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ABSTRACT  

 
We contribute in saving the lives of cancer patients through early detection and diagnosis,  

since one of the major challenges in cancer treatment is that patients are diagnosed at very late 

stages when appropriate medical interventions become less effective and full curative treatment 

is no longer achievable. Cancer classification using gene expressions is extremely challenging 

given the complexity and high dimensionality of the data. Current classification methods 

typically rely on samples collected from a single tissue type and perform a prerequisite of gene 

feature selection to avoid processing the full set of genes. These methods fall short in taking 

advantage of genome-wide next generation sequencing technologies which provide a snapshot 

of the whole transcriptome rather than a predetermined subset of genes. We propose a Deep 

Learning framework for cancer diagnosis by developing a multi-tissue cancer classifier based 

on whole-transcriptome gene expressions collected from multiple tumor types covering 

multiple organ sites. We introduce a new Convolutional Neural Network architecture called 

Gene eXpression Network (GeneXNet), which is specifically designed to address the complex 

nature of gene expressions. Our proposed GeneXNet provides capabilities of detecting genetic 

alterations driving cancer progression by learning genomic signatures across multiple tissue 

types without requiring the prerequisite of gene feature selection. We design an end-to-end 

Deep Reinforcement Learning framework that automatically learns the optimal network 

architecture together with the associated optimal hyperparameters that maximizes the 

performance of our multi-tissue cancer classifier. Our framework eliminates the manual 

process of handcrafting the design of deep network architectures and the manual process of 

hyperparameter optimization on the target dataset. Our model achieves 98.9% classification 

accuracy on human samples representing 33 different cancer tumor types across 26 organ sites. 

We demonstrate how our model can be used for transfer learning to build classifiers for tumors 

lacking sufficient samples to be trained independently. We contribute in providing medical 

professionals with more confidence in using Deep Learning for medical diagnosis by 

introducing visualization procedures to provide biological insight on how our network is 

performing classification across multiple tumors. To our knowledge, this is the first effort to 

develop a multi-tissue cancer classifier based on a full set of whole-transcriptome gene 

expressions collected from tumors across different tissue types without requiring a prerequisite 

process of gene feature selection.   
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CHAPTER 1   

 INTRODUCTION 

 

“This research is about saving lives of Cancer Patients”  
 

 The Global Burden of Cancer 

 The World Health Organization reports that cancer is an incurable 

disease which is considered one of the leading causes of death 

worldwide accounting for an estimated 9.6 million deaths in 2018 [1]. 

The cumulative risk of incidence indicates that 1 in 8 men and 1 in 10 

women will develop the disease in a lifetime [2]. Lung cancer is the 

most commonly diagnosed cancer and the leading cause of cancer 

death, followed by breast, prostate, colorectal, stomach, and liver 

cancer [2]. 

Cancer is a generic term for a large group of diseases that can affect any part of the body. 

Other terms used are malignant tumors and neoplasms. One defining feature of cancer is the 

rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then 

invade adjoining parts of the body and spread to other organs, the latter process is referred to 

as metastasizing. Metastases are a major cause of death from cancer [3]. 

 

 

 

 

9.6 million Cancer deaths in 2018 worldwide  

Squamous cell carcinoma Lung caner [1] 

Figure 1.1  Estimated world cancer mortality in 2018 [1], [2] 
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 Challenges in Early Diagnosis and Treatment of Cancer  

Despite the dramatic impact of Cancer and high mortality rates, many of these deaths can 

be avoided. It is reported by the World Health Organization that between 30-50% of cancer 

death cases can be prevented through early detection and treatment [3]. A major challenge is 

that the disease is not diagnosed early enough to allow for appropriate and effective treatment. 

When Cancer patients are diagnosed at very late stages, appropriate treatment interventions 

become less effective and full curative treatment is no longer achievable [1]. 

The increasing complexity of the disease and its molecular biology has made it extremely 

difficult for medical experts to use traditional patient diagnosis and laboratory screening 

techniques to detect early signs and symptoms of cancer.  In absence of any early detection or 

screening and treatment intervention, patients are diagnosed at very late stages when curative 

treatment is no longer an option [4]. 

One of the major challenges of Cancer treatment, especially when using Chemotherapy, is 

to maximize the drug efficiency but at the same time minimize the toxic effects on healthy 

cells. As a result, accurate classification and diagnosis of the Cancer tumor is crucial to 

successful treatment. Conventional laboratory screening techniques for Cancer classification 

usually rely on the biological insights of the medical experts and have primarily focused on the 

morphological appearance of the tumor. This has serious limitations, since tumors with similar 

histopathological appearance can follow significantly different clinical courses and show 

different responses to therapy [1].  

Accordingly, advancements in cancer classification and prediction play an important role in 

early detection since a major challenge in cancer treatment is that patients are diagnosed at very 

late stages where appropriate interventions become less effective and full curative treatment is 

no longer achievable [4]. Cancer classification can be divided into two categories which are 

class discovery and class prediction. The task of class discovery is to identify a new tumor 

which was previously unrecognized. Class prediction is the task of diagnosing a tumor sample 

and assigning it to the correct predefined class [4]. 

 

 Cancer Genomics 

Technological advances in structural genomics have allowed studying the full set of DNAs 

in the human genome [4], [25]. DNA is a molecule in the cell nucleus that contains instructions 

for making proteins. A segment of DNA that contains information for making a protein is called 

a gene [4]. During the transcription process, DNA that makes up a gene is copied into a 
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complementary molecule called messenger RNA (mRNA). The mRNA moves from the 

nucleus to the cytoplasm where it interacts with ribosomes which are the protein factories of 

the cell [4]. DNA alterations can affect the structure, function and amount of corresponding 

proteins leading to a change in a cell’s behavior from normal to cancerous [24]. Next generation 

sequencing (NGS) methods such as whole-genome DNA sequencing and Total RNA 

sequencing are considered revolutionary technologies for studying genetic changes in Cancer 

[22], [27]. These technologies provide great potential for cancer classification and better 

understanding of tumor progression given their ability to sequence thousands of genes at one 

time and detect multiple types of genomic and transcriptome gene expression alterations [20], 

[21], [25]. They provide capabilities for comparing the sequence of DNA and RNA in cancer 

cells with that in normal cells, such as blood or saliva to identify genetic changes that may be 

driving the growth of a tumor in addition to measuring the activity of genes to understand which 

proteins are abnormally active in cancer cells leading to uncontrolled growth [26]. Gene 

expression analysis using total RNA sequencing provides a snapshot of the whole 

transcriptome rather than a predetermined subset of genes, enables testing multiple genes 

simultaneously and can detect both coding plus multiple forms of noncoding RNA [22]. These 

methods have eliminated many limitations involved in microarray based experiments that were 

previously used for measuring gene expressions [22], [25], [27].  

 

 

 Early Cancer Diagnosis using Gene Expressions 

Gene expressions have been extensively used in biological research and cancer 

classification [5], [6], [7], [8], [9], [10], [13], [11], [17]. Individual proteins determine the cell 

function and at the same time the protein synthesis is dependent on which genes are expressed 

by the cell. Accordingly, the expression pattern of a gene provides indirect information about 

a cell function [1]. Gene expression refers to the process of translating information in DNA 

into functional products including proteins and non-coding RNA [4]. While Microarrays have 

traditionally been used for gene expression analysis, they have shown many limitations since 

the snapshot of the transcriptome they provide is incomplete and they cannot detect previously 

unidentified genes or transcripts [21], [22], [25]. 

Gene expression quantification can be used to identify which genes are preferentially 

expressed in various tissues. Transcription produces what is referred to as precursor messenger 

RNA (pre-mRNA) which undergoes further modifications leading to mature mRNA [4].  
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By collecting mRNA samples for tumors of known classes, supervised learning can be used 

to build discriminative models which can learn the gene patterns of the underlying disease and 

then be used to predict the tumor class of new patient samples which were not previously 

diagnosed [1]. This is considered a great achievement as there are many Microarray 

experiments which demonstrate how it was possible to classify and distinguish between certain 

cancer types using data classification even though they are clinically indistinguishable [1], [72], 

[73].  

For example, Figure 1.2 shows the classification between two types of Leukemia Cancer 

(AML and ALL) which are clinically indistinguishable [73]. The figure shows how Clustering 

of microarray gene expression data was used to distinguish between Acute Myeloid Leukemia 

(AML) and Acute Lymphoblastic leukemia (ALL) using only data classification. Rows 

correspond to genes and columns correspond to human samples [73].  

Another example of a microarray experiment is shown in Figure 1.3 which was used to 

analyse a total of 78 Breast Cancer patients to develop what is known as the PAM50 Breast 

Cancer Intrinsic Classifier which predicts the breast cancer type out of several classes [74]. 

This classifier predicts the Breast Cancer type out of several classes which are: Luminal A, 

Luminal B, Basal-like, Human Epidermal Growth Factor receptor 2 (HER2)+ [74]. 

Figure 1.2  Classification of AML and ALL Leukemia  using Gene Expression Data [73] 
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 Complexity in Cancer Classification using Gene Expression Data 

Despite all these potential capabilities, cancer classification using gene expressions 

produced from Total RNA sequencing is extremely challenging given the complexity and 

massive amount of genetic data that is produced [20], [21], [25], [26], [38]. The magnitude of 

variants obtained from RNA-Sequencing is exponential which makes it difficult for traditional 

bioinformatics and machine learning approaches to evaluate genetic variants for disease 

prediction [4], [22], [23]. Gene expression data is characterized by being very high in 

dimensionality in terms of having a very large number of features representing the genes, and 

a very small number of training data representing the patient samples [9], [22], [33]. 

Complexity is also due to the fact that only a small subset of genes might be influencing the 

cancer tumor being diagnosed [4], [29].  

Current cancer classification methods avoid processing the full set of genes to overcome 

these complexities and are mainly based on performing a process of gene feature selection as 

a prerequisite to the classifier learning process [28], [29], [30], [31].  

Figure 1.3  PAM50 Classifier for Classification of Breast Cancer using Gene Expression Data [74] 
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Gene feature selection is the process of selecting a small subset of informative genes which 

are discriminative among the full set of genes collected from the tumor samples [32], [33]. 

Gene feature selection will allow the learning process to proceed, but the resulting classifier 

will not have the opportunity to learn the molecular signatures of genes which have been 

excluded and their influence on the underlying cancer tumor [34], [35].  

Current methods for cancer classification follow the approach of feature engineering and 

are based on applying innovative gene feature selection techniques as a prerequisite to the 

classifier learning process to discover a small subset of informative genes which are 

discriminative among the tumor being analysed [28], [29], [31]. Gene selection methods can 

be generally classified into filtering, wrapping and embedded methods [32], [33]. The accuracy 

of such a classifier depends heavily on the successful identification of these discriminative 

features [34], [35]. Furthermore, the same classification method might not succeed in achieving 

the same accuracy if applied on a tumor for a different tissue type which will most likely have 

a different subset of informative genes [1]. 

Substantial work has been done for cancer classification by performing gene feature 

selection and building on traditional machine learning methods such as Support Vector 

Machines [15], [18], [30], Random Forests [14], Decision Trees [16], AdaBoost [11], K-

Nearest Neighbor [14] and Genetic algorithms [9], [11]. Current classification methods which 

are based on gene feature selection are not optimal for early cancer diagnosis. This is because 

these methods will fall short in taking the full advantage of DNA and RNA sequencing 

technologies to discover the correlated patterns between genes across the full set of DNAs in 

the human genome and to detect multiple types of genetic alterations that may be driving the 

growth of a tumor across the whole transcriptome rather than a predetermined subset of genes 

[5], [6]. Another limitation of current methods is that they typically rely on gene expressions 

collected mainly from a single cancer tissue type based on the same anatomical site of origin.  

This approach does not utilize the full potential of the recent emerging whole-genome 

sequencing technologies and data produced by large-scale genomic projects which are 

producing detailed molecular characterizations of thousands of tumors using genome-wide 

platforms [38]. Recent studies which have performed an integrated multiplatform analysis 

across multiple cancer types have revealed molecular classification within and across tissues 

of origin [5], [7]. The results of these studies have recommended that the traditional approach 

of anatomic cancer classification should be supplemented by classification based on molecular 

alterations shared by tumors across different tissue types [5]. 

 



15   
  

 

AUC SID:  800-09-0336                                                                       Name: Tarek Khorshed 

 Deep Learning for Early Cancer Diagnosis 

This has motivated our research for early diagnosis of cancer by leveraging the latest deep 

learning methods to develop a comprehensive multi-tissue cancer classifier. Our proposed 

classifier is based on molecular signatures of whole-transcriptome wide gene expressions, that 

are collected from human samples representing multiple cancer tissue types covering multiple 

organ sites of origin. Our approach using deep learning eliminates the need for discovering a 

predefined subset of genes by combining the process of gene feature selection and classification 

into one end-to-end learning system.  We propose a new Convolutional Neural Network 

architecture called “Gene eXpression Network” (GeneXNet) which is specifically designed to 

learn the complex nature of whole-transcriptome gene expressions and which gives the 

opportunity to design cancer classifiers with capabilities of detecting more complex types of 

genetic alterations by learning the genomic signatures shared across multiple cancer tissue 

types. To our knowledge, this is the first effort to develop a multi-tissue cancer classifier based 

on a full set of whole-transcriptome wide gene expressions collected from tumors across 

different tissue types without requiring a prerequisite process of gene feature selection. We 

demonstrate how our model can perform transfer learning to build classifiers for other types of 

cancer tumors which are lacking sufficient patient samples to be trained independently. We 

design an end-to-end Deep Reinforcement Learning framework to automatically learn the 

optimal Deep Neural Network architecture together with the associated optimal 

hyperparameters that maximizes the performance of our multi-tissue cancer classifier. We 

introduce visualization procedures to provide more biological insight on how our model is 

performing cancer classification across multiple tumor types. We visualize gene localization 

maps highlighting the important regions in the gene expressions influencing the tumor class 

prediction. We also visualize the molecular clusters formed by intermediate gene expression 

feature maps learned by the network which helps in revealing the genomic relationships of 

gene expressions that are influential in the tumor progression. 
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CHAPTER 2   

 LITERATURE SURVEY 

 

 Cancer Genomics 

DNA is a molecule in the cell nucleus that contains instructions for making proteins. A segment 

of DNA that contains information for making a protein is called a gene [4]. During the 

transcription process, DNA that makes up a gene is copied into a complementary molecule 

called messenger RNA (mRNA). The mRNA moves from the nucleus to the cytoplasm where 

it interacts with ribosomes which are the protein factories of the cell [4]. DNA alterations can 

affect the structure, function and amount of corresponding proteins leading to a change in a 

cell’s behaviour from normal to cancerous [24].  

 

 

Figure 2.1  Genetic Changes and Cancer [4] 
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 Next Generation Sequencing (NGS) 

Technological advances in structural genomics have allowed studying the full set of DNAs in 

the human genome [4], [25]. Next generation sequencing (NGS) methods such as whole-

genome DNA sequencing and Total RNA sequencing are considered revolutionary 

technologies for studying genetic changes in Cancer [22], [27]. These technologies provide 

great potential for cancer classification and better understanding of tumor progression given 

their ability to sequence thousands of genes at one time and detect multiple types of genomic 

and transcriptome gene expression alterations [20], [21], [25]. They provide capabilities for 

comparing the sequence of DNA and RNA in cancer cells with that in normal cells, such as 

blood or saliva to identify genetic changes that may be driving the growth of a tumor in addition 

to measuring the activity of genes to understand which proteins are abnormally active in cancer 

cells leading to uncontrolled growth [26]. Gene expression analysis using total RNA 

sequencing provides a snapshot of the whole transcriptome rather than a predetermined subset 

of genes, enables testing multiple genes simultaneously and can detect both coding plus 

multiple forms of noncoding RNA [22]. These methods have eliminated many limitations 

involved in microarray based experiments that were previously used for measuring gene 

expressions [22], [25], [27].  

 

 

 Gene Expression Analysis 

The advances in Next generation sequencing (NGS) and DNA microarray technologies have 

provided the capabilities to measure the expression levels of thousands of genes during various 

biological processes, collected from different experimental samples and conditions [22], [27].  

Gene expression refers to the process of translating information in DNA into functional 

products including proteins and non-coding RNA. Only a fraction of genes in a cell are 

expressed at a given time where a distinct set of regulators determine the expression profiles 

of each cell. Transcription produces what is referred to as precursor messenger RNA (pre-

mRNA) which undergoes further modifications leading to mature mRNA. The formation of a 

malignant tumor is typically a transformation characterized by distribution of genetic 

information and irregular expression of multiple genes [1]. 
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Figure 2.2  Schematic overview of protein-coding gene expression pathways [1] 

 

During a Next Generation Sequencing experiment, DNA sequences under multiple 

conditions are captured for analysis where the collective data samples are commonly referred 

to as gene expression data [21]. The variations in conditions of the data samples could represent 

different time intervals in a specific biological process or they could represent different samples 

from different organs or tissues [25]. For example, the gene expressions could represent the 

DNA sequence progression of infected cancer cells at different stages, or they could represent 

samples from different tissues of healthy and infected patients [27]. 

Medical procedures for early cancer diagnosis and screening still depend heavily on clinical 

and histological analysis, which is the study of the microscopic anatomy of cells and tissues. 

But despite this common practice, there are many well-known research experiments which 

have proven that clinical and histological analysis are insufficient to distinguish between 

subclasses in several types of cancer [1], [4].  

Analysis of Cancer gene expression data can have many objectives, but among the most 

common are class prediction and class discovery [1]. Class prediction is based on collecting 

mRNA samples for Cancer tumors of known classes, then using supervised learning and 

classification techniques to build discriminative models which can be used to learn the 

molecular signatures of the underlying tumor. These models can then be used to predict the 

tumor class of new patient samples which were previously unrecognized. Class discovery on 

the other hand is based on unsupervised learning to identify the molecular signature of a new 

subclass of a cancer tumor which was previously unknown [1], [4]. 
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 Cancer Classification using Gene Expressions 

Gene expressions have been extensively used in biological research and cancer classification 

[5], [6], [7], [8], [9], [10], [13], [11], [17]. By collecting mRNA samples for tumors of known 

classes, supervised learning can be used to build discriminative models which can learn the 

gene patterns of the underlying disease and then be used to predict the tumor class of new 

patient samples which were not previously diagnosed [1]. This is considered a great 

achievement as there are many Microarray experiments which demonstrate how it was possible 

to classify and distinguish between certain cancer types using data classification even though 

they are clinically indistinguishable [1], [72], [73]. For example the classification between two 

types of Leukemia Cancer (AML and ALL) which are clinically indistinguishable [70]. 

Another example is the microarray experiment used to analyze a total of 78 Breast Cancer 

patients to develop what is known as the PAM50 Breast Cancer Intrinsic Classifier which 

predicts the breast cancer type out of several classes [71]. 

 

 Gene Feature Selection 

Current methods for cancer classification follow the approach of feature engineering and are 

based on applying innovative gene feature selection techniques as a prerequisite to the classifier 

learning process to discover a small subset of informative genes which are discriminative 

among the tumor being analysed [28], [29], [31]. Gene selection methods can be generally 

classified into filtering, wrapping and embedded methods [32], [33]. The accuracy of such a 

classifier depends heavily on the successful identification of these discriminative features [34], 

[35]. Furthermore, the same classification method might not succeed in achieving the same 

accuracy if applied on a tumor for a different tissue type which will most likely have a different 

subset of informative genes [1]. 

It is very common that the gene expression data produced from Next Generation Sequencing 

or microarray experiments will contain many data anomalies such as noise and missing values 

which are expected in any biological experimental procedure. Accordingly, preprocessing the 

gene expression data is a crucial step before attempting any analysis for disease diagnosis to 

ensure the quality and accuracy of the results. One of the biggest challenges in analyses of gene 

expression data is that only a small subset of the genes could be influencing the tumor being 

monitored and also it is possible that interesting features of the disease are only present in a 

subset of the data. Accordingly gene feature selection is an important preprocessing step. Other 

preprocessing tasks include data normalization and estimating missing values [32]. 
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Gene expression data can be represented in a 2D matrix representation as shown in Figure 

2.3. The matrix stores real values where each row represents the expression patterns of genes 

and each column represents the expression profiles of tumor samples such that the value in cell 

𝑋𝑖𝑗 represents the expression level measured for gene (i) in the patient sample(j).  

 

 Gene Filtering  

Gene filtering is the process of selecting a small subset of genes which are discriminative 

among the full range of genes underlying the tumor being analyzed [32]. These genes are called 

informative genes, biomarkers or differentially expressed genes. Filter methods rely on pre-

processing techniques which analyze potential overall gain of the selected features while 

ignoring performance of the learning algorithm [34]. Examples Principle component analysis 

(PCA) and Singular Value Decomposition SVD [30]. In general, there are two common 

filtering techniques which are widely used which are ranking methods and space search 

methods. In a ranking method, a scoring function is used to choose the top ranking genes. While 

in a space search method, the genes are selected by optimizing a certain cost function to provide 

a tradeoff between maximizing the information gain and minimizing the redundancy among 

the selected genes [32], [33]. 

 

 Gene Wrapping 

A drawback in filtering the gene expression data before building the classifier is that it produces 

a dataset where the genes might have a high level of correlation within the same class. This 

correlation might be resulting from shared upstream signaling of molecules which might result 

in misclassification. [34]. The process of Wrapping as opposed to filtering, attempts to solve 

this problem by embedding the feature selection step directly into the classifier. Gene wrapping 

relies on selecting a subset of features according to the performance gain they provide to the 

learning algorithm [32], [33]. 

