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ABSTRACT

We contribute in saving the lives of cancer patients through early detection and diagnosis,
since one of the major challenges in cancer treatment is that patients are diagnosed at very late
stages when appropriate medical interventions become less effective and full curative treatment
is no longer achievable. Cancer classification using gene expressions is extremely challenging
given the complexity and high dimensionality of the data. Current classification methods
typically rely on samples collected from a single tissue type and perform a prerequisite of gene
feature selection to avoid processing the full set of genes. These methods fall short in taking
advantage of genome-wide next generation sequencing technologies which provide a snapshot
of the whole transcriptome rather than a predetermined subset of genes. We propose a Deep
Learning framework for cancer diagnosis by developing a multi-tissue cancer classifier based
on whole-transcriptome gene expressions collected from multiple tumor types covering
multiple organ sites. We introduce a new Convolutional Neural Network architecture called
Gene eXpression Network (GeneXNet), which is specifically designed to address the complex
nature of gene expressions. Our proposed GeneXNet provides capabilities of detecting genetic
alterations driving cancer progression by learning genomic signatures across multiple tissue
types without requiring the prerequisite of gene feature selection. We design an end-to-end
Deep Reinforcement Learning framework that automatically learns the optimal network
architecture together with the associated optimal hyperparameters that maximizes the
performance of our multi-tissue cancer classifier. Our framework eliminates the manual
process of handcrafting the design of deep network architectures and the manual process of
hyperparameter optimization on the target dataset. Our model achieves 98.9% classification
accuracy on human samples representing 33 different cancer tumor types across 26 organ sites.
We demonstrate how our model can be used for transfer learning to build classifiers for tumors
lacking sufficient samples to be trained independently. We contribute in providing medical
professionals with more confidence in using Deep Learning for medical diagnosis by
introducing visualization procedures to provide biological insight on how our network is
performing classification across multiple tumors. To our knowledge, this is the first effort to
develop a multi-tissue cancer classifier based on a full set of whole-transcriptome gene
expressions collected from tumors across different tissue types without requiring a prerequisite

process of gene feature selection.
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CHAPTER 1

1. INTRODUCTION

“This research is about saving lives of Cancer Patients”

1.1  The Global Burden of Cancer

The World Health Organization reports that cancer is an incurable &
disease which is considered one of the leading causes of death
worldwide accounting for an estimated 9.6 million deaths in 2018 [1].
The cumulative risk of incidence indicates that 1 in 8 men and 1 in 10

women will develop the disease in a lifetime [2]. Lung cancer is the

most commonly diagnosed cancer and the leading cause of cancer
death, followed by breast, prostate, colorectal, stomach, and liver  Squamous cell carcinoma Lung caner [1]
cancer [2].

Cancer is a generic term for a large group of diseases that can affect any part of the body.
Other terms used are malignant tumors and neoplasms. One defining feature of cancer is the
rapid creation of abnormal cells that grow beyond their usual boundaries, and which can then
invade adjoining parts of the body and spread to other organs, the latter process is referred to

as metastasizing. Metastases are a major cause of death from cancer [3].

9.6 million Cancer deaths in 2018 worldwide

Latin America & North America
Oceania the Caribbean 7.3%
0.7% 7.0%

Africa
7.3%

Leukaemia
3.2%

Eesophagus

5.3%
Stomach

Pancreas 8.0%

4.5% Prostate
3.8% Cervix uteri
3.3%

Figure 1.1 Estimated world cancer mortality in 2018 [1], [2]
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1.2 Challenges in Early Diagnosis and Treatment of Cancer

Despite the dramatic impact of Cancer and high mortality rates, many of these deaths can
be avoided. It is reported by the World Health Organization that between 30-50% of cancer
death cases can be prevented through early detection and treatment [3]. A major challenge is
that the disease is not diagnosed early enough to allow for appropriate and effective treatment.
When Cancer patients are diagnosed at very late stages, appropriate treatment interventions
become less effective and full curative treatment is no longer achievable [1].

The increasing complexity of the disease and its molecular biology has made it extremely
difficult for medical experts to use traditional patient diagnosis and laboratory screening
techniques to detect early signs and symptoms of cancer. In absence of any early detection or
screening and treatment intervention, patients are diagnosed at very late stages when curative
treatment is no longer an option [4].

One of the major challenges of Cancer treatment, especially when using Chemotherapy, is
to maximize the drug efficiency but at the same time minimize the toxic effects on healthy
cells. As a result, accurate classification and diagnosis of the Cancer tumor is crucial to
successful treatment. Conventional laboratory screening techniques for Cancer classification
usually rely on the biological insights of the medical experts and have primarily focused on the
morphological appearance of the tumor. This has serious limitations, since tumors with similar
histopathological appearance can follow significantly different clinical courses and show
different responses to therapy [1].

Accordingly, advancements in cancer classification and prediction play an important role in
early detection since a major challenge in cancer treatment is that patients are diagnosed at very
late stages where appropriate interventions become less effective and full curative treatment is
no longer achievable [4]. Cancer classification can be divided into two categories which are
class discovery and class prediction. The task of class discovery is to identify a new tumor
which was previously unrecognized. Class prediction is the task of diagnosing a tumor sample

and assigning it to the correct predefined class [4].

1.3 Cancer Genomics

Technological advances in structural genomics have allowed studying the full set of DNAs
in the human genome [4], [25]. DNA is a molecule in the cell nucleus that contains instructions
for making proteins. A segment of DNA that contains information for making a protein is called

a gene [4]. During the transcription process, DNA that makes up a gene is copied into a
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complementary molecule called messenger RNA (mRNA). The mRNA moves from the
nucleus to the cytoplasm where it interacts with ribosomes which are the protein factories of
the cell [4]. DNA alterations can affect the structure, function and amount of corresponding
proteins leading to a change in a cell’s behavior from normal to cancerous [24]. Next generation
sequencing (NGS) methods such as whole-genome DNA sequencing and Total RNA
sequencing are considered revolutionary technologies for studying genetic changes in Cancer
[22], [27]. These technologies provide great potential for cancer classification and better
understanding of tumor progression given their ability to sequence thousands of genes at one
time and detect multiple types of genomic and transcriptome gene expression alterations [20],
[21], [25]. They provide capabilities for comparing the sequence of DNA and RNA in cancer
cells with that in normal cells, such as blood or saliva to identify genetic changes that may be
driving the growth of a tumor in addition to measuring the activity of genes to understand which
proteins are abnormally active in cancer cells leading to uncontrolled growth [26]. Gene
expression analysis using total RNA sequencing provides a snapshot of the whole
transcriptome rather than a predetermined subset of genes, enables testing multiple genes
simultaneously and can detect both coding plus multiple forms of noncoding RNA [22]. These
methods have eliminated many limitations involved in microarray based experiments that were

previously used for measuring gene expressions [22], [25], [27].

1.4 Early Cancer Diagnosis using Gene Expressions

Gene expressions have been extensively used in biological research and cancer
classification [5], [6], [7]. [8], [9], [10], [13], [11], [17]. Individual proteins determine the cell
function and at the same time the protein synthesis is dependent on which genes are expressed
by the cell. Accordingly, the expression pattern of a gene provides indirect information about
a cell function [1]. Gene expression refers to the process of translating information in DNA
into functional products including proteins and non-coding RNA [4]. While Microarrays have
traditionally been used for gene expression analysis, they have shown many limitations since
the snapshot of the transcriptome they provide is incomplete and they cannot detect previously
unidentified genes or transcripts [21], [22], [25].

Gene expression quantification can be used to identify which genes are preferentially
expressed in various tissues. Transcription produces what is referred to as precursor messenger

RNA (pre-mRNA) which undergoes further modifications leading to mature mRNA [4].

AUC SID: 800-09-0336 Name: Tarek Khorshed



By collecting mRNA samples for tumors of known classes, supervised learning can be used
to build discriminative models which can learn the gene patterns of the underlying disease and
then be used to predict the tumor class of new patient samples which were not previously
diagnosed [1]. This is considered a great achievement as there are many Microarray
experiments which demonstrate how it was possible to classify and distinguish between certain
cancer types using data classification even though they are clinically indistinguishable [1], [72],
[73].
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Figure 1.2 Classification of AML and ALL Leukemia using Gene Expression Data [73]

For example, Figure 1.2 shows the classification between two types of Leukemia Cancer
(AML and ALL) which are clinically indistinguishable [73]. The figure shows how Clustering
of microarray gene expression data was used to distinguish between Acute Myeloid Leukemia
(AML) and Acute Lymphoblastic leukemia (ALL) using only data classification. Rows
correspond to genes and columns correspond to human samples [73].

Another example of a microarray experiment is shown in Figure 1.3 which was used to
analyse a total of 78 Breast Cancer patients to develop what is known as the PAM50 Breast
Cancer Intrinsic Classifier which predicts the breast cancer type out of several classes [74].
This classifier predicts the Breast Cancer type out of several classes which are: Luminal A,
Luminal B, Basal-like, Human Epidermal Growth Factor receptor 2 (HER2)+ [74].
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Figure 1.3 PAMS50 Classifier for Classification of Breast Cancer using Gene Expression Data [74]

1.5 Complexity in Cancer Classification using Gene Expression Data

Despite all these potential capabilities, cancer classification using gene expressions
produced from Total RNA sequencing is extremely challenging given the complexity and
massive amount of genetic data that is produced [20], [21], [25], [26], [38]. The magnitude of
variants obtained from RNA-Sequencing is exponential which makes it difficult for traditional
bioinformatics and machine learning approaches to evaluate genetic variants for disease
prediction [4], [22], [23]. Gene expression data is characterized by being very high in
dimensionality in terms of having a very large number of features representing the genes, and
a very small number of training data representing the patient samples [9], [22], [33].
Complexity is also due to the fact that only a small subset of genes might be influencing the
cancer tumor being diagnosed [4], [29].

Current cancer classification methods avoid processing the full set of genes to overcome
these complexities and are mainly based on performing a process of gene feature selection as

a prerequisite to the classifier learning process [28], [29], [30], [31].
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Gene feature selection is the process of selecting a small subset of informative genes which
are discriminative among the full set of genes collected from the tumor samples [32], [33].
Gene feature selection will allow the learning process to proceed, but the resulting classifier
will not have the opportunity to learn the molecular signatures of genes which have been
excluded and their influence on the underlying cancer tumor [34], [35].

Current methods for cancer classification follow the approach of feature engineering and
are based on applying innovative gene feature selection techniques as a prerequisite to the
classifier learning process to discover a small subset of informative genes which are
discriminative among the tumor being analysed [28], [29], [31]. Gene selection methods can
be generally classified into filtering, wrapping and embedded methods [32], [33]. The accuracy
of such a classifier depends heavily on the successful identification of these discriminative
features [34], [35]. Furthermore, the same classification method might not succeed in achieving
the same accuracy if applied on a tumor for a different tissue type which will most likely have
a different subset of informative genes [1].

Substantial work has been done for cancer classification by performing gene feature
selection and building on traditional machine learning methods such as Support Vector
Machines [15], [18], [30], Random Forests [14], Decision Trees [16], AdaBoost [11], K-
Nearest Neighbor [14] and Genetic algorithms [9], [11]. Current classification methods which
are based on gene feature selection are not optimal for early cancer diagnosis. This is because
these methods will fall short in taking the full advantage of DNA and RNA sequencing
technologies to discover the correlated patterns between genes across the full set of DNAs in
the human genome and to detect multiple types of genetic alterations that may be driving the
growth of a tumor across the whole transcriptome rather than a predetermined subset of genes
[5], [6]. Another limitation of current methods is that they typically rely on gene expressions
collected mainly from a single cancer tissue type based on the same anatomical site of origin.
This approach does not utilize the full potential of the recent emerging whole-genome
sequencing technologies and data produced by large-scale genomic projects which are
producing detailed molecular characterizations of thousands of tumors using genome-wide
platforms [38]. Recent studies which have performed an integrated multiplatform analysis
across multiple cancer types have revealed molecular classification within and across tissues
of origin [5], [7]. The results of these studies have recommended that the traditional approach
of anatomic cancer classification should be supplemented by classification based on molecular

alterations shared by tumors across different tissue types [5].

AUC SID: 800-09-0336 Name: Tarek Khorshed



1.6 Deep Learning for Early Cancer Diagnosis

This has motivated our research for early diagnosis of cancer by leveraging the latest deep
learning methods to develop a comprehensive multi-tissue cancer classifier. Our proposed
classifier is based on molecular signatures of whole-transcriptome wide gene expressions, that
are collected from human samples representing multiple cancer tissue types covering multiple
organ sites of origin. Our approach using deep learning eliminates the need for discovering a
predefined subset of genes by combining the process of gene feature selection and classification
into one end-to-end learning system. We propose a new Convolutional Neural Network
architecture called “Gene eXpression Network” (GeneXNet) which is specifically designed to
learn the complex nature of whole-transcriptome gene expressions and which gives the
opportunity to design cancer classifiers with capabilities of detecting more complex types of
genetic alterations by learning the genomic signatures shared across multiple cancer tissue
types. To our knowledge, this is the first effort to develop a multi-tissue cancer classifier based
on a full set of whole-transcriptome wide gene expressions collected from tumors across
different tissue types without requiring a prerequisite process of gene feature selection. We
demonstrate how our model can perform transfer learning to build classifiers for other types of
cancer tumors which are lacking sufficient patient samples to be trained independently. We
design an end-to-end Deep Reinforcement Learning framework to automatically learn the
optimal Deep Neural Network architecture together with the associated optimal
hyperparameters that maximizes the performance of our multi-tissue cancer classifier. We
introduce visualization procedures to provide more biological insight on how our model is
performing cancer classification across multiple tumor types. We visualize gene localization
maps highlighting the important regions in the gene expressions influencing the tumor class
prediction. We also visualize the molecular clusters formed by intermediate gene expression
feature maps learned by the network which helps in revealing the genomic relationships of

gene expressions that are influential in the tumor progression.
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CHAPTER 2

2. LITERATURE SURVEY

2.1  Cancer Genomics

DNA is amolecule in the cell nucleus that contains instructions for making proteins. A segment
of DNA that contains information for making a protein is called a gene [4]. During the
transcription process, DNA that makes up a gene is copied into a complementary molecule
called messenger RNA (MRNA). The mRNA moves from the nucleus to the cytoplasm where
it interacts with ribosomes which are the protein factories of the cell [4]. DNA alterations can
affect the structure, function and amount of corresponding proteins leading to a change in a

cell’s behaviour from normal to cancerous [24].
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Figure 2.1 Genetic Changes and Cancer [4]
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2.2 Next Generation Sequencing (NGS)

Technological advances in structural genomics have allowed studying the full set of DNASs in
the human genome [4], [25]. Next generation sequencing (NGS) methods such as whole-
genome DNA sequencing and Total RNA sequencing are considered revolutionary
technologies for studying genetic changes in Cancer [22], [27]. These technologies provide
great potential for cancer classification and better understanding of tumor progression given
their ability to sequence thousands of genes at one time and detect multiple types of genomic
and transcriptome gene expression alterations [20], [21], [25]. They provide capabilities for
comparing the sequence of DNA and RNA in cancer cells with that in normal cells, such as
blood or saliva to identify genetic changes that may be driving the growth of a tumor in addition
to measuring the activity of genes to understand which proteins are abnormally active in cancer
cells leading to uncontrolled growth [26]. Gene expression analysis using total RNA
sequencing provides a snapshot of the whole transcriptome rather than a predetermined subset
of genes, enables testing multiple genes simultaneously and can detect both coding plus
multiple forms of noncoding RNA [22]. These methods have eliminated many limitations
involved in microarray based experiments that were previously used for measuring gene
expressions [22], [25], [27].

2.3 Gene Expression Analysis

The advances in Next generation sequencing (NGS) and DNA microarray technologies have
provided the capabilities to measure the expression levels of thousands of genes during various
biological processes, collected from different experimental samples and conditions [22], [27].

