four different modules. These modules comprise of the: (1)
inputs module, (2) calculations module, (3) optimizations module and (4) outputs module. The
user enters the project information in the first module, after which these inputs are then used by
the calculations module, which is then optimized to generate the output module, as is demonstrated
through figure 7. The concept behind the model is primarily based on the model developed by
Abotaleb et al. (2014), however this research further builds on it by introducing and implementing

multi-skilled labor to full and partial activity durations.

Traditionally, during the execution of any construction project, each activity is completed by one
resource type throughout the duration of the activity. With multi-skilled labor, previous research
was able to allocate the secondary resources only during the full durations of activities. With the
introduction of partial allocation, resources can be allocated accurately according to their idle time
only without the secondary activity duration being of any relevance. This increases the ability of
the model to allocate resources to significantly reduce any, if not all, idle man-hours, and
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consequently reducing the project duration, while maintaining the project cost, which adds to the

novelty of this model.

([ INPUTS }\ / ( OPTIMIZATION W \
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- Name/ID @
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OUTPUT
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resources/activity

Optimum resource allocation for
each day of each activity duration
Quantity per activity Jfor minimum project duration

. J . J

Figure 7: Model Development Methodology
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3.1.1 Inputs Module

The model allows the user to enter the input data which comprises of the following data:
= Activity name
= Activity ID
= Activity predecessors
= Quantity of activity
= Primary resource
= Productivity of each primary resource
= Productivity conversion factors for secondary resourcing
= List of all resources needed for the project
= Maximum available crews for each resource
= Daily wage for each resource
= Training costs

The model reads and uses the input data to optimize the allocation of multi-skilled labor. The
developed software is a user-friendly model, which allows the user to enter an infinite number of
activities, having any number of predecessors with finish-to-start relationships. The model was
developed using Microsoft Excel and Evolver which is a genetic algorithms plug-in. To allow for
user-interface, the model was integrated with Visual Basic Algorithms. Visual Basic is built in
Microsoft Excel to help write programs for the windows operating system through coding. To
enable the user to enter all the project information and inputs, Userforms are created. A Userform
is simply a window, which interacts with the user by showing a set of instructions to guide the user
on how to enter the required information. For this model, the user is directed to the first Userform,
which is a quick welcome message, giving a quick overview of what the software does, after which
the user will be required click on a “next” button, which once again directs the user to the following
window. For this model, the following userform (shown in figure 8) appears for the user to enter
each activity along with its predecessor(s), quantity and primary resource required to complete the
activity and all the required input information. Five sets of Userforms were created, one for activity
related information, and the other for resource related information. The Userforms integrated with

the model are shown through the figures below.

36



Please entes the Name and ID of the followmg actvity, it's predessox(s), quantity, wmts of quantity

—_——

Activity ID il?thOX 1 Activity Name ‘ Texthox 2
Predecessar(s) | | TEXtDOX Quantiey | [ TEXtOOX | Guantiey Unies
4
Resoncee | ITextbox 6
Submit Clear

Figure 8: Userform 2 — Activity Inputs

The first userform is a welcome message introducing the user to the program. Userform 2 allows
the user to enter the first set of inputs; the activity related inputs. Usually, each userform can be
created to receive one set of data; however, to allow the user to keep entering data until all the
activities have been entered, a code was developed to allow for a loop of the same userform to
come up until the user decides that all the information has been entered, after which the inputs
module is finalized. These inputs include activity name and ID, in addition to quantity,
predecessors and the primary resource of each activity. The code shown below (figure 9) is linked
to the “Submit” button shown in figure 8. This code enables the same userform to appear on repeat

for the user to enter the information of each activity into the user inputs worksheet as is shown in
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figure 10. Every time the user clicks on “submit” the entered information is entered into the

consequent row with an offset of one row at a time.

ICommandButton4 j

Private Sub CommandButton? Click()
Dim wksl Ls Worksheet
Dim AddNewl Ls Range

Set wksl = Sheets("UserIn™)

Set AddNewl = wksl.Range ("RE5356"™) .End(x1Up) .0ffzec(l, 0)

Add¥ewl .Cffsec (0, 0).Value = TextBoxl
AddNewl .Off=set (0, 1) .Value = TextBox2
Add¥ewl .Qffsec (0, 2).Valus = TextBox3
AddNewl .Offsetc (0, 3).Value = TextBoxe
Add¥ewl .Qffsec (0, 5).Valus = TextBox4
AddNewl .Offset (0, 6).Value = TextBox5

End Sub

Figure 9: Code Used to Transfer Activity Inputs from Userform to Worksheet

A | B | & | D [ E | I [ G
5 . - . Resource . .
4 - Activity ID Activity Name Predeccessors Required Resources Code Quantity  Units
5( ( ) ( )
6 -
7| (00 (0,1) (0,2) ©03) ll ©5 || ©6)
8 -
9 -
10\ \. J \ J

Figure 10:Sample of User Inputs Worksheet Receiving Activity Information

Once the user enters all the project activities, the user can then click on “end”, moving on to the
next userform. Userform 3 (figure 11) is to collect resource related information, such as
productivity, daily wage, and maximum available limit per day in addition to assigning each
resource to a set resource code. The entered data is transferred to the user inputs worksheet shown

in figure 12, and the transfer is achieved using the code in figure 13.
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Please assipn each resource to an ID and fill out all the required mformation:
Resoncce Name Pty I%‘f;: Cose M“’S"mb‘xtmﬂy
! ! ! |
> | | |
© | ! ! |
> | | |
= ! ! | —
Indirect
cost/day
] |
Liquadated
G I I I I Du?agw-da_
(EGP)
= ! ! |
C | | |
b | | |
Next |
Figure 11: Userform 3 - Resource Inputs
I 1 J 1 L 1 L 1 hj{ i
N Resource Productivi Daily W Max No. of
ame roductivity v e
Number - v as Resources
A
B
C
D
E
F
G
H
I

Figure 12: Sample of User Inputs Worksheet Receiving Resource Information
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|commandButtons | |cliek

Frivate Suly CommandButtond Click(
Unload UserForm3

Sheets ("UserIn™) .Range ("I5S™) .Value
Sheets ("UserIn”) .Range ("I6") .Value
Sheets ("UserIn™) .Range ("IT") .Valus
Sheets ("UserIn™) .Range ("IE&") .Value
Sheets ("UserIn”).Range ("I9") .Value
Sheets ("UserIn™) .Range ("I10") .Value
Sheets ("UserIn™) .Range ("I11") .Value
Sheets ("UserIn™) .Range ("I12") .Value
Sheets ("UserIn”).Range ("I13").Value
Sheets ("UserIn™) .Ranges ("I14") .Valus

TextBoxl.Value
TextBox3.Value
TextBox€.Value
TextBox7.Values
TextBox3.Value
TextBoxl0.Value
TextBoxE.Value
TextBoxl2.Value
TextBoxl3.Value
TextBoxll.Value

TextBoxl5.Value
TextBoxlé6.Value
TextBoxlT7.Value
TextBoxlE.Value
TextBox20.Value
TextBoxZl.Value
TextBoxl9.Value
TextBox22.Value
TextBox23.Value
TextBoxl4.Value

Sheets ("UserIn™) .Range ("E5™) .Value
Sheets ("UserIn”).Range ("KE") .Value
Sheets ("UserIn™) .Range ("EKT") .Valus
Sheets ("UserIn™) .Range ("KE&") .Value
Sheets ("UserIn™) .Range ("K9") .Value
Sheets ("UserIn™) .Range ("K10") .Value
Sheets ("UserIn™) .Range ("E11") .Values
Sheets ("UserIn™) .Range ("K12") .Value
Sheets ("UserIn”).Range ("K13").Value
Sheets ("UserIn™) .Rangs ("K14") .Valus

TextBox25.Value
TextBox26.Value
TextBoxZ7.Value
TextBox28.Value
TextBox30.Value
TextBox3l.Value
TextBor29.Value
TextBox32.Value
TextBox33.Value
TextBox2Z4.Value

Sheets ("UserIn™) .Range ("L5") .Value
Sheets ("UserIn”) .Range ("LE") .Value
Sheets ("UserIn™) .Range ("LT") .Valus
Sheets ("UserIn™) .Range ("LE™) .Value
Sheets ("UserIn™) .Range ("L9") .Value
Sheets ("UserIn™) .Range ("L10") .Value
Sheets ("UserIn™) .Range ("L11") .Value
Sheets ("UserIn™) .Range ("L12") .Value
Sheets ("UserIn”).Range ("L13").Value
Sheets ("UserIn™) .Range ("L14") .Value

Sheets ("UserIn”) .Range ("M5") .Valus TextBox35.Valus

Sheets ("UsexrIn™) .Range ("ME") .Value = TextBox3e6.Values
Sheets ("UserIn™) .Range ("M7") .Value = TextBox37.Value
Sheets ("UsexrIn™) .Range ("M8") .Valuse = TextBox38.Values

TextBox40.Value
TextBox4l.Value
TextBox39.Value
TextBox42.Value
TextBox43.Value
TextBox34.Value

Sheets ("UserIn”) .Range ("M9") .Valus
Sheets ("UsexIn™) .Range ("M10"™) .Values
Sheets ("UserIn”).Range ("M11") .Value
Sheets ("UsexIn™) .Range ("M12") .Values
Sheets ("UserIn”) .Range ("M13") .Value
Sheets ("UsexIn™) .Range ("M14"™) .Values

Load UserFormi
UserForm4.Show
End Suk

Figure 13: Code Used to Transfer Resource Inputs from Userform to Worksheet

Clicking on the “next” will then transfer the user to userform 4 that is shown in figure 14. This
userform is for the user to enter the productivity conversion factors which represents the ratio
between two resources, where one of them is the primary resource and the ratio is the user’s
determination of the efficiency of the secondary resource carrying out a task that primarily requires
the skills of the primary resource. For example, if resource B were to carry out an activity that has
resource A as its primary resource, then the user will enter the efficiency of resource B as a number
within the range [0,1] in respect to resource A’s efficiency which would be regarded as 1 as it is
the primary resource. If the user were to enter 0.5, then this means that resource B will carry out
any task requiring the skill of resource A with a 50% efficient, hence half the productivity of

resource A and therefore can conduct the same task independently but in twice the time.
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Please fill out the productivity convession factors

C D

E

G

N |

Figure 14: Userform 4 — Resource Productivity Conversion Factors

The code shown in figures 15 and 16 below transfers the information entered by the user from

Userform 4 to the User Inputs spreadsheet shown in figure 17.