Figure 2.3  Gene Expression 2D Matrix Representation (G x N) 
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 Gene Filtering using Ranking 

In a ranking method, a scoring function is used to choose the top ranking genes. The following 

is a summary of the steps used to filter the genes using ranking [37]: 

 

1) Define a scoring function to measure the expression level differences between the 

various gene samples and rank the features based on the obtained scores. 

2) Estimate the statistical significance of the obtained scores. 

3) Select the top ranking genes which are statistically significant. 

4) Validate the subset of selected genes. 

 

Score Functions 

 

There are a wide variety of ranking score functions available in the literature which is 

summarized in the tables below [33]. The first table describes the notations used for the 

definitions. The ranking score functions can be divided into the following groups : 

 

▪ Rank Score Functions 

▪ T-Test Functions 

▪ Bayesian Functions 

▪ Information Theory Functions 

▪ Functions based on Probability Density Function (PDF-Based) 

▪ Correlation Gene Class Label Functions 

 

Estimating Statistical Significance 

Calculating a score function is not enough for gene selection, but the statistical significance 

has to be estimated as a form of probability measure that a good score ranking has not been 

obtained by chance [33]. Statistical significance tests typically consist of running permutations 

of multiple tests which are identical with the distinction that the features or the class label can 

be chosen differently on each test [37]. 
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The following is a summary of the most widely used score functions for Gene Filtering 

Ranking methods and their corresponding notations [32], [33], [37]. 

 

 

 

 

  

Score Function for Gene Filtering Ranking Methods [FS1] 

Figure 2.4 Score Functions for Gene Filtering Ranking Methods [32], [33], [37] 
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 Cancer Classification Methods using Gene Expressions 

Cancer classification is based on collecting samples for tumors of known classes and using 

supervised learning to build discriminative models which can learn the gene patterns of the 

underlying disease and then be used to predict the tumor class of new patient samples which 

were not previously diagnosed [1]. Current methods for cancer classification follow the 

approach of feature engineering and are based on applying innovative gene feature selection 

techniques as a prerequisite to the classifier learning process to discover a small subset of 

informative genes which are discriminative among the tumor being analysed [28], [29], [31]. 

The accuracy of such a classifier depends heavily on the successful identification of these 

discriminative features [34], [35].  

Substantial work has been done for cancer classification by performing gene feature 

selection and building on traditional machine learning methods such as Support Vector 

Machines [15], [18], [30], Random Forests [14], Decision Trees [16], AdaBoost [11], K-

Nearest Neighbor [15] and Genetic algorithms [9], [11]. Many other techniques which combine 

gene feature selection and classification have also been proposed, for example: a hybrid method 

which integrates genetic programming and particle swarm optimization was used to build a 

scale-free complex network classifier using an ensemble of different gene feature sets [8]. A 

self-training subspace clustering algorithm was proposed by first applying a low-rank 

representation to extract discriminative features from gene expressions [13]. A deep neural 

forest model was used with a combination of fisher ratio and neighborhood rough set for 

dimensionality reduction of gene expressions [12]. An ensemble classifier was developed using 

a combination of k-means clustering, t-test, self-organizing maps and hierarchical clustering 

[10]. A classifier was developed using a multilayer recursive feature elimination method based 

on an embedded integer-coded genetic algorithm [9]. A gene expression graph structure was 

proposed for using the weight of graph edges to filter and determine significance of genes 

before classification [17]. A one-class logistic regression machine learning algorithm was used 

to identify stemness features extracted from transcriptomic and epigenetic data from cancer 

tumors to reveal clinical insight and potential drug targets for anti-cancer therapies [6]. 

The following sections present a survey of the state-of-the-art cancer classification methods 

using gene expression data. 
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 Support Vector Machines (SVM) 

Many studies have been proposed for Cancer classification using Support Vector Machines 

(SVM) and gene feature selection as a prerequisite to the learning process [15], [18], [30]. 

One of the proposed examples is based on robust principle component analysis (RPCA) and 

SVM to classify tumor samples of gene expressions [18]. First RPCA is used to extract the 

characteristic genes from gene expression data. In the second stage, Linear Discriminant 

Analysis (LDA) is then used to refine the subset of characteristic genes. Finally, SVM is then 

applied to classify the tumor samples of gene expressions based on the identified features [18]. 

 

 K-Nearest Neighbors  

A comparative study was performed for applying different feature selection methods on the 

classification performance of cancer using DNA microarrays of leukemia, prostate and colon 

cancer data [15]. Feature selection of gene expressions was applied using the methods of 

Fisher, T-Statistics, SNR and ReliefF. Classification was then performed using K-Nearest 

Neighbors and Support vector machines. The study showed that the combination between SNR 

feature selection and SVM produced the highest accuracy for cancer classification [15]. 

Figure 2.5  RPCA and LDA to extract characteristic genes from gene expressions before applying SVM. The 

gene expression matrices D, A, and S represent the observation matrix, low-rank matrix and sparse perturbation 

signals to decompose the gene expression data [18] 

D

eGene Expressions 
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A

eGene Expressions 
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eGene Expressions       
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 Fuzzy Decision Trees (DT) 

A Fuzzy decision tree algorithm was proposed for the classification of gene expressions since 

they have shown to outperform classical decision tree algorithms [16]. Classical decision trees 

have shown some disadvantages in that their performance tends to deteriorate with the increase 

of features and emergence of complex interactions as in gene expression data. Since most 

decision trees depend on dividing the search space into mutually exclusive regions, the 

resulting tree must include several copies of the same subtree to accurately represent complex 

data like gene expressions. This greedy approach is prone to overfitting on the training set in 

addition to irrelevant features and noise. On the other hand, Fuzzy decision trees do not require 

assigning a data instance with a single branch and can simultaneously assign more branches to 

the same instance with a gradual certainty. Using this approach, Fuzzy decision trees retain the 

symbolic tree structure and are able to represent concepts by producing continuous 

classification outputs with gradual transitions between classes [16]. 

 

 AdaBoost 

A hybrid ensemble algorithm combining AdaBoost and genetic algorithm (GA) was 

proposed for cancer classification with gene expression data [11]. A decision group is proposed 

to improve the diversity of base classifiers in the ensemble system and GA is used to optimize 

the weight of Adaboost's base classifier. In a traditional Adaboost algorithm, a single classifier 

is used as the base classifier and cannot be changed after selection. The introduction of a 

decision group as the base classifier of the Adaboost algorithm was used to improve the 

diversity of the base classifiers [11]. 

 

Figure 2.6  Fuzzy Decision Tree Classifier for Ovarian Cancer Gene Expressions [16] 
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 Particle Swarm Optimization 

A hybrid method which integrates genetic programming and particle swarm optimization was 

used to build a scale-free complex network classifier using an ensemble of different gene 

feature sets [8]. A Complex Network (CN) classifier was used to implement the classification 

task. A Complex Network is different from a Neural Network in terms of topological structure. 

A CN has an uneven distribution of nodes, while a NN has an even distribution. CN models 

are used to simulate structural properties of many real-world networks like social networks and 

bibliographical index networks. An algorithm was used to initialize the structure, which 

allowed input variables to be selected over layered connections and different activation 

functions for different nodes. Then a hybrid method integrated Genetic Programming and 

Particle Swarm Optimization was used to identify an optimal structure with the parameters 

encoded in the classifier. The ensemble classifiers were constructed using different feature sets 

including Pearson’s correlation, Spearman’s correlation, euclidean distance, Cosine 

coefficient, and the Fisher-ratio [8]. 

 

 

 Random Forests (RF) 

A method was proposed using Random Forest for cancer classification of miRNA gene 

expression data [14]. The method was used to overcome challenges in existing techniques 

caused by the extremely low miRNA count in body fluids and also problems related to cross 

contamination between cells and exosomes in sample preparation steps. The proposed system 

was able to successfully identify miRNA markers responsible for classification of cancer [14]. 

Figure 2.7  Topology of a Cancer Classifier implementing a scale-free Complex Network [8] 
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 Deep Neural Forest Models (DFN) 

A Deep Neural Forest (DFN) model was proposed for cancer classification with a combination 

of fisher ratio and neighborhood rough set for dimensionality reduction of gene expressions 

[12]. The motivation in using a DFN is to transform a multi-class classification problem into 

many binary classification problems in each forest. The cascade structure of the DFN is used 

to deepen the traditional Flexible Neural Tree (FNT) model so that the depth of the model is 

increased without introducing additional parameters. FNT is a special neural network with the 

advantage of automatic optimization of structure and parameters. Gene feature selection was 

first performed using a fisher ratio in combination with neighborhood rough set to select the 

most informative genes among the gene expression data. The fisher ratio was used to eliminate 

invalid genes and then neighborhood rough set is applied to reduce redundant genes. The fisher 

ratio method can effectively deal with noise in the gene expression data as it filters the noisy 

genes according to its contribution to classification. The neighborhood rough set has the 

characteristics of not requiring discretization of continuous data and avoids information loss 

caused by data discretization, which can eliminate redundant genes [12].  

 

 

Figure 2.8  Deep Neural Forest Structure used for Cancer Classification [12]  

Flexible Neural Tree (FNT) 

Representation 
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 Self-training Subspace Clustering 

A self-training subspace clustering algorithm under low-rank representation (SSC-LRR) was 

proposed for cancer classification of gene expressions [13]. First, a Low-rank representation 

(LRR) is applied to extract discriminative features from the high-dimensional gene expression 

data. The self-training subspace clustering (SSC) method is then used to generate the cancer 

classification predictions. The advantage of combining these two methods is that the  Low-

rank representation is able to perform subspace segmentation which can reduce the dimension 

of the gene expression data, and then the enhanced semi-supervised self-training subspace 

clustering algorithm can effectively utilize both the labeled and unlabeled data. To analyse the 

results, the study performed a decomposition of the gene expression data matrix into a low-

rank representation matrix and a sparse matrix and then visualized the results. It was shown 

that cancer samples belonging to the same class often have the same subspace structure. This 

means that the low-rank representation can unveil the intrinsic structure of data much better 

than the original data matrix and therefore the low-rank representation can provide more useful 

discriminative information leading to a better classification performance. From a biological 

point of view, different types of cancers are often associated with some specific genes and 

therefore the corresponding gene expression data may fall into specific feature subspaces, 

which can be unveiled by using LRR [13]. The proposed SSC-LRR method was tested on two 

separate cancer benchmark datasets in control with four state-of-the-art classification methods. 

The method showed that several genes (RNF114, HLA-DRB5, USP9Y, and PTPN20) were 

identified as new cancer identifiers that deserve further clinical investigation [13].  

 

  

Figure 2.9  Illustration of Cancer Classification of Gene Expressions using Self-training Subspace Clustering and 

Low-Rank representation (SSC-LRR). (a) shows the original gene expression data matrix, (b) shows the 

decomposed low-rank representation and (c) shows the decomposed sparse representation [13]. 
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 One-Class Logistic Regression 

A one-class logistic regression machine learning algorithm was used to identify stemness 

features extracted from transcriptomic and epigenetic data from cancer tumors to reveal clinical 

insight and potential drug targets for anti-cancer therapies [6]. Stemness is defined as the 

potential for self-renewal and differentiation from the cell of origin. Cancer progression 

involves gradual loss of a differentiated phenotype and acquisition of progenitor-like, stem-

cell-like features [4]. The proposed study was based on an integrated analysis of cancer 

stemness in human tumors of different cancer types including gene expression data of mRNA 

and miRNA. By applying one-class logistic regression to molecular datasets from normal stem 

cells and their progeny, the method developed two different molecular metrics of stemness and 

then used them to classify epigenomic and transcriptomic features of the cancer tumors [6].  

  

Figure 2.10  Results of One-class Logistic Regression used to identify biological processes associated with 

Cancer Stemness. (A) Correlation between mRNAsi and mRNA expression for published hallmarks of 

stemness. (B) Correlation between mRNAsi and selected oncogenic processes [6]. 

A B 
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 Multilayer Recursive Feature Elimination 

A Multilayer Recursive Feature Elimination (MGRFE) method was proposed for cancer 

classification based on an embedded integer-coded genetic algorithm [11]. The feature 

elimination was aimed at selecting the gene combination with minimal size and maximal 

information. The method uses the filtering algorithms t-test and Maximal Information 

Coefficient (MIC) to reduce the feature range and generate a candidate feature set. MGRFE 

combines the advantages of both evolution calculation of genetic algorithms and the explicit 

Recursive Feature Elimination (RFE) to achieve the minimum discriminative gene subset with 

optimal classification ability. The experiments of the study showed that MGRFE outperforms 

state-of-the-art feature selection algorithms with better cancer classification accuracy and a 

smaller selected gene number on 19 benchmark microarray datasets including multiclass and 

imbalanced datasets [11]. 

Figure 2.11  Cancer Classification  using Multilayer Recursive Feature Elimination (MGRFE) based on 

an embedded integer-coded Genetic Algorithm (GA) [11]. 
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 Graph Structure Algorithms 

A gene expression graph structure was proposed for cancer classification by using the weight 

of graph edges to filter and determine the significance of genes before classification [17]. The 

informative genes were selected by filtering the weight values between genes such that greater 

weights indicate a stronger relationship between two genes. The method was also able to detect 

out-of-class samples that do not belong to any trained class.  

 

 Genetic Algorithms (GA) 

Genetic algorithms (GA) have been frequently used for cancer classification of gene 

expressions by combining gene feature selection and other machine learning methods. For 

example, an embedded integer-coded genetic algorithm was used for cancer classification of 

19 benchmark microarray datasets [9]. The approach relied on first applying a multilayer 

recursive feature elimination method based on the embedded integer-coded genetic algorithm 

with the aim of selecting the gene combination with minimal size and maximal information. 

Another example is the use of a hybrid ensemble algorithm combining genetic algorithms and 

AdaBoost for cancer classification with gene expression data [11]. A hybrid method was also 

used which integrates genetic programming and particle swarm optimization to build a scale-

free complex network classifier using an ensemble of different gene feature sets [8]. 

 

 Ensemble Classifiers  

One of the common approaches in classification is to use an Ensemble of multiple classifiers 

to improve Classification accuracy. An Ensemble classifier was developed for classification of 

Lung Adenocarcinoma cancer (LUAD) into molecular subtypes using a combination of k-

means clustering, t-test, Self-organizing Maps (SOM) and Hierarchical Clustering [10]. The 

method determined 24 differentially expressed genes which could be used as therapeutic 

targets, and five genes (RTKN2, ADAM6, SPINK1, COL3A1, and COL1A2) which could be 

potential novel markers for Lung cancer (LUAD). 

Figure 2.12  Cancer Classification using a Weighted Gene Expression Graph Structure [17]. 
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 Deep Learning 

Traditional machine learning techniques have shown limitations in processing high 

dimensional data [59]. Recent neuroscience findings have provided additional insight into the 

principles governing information representation in the brain. The discovery motivated the 

emergence of deep machine learning which has since revolutionized the capabilities of 

processing high dimensional data [59]. Deep learning methods rely on building complex multi-

layer network architectures capable of processing huge amounts of high dimensional data with 

minimal preprocessing requirements [46], [58]. Deep learning leverages spatial relationships 

among data to reduce the number of dimensions to be learned which dramatically improves the 

learning process in comparison to traditional machine learning methods [59], [67].  

 

 Learning using Deep Multilayer Architectures   

Traditional shallow architectures such as 2-layer neural networks, SVMs and kernel machines 

have been shown to be universal learning machines. But deep multilayer architectures have the 

capability of representing more complex functions [59]. The approach using Deep Learning is 

through building architectures with multiple layers each with a non-linear function. Each layer 

transforms the input to increase the level of accuracy and invariance of the selected features. 

As the Deep Learning architectures increase in depth and layers, the learning procedure is 

capable of representing complex functions which are very sensitive to the slightest details in 

the input objects and which are also insensitive to any irrelevant variations [59], [67].  

  

 Feature Extraction using Representation Learning  

Deep learning is commonly referred to as Representation Learning which is a technique based 

on using raw data as input with no feature extraction as a prerequisite. Deep learning relies on 

building architectures with multiple levels of representation by combining non-linear building 

blocks. Each level in the architecture transforms the input into a representation at a higher more 

abstract level which provides the capability of learning complex non-linear functions [59]. 

Figure 2.13  Visualization of Extracted Features from Deep Learning Networks [65] 
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 Training Deep Architectures using Gradient Descent & Backpropagation  

Supervised learning is used to train deep multilayer architectures. Training is performed by 

collecting a large amount of labelled data and presenting it to the network to produce an output 

score for each labelled category. By defining the appropriate objective function that measures 

the error between the network output and the desired output, we can adjust the network weights 

using Gradient descent optimization to reduce the classification error [59], [66].  

Gradient descent optimization can be illustrated by considering the cost function, averaged 

over all the training data, as a very high dimensional landscape full of hills in the network 

weight space. The negative gradients represent the direction of steepest descent in this 

landscape which can be used to iteratively determine the local minimum [62]. 

 

By training deep multilayer networks using Gradient descent and Backpropagation, the 

network learns to map an input of fixed size, such as an image, to an output which could 

represent probability scores of the classification categories [66]. A non-linear activation 

function is applied before passing the weighted sum of the inputs from one layer to the next. 

The hidden layers are considered to be performing a non-linear transformation of the input so 

that the classification of the output categories can become linearly separable [46].  

Figure 2.14  Training Multilayer Neural Networks using Backpropagation [59] 
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Deep network architectures can be trained by means of stochastic gradient descent using 

backpropagation by application of the chain rule for derivatives. To adjust the network weights, 

we need to calculate the gradient of the error function with respect to all the weight parameters 

in the network.  Backpropagation calculations can be used to propagate the gradients from the 

output layer back to the input by passing through the multiple layers [67]. 

 

 

 

 

 Convolutional Neural Networks  

 CNN Overview 

Convolutional Neural Networks (CNNs) are similar to traditional Neural Networks in having 

neurons with learnable weights and biases but differ greatly in the architecture and connectivity 

between the various layers. CNNs are made of multiple layers where each layer is arranged in 

the form of a 3D volume of neurons that has a specific width, depth and height. Each layer 

transforms the input 3D volume to an output 3D volume using a non-linear transformation 

function. The notion of depth is different from the number of layers of the network which was 

typically referred to as depth in traditional neural networks, but the depth in this context refers 

to the depth of the activation volume of neurons in a particular layer [59]. CNNs also differ in 

that the neurons in a particular layer will only be connected to a small region in the previous 

layer instead of the traditional fully connected networks, [66]. The following sections provide 

a survey of some of the current state-of-the-art convolutional neural networks used in computer 

vision and natural language processing applications. 

Figure 2.15 Computing Gradients for Deep Networks using Backpropagation [67] 
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 (ALEX-Net) ImageNet Classification with Deep Networks 

 

ALEX-Net was among the first Convolutional Neural Networks that drew great attention to the 

capabilities of deep learning and managed to outperform some of the existing classification 

benchmarks with a relatively high margin [66]. It won the first place in the ImageNet 2012 

competition. It was used to classify 1.2 million high resolution images covering 1000 different 

classes. The network had 5 convolutional layers followed by max pooling layers in some of 

them and then followed by 3 fully connected layers and a final 1000-way softmax for 

classification. The network had 60 million parameters and 650,000 neurons. A dropout 

regularization was used on the fully connected layers to reduce over fitting [66].    

Figure 2.16  ALEX-NET Convolutional Neural Network [66] 

Figure 2.18  Examples of Convolutional Kernels learned by ALEX-NET in the first layer [66] 

Figure 2.17  Classification of ImageNet 2012 Images using ALEX-NET [66] 
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Figure 2.20  Visualization of layer 3 features for a fully trained ZF-NET network [65]. 

 (ZF-Net) Visualizing and Understanding Convolutional Networks 

The ZF-Net network architecture provided a visualization technique to gain more insight on 

the functions of the intermediate feature layers of a Convolutional Neural Network and how it 

performs its classification [65]. This insight was used to further enhance the design of the 

network and enhance its classification performance and was able to achieve better performance 

in the ImageNet competition compared to ALEXNET. By using what is referred to as a De-

convolutional Neural Network, it was possible to visualize the intermediate feature maps 

extracted by the intermediate layers of a Convolutional Neural Network which has provided 

more insight on the functions of the intermediate layers and their role in feature extraction [65].  

 

 

Using the ZF-NET, it was possible to visualize the top activation for any feature map projected 

back to the image pixel space. This visualization made it possible to reveal the different 

structures that excite the activation map and demonstrated how it is invariant to any input 

deformations. The visualization of features also demonstrated through experimental trials that 

the features extracted by CNNs are not just random patterns, but they have significant 

interpretations in how the class discrimination is performed. It also demonstrates how the 

network is able to extract features with desirable properties such as compositionality and 

increasing variance as the data is moved deeper into the network layers [65]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19  ZF-NET Convolutional Neural Network [65]. 
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Figure 2.21  VGG-NET Convolutional Neural Network configurations [64] 

 (VGG-Net) Very Deep Convolutional Networks for Image Recognition 

The VGG-Net network attempts to further improve the architecture of CNNs by studying the 

variations of design in terms of the depth of the network. Experiments are performed to 

gradually increase the depth of the network by adding more convolutional layers while fixing 

other network parameters and using a very small 3x3 filter [64]. Variations in CNN depth 

configuration included networks starting from 11 weight layers (8 Conv. and 3 FC layers) up-

to networks with 19 weight layers (16 Conv. And 3 FC layers). At the same time variations are 

applied to the width of the network by changing the number of filters used from 64 in the first 

layer and up-to 512. Changing the number of filters determines the volume width or number 

of channels of the stacked activation maps after convolution. These variations in network depth 

demonstrated that the representation depth is beneficial for the accuracy of the classification 

and that state-of-the-art performance can be achieved by a conventional CNN architecture with 

substantially increased depth [64]. 
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 Inception Model Architectures 

It has been shown that if a large sparse Deep Neural Network architecture can be used to 

represent the probability distribution of a dataset, then the optimal network architecture can be 

constructed on a layer by layer basis by analysis of the correlation statistics of the activations 

of the last layer and clustering neurons with highly correlated outputs [63]. 