Gene expression refers to the process of translating information in DNA into functional
products including proteins and non-coding RNA. Only a fraction of genes in a cell are
expressed at a given time where a distinct set of regulators determine the expression profiles
of each cell. Transcription produces what is referred to as precursor messenger RNA (pre-
MRNA) which undergoes further modifications leading to mature mRNA. The formation of a
malignant tumor is typically a transformation characterized by distribution of genetic

information and irregular expression of multiple genes [1].
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Figure 2.2 Schematic overview of protein-coding gene expression pathways [1]

During a Next Generation Sequencing experiment, DNA sequences under multiple
conditions are captured for analysis where the collective data samples are commonly referred
to as gene expression data [21]. The variations in conditions of the data samples could represent
different time intervals in a specific biological process or they could represent different samples
from different organs or tissues [25]. For example, the gene expressions could represent the
DNA sequence progression of infected cancer cells at different stages, or they could represent
samples from different tissues of healthy and infected patients [27].

Medical procedures for early cancer diagnosis and screening still depend heavily on clinical
and histological analysis, which is the study of the microscopic anatomy of cells and tissues.
But despite this common practice, there are many well-known research experiments which
have proven that clinical and histological analysis are insufficient to distinguish between
subclasses in several types of cancer [1], [4].

Analysis of Cancer gene expression data can have many objectives, but among the most
common are class prediction and class discovery [1]. Class prediction is based on collecting
MRNA samples for Cancer tumors of known classes, then using supervised learning and
classification techniques to build discriminative models which can be used to learn the
molecular signatures of the underlying tumor. These models can then be used to predict the
tumor class of new patient samples which were previously unrecognized. Class discovery on
the other hand is based on unsupervised learning to identify the molecular signature of a new

subclass of a cancer tumor which was previously unknown [1], [4].
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2.4  Cancer Classification using Gene Expressions

Gene expressions have been extensively used in biological research and cancer classification
[51, [6]. [7], [8], [9], [10], [13], [11], [17]. By collecting mRNA samples for tumors of known
classes, supervised learning can be used to build discriminative models which can learn the
gene patterns of the underlying disease and then be used to predict the tumor class of new
patient samples which were not previously diagnosed [1]. This is considered a great
achievement as there are many Microarray experiments which demonstrate how it was possible
to classify and distinguish between certain cancer types using data classification even though
they are clinically indistinguishable [1], [72], [73]. For example the classification between two
types of Leukemia Cancer (AML and ALL) which are clinically indistinguishable [70].
Another example is the microarray experiment used to analyze a total of 78 Breast Cancer
patients to develop what is known as the PAM50 Breast Cancer Intrinsic Classifier which

predicts the breast cancer type out of several classes [71].

2.5 Gene Feature Selection

Current methods for cancer classification follow the approach of feature engineering and are
based on applying innovative gene feature selection techniques as a prerequisite to the classifier
learning process to discover a small subset of informative genes which are discriminative
among the tumor being analysed [28], [29], [31]. Gene selection methods can be generally
classified into filtering, wrapping and embedded methods [32], [33]. The accuracy of such a
classifier depends heavily on the successful identification of these discriminative features [34],
[35]. Furthermore, the same classification method might not succeed in achieving the same
accuracy if applied on a tumor for a different tissue type which will most likely have a different
subset of informative genes [1].

It is very common that the gene expression data produced from Next Generation Sequencing
or microarray experiments will contain many data anomalies such as noise and missing values
which are expected in any biological experimental procedure. Accordingly, preprocessing the
gene expression data is a crucial step before attempting any analysis for disease diagnosis to
ensure the quality and accuracy of the results. One of the biggest challenges in analyses of gene
expression data is that only a small subset of the genes could be influencing the tumor being
monitored and also it is possible that interesting features of the disease are only present in a
subset of the data. Accordingly gene feature selection is an important preprocessing step. Other
preprocessing tasks include data normalization and estimating missing values [32].
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Gene expression data can be represented in a 2D matrix representation as shown in Figure
2.3. The matrix stores real values where each row represents the expression patterns of genes
and each column represents the expression profiles of tumor samples such that the value in cell

X;j represents the expression level measured for gene (i) in the patient sample(j).

N — Tumor Samples

X | X | Xis [ ... Xin
X | KXo | Xz | ... XN
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Figure 2.3 Gene Expression 2D Matrix Representation (G x N)

2.5.1 Gene Filtering

Gene filtering is the process of selecting a small subset of genes which are discriminative
among the full range of genes underlying the tumor being analyzed [32]. These genes are called
informative genes, biomarkers or differentially expressed genes. Filter methods rely on pre-
processing techniques which analyze potential overall gain of the selected features while
ignoring performance of the learning algorithm [34]. Examples Principle component analysis
(PCA) and Singular Value Decomposition SVD [30]. In general, there are two common
filtering techniques which are widely used which are ranking methods and space search
methods. In a ranking method, a scoring function is used to choose the top ranking genes. While
in a space search method, the genes are selected by optimizing a certain cost function to provide
a tradeoff between maximizing the information gain and minimizing the redundancy among
the selected genes [32], [33].

2.5.2 Gene Wrapping

A drawback in filtering the gene expression data before building the classifier is that it produces
a dataset where the genes might have a high level of correlation within the same class. This
correlation might be resulting from shared upstream signaling of molecules which might result
in misclassification. [34]. The process of Wrapping as opposed to filtering, attempts to solve
this problem by embedding the feature selection step directly into the classifier. Gene wrapping
relies on selecting a subset of features according to the performance gain they provide to the
learning algorithm [32], [33].
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2.5.3 Gene Filtering using Ranking

In a ranking method, a scoring function is used to choose the top ranking genes. The following

is a summary of the steps used to filter the genes using ranking [37]:

1) Define a scoring function to measure the expression level differences between the
various gene samples and rank the features based on the obtained scores.

2) Estimate the statistical significance of the obtained scores.

3) Select the top ranking genes which are statistically significant.

4) Validate the subset of selected genes.

Score Functions

There are a wide variety of ranking score functions available in the literature which is
summarized in the tables below [33]. The first table describes the notations used for the

definitions. The ranking score functions can be divided into the following groups :

Rank Score Functions

T-Test Functions

Bayesian Functions

Information Theory Functions

Functions based on Probability Density Function (PDF-Based)

Correlation Gene Class Label Functions

Estimating Statistical Significance

Calculating a score function is not enough for gene selection, but the statistical significance
has to be estimated as a form of probability measure that a good score ranking has not been
obtained by chance [33]. Statistical significance tests typically consist of running permutations
of multiple tests which are identical with the distinction that the features or the class label can

be chosen differently on each test [37].
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The following is a summary of the most widely used score functions for Gene Filtering

Ranking methods and their corresponding notations [32], [33], [37].

xmxn Data set with m genes and n samples CDFy,, CDFy, cumulative density function of z:; and z2
XXM subsets of X denoting samples from two c class label feature or target annotation
different populations, where 71 + n2 = n €1, c2 labels corresponding to X1, Xo respectively
T, T, T2 single gene expression across all samples, R, . k of gene i in the 7 — th s le
across samples in X respectively Xz i fnkoeenerm ey sampe
—— S relevance index or score associated to a gene
T, T1, To mean value of x, 1 and x2
— Qo Os, Q] the whole set of genes, a subset of genes from
Oxs Oy Oa standard deviation of z, 1 and z3 Qun respectively the number of genes in Qs
Pr, Pry, Pz, probability density function of x, x1 and x2
Rank Score Family Fold-Change Family
Name Metric Name Metric
N k . . _z
Wilcoxon rank sum S = Zj:l Rj, k = min(ni,n2) Fold-change ratio S = 5—;
n Fold-ch iff =TI —T
Rank product 9 — (Hj:1 RJ)]/n old-change difference S =z, — T2
. Information Theory-Based Scoring Functions
t-Test Family v g
N Niotri Name Metric
e Sl Info S = Info(X) — Info, (X)
v I1—%
Z-score §==2= gain Info(X) = — 3% | Plei, X) x log(P(es, X))
—— Vi
t-test g — U:m;gz Infor(X)=—3 " | l\x|‘ x Info(V;)
@y Tz k - number of classes
Welch t-test §— _ T1=F v - number of individual values of a gene =
o2 02, V; - the set of instances whose values in
[ gene z equal z;
— Vi| - number of samples in V;, | X| =n
Modified t-test S = 21722 Vi P e X ==
oo - small positive constant Mutual S=3"._ log #]
= ES IR -
info
Bayesian Family pdf-Based Scoring Funcftions
Name Metric Name Metric
Bayesian §= F1=Fr 2 _ vopt(n-loy K-S test S = sup(CDFy, — CDFy,)
op 7P vp+n—2
t-test vp, og - prior degrees of freedom/variance KL di g = P log Py y
ivergence = Zi:l ©1,, 108 y -

Z)—1o

1
52 52 .
LW Bhattacharyya distance S = —In Ez Py, Pry,

2 12
t-test 52 _ roept(ma=1)es) ay
x1,%2 vo+ny 2—2
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Regularized S =
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Figure 2.4 Score Functions for Gene Filtering Ranking Methods [32], [33], [37]
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2.6 Cancer Classification Methods using Gene Expressions

Cancer classification is based on collecting samples for tumors of known classes and using
supervised learning to build discriminative models which can learn the gene patterns of the
underlying disease and then be used to predict the tumor class of new patient samples which
were not previously diagnosed [1]. Current methods for cancer classification follow the
approach of feature engineering and are based on applying innovative gene feature selection
techniques as a prerequisite to the classifier learning process to discover a small subset of
informative genes which are discriminative among the tumor being analysed [28], [29], [31].
The accuracy of such a classifier depends heavily on the successful identification of these
discriminative features [34], [35].

Substantial work has been done for cancer classification by performing gene feature
selection and building on traditional machine learning methods such as Support Vector
Machines [15], [18], [30], Random Forests [14], Decision Trees [16], AdaBoost [11], K-
Nearest Neighbor [15] and Genetic algorithms [9], [11]. Many other techniques which combine
gene feature selection and classification have also been proposed, for example: a hybrid method
which integrates genetic programming and particle swarm optimization was used to build a
scale-free complex network classifier using an ensemble of different gene feature sets [8]. A
self-training subspace clustering algorithm was proposed by first applying a low-rank
representation to extract discriminative features from gene expressions [13]. A deep neural
forest model was used with a combination of fisher ratio and neighborhood rough set for
dimensionality reduction of gene expressions [12]. An ensemble classifier was developed using
a combination of k-means clustering, t-test, self-organizing maps and hierarchical clustering
[10]. A classifier was developed using a multilayer recursive feature elimination method based
on an embedded integer-coded genetic algorithm [9]. A gene expression graph structure was
proposed for using the weight of graph edges to filter and determine significance of genes
before classification [17]. A one-class logistic regression machine learning algorithm was used
to identify stemness features extracted from transcriptomic and epigenetic data from cancer
tumors to reveal clinical insight and potential drug targets for anti-cancer therapies [6].

The following sections present a survey of the state-of-the-art cancer classification methods

using gene expression data.
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2.6.1 Support Vector Machines (SVM)

Many studies have been proposed for Cancer classification using Support Vector Machines
(SVM) and gene feature selection as a prerequisite to the learning process [15], [18], [30].
One of the proposed examples is based on robust principle component analysis (RPCA) and
SVM to classify tumor samples of gene expressions [18]. First RPCA is used to extract the
characteristic genes from gene expression data. In the second stage, Linear Discriminant
Analysis (LDA) is then used to refine the subset of characteristic genes. Finally, SVM is then

applied to classify the tumor samples of gene expressions based on the identified features [18].
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Figure 2.5 RPCA and LDA to extract characteristic genes from gene expressions before applying SVM. The
gene expression matrices D, A, and S represent the observation matrix, low-rank matrix and sparse perturbation
signals to decompose the gene expression data [18]

2.6.2 K-Nearest Neighbors

A comparative study was performed for applying different feature selection methods on the
classification performance of cancer using DNA microarrays of leukemia, prostate and colon
cancer data [15]. Feature selection of gene expressions was applied using the methods of
Fisher, T-Statistics, SNR and ReliefF. Classification was then performed using K-Nearest
Neighbors and Support vector machines. The study showed that the combination between SNR

feature selection and SVM produced the highest accuracy for cancer classification [15].
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2.6.3 Fuzzy Decision Trees (DT)

A Fuzzy decision tree algorithm was proposed for the classification of gene expressions since
they have shown to outperform classical decision tree algorithms [16]. Classical decision trees
have shown some disadvantages in that their performance tends to deteriorate with the increase
of features and emergence of complex interactions as in gene expression data. Since most
decision trees depend on dividing the search space into mutually exclusive regions, the
resulting tree must include several copies of the same subtree to accurately represent complex
data like gene expressions. This greedy approach is prone to overfitting on the training set in
addition to irrelevant features and noise. On the other hand, Fuzzy decision trees do not require
assigning a data instance with a single branch and can simultaneously assign more branches to
the same instance with a gradual certainty. Using this approach, Fuzzy decision trees retain the
symbolic tree structure and are able to represent concepts by producing continuous
classification outputs with gradual transitions between classes [16].

Figure 2.6 Fuzzy Decision Tree Classifier for Ovarian Cancer Gene Expressions [16]

2.6.4 AdaBoost

A hybrid ensemble algorithm combining AdaBoost and genetic algorithm (GA) was
proposed for cancer classification with gene expression data [11]. A decision group is proposed
to improve the diversity of base classifiers in the ensemble system and GA is used to optimize
the weight of Adaboost's base classifier. In a traditional Adaboost algorithm, a single classifier
is used as the base classifier and cannot be changed after selection. The introduction of a
decision group as the base classifier of the Adaboost algorithm was used to improve the

diversity of the base classifiers [11].
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2.6.5 Particle Swarm Optimization

A hybrid method which integrates genetic programming and particle swarm optimization was
used to build a scale-free complex network classifier using an ensemble of different gene
feature sets [8]. A Complex Network (CN) classifier was used to implement the classification
task. A Complex Network is different from a Neural Network in terms of topological structure.
A CN has an uneven distribution of nodes, while a NN has an even distribution. CN models
are used to simulate structural properties of many real-world networks like social networks and
bibliographical index networks. An algorithm was used to initialize the structure, which
allowed input variables to be selected over layered connections and different activation
functions for different nodes. Then a hybrid method integrated Genetic Programming and
Particle Swarm Optimization was used to identify an optimal structure with the parameters
encoded in the classifier. The ensemble classifiers were constructed using different feature sets
including Pearson’s correlation, Spearman’s correlation, ecuclidean distance, Cosine

coefficient, and the Fisher-ratio [8].