ICommand Buttond

Bd ICIick |

Private Sub CommandButton4 Click()

pnluad UserForm4

Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Sheets ("UserIn™) .Range ("AAS") .Value = TextBox7.Value

Sheets ("UserIn™) .Range ("AR9") .Value = TextBox9.Value

Sheets ("UserIn™) .Range ("AALO") .Value = TextBoxlO.Value

Sheets ("UserIn™) .Range ("AALL") .Value = TextBox8.Value

Sheets ("UserIn™) .Range ("AARI2") .Value = TextBoxl2.Value

Sheets ("UserIn™) .Range ("AALI3") .Value = TextBoxl3.Value

Sheets ("UserIn™) .Range ("AA14") .Value = TextBoxll.Value b

Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

.Range ("AAS™) .Value
.Range ("AAE™) .Value
.Range ("AAT") .Value

.Range ("ABS5"™) .Value
.Range ("ABE™) .Value
.Range ("AB7") .Value
.Range ("ABS™) .Value
.Range ("ABS™) .Value
.Range ("AB10") .

TextBoxl.Value
TextBox3.Value
TextBox6.Value

TextBoxl5.Value
TextBoxlé.Value
TextBoxlT7.Value
TextBoxlE.Value
TextBox20.Value

Value = TextBox2l.Value

Sheets ("UserIn"™) .Range ("AB11") .Value = TextBoxl%.Value
Sheets ("UserIn™) .Range ("AB12") .Value = TextBox22.Value
Sheets ("UserIn™) .Range ("AB13") .Value = TextBox23.Value
Sheets("UserIn™) .Range ("AB14") .Valus = TextBoxl4.Values

Sheets ("Ussrln™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

.Range ("ACS™) .Value
.Range ("AC&™) .Value
.Range ("ACT") .Value
.Range ("ACS"™) .Value
.Range ("AC3"™) .Value

TextBox25.Value
TextBox26.Value
TextBox27.Value
TextBox28.Value
TextBox30.Value

Sheets ("UserIn™) .Range ("AC10") .Value = TextBox3l.Value
Sheets ("UserIn™) .Range ("AC11") .Value = TextBox29.Value
Sheets ("UserIn™) .Range ("ACl2").Value = TextBox32.Value
Sheets ("UserIn™) .Range ("AC13").Value = TextBox33.Value
Sheets ("UserIn"™) .Range ("AC1l4") .Value = TextBox24.Value

Figure 15: Code to Transfer User Inputs to Worksheet (Part 1)
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Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)

Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn”)
Sheets ("UsexrIn™)
Sheets ("UserIn™)

Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)
Sheets ("UserIn”)
Sheets ("UserIn™)
Sheets ("UsexrIn™)
Sheets ("UserIn™)
Sheets ("UserIn™)

Load UserForm5
UserFormS.Show
End Sub

.Range ("RDE™)
.Range ("RD&"™)
.Range ("ADT")
.Range ("RDE")
.Range ("RD9")
.Range ("RAD10O™)
.Range ("AD11")
.Range ("AD12")
.Range ("AD13")
.Range ("RD14")

.Range ("RES"™)
.Range ("REE"™)
.Range ("RET")
.Range ("REZ"™)
.Range ("RES")
.Range ("RE10")
.Range ("RE11")
.Range ("RE12")
.Range ("RE13")
Range ("RE14"™)

.Range ("AF5") .
.Range ("RFE") .
.Range ("RFT") .
.Range ("RFE8") .
.Range ("RF3") .
.Range ("AF10")
.Range ("AF11"™)
.Range ("RF12")
.Range ("RF13")
.Range ("RF14")

.Range ("AGE") .
.Range ("AGE"™) .
.Range ("AGT") .
.Range ("AGE") .
.Range ("AGS"™) .
.Range ("AG10™)
.Range ("RG11")
.Range ("AG12™)
.Range ("RG13")
.Range ("AG14")

.Range ("RHS") .
.Range ("AHE") .
.Range ("RH7") .
.Range ("AHS"™) .
.Range ("AHS") .
.Range ("RH10™)
.Range ("AH11")
.Range ("AH12™) .
.Range ("AH13") .
.Range ("AH14™)

.Range ("AIS").
.Range ("AIE") .
.Range ("AI7").
.Range ("AIS") .
.Range ("ALIS").
.Range ("AT10")
.Range ("AI11™)
-Range ("RI1zZ")
.Range ("AI13™)
.Range ("RI14")

.Range ("AJE") .
.Range ("LJE"™) .
.Range ("RJT") .
.Range ("AJE") .
.Range ("AJS") .
.Range ("AJ1O0™)
.Range ("RJ11")
Range ("AJ12™)
.Range ("RJ13")
.Range ("AJ14"™)

Value
.Value
Value
Value
.Value

Value
-Value
Value
Value
-Value

.Value
Value
Value
.Value
Value

-Value
Value
Value
-Value
Value

Value
Value
Value
Value
Value
Value
Value
-Value
Value
-Value

Value
Value
Value
Value
Value
Value
-Value
Value
-Value
Value

Value
Value
Value
Value
Value
-Value
Value
Value
Value
Value

Value
Value
Value
Value
Value
Value
Value
.Value
Value
-Value

Value
Value
Value
Value
Value
Value
-Value
Value
-Value
Value

Figure 16: Code to Transfer User Inputs to Worksheet (Part 2)

TextBox35.Value
TextBox36.Value
TextBox37.Value
TextBox38.Value
TextBox40.Value

= TextBox4l.Value
= TextBox35.Value
= TextBox42.Value
= TextBox43.Value
= TextBox34.Value

TextBox45.Value
TextBox46.Value
TextBox47.Value
TextBox48.Value
TextBox50.Value

= TextBox5l.Value
= TextBox45.Value
= TextBox53.Value
= TextBox54.Value
= TextBox52.Value

TextBox56.Value
TextBox57.Value
TextBox58.Value
TextBox59.Value
TextBoxéel.Value

= TextBox62.Value
= TextBox&0.Value
= TextBox63.Value
= TextBox64.Value
= TextBox55.Value

TextBox66.Value
TextBox67.Value
TextBox68.Value
TextBoxed.Value
TextBoxT71l.Value

= TextBox72.Value
= TextBox70.Value
= TextBox73.Value
= TextBox74.Value
= TextBox€5.Value

TextBoxT5.Value
TextBoxT76.Value
TextBox77.Value
TextBox78.Value
TextBox80.Value

= TextBox81l.Value
= TextBox79.Value
= TextBoxEB2.Value
= TextBoxB3.Value
= TextBox44.Value

TextBox86.Value
TextBox87.Value
TextBox86.Value
TextBox89.Value
TextBox9l.Value

= TextBox852.Value
= TextBox80.Value
= TextBox93.Value
= TextBox%4.Value
= TextBoxE5.Value

TextBox95.Value
TextBox96.Value
TextBox97.Value
TextBox98.Value
TextBox100.Value

= TextBoxl0l.Value
= TextBox89.Value
= TextBoxl02.Value
= TextBoxl03.Value
= TextBoxB4.Value
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Productivity Conversion Matrix
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Figure 17: Sample of User Inputs Worksheet Receiving Productivity Factors

The last set of inputs required to be entered by the user are the training costs. The userform shown
in figure 18 requests the user to enter the daily wage to be paid to any resource during the multi-

skilled training stage.

Please fill ont the traming costs to be paid for learning each resource

Figure 18: Userform 5 — Training Costs to Learn Each Trade Input

Once all the required information is entered, the model can handover the inputs from the inputs
module to the calculations module before optimization can start. Each part of the inputs module is

summarized in the next page for a clearer overview of the module.
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Activities:

The model allows the input of activities with any number of predecessors, assuming only Finish-
to-Start relationships, quantities of each activity, the required primary resource for the completion
of each activity. Since the model is generic, it allows the input of activities relevant to any project

type.

Resources and Resource Coding:
Upon entering the resources required for each of the activities, the model arranges them in a form,
giving each resource a code (A, B, C, etc...) The user also inputs the maximum number of crews

available for each of the resources in addition to the daily wage per resource.

Quantities:
Each activity is entered along with its quantity. The quantity is used by the model to determine the
change in duration of the activity based on the overall productivity of resources being used to

complete the activity.

Resource Productivity and Productivity Matrix:

The user inputs the productivity of each resource. Based on the user’s experience or available data,
the user specifies the change in productivity for one crew of a primary resource to take on another
resource. If resource A were to carry out an activity requiring a primary resource B, and the
productivity of A would be 75% of resource B’s original productivity, then the input would enter
0.75 in the intersection between A and B. If a resource does not have the toleration or the talent to

learn another resource, then the user will input zero in the intersection between the two resources.

3.1.2 Calculations Module

The model has an objective function of minimizing the total project duration. The model would
use the input variables, in this case the available crews for each resource. The model constraints
comprise of different factors, with the first being limiting the daily resource usage to the maximum
available number of crews entered by the user. Another constraint would be to limit the additional
number of secondary resources allocated to each activity to avoid crowding on site. Upon running
the model, it would be expected that it provides the most optimum option for resource allocation,
to provide the user with the lowest project duration, and related costs. The direct labor cost is

calculated based on the time each resource is present on site. The time spent on site by each
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resource is the difference between the last day on site and the first day on site, which is then
multiplied by the associated daily wage to give the direct labor cost. The indirect costs directly
proportional to the project duration and is calculated by multiplying the project duration by the
indirect costs incurred per day. Lastly, the training costs depend on two factors: (1) the number of
crews that require training and (2) the trades that they are receiving training for. The summations

of those three costs will amount to the total project costs.

3.1.3 Optimization Module

In the optimization module, the model uses Evolver. Evolver is an Excel plug-in that applies the
Genetic Algorithms techniques described in Chapter 2 [Literature Review] to reach the near-
optimum solution. Evolver uses Genetic Algorithms to find the near-optimum solutions for a wide
variety of optimization problems, provided that the variables, constraints and objective function
are defined. Evolver was first developed and launched in 1989 by Axcelis, Inc. and was the first
commercially used GA package that could be used on personal computers. It was then acquired by
Palisade Corporations, who updated the program to its current version which is being used for the
model’s optimization module. The add-in performs several runs by changing the range that is
defined as the model “variables”. The algorithm keeps running different possibilities in an iterative
mode until a near-optimum value of the set objective is reached when the stoppage criteria is met.

The stopping criteria could be a user-defined number of run limits or run time.

For this model, the variables were the number of crews, the constraints are the available number
of crews, number of crews that could be assigned to each task in addition to the quantity of each
activity that needs to be completed. Finally, the objective function is to minimize the project
duration. Since the objective function is only to minimize duration, it was integral for the model
to also consider the total project cost. The model is meant to minimize duration without risking
the increase in project cost, and to do so anther constraint is to be placed into effect. Naturally,
indirect costs and training costs both depend on the duration of the project. The longer the project
duration, the lower the training costs due to the need of a lower number of crews that will require
training, however the higher the indirect cost, in addition to the possibility of imposing liquidated
damages if the project were to surpass its given deadline. On the other hand, lower project
durations mean that there will be more multiskilling, i.e., more crews that will require training and

hence the training costs will increase, however the site indirect costs will decrease. Therefore, for
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the model to compensate for the unavailability of an objective function to minimize the total
project cost, a constraint was added to ensure that the project costs do not increase with reduction
in duration. This was done by restricting the training costs to always being less than or equal to

the saved indirect costs, and in turn the project’s budget will never be exceeded.