The Inception model architecture attempts to find an optimal approximation for a local 

sparse structure that is covered by readily available dense components. Construction proceeds 

layer by layer by analyzing the correlation statistics of the last layer and clustering them into 

groups of units with high correlation [63]. The resulting clusters will form the units of the next 

layer and are connected to the units in the previous layer. This model is based on the assumption 

that each unit from the earlier layer will correspond to some region of the input and that these 

units will be grouped into filter banks. This process will result in the early layers which are 

closer to the input, to build up many clusters which are concentrated in a single region which 

can then be covered by a layer of 1x1 convolutions in the following layer. To avoid the 

overhead of expensive computations resulting from merging of the output of the pooling layer 

with that of the convolutional layer, a dimension reduction is applied to preserve the sparse 

representations in the network [63]. 

 

 

  

Figure 2.22  Inception Module Architectures [63] 
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 (Google-Net) Going Deeper with Convolutions 

Google-NET was able to outperform previous designs and win the ImageNet contest in 2014 

ILSVCR14. The main advantage of this network architecture is the improvement in utilization 

of the computing resources inside the network. The implementation relied on designs which 

allowed increasing depth and width of the network while keeping the computational budget 

constant. The architecture decisions were based on the Hebbian principle and the use of multi-

scale processing to optimize quality [63].  

Google-NET has demonstrated that using dense building 

blocks for approximating the expected optimal sparse 

structure is a successful technique for improving the 

performance of Neural Networks. The experimental 

results of this network have shown that moving to sparser 

architectures is feasible and achieves comparable 

performance when compared to more expensive networks 

of similar depth and width [63]. 

 

 

 

 

 

  

Figure 2.23  Google-NET Convolutional Neural Network Architecture [63] 
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 Deep Residual Learning Framework 

Challenge in Training Deeper Networks 

State-of-the-art CNNs have shown that better classification performance can be achieved by 

architectures with substantially increased depth [64]. But at the same time, with depth being a 

significant factor, creating more deeper networks is not as simple as stacking more network 

layers into the network architecture [58].  

One of the major problems that arises with training deeper networks is referred to as the 

Degradation problem [58]. Degradation occurs with the increase in network depth where the 

training accuracy gets saturated and then at a certain point it starts to rapidly degrade. 

Experiments have shown that the degradation is not caused by overfitting but rather due to the 

increase of network layers. The example below illustrates the training of the CIFAR-10 dataset 

where increase in number of layers has resulted in in higher training and test error [58]. 

Residual learning was introduced to overcome degradation in learning performance with 

deep networks. If we assume that a series of stacked non-linear layers in a CNN can 

asymptotically approximate complex non-linear functions and that these layers can be 

represented by a mapping 𝐻(𝑥), where x is the input to the first layer, then we can equivalently 

assume that these stacked layers can also asymptotically approximate the residual function 

𝐻(𝑥) − 𝑥, given that both input and out have the same dimension.  

The idea of residual learning is that instead of expecting the deep layers to approximate 

𝐻(𝑥) we let them approximate a residual function 𝑓(𝑥) = 𝐻(𝑥) − 𝑥 so that the original 

function becomes 𝑓(𝑥) + 𝑥. If the added layers can be constructed as an identity mapping then 

the training error of the deep network should not exceed the shallow model of the same 

network. Residual learning has proved that it is easier to optimize the residual mapping than to 

optimize the original mapping. In the case that the identity mapping was optimal then it would 

be easier to drive the residual to zero than to approximate the identity mapping by a stack of 

non-linear layers [58].  

 

  

Figure 2.24  Deep Residual Learning Framework [58] 
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 (ResNet) Deep Residual Learning Networks for Image Recognition 

ResNet is a CNN architecture built on the residual learning framework [58]. The network was 

able to outperform previous designs and win the ImageNet contest in 2015 ILSVCR15. The 

architecture of this network is provides the capability to train networks which are relatively 

deeper than previous network designs. The idea is based on reformulating the layers as learning 

residual functions with reference to the layer inputs, instead of learning unreferenced functions. 

The experiments performed using this network demonstrated that Residual networks are easier 

to optimize and can achieve more accuracy when the depth of the network is increased [58]. 

  

Figure 2.25  Comparison between Plain and Residual Convolutional Neural Network Architectures [58]. 

Deep Network with Plain Layers

 
 Deep Network with Residual [DL3] 

Layers 

Deep Network with Residual Layers 
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 (Inception-ResNet) Impact of Residual Connections on Learning 

The idea behind the architecture of the Inception-ResNet [57] Convolutional Neural Network 

was to build a very deep network by combining the successful models used for Inception 

architectures together with the learning technique of Residual connections. The motivation is 

that Inception architectures have been shown to achieve very good performance at relatively 

low computational cost and at the same time the use of residual connections have produced the 

best performance results in 2015 ImageNet challenge ILSVCR15 [57].  

  

Inception-C Block 

Inception-B Block 

Inception-A Block 

Figure 2.26  Inception-ResNet Convolutional Neural Network Architecture [57] 
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 (DenseNet) Densely Connected Convolutional Networks 

Dense Convolutional Networks attempt to ensure maximum information flow between layers 

in a deep network by connecting all layers, with matching feature-map sizes, directly with each 

other [41]. Recent studies have shown that convolutional networks can be substantially deeper, 

more accurate, and efficient to train if they contain shorter connections between layers close to 

the input and those close to the output. DenseNets build on this observation by connecting each 

layer to every other layer in a feed-forward fashion. Traditional convolutional networks with L 

layers have L connections, one between each layer and its subsequent layer. On the other hand,  

a DenseNet only has L(L+1)/2 direct connections [41]. For each layer, the feature-maps of all 

preceding layers are used as inputs and its own feature-maps are used as inputs into all 

subsequent layers. DenseNets have several advantages as they overcome the vanishing-

gradient problem, strengthen feature propagation and substantially reduce the number of 

parameters. DenseNets obtained significant improvements over the state-of-the-art CNNs on 

four benchmark datasets used in object recognition (CIFAR-10, CIFAR-100, SVHN, and 

ImageNet) [41]. 

  

Figure 2.27  DenseNet Convolutional Neural Network Architecture [41] 



44   
  

 

AUC SID:  800-09-0336                                                                       Name: Tarek Khorshed 

 (NasNet) Learning Transferable Architectures for Image Recognition 

The framework of learning transferable architectures is based on searching for an architectural 

building block on a small dataset and then transferring the block to a larger dataset [40]. The 

NasNet experiments search for the best convolutional layer or “cell” on a proxy dataset, such 

as the CIFAR-10 dataset, and then apply this cell to the ImageNet dataset by stacking together 

more copies of this cell, each with their own parameters to design the NasNet convolutional 

architecture. Searching for the best cell structure is much faster than searching for an entire 

network architecture and the cell itself is more likely to generalize to other problems. For 

experiments on ImageNet, a NASNet constructed from the best cell achieves accuracy of 

82.7% top-1 and 96.2% top-5. The NasNet model is 1.2% better in top-1 accuracy than the best 

human-invented architectures while having 28% less FLOPS in computational demand from 

the previous state-of-the-art model. [40] 

  

Figure 2.28  NasNet Convolutional Neural Network Architecture [40] 
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 (MobileNet) Efficient CNNs for Mobile Vision Applications 

MobileNet represents a class of efficient models designed for mobile and embedded vision 

applications. MobileNets are based on a streamlined architecture that uses depthwise separable 

convolutions to build light weight deep neural networks [39], [43]. The MobileNet architecture 

is based on depthwise separable convolutions which is a form of factorized convolutions which 

factorize a standard convolution into a depthwise convolution and a 1x1 convolution called a 

pointwise convolution. The depthwise convolution applies a single filter to each input channel 

while the pointwise convolution then applies a 1x1 convolution to combine the outputs of the 

depthwise convolution. This factorization has the effect of drastically reducing computation 

and model size [43]. Experiments have demonstrated the effectiveness of MobileNets across a 

wide range of applications and use cases including object detection, finegrain classification, 

face attributes and large scale geo-localization [43]. 

MobileNet V2 improve on the original design by introducing a novel layer called the 

inverted residual with linear bottleneck [39]. This module takes as an input a low-dimensional 

compressed representation which is first expanded to high dimension and filtered with a 

lightweight depthwise convolution and then features are subsequently projected back to a low-

dimensional representation with a linear convolution. Experiments demonstrated that 

MobileNet V2 improves the state of the art performance of mobile models on multiple tasks 

and benchmarks as well as across a spectrum of different model sizes [39]. 

  

Figure 2.29  Architecture of Separable Convolution Blocks in MobileNet Convolutional 

Neural Network Architecture [39]. 
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Figure 2.30  Confusion Matrix Performance Metrics [66] 

 ROC Analysis for Evaluation of Classification Performance 

The receiver operating characteristics (ROC) curves [68] will be used for evaluation of the 

classification performance of our proposed Convolutional Neural Network models as 

compared to the existing benchmarks for state-of-the-art classification methods. A confusion 

matrix is constructed by analysis of the four common possible outcomes which are defined for 

classification evaluation as shown in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROC Curve 

 

The ROC curve is a 2-dimensional graph where the true positive rate (TP) is plotted on the Y 

axis and false positive rate (FP) is plotted on the X axis. The ROC describes relative tradeoffs 

between benefits (true positives) and costs (false positives). The lower left point (0, 0) 

represents a classifier which commits no false positive errors but also gains no true positives. 

The opposite of unconditionally issuing positive classifications is represented by the upper 

right point (1, 1). The point (0, 1) represents perfect classification. A point in ROC space is 

better than another if it is to the northwest, which means the true positive rate is higher or the 

false positive rate is lower or both [68]. 

 
  

Figure 2.31  ROC Curve [68] 
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Applying a Threshold for ROC Curve 

 

When using a layer such as Softmax for the Classification decision in a Convolutional Neural 

Network, the decision is a set of probabilities describing our confidence in each of the 

decisions. In this case a threshold can be used to produce a discrete classifier where each 

threshold value produces a different point in ROC graph. The figure shows an example of ROC 

curve where the instances have been sorted by their scores, and each point is labeled by the 

score threshold that produces it [68]. 

 

Avoiding Performance Evaluation Skews caused by Gene Expression Class Distribution  

 

ROC curves have an advantage of insensitivity in changes to class distribution. If the proportion 

of positive to negative instances changes in a test set, the ROC curves will not change. The 

class distribution is the relationship of the positive column on the left to the negative column 

on the right. Any performance metric that uses values from both columns will be inherently 

sensitive to class skews. For example, Precision-Recall curves are sensitive to changes in class 

distribution as compared to ROC curves as demonstrated in the figure below [68].  

  

Figure 2.32  Comparison between ROC and Precision-Recall curves under 

skews in Class data Distribution [68] 

 

 
(a) ROC curves 1:1;   

(b) Precision-recall curves 1:1  

(c) ROC curves 1:10 

(d) (d) Precision-recall curves 1:10 
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CHAPTER 3   

 RESEARCH METHODOLOGY 

 

 Problem Definition 

The World Health Organization reports that cancer is a leading cause of death worldwide 

accounting for an estimated 9.6 million deaths in 2018 [1]. Despite this dramatic impact, 

between 30-50% of cancer death cases can be prevented through early detection and treatment 

[3]. Advancements in cancer classification and prediction play an important role in saving the 

lives of cancer patients, since a major challenge in cancer treatment is that patients are 

diagnosed at very late stages where appropriate interventions become less effective and full 

curative treatment is no longer achievable [4].  

Machine learning for medical diagnosis using genomics is very difficult given the high 

dimensionality of the data and lack of sufficient patient samples for training [1], [4].  

Technological advances in structural genomics have allowed studying the full set of DNAs in 

the human genome [25]. Next generation sequencing (NGS) methods such as whole-genome 

DNA sequencing and Total RNA sequencing are considered revolutionary technologies for 

studying genetic changes in Cancer [22], [27]. These technologies provide great potential for 

cancer classification and better understanding of tumor progression given their ability to 

sequence thousands of genes at one time and detect multiple types of genomic alterations [20], 

[21], [25]. They provide capabilities for comparing the sequence of DNA and RNA in cancer 

cells with that in normal cells to identify genetic changes that may be driving the growth of a 

tumor [26]. Gene expression analysis using total RNA sequencing provides a snapshot of the 

whole transcriptome rather than a predetermined subset of genes and can detect both coding 

plus multiple forms of noncoding RNA [22]. These methods have eliminated many limitations 

involved in microarray based experiments that were previously used for measuring gene 

expressions [22], [25], [27].  

Cancer classification using gene expressions produced from Total RNA sequencing is 

extremely challenging given the complexity and massive amount of genetic data that is 

produced [20], [21], [25], [26], [38]. The magnitude of variants obtained from RNA-

Sequencing is exponential which makes it difficult for traditional machine learning approaches 

to evaluate genetic variants for disease prediction [4], [22], [23]. Gene expression data is 
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characterized by being very high in dimensionality in terms of having a very large number of 

features representing the genes, and a very small number of training data representing the 

patient samples [9], [22], [33]. Complexity is also due to the fact that only a small subset of 

genes might be influencing the cancer tumor being diagnosed [4], [29].  

Current cancer classification methods avoid processing the full set of genes to overcome 

these complexities and are mainly based on performing a process of gene feature selection as 

a prerequisite to the classifier learning process [28], [29], [30], [31]. Gene feature selection will 

allow the learning process to proceed, but the resulting classifier will not have the opportunity 

to learn the molecular signatures of genes which have been excluded and their influence on the 

underlying cancer tumor [34], [35]. Current classification methods which are based on gene 

feature selection are not optimal for early cancer diagnosis. This is because these methods will 

fall short in taking the full advantage of DNA and RNA sequencing technologies to discover 

the correlated patterns between genes across the full set of DNAs in the human genome and to 

detect multiple types of genetic alterations that may be driving the growth of a tumor across 

the whole transcriptome rather than a predetermined subset of genes [5], [6]. Another limitation 

of current methods is that they typically rely on gene expressions collected mainly from a single 

cancer tissue type based on the same anatomical site of origin.  This approach does not utilize 

the full potential of the recent emerging whole-genome sequencing technologies and data 

produced by large-scale genomic projects which are producing detailed molecular 

characterizations of thousands of tumors using genome-wide platforms [38]. Recent studies 

which have performed an integrated multiplatform analysis across multiple cancer types have 

revealed molecular classification within and across tissues of origin [5], [7]. The results of 

these studies have recommended that the traditional approach of anatomic cancer classification 

should be supplemented by classification based on molecular alterations shared by tumors 

across different tissue types [5]. 

Deep Machine Learning continues to be an active research area [59] and therefore provides 

great potential for early disease detection and diagnosis. Among the great challenges in using 

deep learning for disease classification is the absence of a systematic approach to discover 

optimal model architectures. Deep learning is dependent on manually designing and 

configuring deep network architectures, where the optimal design configuration is achieved by 

training and experimentation on huge benchmark datasets [39], [41], [46], [57], [58], [42], [43]. 

Another challenge in using deep machine learning for disease diagnosis, is that deep networks 

are conceived as “black boxes” without much interpretation on how these complex models 

make their decisions [53]. Existing visualization techniques for deep networks used for 
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computer vision tasks [52], [53], [65] can be interpreted by non-experts when studied in 

conjunction with image or video datasets because they are visually comprehensible. These 

methods are not directly applicable to genomic datasets such as gene expressions, since they 

cannot be visually rendered in a human-friendly form that allows easy interpretations. 

 

 Research Objectives  

To address the above problems, this has motivated our research for early cancer diagnosis by 

targeting the following research objectives: 

Objective 1:  

Leveraging the latest Deep Learning methods to design a comprehensive Multi-Tissue 

cancer classifier based on molecular signatures of whole-transcriptome wide gene 

expressions, that are collected from human samples representing multiple cancer tissue 

types and covering multiple organ sites.  

Research Questions: Will the performance of disease prediction improve by learning the 

molecular signatures of whole-transcriptome wide gene expressions? Does a cancer 

classifier have to be limited to learning the molecular signatures of tumors from a single 

tissue type? Is there any value to learn the molecular signatures of tumors across multiple 

tissues and organ sites? 

Method: Developing cancer classifiers with the capabilities of detecting more complex 

types of genetic alterations driving cancer progression, by learning the genomic signatures 

of whole-transcriptome gene expressions shared across multiple cancer tissue types and 

measuring the improvement in comparison to traditional single tissue classification. 

 

Objective 2:  

Design a Deep Learning framework for early cancer diagnosis by combining the process 

of gene feature selection and classification into one end-to-end learning system.  

Research Questions: Can deep learning be used to overcome the limitations of traditional 

machine learning methods in processing complex high dimensional genomic data? Can we 

design a cancer classifier using genes across the full set of DNAs in the human genome 

without performing a prerequisite process of gene feature selection? 

Method: Eliminating the dependency on the prerequisite process of gene feature selection 

which is performed by current state-of-the-art cancer classification methods for discovering 

a predefined subset of informative genes to be used in the learning process. 
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Objective 3:  

Design a new Deep Neural Network architecture which is specifically designed to address 

the complex nature of whole-transcriptome gene expressions. The new model architecture 

should have the capabilities of learning the sequence of DNA and RNA in cancer cells and 

identifying genetic changes that alter cell behavior and cause uncontrollable growth and 

malignancy. The new architecture should also have the capabilities of learning the genomic 

signatures across multiple tissue types without requiring the prerequisite of gene feature 

selection.  

Research Questions: Can we improve the performance of current cancer classifiers for 

early disease prediction by taking better advantage of Next Generation Sequencing methods 

such as whole-genome DNA sequencing and Total RNA sequencing that can provide a 

snapshot of the whole transcriptome? Can the existing state-of-the-art deep learning models 

that have been designed specifically for computer vision tasks, also be successfully applied 

for cancer classification using genomic data? Can we improve the performance of current 

cancer classifiers by designing a deep learning model architecture specifically designed for 

the complex nature of genomic data and whole-transcriptome gene expressions across 

multiple tissue types? 

Method: Developing cancer classifiers with the capabilities of taking full advantage of 

genome-wide Next Generation Sequencing technologies to discover the correlated patterns 

of genes across the full set of DNAs in the human genome and across multiple cancer tissue 

types. To our knowledge, this is the first effort to develop a Multi-Tissue cancer classifier 

based on a full set of whole-transcriptome wide gene expressions collected from tumors 

across different tissue types without requiring a prerequisite process of gene feature 

selection. 

 

Objective 4:  

Design a Deep Transfer Learning model that can effectively function as a generic Multi-

Tissue cancer classifier by learning genomic signatures collected from multiple cancer 

tissue types and using Transfer Learning to build classifiers for tumor types that are lacking 

sufficient patient samples to be trained independently.  

Research Questions: Do we need a huge amount of human patient samples to train deep 

learning models with genomic data? Can we benefit from deep learning model architectures 

to efficiently build and train cancer classifiers despite the lack of huge amounts of cancer 

patient samples? 
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Method: Eliminating the dependency on huge amounts of patient data and contributing to 

solving one of the biggest challenges in cancer classification which is lack of patient 

samples. Comparing the classification performance between applying transfer learning 

using the genomic signatures of a pre-trained model versus performing a full training 

procedure using the available patient samples. 

 

Objective 5:  

Design an end-to-end Deep Reinforcement Learning framework that would automatically 

learn the optimal Deep Neural Network architecture together with the associated optimal 

hyperparameters that would maximize the performance of our multi-tissue cancer classifier.  

Research Questions: Can we avoid the process of manually designing and handcrafting a 

deep model architecture and avoid the process of manually performing hyperparameter 

optimization to improve the performance of our cancer classifier? 

Method: Developing a comprehensive multi-tissue cancer classifier that would eliminate 

the manual process of handcrafting the network architecture and eliminate the manual 

process of hyperparameter optimization and fine-tuning on the target dataset. 

 

Objective 6:  

Design visualization procedures to provide more biological insight on how the proposed 

network model is learning genomic signatures of whole-transcriptome gene expressions 

and accurately performing classification across multiple cancer tumors. Design the 

capability to visualize gene localization maps highlighting the important regions in the gene 

expressions influencing the tumor class prediction. Design the capability to visualize the 

molecular clusters formed by intermediate gene expression feature maps learned by the 

network which helps in revealing the genomic relationships of gene expressions that are 

influential in the tumor progression.  

Research Questions: If we manage to successfully use deep learning models to improve 

the performance of cancer classifiers for early cancer diagnosis, can we provide medical 

professionals with any form of biological interpretation on how these complex models are 

making their predictions?  

Method: Contribute to providing medical professionals with more confidence in using 

deep learning for medical diagnosis by providing interpretation on how these complex deep 

learning models are making their predictions. 
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 Approach 

The following sections outline our approach for achieving our research objectives and 

answering the research questions. We describe the motivation in using deep learning to design 

a multi-tissue cancer classifier and overcome the complexity in feature extraction in 

comparison to traditional machine learning methods. We outline our approach for using 

transfer learning to solve one of the biggest challenges in cancer classification which is lack of 

patient samples. We describe our approach to discover and learn the optimal deep network 

architecture that would maximize the performance of our classifier by designing an end-to-end 

Deep Reinforcement Learning framework. Finally, we introduce our approach using 

visualizations to provide more biological insight on how our deep learning framework is 

performing multi-tissue cancer classification. The detailed methods are presented in chapter 4. 