Figure 2.7 Topology of a Cancer Classifier implementing a scale-free Complex Network [8]

2.6.6 Random Forests (RF)

A method was proposed using Random Forest for cancer classification of miRNA gene
expression data [14]. The method was used to overcome challenges in existing techniques
caused by the extremely low miRNA count in body fluids and also problems related to cross
contamination between cells and exosomes in sample preparation steps. The proposed system
was able to successfully identify miRNA markers responsible for classification of cancer [14].
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2.6.7 Deep Neural Forest Models (DFN)

A Deep Neural Forest (DFN) model was proposed for cancer classification with a combination
of fisher ratio and neighborhood rough set for dimensionality reduction of gene expressions
[12]. The motivation in using a DFN is to transform a multi-class classification problem into
many binary classification problems in each forest. The cascade structure of the DFN is used
to deepen the traditional Flexible Neural Tree (FNT) model so that the depth of the model is
increased without introducing additional parameters. FNT is a special neural network with the
advantage of automatic optimization of structure and parameters. Gene feature selection was
first performed using a fisher ratio in combination with neighborhood rough set to select the
most informative genes among the gene expression data. The fisher ratio was used to eliminate
invalid genes and then neighborhood rough set is applied to reduce redundant genes. The fisher
ratio method can effectively deal with noise in the gene expression data as it filters the noisy
genes according to its contribution to classification. The neighborhood rough set has the
characteristics of not requiring discretization of continuous data and avoids information loss

caused by data discretization, which can eliminate redundant genes [12].
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Figure 2.8 Deep Neural Forest Structure used for Cancer Classification [12]
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2.6.8 Self-training Subspace Clustering

A self-training subspace clustering algorithm under low-rank representation (SSC-LRR) was
proposed for cancer classification of gene expressions [13]. First, a Low-rank representation
(LRR) is applied to extract discriminative features from the high-dimensional gene expression
data. The self-training subspace clustering (SSC) method is then used to generate the cancer
classification predictions. The advantage of combining these two methods is that the Low-
rank representation is able to perform subspace segmentation which can reduce the dimension
of the gene expression data, and then the enhanced semi-supervised self-training subspace
clustering algorithm can effectively utilize both the labeled and unlabeled data. To analyse the
results, the study performed a decomposition of the gene expression data matrix into a low-
rank representation matrix and a sparse matrix and then visualized the results. It was shown
that cancer samples belonging to the same class often have the same subspace structure. This
means that the low-rank representation can unveil the intrinsic structure of data much better
than the original data matrix and therefore the low-rank representation can provide more useful
discriminative information leading to a better classification performance. From a biological
point of view, different types of cancers are often associated with some specific genes and
therefore the corresponding gene expression data may fall into specific feature subspaces,
which can be unveiled by using LRR [13]. The proposed SSC-LRR method was tested on two
separate cancer benchmark datasets in control with four state-of-the-art classification methods.
The method showed that several genes (RNF114, HLA-DRB5, USP9Y, and PTPN20) were
identified as new cancer identifiers that deserve further clinical investigation [13].
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Figure 2.9 lllustration of Cancer Classification of Gene Expressions using Self-training Subspace Clustering and
Low-Rank representation (SSC-LRR). (a) shows the original gene expression data matrix, (b) shows the
decomposed low-rank representation and (c) shows the decomposed sparse representation [13].
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2.6.9 One-Class Logistic Regression

A one-class logistic regression machine learning algorithm was used to identify stemness
features extracted from transcriptomic and epigenetic data from cancer tumors to reveal clinical
insight and potential drug targets for anti-cancer therapies [6]. Stemness is defined as the
potential for self-renewal and differentiation from the cell of origin. Cancer progression
involves gradual loss of a differentiated phenotype and acquisition of progenitor-like, stem-
cell-like features [4]. The proposed study was based on an integrated analysis of cancer
stemness in human tumors of different cancer types including gene expression data of mMRNA
and miRNA. By applying one-class logistic regression to molecular datasets from normal stem

cells and their progeny, the method developed two different molecular metrics of stemness and

then used them to classify epigenomic and transcriptomic features of the cancer tumors [6].
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Figure 2.10 Results of One-class Logistic Regression used to identify biological processes associated with
Cancer Stemness. (A) Correlation between mRNAsi and mRNA expression for published hallmarks of
stemness. (B) Correlation between mRNAsi and selected oncogenic processes [6].
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2.6.10 Multilayer Recursive Feature Elimination

A Multilayer Recursive Feature Elimination (MGRFE) method was proposed for cancer
classification based on an embedded integer-coded genetic algorithm [11]. The feature
elimination was aimed at selecting the gene combination with minimal size and maximal
information. The method uses the filtering algorithms t-test and Maximal Information
Coefficient (MIC) to reduce the feature range and generate a candidate feature set. MGRFE
combines the advantages of both evolution calculation of genetic algorithms and the explicit
Recursive Feature Elimination (RFE) to achieve the minimum discriminative gene subset with
optimal classification ability. The experiments of the study showed that MGRFE outperforms
state-of-the-art feature selection algorithms with better cancer classification accuracy and a
smaller selected gene number on 19 benchmark microarray datasets including multiclass and

imbalanced datasets [11].
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Figure 2.11 Cancer Classification using Multilayer Recursive Feature Elimination (MGRFE) based on
an embedded integer-coded Genetic Algorithm (GA) [11].
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2.6.11 Graph Structure Algorithms

A gene expression graph structure was proposed for cancer classification by using the weight
of graph edges to filter and determine the significance of genes before classification [17]. The
informative genes were selected by filtering the weight values between genes such that greater
weights indicate a stronger relationship between two genes. The method was also able to detect

out-of-class samples that do not belong to any trained class.
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Figure 2.12 Cancer Classification using a Weighted Gene Expression Graph Structure [17].

2.6.12 Genetic Algorithms (GA)

Genetic algorithms (GA) have been frequently used for cancer classification of gene
expressions by combining gene feature selection and other machine learning methods. For
example, an embedded integer-coded genetic algorithm was used for cancer classification of
19 benchmark microarray datasets [9]. The approach relied on first applying a multilayer
recursive feature elimination method based on the embedded integer-coded genetic algorithm
with the aim of selecting the gene combination with minimal size and maximal information.
Another example is the use of a hybrid ensemble algorithm combining genetic algorithms and
AdaBoost for cancer classification with gene expression data [11]. A hybrid method was also
used which integrates genetic programming and particle swarm optimization to build a scale-

free complex network classifier using an ensemble of different gene feature sets [8].

2.6.13 Ensemble Classifiers

One of the common approaches in classification is to use an Ensemble of multiple classifiers
to improve Classification accuracy. An Ensemble classifier was developed for classification of
Lung Adenocarcinoma cancer (LUAD) into molecular subtypes using a combination of k-
means clustering, t-test, Self-organizing Maps (SOM) and Hierarchical Clustering [10]. The
method determined 24 differentially expressed genes which could be used as therapeutic
targets, and five genes (RTKN2, ADAM6, SPINK1, COL3AL, and COL1A2) which could be

potential novel markers for Lung cancer (LUAD).
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2.7 Deep Learning

Traditional machine learning techniques have shown limitations in processing high
dimensional data [59]. Recent neuroscience findings have provided additional insight into the
principles governing information representation in the brain. The discovery motivated the
emergence of deep machine learning which has since revolutionized the capabilities of
processing high dimensional data [59]. Deep learning methods rely on building complex multi-
layer network architectures capable of processing huge amounts of high dimensional data with
minimal preprocessing requirements [46], [58]. Deep learning leverages spatial relationships
among data to reduce the number of dimensions to be learned which dramatically improves the
learning process in comparison to traditional machine learning methods [59], [67].

2.7.1 Learning using Deep Multilayer Architectures

Traditional shallow architectures such as 2-layer neural networks, SVMs and kernel machines
have been shown to be universal learning machines. But deep multilayer architectures have the
capability of representing more complex functions [59]. The approach using Deep Learning is
through building architectures with multiple layers each with a non-linear function. Each layer
transforms the input to increase the level of accuracy and invariance of the selected features.
As the Deep Learning architectures increase in depth and layers, the learning procedure is
capable of representing complex functions which are very sensitive to the slightest details in

the input objects and which are also insensitive to any irrelevant variations [59], [67].

2.7.2 Feature Extraction using Representation Learning

Deep learning is commonly referred to as Representation Learning which is a technique based
on using raw data as input with no feature extraction as a prerequisite. Deep learning relies on
building architectures with multiple levels of representation by combining non-linear building
blocks. Each level in the architecture transforms the input into a representation at a higher more

abstract level which provides the capability of learning complex non-linear functions [59].

Low-Level Mid-Level High-Level| Trainable
! L - L]
Feature Feature Feature Classifier
N

Figure 2.13 Visualization of Extracted Features from Deep Learning Networks [65]
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2.7.3 Training Deep Architectures using Gradient Descent & Backpropagation

Supervised learning is used to train deep multilayer architectures. Training is performed by
collecting a large amount of labelled data and presenting it to the network to produce an output
score for each labelled category. By defining the appropriate objective function that measures
the error between the network output and the desired output, we can adjust the network weights
using Gradient descent optimization to reduce the classification error [59], [66].

Gradient descent optimization can be illustrated by considering the cost function, averaged
over all the training data, as a very high dimensional landscape full of hills in the network
weight space. The negative gradients represent the direction of steepest descent in this

landscape which can be used to iteratively determine the local minimum [62].
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Figure 2.14 Training Multilayer Neural Networks using Backpropagation [59]

By training deep multilayer networks using Gradient descent and Backpropagation, the
network learns to map an input of fixed size, such as an image, to an output which could
represent probability scores of the classification categories [66]. A non-linear activation
function is applied before passing the weighted sum of the inputs from one layer to the next.
The hidden layers are considered to be performing a non-linear transformation of the input so

that the classification of the output categories can become linearly separable [46].
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Deep network architectures can be trained by means of stochastic gradient descent using
backpropagation by application of the chain rule for derivatives. To adjust the network weights,
we need to calculate the gradient of the error function with respect to all the weight parameters
in the network. Backpropagation calculations can be used to propagate the gradients from the

output layer back to the input by passing through the multiple layers [67].
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Figure 2.15 Computing Gradients for Deep Networks using Backpropagation [67]

2.8  Convolutional Neural Networks
2.8.1 CNN Overview

Convolutional Neural Networks (CNNs) are similar to traditional Neural Networks in having
neurons with learnable weights and biases but differ greatly in the architecture and connectivity
between the various layers. CNNs are made of multiple layers where each layer is arranged in
the form of a 3D volume of neurons that has a specific width, depth and height. Each layer
transforms the input 3D volume to an output 3D volume using a non-linear transformation
function. The notion of depth is different from the number of layers of the network which was
typically referred to as depth in traditional neural networks, but the depth in this context refers
to the depth of the activation volume of neurons in a particular layer [59]. CNNs also differ in
that the neurons in a particular layer will only be connected to a small region in the previous
layer instead of the traditional fully connected networks, [66]. The following sections provide
a survey of some of the current state-of-the-art convolutional neural networks used in computer

vision and natural language processing applications.
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2.8.2 (ALEX-Net) ImageNet Classification with Deep Networks
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Figure 2.16 ALEX-NET Convolutional Neural Network [66]

ALEX-Net was among the first Convolutional Neural Networks that drew great attention to the
capabilities of deep learning and managed to outperform some of the existing classification
benchmarks with a relatively high margin [66]. It won the first place in the ImageNet 2012
competition. It was used to classify 1.2 million high resolution images covering 1000 different
classes. The network had 5 convolutional layers followed by max pooling layers in some of
them and then followed by 3 fully connected layers and a final 1000-way softmax for
classification. The network had 60 million parameters and 650,000 neurons. A dropout

regularization was used on the fully connected layers to reduce over fitting [66].
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Figure 2.17 Classification of ImageNet 2012 Images using ALEX-NET [66]
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2.8.3 (ZF-Net) Visualizing and Understanding Convolutional Networks

The ZF-Net network architecture provided a visualization technique to gain more insight on
the functions of the intermediate feature layers of a Convolutional Neural Network and how it
performs its classification [65]. This insight was used to further enhance the design of the
network and enhance its classification performance and was able to achieve better performance
in the ImageNet competition compared to ALEXNET. By using what is referred to as a De-
convolutional Neural Network, it was possible to visualize the intermediate feature maps
extracted by the intermediate layers of a Convolutional Neural Network which has provided
more insight on the functions of the intermediate layers and their role in feature extraction [65].
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1 w384 | W1 e384 256
w256 ") " '\
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Figure 2.19 ZF-NET Convolutional Neural Network [65].

Using the ZF-NET, it was possible to visualize the top activation for any feature map projected
back to the image pixel space. This visualization made it possible to reveal the different
structures that excite the activation map and demonstrated how it is invariant to any input
deformations. The visualization of features also demonstrated through experimental trials that
the features extracted by CNNs are not just random patterns, but they have significant
interpretations in how the class discrimination is performed. It also demonstrates how the
network is able to extract features with desirable properties such as compositionality and
increasing variance as the data is moved deeper into the network layers [65].

Figure 2.20 Visualization of layer 3 features for a fully trained ZF-NET network [65].
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2.8.4 (VGG-Net) Very Deep Convolutional Networks for Image Recognition

The VGG-Net network attempts to further improve the architecture of CNNs by studying the
variations of design in terms of the depth of the network. Experiments are performed to
gradually increase the depth of the network by adding more convolutional layers while fixing
other network parameters and using a very small 3x3 filter [64]. Variations in CNN depth
configuration included networks starting from 11 weight layers (8 Conv. and 3 FC layers) up-
to networks with 19 weight layers (16 Conv. And 3 FC layers). At the same time variations are
applied to the width of the network by changing the number of filters used from 64 in the first
layer and up-to 512. Changing the number of filters determines the volume width or number
of channels of the stacked activation maps after convolution. These variations in network depth
demonstrated that the representation depth is beneficial for the accuracy of the classification
and that state-of-the-art performance can be achieved by a conventional CNN architecture with
substantially increased depth [64].
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Figure 2.21 VGG-NET Convolutional Neural Network configurations [64]
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2.8.5 Inception Model Architectures

It has been shown that if a large sparse Deep Neural Network architecture can be used to
represent the probability distribution of a dataset, then the optimal network architecture can be
constructed on a layer by layer basis by analysis of the correlation statistics of the activations
of the last layer and clustering neurons with highly correlated outputs [63].

The Inception model architecture attempts to find an optimal approximation for a local
sparse structure that is covered by readily available dense components. Construction proceeds
layer by layer by analyzing the correlation statistics of the last layer and clustering them into
groups of units with high correlation [63]. The resulting clusters will form the units of the next
layer and are connected to the units in the previous layer. This model is based on the assumption
that each unit from the earlier layer will correspond to some region of the input and that these
units will be grouped into filter banks. This process will result in the early layers which are
closer to the input, to build up many clusters which are concentrated in a single region which
can then be covered by a layer of 1x1 convolutions in the following layer. To avoid the
overhead of expensive computations resulting from merging of the output of the pooling layer
with that of the convolutional layer, a dimension reduction is applied to preserve the sparse
representations in the network [63].
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Figure 2.22 Inception Module Architectures [63]

AUC SID: 800-09-0336 Name: Tarek Khorshed



39|

2.8.6 (Google-Net) Going Deeper with Convolutions

Google-NET was able to outperform previous designs and win the ImageNet contest in 2014
ILSVCR14. The main advantage of this network architecture is the improvement in utilization
of the computing resources inside the network. The implementation relied on designs which
allowed increasing depth and width of the network while keeping the computational budget
constant. The architecture decisions were based on the Hebbian principle and the use of multi-
scale processing to optimize quality [63].

Google-NET has demonstrated that using dense building
blocks for approximating the expected optimal sparse
structure is a successful technique for improving the
performance of Neural Networks. The experimental
results of this network have shown that moving to sparser
architectures is feasible and achieves comparable
performance when compared to more expensive networks
of similar depth and width [63].

patch sizel oulput #F#3x3 FEXEG pool

depth | #1x1

‘ #3x3 |

ype stride size reduce reduce #ExE proj params ope

convolution TxT/2 112x112x64 1 27K 34M
max pool 3x3/2 56x56x 64 0

convolution 3x3/1 56x56x192 2 64 192 112K 360M
max pool 3x3/2 28 %28 % 192 0

inception (3a) 28 x 28 x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 % 28 %480 2 128 128 192 32 96 64 380K 304M
‘max pool 3x3/2 14 14 %480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14%x512 2 160 12 24 24 64 64 437K 88M
inception (4c) 14x14x512 z 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 B40K 170M
max pool 3x3/2 TxTxB832 0

inception (Sa) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5h) TxTx1024 2 384 192 384 48 128 128 1388K TIM
avg pool TxT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 111000 1 1000K ™

softmax 1x 1% 1000 0

Figure 2.23 Google-NET Convolutional Neural Network Architecture [63]
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2.8.7 Deep Residual Learning Framework

Challenge in Training Deeper Networks

State-of-the-art CNNs have shown that better classification performance can be achieved by
architectures with substantially increased depth [64]. But at the same time, with depth being a
significant factor, creating more deeper networks is not as simple as stacking more network
layers into the network architecture [58].