3.1.4 Output Module

The output model provides the user with the optimum resource allocation strategy, in addition to
specifying and identify to the user which crews will need to learn which skill for the schedule to

be carried out as per the optimization model.

3.2  Model Development

3.2.1 Model I —Single Skilled Labor

The single-skilled and multi-skilled labor models are based on the model developed by Abotaleb
et al. (2014). This model utilizes the number of crews of the primary resource that is needed for
each activity without introducing the usage of multi-skilled labor. The model allows the user to
enter the list of activities, the relationship logic between activities, quantities, maximum available
crews of each resource and daily wage for each labor resource. The point of this model is to allocate
the optimal number of primary resources assigned to each activity. This model is used to generate
control results that will be used to compare with the multi-skilled resource model, given that a
maximum available budget is assigned by the user. The models will be compared in terms of total
project duration and project cost, to determine whether multi-skilled allocation with the

introduction of partial allocation is worth being applied or not.

With the use of macro-enabled worksheets, the program allows the user to enter the activities name
and ID one by one, with their preceding activities, primary resource and quantities. The next set
of Userforms require the user to enter information regarding the resources. For each resource, the
user is requested to enter the resource type, resource productivity and maximum number of crews

available per day. All these inputs are reflected onto a worksheet named “User Inputs”.

The model calculations sheet reads the inputs entered by the user from the “User Inputs” worksheet
and reflects them once again into another worksheet, “Model-Single”. The resource types are given

codes, depending on the trade, to simplify integrating resource types with the model. Table 1 below
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shows that the first trade specified by the user is given the code “A”, then next is given the code
“B”, etc. Once this table is automatically filed out in the “User Inputs” worksheet, the program
converts the resources needed for all activities into code. This is done using a VLOOKUP function

as follows:

=VLOOKUP([Cell with Resource entered by User],[The fixed array shown in Table 1 below],2,0)

Table 1: Coding Resources by Trade

MName Resource MNumber

Trade 1
Trade 2
Trade 3
Trade 4
Trade 5

Fixed Array

H oo W e

Once the resources required for each activity are coded, another equation is then used to convert
the required primary resource of each activity into matrix form. The need to present the required
primary source to complete the activity in matrix form will be further explained later. The equation
used for this representation dictates that if for example activity 1 requires resource A, then the
number “1” will be placed in the matrix entry intersecting between activity 1 and resource A,
otherwise the intersection will be left blank. This is implemented on Microsoft Excel using the IF

function below:

=IF('User Inputs'l[Required Resource Code] = 'Model- Single'![Fixed Resource Array],1,"")

Table 2: Resource Requirement Matrix

Resource Primarv Resource
D Code A B C D E P
1 A 1
2 B 1
3 B 1
4 D 1
3 C 1
] B 1
7 C 1
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Table 3 below shows the productivity values entered by the user for each of the resources, denoted
as Pj. Productivity is a measure of how several units can be complete by one crew of resource per

day, which is determined by the user.

Table 3: Productivity Annotation

MName Resource Number Productivity
Trade 1 A Py
Trade 2 B Fe
Trade 3 C P
Trade 4 D Pp
Trade 3 E Pg

The number of required resources to be assigned for the completion of each activity is given the
letter ni. This represents the model’s variables, where iterations are run by the model to determine
the best set of values that can provide the near-optimum project duration. The total productivity,
Pt, would then be calculated by multiplying the number of crews assigned by the productivity of

one crew, as is demonstrated in table 4, and is expressed through the following equation:
P, = n;xp;j
Where n; = the number of crews n assigned to activity i

pj = productivity p of resource j

Table 4: Total Productivity of Resource per Activity

D Resource Resource Total Productivity
Code Usage A B C D E
1 A " o, Py
2 B Mz n2Pg
3 B "3 1:Pg
4 D "y 2P
2 C 5 n:Pc
6 E EP nsFg
7 C "= n-Fp
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The next step comprises of setting a matrix that reflects the maximum available resources that can
be used by the activities. This matrix is assigned as one of the constraints to ensure that the resource
usage by the activities does not surpass the maximum available number of crews as is shown in

Table 5. The matrix was created using the IF function below:

=IF([Primary Resource]=1,[Max Available Value,X;],0)

Table 5: Maximum Available Resources Matrix

D Resource Max. Primary Resource Max. Availability

Code Awailable A B C D E A B C D E
1 A Xy | X {0 o 0 0
2 B X 1 {0 X; o 0 0
3 B X 1 0 X o 0 0
4 D "y 1 0 0 o X, H
5 C X 1 {0 {0 X 0 0
G B X 1 {0 X 0 0 0
7 C A 1 0 {0 X 0 0

Another constraint would be to ensure that the count of the resources assigned to each activity is
equal to one, since this is the single-skilled resource model, therefore each activity can have only
one resource to complete it. This is ensured using the following COUNT function and the

constraint is set to “1”:
=COUNTIF([Productivity Array],">0")

Subsequently, knowing the activity quantity, Qi, which is also specified by the user, the duration
of each activity is calculated using this simple equation:

:Qi

nin

d;

The next step would be to determine the direct labor cost required by the activities, depending on
the number of days each resource stays on site. This is done by developing a resource bar chart for
each of the resources and based on the values of the variable resource numbers, the number of
resources required per day can be determined. This is very useful on two accounts, the first being

determining the maximum number of days that a resource is available on site (including any idle
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days in between), and to ensure that the maximum resource limit per day is not exceeded, which

is regarded as another constraint.

The total crew days and the number of each resource used per day is determined by adding the
number of resource crews required to be used by activities on each day, which was reached using
the following SUM function:

=SUM([dn])

To find the maximum number of resources, which is constrained to being less than or equal to the

maximum available resources per day, the following MAX function is used:
=MAX([Summation of Resources Array])

Where the “Summation of Resources Array” is the total number of allocated resources per day.

This is calculated for each individual resource separately.

To determine how many days each resource is present on site, the summation of resources per day
array is then summed together. This is the final number that the model uses to determine the total
labor cost. This is achieved by multiplying the total number of crew days of each resource by its
daily wage, which is specified by the user. The costs of all the resources are added together to
determine the total direct labor costs of the project.

The optimization model is run on the objective of minimizing overall project duration.
Objective:

- Minimizing project duration

Variables:

- The number of crews to be used for the completion of each activity

Constraints:

- Maximum resource availability

- Only one primary resource can be assigned per activity
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3.2.2 Model Il — Multi-skilled Labor

The single-skilled and multi-skilled labor models (discussed in Section 3.2.1 [Model I — Single-
skilled Labor] and this section) are based on the model developed by Abotaleb et al. (2014). The
main difference between the two models is that in this model, any idle labor can be put to work to
assist in the completion of another activity, in turn increasing the total productivity of the resources
working to complete the activity resulting in a lower duration than if only one resource was

assigned to it.

This model uses the exact same inputs that were entered by the user and were used in Model I, in
addition to one very integral element, which is the productivity conversion factor matrix. Since the
model allows for multi-skilled resource allocation, the drop in productivity of a secondary resource
will need to be considered. The user inputs the productivity of each resource. Based on the user’s
experience or available data, the user specifies the change in productivity, f, for one crew of a
primary resource to take on another resource. If resource A were to carry out an activity requiring
a primary resource B, and the productivity of A would be 75% of resource B’s original
productivity, then the input would enter 0.75 in the intersection between A and B. If a resource
does not have the tolerance or the talent to learn another trade, then the user will input zero in the
intersection between the two resources. The user’s inputs generate a matrix in the form shown in
figure 19 below. This is the conversion matrix which is later used by the calculations module to

determine the total productivity of resources per one activity.

Productivity Conversion Factors

R, R, Ry . .. . R,
R, fl;l fl;_‘ fi;s - - . fl;n
R, fl;l f;: f:;3 - - . _fl;n
R'_l JT('n;l fn:_‘ _)?Pn,:") ] .- . _fn,n

Figure 19:Change to matrix with annotations only
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The total productivity of resources per activity would be calculated using the following function:
=SUMPRODUCT([f.], [(Resource Usage Array),])*(Productivity of Primary Resource)

This can also be expressed mathematically using the equation below:

n

P, =Znixfn,jxpj

j=1
Where:

fnj = the productivity conversion factor for secondary resource n carrying out the skill of

resource j

A different constraint that would be applied to this model as opposed to model I, would be to
ensure that the count of the resources assigned to each activity can be greater than one, since this
is the multi-skilled resource model. Therefore, each activity can have more than one resource to
complete it. However, a constraint must be added to limit then number of resources that can be
assigned to an activity to avoid site crowding. The count of the number of resources per activity is
determined using the equation below, and the maximum number of resources constraint is

determined by the user, and comes into effect once the iterations are being run by the model:

=COUNTIF([Productivity Array],">0")

Once the total productivity of each activity, Py, is determined the duration of each activity can
easily be determined by dividing its quantity by the total productivity as per the equation below:

_ %

d;
l P.n

J

To determine how several days each resource is present on site, the same concept used in Model |
is also used here, where summation of resources per day array is summed together. This is the final
number that the model uses to determine the cost per resource. This is done by multiplying the
total number of crew days of each resource by its daily wage. The costs of all the resources are

added together to determine the total direct cost of the project.

Objectives:
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- Minimizing project duration

Variables:

- The number of crews to be used for the completion of each activity

Constraints:

- Maximum resource availability
- Alimit of resources per activity as is determined by the user

- The training costs must be less than or equal to the savings in indirect cost.

3.2.3 Model 111 — Multi-skilled Labor with Partial Allocation

Model 111 is more complicated than the two previous models, as it introduces the concept of partial
allocation, and it is the main contribution of this thesis. As was mentioned in [Chapter 2 —
Literature Review], partial allocation was not implemented in any of the research papers that were
tackling multi-skilled labor. Partial resource allocation is where a resource is allocated to a part of
an activity’s duration; whilst in nonpartial resource allocation a resource can only be allocated to
the entire activity’s duration. Even though this model uses the same user inputs as Models | and

I, its calculations module is entirely different.

The first step is creating fields which are later defined as the model variables, which represent the
number of crews of each resource assigned per activity fragment. Next, the productivity per part
is calculated by multiplying the number of crews per part by the productivity conversion matrix

that was introduced in Model 11, then multiplying that by the productivity of the primary resource.