 Using Deep Learning to Design a Multi-Tissue Cancer Classifier 

Deep Machine learning and Computational Intelligence are concerned with designing 

intelligent systems that can independently learn from data and make complex predictions and 

decisions in dynamically changing real world environments. Deep learning has had a major 

impact in many research and business applications such as Autonomous Self-driving Cars, 

Computer Vision, Medical Diagnosis, Biometric Identification, eCommerce, Banking and 

Cybersecurity. It has become a key element in many military defense applications and 

government intelligence and law enforcement agencies [40], [59], [60].  

Traditional machine learning techniques have shown limitations in processing high 

dimensional data [66]. Recent neuroscience findings have provided additional insight into the 

principles governing information representation in the brain. The discovery motivated the 

emergence of deep machine learning which has since revolutionized the capabilities of 

processing high dimensional data [59]. Deep learning methods rely on building complex multi-

layer network architectures capable of processing huge amounts of high dimensional data with 

minimal data preprocessing requirements, [42], [46], [58], Deep learning leverages spatial 

relationships among data to reduce the number of dimensions to be learned which dramatically 

improves the learning process in comparison to traditional machine learning techniques [67].  

 

 Overcoming Complexity in Feature Extraction of Gene Expression Data 

Traditional machine learning methods are dependent on a prerequisite which requires domain 

experts to handcraft the relevant set of features to be used in the learning algorithm [59]. The 

design of a classification system required careful engineering and continuous fine-tuning to 
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design a feature extractor which would be capable of capturing the characteristics of the data 

being analyzed and transform it into a suitable feature vector to be fed as an input to the learning 

algorithm [67]. The performance of the learning system in terms of prediction and classification 

depended heavily on the successful identification of these features [59]. Deep learning on the 

other hand, is commonly referred to as Representation Learning since it is based on using raw 

data as input with no feature extraction as a prerequisite. Deep learning relies on building 

architectures with multiple levels of representation by combining non-linear building blocks, 

each level in the architecture transforms the input data into a representation at a higher more 

abstract level which provides the capability of learning complex non-linear functions [59].  

For the problem of early cancer diagnosis using whole-transcriptome gene expression data, 

deep learning would provide the capabilities of automatically learning the molecular patterns 

of expressed genes which are influencing the cancer tumor being diagnosed and using that to 

amplify the discrimination score for classification. The major advantage is that the genetic 

features of the cancer tumors will not require to be pre-identified by medical professionals, but 

rather they will be automatically discovered through the deep learning process. 

 

 Deep Learning Architecture for Multi-Tissue Cancer Classification 

Current methods for cancer classification are based on gene feature selection as a prerequisite 

to the classifier learning process. Our approach using deep learning provides an alternative 

solution to feature engineering and eliminates the dependency on huge amounts of training data 

and the prerequisite gene feature selection. This is achieved by combining the process of gene 

feature selection and classification into one end-to-end learning system using the whole set of 

transcriptome wide gene expressions collected from tumors across different tissue types. We 

propose a new Convolutional Neural Network (CNN) architecture called “Gene eXpression 

Network” (GeneXNet) that combines multiple layers of non-linear building blocks which 

transform the gene expression data into a representation at a higher more abstract level. This 

allows the network to automatically learn the molecular patterns of expressed genes which are 

influencing the tumors and use that to amplify the discrimination score for classification. The 

advantage is that the classifier will not be limited to learning the molecular characterization of 

a single tissue type but will have the capability of detecting more complex types of genomic 

alterations by learning the genetic signatures collected from multiple tumors and across 

multiple cancer tissue types. Another major advantage of our approach is that it allows 

performing very efficient transfer learning by reusing the molecular signatures learned by the 

trained networks. The weights of the pretrained networks can be used as feature extractors to 
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build and finetune classifiers for other different types of cancer tumors which might be lacking 

sufficient patient samples to be trained independently. This helps in solving one of the biggest 

challenges in building discriminative classifiers based on gene expressions which are 

characterized by having a very large number of genes versus a very small number of patient 

samples [1], [22]. 

 

 Transfer Learning using Genomic Signatures of Multiple Tumors to Overcome 

Lack of Patient Samples 

Our approach for building a comprehensive multi-tissue cancer classifier is by designing a new 

Convolutional Neural Network (CNN) architecture with the capability of learning the genomic 

signatures of whole-transcriptome wide gene expressions shared across multiple cancer tumor 

types. By training the model with samples from multiple tissue types collected from multiple 

organ sites, the classifier is able to learn and extract complex patterns from the gene expression 

data that represent genomic and transcriptomic alterations such as mutations, rearrangements, 

deletions, amplifications and the addition or removal of chemical marks. This allows the 

classifier to more accurately classify cancer tumors which are resulting from DNA or RNA 

changes that alter cell behavior across multiple tissues and cause uncontrollable growth and 

malignancy. 

A major advantage is that we are able to reuse the genomic signatures learned by the trained 

model to perform very efficient transfer learning to solve one of the biggest challenges in 

cancer classification which is lack of patient samples. We demonstrate how transfer learning 

can be used to build and finetune classifiers for other different types of cancer tumors not 

included in the underlying dataset, which might be lacking sufficient patient samples to be 

trained independently. By reusing the weights of the pretrained network model, we demonstrate 

how the same network or an extended version of it can be used for feature extraction on a 

different cancer tumor type. The intuition behind transfer learning comes from recent studies 

which have performed an integrated multiplatform analysis across multiple cancer types that 

have revealed similar molecular classification within and across tissues of origin [5], [7]. This 

means that the discriminative molecular features for one cancer classifier will most likely be 

relevant for other cancer types. Our pretrained model will have already learned the complex 

types of genetic alterations and genomic signatures collected from multiple cancer tissue types 

originating from different organs and can effectively function as a generic model for cancer 

classification. 
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 Deep Reinforcement Learning Framework to Discover the Optimal Deep Network 

Architecture 

Our objective is to design an end-to-end learning framework that would enable us to 

automatically learn the optimal deep network architecture together with the associated optimal 

hyperparameters that would maximize the multi-tissue classification performance on our 

cancer tumor dataset.  

The development of deep neural network architectures to improve accuracy and 

performance continues to be an active research area [39], [41], [46], [57], [58], [42], [43]. The 

drawback in using similar design approaches for building a comprehensive multi-tissue cancer 

classifier is that they rely on manually designing and configuring the network architecture [86], 

where the optimal design configuration is achieved by experimentation on benchmark  datasets 

such as ImageNet [48]. One of the great challenges in using deep networks is the absence of a 

systematic approach to search within the huge network architecture space which is exponential 

in size to discover the optimal architecture [87]. Since our objective is to build a comprehensive 

multi-tissue cancer classifier based on molecular signatures of whole-transcriptome gene 

expressions, we would like to design our end-to-end deep learning framework without 

manually configuring the optimal network architecture. We would like to eliminate the manual 

process of handcrafting the network architecture which typically depends on carefully 

engineering and fine-tuning the design to achieve optimal performance on the target dataset.  

To solve this problem, we propose a different approach by designing an end-to-end Deep 

Reinforcement Learning (DRL) framework. The objective of the DRL framework is to discover 

and learn the optimal Deep Network architecture that would maximize the performance of our 

multi-tissue cancer classifier on any potential gene expression dataset. In our proposed DRL 

framework, we use a Recurrent Neural Network (RNN) to generate different network 

architectures and we train the RNN using Reinforcement Learning to find an optimal 

architecture that would maximize the expected classification performance on our underlying 

multi-tissue cancer dataset. Our methods are motivated from the work done in the areas of 

Robotics and Optimal Control of Autonomous Vehicles using Deep Reinforcement Learning 

[89], [90], [91], [92], [93] and also the work done in Adversarial Game Playing using 

Reinforcement Learning and Deep Neural Networks [100], [101].  We build on the Policy 

Gradient optimization methods which use Reinforcement Learning and Trajectory 

optimization to learn complex nonlinear policies used in controlling high dimensional robotics 

systems using deep neural networks [94], [95], [96]. We also build on the gradient based 
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optimization methods using Recurrent Neural Networks which have been used for image 

classification [40], [81]. 

 

 Visualizing Genomic Relationships of Gene Expressions Across Multiple Tumors 

One of the challenges in using deep learning for disease diagnosis, is that deep networks are 

conceived as “black boxes” without much interpretation on how these complex models make 

their decisions [53]. Extensive work has been done to introduce novel visualization techniques 

for deep networks to help understand and interpret their record breaking performance in 

computer vision tasks [52], [53], [65]. The output from these techniques can be interpreted by 

non-experts when studied in conjunction with image or video datasets because they are visually 

comprehensible. Unfortunately, these methods are not directly applicable to genomic datasets 

such as gene expressions, since they cannot be visually rendered in a human-friendly form that 

allows easy interpretations. Our approach is to design a learning system architecture that can 

contribute in solving this problem by taking full potential of next generation sequencing 

technologies that produce datasets with detailed molecular characterizations of thousands of 

tumors using genome-wide platforms. 

We introduce visualization procedures to provide more biological insight on how our model 

is performing cancer classification across multiple tumor types. We visualize gene localization 

maps highlighting the important regions in the gene expressions influencing the tumor class 

prediction. We also visualize the molecular clusters formed by intermediate gene expression 

feature maps learned by the network which helps in revealing the genomic relationships of 

gene expressions that are influential in the tumor progression. 
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CHAPTER 4   

 METHODS 

The following sections present our detailed methods for achieving our research objectives. We 

describe our Deep Learning framework and formulate the details of our Gene eXpression 

Network architecture. We present the details of using transfer learning using genomic 

signatures across multiple cancer tumors. We formulate our network training and optimization 

using stochastic gradient descent and adaptive learning optimization. We describe and 

formulate the details of our end-to-end Deep Reinforcement Learning framework to discover 

and learn the optimal deep network architecture that maximizes the performance of our cancer 

classifier. Finally, we describe the details of our visualization procedures to provide more 

biological insight on how our framework is performing multi-tissue cancer classification. 

 Deep Learning System Architecture  

A schematic diagram of our end-to-end deep learning system architecture is shown in Figure 

4.1. The first section represents the data collection and preparation process. It depends on 

collecting human samples representing multiple types of cancer tumors collected from multiple 

tissues spanning different organs across the body. The next step performs the gene expression 

quantification using a Next Generation Sequencing procedure. Total RNA sequencing is 

performed for measuring gene expression quantification across the whole-transcriptome and 

extracting both coding mRNA and noncoding miRNA. The gene expression data is normalized 

and then converted into a representation which makes it suitable for feeding it as input data to 

our deep learning model. Details about the cancer tumors used in our experiments is explained 

in the datasets section of the experiments chapter.   

Human samples 
26 Organ Sites 

33 Tumor Types 

Gene Expression Network 

(GeneXNet) 

Tumor Class 

Prediction 

Tumor 

Classification 

Total RNA 

Sequencing 

mRNA 
Gene Expression 

 Quantification 

Input 
Gene Expression 

Figure 4.1  Deep Learning System Architecture 
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The second section of our learning system represents building and training a deep 

Convolutional Neural Network (CNN) to automatically learn the molecular signatures of the 

full set of whole-transcriptome gene expression data and produce a trained model which can 

be used for classification of cancer tumors. Our model, which we refer to as “Gene eXpression 

Network” (GeneXNet), relies on building an architecture with multiple layers of non-linear 

functions which transform the gene expression data into feature maps to increase the level of 

accuracy and invariance of the selected gene features [67]. As the model increases in depth, it 

becomes capable of representing complex genetic alterations shared by tumors across different 

tissue types, which are very sensitive to the slightest details in the input samples. The genetic 

signatures learned by the feature maps in the deep layers, eliminate the need for the traditional 

prerequisite process of gene feature selection. This is because the feature maps are insensitive 

to any insignificant genes or irrelevant variations in the gene expression data [59],  [67].  

We train the model using supervised learning by feeding the collected human samples as 

input and producing an output probability score for each labelled category of cancer tumors. 

We define a cross-entropy loss function suitable for gene expression data that measures the 

error between the network input and the desired output, then we use stochastic gradient descent 

optimization and backpropagation [62] to adjust the network weights and reduce the 

classification error to the optimal levels. Full training details are explained in the experiments.  

 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) have contributed to many record breaking 

achievements especially in the areas of computer vision and image recognition [39], [40], [41], 

[42], [46], [60]. The development of new CNN architectures to improve accuracy and 

performance continues to be an active research area such as AlexNet [66], VGGNet [64], 

GoogLeNet [63], InceptionNet [57], ResNet [46], [58], DenseNet [41], MobileNet [39], [43], 

SENet [42] and  NasNet [40]. CNNs are made of multiple layers where each layer is arranged 

in the form of a 3D volume of neurons that has a specific width, height and depth. Each layer 

transforms the input volume to an output volume using a non-linear transformation function. 

CNNs differ in that the neurons in a particular layer will only be connected to a small region 

in the previous layer instead of the traditional fully connected networks [59].  

The motivation in using CNNs for classification of cancer tumors using gene expressions is 

that the convolution operation is very suitable for the high dimensional and sparse nature of 

the data. Since the input data has a very high dimensionality, it is not practical to use traditional 

kernel learning methods and fully connected networks since the resulting models will have a 

huge number of parameters to be learned which makes the learning process infeasible [59].  
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 Gene Expression Data Representation for CNNs 

 

In order to train our Convolutional Neural Network model using the cancer tumor samples, we 

first have to represent the gene expression data in a format suitable for the network input. Figure 

4.2 shows an outline for the gene expression data representation we implement for one of the 

datasets used in our experiments for patient samples representing 26 different cancer organ 

sites [38]. Full details about the cancer tumors used in our experiments is explained in the 

experiments chapter. Figure 4.2(b) represents a clustering heatmap of the mRNA gene 

expressions. The column clusters represent the cancer tumor types grouped by organ site, where 

each column represents a patient sample, each row represents a single gene and the cell color 

legends reflect the mRNA expression level of genes. If we have a total of N cancer tumor 

samples, each sample will have a total of G features representing the full set of genes produced 

by the whole-transcriptome sequencing procedure. We then represent the gene expression data 

in an equivalent 2D matrix of real numbers with dimensions (G, N) as in Figure 4.2(c). The 

matrix stores real values of the normalized gene expressions such that the value in cell 𝑋𝑖𝑗 

represents the expression level measured for gene (i) in the patient sample (j). Each tumor 

sample can be represented by a (G, 1) dimensional vector of gene expressions which we convert 

into the equivalent 3D volume with dimensions (Width, Height, Depth) to make it suitable as 

an input vector to our CNN model. The volume dimensions can be reshaped with any arbitrary 

length which matches the correct number of total features. The depth dimension is taken from 

the CNN terminology used in image classification where the depth is usually set to 3 

representing the number of RGB color channels. For images, values represent the pixel 

intensity, while for our cancer tumor dataset the values represent gene expression 

quantification. The training data for all the N samples can then be represented by the 4D input 

matrix with dimensions (No. of Samples, Width, Height, Depth) as shown in Figure 4.2(d). 

Figure 4.2  Gene Expression Data Representation for CNNs 
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 Learning Genomic Signatures using Convolutions 

 

The intuition in using the convolution operation for learning genomic signatures of cancer 

tumors is to leverage several architectural characteristics which distinguish Convolutional 

Neural Networks from traditional machine learning methods. These characteristics include: 

Sparse Connectivity, Parameter Sharing, Pooling and Equivariant representations [59],  [67].  

Since the gene expression data is very high in dimensionality, it is not practical to use the 

traditional fully connected neural networks since the resulting network will have a huge number 

of parameters to be learned which makes the learning process infeasible. To overcome this 

problem, we make use of convolutional layers which implement small convolutional filters to 

represent the weight parameters of the model. Figure 4.3 shows a schematic diagram for the 

convolutional layer we implement for gene expression data. The objective of the convolution 

layers is to learn filters that will be activated when matched with specific patterns or features 

in the gene expressions. The convolution layers perform a convolution operation which is a dot 

product between a sliding filter and the input across the full depth of the input gene expression 

volume to produce an activation map. We implement the convolution operation as in [75] by 

defining the convolution for each 2D layer of the gene expression volume as: 

 𝐺𝐸𝑂𝑢𝑡(𝑖 , 𝑗) = (𝐹 ∗ 𝐺𝐸𝐼𝑛)(𝑖 , 𝑗) =  ∑ ∑ 𝐺𝐸𝐼𝑛(𝑖 − 𝑚 , 𝑗 − 𝑛) 𝐹(𝑚 , 𝑛)

𝑛𝑚

 (1) 

where 𝐺𝐸𝐼𝑛, 𝐺𝐸𝑂𝑢𝑡 represents the input and output gene expression feature maps and 𝐹 is the 

sliding convolutional filter. The output volume of each layer is created by stacking the 

activation maps for all filters.  

Gene expression 

Filter (F x F) 

Input  

Gene Expression 
Feature Maps 

(W1, H1, D1) 

Output 

Gene Expression 

Feature Maps 

(W2, H2, D2) 
Neurons 

Convolutional Operation 

Input Gene 

Expression Data 

(𝐺𝐸𝐼𝑛) 

Output Gene Expression Data (𝐺𝐸𝑂𝑢𝑡) 

Convolutional Filter (F) 

Convolutional 

Figure 4.3  Convolutional Layer for Gene Expression Data 
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 Each neuron in the convolutional layer is only connected to a local region in the input 

volume covering the full depth which is the receptive field of the neuron. The neurons still 

perform the standard operation of a neural network by calculating the dot product between the 

input and the weights then applying a non-linear function. The main difference is that the 

neuron is connected only with its receptive field in the input and at the same time shares the 

same weight parameters as other neurons in the same feature activation map. 

Since the gene expression feature maps are represented by a 3D volume, we then define the 

convolution across the full depth of feature maps as: 

 𝐺𝐸𝑂𝑢𝑡(𝑘, 𝑖, 𝑗) =  ∑ 𝐺𝐸𝐼𝑛(𝑙, 𝑖 + 𝑚 − 1, 𝑗 + 𝑛 − 1) 𝐹(𝑘, 𝑙, 𝑚, 𝑛)

𝑙,𝑚,𝑛

 (2) 

where 𝐺𝐸𝐼𝑛, 𝐺𝐸𝑂𝑢𝑡(𝑘, 𝑖, 𝑗) represents the input and output gene expression values for the 

feature map at depth 𝑘, row 𝑖 and column 𝑗 and 𝐹(𝑘, 𝑙, 𝑚, 𝑛) represents a 4D convolutional 

filter between the output feature map at depth 𝑘, and the input feature map at depth 𝑙 with an 

offset of 𝑚 rows and 𝑛 columns. 

In order to tackle the complexity and high dimensional nature of the gene expression data we 

also make use of downsampling as in [75] by defining a stride parameter 𝑆 to skip over some 

positions of the gene expression feature maps to reduce the computational cost: 

 𝐺𝐸𝑂𝑢𝑡(𝑘, 𝑖, 𝑗) = ∑ [𝐺𝐸𝐼𝑛(𝑙, (𝑖 − 1) ∗ 𝑆 + 𝑚, (𝑗 − 1) ∗ 𝑆 + 𝑛) 𝐹(𝑘, 𝑙, 𝑚, 𝑛)]

𝑙,𝑚,𝑛

 (3) 

Table 4.1 shows the formulas we use to calculate the dimensions of the output volume 

representing the gene expression feature maps after applying the convolution operation. 

Table 4.1  Calculating Volume of Gene Expression Feature Maps after Convolution 

Parameter Description 

𝑊1, 𝐻1, 𝐷1 Input volume width, height and depth 

𝐺  No. of genes = (𝑊1𝑥𝐻1𝑥𝐷1) 

𝐾  No. of Filters = No. of Hidden Neurons = No. of Activation Maps = 𝐷2 

𝐹  Filter size = (𝐹 𝑥 𝐹) 

𝑆  Stride applied when moving the filter across the input volume 

𝑃  Zero padding applied to input volume  

𝑊2 Output Volume Width = [(𝑊1 − 𝐹 + 2𝑃)/𝑆] + 1 

𝐻2 Output Volume Height = (𝐻1 − 𝐹 + 2𝑃)/𝑆] + 1 

𝐷2 Output Volume Depth = No. of Filters = 𝐾  
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By implementing local receptive fields using small sized filters, the network can learn and 

extract small meaningful relationships between the molecular signatures of the genes which in 

turn can describe the characteristic influencing the cancer tumor. The sparse network 

connectivity, parameter sharing and convolutions using small kernels have helped in tackling 

the very high dimensional nature of the gene expression data since it dramatically reduced the 

number of parameters that the network needs to learn which means the learning process is much 

more efficient in terms of computation and storage requirements. This also helped in 

overcoming problems related to lack of sufficient cancer patient samples since the learning 

process became less prone to overfitting. Figure 4.4 illustrates the reduction in complexity by 

using sparsely connected networks for gene expression data in comparison to fully connected 

networks. 

 

We also make use of a Pooling layer after the convolution layer which provides a very 

important characteristic for learning the genomic signatures of cancer tumors by performing 

subsampling of the gene expression data. Our network design incorporates a max pooling 

function which is based on replacing the output of the feature maps at certain locations with a 

summary statistic of the nearby output values [75]. This allows our network model to generate 

gene expression feature maps which are invariant to local translations in the molecular 

signatures of the cancer tumor. This is a very important feature which enables building a 

classifier that can make predictions across multiple tumor types with the capability of learning 

the complex types of genomic signatures collected from multiple cancer tissue types 

originating from different organs. The intuition in extracting features which are invariant to 

local translations is adapted from using convolutional neural networks for image recognition.  
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Figure 4.4  Sparsely Connected Networks for Learning Gene Expressions 
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 Gene eXpression Network (GeneXNet) Architecture 

In this section we describe the detailed architecture of our proposed CNN model shown in 

Figure 4.5. Recent benchmark results obtained by deep CNNs for image recognition tasks have 

demonstrated that network depth is of great importance for feature extraction and have 

managed to achieve outstanding results by designing networks with deeper and more complex 

architectures [46], [58]. These models were able to exploit deep architectures because of the 

availability of large training datasets such as ImageNet which contains over 1 million training 

images [48]. Training deep models requires large amounts of training data to avoid common 

problems such as overfitting, vanishing gradients and degradation of accuracy [46], [58].  