One of the major problems that arises with training deeper networks is referred to as the
Degradation problem [58]. Degradation occurs with the increase in network depth where the
training accuracy gets saturated and then at a certain point it starts to rapidly degrade.
Experiments have shown that the degradation is not caused by overfitting but rather due to the
increase of network layers. The example below illustrates the training of the CIFAR-10 dataset
where increase in number of layers has resulted in in higher training and test error [58].

Residual learning was introduced to overcome degradation in learning performance with
deep networks. If we assume that a series of stacked non-linear layers in a CNN can
asymptotically approximate complex non-linear functions and that these layers can be
represented by a mapping H (x), where x is the input to the first layer, then we can equivalently
assume that these stacked layers can also asymptotically approximate the residual function
H(x) — x, given that both input and out have the same dimension.

The idea of residual learning is that instead of expecting the deep layers to approximate
H(x) we let them approximate a residual function f(x) = H(x) — x so that the original
function becomes f (x) + x. If the added layers can be constructed as an identity mapping then
the training error of the deep network should not exceed the shallow model of the same
network. Residual learning has proved that it is easier to optimize the residual mapping than to
optimize the original mapping. In the case that the identity mapping was optimal then it would
be easier to drive the residual to zero than to approximate the identity mapping by a stack of

non-linear layers [58].
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Figure 2.24 Deep Residual Learning Framework [58]
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2.8.8 (ResNet) Deep Residual Learning Networks for Image Recognition

ResNet is a CNN architecture built on the residual learning framework [58]. The network was
able to outperform previous designs and win the ImageNet contest in 2015 ILSVCR15. The
architecture of this network is provides the capability to train networks which are relatively
deeper than previous network designs. The idea is based on reformulating the layers as learning
residual functions with reference to the layer inputs, instead of learning unreferenced functions.
The experiments performed using this network demonstrated that Residual networks are easier

to optimize and can achieve more accuracy when the depth of the network is increased [58].
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Figure 2.25 Comparison between Plain and Residual Convolutional Neural Network Architectures [58].

AUC SID: 800-09-0336 Name: Tarek Khorshed



42|

2.8.9 (Inception-ResNet) Impact of Residual Connections on Learning

The idea behind the architecture of the Inception-ResNet [57] Convolutional Neural Network

was to build a very deep network by combining the successful models used for Inception

architectures together with the learning technique of Residual connections. The motivation is

that Inception architectures have been shown to achieve very good performance at relatively

low computational cost and at the same time the use of residual connections have produced the
best performance results in 2015 ImageNet challenge ILSVCR15 [57].
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Figure 2.26 Inception-ResNet Convolutional Neural Network Architecture [57]
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2.8.10 (DenseNet) Densely Connected Convolutional Networks

Dense Convolutional Networks attempt to ensure maximum information flow between layers
in a deep network by connecting all layers, with matching feature-map sizes, directly with each
other [41]. Recent studies have shown that convolutional networks can be substantially deeper,
more accurate, and efficient to train if they contain shorter connections between layers close to
the input and those close to the output. DenseNets build on this observation by connecting each
layer to every other layer in a feed-forward fashion. Traditional convolutional networks with L
layers have L connections, one between each layer and its subsequent layer. On the other hand,
a DenseNet only has L(L+1)/2 direct connections [41]. For each layer, the feature-maps of all
preceding layers are used as inputs and its own feature-maps are used as inputs into all
subsequent layers. DenseNets have several advantages as they overcome the vanishing-
gradient problem, strengthen feature propagation and substantially reduce the number of
parameters. DenseNets obtained significant improvements over the state-of-the-art CNNs on
four benchmark datasets used in object recognition (CIFAR-10, CIFAR-100, SVHN, and
ImageNet) [41].
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Figure 2.27 DenseNet Convolutional Neural Network Architecture [41]
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2.8.11 (NasNet) Learning Transferable Architectures for Image Recognition

The framework of learning transferable architectures is based on searching for an architectural

building block on a small dataset and then transferring the block to a larger dataset [40]. The

NasNet experiments search for the best convolutional layer or “cell” on a proxy dataset, such

as the CIFAR-10 dataset, and then apply this cell to the ImageNet dataset by stacking together

more copies of this cell, each with their own parameters to design the NasNet convolutional

architecture. Searching for the best cell structure is much faster than searching for an entire

network architecture and the cell itself is more likely to generalize to other problems. For

experiments on ImageNet, a NASNet constructed from the best cell achieves accuracy of

82.7% top-1 and 96.2% top-5. The NasNet model is 1.2% better in top-1 accuracy than the best

human-invented architectures while having 28% less FLOPS in computational demand from

the previous state-of-the-art model. [40]
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Figure 2.28 NasNet Convolutional Neural Network Architecture [40]
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2.8.12 (MobileNet) Efficient CNNs for Mobile Vision Applications

MobileNet represents a class of efficient models designed for mobile and embedded vision
applications. MobileNets are based on a streamlined architecture that uses depthwise separable
convolutions to build light weight deep neural networks [39], [43]. The MobileNet architecture
IS based on depthwise separable convolutions which is a form of factorized convolutions which
factorize a standard convolution into a depthwise convolution and a 1x1 convolution called a
pointwise convolution. The depthwise convolution applies a single filter to each input channel
while the pointwise convolution then applies a 1x1 convolution to combine the outputs of the
depthwise convolution. This factorization has the effect of drastically reducing computation
and model size [43]. Experiments have demonstrated the effectiveness of MobileNets across a
wide range of applications and use cases including object detection, finegrain classification,
face attributes and large scale geo-localization [43].

MobileNet V2 improve on the original design by introducing a novel layer called the
inverted residual with linear bottleneck [39]. This module takes as an input a low-dimensional
compressed representation which is first expanded to high dimension and filtered with a
lightweight depthwise convolution and then features are subsequently projected back to a low-
dimensional representation with a linear convolution. Experiments demonstrated that
MobileNet V2 improves the state of the art performance of mobile models on multiple tasks

and benchmarks as well as across a spectrum of different model sizes [39].

(a) Regular (b) Separable

Reguiar Convolution Separable Convolution Block

(c) Separable with linear (d) Bottleneck with ex-
bottleneck pansion layer

Bottherack Carmdiitien Eczernban Comenistion black

Figure 2.29 Architecture of Separable Convolution Blocks in MobileNet Convolutional
Neural Network Architecture [39].
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2.9 ROC Analysis for Evaluation of Classification Performance

The receiver operating characteristics (ROC) curves [68] will be used for evaluation of the
classification performance of our proposed Convolutional Neural Network models as
compared to the existing benchmarks for state-of-the-art classification methods. A confusion
matrix is constructed by analysis of the four common possible outcomes which are defined for

classification evaluation as shown in the figure.

True class
P n
e T FP . TP
fp rate = - tp rate = &
Y 'I'_rL_lc False
Positives Positives
Hypothesized recision = —IP recall = L2
class precision = TPLTP ccall = 2
N False True
Negatives Negatives TP+TN
accuracy = PN
Column totals: P N F-measure = 2

1/precision+1 /recall
Figure 2.30 Confusion Matrix Performance Metrics [66]
ROC Curve

The ROC curve is a 2-dimensional graph where the true positive rate (TP) is plotted on the Y
axis and false positive rate (FP) is plotted on the X axis. The ROC describes relative tradeoffs
between benefits (true positives) and costs (false positives). The lower left point (0, 0)
represents a classifier which commits no false positive errors but also gains no true positives.
The opposite of unconditionally issuing positive classifications is represented by the upper
right point (1, 1). The point (0, 1) represents perfect classification. A point in ROC space is
better than another if it is to the northwest, which means the true positive rate is higher or the

false positive rate is lower or both [68].
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Figure 2.31 ROC Curve [68]
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Applying a Threshold for ROC Curve

When using a layer such as Softmax for the Classification decision in a Convolutional Neural
Network, the decision is a set of probabilities describing our confidence in each of the
decisions. In this case a threshold can be used to produce a discrete classifier where each
threshold value produces a different point in ROC graph. The figure shows an example of ROC
curve where the instances have been sorted by their scores, and each point is labeled by the

score threshold that produces it [68].

Avoiding Performance Evaluation Skews caused by Gene Expression Class Distribution

ROC curves have an advantage of insensitivity in changes to class distribution. If the proportion
of positive to negative instances changes in a test set, the ROC curves will not change. The
class distribution is the relationship of the positive column on the left to the negative column
on the right. Any performance metric that uses values from both columns will be inherently
sensitive to class skews. For example, Precision-Recall curves are sensitive to changes in class

distribution as compared to ROC curves as demonstrated in the figure below [68].
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Figure 2.32 Comparison between ROC and Precision-Recall curves under
skews in Class data Distribution [68]
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CHAPTER 3

3. RESEARCH METHODOLOGY

3.1 Problem Definition

The World Health Organization reports that cancer is a leading cause of death worldwide
accounting for an estimated 9.6 million deaths in 2018 [1]. Despite this dramatic impact,
between 30-50% of cancer death cases can be prevented through early detection and treatment
[3]. Advancements in cancer classification and prediction play an important role in saving the
lives of cancer patients, since a major challenge in cancer treatment is that patients are
diagnosed at very late stages where appropriate interventions become less effective and full
curative treatment is no longer achievable [4].

Machine learning for medical diagnosis using genomics is very difficult given the high
dimensionality of the data and lack of sufficient patient samples for training [1], [4].
Technological advances in structural genomics have allowed studying the full set of DNAs in
the human genome [25]. Next generation sequencing (NGS) methods such as whole-genome
DNA sequencing and Total RNA sequencing are considered revolutionary technologies for
studying genetic changes in Cancer [22], [27]. These technologies provide great potential for
cancer classification and better understanding of tumor progression given their ability to
sequence thousands of genes at one time and detect multiple types of genomic alterations [20],
[21], [25]. They provide capabilities for comparing the sequence of DNA and RNA in cancer
cells with that in normal cells to identify genetic changes that may be driving the growth of a
tumor [26]. Gene expression analysis using total RNA sequencing provides a snapshot of the
whole transcriptome rather than a predetermined subset of genes and can detect both coding
plus multiple forms of noncoding RNA [22]. These methods have eliminated many limitations
involved in microarray based experiments that were previously used for measuring gene
expressions [22], [25], [27].

Cancer classification using gene expressions produced from Total RNA sequencing is
extremely challenging given the complexity and massive amount of genetic data that is
produced [20], [21], [25], [26], [38]. The magnitude of variants obtained from RNA-
Sequencing is exponential which makes it difficult for traditional machine learning approaches

to evaluate genetic variants for disease prediction [4], [22], [23]. Gene expression data is
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characterized by being very high in dimensionality in terms of having a very large number of
features representing the genes, and a very small number of training data representing the
patient samples [9], [22], [33]. Complexity is also due to the fact that only a small subset of
genes might be influencing the cancer tumor being diagnosed [4], [29].

Current cancer classification methods avoid processing the full set of genes to overcome
these complexities and are mainly based on performing a process of gene feature selection as
a prerequisite to the classifier learning process [28], [29], [30], [31]. Gene feature selection will
allow the learning process to proceed, but the resulting classifier will not have the opportunity
to learn the molecular signatures of genes which have been excluded and their influence on the
underlying cancer tumor [34], [35]. Current classification methods which are based on gene
feature selection are not optimal for early cancer diagnosis. This is because these methods will
fall short in taking the full advantage of DNA and RNA sequencing technologies to discover
the correlated patterns between genes across the full set of DNAs in the human genome and to
detect multiple types of genetic alterations that may be driving the growth of a tumor across
the whole transcriptome rather than a predetermined subset of genes [5], [6]. Another limitation
of current methods is that they typically rely on gene expressions collected mainly from a single
cancer tissue type based on the same anatomical site of origin. This approach does not utilize
the full potential of the recent emerging whole-genome sequencing technologies and data
produced by large-scale genomic projects which are producing detailed molecular
characterizations of thousands of tumors using genome-wide platforms [38]. Recent studies
which have performed an integrated multiplatform analysis across multiple cancer types have
revealed molecular classification within and across tissues of origin [5], [7]. The results of
these studies have recommended that the traditional approach of anatomic cancer classification
should be supplemented by classification based on molecular alterations shared by tumors
across different tissue types [5].

Deep Machine Learning continues to be an active research area [59] and therefore provides
great potential for early disease detection and diagnosis. Among the great challenges in using
deep learning for disease classification is the absence of a systematic approach to discover
optimal model architectures. Deep learning is dependent on manually designing and
configuring deep network architectures, where the optimal design configuration is achieved by
training and experimentation on huge benchmark datasets [39], [41], [46], [57], [58], [42], [43].
Another challenge in using deep machine learning for disease diagnosis, is that deep networks
are conceived as “black boxes” without much interpretation on how these complex models

make their decisions [53]. Existing visualization techniques for deep networks used for
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computer vision tasks [52], [53], [65] can be interpreted by non-experts when studied in
conjunction with image or video datasets because they are visually comprehensible. These
methods are not directly applicable to genomic datasets such as gene expressions, since they
cannot be visually rendered in a human-friendly form that allows easy interpretations.

3.2 Research Objectives

To address the above problems, this has motivated our research for early cancer diagnosis by

targeting the following research objectives:

Objective 1:
Leveraging the latest Deep Learning methods to design a comprehensive Multi-Tissue
cancer classifier based on molecular signatures of whole-transcriptome wide gene
expressions, that are collected from human samples representing multiple cancer tissue
types and covering multiple organ sites.
Research Questions: Will the performance of disease prediction improve by learning the
molecular signatures of whole-transcriptome wide gene expressions? Does a cancer
classifier have to be limited to learning the molecular signatures of tumors from a single
tissue type? Is there any value to learn the molecular signatures of tumors across multiple
tissues and organ sites?
Method: Developing cancer classifiers with the capabilities of detecting more complex
types of genetic alterations driving cancer progression, by learning the genomic signatures
of whole-transcriptome gene expressions shared across multiple cancer tissue types and

measuring the improvement in comparison to traditional single tissue classification.

Objective 2:

Design a Deep Learning framework for early cancer diagnosis by combining the process
of gene feature selection and classification into one end-to-end learning system.

Research Questions: Can deep learning be used to overcome the limitations of traditional
machine learning methods in processing complex high dimensional genomic data? Can we
design a cancer classifier using genes across the full set of DNAs in the human genome
without performing a prerequisite process of gene feature selection?

Method: Eliminating the dependency on the prerequisite process of gene feature selection
which is performed by current state-of-the-art cancer classification methods for discovering

a predefined subset of informative genes to be used in the learning process.
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Objective 3:

Design a new Deep Neural Network architecture which is specifically designed to address
the complex nature of whole-transcriptome gene expressions. The new model architecture
should have the capabilities of learning the sequence of DNA and RNA in cancer cells and
identifying genetic changes that alter cell behavior and cause uncontrollable growth and
malignancy. The new architecture should also have the capabilities of learning the genomic
signatures across multiple tissue types without requiring the prerequisite of gene feature
selection.

Research Questions: Can we improve the performance of current cancer classifiers for
early disease prediction by taking better advantage of Next Generation Sequencing methods
such as whole-genome DNA sequencing and Total RNA sequencing that can provide a
snapshot of the whole transcriptome? Can the existing state-of-the-art deep learning models
that have been designed specifically for computer vision tasks, also be successfully applied
for cancer classification using genomic data? Can we improve the performance of current
cancer classifiers by designing a deep learning model architecture specifically designed for
the complex nature of genomic data and whole-transcriptome gene expressions across
multiple tissue types?

Method: Developing cancer classifiers with the capabilities of taking full advantage of
genome-wide Next Generation Sequencing technologies to discover the correlated patterns
of genes across the full set of DNAs in the human genome and across multiple cancer tissue
types. To our knowledge, this is the first effort to develop a Multi-Tissue cancer classifier
based on a full set of whole-transcriptome wide gene expressions collected from tumors
across different tissue types without requiring a prerequisite process of gene feature

selection.