The model allows for partial allocation for each day of the duration of any activity and takes into
consideration the continuous change in duration per activity with every iteration. Primarily, the
model was going to divide each activity into a fixed number of fragments, where each part would
simply be the total quantity of the activity divided equally amongst the number of set parts per
activity. Each part would then be assigned the optimum number of resources, from which total
productivity per part can be achieved. Knowing the productivity per part, duration of each activity

would easily be calculated through the following equation:
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Where:
Q = Total quantity per activity
T = Number of fragments that activity was divided into

Pi = productivity of resources per part i

The problem with this method was that the duration per fragment had to be rounded up to the
nearest day, as would be done with any schedule. Traditionally, resources are assigned per day,
and it would not be practical to assigned resources per fractions per day. Rounding up of durations
to just one day would not significantly affect any schedule, and the final duration would be of a
realistic nature. Dividing activities into several parts of the other hand would mean rounding up
an n number of days, which could cumulatively increase the project duration to a phantom number

that does not in any way represent the activity duration required to complete any set of activities.

Subsequently, an enhanced model was developed to ensure that this same problem would be
overcome, and the calculated duration was of higher accuracy. To achieve this, the model was
expanded into taking on many more variables, where each activity was not divided into segments
that could comprise of several days, but instead each activity was split into divisions of one day.
Each activity was allowed a duration of up to 20 days, through which resources can be assigned.
The model follows the same concept of model 11, however instead of the number of variables
equivalent to ten times the number of activities, the number of variables is now twenty-fold, since

each activity is not divided into 20 segments.

Table 6 below shows the organization of the model variables. nz1R; reflects the number of crews,
n, from resource R allocated to activity 2 at day 1 of activity 2. The variables are determined by
the model to allocate the optimal number of crews from each resource types during each day of
each activity.
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Table 6: Partial Allocation Model Variables

R, - R,

ID . . )
1 2 3 . da 12 3 da 1 2 3 . da

1 n Ry o, R o R o0 o R . . . R, o R, n R, . o Ry
2 n, Ry R o Ry L0 0, Ry . . . R, R, o R, L o Ry
a
3 n;, Ry n;.Ry ;R 0 o Ry . . . . n3R, n;.R, 3R, . 05 Ry
4 n, Ry nR o R L0 o Ry . . . v o R, nR, o R L o Ry
5 n, Ry n.R, o ;R .0 0 Ry . . . . . o R, n.R, n R, L o Ry
6 ng Ry ng-Ry ng;Ry . ng Ry . . . . . g R, ng-R, ng;R, .. ng R,

The duration of each activity is determined by the assignment of resources. Previously the number
of days was calculated by dividing quantity of an activity by the combined productivity of its
allocated resources and rounded up to the nearest integer. Alternatively, in this model resources
are assigned first, then productivity is calculated based on the number of days that each resource
is assigned for. For example, if one resource type will be able to complete part of activity 1 in three
days, and a second resource type will be assigned to complete the remaining quantity of the same
activity for two days, then the duration of that said activity is the maximum number of days that a
resource is assigned, which in this case is three days. The combined productivity of resources per
activity is calculated by multiplying two matrices together: (1) a matrix returning 1 and O
depending on the duration of the activity and (2) the number of deployed crews per activity at each

day.

Objectives:

- Minimizing project duration
Variables:

- The number of crews to be used for the completion of each activity

Constraints:

- Maximum resource availability

- Alimit of resources per activity as is determined by the user

- Quantity of work that can be completed by the assigned resources must be greater than or
equal to the original quantity of each activity

- The training costs must be less than or equal to the savings in indirect cost.
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3.2.4 Project Cost

The project costs comprise of the daily wages of the primary and secondary resources, indirect
costs, and training costs. The daily wages of the resources are defined by the user and are calculated
based on the total man-hours for each resource. The indirect cost per day is also based on the
project and is specified by the user. Those costs are regarded as costing measures that are

traditionally assessed in any project. The major addition in project costs will be the training cost.

After reaching the near-optimum solution, the model specifies to the user which crews need to
learn which skills. This is also used in determining the training costs. For the schedule to be applied
as per the reached output, resources will need to learn a specified set of skills. The training costs
are determined with the help of the training costs matrix filled out by the user. The matrix identifies
the required cost needed to be paid to each resource depending on the skill that will be inducted
during the training period. According to the number of crews of each resource that need to attain
a new skill, and the training cost defined by the user, the total training cost can be determined and
added to the total project cost.

3.3  Model Verification

Verifying the accuracy of any developed model is integral to determine its fitness for the designed
purpose. Verification is the act of confirming or refuting the correctness of the proposed algorithm
underlying a system in regard to certain measurements using mathematical methods. There are
many devised methods that can be used to verify the soundness of developed models, where they

aim to answer the question of whether the product conforms to the specifications.

Static verification tests were used to analyze the correctness of the model. This included sampling
and correlating measured data and observed test results with calculated expected values to establish
conformance with the requirements, and to ensure that model the model produces the expected
results with no numerical or behavioral errors. This was done by manually checking each step
along the progression of the model development. For example, if the number of resources assigned
to a particular activity increases, then the productivity must increase and in turn the duration must
decrease, however if the duration increases then the model is not reflecting the correct behavior of

its intended use.
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This was best represented in the first stages of the development of the multi-skilled with partial
allocation model. The model should have produced results where the project duration would be
less for the same testing samples that were entered in the multi-skilled labor model that does not
allow for partial allocation since assigning more resources to any activity would increase the labor
productivity which should in turn reduce duration as a result of the indirectly proportional
relationship between duration and productivity given a fixed value for quantity. The model
however gave higher durations, as was elaborated on in section 3.2.3. Therefore, through
verification it was deduced that this method was not generating accurate results, and accordingly

another method was devised which then showed correct results.

The verification tests that were implemented were dimensional consistency and extreme
conditions. Dimensional consistency checks if all the parameters of an equation are dimensionally
consistent. The Extreme Conditions verification test examines the model’s response to inputs that
are of an extreme nature. If any of the tests failed, then the model would need to be restructured
and retested until all the verification tests are satisfied. These tests were carried using hypothetical
numbers, and the model was verified by comparing manual calculations with the results that were

attained from the models.
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CHAPTER 4 — CASE STUDY AND MODEL VALIDATION

After verifying that the capability of the model to deliver results, its ability to produce accurate
results needed to be validated. The validation stage was conducted by testing the model on the
same case study that was presented in the research conducted by Abotaleb et.al (2014). Results of
this case study were compared with the results attained from the thesis model for validation. The
same project data is used for all three models, where the outputs of each model is then compared
to show the achieved overall project duration, total cost project cost and cost efficiency. The

project parameter and analysis of the model results are herein detailed in this chapter.

4.1  Project Information and Model Inputs

The model was applied to the schedule of a five-story concrete building. The model inputs were
entered into the module. As was demonstrated in Chapter 3 [Model Development], multiple

Userforms were created to allow the user to enter the inputs listed below:

= Activity name

= Activity ID

= Activity predecessors

= Quantity of activity

* Primary resource

= Productivity of each primary resource

= Productivity conversion factors for secondary resourcing
= List of all resources needed for the project

= Maximum available crews for each resource

= Daily wage for each resource

= Training costs

Upon entering all the activity inputs, the entered data is then transferred to the calculation’s
module. The activity 1D, and predecessors are used to determine the early start and early finish
dates of each activity depending on the duration. The case study comprises of 85 activities that

represent the following work packages:
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= Foundations

= Concrete Works
= Masonry works
= Finishes

= Plumbing

= FElectrical works

Accordingly, the required resources were entered and coded as is shown in table 7 below:

Table 7: Resources Needed for the Project

Resource Name Assigned Code

Carpenter A
Steel Fixer
Insulation Worker
Brick Worker
Carpenter Plasterer
Painter
Flooring Worker

I @ m m O O @

Plumber

Electrician |
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The remaining resource information consists of maximum available resource crews per day,
productivity of each resource and the daily wage for each resource. The resource information data

of the case study is demonstrated in table 8 below:

Table 8: Resource Information

Resource SR Daily Wage Max No. of
Code : (EGP) Resources per day

A 7.5 100 7

B 0.3 150 6

C 100 150 8
D 25 120 4

E 61 100 2

F 26 120 7
G 15 120 8
H 0.4 100 1

I 8 90 4

A very important input, that is critical for the formulation of multi-skilled labor optimization is the
conversion factor matrix. The project manager or user using the program determine the drop in
productivity when a skill learns another skill and assists in the completion of a task requiring a
secondary skill. The productivity conversion matrix represents the factor that needs to be
multiplied by the primary productivity of a primary resource to give the actual productivity of the
secondary resource working on that task. Figure 20 shows that if resource G [Flooring Worker]
were to participate in completing an activity where resource D [Brick Worker] was its primary

resource, then resource G would be working at 50% the capacity of resource D.
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Productivity Conversion Matrix

A B C D E F G | H I

1 06 | D6 | 05 | 04 | D6 | 06 0 0

0.6 1 05| 05| 04| 06 0 0 0

035 03 | 05| 07 1 08 | 05 0 0

0.4 0 05|05 [063| 1 0.4 0 0.4

0 0 08 | 05 [ 065 D6 1 0 0.2

0.3 0 0 05 (035 0 0 1 0.7

0 0.5 | 035 0 0 0 04 | 07 1

- T O m H 90 ®H e

Figure 20: Productivity Conversion Rates

The final set of input data was the training costs. Again, depending on experience, the user enters
the daily wage of each resource type during their training period. After the model is optimized,
another matrix is developed in the calculations module to determine how many crews of each
resource need to learn any other skill. The sum product of the matrix in figure 21 below and the
developed skills that need to be trained matrix generates the total training costs that will be

allocated onto the project’s total cost.

Training Cost Matrix

— =~ O O = H S o0 w e
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Figure 21: Training Costs Matrix
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4.2  Single-skilled Labor Model

The purpose of this model is to use it as a control model to compare the multi-skilled labor
allocation models with. The elements that are to be compared are: (1) overall project duration, (2)
total project cost, (3) total duration of each resource on site, (4) maximum daily usage reached, (5)

hired, working and idle days which will be used to determine (6) expenditure efficiency.

The primary resource inputs are used to create the primary resource matrix, which is used to ensure
that each activity uses only one resource type to complete its quantity. The variables must be less
than or equal to the maximum available number of crews and must also satisfy the maximum limit
of available resources per day which is determined through the resource usage bar charts. When
the variable assignments are optimized, the productivity of each resource is calculated by
multiplying the number of crews by the productivity of each crew, from which the duration can

then be attained by dividing the quantity by total productivity.

Figure 22 shows that the primary resource matrix is based on the resource entry for each activity.
The figure demonstrates that if the entered resource for activity 6 is C, then the cell with return a
value of “1”, otherwise it will be left blank. The primary resource required for the completion of
activity 6 which is foundation insulation works, is an insulation worker, which according to table

9 is coded as resource C (figure 23). Therefore, the selected cell will return a value of “1”.