Applying the same deep CNN architectures for classification of gene expression data is not 

an evident task since it faces two conflicting problems. On one hand, we need to benefit from 

deep network architectures to efficiently extract the molecular signatures of the large number 

of genes so that our classifier can accurately generalize when presented with tumor data from 

multiple tissue types. But on the other hand, the lack of sufficient human training samples, 

which could be in the range of only a few hundred samples, implies great challenges for training 

deep networks and results in overfitting during training which implies using smaller more 

compact networks.  

We attempted to build an end-to-end learning system for cancer classification without 

performing the prerequisite process of gene feature selection by using some of the available 

state-of-the-art CNN models which have been specifically designed for computer vision tasks. 

Our experimental results have shown that training these deep models suffered from severe 

Figure 4.5  Gene eXpression Network (GeneXNet) Architecture 
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overfitting when presented with the underlying dataset that includes the full set of 

transcriptome gene expressions collected from tumors across different tissue types. The dataset 

did not have sufficient training samples to train these deep models and achieve the required 

accuracy. Many regularization methods have been proposed to overcome overfitting by adding 

constraints on the learning model or including additional terms in the error function which can 

potentially help to decrease overfitting and improve performance [75]. Examples of 

regularization methods include L1, L2 regularization, early stopping, noise injection, data 

augmentation, bagging and dropout [51], [61], [75]. Our experiments have shown that these 

regularization methods could slightly help in reducing overfitting but are not sufficient to build 

a general multi-tissue cancer classifier given the large number of features in the whole-

transcriptome gene expressions and lack of sufficient cancer patient training samples.  

To solve these conflicting problems, we propose a new CNN architecture which we refer to 

as Gene eXpression Network (GeneXNet) shown in Figure 4.5. Our network is designed to 

specifically target the complex nature of gene expression data and also addresses the lack of 

training samples by incorporating multiple layers of building blocks which we refer to as 

GeneXNet blocks shown in Figure 4.6. These blocks are motivated from both deep residual 

learning networks [46], [58] and also densely connected convolutional networks [41] and are 

formed by merging together two different types of learning sub-blocks. 

 

 GeneXNet Building Block Formulation 

Our proposed Gene eXpression Network (GeneXNet) architecture combines multiple layers of 

non-linear building blocks which transform the gene expression data into a representation at a 

higher more abstract level allowing the network to automatically learn the molecular signatures 

influencing the cancer tumors. We refer to these blocks as GeneXNet blocks which are shown 

in Figure 4.6 and are formed by merging together two different types of learning sub-blocks.  
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Figure 4.6 Gene eXpression Network (GeneXNet) Building Blocks 
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To formulate our building block, we define our network to have L layers of blocks where the 

non-linear transformation of Gene expressions can be denoted by 𝐺𝑙 and can be defined as: 

 𝑥𝑙+1 = 𝐺𝑙(𝑥𝑙, 𝑊𝑙) (4) 

 𝑊𝑙 =  {𝑤𝑙,𝑖| 1 ≤ 𝑖 ≤ 𝐾𝑙 } (5) 

where 𝑙 is the index of the block,  𝑊𝑙 represents the set of weights and biases of the 𝑙𝑡ℎ block, 

𝑤𝑙,𝑖 represents the weights of the 𝑖𝑡ℎ convolutional layer in the 𝑙𝑡ℎ block, 𝐾𝑙 represents the 

number of convolution layers in the 𝑙𝑡ℎ block and 𝑥𝑙, 𝑥𝑙+1 represent the input and output 

features of the 𝑙𝑡ℎ block. We apply “pre-activation” of weight layers as in [46] by defining the 

transformation at each layer as a sequence of multiple operations which are Batch 

Normalization (BN) [55], Rectified Linear Unit (ReLU) [49] and Convolution.  

If gene expression data flows through the network using only the transformation in (4), that 

would be following the traditional approach for CNN layers. Deep residual learning provides 

a framework for more efficiently training deep networks by reformulating the layers as learning 

residual functions with reference to the layer inputs [58]. Empirical results have shown that 

residual learning helps to avoid degradation in performance accuracy as the depth of the 

network increases [58]. Residual networks have achieved excellent performance in many 

image recognition and object detection tasks where networks with over 150 layers have been 

trained on ImageNet [66] and managed to achieve substantial accuracy gains in comparison to 

normal networks which simply stack consecutive layers [46]. To make use of residual learning 

we reformulate our building block by implementing the non-linear transformation of gene 

expressions 𝐺𝑙 as a residual function defined as:  

 𝑥𝑙+1 = 𝑓𝑙[ 𝐺𝑙(𝑥𝑙 , 𝑊𝑙)  +   𝑀(𝑥𝑙) ] (6) 

where 𝐺𝑙 is a residual function for the 𝑙𝑡ℎ block, 𝑀(𝑥𝑙) is a mapping which bypasses the non-

linear transformation and 𝑓𝑙 represents a mapping function of the input and output features of 

the 𝑙𝑡ℎ block. The simplest form of residual learning can be realized by choosing 𝑓𝑙 to be a 

Rectified Linear Unit (ReLU) [49] and also introducing identity skip connections which are 

equivalent to choosing 𝑀(𝑥𝑙) as an identity mapping so that 𝑀(𝑥𝑙) =  𝑥𝑙. Another formulation 

can be realized by implementing both 𝑀(𝑥𝑙) and 𝑓𝑙 as identity mappings. We apply the later 

formulation which has shown to improve accuracy by creating a more direct path for 

information propagation and allowing the signal to propagate more directly from one unit to 
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any other unit in the forward and backward passes [46]. The resulting non-linear transformation 

of gene expressions and the gradient of the loss function can then be expressed recursively as:  

 𝑥𝐿 = 𝑥𝑙 + ∑  𝐺𝑖(𝑥𝑖, 𝑊𝑖)

𝐿−1

𝑖=𝑙

 (7) 

 
𝜕𝜀

𝜕𝑥𝑙
=  

𝜕𝜀

𝜕𝑥𝐿

𝜕𝑥𝐿

𝜕𝑥𝑙
=

𝜕𝜀

𝜕𝑥𝐿
[1 +

𝜕

𝜕𝑥𝑙
∑  𝐺𝑖(𝑥𝑖, 𝑊𝑖)

𝐿−1

𝑖=𝑙

] (8) 

where 𝑥𝐿 represents the output features of the network with L layers of blocks, 𝜀 is the loss 

function and 𝜕𝜀/𝜕𝑥𝑙 is the gradient obtained by applying the chain rule and backpropagation  

[46]. The residual function 𝐺𝑖 is implemented as in (4) by applying two or more weight layers 

each using pre-activation and the sequence of multiple operations BN, ReLU and convolution.  

 

 

The resulting block is shown in Figure 4.7 which we refer to as the Residual Learning block. 

We also experiment with applying a bottleneck architecture  [46], [58], by modifying the design 

of this block to have three layers instead of two in the form of (1x1), (3x3) and (1x1) 

convolutions. Since we are using the full set of whole-transcriptome genes, the role of the (1x1) 

convolution is to enhance computational efficiency by reducing the large dimensions of the 

intermediate feature maps before applying the convolution and then restore them back again. 

Despite the strong advantages of residual learning networks in allowing the gradient to flow 

directly through the skip connections, there have been other proposed approaches to use 

stochastic depth to improve the training of deep residual networks by dropping layers randomly 

during training [47]. This has led to different intuitions that there might be a great amount of 

redundancy in deep residual networks and that not all the layers are required [41]. Densely 

connected convolutional networks (DenseNets) [41] exploit the potential of the network 

through feature reuse as an alternative to deep or wide architectures by connecting all layers 
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Figure 4.7 Residual Learning Block of Gene eXpression Network. 
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with matching feature-map sizes directly with each other. This design consideration is very 

important for our task, since one of the biggest challenges in our work is to build a multi-tissue 

cancer classifier that can benefit from deep network architectures to efficiently extract the 

molecular signatures of large number of genes, without facing severe overfitting or degradation 

in performance due to the lack of sufficient human training samples. This has inspired us to 

further reformulate the design of our GeneXNet building block and augment its learning 

capability by introducing additional dense layers that precede the residual learning layers. The 

dense layers follow a similar approach as in DenseNets  [41]. The design of our dense layers 

is implemented by passing additional inputs into each layer from all preceding layers and 

passing the feature maps of each layer to all subsequent layers. Our aim from this design is to 

provide each layer with direct access to the gradients from the loss functions and the original 

input signal which can potentially improve flow of information throughout the network. Our 

additional dense layers are formulated as follows: 

 𝑥𝑙+1 = 𝐺𝑙( 𝐶𝑜𝑛𝑐𝑎𝑡[𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑙] ) (9) 

where 𝑥𝑙+1 represents the output of the 𝑙𝑡ℎ block, 𝐶𝑜𝑛𝑐𝑎𝑡[𝑥1 , 𝑥2 , … , 𝑥𝑙] represents the 

concatenation of the gene expression feature maps resulting from all preceding layers and 𝐺𝑙 

represents the same transformation as in (4) which applies pre-activation of weights and the 

sequence of multiple operations BN, ReLU and convolution. The resulting block is shown in 

Figure 4.8 which we refer to as the Dense Learning block.  

 

Our proposed GeneXNet block is finally formed by merging together these two sub-blocks as 

shown in Figure 4.6, which represents a combination of dense learning and residual learning 

layers. We define several parameters in order to control the variation of the network design and 
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Figure 4.8 Dense Learning Block of Gene eXpression Network. 
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size across different gene expression data sets. The parameter 𝜃𝑘 controls the number of filters 

used in the convolution layers. The two parameters 𝜃𝐷 and 𝜃𝑅 define the percentage of dense 

and residual sub-blocks in the network, where 0 ≤ 𝜃𝐷 ≤ 1 and 0 ≤ 𝜃𝑅 ≤ 1. For example, 

when both 𝜃𝐷 and 𝜃𝑅  are set to 1, then all the network blocks include both a dense and a residual 

sub-block. When 𝜃𝐷 is set to 1 and 𝜃𝑅 to 0.5, then all the network blocks include dense sub-

blocks while only half of the blocks include residual sub-blocks.  

The full Gene eXpression Network (GeneXNet) architecture is shown in Figure 4.5. It is 

implemented by feeding the gene expression input matrix to multiple layers of GeneXNet 

blocks each containing a combination of dense and residual learning layers as described above. 

The network ends with a global average pooling [54] after the last GeneXNet block and a fully 

connected softmax layer for classification. We experiment with different network sizes having 

two to four GeneXNet blocks and with different 𝜃𝑘, 𝜃𝐷, 𝜃𝑅 configurations. A detailed 

architecture is shown in table 2 implementing a network with four GeneXNet blocks, 𝜃𝑘=32 

and both 𝜃𝐷, 𝜃𝑅 set to 1. 

 

Table 4.2  Gene eXpression Network detailed architecture.  

(Implementing a network with 4 blocks, 𝜃𝑘=32, 𝜃𝐷=1, 𝜃𝑅=1) 

 

  

GeneXNet 

Block 

(𝑙 ) 

Output Size 

Dense Sub-block Residual Sub-block 

 

Layer operations 

𝜃𝐷 = 1 

 

Filters 

𝜃𝑘 = 32 

Layer operations 

𝜃𝑅 = 1 

 

Filters 

𝜃𝑘 = 32 

Input (142,142,3)  

Pre-layers (71,71,64) 𝐶𝑜𝑛𝑣(7𝑥7 , 64) 

 

GeneXNet 

Block 1 

 

 

(36,36,256) 

 

[
  𝐶𝑜𝑛𝑣(1𝑥1 , 128  )

𝐶𝑜𝑛𝑣(3𝑥3 , 32  )
] ∗ 6   

 

 

4𝜃𝑘 

𝜃𝑘  
[

𝐶𝑜𝑛𝑣(1𝑥1 , 64 )

𝐶𝑜𝑛𝑣(3𝑥3 , 64 )
   𝐶𝑜𝑛𝑣(1𝑥1 , 256 )

 ] ∗ 2   

 

2𝑙𝜃𝑘 

2𝑙𝜃𝑘 

2𝑙+2𝜃𝑘  

 

GeneXNet 

Block 2 

 

 

(18,18,512) 

 

[
   𝐶𝑜𝑛𝑣(1𝑥1 , 128  )

𝐶𝑜𝑛𝑣(3𝑥3 , 32 )
] ∗ 12 

 

 

4𝜃𝑘 

𝜃𝑘  
[

   𝐶𝑜𝑛𝑣(1𝑥1 , 128)

   𝐶𝑜𝑛𝑣(3𝑥3 , 128)
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  ] ∗ 2   

 

2𝑙𝜃𝑘 

2𝑙𝜃𝑘 
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GeneXNet 
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[
   𝐶𝑜𝑛𝑣(1𝑥1 , 128  )

𝐶𝑜𝑛𝑣(3𝑥3 , 32 )
] ∗ 24 

 

 

4𝜃𝑘 

𝜃𝑘  
[
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] ∗ 2   

 

2𝑙𝜃𝑘 

2𝑙𝜃𝑘 
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[
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𝐶𝑜𝑛𝑣(3𝑥3 , 32 )
] ∗ 16 
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 𝐶𝑜𝑛𝑣(1𝑥1 , 512)

 𝐶𝑜𝑛𝑣(3𝑥3 , 512)
   𝐶𝑜𝑛𝑣(1𝑥1 ,2048)

  ] ∗ 2   

 

2𝑙𝜃𝑘 

2𝑙𝜃𝑘 

2𝑙+2𝜃𝑘  

 

Classification 

(1,1,2048) Global Average Pooling 

(C-Classes) Fully connected (C-Tumor Types) – Softmax 
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Our results have demonstrated that our proposed network which combines both dense and 

residual learning layers, has allowed training deeper network architectures with complex data 

such as gene expressions, despite the large number of genes. The dense layers allow the 

network to efficiently extract the genetic signatures from multiple tumors and across multiple 

cancer types. This is achieved by means of re-using the gene expression feature maps learned 

by different layers, which increases the variation of input signals fed to subsequent layers since 

it represents the collective knowledge of the network [41]. The residual layers with identity 

mappings contribute to providing a direct path for information propagation in the forward and 

backward passes [58] while the connectivity of the dense layers provide each layer with more 

direct access to the gradients from the loss function and the original input signal [41]. Our 

results have also shown that the combination of dense connections augmented with residual 

layers performs a regularizing effect which allows the network to achieve high accuracy in 

tumor classification while avoiding problems related to overfitting due to lack of human 

samples. 

 

 Transfer Learning using Genomic Signatures Across Multiple Cancer 

Tumor Types 

Our approach for building a comprehensive multi-tissue cancer classifier is by designing the 

Gene eXpression Network (GeneXNet) with the capability of learning the genomic signatures 

of whole-transcriptome wide gene expressions shared across multiple cancer tumor types. By 

training the model with samples from multiple tissue types collected from multiple sites of 

origin, the classifier is able to learn and extract complex patterns from the gene expression data 

that represent genomic and transcriptomic alterations such as mutations, rearrangements, 

deletions, amplifications and the addition or removal of chemical marks. This allows the 

classifier to more accurately classify cancer tumors which are resulting from DNA or RNA 

changes that alter cell behavior across multiple tissues and cause uncontrollable growth and 

malignancy. 

A major advantage is that we are able to reuse the genomic signatures learned by the trained 

model to perform very efficient transfer learning to solve one of the biggest challenges in 

cancer classification which is lack of patient samples. We demonstrate how transfer learning 

can be used to build and finetune classifiers for other different types of cancer tumors not 

included in the underlying dataset, which might be lacking sufficient patient samples to be 

trained independently. By reusing the weights of the pretrained GeneXNet model, we 
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demonstrate how the same network or an extended version of it can be used for feature 

extraction on a different cancer tumor type.  

The intuition behind transfer learning comes from recent studies which have performed an 

integrated multiplatform analysis across multiple cancer types that have revealed similar 

molecular classification within and across tissues of origin [5], [7]. This means that the 

discriminative molecular features for one cancer classifier will most likely be relevant for other 

cancer types. Our pretrained model will have already learned the complex types of genetic 

alterations and genomic signatures collected from multiple cancer tissue types originating from 

different organs and can effectively function as a generic model for cancer classification. 

Transfer learning using our GeneXNet model provides the capability to learn abstract 

feature representations from gene expressions of a specific multi-tumor cancer dataset and then 

transfer these representations to classify another type of cancer tumor. Our work is motivated 

from One-shot learning and Zero-shot learning  methods used in Computer Vision which 

attempt to learn visual models of object categories using very little training data or even no 

training data at all in the case of unseen object categories [105], [106]. This is achieved by 

using deep learning models to learn abstract feature representations and then transferring the 

knowledge from previously learned categories and using it for detection of new categories 

without the need to learn the representations of new object categories from scratch [107]. 

 

Our proposed approach for performing transfer learning can be summarized as follows: 

1) We build a multi-tissue multi-class classifier by training our GeneXNet model using ALL 

the underlying cancer tumor dataset which includes multiple organ sites covering multiple 

tumor types. 

 

Figure 4.9  Transfer Learning – Training GeneXNet Model 
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2) We create a GeneXNet Base block by freezing the weights of the trained GeneXNet model 

and then removing the classification layers at the end of the network. The GeneXNet Base 

block will function as a feature extractor inside a new extended network model. 

 

 

3) We create a new extended GeneXNet model by stacking the pre-trained GeneXNet Base 

block and adding a new randomly initialized classification layer. 

4) We Re-train and Finetune the new extended network using a new cancer tumor dataset 

which might be lacking sufficient patient samples to be trained independently. The training 

is performed while freezing the original network layers that have already been pre-trained. 

We perform Finetuning by Un-Freezing some of the last layers in the GeneXNet Base 

Block and Re-training these layers again together with the new classification layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.10  Transfer Learning – Freezing GeneXNet Weights 

Figure 4.11  Transfer Learning – ReTraining and Finetuning Extended GeneXNet Model 
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 Gene eXpression Network Training and Optimization 

Training a deep multi-layer Convolutional Neural Network architecture like our Gene 

eXpression Network is a very complex optimization problem as it involves non-convex loss 

functions [67]. Adjusting the weights of the network to reduce the classification error requires 

an optimization algorithm capable of adapting the learning rate and leveraging information in 

the Hessian matrix of the loss function [62]. Among the challenges we faced in model 

optimization is the very high dimensional landscape of the network weight space resulting from 

training the network with whole-transcriptome gene expressions for every tumor sample. To 

overcome these problems, we define a multi-class cross-entropy loss function suitable for gene 

expression data and we train our model using mini-batch Stochastic Gradient Descent (SDG) 

with an adaptive learning rate optimization algorithm  [62]. We implement  several different 

optimization algorithms including Momentum [77], [78], AdaGrad [51], RMSprop [62] and 

Adam [50]. The following sections describe details of our network training and optimization 

for building a multi-tissue cancer classifier using whole-transcriptome gene expressions. 

 

 Optimization Objective and Loss Function 

The objective of training our Gene eXpression Network is to find an optimal mapping 

function 𝑦 =  𝑓∗(𝑥, 𝑊) by learning the network parameters 𝑊 that would correctly classify 

our input gene expression data 𝑥, which represents the cancer tumor sample, to the correct 

output 𝑦, which represents the class of the cancer tumor type. Our network architecture as 

described in the previous sections, represents this complex mapping function and we need to 

train and optimize the network to learn the network parameters 𝑊 that would result in the 

optimal classification performance. To learn the network parameters we follow the approach 

of learning conditional probability distributions using maximum likelihood [75]. In this 

approach, our network model represents a probability distribution 𝑃(𝑦 | 𝑥, 𝑊) which is the 

conditional probability of predicting the correct tumor class given the tumor sample and the 

network parameters. We define the loss function as the Negative Log Likelihood (NLL) or 

Cross Entropy Loss between the training data and the network’s class predictions since it 

represents the conditional probability of the tumor classes given the gene expression input. We 

define an overall optimization objective by defining an Error function 𝐸(𝑊) and then use 

gradient descent optimization to learn the parameters 𝑊 that would reduce the error 𝐸 to the 

optimal level when presented with the entire training data. Since the training data only 

represents a limited sample of the real cancer tumor distribution, our optimization objective is 

to minimize the expected loss on the training data. 
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We define the Error objective function 𝐸(𝑊) as the average over the training data given by: 

 𝐸(𝑊) =  
1

𝑁
 ∑ 𝐸𝑖[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]

𝑁

𝑖=1

 (10) 

where 𝑥𝑖 is the 𝑖𝑡ℎ training sample, 𝑊 represents the network’s parameters to be learned, 𝑦𝑖 is 

the target output,  𝑓(𝑥𝑖 , 𝑊) represents the predicted output by the network and  𝐸𝑖 represents 

the loss function for the 𝑖𝑡ℎ training sample.  

Since our target is to build a Multi-Tissue classifier then we need to choose both the 

prediction function 𝑓 and the loss function 𝐸𝑖 which are suitable for a multiclass classification 

problem. We therefore define the output prediction function 𝑓𝑘 using the softmax function as: 

 𝑓𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑘 =  𝑃(𝐶𝑙𝑎𝑠𝑠𝑘 | 𝑥𝑖 , 𝑊) =  
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝐶
𝑗

 (11) 

 𝑧𝑘 = log 𝑃(𝑦 = 𝑘 |  𝑥𝑖 , 𝑊) (12) 

where 𝑓𝑘 represents the output prediction for the 𝑘𝑡ℎ tumor class, C represents the number of 

tumor classes, 𝑧𝑘 is the 𝑘𝑡ℎ element in the output vector which represents the unnormalized log 

probability of the 𝑘𝑡ℎ class. The output of the softmax is a vector with each element having the 

normalized class probability. The advantage of the softmax is that it is a form of multiclass 

logistic regression and produces the output predictions in the form of a valid probability 

distribution over the number of classes.  