Objective 4.

Design a Deep Transfer Learning model that can effectively function as a generic Multi-
Tissue cancer classifier by learning genomic signatures collected from multiple cancer
tissue types and using Transfer Learning to build classifiers for tumor types that are lacking
sufficient patient samples to be trained independently.

Research Questions: Do we need a huge amount of human patient samples to train deep
learning models with genomic data? Can we benefit from deep learning model architectures
to efficiently build and train cancer classifiers despite the lack of huge amounts of cancer

patient samples?
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Method: Eliminating the dependency on huge amounts of patient data and contributing to
solving one of the biggest challenges in cancer classification which is lack of patient
samples. Comparing the classification performance between applying transfer learning
using the genomic signatures of a pre-trained model versus performing a full training

procedure using the available patient samples.

Objective 5:

Design an end-to-end Deep Reinforcement Learning framework that would automatically
learn the optimal Deep Neural Network architecture together with the associated optimal
hyperparameters that would maximize the performance of our multi-tissue cancer classifier.
Research Questions: Can we avoid the process of manually designing and handcrafting a
deep model architecture and avoid the process of manually performing hyperparameter
optimization to improve the performance of our cancer classifier?

Method: Developing a comprehensive multi-tissue cancer classifier that would eliminate
the manual process of handcrafting the network architecture and eliminate the manual
process of hyperparameter optimization and fine-tuning on the target dataset.

Objective 6:

Design visualization procedures to provide more biological insight on how the proposed
network model is learning genomic signatures of whole-transcriptome gene expressions
and accurately performing classification across multiple cancer tumors. Design the
capability to visualize gene localization maps highlighting the important regions in the gene
expressions influencing the tumor class prediction. Design the capability to visualize the
molecular clusters formed by intermediate gene expression feature maps learned by the
network which helps in revealing the genomic relationships of gene expressions that are
influential in the tumor progression.

Research Questions: If we manage to successfully use deep learning models to improve
the performance of cancer classifiers for early cancer diagnosis, can we provide medical
professionals with any form of biological interpretation on how these complex models are
making their predictions?

Method: Contribute to providing medical professionals with more confidence in using
deep learning for medical diagnosis by providing interpretation on how these complex deep

learning models are making their predictions.
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3.3 Approach

The following sections outline our approach for achieving our research objectives and
answering the research questions. We describe the motivation in using deep learning to design
a multi-tissue cancer classifier and overcome the complexity in feature extraction in
comparison to traditional machine learning methods. We outline our approach for using
transfer learning to solve one of the biggest challenges in cancer classification which is lack of
patient samples. We describe our approach to discover and learn the optimal deep network
architecture that would maximize the performance of our classifier by designing an end-to-end
Deep Reinforcement Learning framework. Finally, we introduce our approach using
visualizations to provide more biological insight on how our deep learning framework is

performing multi-tissue cancer classification. The detailed methods are presented in chapter 4.
3.3.1 Using Deep Learning to Design a Multi-Tissue Cancer Classifier

Deep Machine learning and Computational Intelligence are concerned with designing
intelligent systems that can independently learn from data and make complex predictions and
decisions in dynamically changing real world environments. Deep learning has had a major
impact in many research and business applications such as Autonomous Self-driving Cars,
Computer Vision, Medical Diagnosis, Biometric ldentification, eCommerce, Banking and
Cybersecurity. It has become a key element in many military defense applications and
government intelligence and law enforcement agencies [40], [59], [60].

Traditional machine learning techniques have shown limitations in processing high
dimensional data [66]. Recent neuroscience findings have provided additional insight into the
principles governing information representation in the brain. The discovery motivated the
emergence of deep machine learning which has since revolutionized the capabilities of
processing high dimensional data [59]. Deep learning methods rely on building complex multi-
layer network architectures capable of processing huge amounts of high dimensional data with
minimal data preprocessing requirements, [42], [46], [58], Deep learning leverages spatial
relationships among data to reduce the number of dimensions to be learned which dramatically

improves the learning process in comparison to traditional machine learning techniques [67].

3.3.2 Overcoming Complexity in Feature Extraction of Gene Expression Data

Traditional machine learning methods are dependent on a prerequisite which requires domain
experts to handcraft the relevant set of features to be used in the learning algorithm [59]. The

design of a classification system required careful engineering and continuous fine-tuning to

AUC SID: 800-09-0336 Name: Tarek Khorshed



54|

design a feature extractor which would be capable of capturing the characteristics of the data
being analyzed and transform it into a suitable feature vector to be fed as an input to the learning
algorithm [67]. The performance of the learning system in terms of prediction and classification
depended heavily on the successful identification of these features [59]. Deep learning on the
other hand, is commonly referred to as Representation Learning since it is based on using raw
data as input with no feature extraction as a prerequisite. Deep learning relies on building
architectures with multiple levels of representation by combining non-linear building blocks,
each level in the architecture transforms the input data into a representation at a higher more
abstract level which provides the capability of learning complex non-linear functions [59].

For the problem of early cancer diagnosis using whole-transcriptome gene expression data,
deep learning would provide the capabilities of automatically learning the molecular patterns
of expressed genes which are influencing the cancer tumor being diagnosed and using that to
amplify the discrimination score for classification. The major advantage is that the genetic
features of the cancer tumors will not require to be pre-identified by medical professionals, but

rather they will be automatically discovered through the deep learning process.

3.3.3 Deep Learning Architecture for Multi-Tissue Cancer Classification

Current methods for cancer classification are based on gene feature selection as a prerequisite
to the classifier learning process. Our approach using deep learning provides an alternative
solution to feature engineering and eliminates the dependency on huge amounts of training data
and the prerequisite gene feature selection. This is achieved by combining the process of gene
feature selection and classification into one end-to-end learning system using the whole set of
transcriptome wide gene expressions collected from tumors across different tissue types. We
propose a new Convolutional Neural Network (CNN) architecture called “Gene eXpression
Network” (GeneXNet) that combines multiple layers of non-linear building blocks which
transform the gene expression data into a representation at a higher more abstract level. This
allows the network to automatically learn the molecular patterns of expressed genes which are
influencing the tumors and use that to amplify the discrimination score for classification. The
advantage is that the classifier will not be limited to learning the molecular characterization of
a single tissue type but will have the capability of detecting more complex types of genomic
alterations by learning the genetic signatures collected from multiple tumors and across
multiple cancer tissue types. Another major advantage of our approach is that it allows
performing very efficient transfer learning by reusing the molecular signatures learned by the

trained networks. The weights of the pretrained networks can be used as feature extractors to
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build and finetune classifiers for other different types of cancer tumors which might be lacking
sufficient patient samples to be trained independently. This helps in solving one of the biggest
challenges in building discriminative classifiers based on gene expressions which are
characterized by having a very large number of genes versus a very small number of patient
samples [1], [22].

3.3.4 Transfer Learning using Genomic Signatures of Multiple Tumors to Overcome
Lack of Patient Samples

Our approach for building a comprehensive multi-tissue cancer classifier is by designing a new
Convolutional Neural Network (CNN) architecture with the capability of learning the genomic
signatures of whole-transcriptome wide gene expressions shared across multiple cancer tumor
types. By training the model with samples from multiple tissue types collected from multiple
organ sites, the classifier is able to learn and extract complex patterns from the gene expression
data that represent genomic and transcriptomic alterations such as mutations, rearrangements,
deletions, amplifications and the addition or removal of chemical marks. This allows the
classifier to more accurately classify cancer tumors which are resulting from DNA or RNA
changes that alter cell behavior across multiple tissues and cause uncontrollable growth and
malignancy.

A major advantage is that we are able to reuse the genomic signatures learned by the trained
model to perform very efficient transfer learning to solve one of the biggest challenges in
cancer classification which is lack of patient samples. We demonstrate how transfer learning
can be used to build and finetune classifiers for other different types of cancer tumors not
included in the underlying dataset, which might be lacking sufficient patient samples to be
trained independently. By reusing the weights of the pretrained network model, we demonstrate
how the same network or an extended version of it can be used for feature extraction on a
different cancer tumor type. The intuition behind transfer learning comes from recent studies
which have performed an integrated multiplatform analysis across multiple cancer types that
have revealed similar molecular classification within and across tissues of origin [5], [7]. This
means that the discriminative molecular features for one cancer classifier will most likely be
relevant for other cancer types. Our pretrained model will have already learned the complex
types of genetic alterations and genomic signatures collected from multiple cancer tissue types
originating from different organs and can effectively function as a generic model for cancer

classification.
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3.3.5 Deep Reinforcement Learning Framework to Discover the Optimal Deep Network
Architecture

Our objective is to design an end-to-end learning framework that would enable us to
automatically learn the optimal deep network architecture together with the associated optimal
hyperparameters that would maximize the multi-tissue classification performance on our
cancer tumor dataset.

The development of deep neural network architectures to improve accuracy and
performance continues to be an active research area [39], [41], [46], [57], [58], [42], [43]. The
drawback in using similar design approaches for building a comprehensive multi-tissue cancer
classifier is that they rely on manually designing and configuring the network architecture [86],
where the optimal design configuration is achieved by experimentation on benchmark datasets
such as ImageNet [48]. One of the great challenges in using deep networks is the absence of a
systematic approach to search within the huge network architecture space which is exponential
in size to discover the optimal architecture [87]. Since our objective is to build a comprehensive
multi-tissue cancer classifier based on molecular signatures of whole-transcriptome gene
expressions, we would like to design our end-to-end deep learning framework without
manually configuring the optimal network architecture. We would like to eliminate the manual
process of handcrafting the network architecture which typically depends on carefully
engineering and fine-tuning the design to achieve optimal performance on the target dataset.

To solve this problem, we propose a different approach by designing an end-to-end Deep
Reinforcement Learning (DRL) framework. The objective of the DRL framework is to discover
and learn the optimal Deep Network architecture that would maximize the performance of our
multi-tissue cancer classifier on any potential gene expression dataset. In our proposed DRL
framework, we use a Recurrent Neural Network (RNN) to generate different network
architectures and we train the RNN using Reinforcement Learning to find an optimal
architecture that would maximize the expected classification performance on our underlying
multi-tissue cancer dataset. Our methods are motivated from the work done in the areas of
Robotics and Optimal Control of Autonomous Vehicles using Deep Reinforcement Learning
[89], [90], [91], [92], [93] and also the work done in Adversarial Game Playing using
Reinforcement Learning and Deep Neural Networks [100], [101]. We build on the Policy
Gradient optimization methods which use Reinforcement Learning and Trajectory
optimization to learn complex nonlinear policies used in controlling high dimensional robotics

systems using deep neural networks [94], [95], [96]. We also build on the gradient based
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optimization methods using Recurrent Neural Networks which have been used for image
classification [40], [81].

3.3.6 Visualizing Genomic Relationships of Gene Expressions Across Multiple Tumors

One of the challenges in using deep learning for disease diagnosis, is that deep networks are
conceived as “black boxes” without much interpretation on how these complex models make
their decisions [53]. Extensive work has been done to introduce novel visualization technigues
for deep networks to help understand and interpret their record breaking performance in
computer vision tasks [52], [53], [65]. The output from these techniques can be interpreted by
non-experts when studied in conjunction with image or video datasets because they are visually
comprehensible. Unfortunately, these methods are not directly applicable to genomic datasets
such as gene expressions, since they cannot be visually rendered in a human-friendly form that
allows easy interpretations. Our approach is to design a learning system architecture that can
contribute in solving this problem by taking full potential of next generation sequencing
technologies that produce datasets with detailed molecular characterizations of thousands of
tumors using genome-wide platforms.

We introduce visualization procedures to provide more biological insight on how our model
is performing cancer classification across multiple tumor types. We visualize gene localization
maps highlighting the important regions in the gene expressions influencing the tumor class
prediction. We also visualize the molecular clusters formed by intermediate gene expression
feature maps learned by the network which helps in revealing the genomic relationships of

gene expressions that are influential in the tumor progression.
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CHAPTER 4

4. METHODS

The following sections present our detailed methods for achieving our research objectives. We
describe our Deep Learning framework and formulate the details of our Gene eXpression
Network architecture. We present the details of using transfer learning using genomic
signatures across multiple cancer tumors. We formulate our network training and optimization
using stochastic gradient descent and adaptive learning optimization. We describe and
formulate the details of our end-to-end Deep Reinforcement Learning framework to discover
and learn the optimal deep network architecture that maximizes the performance of our cancer

classifier. Finally, we describe the details of our visualization procedures to provide more

4.1 Deep Learning System Architecture

biological insight on how our framework is performing multi-tissue cancer classification.
Input

Transfer
Learning .
Gene Expression i
Trained
g Kl —~
Model Tumor Class
Prediction

Gene Expression Network
(GeneXNet)
Human samples  Total RNA mRNA Tumor
26 Organ Sites Sequencing Gene Expression Classification
33 Tumor Types Quantification

Figure 4.1 Deep Learning System Architecture

A schematic diagram of our end-to-end deep learning system architecture is shown in Figure
4.1. The first section represents the data collection and preparation process. It depends on
collecting human samples representing multiple types of cancer tumors collected from multiple
tissues spanning different organs across the body. The next step performs the gene expression
quantification using a Next Generation Sequencing procedure. Total RNA sequencing is
performed for measuring gene expression quantification across the whole-transcriptome and
extracting both coding mMRNA and noncoding miRNA. The gene expression data is normalized
and then converted into a representation which makes it suitable for feeding it as input data to
our deep learning model. Details about the cancer tumors used in our experiments is explained

in the datasets section of the experiments chapter.
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The second section of our learning system represents building and training a deep
Convolutional Neural Network (CNN) to automatically learn the molecular signatures of the
full set of whole-transcriptome gene expression data and produce a trained model which can
be used for classification of cancer tumors. Our model, which we refer to as “Gene eXpression
Network™ (GeneXNet), relies on building an architecture with multiple layers of non-linear
functions which transform the gene expression data into feature maps to increase the level of
accuracy and invariance of the selected gene features [67]. As the model increases in depth, it
becomes capable of representing complex genetic alterations shared by tumors across different
tissue types, which are very sensitive to the slightest details in the input samples. The genetic
signatures learned by the feature maps in the deep layers, eliminate the need for the traditional
prerequisite process of gene feature selection. This is because the feature maps are insensitive
to any insignificant genes or irrelevant variations in the gene expression data [59], [67].

We train the model using supervised learning by feeding the collected human samples as
input and producing an output probability score for each labelled category of cancer tumors.
We define a cross-entropy loss function suitable for gene expression data that measures the
error between the network input and the desired output, then we use stochastic gradient descent
optimization and backpropagation [62] to adjust the network weights and reduce the

classification error to the optimal levels. Full training details are explained in the experiments.

4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have contributed to many record breaking
achievements especially in the areas of computer vision and image recognition [39], [40], [41],
[42], [46], [60]. The development of new CNN architectures to improve accuracy and
performance continues to be an active research area such as AlexNet [66], VGGNet [64],
GoogLeNet [63], InceptionNet [57], ResNet [46], [58], DenseNet [41], MobileNet [39], [43],
SENet [42] and NasNet [40]. CNNs are made of multiple layers where each layer is arranged
in the form of a 3D volume of neurons that has a specific width, height and depth. Each layer
transforms the input volume to an output volume using a non-linear transformation function.
CNNs differ in that the neurons in a particular layer will only be connected to a small region
in the previous layer instead of the traditional fully connected networks [59].