A B| C |[D(E|F|IG|H|I|J| EKE|LIM N | O

[ ]
12 A BICID EF GH I ]
13 1 o 0o 21 '
14 2 1 2531
5 3 1 23 1
16 4 3 3 9 1
17 3
18 6 =IF(User Inputs"$E10="odel- Single"HEL2,1,"™)
19 7
20 g 7 20 2211
21 9 8 22 24 1
22 m 9 24 26| 1
23 11 9 24 28| 1
24 12 11 28 31 1
25 13 12 31 321
26 14 12 31 36 1
3 14

36 49 1

Figure 22: Primary Resource Required by Each Activity
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A B {5 D IE/

3 .. .. . Resource
4 Activity ID Activity Name Predeccessors Required Resources Code

5 1 PC footing formwork installation 0 Carpenter A

6 2 PC footing formwork removal 1 Carpenter A

7 3 RC footing formwork mstallation 1 Insulation worker C

8 4 RC footing steel fiming 3 Steel fixer B

9 5 RC footing formwork removal 4 Steel fixer B

10 6 Foundation Insulation 5,2 Insulation worker | C .
11 7 Asset el radm 6 Brick worker D

12 8 SOG formwork mstallation 7 Carpenter A

13 9 SOG steel fizing 8 Steel fixer B

14 10 SOG formwork removal 9 Carpenter A

15 11 G floor columns formwork installar 9 Carpenter A

16 12 G floor columns steel fixing 11 Steel fixer B

17 13 G floor columns formwork removs 12 Carpenter A

Figure 23: Primary Resource Identification Method
This matrix is particularly important, as it allows for the generation of another matrix that
represents the maximum number of resources that can be allocated for each specific activity.
Figure 24 for example shows that if the corresponding cell in the first resource matrix is equal to
“1”, then the selected cell will return the value of maximum available resource, otherwise the cell
with be left blank. Figure 25 represents a sample of the user inputs module from which data for

calculations is transferred from.

A |B| C |D E|(F|GIH|I|J|K|LIMN|O|P|Q|R|[S8|T|UOU|N¥N|W| X |Y

10

12 A B CDEVF G H I I A B C D E F G H I 1]
13 1 ] o 21 7 o 1] o 1] o ] 0 o o
14 2 1 2311 7 ¢ o0 ¢ 0o 0 0©0 0 0 O
15 3 1 23 1 o ¢ 8 0 0 0 © 0 0 O
16 + 3 3 9 1 0o c ¢ o o 0o 0 0 0
17 3 4 2 15 1 — oG o

18 6 32 13 16 1 Il 0 0 B8 =IFLl&=1User Inputs"$AI$11.,0)
19 7 G lg 2 1 o o o0

20 g8 7 20 2211 7 ¢ ¢ ¢ o 0 0©¢ 0 0 O
pra | 9 8 22 2 1 1] & 1] o 1] o ] 0 o o
22 w9 24 26| 1 7 ¢ o0 ¢ 0o 0 0©0 0 0 O
23 11 9 24 28| 1 o o ¢ o 0 ¢ 0O 0 0
24 12 11 28 31 1 0o c ¢ o o 0o 0 0 0
25 13 12 31 321 7 ¢ o0 ¢ 0o 0 0©0 0 0 O
26 14 12 31 36 1 1] o 1] 4 1] o ] 0 o o
27 13 14 36 49 1 c ¢ o o 2 ¢ o 0 0 0

Figure 24: Identification of Maximum Allowable Number of Crews
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J K L M

3 Resource Productivit Daily Wage Max No. of
4 Number y y Resources
5 A 75 100 7

6 B 0.3 150 6

7 C 100 150 8

8 D 25 120 4

9 E 61 100 2

10 F 26 120 7

11 G 15 120 9 |
12 H 0.4 100 1 I
13 I 8 90 4

14 J 0 0

Figure 25: Maximum Allowable Number of Crews Identification

The maximum number of resources per activity for this model needs to equal one. The column
titled “Lim” shown in figure 26 serves the purpose of satisfying the first constraint, by setting the
value of all the limits to be equal to one. The limit column is calculated by counting the number

of entries greater than zero.

A B = D E Z |AA| AB AC AD AE AF AG AH AT AJ
10
11 ID Pred. ES EF|['® Variables (INo. of Crews)
12 Lim|A B C D E F G H I ]
13 1 o o 2|1 (7 0 o 0 0 o 0 0 o 0
14 2 1 2 3013 0 o 0 0 o 0 0 o 0
15 3 1 253010 0 2 0 0 0 0 0 0 0
16 4 3 i 911 |0 o o o 0 o o 0 o o
17 3 0 0 o 0 0 o 0
16 6 =COUNTIF(3AALBSATLIE =0 1] 0 0 1] 0 0 0
19 7 ; ' 1 0 0 0 0 0 0
20 8 7 20 2| 1|7 0@ 0 0 0 0 0 0 0 0
21 9 B 22 24| 1|0 3 o 0 0 o 0 0 o 0
22 I & 24 26|12 0 o 0 0 o 0 0 o 0
23 11 9 24 28| 1 (3 0 0 0 0 0 0 0 0 0
24 12 11 28 31| 1 |0 3 o o 0 o o 0 o o
25 15 12 31 32| 1 (4 0O o 0 0 o 0 0 o 0
26 14 12 31 3| 1 (0 O o 3 0 o 0 0 o 0
27 I3 14 36 49| 1 (0 O o 0 1 o 0 0 o 0

Figure 26: Limitation on Number of Allocated Crews per Resource
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The productivity per activity is easily calculated in this model, by simply multiplying the number

of crews needed by the productivity of that same resource. An additional matrix was developed,

shown in figure 27, to reflect the productivity attributable to each resource per activity. Figure 28

represents a sample of the user inputs module from which data for calculations is transferred from.

Since this is a single skilled labor allocation mode, the productivities matrix is of no significance,

as the productivity per activity shown in the matrix is equal to the total productivity shown in

figure 29 however it was built into the model as it would be a very quick and efficient way to

calculate productivities of more than one resource per activity, which will be useful in the

calculations of the multi-skilled labor allocation model.

G|H| I |J|K|L|M N| O | AA[AB| AC

Primary Resource

AM | AN | AO | AP | AQ

New Productivities /unit

AT

BE CDEVFGH I T |A B C D E F (=] H 1 T A E C D E F G H I T
1 o o 2 7 ) 0 0 0 0 o o o o 25 o 0 o o o o o 0 0
2 1 203 5 0 o o o o o o o o 375 o o o o o o o o o
3 1 203 o 0 2 o o o o o o o o o 200 0O o o o o o o
4 3 3 09 1 0 6 0 0 0 0 o o o o o 1.8 0 o o o o o 0 0
5 4 9 15 1 — 0 6 . 0 - o o o o o o o o o
g 32 15 16 L .| o DL 2 .| o o o o o o =IF=HAS=1,_%C15"UEE1ll‘JPthE'!SKS_,DJl o o o
7 6 16 20 0 0 [i] 4 0 0 o o o . o 0 0
g8 7 20 22 70 0 0 0 0 o o o o 525 o 0 o o o o o 0 0
9 8 22 24 1 0 5 0 0 0 0 o o o o o 15 0 o o o o o 0 0
10 9 24 26 2 0 0 0 0 0 o o o o 15 o 0 o o o o o 0 0
11 9 24 28 5 0 o o o o o o o o 375 o o o o o o o o o
12 11 28 31 1 0 5 o o o o o o o o o 1.3 o o o o o o o o
13 12 31 32 4 0 0 0 0 0 o o o o 30 o 0 o o o o o 0 0
14 12 31 36 o 0 o 3 o o o o o o o o 0 73 0 o o o o o
13 14 36 49 1 o 0 o o 1 o o o o o o o o o 6l o o o o o
Figure 27: Productivity per Resource
3 Resource .
MName Productivity

4 MNumber

5 |Carpenter A i3

6 |Steel fizer B 0.3

T |Iasulation worker C 100

8 |Brick worker D 25

0 |Plasterer E 6l

: 2

10 |Painter F 26

11 |Floonng worker G 15

12 |Plumber H 04

13 |Electrician I 3

Figure 28:User Inputs Sheet Where Productivities are Transferred From
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A B C D E AK AL AM AN |AO | AP | AQ| AR [ AS | AT AU AV

10

1 MDD New Producivities/unit [ VT R
12 A B C D E F G H I | Productvity

13 1 0 0 2| 525 1] ] o o o 0o 0o 0°o 0 525 2
14 2 1 2 3| 375 o o c o o o0 0 0°0 0 375 1
15 3 1 2 3 o 4] 200 ¢ 0 0 0 0 0o 0 200 1
16 S 3 9 o 1.8 o o o 0o 0o o o 0 1.8 G
17 3 4 9 15 o 1.8 o o o o 0 0 o 3
18 6 32 13 1o 0 0 2 ¢ 0 0 0 0 © =5'L7_\[['_—‘J{15:_—‘;T15']| 1
19 7 6 lg 2 o 1] o 1w o o o o 0 4
20 8 7 20 22| 525 1] ] o o o o 0 0°o 0 525 2
pra | g 8§ 22 2 o L5 o o o o 0 0o 0°0 0 13 2
22 mw 9 24 2 13 4] o o o 0o 0o o 0o 0 15 2
25 11 9 24 28| 375 1] o o o 0o 0o o o 0 375 4
24 12 11 28 31 ] L5 ] o o o 0o 0o 0°o 0 13 3
25 13 12 31 32| 30 o o c o o o0 0 0°0 0 30 1
26 14 12 31 36 o 4] ¢ 73 0 0O0 0 0 0o 0 75 5
27 13 14 36 49 o 1] o o 61 0 0 0O 0°0 0 Gl 13

Figure 29: Total Productivity

Finally, the duration of each activity is determined by dividing the quantity of each task by the
total productivity attained from the deployed resources, as is shown in figure 30. In practice, each

activity must be given integer durations, therefore the result was rounded up to the nearest whole

number.
A B C D | E AR AL AM | AN | AD| AP | AQ | AR | A AT AU AW AW
10
1 SRNIPIRE  New Productvities/unit [0 SR
12 A B C B E F G H I ] Productvity
13 1 i o 2 325 i i 0 i i i i 0 i 325 2
14 2 1 2 3 375 i i 0 i i i i 0 i 375 1
15 3 1 2 3 i i 200 0 i o i o 0 i 200 1
16 4 3 3 9 o 18 o 0 o o o o 0 o 18 V]
17 3 4 9 13 i 18 i 0 i i i i 0
18 6 32 13 16 i i 200 0 o o i o 0 =ROUNDUP[User Inputs'F10/AULS.0)
19 7 16 20 o o ¢ 100 0 o o o 0
20 8 7 20 22| 325 i i 0 i i i i 0 i 325 2
21 9 8 22 24 i 1.5 i 0 i o i o 0 i 1.5 2
22 10 9 24 20 13 o o 0 o o o o 0 o 13 2
23 11 9 24 28| 373 i i 0 i i i i 0 i 375 4
24 12 11 28 31 i 1.5 i 0 i o i o 0 i 1.5 3
25 15 12 31 32 30 o o 0 o o o o 0 o 30 1
26 14 12 31 36 i i i 73 i i i i 0 i 73 3
27 13 14 36 49 i i i 0 &l o i o 0 i 61 13

Figure 30: Duration Calculations Sample from Model

Once all the inputs are reflected onto the calculations module of the single-skilled labor model,
then constraints, variables and objective function are identified in the model definition window
which is accessed through the model. The window is divided into three different partitions. The
first is for the identification of the objective function, the second is for selecting the variables and

the third is for setting the constraints.
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The next and final step would be to calculate the total project cost, which comprises of labor direct
costs and indirect costs. The direct labor costs are calculated through the total number of man-days

multiplied by the daily wage per each resource (figure 31).