We then define loss function 𝐸𝑖 using the cross-entropy loss as:   

 𝐸𝑖 =  − ∑ 𝑡𝑘 . 𝑙𝑜𝑔(𝑓𝑘)

𝐶

𝑗=1

 (13) 

where 𝑡𝑘 represents the 𝑘𝑡ℎ element of the target output vector for class 𝑘 using a 1-of-C coding 

scheme such that all elements of the vector are zeros except for the 𝑘𝑡ℎ element which equals 

one.  Since only a single term equals one, then the cross-entropy loss can be written as:  

 𝐸𝑖 =  −log (
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝐶
𝑗

) (14) 

where 𝐸𝑖 represents the cross-entropy loss for the 𝑖𝑡ℎ training sample and 𝑧𝑘 is the 𝑘𝑡ℎ element 

in the output vector which represents the unnormalized log probability of the 𝑘𝑡ℎ class. 
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We can then define the gradient 𝑔 of the Error 𝐸 with respect to the network parameters 𝑊 as: 

 𝑔 =  ∇𝑊𝐸(𝑊) =  
1

𝑁
 ∇𝑊 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]

𝑁

𝑖=1

 (15) 

 

 Optimization Algorithms with Accelerated Gradient & Adaptive Learning 

We use mini-batch Stochastic Gradient Descent (SDG) optimization for training our Gene 

eXpression Network. The motivation in using SDG is that it is very well suited for training our 

deep network given the high dimensionality of the gene expression data which includes a very 

large number of features representing the genes across the whole transcriptome. Performing 

gradient descent optimization using a mini batch of samples instead of the traditional batch 

training using the entire training data is more computationally efficient for large data sets. It 

has also been shown to perform a regularizing effect due to the noise it adds to the learning 

process [76]. We can obtain an unbiased estimate of the gradient by sampling a mini batch of 

tumor samples drawn i.i.d from the training data and calculating the average gradient on the 

mini batch. We then update the network parameters 𝑊 in the direction of the gradient 𝑔 to 

optimize the generalization error using the following update:  

 𝑊 =  𝑊 −  η𝑡 ∇𝑊𝐸(𝑊) (16) 

where η𝑡 is the learning rate at iteration 𝑡 which is also a parameter that can change across 

training iterations. The challenge with this update is that choosing the right learning rate is very 

difficult. If we choose a very small learning rate, then training well be very slow and if it is too 

large it will not guarantee convergence where the error function can fluctuate around the local 

minimum. Learning rate scheduling is one common approach to solve this problem by updating 

the learning rate at certain intervals based on specific criteria. But at the same time these 

updates have to be defined before the training and are not adaptive based on the tumor samples. 

Another big challenge that we faced in optimization for our network is the non-convex nature 

of the error function and the very high dimensional landscape of the network weight space 

which causes the optimization algorithm to suffer the presence of Local Min, Plateaus, Saddle 

points and other flat regions [75]. To over come all these challenges, we train our network by 

adopting and experimenting with a variety of different optimization algorithms which adopt 

accelerated gradient methods and adaptive learning rate methods which we describe in the 

following sections. 
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GeneXNet Optimization with Momentum  

 

We experiment with applying the Momentum update [77] to accelerate the learning process by 

accumulating an exponentially decaying moving average of past gradients and continually 

moving in that direction. We implement Momentum by introducing a new velocity term 𝑣 

which controls the direction and speed of the parameter updates. The velocity is calculated as 

an exponentially decaying average of the negative gradient as:  

 𝑣 =  α 𝑣 −  η ∇𝑊 [
1

𝑁
 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]

𝑁

𝑖=1

] (17) 

 𝑊 =  𝑊 +  𝑣 (18) 

where α ∈ [0,1) is a parameter which determines how fast the contributions of the previous 

updates for the gradient will decay exponentially. Momentum helps in solving the poor 

conditioning of the Hessian matrix and variance in applying the standard SDG by accelerating 

in the correct direction of the local minimum. Figure 4.12 illustrates the acceleration effect of 

momentum on SDG optimization [75], where the contour lines represent a poorly conditioned 

Hessian matrix. The red path represents the direction followed by momentum, while the black 

path represents the standard SDG which has a slower learning since it oscillates heavily before 

finally converging. 

 

We also experiment with applying the Nesterov Momentum update [78] which is motivated by 

the accelerated optimization methods of Nesterov [79]. We apply a correction factor to the 

gradient calculation by performing it after the velocity update which is now defined as: 

 𝑣 =  α 𝑣 −  η ∇𝑊 [
1

𝑁
 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊 +  α 𝑣 ),   𝑦𝑖]

𝑁

𝑖=1

] (19) 

Figure 4.12 Accelerating Stochastic Gradient Descent Optimization with Momentum [72] 
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GeneXNet Optimization with AdaGrad  

 

Since choosing the learning rate is one of the most complex hyperparameters, we also 

experiment with optimization algorithms with an adaptive learning rate. We apply the AdaGrad  

algorithm [51] which adapts the learning rate of all model parameters individually by 

performing large updates for infrequent parameters and smaller updates for the frequent ones. 

This adaptive learning characteristic is very important for training our network since it has been 

shown to perform well on sparse data [80] which is one of the big challenges in our underlying 

gene expression dataset.  

We apply this adaptive learning to our Gene eXpression Network by updating the learning rate 

for each parameter and scaling it at a rate which is inversely proportional to the historical values 

of the gradient as follows:  

 𝑊𝑡+1 =  𝑊𝑡 −  
η

√𝐺𝑡 + 𝜀
 ⊙ 𝑔𝑡 (20) 

where η is the learning rate for each parameter at each iteration 𝑡, 𝜀 is a constant that avoids 

division by zero, 𝐺𝑡 is a matrix having each diagonal element as the sum of squares for the 

gradients with respect to each parameter for all previous iterations and ⊙ represents element 

wise matrix vector multiplication. The outline of the algorithm we implement is as follows: 

 

Algorithm 4.1 GeneXNet Optimization with AdaGrad  

1 Input:  𝑊0, η , 𝜀 initial network parameters, learning rate, const 

2 Output: 𝑊 GeneXNet optimized network parameters  

3 Init 𝐺0 = 0 

4 while (Convergence criteria is false): 

5 Read minibatch of N cancer tumor samples (𝑥𝑖  , 𝑦𝑖) 

6 Calculate gradient 𝑔𝑡 =   
1

𝑁
 ∇𝑊 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]𝑁

𝑖=1  

7 Calculate accumulated gradient 𝐺𝑡 =  𝐺𝑡 +  𝑔𝑡 ⊙ 𝑔𝑡 

8 Update network parameters 𝑊𝑡+1 =  𝑊𝑡 −  
η

√𝐺𝑡+𝜀
 ⊙ 𝑔𝑡 

9 end while 
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GeneXNet Optimization with RMSProp  

 

We also experiment with the RMSProp algorithm [62] which is a modified version of AdaGrad 

since it has been shown to perform better on non-convex loss functions. This is achieved by 

calculating the gradient across iterations as an exponentially decaying average of all past 

gradients which allows discarding the historical values and converge more rapidly. We add a 

new parameter 𝛿 to configure the moving average and calculate the accumulated gradient as: 

 𝐺𝑡 =   𝛿. 𝐺𝑡 + (1 −  𝛿)𝑔𝑡 ⊙ 𝑔𝑡 (21) 

We also combine the update with the Nesterov momentum as before to accelerate the learning 

process by adding an additional parameter α and calculating the velocity as: 

 𝑣 =  α 𝑣 −  
η

√𝐺𝑡

 ⊙ 𝑔𝑡 (22) 

The outline of the algorithm we implement is as follows: 

 

Algorithm 4.2 GeneXNet Optimization with RMSProp   

1 Input:  𝑊0, 𝑣0, η , 𝛿, α   

       initial network parameters, initial velocity,  

       learning rate, rate of decay, momentum  

2 Output: 𝑊 GeneXNet optimized network parameters  

3 Init 𝐺0 = 0 

4 while (Convergence criteria is false): 

5 Read minibatch of N cancer tumor samples (𝑥𝑖  , 𝑦𝑖) 

6 Calculate gradient 𝑔𝑡 =   
1

𝑁
 ∇𝑊 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]𝑁

𝑖=1  

7 Calculate accumulated gradient 𝐺𝑡 =   𝛿. 𝐺𝑡 + (1 −  𝛿)𝑔𝑡 ⊙ 𝑔𝑡 

8 Calculate velocity 𝑣 =  α 𝑣 −  
η

√𝐺𝑡
 ⊙ 𝑔𝑡 

9 Update network parameters 𝑊𝑡+1 =  𝑊𝑡 +  𝑣 

10 end while 
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GeneXNet Optimization with Adam  

 
The final optimization algorithm we experiment with is the Adaptive Moment Estimation 

(Adam) [50]. For this optimization method we combine the updates from both the previous 

optimizations methods of RMSProp and momentum by calculating two different averages of 

past gradients to be used in the update term. The first is calculating an estimate of the first order 

moment by calculating an exponentially decaying average of past gradients as in momentum. 

The second is calculating an estimate of the second order moment by calculating an 

exponentially decaying average of past squared gradients as in RMSProp: 

 
𝑚𝑡 =   𝛿1. 𝑚𝑡−1 + (1 − 𝛿1)𝑔𝑡  (23) 

 𝑣𝑡 =   𝛿2. 𝑣𝑡−1 + (1 − 𝛿2)𝑔𝑡
2 (24) 

where 𝑚𝑡, 𝑣𝑡 are the estimation of the first moment representing the mean and the second 

moment representing the uncentered variance of the gradients. In addition we also calculate 

bias corrections to the estimates of the first order moment and the uncentered second order 

moment as in [50] to remove the bias of these values towards zero. The outline of the algorithm 

we implement is as follows: 

Algorithm 4.3 GeneXNet Optimization with Adam 

1 Input:  𝑊0, η , 𝜀, 𝛿1, 𝛿2    

       initial network parameters, learning rate, constant, 

       1st moment rate of decay, 2nd moment rate of decay 

2 Output: 𝑊 GeneXNet optimized network parameters  

3 Init 1st and 2nd moment variables  𝑚𝑡 = 0, 𝑣𝑡 = 0 

4 while (Convergence criteria is false): 

5 Read minibatch of N cancer tumor samples (𝑥𝑖  , 𝑦𝑖) 

6 Calculate gradient    𝑔𝑡 =   
1

𝑁
 ∇𝑊 ∑ 𝐸[𝑓(𝑥𝑖 , 𝑊),   𝑦𝑖]𝑁

𝑖=1  

7 Calculate 1st moment  𝑚𝑡 =   𝛿1. 𝑚𝑡−1 + (1 − 𝛿1)𝑔𝑡  

8 Calculate 2nd moment  𝑣𝑡 =   𝛿2. 𝑣𝑡−1 + (1 − 𝛿2)𝑔𝑡
2  

9 Correct bias of 1st moment 𝑚𝑡̃ =  
𝑚𝑡

1− 𝛿1
𝑡 

10 Correct bias of 2nd moment 𝑣𝑡̃ =  
𝑣𝑡

1− 𝛿2
𝑡 

11 
Update network parameters 𝑊𝑡+1 =  𝑊𝑡 − η 

𝑚𝑡̃

√𝑣𝑡̃+𝜀
  

12 end while 
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 Visualizing Genomic Relationships of Gene Expressions Across 

Multiple Cancer Tumors 

 

One of the challenges in using deep learning for disease diagnosis, is that deep networks are 

conceived as “black boxes” without much interpretation on how these complex models make 

their decisions [53]. Extensive work has been done to introduce novel visualization techniques 

for deep networks to help understand and interpret their record breaking performance in 

computer vision tasks [52], [53], [65]. The output from these techniques can be interpreted by 

non-experts when studied in conjunction with image or video datasets because they are visually 

comprehensible. Unfortunately, these methods are not directly applicable to genomic datasets 

such as gene expressions, since they cannot be visually rendered in a human-friendly form that 

allows easy interpretations. Our learning system architecture can contribute in solving this 

problem, since it is designed to take full potential of next generation sequencing technologies 

that produce datasets with detailed molecular characterizations of thousands of tumors using 

genome-wide platforms. 

Intermediate 
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Gene Feature Maps 
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Figure 4.13  Visualizing genomic relationships of gene expressions 
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We introduce two visualization procedures for better understanding how our proposed deep 

network is performing cancer classification across multiple tumor types. Our methods are 

inspired from the work used to visualize intermediate feature activations for CNNs used in 

image classification [65]. We also build on the methods for Class Activation Maps (CAM) 

[52], [53] which visualize heatmaps of class activations for deep networks used in image 

classification and captioning. The outline of the procedures is shown in Figure 4.13 and 

described in the next sections. The results of applying these procedures to the underlying 

dataset is described in the experiments. 

 

 Visualizing Class-Discriminative Localization Maps of Gene Expressions 

We introduce a visualization method which uses the gradient information flowing into the 

last convolutional layer of the GeneXNet model to produce gene localization maps highlighting 

the important regions in the gene expressions which influenced the resulting tumor class 

prediction. The gene expression data used to train the network is sparse and very high in 

dimensionality since it represents a snapshot of the whole transcriptome rather than a 

predetermined subset of genes. By identifying a class-discriminative localization map in the 

gene expressions, we can identify the subset of genes driving cancer progression and resulted 

in the model’s tumor class prediction. We refer to this localization map as a Gene-Class-

Activation-Map (Gene-CAM). For each tumor type, the Gene-CAM is a representation of the 

discriminative genes used by the network to correctly classify the tumor. The procedure can be 

summarized as follows: 

We build a multi-tissue classifier by training our GeneXNet model with the genomic 

signatures of multiple tumor types across multiple sites using the underlying dataset. We group 

the data by tumor type and feed the trained network with each of the samples one by one to 

produce a prediction. For a GeneXNet with 𝐿 blocks, the network will produce a set of 

intermediate activation feature maps as the output of each block.  Let 𝐹𝑙 represent the output 

feature maps of the 𝑙𝑡ℎ block with dimensions (width: 𝑋𝑙, height: 𝑌𝑙, depth: 𝐷𝑙). This volume 

represents the molecular features learned by the network that will be activated when matched 

with similar patterns in the input gene expressions of a given tumor sample.  

Let 𝑓𝐿
𝑘(𝑖, 𝑗) represent the 𝑘𝑡ℎ feature map for the last block at special location (𝑖, 𝑗). Since 

the network uses Global Average Pooling (GAP) [54] before the final Softmax layer to 

calculate the spatial average of the feature maps, then the classification score 𝑠𝑐 for tumor type 

𝑐 which is used as input to the softmax can be written as: 
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 𝑠𝑐 = ∑ 𝑤𝑘
𝑐

𝐷𝐿

𝑘

 ∑ ∑ 𝑓𝐿
𝑘(𝑖, 𝑗)

𝑌𝐿

𝑗

𝑋𝐿

𝑖

 (25) 

where  𝑐 is the tumor class, 𝑤𝑘
𝑐 represents the weights for class 𝑐 with respective to feature map 

𝑘 and 𝐷𝐿 is the number of feature maps in the last block before the GAP layer each with width 

𝑋𝐿 and height 𝑌𝐿. 

To generate the Gene-Class Activation Map, we redefine the weights of each feature map 

with respect to a class as 𝛼𝑘
𝑐  by computing the gradient of the score of each class with respect 

to each feature map as follows: 

 𝛼𝑘
𝑐 =  

1

𝑋𝐿 . 𝑌𝐿
  ∑ ∑  

𝜕𝑠𝑐

𝜕𝑓𝑖𝑗
𝑘

𝑌𝐿

𝑗

𝑋𝐿

𝑖

 (26) 

where the new weights 𝛼𝑘
𝑐  represent the importance of each feature map for class 

discrimination. The Gene-Class-Activation-Map (Gene-CAM) is then calculated as: 

 𝐺𝑒𝑛𝑒_𝐶𝐴𝑀𝑐(𝑖, 𝑗) =  𝑅𝑒𝐿𝑈 [∑ 𝛼𝑘
𝑐  .

𝐷𝐿

𝑘

𝑓 
𝑘(𝑖, 𝑗)] (27) 

The resulting map with dimensions (𝑋𝐿, 𝑌𝐿) represents a gene localization for the given tumor 

sample that captures the discriminative regions in the gene expression input matrix which 

influenced the prediction of the tumor class. The ReLU [49] is applied to obtain only the 

features that have a positive contribution to the correct class [53].  

Finally, to visualize the Gene-CAM we resize it using up-sampling and overlay it against 

the input gene expression matrix. The resulting heatmap highlights the important regions in the 

gene expression input matrix which in turn helps identify the subset of genes that are possibly 

influencing the Cancer tumor and resulted in the model’s prediction.  

 

 Visualizing Molecular Clusters of Intermediate Feature Maps 

We introduce a visualization procedure for observing the evolution of molecular clusters 

formed by intermediate gene expression feature maps learned by the network. The genetic 

signatures learned by the feature maps in the deep layers make the network capable of 

representing complex genetic alterations shared by tumors across different tissue types. 
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Visualizing the molecular clusters of gene expressions provides more insight on how the 

network is learning small meaningful relationships between the genes which in turn describe 

the characteristic influencing the Cancer tumor. We demonstrate how this visualization 

provides the opportunity to study the genomic relationships of gene expressions across multiple 

cancer tissue types. This is motivated by recent studies which have performed an integrated 

multiplatform analysis across multiple cancer types that have revealed molecular classification 

within and across tissues of origin [5], [7]. The procedure can be summarized as follows: 

 

As in the previous section, for a GeneXNet with 𝐿 blocks, let 𝐹𝑙 represent the output feature 

maps of the 𝑙𝑡ℎ block. Let 𝑓𝑙
𝑘(𝑖, 𝑗) represent the 𝑘𝑡ℎ feature map for the 𝑙𝑡ℎ block at special 

location (𝑖, 𝑗). We apply Global Average Pooling (GAP) [54] to each of the intermediate 

feature maps after each block to convert the volume 𝐹𝑙 into a 1-dimensional feature vector 𝐹𝑙
′  

with dimensions (1, 1, 𝐷𝑙) as follows: 

 𝑓𝑙
′ 𝑘(𝑖, 𝑗) =

1

𝑋𝑙. 𝑌𝑙
 ∑ ∑ 𝑓𝑙

𝑘(𝑖, 𝑗)

𝑌𝑙

𝑗

𝑋𝑙

𝑖

 (28) 

 𝐹𝑙
′ = [ 𝑓𝑙

′ 𝑘(𝑖, 𝑗) ]  ∀ 𝑘 ∈ {1, . . , 𝐷𝑙} (29) 

where 𝐷𝑙 is the number of feature maps in the  𝑙𝑡ℎ block each with width 𝑋𝑙 and height 𝑌𝑙. 

The feature vector 𝐹𝑙
′  represents the spatial average of the feature maps produced by each filter 

in the convolutional layer. The intuition behind using GAP is due to its ability to produce a 

generic localizable deep representation of the features which can be used for class 

discrimination [53]. 

We stack together all the feature vectors at the 𝑙𝑡ℎ block across all 𝑁 tumor samples to 

produce what we refer to as a Gene Feature Map (𝐺𝑒𝑛𝑒_𝑀𝑎𝑝𝑙
 ) of dimensions (𝐷𝑙  , 𝑁):  

 𝐺𝑒𝑛𝑒_𝑀𝑎𝑝𝑙
 = [𝐹𝑙

′ (𝑛)𝑇]  ∀ 𝑛 ∈ {1, . . , 𝑁} (30) 

The resulting matrix stores the collective class-discriminative localization maps for the gene 

expressions at the 𝑙𝑡ℎ block across all the tumor types. It also represents the collective genetic 

signatures learned by the feature maps shared by tumors across different organ sites. 

Finally, we perform a consensus hierarchical clustering [70] of the gene feature map 

𝐺𝑒𝑛𝑒_𝑀𝑎𝑝𝑙
  to generate a 𝐺𝑒𝑛𝑒_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑀𝑎𝑝𝑙

  which is a molecular clustering that groups 
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each of the tumor types together based on the class discriminative gene localizations extracted 

from the gene expressions. Consensus clustering is specifically tailored for gene expression 

data and is based on resampling to reach a consensus across multiple runs of a clustering 

algorithm and assess the stability of the discovered clusters [69].  

By visualizing a heatmap of the resulting clusters, we can observe the evolution of molecular 

clusters formed by intermediate gene expression feature maps learned by the network. 

Visualizing the molecular clustering helps in revealing the genomic relationships and high-

level structures of gene expressions across multiple cancer tumor types that appeared 

influential in the cancer tumor progression beyond the standard grouping by anatomical organ 

site. The results of applying the visualization procedures to the underlying dataset are described 

in the experiments. 
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CHAPTER 5   

 EXPERIMENTS 

 

 Datasets 

Our objective was to design a comprehensive multi-tissue Cancer classifier capable of 

detecting complex types of genetic alterations by learning the genomic signatures of whole-

transcriptome wide gene expressions across multiple cancer tissue types. To achieve this 

objective, the datasets we selected for our experiments included a total of 11,093 human 

samples for mRNA gene expression quantification, which were collected from 26 different 

human anatomical sites of origin and covering 33 different Cancer tumor types. The datasets 

were obtained from “The Cancer Genome Atlas” (TCGA) [38] and generated by means of 

Total RNA sequencing using Illumina based systems [5]. Each individual human sample 

represents the whole transcriptome and includes a total of 60,483 genes annotated against a 

reference genome. The patients included both males and females and the biospecimens were 

collected from tumor tissue, adjacent normal tissue and normal whole blood samples. Table 

5.1 shows a listing of the 33 cancer tumor types we used in our experiments together with the 

associated human sites of origin and the number of human samples available for each tumor 

type. One of the biggest challenges in using this dataset is the very small number of human 

samples in each of the tumor types, compared to the very large number of genes. Most of the 

tumor types only have several hundred samples and some even have less than a hundred 

samples while we have a total of 60,483 genes for each sample. 