The motivation in using CNNs for classification of cancer tumors using gene expressions is
that the convolution operation is very suitable for the high dimensional and sparse nature of
the data. Since the input data has a very high dimensionality, it is not practical to use traditional
kernel learning methods and fully connected networks since the resulting models will have a

huge number of parameters to be learned which makes the learning process infeasible [59].
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4.3  Gene Expression Data Representation for CNNs
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Figure 4.2 Gene Expression Data Representation for CNNs

In order to train our Convolutional Neural Network model using the cancer tumor samples, we
first have to represent the gene expression data in a format suitable for the network input. Figure
4.2 shows an outline for the gene expression data representation we implement for one of the
datasets used in our experiments for patient samples representing 26 different cancer organ
sites [38]. Full details about the cancer tumors used in our experiments is explained in the
experiments chapter. Figure 4.2(b) represents a clustering heatmap of the mRNA gene
expressions. The column clusters represent the cancer tumor types grouped by organ site, where
each column represents a patient sample, each row represents a single gene and the cell color
legends reflect the mRNA expression level of genes. If we have a total of N cancer tumor
samples, each sample will have a total of G features representing the full set of genes produced
by the whole-transcriptome sequencing procedure. We then represent the gene expression data
in an equivalent 2D matrix of real numbers with dimensions (G, N) as in Figure 4.2(c). The
matrix stores real values of the normalized gene expressions such that the value in cell X;;
represents the expression level measured for gene (i) in the patient sample (j). Each tumor
sample can be represented by a (G, 1) dimensional vector of gene expressions which we convert
into the equivalent 3D volume with dimensions (Width, Height, Depth) to make it suitable as
an input vector to our CNN model. The volume dimensions can be reshaped with any arbitrary
length which matches the correct number of total features. The depth dimension is taken from
the CNN terminology used in image classification where the depth is usually set to 3
representing the number of RGB color channels. For images, values represent the pixel
intensity, while for our cancer tumor dataset the values represent gene expression
quantification. The training data for all the N samples can then be represented by the 4D input
matrix with dimensions (No. of Samples, Width, Height, Depth) as shown in Figure 4.2(d).
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4.4  Learning Genomic Signatures using Convolutions
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Figure 4.3 Convolutional Layer for Gene Expression Data

The intuition in using the convolution operation for learning genomic signatures of cancer
tumors is to leverage several architectural characteristics which distinguish Convolutional
Neural Networks from traditional machine learning methods. These characteristics include:
Sparse Connectivity, Parameter Sharing, Pooling and Equivariant representations [59], [67].

Since the gene expression data is very high in dimensionality, it is not practical to use the
traditional fully connected neural networks since the resulting network will have a huge number
of parameters to be learned which makes the learning process infeasible. To overcome this
problem, we make use of convolutional layers which implement small convolutional filters to
represent the weight parameters of the model. Figure 4.3 shows a schematic diagram for the
convolutional layer we implement for gene expression data. The objective of the convolution
layers is to learn filters that will be activated when matched with specific patterns or features
in the gene expressions. The convolution layers perform a convolution operation which is a dot
product between a sliding filter and the input across the full depth of the input gene expression
volume to produce an activation map. We implement the convolution operation as in [75] by

defining the convolution for each 2D layer of the gene expression volume as:

GEouli,)) = (F * GEp)(. ) = D ) GEm(i=m,j—m) Fim,m) (1)

where GE},,, GEy,: represents the input and output gene expression feature maps and F is the
sliding convolutional filter. The output volume of each layer is created by stacking the

activation maps for all filters.
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Each neuron in the convolutional layer is only connected to a local region in the input
volume covering the full depth which is the receptive field of the neuron. The neurons still
perform the standard operation of a neural network by calculating the dot product between the
input and the weights then applying a non-linear function. The main difference is that the
neuron is connected only with its receptive field in the input and at the same time shares the
same weight parameters as other neurons in the same feature activation map.

Since the gene expression feature maps are represented by a 3D volume, we then define the
convolution across the full depth of feature maps as:

GEoue(k,i,j) = Z GEh,(LLi+m—1,j+n—-1)F(k,[,mn) 2)

ILmn
where GE},, GEy,:(k,i,j) represents the input and output gene expression values for the
feature map at depth k, row i and column j and F(k, [, m,n) represents a 4D convolutional
filter between the output feature map at depth k, and the input feature map at depth [ with an
offset of m rows and n columns.
In order to tackle the complexity and high dimensional nature of the gene expression data we
also make use of downsampling as in [75] by defining a stride parameter S to skip over some

positions of the gene expression feature maps to reduce the computational cost:

GEpyut(k,i,j) = z [GEqn(L(i—1)*S+m,(j—1)*S+n)F(k,[,m,n)] ©)

ILmn
Table 4.1 shows the formulas we use to calculate the dimensions of the output volume

representing the gene expression feature maps after applying the convolution operation.

Table 4.1 Calculating Volume of Gene Expression Feature Maps after Convolution

Parameter | Description

Wy, Hy, Dy Input volume width, height and depth

G No. of genes = (W;xH,xD;)

K No. of Filters = No. of Hidden Neurons = No. of Activation Maps = D,
F Filter size=(F x F)

S Stride applied when moving the filter across the input volume

P Zero padding applied to input volume

W, Output Volume Width = [(W; — F + 2P)/S] + 1

H, Output Volume Height = (H; — F + 2P)/S] + 1

D, Output Volume Depth = No. of Filters = K
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By implementing local receptive fields using small sized filters, the network can learn and
extract small meaningful relationships between the molecular signatures of the genes which in
turn can describe the characteristic influencing the cancer tumor. The sparse network
connectivity, parameter sharing and convolutions using small kernels have helped in tackling
the very high dimensional nature of the gene expression data since it dramatically reduced the
number of parameters that the network needs to learn which means the learning process is much
more efficient in terms of computation and storage requirements. This also helped in
overcoming problems related to lack of sufficient cancer patient samples since the learning
process became less prone to overfitting. Figure 4.4 illustrates the reduction in complexity by
using sparsely connected networks for gene expression data in comparison to fully connected

networks.

Input Output Input Output

all

Gene Expressions Gene Expressions
Feature Maps Feature Maps

Gene Expressions

Gene Expressions
Feature Maps

Feature Maps

Fully Connected Network Sparsely Connected Network

Figure 4.4 Sparsely Connected Networks for Learning Gene Expressions

We also make use of a Pooling layer after the convolution layer which provides a very
important characteristic for learning the genomic signatures of cancer tumors by performing
subsampling of the gene expression data. Our network design incorporates a max pooling
function which is based on replacing the output of the feature maps at certain locations with a
summary statistic of the nearby output values [75]. This allows our network model to generate
gene expression feature maps which are invariant to local translations in the molecular
signatures of the cancer tumor. This is a very important feature which enables building a
classifier that can make predictions across multiple tumor types with the capability of learning
the complex types of genomic signatures collected from multiple cancer tissue types
originating from different organs. The intuition in extracting features which are invariant to

local translations is adapted from using convolutional neural networks for image recognition.
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4.5 Gene eXpression Network (GeneXNet) Architecture
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Figure 4.5 Gene eXpression Network (GeneXNet) Architecture

In this section we describe the detailed architecture of our proposed CNN model shown in
Figure 4.5. Recent benchmark results obtained by deep CNNs for image recognition tasks have
demonstrated that network depth is of great importance for feature extraction and have
managed to achieve outstanding results by designing networks with deeper and more complex
architectures [46], [58]. These models were able to exploit deep architectures because of the
availability of large training datasets such as ImageNet which contains over 1 million training
images [48]. Training deep models requires large amounts of training data to avoid common
problems such as overfitting, vanishing gradients and degradation of accuracy [46], [58].

Applying the same deep CNN architectures for classification of gene expression data is not
an evident task since it faces two conflicting problems. On one hand, we need to benefit from
deep network architectures to efficiently extract the molecular signatures of the large number
of genes so that our classifier can accurately generalize when presented with tumor data from
multiple tissue types. But on the other hand, the lack of sufficient human training samples,
which could be in the range of only a few hundred samples, implies great challenges for training
deep networks and results in overfitting during training which implies using smaller more
compact networks.

We attempted to build an end-to-end learning system for cancer classification without
performing the prerequisite process of gene feature selection by using some of the available
state-of-the-art CNN models which have been specifically designed for computer vision tasks.

Our experimental results have shown that training these deep models suffered from severe
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overfitting when presented with the underlying dataset that includes the full set of
transcriptome gene expressions collected from tumors across different tissue types. The dataset
did not have sufficient training samples to train these deep models and achieve the required
accuracy. Many regularization methods have been proposed to overcome overfitting by adding
constraints on the learning model or including additional terms in the error function which can
potentially help to decrease overfitting and improve performance [75]. Examples of
regularization methods include L1, L2 regularization, early stopping, noise injection, data
augmentation, bagging and dropout [51], [61], [75]. Our experiments have shown that these
regularization methods could slightly help in reducing overfitting but are not sufficient to build
a general multi-tissue cancer classifier given the large number of features in the whole-
transcriptome gene expressions and lack of sufficient cancer patient training samples.

To solve these conflicting problems, we propose a new CNN architecture which we refer to
as Gene eXpression Network (GeneXNet) shown in Figure 4.5. Our network is designed to
specifically target the complex nature of gene expression data and also addresses the lack of
training samples by incorporating multiple layers of building blocks which we refer to as
GeneXNet blocks shown in Figure 4.6. These blocks are motivated from both deep residual
learning networks [46], [58] and also densely connected convolutional networks [41] and are

formed by merging together two different types of learning sub-blocks.

4.6  GeneXNet Building Block Formulation

Our proposed Gene eXpression Network (GeneXNet) architecture combines multiple layers of
non-linear building blocks which transform the gene expression data into a representation at a
higher more abstract level allowing the network to automatically learn the molecular signatures
influencing the cancer tumors. We refer to these blocks as GeneXNet blocks which are shown

in Figure 4.6 and are formed by merging together two different types of learning sub-blocks.
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Figure 4.6 Gene eXpression Network (GeneXNet) Building Blocks
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To formulate our building block, we define our network to have L layers of blocks where the

non-linear transformation of Gene expressions can be denoted by G, and can be defined as:

X141 = G (x, W) 4)

W, ={w,|1<i<K} (5)

where [ is the index of the block, W, represents the set of weights and biases of the I*" block,
wy; represents the weights of the i*" convolutional layer in the I** block, K; represents the
number of convolution layers in the I¢* block and x;, x;,,; represent the input and output
features of the [ block. We apply “pre-activation” of weight layers as in [46] by defining the
transformation at each layer as a sequence of multiple operations which are Batch
Normalization (BN) [55], Rectified Linear Unit (ReLU) [49] and Convolution.

If gene expression data flows through the network using only the transformation in (4), that
would be following the traditional approach for CNN layers. Deep residual learning provides
a framework for more efficiently training deep networks by reformulating the layers as learning
residual functions with reference to the layer inputs [58]. Empirical results have shown that
residual learning helps to avoid degradation in performance accuracy as the depth of the
network increases [58]. Residual networks have achieved excellent performance in many
image recognition and object detection tasks where networks with over 150 layers have been
trained on ImageNet [66] and managed to achieve substantial accuracy gains in comparison to
normal networks which simply stack consecutive layers [46]. To make use of residual learning
we reformulate our building block by implementing the non-linear transformation of gene

expressions G; as a residual function defined as:

X141 = fil G, W) + M(x) ] (6)

where G, is a residual function for the I** block, M (x;) is a mapping which bypasses the non-
linear transformation and f; represents a mapping function of the input and output features of
the 1" block. The simplest form of residual learning can be realized by choosing f; to be a
Rectified Linear Unit (ReLU) [49] and also introducing identity skip connections which are
equivalent to choosing M (x;) as an identity mapping so that M(x;) = x;. Another formulation
can be realized by implementing both M (x;) and f; as identity mappings. We apply the later
formulation which has shown to improve accuracy by creating a more direct path for

information propagation and allowing the signal to propagate more directly from one unit to
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any other unit in the forward and backward passes [46]. The resulting non-linear transformation

of gene expressions and the gradient of the loss function can then be expressed recursively as:

L-1
X =+ ) Gl W) ™
i=l

a_xl_ ox, 0x;

de 0 dx, 0e HaLiG( w
9%, 9%, ¢ l i(xi, Wi (8)
i=

where x; represents the output features of the network with L layers of blocks, € is the loss
function and de/dx; is the gradient obtained by applying the chain rule and backpropagation
[46]. The residual function G; is implemented as in (4) by applying two or more weight layers

each using pre-activation and the sequence of multiple operations BN, ReLU and convolution.
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Figure 4.7 Residual Learning Block of Gene eXpression Network.

The resulting block is shown in Figure 4.7 which we refer to as the Residual Learning block.
We also experiment with applying a bottleneck architecture [46], [58], by modifying the design
of this block to have three layers instead of two in the form of (1x1), (3x3) and (1x1)
convolutions. Since we are using the full set of whole-transcriptome genes, the role of the (1x1)
convolution is to enhance computational efficiency by reducing the large dimensions of the
intermediate feature maps before applying the convolution and then restore them back again.
Despite the strong advantages of residual learning networks in allowing the gradient to flow
directly through the skip connections, there have been other proposed approaches to use
stochastic depth to improve the training of deep residual networks by dropping layers randomly
during training [47]. This has led to different intuitions that there might be a great amount of
redundancy in deep residual networks and that not all the layers are required [41]. Densely
connected convolutional networks (DenseNets) [41] exploit the potential of the network

through feature reuse as an alternative to deep or wide architectures by connecting all layers
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with matching feature-map sizes directly with each other. This design consideration is very
important for our task, since one of the biggest challenges in our work is to build a multi-tissue
cancer classifier that can benefit from deep network architectures to efficiently extract the
molecular signatures of large number of genes, without facing severe overfitting or degradation
in performance due to the lack of sufficient human training samples. This has inspired us to
further reformulate the design of our GeneXNet building block and augment its learning
capability by introducing additional dense layers that precede the residual learning layers. The
dense layers follow a similar approach as in DenseNets [41]. The design of our dense layers
is implemented by passing additional inputs into each layer from all preceding layers and
passing the feature maps of each layer to all subsequent layers. Our aim from this design is to
provide each layer with direct access to the gradients from the loss functions and the original
input signal which can potentially improve flow of information throughout the network. Our

additional dense layers are formulated as follows:

X141 = G;(Concat[xy , x5, X3, ..., X;]) 9)

where x;,, represents the output of the I** block, Concat[x;,x,,...,x;] represents the
concatenation of the gene expression feature maps resulting from all preceding layers and G,
represents the same transformation as in (4) which applies pre-activation of weights and the
sequence of multiple operations BN, ReLU and convolution. The resulting block is shown in

Figure 4.8 which we refer to as the Dense Learning block.
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Figure 4.8 Dense Learning Block of Gene eXpression Network.

Our proposed GeneXNet block is finally formed by merging together these two sub-blocks as
shown in Figure 4.6, which represents a combination of dense learning and residual learning

layers. We define several parameters in order to control the variation of the network design and
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size across different gene expression data sets. The parameter 6, controls the number of filters
used in the convolution layers. The two parameters 6, and 8 define the percentage of dense
and residual sub-blocks in the network, where 0 < 6, <1 and 0 < 8; < 1. For example,
when both 8, and 6, are setto 1, then all the network blocks include both a dense and a residual
sub-block. When @), is set to 1 and 85 to 0.5, then all the network blocks include dense sub-
blocks while only half of the blocks include residual sub-blocks.

The full Gene eXpression Network (GeneXNet) architecture is shown in Figure 4.5. It is
implemented by feeding the gene expression input matrix to multiple layers of GeneXNet
blocks each containing a combination of dense and residual learning layers as described above.
The network ends with a global average pooling [54] after the last GeneXNet block and a fully
connected softmax layer for classification. We experiment with different network sizes having
two to four GeneXNet blocks and with different 6,, 6,, 6z configurations. A detailed
architecture is shown in table 2 implementing a network with four GeneXNet blocks, 6, =32
and both 8, 65 set to 1.

Table 4.2 Gene eXpression Network detailed architecture.