Labor Cost
A B C D E F G H I
Total no. of crew days 824 930 182 728 462 612 462 278 306
cost/day 100 130 150 120 100 120 120 100 90
Total Cost 52400 139300 27300 87360 46200 73440 33440 27300 27340
Total Labor Cost = 566,980

L R R

Figure 31: Direct Cost Calculations

Figure 32 shows the model definition window before starting optimization, where the objective
function is set to minimize project duration, the variables are the number of crews of each resource
for each activity, and the constraints are set to limit one resource to allocated per activity and also
to make sure that the number of maximum resource daily usage does not exceed the maximum

daily limit set by the user.
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Optimization Gosl DT - |
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M o o <= Aa13:A197 B <= 8 B Integer | w L sete
| ‘
Variables z
Group
Constraints
Description Formula Tvpe Add...
v =BA13BAZ2 <= AZ13:4722 N o
Il =713:797 = 1 Hard
Delete

Constraints

®

Figure 32: Model Window for Single-Skilled Labor Allocation Model
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Figure 33 represents the model outputs (duration and total project cost) of the single-skilled labor

allocation model.

Labor Cost Indirect Site Cost
A B ¢ D E F G H I ] Days 215
Towlno. of crewdays 824 930 182 728 462 612 462 278 306 O Cost/day 1000
cost/day 100 150 150 120 100 120 120 100 90 O
Totl Cost 52400 139500 27300 87360 46200 73440 55440 27800 27540 0 Total Indirect Cost = 215,000
Total Labor Cost = 566,980 Total Cost

Figure 33:Output of Total Duration and Costs (Single Skilled Labor Model)

The indirect cost was EGP 1000 per day, which meant that the total indirect cost imposed onto the
project was EGP 1000 multiplied by the overall project duration. The model was then optimized
to determine the optimum assignment of resources to reach the objective function of minimizing
both the project duration and total cost. The attained duration was 215 days, with a corresponding
indirect cost of EGP 215,000 and direct labor cost of EGP 566,980 making the total project cost
equivalent to EGP 781,980.

The model was validated by comparing the duration with the duration that was calculated by
Abotaleb et al. (2014) since this model was based on the methodology developed in that paper.
The duration attained from the single-skilled labor model that was developed by Abotaleb et al.
(2014) was 216 days, which validates the results of the single-skilled labor model developed for
this thesis.

Table 9 below gives a summary of the inspected elements in the single-skilled labor allocation
model after optimization. The results show that the model is not very cost efficiency having an
average expenditure efficiency of 23%, where expenditure efficiency is a measure of how several
days the resource is actually doing work relative to the number of days it is hired on site. This
means that a large sum is being paid to labors on idle days. Looking at resource C for example,
the number of days where the resource was being paid for being on site was 182 days even though
the resource was only needed for 19 of those days on site. The multi-skilled labor models aim to
increase expenditure efficiency by assigning any resources of their idle days. Expenditure

efficiency was calculated using the following equation:

] o Working Days
Expenditure Ef ficiency (%) = “Hired Days x 100
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Table 9: Summary of Resource Durations on Site and Expenditure Efficiency

Hired | Working Expenditure
Resource Idle Days .

Days Days Efficiency

A 206 125 81 61%

B 186 42 144 23%

C 182 19 163 10%

D 182 28 154 15%

E 154 30 124 19%

F 153 24 129 16%

G 154 28 126 18%

H 139 34 105 24%0

I 153 24 129 16%
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Figure 34: Sample of Single Skilled Labor Calculations Module
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4.3  Multi-skilled Labor Model

The multi-skilled labor allocation model follows the exact same techniques and calculations as
those demonstrated and explained in Section 4.2 above. The only difference is set in the
optimization model definition, where the number of resources per crew limit is altered. Instead of
setting the limit to just one resource per activity, the limit is redefined according to the user’s
preference and ability to their judgement of the optimum number of resources that would avoid
overcrowding on site. For this case study the set limit was a minimum of one resource and a
maximum of three resources, which means that in addition to the primary resource, a maximum of
two other secondary multi-skilled resources can also assist in completing each activity. Just as in
the single skilled labor model, the limit column counts the number assigned resources to each of
the tasks, which shows that the limit was abided by as is shown in figure 35.

ID Pred. ES EF |Lag A B C D E F G H I 7|1
1 0 o 21017 0 0 0 0 0 0 0 0 0|1
2 1 2 3101 4 0 0 0 0 0 0 0 0 0|1
3 1 2 31010 0 1 0 0 0 0 0 0 0|1
4 3 3 71010 § 8 0 0 0 0 0 0 0|2
5 4 T 0] 0 § 8 0 0 0 0 0 0 0|2
6 52 11 1210 0 2 1 0 0 0 0 0 0 0|2
7 6 12 15|01 0 0 3 4 0 0 0 0 0o 0|2
8 7 15 17|07 0 0 0 0 0 0 0 0 0|1
9 g 17 18] 0 0 5 8 0 0 0 0 0 0o 02
0 9 18 20| 0 2 0 0 0 0 0 0 0 0 0|1
11 9 18 200 0| 5 4 4 0 0 0 0 0 0 03
12 11 20 22|10 4 5 0 0 0 0 0 0 0 0|2
13 12 22 23| 0| 4 0 0 0 0 0 0 0 0 0|1
4 12 22 27101 0 0 0 3 0 0 0 0 0 0|1
15 14 27 40101 0 0 0 0 1 0 0 0 0 0|1
16 15 40 45| 0| 0 0 0 0 0 3 0 0 0 0|1
17 1024 453 49 0 i} 0 1 ] i [ 1 0 ( 172

Figure 35: Sample of Resource Allocation after Optimization
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Another addition to this model is the conversion productivity factors. The matrix entered using the
user’s input is integrated into the model as is shown below, where the conversion factors of each
resource for each activity are presented. The productivity per resource for each activity is
determined by multiplying the conversion factor with the primary resource productivity and
multiplied again by the number of crews of the assigned resource, as is shown in figures 36 and
37.

New Productivities /unit New Productivities/unit
MDPred ESEFlag"., ", ¢ D E F € H 1 J|Pod|A B C D E F G H 1 ]
1 0 0o 210 1 06 06 05 04 06 06 0 0 ] 75 {525 0 0 0 0 0 0 0 0 0
2 1 2 3]0 1 06 06 05 04 06 06 0 0 0 75 30 ] 0 ] 0 ] 0 ] 0 0
3 1 2 3| 0|04 03 1 0 03 05 03 0 0 0 100 0 0 1w o0 0 ] 0 ] 0 0
4 3 3 7|0 086 1 05 05 04 06 0 0 0 0 0.3 0o 18 12 0 ] ] ] ] ] 0
5 4 7 11| 0| 06 1 05 05 04 06 0 0 0 0 0.3 0o 18 12 0 ] ] ] ] ] 0
6 52 11 121 0|04 03 1 0 03 05 03 0 0 0 100 ] 60 W0 0 ] ] ] ] ] 0
7 6 12 15| 0|06 04 06 1 07 07 05 0 03 04| 25 ] 0 45 100 0 ] ] ] ] 0
8 7 15 170 1 06 06 05 04 06 06 0 0 0 75 525 0 ] ] ] ] ] ] ] 0
9 8§ 17 18| 0|06 1 05 05 04 06 0 0 0 0 0.3 o 15 12 0 ] ] ] ] ] 0
0 9 18 2000 1 06 06 05 04 06 06 0 0 0 75 15 ] ] ] ] ] ] ] ] 0
1 9 18 2000 1 06 06 05 04 06 06 0 0 0 75 |375 18 18 1] 0 1] 0 1] 0 0
12 11 20 22| 0| 06 1 05 05 04 06 0 0 0 0 03 |072 15 0 1] 0 1] 0 1] 0 0
13 12 22 23| 0 1 06 06 05 04 06 06 0 0 0 7.5 30 ] 0 ] 0 ] 0 ] 0 0
14 12 22 27| 0|06 04 06 1 07 07 05 0 03 04| 25 0 ] 0 75 0 ] 0 ] 0 0
15 14 27 40| 0|03 03 05 07 1 08 05 0 0 0 61 0 i] 0 i] 61 i] 0 i] 0 0
16 15 40 45| 0|04 0 05 03 065 1 04 0 04 03 26 0 i] 0 i] 0 78 0 i] 0 0
1710724 48 40l 0l na o 1 n__ 03 _ns_n n n n 100, n n___ 10 o n n an n n n

Figure 36: Productivity Conversion Factors

To find the total productivity of resources working on each independent activity, the productivities
in figures 37 and 38 above are summed together. The duration is calculated by dividing the quantity
of each activity by the total productivity. This is the same technique that was used in model I to

calculate overall project duration.