TCGA is a comprehensive atlas of cancer genomic profiles which includes the molecular 

characterization of over 20,000 primary cancer and matched normal samples [38]. TCGA uses 

next generation sequencing (NGS) methods such as DNA and RNA sequencing to generate 

cancer profiles in multiple various genome-wide platforms including DNA (DNA methylation, 

exome sequencing and copy number), RNA (mRNA and microRNA sequencing) and other 

forms of relevant cancer sets of proteins [5]. The RNA-Sequencing experiment consists of 

isolating RNA, converting it to complementary DNA (cDNA), then preparing the sequencing 

library and sequencing it on a NGS platform [22]. The expression of genes are quantified by 

generating the FASTQ-format files which contain reads sequenced from the NGS platform and 

then aligning these reads to an annotated reference genome [38].   
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The gene expression values we used to generate our datasets are based on the read counts 

measured on a gene level and then normalized using the Fragments Per Kilobase of transcript 

per Million mapped reads (FPKM) [38]. The formula for FPKM normalization is defined in 

(13) where 𝑅𝐶𝑔 are the number of genes mapped to the gene, 𝑅𝐶𝑝𝑐 are the number of reads 

mapped to all protein coding genes and 𝐿 is the length of the gene in base pairs. 

 𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  𝐹𝑃𝐾𝑀 =  
𝑅𝐶𝑔 ∗  109

𝑅𝐶𝑝𝑐 ∗ 𝐿
 (31) 

We transform the gene expression data in a format that makes it suitable as input to our model. 

We represent the gene expressions in an equivalent 2D matrix of dimensions (60,483, 11,093) 

as in Figure 4.2. Each column represents a human sample and each row represents a single 

gene. We convert each human sample into an equivalent 3D volume of genes with dimensions 

(142, 142, 3). The full dataset for all the 11,093 samples is represented by the 4D input matrix 

with dimensions (11,903, 142, 142, 3) to make it suitable as input to our GeneXNet model. 

Organ Site  Cancer Tumor Type(s) Total 

Samples 

Adrenal 

Gland 

Adrenocortical carcinoma 

(ACC), Pheochromocytoma 

and Paraganglioma (PCPG) 

265 

Bile Duct Cholangiocarcinoma 

(CHOL) 
45 

Bladder Bladder Urothelial 

Carcinoma (BLCA) 
433 

Bone 

Marrow 

Acute Myeloid Leukemia 

(LAML) 
151 

Brain Glioblastoma multiforme 

(GBM), Brain Lower Grade 

Glioma (LGG) 

703 

Breast Breast invasive carcinoma 

(BRCA) 
1222 

Cervix Cervical squamous cell 

carcinoma and endocervical 

adenocarcinoma (CESC) 

309 

Colorectal Colon adenocarcinoma 

(COAD), Rectum 

adenocarcinoma (READ) 

698 

Esophagus Esophageal carcinoma 

(ESCA) 
173 

Eye Uveal Melanoma (UVM) 80 

Head and 

Neck 

Head and Neck squamous 

cell carcinoma (HNSC) 
546 

Kidney Kidney Chromophobe 

(KICH), Kidney renal clear 

cell carcinoma (KIRC), 

Kidney renal papillary cell 

carcinoma (KIRP), 

1021 

 

Organ Site  Cancer Tumor Type(s) Total 

Samples 

Liver Liver hepatocellular 

carcinoma (LIHC) 
424 

Lung Lung adenocarcinoma 

(LUAD), Lung squamous 

cell carcinoma (LUSC) 

1145 

Lymph 

Nodes 

Lymphoid Neoplasm 

Diffuse Large B-cell 

Lymphoma (DLBC) 

48 

Ovary Ovarian serous 

cystadenocarcinoma (OV) 
379 

Pancreas Pancreatic 

adenocarcinoma (PAAD) 
182 

Pleura Mesothelioma (MESO) 86 

Prostate Prostate adenocarcinoma 

(PRAD) 
551 

Skin Skin Cutaneous 

Melanoma (SKCM) 
472 

Soft Tissue Sarcoma (SARC) 265 

Stomach Stomach adenocarcinoma 

(STAD) 
407 

Testis Testicular Germ Cell 

Tumors (TGCT) 
156 

Thymus Thymoma (THYM) 121 

Thyroid Thyroid carcinoma 

(THCA) 
568 

Uterus Uterine Corpus 

Endometrial Carcinoma 

(UCEC), Uterine 

Carcinosarcoma (UCS) 

 

 

643 

(ALL Sites) (All Tumors) 11,093 

 

Table 5.1  Multi-tissue Cancer Tumor Dataset used in our experiments. The dataset includes 33 different 

cancer tumor types across 26 different anatomical organ sites. 



87   
  

 

AUC SID:  800-09-0336                                                                       Name: Tarek Khorshed 

 Classification Experiments 

Our experiments demonstrate how the design of our Gene eXpression Network (GeneXNet) 

can be used as a general end-to-end learning system for classification across multiple cancer 

tissue types without performing the prerequisite process of gene feature selection. We also 

demonstrate how our model can specifically target the complex nature of the whole-

transcriptome gene expression data and addresses the lack of training samples, without 

suffering from severe overfitting in comparison to using the current state-of-the-art deep CNN 

models which have been designed specifically for computer vision tasks. 

We perform several different multi-class and binary classification tasks. For binary 

classification we predict whether the given sample represents a tumor versus a normal tissue. 

For multi-class classification we predict for a given sample the type of Cancer tumor within 

each anatomical site of origin. The following are details of the classification experiments: 

 Experiment 1 - Multi-tissue Multi-class classification 

We build a multi-tissue multi-class classifier by training our model using ALL the data which 

includes the genomic signatures from 26 organ sites covering 33 tumor types. 

 Experiment 2 - Multi-Tumor Binary classification 

We build a multi-tumor binary classifier for each individual organ site. We group the data by 

each individual site and train each model separately. For this task we selected the organ sites 

that relatively had the greatest number of samples compared to the other sites (at least 400 

samples per site). These included 11 sites as shown in Table 5.2. 

 Experiment 3 - Comparison between Transfer Learning and Full Training 

We repeat the second experiment, but this time we perform performing transfer learning using 

the weights of the pre-trained model from the first experiment. The objective was to compare 

the performance between transfer learning using a pre-trained model and full training. We 

evaluate whether finetuning the pre-trained model was able to achieve a comparable 

performance in comparison to models which were fully trained. 

 Experiment 4 – Transfer Learning for Tumors Lacking Sufficient Training Data 

We use transfer learning to build binary classifiers for the organ sites with the least number of 

samples which did not have sufficient data to be trained independently. We start with the pre-

trained model from the first task and use the data from each site separately to finetune the pre-

trained model. These included Bile Duct and Esophagus which only had 45 and 147 samples 

respectively.  
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 Experiment 5 – Comparison between GeneXNet & State-of-the-art models 

We evaluate the multi-tissue classification performance of our GeneXNet model in 

comparison with some of the current state-of-the-art deep CNN models specifically designed 

for computer vision tasks. We perform the same multi-class classification in experiment 1 using 

all the data but replacing our model with the publicly available implementations of ResNet 

[46],[58], DenseNet [41], NasNet [40] and MobileNet [39],[43].   

 

 Experiment 6 – Comparison between different GeneXNet Architectures 

We evaluate the multi-tissue classification performance of our GeneXNet model with 

different architectures and sizes by tuning the parameters 𝜃𝐷, 𝜃𝑅 with values (0, 0.25, 0.5 and 

1) and 𝜃𝑘 with values (32, 64). These parameters define the percentage of dense and residual 

sub-blocks in the network and the number of filters used in the convolution layers as described 

in section 4.5. 

 

Organ Site 

 

Cancer Tumor Type(s) Total Samples 

Bladder Bladder Urothelial Carcinoma (BLCA) 433 

Breast Breast invasive carcinoma (BRCA) 1222 

Colorectal Colon adenocarcinoma (COAD),  

Rectum adenocarcinoma (READ) 

698 

Head & Neck Head and Neck squamous cell carcinoma (HNSC) 546 

Kidney Kidney Chromophobe (KICH),  

Kidney renal clear cell carcinoma (KIRC),  

Kidney renal papillary cell carcinoma (KIRP) 

1021 

Liver Liver hepatocellular carcinoma (LIHC) 424 

Lung Lung adenocarcinoma (LUAD),  

Lung squamous cell carcinoma (LUSC) 

1145 

Prostate Prostate adenocarcinoma (PRAD) 551 

Stomach Stomach adenocarcinoma (STAD) 407 

Thyroid Thyroid carcinoma (THCA) 568 

Uterus Uterine Corpus Endometrial Carcinoma (UCEC),  

Uterine Carcinosarcoma (UCS) 

643 

 

Table 5.2  Multi-Tumor Binary Classification Dataset used in our experiments. The dataset includes 11 

Individual Organ Sites that relatively had the greatest number of samples 
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 Training, Optimization and Evaluation 

We treat our dataset as a very scarce and valuable resource since the biggest challenge in 

using the underlying dataset to train our deep models is the very small number of available 

tumor samples compared to the very large number of genes. We use stratified random sampling 

to divide our dataset into 85% for training/validation and 15% for final testing. We train all our 

models using stratified k-fold cross-validation experimenting with different fold sizes. We use 

the validation data to optimize the hyperparameters of our models while the test data is strictly 

used only once to evaluate the final performance of each model.  

Training a deep multi-layer CNN architecture like GeneXNet is a very complex 

optimization problem as it involves non-convex loss functions [67]. Adjusting the weights of 

the network to reduce the classification error requires an optimization algorithm capable of 

adapting the learning rate and leveraging information in the Hessian matrix of the loss function 

[62]. Among the challenges we faced in model optimization is the very high dimensional 

landscape of the network weight space resulting from training the network with the whole-

transcriptome wide gene expressions for every tumor sample. To overcome these problems, we 

train our model using mini-batch Stochastic Gradient Descent (SDG) with an adaptive learning 

rate optimization algorithm  [62]. We experiment with Adam [50], AdaGrad [51] and RMSprop 

[62]. We start with a learning rate of 1e-4 and divide it by half when the validation loss plateaus 

for more than 50 epochs.  

We evaluate the classification performance of our GeneXNet models using the receiver 

operating characteristics (ROC) curves [68]. For all our experiments across each of the cancer 

tumor types, we report the average classification accuracy and ROC Area Under the Curve 

(AUC) on the Test dataset. The ROC AUC has an advantage of being less sensitive to changes 

in class distribution as it summarizes the performance over a range of tradeoffs between the 

true positive and false positive rates [68]. To overcome any potential impact on the 

classification performance due to class imbalance, we experimented with two different 

methods for addressing class imbalance. We used Synthetic Minority Over-sampling [109] and 

Adaptive Synthetic Sampling [110]. 

VAL (17%)

SPLIT 1 TRAIN TRAIN TRAIN TRAIN VAL

SPLIT 2 TRAIN TRAIN TRAIN VAL TRAIN

SPLIT 3 TRAIN TRAIN VAL TRAIN TRAIN

SPLIT 4 TRAIN VAL TRAIN TRAIN TRAIN

SPLIT 5 VAL TRAIN TRAIN TRAIN TRAIN

TRAINING (68%)

TRAINING & VALIDATION (85 %)

ALL DATA       (26 ORGAN SITES, 33 TUMOR TYPES)

TEST (15 %)

 

Figure 5.1  Training with K-Fold Cross Validation 
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 Results 

Experiment 1 - Multi-tissue Multi-class classification 

The results of the first experiment which performed multi-class classification using ALL 

the data including 26 organ sites covering 33 tumor types are shown in Table 5.4. Our 

GeneXNet model was able to achieve excellent results with an overall classification accuracy 

of 98.93% and a ROC AUC of 0.99 on the test dataset.  The results show that our model 

achieved 100% accuracy on 14 different tumor types, even for some tumor types which had 

very little human samples such as: Bile Duct Cholangiocarcinoma (CHOL), Eye Uveal 

Melanoma (UVM) and Pleura Mesothelioma (MESO) which only had 45, 80 and 86 samples 

respectively. 

Anatomical Site 

of Origin 

Cancer Tumor Type(s) Total 

Samples 

Classification 

Accuracy (%) 

Adrenal Gland Adrenocortical carcinoma (ACC), 

Pheochromocytoma and Paraganglioma (PCPG) 

265 100 

Bile Duct Cholangiocarcinoma (CHOL) 45 100 

Bladder Bladder Urothelial Carcinoma (BLCA) 433 98.46 

Bone Marrow Acute Myeloid Leukemia (LAML) 151 91.3 

Brain Glioblastoma multiforme (GBM),  

Brain Lower Grade Glioma (LGG) 

703 100 

Breast Breast invasive carcinoma (BRCA) 1222 99.46 

Cervix Cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) 

309 100 

Colorectal Colon adenocarcinoma (COAD),  

Rectum adenocarcinoma (READ) 

698 99.05 

Esophagus Esophageal carcinoma (ESCA) 173 96.15 

Eye Uveal Melanoma (UVM) 80 100 

Head and Neck Head and Neck squamous cell carcinoma (HNSC) 546 100 

Kidney Kidney Chromophobe (KICH), 

Kidney renal clear cell carcinoma (KIRC), 

Kidney renal papillary cell carcinoma (KIRP), 

1021 99.35 

Liver Liver hepatocellular carcinoma (LIHC) 424 98.44 

Lung Lung adenocarcinoma (LUAD),  

Lung squamous cell carcinoma (LUSC) 

1145 99.42 

Lymph Nodes Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma (DLBC) 

48 87.5 

Ovary Ovarian serous cystadenocarcinoma (OV) 379 98.25 

Pancreas Pancreatic adenocarcinoma (PAAD) 182 96.43 

Pleura Mesothelioma (MESO) 86 100 

Prostate Prostate adenocarcinoma (PRAD) 551 97.59 

Skin Skin Cutaneous Melanoma (SKCM) 472 98.59 

Soft Tissue Sarcoma (SARC) 265 100 

Stomach Stomach adenocarcinoma (STAD) 407 98.39 

Testis Testicular Germ Cell Tumors (TGCT) 156 100 

Thymus Thymoma (THYM) 121 100 

Thyroid Thyroid carcinoma (THCA) 568 97.67 

Uterus Uterine Corpus Endometrial Carcinoma (UCEC), 

Uterine Carcinosarcoma (UCS) 

643 100 

(ALL Sites) (All Tumors) 11,093 98.93 

 

Table 5.4  Results Of Multi-Tissue Classification Using 26 Organ Sites Covering 33 Tumor Types 
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Experiment 2 - Multi-Tumor Binary classification 

The results of the second experiment which performed binary classification for the 11 

selected individual organ sites are shown in Table 5.5. Our GeneXNet model was able to 

achieve 100% accuracy for 8 different tumor types and between 95.35% to 99.42% accuracy 

for the remaining tumors.  

 

Experiment 3 - Comparison between Transfer Learning and Full Training 

The results of the third experiment which performed transfer learning are shown in Table 

5.5. The results show that transfer learning managed to achieve excellent results which are 

comparable to the results achieved using full training.  

 

Experiment 4 – Transfer Learning for Tumors with very little data 

The results of the fourth experiment which performed transfer learning to build binary 

classifiers for organ sites which did not have sufficient data to be trained independently are 

shown in the last two rows of Table 5.5. Transfer learning was able to solve the problem for 

tumor sites such as Bile Duct and Esophagus which did not have sufficient data to be trained 

independently. By finetuning the pre-trained model, we were able to achieve 92.31% accuracy 

for Esophageal carcinoma (ESCA) and 85.71% accuracy for Bile Duct Cholangiocarcinoma 

(CHOL) despite that these sites only had 147 and 45 samples respectively. 

 

 

Anatomical Site of 

Origin 

(Human Organ) 

Total 

Samples 

Full Training Transfer Learning & 

Finetuning 

Accuracy (%) ROC 

AUC 

Accuracy (%) ROC 

AUC 

Bladder 433 96.92 1.0 95.38 0.99 

Breast 1222 98.37 0.998 98.37 1.0 

Colorectal 698 100 1.0 100 1.0 

Head and Neck 546 98.78 0.985 92.68 1.0 

Kidney 1021 100 1.0 100 0.97 

Liver 424 100 1.0 98.44 1.0 

Lung 1145 99.42 1.0 99.42 0.94 

Prostate 551 97.59 0.961 97.59 0.94 

Stomach 407 96.77 0.979 96.77 0.88 

Thyroid 568 95.35 0.981 93.02 1.0 

Uterus 643 100 1.0 100 0.89 

Bile Duct* 45 - - 85.71 0.89 

Esophagus* 173 - - 92.31 0.99 

 

Table 5.5  Results Of Multi-Tumor Binary Classification For 11 Individual Organ Sites 
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Experiment 5 – Comparison between GeneXNet and State-of-the-art CNN models 

The results of the fifth experiment for evaluating the performance of our GeneXNet model 

in comparison with state-of-the-art CNN models is shown in Table 5.6. A comparison between 

the ROC curves for the different models is shown in Figure 5.2. These results demonstrate that 

our GeneXNet model consistently outperformed other CNN models by a large margin. The 

classification accuracy achieved by our model is 98.93% which is significantly higher than the 

other models which achieve an accuracy below 37%. Figure 5.2 shows that our model produced 

a much higher ROC curve in comparison to the other models.  

 

 

Network Model Accuracy (%) ROC AUC Cross Entropy 

Loss 

GeneXNet 98.93 0.99 0.06 

ResNet-50 v2  [46]    36.96 0.86 4.9 

DenseNet-121 [41]  22.33 0.79 6.09 

NasNetMobile [40]  21.61 0.84 2.58 

MobileNet v2  [39]  24.96 0.8 5.99 

 

Table 5.6 Classification Performance Of GeneXNet In Comparison With State-Of-The-Art CNN Models 

Figure 5.2  Comparison of ROC curves for Multi-Tissue classification between our GeneXNet 

model and state-of-the-art CNN models. Our model produced a much higher ROC curve and 

outperformed other models by a large margin. 

False Positive Rate 

T
ru

e 
P

o
si

ti
v

e 
R

at
e 

GeneXNet 

ResNet 

DenseNet 

MobileNet 

NasNet 

GeneXNet 

ResNet 

DenseNet 

MobileNet 

NasNet 

ROC CURVES 



93   
  

 

AUC SID:  800-09-0336                                                                       Name: Tarek Khorshed 

To provide more insight on this degradation in performance for state-of-the-art models, 

Figure 5.3 shows a comparison between the training and validation curves for each model by 

plotting the cross-entropy loss across the training epochs. Figure 5.3 demonstrates that training 

these state-of-the-art models which were specifically designed for computer vision tasks, 

suffered from severe overfitting when presented with the underlying dataset that includes 

whole transcriptome gene expressions from multiple tumors types.  

On the other hand, our GeneXNet model was able to achieve high accuracy in multi-tumor 

classification while avoiding overfitting. This ability is attributed to the architecture of our 

model that is designed specifically to target the complex nature of gene expressions and which 

incorporates both dense and residual learning layers that perform a regularizing effect which 

allows the network to overcome overfitting.  

 

 

 

Figure 5.3  Comparison of training and validation Cross-Entropy Loss for Multi-Tissue classification, 

between GeneXNet and other models. Our model achieved minimum loss while other models suffered 

severe overfitting. Dashed curves are training and solid are validation. 
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 Analysis of Classification Results 

The results of our classification experiments have demonstrated how the design of our 

proposed Gene eXpression Network (GeneXNet) can be used as a general end-to-end learning 

system for classification across multiple cancer tissue types without performing the prerequisite 

process of gene feature selection. We demonstrated how our model can specifically target the 

complex nature of the whole-transcriptome gene expression data and addresses the lack of 

training samples, without suffering from severe overfitting in comparison to using the current 

state-of-the-art deep CNN models which have been designed specifically for computer vision 

tasks. Our model has allowed training deeper network architectures with complex data like 

whole-transcriptome gene expressions, despite the large number of genes. The experiments 

demonstrated that our model design which combines both dense and residual learning layers, 

performs a regularizing effect which helps avoid overfitting and degradation in performance as 

the network depth increases. This is achieved by means of re-using the gene expression feature 

maps learned by different layers, which increases the variation of input signals fed to 

subsequent layers since it represents the collective knowledge of the network. The connectivity 

of the dense layers provide each layer with more direct access to the gradients from the loss 

function and the original input signal, while the residual layers with identity mappings provide 

a direct path for information propagation in the forward and backward passes. 