(Implementing a network with 4 blocks, 6,=32, 6,=1, 6,=1)

Dense Sub-block Residual Sub-block
GeneXNet
Block Output Size Layer operations Filters Layer operations Filters
(1) 0, =1 0, = 32 0 =1 0, =32
Input (142,142,3)
Pre-layers (71,71,64) Conv(7x7,64)
GeneXNet Conv(1x1,128 )] , ‘0 gzzzgggj; . 216,
k , 2lg
Block 1 (36,36,256)| | Conv(3x3,32 ) 0, | Conv(1x1,256) | ngk
GeneXNet [ Conv(1x1,128)] ‘0 gzzzgggg - 216,
k ) 2lg
Block 2 (18,18,512)| | Conv(3x3,32) 0, | Conv(1x1,512) | ngk
GeneXNet [ Conv(1x1,128)] ., 40 gzzzgg;gg . 216,
k ) 2lg
Block 3 (9,9,1024) | L Conv(3x3,32) O | Conv(1x1,1024)) 2lr2g,
GeneXNet [ Conv(1x1,128)] 10 gzzzgg?ig - 216,
k ' 2!
Block 4 (5,5,2048) | L Conv(3x3,32) O | Conv(1x1,2048) | 2lr2g,
(1,1,2048) Global Average Pooling
Classification | (C-Classes) Fully connected (C-Tumor Types) — Softmax
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Our results have demonstrated that our proposed network which combines both dense and
residual learning layers, has allowed training deeper network architectures with complex data
such as gene expressions, despite the large number of genes. The dense layers allow the
network to efficiently extract the genetic signatures from multiple tumors and across multiple
cancer types. This is achieved by means of re-using the gene expression feature maps learned
by different layers, which increases the variation of input signals fed to subsequent layers since
it represents the collective knowledge of the network [41]. The residual layers with identity
mappings contribute to providing a direct path for information propagation in the forward and
backward passes [58] while the connectivity of the dense layers provide each layer with more
direct access to the gradients from the loss function and the original input signal [41]. Our
results have also shown that the combination of dense connections augmented with residual
layers performs a regularizing effect which allows the network to achieve high accuracy in
tumor classification while avoiding problems related to overfitting due to lack of human

samples.

4.7  Transfer Learning using Genomic Signatures Across Multiple Cancer
Tumor Types

Our approach for building a comprehensive multi-tissue cancer classifier is by designing the
Gene eXpression Network (GeneXNet) with the capability of learning the genomic signatures
of whole-transcriptome wide gene expressions shared across multiple cancer tumor types. By
training the model with samples from multiple tissue types collected from multiple sites of
origin, the classifier is able to learn and extract complex patterns from the gene expression data
that represent genomic and transcriptomic alterations such as mutations, rearrangements,
deletions, amplifications and the addition or removal of chemical marks. This allows the
classifier to more accurately classify cancer tumors which are resulting from DNA or RNA
changes that alter cell behavior across multiple tissues and cause uncontrollable growth and
malignancy.

A major advantage is that we are able to reuse the genomic signatures learned by the trained
model to perform very efficient transfer learning to solve one of the biggest challenges in
cancer classification which is lack of patient samples. We demonstrate how transfer learning
can be used to build and finetune classifiers for other different types of cancer tumors not
included in the underlying dataset, which might be lacking sufficient patient samples to be
trained independently. By reusing the weights of the pretrained GeneXNet model, we
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demonstrate how the same network or an extended version of it can be used for feature
extraction on a different cancer tumor type.

The intuition behind transfer learning comes from recent studies which have performed an
integrated multiplatform analysis across multiple cancer types that have revealed similar
molecular classification within and across tissues of origin [5], [7]. This means that the
discriminative molecular features for one cancer classifier will most likely be relevant for other
cancer types. Our pretrained model will have already learned the complex types of genetic
alterations and genomic signatures collected from multiple cancer tissue types originating from
different organs and can effectively function as a generic model for cancer classification.

Transfer learning using our GeneXNet model provides the capability to learn abstract
feature representations from gene expressions of a specific multi-tumor cancer dataset and then
transfer these representations to classify another type of cancer tumor. Our work is motivated
from One-shot learning and Zero-shot learning methods used in Computer Vision which
attempt to learn visual models of object categories using very little training data or even no
training data at all in the case of unseen object categories [105], [106]. This is achieved by
using deep learning models to learn abstract feature representations and then transferring the
knowledge from previously learned categories and using it for detection of new categories

without the need to learn the representations of new object categories from scratch [107].

Our proposed approach for performing transfer learning can be summarized as follows:

1) We build a multi-tissue multi-class classifier by training our GeneXNet model using ALL
the underlying cancer tumor dataset which includes multiple organ sites covering multiple
tumor types.

Tumor
Classification
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Figure 4.9 Transfer Learning — Training GeneXNet Model
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2) We create a GeneXNet Base block by freezing the weights of the trained GeneXNet model
and then removing the classification layers at the end of the network. The GeneXNet Base

block will function as a feature extractor inside a new extended network model.
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Figure 4.10 Transfer Learning — Freezing GeneXNet Weights

3) We create a new extended GeneXNet model by stacking the pre-trained GeneXNet Base
block and adding a new randomly initialized classification layer.

4) We Re-train and Finetune the new extended network using a new cancer tumor dataset
which might be lacking sufficient patient samples to be trained independently. The training
is performed while freezing the original network layers that have already been pre-trained.
We perform Finetuning by Un-Freezing some of the last layers in the GeneXNet Base

Block and Re-training these layers again together with the new classification layers.
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Figure 4.11 Transfer Learning — ReTraining and Finetuning Extended GeneXNet Model
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4.8 Gene eXpression Network Training and Optimization

Training a deep multi-layer Convolutional Neural Network architecture like our Gene
eXpression Network is a very complex optimization problem as it involves non-convex loss
functions [67]. Adjusting the weights of the network to reduce the classification error requires
an optimization algorithm capable of adapting the learning rate and leveraging information in
the Hessian matrix of the loss function [62]. Among the challenges we faced in model
optimization is the very high dimensional landscape of the network weight space resulting from
training the network with whole-transcriptome gene expressions for every tumor sample. To
overcome these problems, we define a multi-class cross-entropy loss function suitable for gene
expression data and we train our model using mini-batch Stochastic Gradient Descent (SDG)
with an adaptive learning rate optimization algorithm [62]. We implement several different
optimization algorithms including Momentum [77], [78], AdaGrad [51], RMSprop [62] and
Adam [50]. The following sections describe details of our network training and optimization

for building a multi-tissue cancer classifier using whole-transcriptome gene expressions.
4.8.1 Optimization Objective and Loss Function

The objective of training our Gene eXpression Network is to find an optimal mapping
function y = f*(x, W) by learning the network parameters W that would correctly classify
our input gene expression data x, which represents the cancer tumor sample, to the correct
output y, which represents the class of the cancer tumor type. Our network architecture as
described in the previous sections, represents this complex mapping function and we need to
train and optimize the network to learn the network parameters W that would result in the
optimal classification performance. To learn the network parameters we follow the approach
of learning conditional probability distributions using maximum likelihood [75]. In this
approach, our network model represents a probability distribution P(y | x, W) which is the
conditional probability of predicting the correct tumor class given the tumor sample and the
network parameters. We define the loss function as the Negative Log Likelihood (NLL) or
Cross Entropy Loss between the training data and the network’s class predictions since it
represents the conditional probability of the tumor classes given the gene expression input. We
define an overall optimization objective by defining an Error function E(W) and then use
gradient descent optimization to learn the parameters W that would reduce the error E to the
optimal level when presented with the entire training data. Since the training data only
represents a limited sample of the real cancer tumor distribution, our optimization objective is

to minimize the expected loss on the training data.
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We define the Error objective function E (W) as the average over the training data given by:

E(W) = %

N
> Elf G, W), il (10)
i=1
where x; is the it" training sample, W represents the network’s parameters to be learned, y; is
the target output, f(x;, W) represents the predicted output by the network and E; represents
the loss function for the it" training sample.
Since our target is to build a Multi-Tissue classifier then we need to choose both the

prediction function f and the loss function E; which are suitable for a multiclass classification

problem. We therefore define the output prediction function f;, using the softmax function as:

e’k

fi. = softmax(z), = P(Classy | x; ,W) = W
j

11)

zp =logP(y =k| x;, W) (12)

where f;, represents the output prediction for the k" tumor class, C represents the number of
tumor classes, z, is the k" element in the output vector which represents the unnormalized log
probability of the k" class. The output of the softmax is a vector with each element having the
normalized class probability. The advantage of the softmax is that it is a form of multiclass
logistic regression and produces the output predictions in the form of a valid probability
distribution over the number of classes.

We then define loss function E; using the cross-entropy loss as:

C

Ei= =)t log(fi) (13)

j=1
where t,, represents the k" element of the target output vector for class k using a 1-of-C coding
scheme such that all elements of the vector are zeros except for the k" element which equals
one. Since only a single term equals one, then the cross-entropy loss can be written as:

Zk

E; = —log (W) (14)
J

where E; represents the cross-entropy loss for the it" training sample and z, is the k" element

in the output vector which represents the unnormalized log probability of the k" class.
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We can then define the gradient g of the Error E with respect to the network parameters W as:

1 N
9= VwEW) = 3 Vw ) Elf G, W), i (15)

4.8.2 Optimization Algorithms with Accelerated Gradient & Adaptive Learning

We use mini-batch Stochastic Gradient Descent (SDG) optimization for training our Gene
eXpression Network. The motivation in using SDG is that it is very well suited for training our
deep network given the high dimensionality of the gene expression data which includes a very
large number of features representing the genes across the whole transcriptome. Performing
gradient descent optimization using a mini batch of samples instead of the traditional batch
training using the entire training data is more computationally efficient for large data sets. It
has also been shown to perform a regularizing effect due to the noise it adds to the learning
process [76]. We can obtain an unbiased estimate of the gradient by sampling a mini batch of
tumor samples drawn i.i.d from the training data and calculating the average gradient on the
mini batch. We then update the network parameters W in the direction of the gradient g to

optimize the generalization error using the following update:

W=W-nVyEW) (16)

where 1, is the learning rate at iteration t which is also a parameter that can change across
training iterations. The challenge with this update is that choosing the right learning rate is very
difficult. If we choose a very small learning rate, then training well be very slow and if it is too
large it will not guarantee convergence where the error function can fluctuate around the local
minimum. Learning rate scheduling is one common approach to solve this problem by updating
the learning rate at certain intervals based on specific criteria. But at the same time these
updates have to be defined before the training and are not adaptive based on the tumor samples.
Another big challenge that we faced in optimization for our network is the non-convex nature
of the error function and the very high dimensional landscape of the network weight space
which causes the optimization algorithm to suffer the presence of Local Min, Plateaus, Saddle
points and other flat regions [75]. To over come all these challenges, we train our network by
adopting and experimenting with a variety of different optimization algorithms which adopt
accelerated gradient methods and adaptive learning rate methods which we describe in the

following sections.
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GeneXNet Optimization with Momentum

We experiment with applying the Momentum update [77] to accelerate the learning process by
accumulating an exponentially decaying moving average of past gradients and continually
moving in that direction. We implement Momentum by introducing a new velocity term v
which controls the direction and speed of the parameter updates. The velocity is calculated as
an exponentially decaying average of the negative gradient as:

N
1
v=av—nVy NZE[f(xi'W)' )’i]] (17)
i=1
W=W+v (18)

where a € [0,1) is a parameter which determines how fast the contributions of the previous
updates for the gradient will decay exponentially. Momentum helps in solving the poor
conditioning of the Hessian matrix and variance in applying the standard SDG by accelerating
in the correct direction of the local minimum. Figure 4.12 illustrates the acceleration effect of
momentum on SDG optimization [75], where the contour lines represent a poorly conditioned
Hessian matrix. The red path represents the direction followed by momentum, while the black
path represents the standard SDG which has a slower learning since it oscillates heavily before

finally converging.
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Figure 4.12 Accelerating Stochastic Gradient Descent Optimization with Momentum [72]

We also experiment with applying the Nesterov Momentum update [78] which is motivated by
the accelerated optimization methods of Nesterov [79]. We apply a correction factor to the

gradient calculation by performing it after the velocity update which is now defined as:

N
1
v=av—1nVy NZE[f(xi,W-f- av), yil 19)
i=1
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GeneXNet Optimization with AdaGrad

Since choosing the learning rate is one of the most complex hyperparameters, we also
experiment with optimization algorithms with an adaptive learning rate. We apply the AdaGrad
algorithm [51] which adapts the learning rate of all model parameters individually by
performing large updates for infrequent parameters and smaller updates for the frequent ones.
This adaptive learning characteristic is very important for training our network since it has been
shown to perform well on sparse data [80] which is one of the big challenges in our underlying
gene expression dataset.

We apply this adaptive learning to our Gene eXpression Network by updating the learning rate
for each parameter and scaling it at a rate which is inversely proportional to the historical values

of the gradient as follows:

ll

\/ﬁ O 9g¢ (20)

where 1 is the learning rate for each parameter at each iteration t, ¢ is a constant that avoids

Wi = We —

division by zero, G; is a matrix having each diagonal element as the sum of squares for the
gradients with respect to each parameter for all previous iterations and © represents element

wise matrix vector multiplication. The outline of the algorithm we implement is as follows:

Algorithm 4.1 GeneXNet Optimization with AdaGrad

1 Input: Wp,n,e initial network parameters, learning rate, const
Output: W GeneXNet optimized network parameters
3 Init Gy =0
4 while (Convergence criteria is false):
S) Read minibatch of N cancer tumor samples (x;, y;)
. 1
6 Calculate gradient g; = NVWZﬁlE[f(xi,W), vil
7 Calculate accumulated gradient Gy = G;+ g: © g
_ n
8 Update network parameters Wy ; = W; — Tore O g¢
9 end while
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GeneXNet Optimization with RMSProp

We also experiment with the RMSProp algorithm [62] which is a modified version of AdaGrad
since it has been shown to perform better on non-convex loss functions. This is achieved by
calculating the gradient across iterations as an exponentially decaying average of all past
gradients which allows discarding the historical values and converge more rapidly. We add a

new parameter § to configure the moving average and calculate the accumulated gradient as:

Ge= 6.G:+ (11— 6)g: © g; (21)

We also combine the update with the Nesterov momentum as before to accelerate the learning

process by adding an additional parameter a and calculating the velocity as:

v=av—- —= Qg (22)

TG

The outline of the algorithm we implement is as follows:

Algorithm 4.2 GeneXNet Optimization with RMSProp

1 Input: Wy, vy,M,d,«
initial network parameters, initial velocity,
learning rate, rate of decay, momentum

2 Output: W GeneXNet optimized network parameters

3 Init Gy =0

4 while (Convergence criteria is false):

5 Read minibatch of N cancer tumor samples (X;, ¥;)

6 Calculate gradient gy = %VWZﬁlE[f(xi,W), vil

7 Calculate accumulated gradient G;= 6.G:+ (1 — 8)g: © g:

8 Calculate velocity v= av — \/lc—t O g:

9 Update network parameters Wi, = Wi+ v

10 end while
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GeneXNet Optimization with Adam

The final optimization algorithm we experiment with is the Adaptive Moment Estimation
(Adam) [50]. For this optimization method we combine the updates from both the previous
optimizations methods of RMSProp and momentum by calculating two different averages of
past gradients to be used in the update term. The first is calculating an estimate of the first order
moment by calculating an exponentially decaying average of past gradients as in momentum.
The second is calculating an estimate of the second order moment by calculating an

exponentially decaying average of past squared gradients as in RMSProp:
my = 8.meq + (1 =389, (23)

Ve = 83.vp-1 + (1—82)9:° (24)

where m;, v, are the estimation of the first moment representing the mean and the second
moment representing the uncentered variance of the gradients. In addition we also calculate
bias corrections to the estimates of the first order moment and the uncentered second order
moment as in [50] to remove the bias of these values towards zero. The outline of the algorithm

we implement is as follows:

Algorithm 4.3 GeneXNet Optimization with Adam
1 Input: Wy,n,& 61,0,
initial network parameters, learning rate, constant,
15t moment rate of decay, 2" moment rate of decay
2 Output: W GeneXNet optimized network parameters
3 Init 1%* and 2" moment variables m; =0, v, =0
4 while (Convergence criteria is false):
S) Read minibatch of N cancer tumor samples (x;, y;)
. 1
6 Calculate gradient gi = NVWZ?LIE[f(xi,W), yil
7 Calculate 1st moment m;= &;.Mi_;+ (1 —61)9:
8 Calculate 2nd moment vy = 8,01 + (1 — 85)g:2
9 Correct bias of 15 moment M; = 1m;t
— 01
10 Correct bias of 2" moment U = 1vt6t
— 02
11 Update network parameters W,,; = W, — e
p p t+1 t— M Joete
12 end while
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4.9  Visualizing Genomic Relationships of Gene Expressions ACross
Multiple Cancer Tumors
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Figure 4.13 Visualizing genomic relationships of gene expressions

One of the challenges in using deep learning for disease diagnosis, is that deep networks are
conceived as “black boxes” without much interpretation on how these complex models make
their decisions [53]. Extensive work has been done to introduce novel visualization techniques
for deep networks to help understand and interpret their record breaking performance in
computer vision tasks [52], [53], [65]. The output from these techniques can be interpreted by
non-experts when studied in conjunction with image or video datasets because they are visually
comprehensible. Unfortunately, these methods are not directly applicable to genomic datasets
such as gene expressions, since they cannot be visually rendered in a human-friendly form that
allows easy interpretations. Our learning system architecture can contribute in solving this
problem, since it is designed to take full potential of next generation sequencing technologies
that produce datasets with detailed molecular characterizations of thousands of tumors using

genome-wide platforms.
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We introduce two visualization procedures for better understanding how our proposed deep
network is performing cancer classification across multiple tumor types. Our methods are
inspired from the work used to visualize intermediate feature activations for CNNs used in
image classification [65]. We also build on the methods for Class Activation Maps (CAM)
[52], [53] which visualize heatmaps of class activations for deep networks used in image
classification and captioning. The outline of the procedures is shown in Figure 4.13 and
described in the next sections. The results of applying these procedures to the underlying
dataset is described in the experiments.