A B c D|E |F|Q|R|S|T|U|V|W| X Y|2Z|AA| AB AC |AD |AE AF | AG | AH | AI A] | AK | AL | AM | AN | AD | AP |AQ
13
l-} ID Pred. ES EF |Lag Variables (N nnf Crew) 3 ' ]
15 A B CDEF G H I J]|1 A B €C D E F G H I J |Peod | A B C D E
16 1 o o 0 0 0 0O O O O O O 1 1 0.6 06 05 04 06 0.6 0 o 0 75 | 525 o 0 o o
17 2 1 o4 0 0 0 0 0 0 0 0 O0f1 1 0.6 06 05 04 06 06 0 o 0 7.5 30 o 0 o 0
18 3 1 ojo ¢ 1 0 0 0 0 0 0 Of1 0.4 0.3 1 0 03 053 03 0 o 0 100 0 o 100 o 0
19 4 3 o o 6 8 0 0 0 0 0 0 0|2 0.6 1 05 05 04 06 o 0 o 0 0.3 0 18 1z o o
20 5 4 oo 6,8 0 0 0 0 0 0 0|2 0.6 1 05 05 04 06 o 0 o 0 0.5
21 6 52 oo z2zl1lo o 0o 0 0 0 0|2 0.4 03 I 110 03 05 03 0 o 0 100 1| =(321*AD 1121
23 7 G ol 0 3 4 0 0 0 0 0 Of2Z 0.6 0.4 06 1 07 07 03 0 05 04| 25
23 8 7 0|7 © 0 0 0 0 0 0 0 Of1 1 0.6 06 05 04 06 06 0 0 0 75 | 525 0 0 0 0
24 9 ] ol 5 8 0 0 0 0 0 0 Of2 0.6 1 05 05 04 06 o 0 o 0 0.3 0 15 12 o 0
25 10 9 oz ¢ 0 0 0 0 0 0 0 O0f1 1 0.6 06 05 04 06 06 0 0 0 75 15 o 0 o 0
26 1 9 o 5 4 4 0 0 0 0 0 0 0|3 1 0.6 06 05 04 06 0.6 0 o 0 75 | 375 18 18 o o
2 12 1n 0|4 5 0 0 0 0 0 0 0 Of2 0.6 1 05 05 04 06 o 0 o 0 03 [ 072 15 0 o 0
28 153 12 o4 © 0 0 0 0 0 0 0 O0f1 1 0.6 06 05 04 06 06 0 o 0 7.5 30 o 0 o 0
29 14 12 o o o 0 3 0 0 0 0 0 O 1 0.6 04 0.6 1 07 07 05 0 03 04 25 0 o 0 75 o
30 13 14 ojo ¢ 0 0 1 0 0 0 0 O0f1 0.35 0.3 05 07 1 0.8 05 0 o 0 61 0 o 0 0 6l

Figure 37: Total Productivity Calculations
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Total .
ID Pred. ES EF Lag| A B C D = - G H I | |Productivity Duration
1 0 0 210325 0 0 0 0 0 0 0 0 0 52.5 2
2 1 2 3(10]3 0 0 0 0 0 0 0 0 0 30 1
3 1 2 3(10] 0 0 100 0 0 0 0 0 0 0 100 1
4 3 53 7100 18 12 0 0 0 0 0 0 0 3 4
5 4 7oy 0) 0 18 12 0 0 0 0 0 0 0 3 4
6 52 11 12,0 0 60 100 O 0 0 0 0 0 0 160 1
7 6 12 131 0] 0 0 45 100 0O 0 0 0 0 0 145 3
8§ 7 15 170|525 0 0 0 0 0 0 0 0 0 52.5 2
9 § 17 180 0 15 12 0 0 0 0 0 0 0 27 1
0w 9 18 2000 15 0 0 0 0 0 0 0 0 0 15 2
9 18 2000|375 18 18 0 0 0 0 0 0 0 73.5 2
211 20 2210|072 15 0 0 0 0 0 0 0 0 222 2
1312 22 2300) 30 0 0 0 0 0 0 0 0 0 30 1
4 12 22 270 0 0 0 75 0 0 0 0 0 0 75 5
15 14 27 400 0 0 0 0 ol 0 0 0 0 0 61 13
6 15 40 40| 0 0 0 0 o7 0 0 0 0 78 5
171024 483 49l n |l n N 1000 n n NN n n 130 1

Figure 38: Sample of Final Durations of Activities

The next and final step would be to calculate the total project cost, which comprises of labor direct
costs and indirect costs. The direct labor costs are calculated through the total number of man-days

multiplied by the daily wage per each resource (figure 39).

Labor Cost
A B (e D E F G H I I
Total no. of crew days 568 660 127 504 444 880 330 384 214 0
cost/day 100 150 150 120 100 120 120 100 90 0
Total Cost 56800 99000 19050 60480 44400 105600 39600 38400 19260 0

Total Pumary Labor Cost = 482,590

Figure 39: Direct Cost Calculations

Figure 40 shows model definition before starting optimization, where the objective function is set
to minimize project duration, the variables are the number of crews of each resource for each
activity. Another set of variables was added to this model, which allowed adding lags before the
start of any activities that have float, to postpone their start in order to allow the start of more
critical activities by deploying the resources of the delayed activities to be assigned to critical
activities. The constraints are set to limit the number of resource to allocated per activity to only
three resources, but also to ensure that at least one resource is assigned to that activity. Another
constraint was to ensure that the number of maximum resource daily usage does not exceed the

maximum daily limit set by the user.
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Figure 40: Model Window with the Set Optimization Criteria

Figure 41 represents the model outputs (duration and total project cost) of the multi-skilled labor
allocation model.

Labor Cost Indirect Site Cost
A B C D E F G H I J Days 148
Total no. of crew days 368 G660 127 504 444 880 330 384 214 o Cost/day 1000
cost/day 100 130 130 120 100 120 120 100 90 o
Total Cost 36800 99000 19050 60480 44400 103600 39600 38400 19260 o
Total Primary Labor Cost = 482,590 Total Indirect Cost = 148,000
Training Cost = 16,950 Total Cost 647,540

Figure 41: Output of Total Duration and Costs (Multi-Skilled Labor Model)
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The indirect cost was EGP 1000 per day, which meant that the total indirect cost imposed onto the
project was EGP 1000 multiplied by the overall project duration. The model was then optimized
used Evolver to determine the optimum assignment of resources to reach the objective function of
minimizing both the project duration and total cost. The attained duration was 148 days, with a
corresponding indirect cost of EGP 148,000 and direct labor cost of EGP 482,590.

The model was validated by comparing the duration with the duration that was calculated by
Abotaleb et al. (2014) since this model was based on the methodology developed in that paper.
The duration attained from the single-skilled labor model that was developed by Abotaleb et al.
(2014) was 148 days, which validates the results of the multi-skilled labor model developed for
this thesis.

This model also takes into account the training costs. Training costs are daily wages paid to the
workers while in training. The model generated the matrix shown in figure 42 summarizing which
resources will help with which skills. This matrix is multiplied by the training costs matrix that is
determined by the user, where the product is then multiplied by the total number of induction days.
According to literature, training days are usually between 3 to 5 days (Brusco & Johns, 2007) but
this can also be determined by the user. The days of induction for this case study were 3 days,

giving a training cost of EGP 16,950 making the total project cost equivalent to EGP 647,540.
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Figure 42: Matrix Used to Calculate Training Costs

Table 10 below gives a summary of the inspected elements in the multi-skilled labor allocation

model after optimization. The results show that the model improved the cost efficiency that that of
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model I, since the expenditure efficiency for the single skilled labor model and the multi-skilled

labor model were 23% and 54% respectively, showing an increase of 31% cost efficiency.

Table 10: Summary of Resource Durations on Site and Expenditure Efficiency

Hired Working Expenditure
Resource Idle Days .

Days Days Efficiency

A 142 97 45 68%

B 132 80 52 61%

C 127 67 60 53%

D 126 83 43 66%

E 111 63 48 57%

F 110 48 62 44%,

G 110 29 81 26%

H 96 64 32 67%

I 107 47 60 44%
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4.4  Multi-skilled Labor with Partial Allocation Model

The same inputs and methodology as model Il is also followed for this model, except for the
technique used to determine the duration per activity. To allow partial allocation at any duration
of any activity, the activity durations were divided into several parts, which each part representing
just one day. The variables in this model are much more, therefore the optimization run time was

considerably larger.

Once the resources are assigned, a check is made to make sure that the quantity of each activity
has been fulfilled by the assigned resources. The next and final step would be to calculate the total
project cost, which comprises of labor direct costs and indirect costs. The direct labor costs are
calculated through the total number of man-days multiplied by the daily wage per each resource
(figure 43).

Labor Cost
A B C D E F G H I I
Total no. of crew days 452 588 104 376 156 395 672 T4 292 0
cost/day 100 150 150 120 100 120 120 100 a0 0
Total Cost 45200 338200 15600 45120 15600 71400 80640 7400 26280 0
Total Labor Cost = 395,440

Figure 43: Direct Cost Calculations

Figure 44 shows the model definition before starting optimization, where the objective function is
set to minimize project duration, the variables are the number of crews of each resource for each
activity. Another set of variables was added to this model, which allowed adding lags before the
start of any activities that have float, to postpone their start in order to allow the start of more
critical activities by deploying the resources of the delayed activities to be assigned to critical
activities. The constraints are set to limit the number of resource to allocated per activity to only
three resources, but also to ensure that at least one resource is assigned to that activity. The other
two constraints were to ensure that the number of maximum resource daily usage does not exceed
the maximum daily limit set by the user, and that the quantity of each activity is covered by the
assigned resources. Since this model aims to reduce project duration, it is also important to make
sure that reducing project duration does not lead to an increase in project cost. This was done by

limiting the training costs to the value of the savings in indirect cost.
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Figure 45 represents the model outputs (duration and total project cost) of the multi-skilled labor

with partial allocation model.

Labor Cost
A B C D E F G H I J
Total no. of crew days 452 588 104 376 156 595 G672 T4 292 0
cost/day 100 150 150 120 100 120 120 100 90 0
Total Cost 45200 88200 15600 45120 15600 71400 80640 7400 26280 0
Total Labor Cost = 395,440
Training Cost = 20,400

Indirect Site Cost
Days 121  Objective: Minimize Total Indirect Cost 121,000

Cost/day o000 Duration Total Cost 536,840

Figure 45: Total Duration and Costs (Multi-Skilled Labor with Partial Allocation Model)

The indirect cost was EGP 1000 per day, which meant that the total indirect cost imposed onto the
project was EGP 1000 multiplied by the overall project duration. The model was then optimized
used Evolver to determine the optimum assignment of resources to reach the objective function of
minimizing both the project duration and total cost. The attained duration was 121 days, with a
corresponding indirect cost of EGP 121,000 and a direct labor cost of EGP 395,440.

This model also takes into account the training costs. Training costs are daily wages paid to the
workers while in training. The model generated the matrix shown in figure 46 summarizing which
resources will help with which skills. This matrix is multiplied by the training costs matrix that is
determined by the user, where the product is then multiplied by the total number of induction days.
The days of induction for this case study were 3 days, giving a training cost of EGP 20,400 making
the total project cost equivalent to EGP 536,840.
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Figure 46: Matrix Used to Calculate Training Costs
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Table 11 is a generated report that is made available to the user, identifying how several crews of each resource would need to learn

which new skill.

Table 11: Identification of No. of Resources Needing to Learn a New Skill

Training Needs

6 crews of B 5 crews of C

need to leamn A need to leamn A
6 ciews of C
need to leamn B

T crews of A
need to leamn B

2 crews of A 1 crewof B

need to leamn C needs to learn C

4 crews of C
need to leamn D

Jcrews of A
need to leamn D
1 cieww of C
needs to leamn E
2crews of C
need to leamn F
2crews of C
needs to leam G need to leamn G

1 crewof B

1 crewof B
needs to leam H

4 ciews of D
need to leam A
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Teoewsof F
need to learn A

lciewofF
needs to leam &

6 crews of &
need to learmn A

1 crew of G
needs to leam C

1 crewof &
needs to leam E

2 ciews of G
need to leam H

1l crew of I
needs to leam D

Jciews of I
need to learmn H



Table 12 below gives a summary of the inspected elements in the multi-skilled labor with partial

allocation model after optimization. The number of idle days for all resources is less than in models

I and I, which in turned led to an increase to the expenditure efficiency of all resources. The

average expenditure efficiency of resources was 67%, which is a 44% and 13% increase in

expenditure efficiency when compared to the single-skilled and non-partial multi-skilled models,

respectively.