The results of our Transfer Learning experiments have demonstrated that the comprehensive 

genomic signatures learned by training our model using all the data allowed us to perform 

efficient transfer learning by using the pre-trained model as a generic feature extractor to build 

additional classifiers for any of the individual tumor sites, especially for the organ sites which 

were lacking sufficient patient samples to be trained independently. These results have 

demonstrated how transfer learning was able to solve one of the biggest challenges in cancer 

classification which is lack of patient samples. The experiment demonstrated that by reusing 

the weights of the pretrained GeneXNet model, we were able to use the same network for 

feature extraction on a different cancer tumor type. The experiments have also demonstrated 

that the discriminative molecular features for one cancer classifier were also relevant for other 

cancer types. The results demonstrated that our pretrained model was able to learn the complex 

types of genomic signatures collected from multiple cancer tissue types and that it was able to 

effectively function as a generic model for cancer classification. 
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 Visualizing Class-Discriminative Localization Maps 

We introduced a visualization method in section 4.10 to identify a class discriminative 

Gene-Class Activation Map (Gene-CAM) which is a localization map extracted from the gene 

expression input samples. We apply the visualization procedure to the underlying dataset to 

produce a Gene-CAM for each of the 33 individual tumor types and visualize them using 

heatmaps. Figure 5.4 shows the resulting heatmaps of four selected tumor types (Breast, Liver, 

Stomach and Uterus). We used a GeneXNet with 4 blocks which produces feature activation 

maps of dimensions (5, 5, 2048) after the 4th block. By mapping the resulting Gene-CAM to 

each input sample, the network was able to identify a subset of 75 discriminative genes. For 

visualization, we apply a threshold where each heatmap shows the top 20 genes influencing the 

underlying tumor across 20 randomly selected samples. The rows represent the genes and the 

columns represent the samples and the values are the normalized gene expression levels. The 

gene symbols are displayed on the right side of each row together with the percentage of 

samples which have also identified this gene in their Gene-CAM. Each map is a visual 

representation of the discriminative genes used by the network to correctly classify the tumor. 
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Figure 5.4  Visualizing class-discriminative localization maps highlighting the important regions in the gene expressions 

which influenced the tumor class prediction. Each map shows the top 20 genes across 20 random samples and is a visual 

representation of the discriminative genes used by our network to correctly classify the tumor. The rows represent genes, 

columns represent samples and the values are the gene expression levels. 
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 Biological Significance of Visualizing Class-Discriminative Maps 

The strength of our method is that the network was able to automatically identify a small 

subset of class-discriminative genes out of the total 60,483 genes originally included in each 

individual sample. What was also very interesting about these results is that the network 

automatically identified the TP53 gene as one of the top features common across all tumor 

types. This result implicitly validates our procedure since the TP53 is considered the most 

commonly mutated gene in all cancers which produces a protein that suppresses the growth of 

tumors [4].  

We also observed from our experiments that some of the identified discriminative genes 

were also common in at least 30% of samples across different tumor types even though the 

tissues belonged to different organ sites. This subset includes: TP53, TTN, MUC16, LRP1B, 

CSMD3, PIK3CA, MUC4, RYR2, USH2A, FLG, PTPRD, CSMD1. These discriminative 

genes identified by the network have great biological significance for early cancer diagnosis. 

For example, the mutations of PIK3CA gene are one of the most common in Breast cancer and 

are reported in over one third of cases [112]. Mutations in TTN gene are associated with one 

of the most common inherited cardiac disorders known as Hypertrophic Cardiomyopathy 

(HCM) [111]. MUC16 has a biological role in the progression of Ovarian tumors and there has 

been substantial work to develop therapeutic approaches to eradicate Ovarian tumors by 

targeting MUC16 [113]. LRP1B is frequently mutated in Melanoma, Non-small Cell Lung 

cancer (NSCLC) and other types of tumors. LRP1B is also a potential contributor to the 

emergence of chemotherapy resistance while treating cancer patients [114]. CSMD3 was 

identified as the second most frequently mutated gene in Lung cancer after TP53 [4]. MUC4 

is a membrane bound mucin gene responsible for progression of several cancers due to its anti-

adhesive properties including Bile Duct, Breast, Colon, Esophagus, Ovary, Lung, Prostate, 

Stomach and Pancreas [111]. Mutations of RYR2 gene are a common cause of abnormal heart 

failures such as Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) [111]. 

PTPRD is frequently mutated in various types of cancer, including Glioblastoma, Melanoma, 

Breast and Colon [4]. CSMD1 has been found as a tumor suppressor in the development of 

Breast cancer [111]. To validate our visualization results, we compared the subset of 

discriminative genes identified by our network with the top mutated genes reported in the 

underlying dataset based on percentage of cases with simple somatic mutations [38]. We 

observed from this comparison that the set of discriminative genes identified by our network 

were also identified among the top mutated genes in 92% of the samples. 
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 Visualizing Molecular Clusters of Intermediate Feature Maps 

We introduced a visualization method in section 4.10 for observing the molecular clusters 

formed by intermediate gene expression feature maps learned by the network. We apply the 

method using all the underlying dataset which includes 11,093 samples for 26 organ sites across 

33 tumor types. We used a GeneXNet with four blocks to produce a molecular clustering of 

the gene feature maps (𝐺𝑒𝑛𝑒_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑀𝑎𝑝𝑠) 
 after each block. Each individual 

𝐺𝑒𝑛𝑒_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑀𝑎𝑝 represents a molecular clustering that groups the tumors by organ site 

based on the class discriminative gene localizations extracted from the gene expressions and 

learned by the network after each block. As outlined in Table 4.2, the output depth after each 

block is 256, 512, 1024 and 2048 respectively. Figure 5.5 shows a heatmap of the 

𝑮𝒆𝒏𝒆_𝑪𝒍𝒖𝒔𝒕𝒆𝒓_𝑴𝒂𝒑 for the last block filtered for clusters with at least 200 samples per 

cluster, which resulted in a total of 17 cluster groups comprising the 26 organ sites. The rows 

represent the gene localization feature maps, the columns represent the samples and the values 

are the normalized activations from the feature maps. The heatmap visually illustrates the 

genomic relationships and high-level structures of the cancer tumor types across the different 

sites of origin.  
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Figure 5.5  Visualizing molecular clusters of intermediate feature maps to reveal genomic relationships across multiple 

tumors that appeared influential in cancer progression. The heatmap shows a Gene Cluster Map of 17 cluster groups 

comprising 33 tumors across 26 organ sites. Rows represent gene feature maps, columns represent samples and the values 

are activations of feature maps. The heatmap visually illustrates the genomic relationships and high-level structures of the 

cancer tumor types across the different organ sites. 
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 Biological Significance of Visualizing Molecular Clusters of 

Intermediate Feature Maps 

We observed from our experiments that the number of cluster groups learned by the network 

in the 𝐺𝑒𝑛𝑒_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑀𝑎𝑝s decreases as we move towards the deep layers in the network. The 

feature maps generated after the first block seem to have little in common across the different 

tumor types which is evident by the very large number of resulting cluster groups. As we reach 

the final network block, we observed that the 𝐺𝑒𝑛𝑒_𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑀𝑎𝑝 has less number of clusters 

where more clusters have merged together to finally reach only 17 cluster groups. These results 

have great significance since they demonstrate that as we go deeper in the network, the gene 

feature maps become more abstract in the sense that they are less representative of the 

individual tumor samples and more representative of the tumor classes.  

We further analyzed the resulting cluster groups in-terms of membership of tumor organ 

sites among the groups. We observed that although tissue site of origin was mostly a dominant 

factor for cluster formation, but some clusters also included tumor types across multiple 

different organs. We also observed that clusters were formed for tumor types which appeared 

to have similar organs or tissue characteristics. For example, Bile Duct and Liver tumors 

clustered together including Cholangiocarcinoma (CHOL) and Liver hepatocellular Carcinoma 

(LIHC). Brain and Nervous system tumors clustered together including Brain Lower Grade 

Glioma (LGG) and Glioblastoma multiforme (GBM). Kidney and Adrenal Gland tumors 

formed multiple clusters including Chromophobe (KICH), Renal Clear Cell (KIRC), Renal 

Papillary cell (KIRP) and Adrenocortical Carcinoma (ACC). Lymph Nodes and Bone Marrow 

tumors clustered together including Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

(DLBC) and Acute Myeloid Leukemia (LAML). Many small overlapping clusters formed 

together for Stomach, Colorectal, Esophagus and Pancreas tumors including STAD, COAD, 

READ, ESCA and PAAD. Finally, the remaining clusters were dominated by mostly tumors 

of a single organ site but also included less than 5% of other tumors types.  

Visualizing the evolution of molecular clusters formed by intermediate gene feature maps, 

has demonstrated how our proposed GeneXNet is functioning as a comprehensive multi-tumor 

Cancer classifier. The network was capable of learning the complex molecular signatures and 

genetic alterations shared by tumors across different tissue types and organ sites. This also 

demonstrates how the network was able to perform efficient transfer learning by using the pre-

trained models as a generic multi-tumor feature extractor to build additional classifiers for any 

individual tumor types especially for organ sites which were lacking sufficient patient samples 

to be trained independently. 
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CHAPTER 6  

 CONCLUSIONS 

 Motivation 

The objective of our research has been to contribute in saving the lives of cancer patients 

through early cancer diagnosis and detection. Our work in cancer classification helps in directly 

solving one of the major challenges in cancer treatment, since patients are diagnosed at very 

late stages when appropriate medical interventions become less effective and full curative 

treatment is no longer achievable. To our knowledge, this is the first effort to develop a Multi-

Tissue cancer classifier based on a full set of whole-transcriptome wide gene expressions 

collected from tumors across different tissue types without requiring a prerequisite process of 

gene feature selection. We have contributed in providing medical professionals with more 

confidence in using deep learning for medical diagnosis by providing some biological insights 

on how complex deep learning models are performing cancer classification and making 

predictions across multiple cancer tissues using gene expressions. 

 Contributions 

Our work has contributed to developing cancer classifiers with the capabilities of detecting 

more complex types of genetic alterations driving cancer progression, by learning the genomic 

signatures shared across multiple cancer tissue types. This was achieved by introducing a Deep 

Learning framework for early cancer diagnosis and designing a comprehensive Multi-Tissue 

cancer classifier based on molecular signatures of whole-transcriptome wide gene expressions. 

Our cancer classifier is based gene expressions collected from human samples representing 

multiple cancer tissue types and covering multiple organ sites.  

We have contributed to eliminating the dependency on the prerequisite process of gene 

feature selection which is performed by current state-of-the-art cancer classification methods 

for discovering a predefined subset of informative genes to be used in the learning process. 

This was achieved by designing our Deep Learning framework as an end-to-end learning 

system for early cancer diagnosis which combines the process of gene feature selection and 

classification into one integrated learning system. 

We have contributed in developing cancer classifiers with the capabilities of taking full 

advantage of genome-wide Next Generation Sequencing technologies to discover the 
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correlated patterns of genes across the full set of DNAs in the human genome and across 

multiple cancer tissue types. This was achieved by designing a new Deep Neural Network 

architecture called Gene eXpression Network (GeneXNet), which is specifically designed to 

address the complex nature of whole-transcriptome gene expressions. We demonstrated how 

our model architecture can learn the sequence of DNA and RNA in cancer cells and identify 

genetic changes that alter cell behavior and cause uncontrollable growth and malignancy. We 

also demonstrated how our  new model architecture has the capabilities for learning the 

genomic signatures across multiple tissue types without requiring the prerequisite of gene 

feature selection. 

We have contributed to eliminating the dependency on huge amounts of patient data and 

helped in solving one of the biggest challenges in cancer classification which is lack of patient 

samples. This was achieved by designing a Deep Transfer Learning model that effectively 

functions as a generic Multi-Tissue cancer classifier by learning genomic signatures collected 

from multiple cancer tissue types. We demonstrated how our model can be used for Transfer 

Learning to build classifiers for tumor types that are lacking sufficient patient samples to be 

trained independently.  

We have contributed to eliminating the manual process of handcrafting the design of deep 

network architectures and contributed to eliminating the manual process of hyperparameter 

optimization and fine-tuning on the target dataset. This was achieved by designing an end-to-

end Deep Reinforcement Learning framework that automatically learns the optimal Deep 

Neural Network architecture together with the associated optimal hyperparameters that 

maximizes the performance of our multi-tissue cancer classifier.  

We have contributed in providing medical professionals with more confidence in using deep 

learning for medical diagnosis by providing some biological interpretation on how complex 

deep learning models are performing cancer classification and making predictions on cancer 

tumors. This was achieved by designing visualization procedures to provide more biological 

insight on how the proposed network model is learning genomic signatures of whole-

transcriptome gene expressions and accurately performing classification across multiple cancer 

tumors. We have demonstrated how our network design provides the capability to visualize 

gene localization maps highlighting the important regions in the gene expressions influencing 

the tumor class prediction. We have also demonstrated how our network design provides the 

capability to visualize the molecular clusters formed by intermediate gene expression feature 

maps learned by the network which helps in revealing the genomic relationships of gene 

expressions that are influential in the tumor progression.  
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 Analysis 

Our classification experiments have demonstrated how the design of our proposed Gene 

eXpression Network (GeneXNet) can be used as a general end-to-end learning system for 

classification across multiple cancer tissue types without performing the prerequisite process 

of gene feature selection. We demonstrated how our model can specifically target the complex 

nature of the whole-transcriptome gene expression data and addresses the lack of training 

samples, without suffering from severe overfitting in comparison to using the current state-of-

the-art deep CNN models which have been designed specifically for computer vision tasks. 

Our model has allowed training deeper network architectures with complex data like whole-

transcriptome gene expressions, despite the large number of genes. The experiments 

demonstrated that our model design which combines both dense and residual learning layers, 

performs a regularizing effect which helps avoid overfitting and degradation in performance as 

the network depth increases. This is achieved by means of re-using the gene expression feature 

maps learned by different layers, which increases the variation of input signals fed to 

subsequent layers since it represents the collective knowledge of the network. The connectivity 

of the dense layers provide each layer with more direct access to the gradients from the loss 

function and the original input signal, while the residual layers with identity mappings provide 

a direct path for information propagation in the forward and backward passes. 

Our Transfer Learning experiments have demonstrated that the comprehensive genomic 

signatures learned by training our model using all the data allowed us to perform efficient 

transfer learning by using the pre-trained model as a generic feature extractor to build additional 

classifiers for any of the individual tumor sites, especially for the organ sites which were 

lacking sufficient patient samples to be trained independently. These results have demonstrated 

how transfer learning was able to solve one of the biggest challenges in cancer classification 

which is lack of patient samples. The experiment demonstrated that by reusing the weights of 

the pretrained GeneXNet model, we were able to use the same network for feature extraction 

on a different cancer tumor type. The experiments have also demonstrated that the 

discriminative molecular features for one cancer classifier were also relevant for other cancer 

types. The results demonstrated that our pretrained model was able to learn the complex types 

of genomic signatures collected from multiple cancer tissue types and that it was able to 

effectively function as a generic model for cancer classification. 
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 Biological Significance 

Our work in cancer classification helps in directly solving one of the major challenges in cancer 

treatment, since patients are diagnosed at very late stages when appropriate medical 

interventions become less effective and full curative treatment is no longer achievable. To our 

knowledge, this is the first effort to develop a Multi-Tissue cancer classifier based on a full set 

of whole-transcriptome wide gene expressions collected from tumors across different tissue 

types without requiring a prerequisite process of gene feature selection. We have contributed 

in providing medical professionals with more confidence in using deep learning for medical 

diagnosis by providing some biological insights on how complex deep learning models are 

performing cancer classification and making predictions across cancer tumors. 

We introduced a visualization method which uses the gradient information flowing in our 

proposed Gene eXpression Network (GeneXNet) model to produce gene localization maps 

highlighting the important regions in the gene expressions which influenced the resulting tumor 

class prediction. The gene expression data is sparse and very high in dimensionality since it 

represents a snapshot of the whole transcriptome rather than a predetermined subset of genes. 

By identifying class-discriminative localization map in the gene expressions, we were able to 

identify the subset of genes driving cancer progression and resulted in the model’s tumor class 

prediction. Our experiments have demonstrated the strength of our method as our GeneXNet 

model was able to automatically identify a small subset of class-discriminative genes out of the 

total 60,483 genes originally included in each individual sample of our cancer tumor dataset. 

The network automatically identified the TP53 gene as one of the top features common across 

all tumor types which implicitly validates our procedure since the TP53 is considered the most 

commonly mutated gene in all cancers. Our experiments also demonstrated that some of the 

identified discriminative genes were also common in other samples across different tumor 

types even though the tissues belonged to different organ sites. This subset includes: TP53, 

TTN, MUC16, LRP1B, CSMD3, PIK3CA, MUC4, RYR2, USH2A, FLG, PTPRD, CSMD1. 

These discriminative genes identified by the network have great biological significance for 

early cancer diagnosis. For example, the mutations of PIK3CA gene are one of the most 

common in Breast cancer and are reported in over one third of cases [112]. Mutations in TTN 

gene are associated with one of the most common inherited cardiac disorders known as 

Hypertrophic Cardiomyopathy (HCM) [111]. MUC16 has a biological role in the progression 

of Ovarian tumors and there has been substantial work to develop therapeutic approaches to 

eradicate Ovarian tumors by targeting MUC16 [113]. LRP1B is frequently mutated in 
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Melanoma, Non-small Cell Lung cancer (NSCLC) and other types of tumors. LRP1B is also a 

potential contributor to the emergence of chemotherapy resistance while treating cancer 

patients [114]. CSMD3 was identified as the second most frequently mutated gene in Lung 

cancer after TP53 [4]. MUC4 is a membrane bound mucin gene responsible for progression of 

several cancers due to its anti-adhesive properties including Bile Duct, Breast, Colon, 

Esophagus, Ovary, Lung, Prostate, Stomach and Pancreas [111]. Mutations of RYR2 gene are 

a common cause of abnormal heart failures such as Catecholaminergic Polymorphic 

Ventricular Tachycardia (CPVT) [111]. PTPRD is frequently mutated in various types of 

cancer, including Glioblastoma, Melanoma, Breast and Colon [4].  

We introduced a visualization procedure for observing the evolution of molecular clusters 

formed by intermediate gene expression feature maps learned by our GeneXNet model. The 

genetic signatures learned by the feature maps in the deep layers make the network capable of 

representing complex genetic alterations shared by tumors across different tissue types. 

Visualizing the molecular clusters of gene expressions provides more insight on how the 

network is learning small meaningful relationships between the genes which in turn describe 

the characteristic influencing the Cancer tumor. Our experiments have demonstrated how this 

visualization provides the opportunity to study the genomic relationships of gene expressions 

across multiple cancer tissue types. We observed from our experiments that the number of 

cluster groups learned by the network decreases as we move towards the deep layers. We 

observed that the final network block has less number of clusters where more clusters have 

merged together. These results have great significance since they demonstrate that as we go 

deeper in the network, the gene feature maps become more abstract in the sense that they are 

less representative of the individual tumor samples and more representative of the tumor 

classes. We also observed from our experiments that although tissue site of origin was mostly 

a dominant factor for cluster formation, but some clusters also included tumor types across 

multiple different organs. We observed that clusters were formed for tumor types which 

appeared to have similar organs or tissue characteristics. For example, Bile Duct and Liver 

tumors clustered together. Brain and Nervous system tumors also clustered together. Kidney 

and Adrenal Gland tumors formed multiple clusters, Lymph Nodes and Bone Marrow tumors 

clustered together. Many small overlapping clusters formed together for Stomach, Colorectal, 

Esophagus and Pancreas tumors. Visualizing the evolution of molecular clusters formed by 

intermediate gene feature maps, has demonstrated how our proposed GeneXNet is functioning 

as a comprehensive multi-tumor Cancer classifier.  
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 Future work 

We believe there is great potential for further research to expand on our work for cancer 

diagnosis. Our work focused on designing a multi-tissue cancer classifier based on Total RNA 

Sequencing using gene expressions from coding mRNA. Future work can explore learning 

more complex genomic signatures by including Omics data using other multiple forms of NGS 

platforms and experimental strategies such as DNA hypermethylation, aneuploidy, non-coding 

microRNA, DNA Copy Number Variants (CNV) and Reverse Phase Protein Arrays (RPPA). 

This will provide the opportunity to create a more comprehensive repository of pretrained 

models readily available for cancer classification using transfer learning.  

One of the common approaches in classification is to use an Ensemble of multiple classifiers 

(mixture of experts) to improve the classification accuracy. Future work can target cancer 

diagnosis and improving classifier performance by designing Ensemble Models which could 

integrate multiple genome-wide platforms by learning molecular signatures across multiple 

forms of Omics data. Future work can also target using different Gene eXpression Network 

models in addition to other network architectures and combine their classification decisions.  

Future work can further expand on our visualization methods to provide more in-depth 

biological insights to medical professionals and provide them with more confidence in using 

deep learning for medical diagnosis. Our experiments have demonstrated how are proposed 

network was able to automatically identify discriminative genes that were common across the 

cancer tumor types even though the tissues belonged to different organ sites. We have provided 

some biological significance for these identified genes for early cancer diagnosis. Future work 

needs to expand further on these results and provide more in-depth biological interpretation on 

the discriminative genes and their influence on early cancer diagnosis. Our experiments have 

demonstrated how our proposed network is functioning as a comprehensive multi-tumor cancer 

classifier by visualizing the evolution of molecular clusters formed by intermediate gene 

feature maps. Future work could target to perform a more in-depth analysis and biological 

evaluation of the clusters formed for different tumor types. This requires the research 

collaboration with medical experts as it requires more in-depth knowledge of the medical 

characteristics of the underlying human organs and their tissue characteristics.  
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 COVID-19 

COVID-19 has shown a dramatic and devastating impact across the world. Predicting virus 

diseases such as COVID-19 is extremely challenging, but there is great potential for the 

application of deep machine learning for early detection and diagnosis. Although our work was 

focused on cancer classification, but we believe that our proposed methods are applicable to 

other diseases and Omics data in particular for COVID-19. Next generation sequencing 

provides a great opportunity to investigate the mechanisms that underpin COVID-19 infections 

and transmission. Future work should target the use of deep machine learning and Omics data 

in the development of novel screening methods, drug molecules, vaccines, and potential 

antibiotics. Future work should also explore the use of genomics and transcriptomics data to 

predict the effects of new vaccines and drugs on patients. 
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