Table 12: Summary of Resource Durations on Site and Expenditure Efficiency

Hired Working Expenditure
Resource Idle Days ,

Days Days Efficiency

A 113 82 31 73%

B 98 67 31 68%

C 104 61 43 9%

D 94 73 21 78%

E 78 59 19 76%

F 85 >4 31 64°%%

G 84 27 57 32%

H T4 59 15 80%

I 73 52 21 71%
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4.5 Comparison and Analysis of Results

The total number of days on site for each of the nine resources was analyzed and represented in
comparison through the following graphs (figures 47 to 55). The graphs represent the average
number of deployed resources per week, which also reflects the total number of days were the

resource is hired and being paid on site.
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Figure 47: Comparison Between Resource A Usage for All Models

Figure 47 shows that resource A was hired for 34 weeks according to the single-skilled labor
allocation model. Since resource A was assigned to activities that start during the first week, the
starting date of resource A was always during the first week for all three models. After running
model 1l for multi-skilled allocation, the duration of resource A on site was reduced to 24 weeks
(by 29%), which was reduced further to only 19 weeks (by a further 15%) when partial allocation
was allowed. The shown trend clearly shows the positive and significant effect of multi-skilled
labor optimization, especially when partial allocation is allowed.
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Figure 48: Comparison Between Resource B Usage for All Models

Figure 48 shows that resource B was hired for 32 weeks according to the single-skilled labor
allocation model. Since resource B was assigned to activities that also start during the first week,
the starting date of resource B was always during the first week for all three models. After running
model 11 for multi-skilled allocation, the duration of resource B on site was reduced to 23 weeks
(by 28%), which was reduced further to only 19 weeks (by an additional 12%) when partial

allocation was allowed.
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Figure 49: Comparison Between Resource C Usage in All Models

84



Figure 49 shows that resource C was hired for 23 weeks according to the single-skilled labor
allocation model. Since resource C was assigned to activities that also start during the first week,
the starting date of resource C was always during the first week for all three models. After running
model Il for multi-skilled allocation, the duration of resource C on site was still 23 weeks but was

reduced to 19 weeks (by 17%) when partial allocation was allowed.
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Figure 50: Comparison Between Resource D Usage in All Models
Figure 50 shows that resource D was hired for 34 weeks according to the single-skilled labor
allocation model. Resource D started work on week 2 in all the models. This indicates that the
preceding tasks of the first activity requiring resource D all ended during or before the start of
week 2 of construction. After running model I1 for multi-skilled allocation, the duration of resource
D on site was reduced to 24 weeks (by 29%), which was reduced further to 18 weeks (by an

additional 18%) when partial allocation was allowed.
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Figure 51: Comparison Between Resource E Usage in All Models

Figure 51 shows that resource E was hired for 30 weeks according to the single-skilled labor
allocation model. Resource E started work on week 5 in all the models. This indicates that the
preceding tasks of the first activity requiring resource E all ended during or before the start of week
5 of construction. After running model 11 for multi-skilled allocation, the duration of resource E
on site was reduced to 24 weeks (by 20%), which was reduced further to 18 weeks (by an additional

20%) when partial allocation was allowed.
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Figure 52: Comparison Between Resource F Usage in All Models
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Figure 52 shows that resource F was hired for 31 weeks according to the single-skilled labor
allocation model. Resource F started work on week 4 in all the models. This indicates that the
preceding tasks of the first activity requiring resource F all ended during or before the start of week
4 of construction. After running model 1l for multi-skilled allocation, the duration of resource F
on site was reduced to 24 weeks (by 22%), which was reduced further to 19 weeks (by an additional

17%) when partial allocation was allowed.
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Figure 53: Comparison Between Resource G Usage in All Models

Figure 53 shows that resource G was hired for 31 weeks according to the single-skilled labor
allocation model. Resource G started work on week 4 in all the models. This indicates that the
preceding tasks of the first activity requiring resource G all ended during or before the start of
week 4 of construction. After running model 11 for multi-skilled allocation, the duration of resource
G on site was reduced to 24 weeks (by 22%), which was reduced further to 21 weeks (by an

additional 10%) when partial allocation was allowed.
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Figure 54: Comparison Between Resource H Usage in All Models

Figure 54 shows that resource H was hired for 31 weeks according to the single-skilled labor
allocation model. Resource H started work on week 5 in all the models. This indicates that the
preceding tasks of the first activity requiring resource H, all ended during or before the start of
week 5 of construction. After running model Il for multi-skilled allocation, the duration of resource
H on site was reduced to 24 weeks (by 22%), which was reduced further to 20 weeks (by an

additional 13%) when partial allocation was allowed.
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Figure 55: Comparison Between Resource | Usage in All Models
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Figure 55 shows that resource | was hired for 31 weeks according to the single-skilled labor
allocation model. Resource | started work on week 6 in all the models. This indicates that the
preceding tasks of the first activity requiring resource I, all ended during or before the start of week
6 of construction. After running model 11 for multi-skilled allocation, the duration of resource | on
site was reduced to 24 weeks (by 22%), which was reduced further to 19 weeks (by an additional

17%) when partial allocation was allowed.

Table 13 below summarizes the expenditure efficiency results of all nine resources for each of the
three models. The results show a clear and significant increase in expenditure efficiency for most
of the resources.

Table 13: Comparison of Resource Durations on Site and Expenditure Efficiency

Resource Hired Days Working Days Idle Days Expenditure Efficiency
Single Multi Partial | Single Multi Partial | Single Multi Partial | Single Muldi Partial
A 206 142 113 125 97 82 81 45 31 61% 68% 73%
B 186 132 98 42 80 67 144 52 31 23% 61% 68%
C 182 127 104 19 67 61 163 60 43 10% 53% 59%
D 182 126 94 28 83 73 154 43 21 15% 66% 78%
E 154 m 78 30 63 39 124 48 19 19% 57% 76%
F 153 110 85 24 48 54 129 62 31 16% 44% 64%
G 154 110 84 28 29 27 126 81 57 18% 26% 32%
H 139 96 74 34 64 39 105 32 15 24% 67% 80%
I 153 107 73 24 47 32 129 60 21 16% 44% 1%

Figure 56 represents the comparison in graph form. Expenditure efficiency measures whether the
paid wages are getting any work done in return. It is calculated by finding the percentage of
working days per hired days. The higher the expenditure efficiency the better, since that would
mean that the resource is put in action for a higher duration of the working days. A low expenditure
efficiency means that the number of working days is low, i.e., the number of idle days is high,

which is what the model was designed to overcome.

89



Expenditure Efficiency Comparison between Models
100%

80%

40%
- I I I I I I
A B C D E F G H 1

N
QR
=

Expenditure Efficiency

0%

Resource Type
m Singleskilled (Model of Abotaleb et al. 2014) & Multiskilled (Model of Abotaleb et al. 2014)
B Multiskilled with Partial Allocation (This Research)

Figure 56: Expenditure Efficiency Comparison for All Models

Table 14 summarizes the duration and cost reduction for all three models. Model 111 reduced the
duration and cost of Model I by 44% and 31% respectively, and this reduced cost also includes the
training costs. Modell 111 also reduced the duration and total project cost attained from Model 11

but 16% and 18% respectively.

Table 14: Total Duration and Cost for Each Model

Model Duration | Labor Indirect | Training | Total

(Days) Cost Cost Cost Cost
Siﬂgl&—S]ii.l.l&l:l1 208 566,980 215,000 - 781,980
Multi-Skilled” 147 482,590 148,000 16,950 647,540
Multi-Skilled with Partial Allocation’ 125 395,440 121,000 12,240 528,680
Percentage Reduction 41% 32%
Percentage Reduction” > 16% 18%

1: represents the outputs of the single-skilled labor model (Abotaleb et |. 2014),

2: represents the outputs of the multi-skilled labor model with non-partial allocation of resources
(Abotaleb et I. 2014),

3: represents the outputs of the multi-skilled labor model with partial allocation of resources
(This research).
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CHAPTER 5 — CONCLUSION AND RECOMMENDATION

5.1 Summary and Conclusion

This research presented the methodology of a model that optimizes the allocation of multi-skilled
labor that allows for partial allocation. The model was validated by being applied to the activities
of a five-storey construction building. The model comprises of three sub-models: (1) a model that
allowed only the allocation of one resource type per activity, (2) amodel that allowed the allocation
of multiple resources to any activity but only for the whole duration of the activity, and (3) a model
that assigned multi-skilled labor to any activity at any part of the activity duration. The novelty of
this model is that it allowed partial allocation, which was discussed in literature but never applied

to any optimization models.

The results showed an increase in expenditure efficiency and noticeable reductions in duration and
cost when compared to the single-skilled labor model, which were reduced further when partial
allocation was allowed, which proved that the multiskilling with partial allocation concept was a
success and would be of great benefit if applied to construction projects scheduling. The model
also informs the user of the number of crews of each resource that will need induction to learn a

new skill and specifies exactly which skills need to be attained.

5.2  Outcomes and Contributions

The outcomes and contributions that this research has reached in terms of resource allocation can

be listed as follows:

- Investigating techniques to cut down on unnecessary project costs

- Introducing a new method of implementing multi-skilled labor that allows for partial
allocation

- Contributing to the increase in productivity of site tasks by putting idle labor into use to
reduce project duration which in turn reduces the associated indirect site costs

- Identifying the number of resources that would need to learn another certain skill.

When applied a case study was applied to the model, it generated positive results, where the
reduction in duration between the single skilled allocation and multi-skilled mode with labor

allocation was 44%. The project overall cost was also reduced by 31%.
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5.3 Limitations and Recommendations for Future Research

The main limitation that was faced was the running time of the multi-skilled labor with partial
allocation model as it had to run thousands of iterations before it could reach the optimum solution.
The number of variables would increase more with a higher number of activities, and therefore
longer processing time would be required. Therefore, it is recommended that a different heuristic
method be used for the investigation of the effects of multi-skilled labor on construction projects.
Examples of such methods would be ant colony or shuffled-frog leaping.

Another recommendation would be regarding the crews that need to receive training. The model
was able to identify the number of resource crews that need to receive induction and for which
skill. It would be better if each of the resource crews be identified separately and integrated with
the model to specify to the user exactly which crews need to receive training for which skill. This
would also help determine exactly when each crew leaves and enters the site, which would
represent the actual situation on site, to determine the exact labor costs needed depending on the

number of days each crew is on site.
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