4.9.1 Visualizing Class-Discriminative Localization Maps of Gene Expressions

We introduce a visualization method which uses the gradient information flowing into the
last convolutional layer of the GeneXNet model to produce gene localization maps highlighting
the important regions in the gene expressions which influenced the resulting tumor class
prediction. The gene expression data used to train the network is sparse and very high in
dimensionality since it represents a snapshot of the whole transcriptome rather than a
predetermined subset of genes. By identifying a class-discriminative localization map in the
gene expressions, we can identify the subset of genes driving cancer progression and resulted
in the model’s tumor class prediction. We refer to this localization map as a Gene-Class-
Activation-Map (Gene-CAM). For each tumor type, the Gene-CAM is a representation of the
discriminative genes used by the network to correctly classify the tumor. The procedure can be
summarized as follows:

We build a multi-tissue classifier by training our GeneXNet model with the genomic
signatures of multiple tumor types across multiple sites using the underlying dataset. We group
the data by tumor type and feed the trained network with each of the samples one by one to
produce a prediction. For a GeneXNet with L blocks, the network will produce a set of
intermediate activation feature maps as the output of each block. Let F; represent the output
feature maps of the I*" block with dimensions (width: X;, height: Y;, depth: D;). This volume
represents the molecular features learned by the network that will be activated when matched
with similar patterns in the input gene expressions of a given tumor sample.

Let £ (i, j) represent the k" feature map for the last block at special location (i, j). Since
the network uses Global Average Pooling (GAP) [54] before the final Softmax layer to
calculate the spatial average of the feature maps, then the classification score s€ for tumor type

¢ which is used as input to the softmax can be written as:
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X, Yp

Zwk ZZfL (i) (25)

where c is the tumor class, wy, represents the weights for class ¢ with respective to feature map
k and D, is the number of feature maps in the last block before the GAP layer each with width
X and height ;.

To generate the Gene-Class Activation Map, we redefine the weights of each feature map
with respect to a class as aj, by computing the gradient of the score of each class with respect

to each feature map as follows:

XL YL

& YL ZZ ofk (29)

where the new weights aj represent the importance of each feature map for class

discrimination. The Gene-Class-Activation-Map (Gene-CAM) is then calculated as:

Dy,

Gene_CAM®(i,j) = ReLU Za,g. AW (27)
k

The resulting map with dimensions (X, Y;) represents a gene localization for the given tumor
sample that captures the discriminative regions in the gene expression input matrix which
influenced the prediction of the tumor class. The ReLU [49] is applied to obtain only the
features that have a positive contribution to the correct class [53].

Finally, to visualize the Gene-CAM we resize it using up-sampling and overlay it against
the input gene expression matrix. The resulting heatmap highlights the important regions in the
gene expression input matrix which in turn helps identify the subset of genes that are possibly

influencing the Cancer tumor and resulted in the model’s prediction.

4.9.2 Visualizing Molecular Clusters of Intermediate Feature Maps

We introduce a visualization procedure for observing the evolution of molecular clusters
formed by intermediate gene expression feature maps learned by the network. The genetic
signatures learned by the feature maps in the deep layers make the network capable of

representing complex genetic alterations shared by tumors across different tissue types.
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Visualizing the molecular clusters of gene expressions provides more insight on how the
network is learning small meaningful relationships between the genes which in turn describe
the characteristic influencing the Cancer tumor. We demonstrate how this visualization
provides the opportunity to study the genomic relationships of gene expressions across multiple
cancer tissue types. This is motivated by recent studies which have performed an integrated
multiplatform analysis across multiple cancer types that have revealed molecular classification

within and across tissues of origin [5], [7]. The procedure can be summarized as follows:

As in the previous section, for a GeneXNet with L blocks, let F; represent the output feature
maps of the [*" block. Let (i, ) represent the k" feature map for the It" block at special
location (i,j). We apply Global Average Pooling (GAP) [54] to each of the intermediate
feature maps after each block to convert the volume F; into a 1-dimensional feature vector F/

with dimensions (1, 1, D;) as follows:

X v

1
fAGD =5 ZZf/‘(i,j) (28)
F =[f*GN1Vvke{1,..,D} (29)

where D, is the number of feature maps in the [** block each with width X, and height Y.
The feature vector F; represents the spatial average of the feature maps produced by each filter
in the convolutional layer. The intuition behind using GAP is due to its ability to produce a
generic localizable deep representation of the features which can be used for class
discrimination [53].

We stack together all the feature vectors at the I[** block across all N tumor samples to

produce what we refer to as a Gene Feature Map (Gene_Map,) of dimensions (D;, N):

Gene_Map, = [F/ (n)T] vn e {1,..,N} (30)

The resulting matrix stores the collective class-discriminative localization maps for the gene
expressions at the I** block across all the tumor types. It also represents the collective genetic
signatures learned by the feature maps shared by tumors across different organ sites.

Finally, we perform a consensus hierarchical clustering [70] of the gene feature map

Gene_Map,; to generate a Gene_Cluster_Map,; which is a molecular clustering that groups
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each of the tumor types together based on the class discriminative gene localizations extracted
from the gene expressions. Consensus clustering is specifically tailored for gene expression
data and is based on resampling to reach a consensus across multiple runs of a clustering
algorithm and assess the stability of the discovered clusters [69].

By visualizing a heatmap of the resulting clusters, we can observe the evolution of molecular
clusters formed by intermediate gene expression feature maps learned by the network.
Visualizing the molecular clustering helps in revealing the genomic relationships and high-
level structures of gene expressions across multiple cancer tumor types that appeared
influential in the cancer tumor progression beyond the standard grouping by anatomical organ
site. The results of applying the visualization procedures to the underlying dataset are described

in the experiments.
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CHAPTER 5

5. EXPERIMENTS

5.1 Datasets

Our objective was to design a comprehensive multi-tissue Cancer classifier capable of
detecting complex types of genetic alterations by learning the genomic signatures of whole-
transcriptome wide gene expressions across multiple cancer tissue types. To achieve this
objective, the datasets we selected for our experiments included a total of 11,093 human
samples for mMRNA gene expression quantification, which were collected from 26 different
human anatomical sites of origin and covering 33 different Cancer tumor types. The datasets
were obtained from “The Cancer Genome Atlas” (TCGA) [38] and generated by means of
Total RNA sequencing using lllumina based systems [5]. Each individual human sample
represents the whole transcriptome and includes a total of 60,483 genes annotated against a
reference genome. The patients included both males and females and the biospecimens were
collected from tumor tissue, adjacent normal tissue and normal whole blood samples. Table
5.1 shows a listing of the 33 cancer tumor types we used in our experiments together with the
associated human sites of origin and the number of human samples available for each tumor
type. One of the biggest challenges in using this dataset is the very small number of human
samples in each of the tumor types, compared to the very large number of genes. Most of the
tumor types only have several hundred samples and some even have less than a hundred
samples while we have a total of 60,483 genes for each sample.

TCGA is a comprehensive atlas of cancer genomic profiles which includes the molecular
characterization of over 20,000 primary cancer and matched normal samples [38]. TCGA uses
next generation sequencing (NGS) methods such as DNA and RNA sequencing to generate
cancer profiles in multiple various genome-wide platforms including DNA (DNA methylation,
exome sequencing and copy number), RNA (mRNA and microRNA sequencing) and other
forms of relevant cancer sets of proteins [5]. The RNA-Sequencing experiment consists of
isolating RNA, converting it to complementary DNA (cDNA), then preparing the sequencing
library and sequencing it on a NGS platform [22]. The expression of genes are quantified by
generating the FASTQ-format files which contain reads sequenced from the NGS platform and

then aligning these reads to an annotated reference genome [38].
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Table 5.1 Multi-tissue Cancer Tumor Dataset used in our experiments. The dataset includes 33 different

cancer tumor types across 26 different anatomical organ sites.

Organ Site Cancer Tumor Type(s) Total Organ Site Cancer Tumor Type(s) Total
Samples Samples

Adrenal Adrenocortical carcinoma 265 Liver Liver hepatocellular 424

Gland (ACC), Pheochromocytoma carcinoma (LIHC)
and Paraganglioma (PCPG) Lung Lung adenocarcinoma 1145

Bile Duct Cholangiocarcinoma 45 (LUAD), Lung squamous
(CHOL) cell carcinoma (LUSC)

Bladder Bladder Urothelial 433 Lymph Lymphoid Neoplasm 48
Carcinoma (BLCA) Nodes Diffuse Large B-cell

Bone Acute Myeloid Leukemia 151 Lymphoma (DLBC)

Marrow (LAML) Ovary Ovarian serous 379

Brain Glioblastoma multiforme 703 cystadenocarcinoma (OV)

(GBM), Brain Lower Grade Pancreas Pancreatic 182
Glioma (LGG) adenocarcinoma (PAAD)

Breast Breast invasive carcinoma 1222 Pleura Mesothelioma (MESO) 86
(BRCA) Prostate Prostate adenocarcinoma 551

Cervix Cervical squamous cell 309 (PRAD)
carcinoma and endocervical Skin Skin Cutaneous 472
adenocarcinoma (CESC) Melanoma (SKCM)

Colorectal Colon adenocarcinoma 698 Soft Tissue | Sarcoma (SARC) 265
(COAD), Rectum Stomach Stomach adenocarcinoma 407
adenocarcinoma (READ) (STAD)

Esophagus | Esophageal carcinoma 173 Testis Testicular Germ Cell 156
(ESCA) Tumors (TGCT)

Eye Uveal Melanoma (UVM) 80 Thymus Thymoma (THYM) 121

Head and Head and Neck squamous 546 Thyroid Thyroid carcinoma 568

Neck cell carcinoma (HNSC) (THCA)

Kidney Kidney Chromophaobe 1021 Uterus Uterine Corpus 643
(KICH), Kidney renal clear Endometrial Carcinoma
cell carcinoma (KIRC), (UCEC), Uterine
Kidney renal papillary cell Carcinosarcoma (UCS)
carcinoma (KIRP),

(ALL Sites) | (All Tumors) 11,093

The gene expression values we used to generate our datasets are based on the read counts
measured on a gene level and then normalized using the Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) [38]. The formula for FPKM normalization is defined in

(13) where RC, are the number of genes mapped to the gene, RC,, are the number of reads

mapped to all protein coding genes and L is the length of the gene in base pairs.

RC, * 10°

ene Lxpression Quan lflCCl on RCpC * L

(31)

We transform the gene expression data in a format that makes it suitable as input to our model.
We represent the gene expressions in an equivalent 2D matrix of dimensions (60,483, 11,093)
as in Figure 4.2. Each column represents a human sample and each row represents a single
gene. We convert each human sample into an equivalent 3D volume of genes with dimensions
(142, 142, 3). The full dataset for all the 11,093 samples is represented by the 4D input matrix
with dimensions (11,903, 142, 142, 3) to make it suitable as input to our GeneXNet model.
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5.2  Classification Experiments

Our experiments demonstrate how the design of our Gene eXpression Network (GeneXNet)
can be used as a general end-to-end learning system for classification across multiple cancer
tissue types without performing the prerequisite process of gene feature selection. We also
demonstrate how our model can specifically target the complex nature of the whole-
transcriptome gene expression data and addresses the lack of training samples, without
suffering from severe overfitting in comparison to using the current state-of-the-art deep CNN
models which have been designed specifically for computer vision tasks.

We perform several different multi-class and binary classification tasks. For binary
classification we predict whether the given sample represents a tumor versus a normal tissue.
For multi-class classification we predict for a given sample the type of Cancer tumor within

each anatomical site of origin. The following are details of the classification experiments:
5.2.1 Experiment 1 - Multi-tissue Multi-class classification

We build a multi-tissue multi-class classifier by training our model using ALL the data which

includes the genomic signatures from 26 organ sites covering 33 tumor types.

5.2.2 Experiment 2 - Multi-Tumor Binary classification

We build a multi-tumor binary classifier for each individual organ site. We group the data by
each individual site and train each model separately. For this task we selected the organ sites
that relatively had the greatest number of samples compared to the other sites (at least 400
samples per site). These included 11 sites as shown in Table 5.2.

5.2.3 Experiment 3 - Comparison between Transfer Learning and Full Training

We repeat the second experiment, but this time we perform performing transfer learning using
the weights of the pre-trained model from the first experiment. The objective was to compare
the performance between transfer learning using a pre-trained model and full training. We
evaluate whether finetuning the pre-trained model was able to achieve a comparable

performance in comparison to models which were fully trained.
5.2.4 Experiment 4 — Transfer Learning for Tumors Lacking Sufficient Training Data

We use transfer learning to build binary classifiers for the organ sites with the least number of
samples which did not have sufficient data to be trained independently. We start with the pre-
trained model from the first task and use the data from each site separately to finetune the pre-
trained model. These included Bile Duct and Esophagus which only had 45 and 147 samples

respectively.

AUC SID: 800-09-0336 Name: Tarek Khorshed



88|

Table 5.2 Multi-Tumor Binary Classification Dataset used in our experiments. The dataset includes 11

Individual Organ Sites that relatively had the greatest number of samples

Organ Site Cancer Tumor Type(s) Total Samples
Bladder Bladder Urothelial Carcinoma (BLCA) 433
Breast Breast invasive carcinoma (BRCA) 1222
Colorectal Colon adenocarcinoma (COAD), 698
Rectum adenocarcinoma (READ)
Head & Neck | Head and Neck squamous cell carcinoma (HNSC) 546
Kidney Kidney Chromophobe (KICH), 1021
Kidney renal clear cell carcinoma (KIRC),
Kidney renal papillary cell carcinoma (KIRP)
Liver Liver hepatocellular carcinoma (LIHC) 424
Lung Lung adenocarcinoma (LUAD), 1145
Lung squamous cell carcinoma (LUSC)
Prostate Prostate adenocarcinoma (PRAD) 551
Stomach Stomach adenocarcinoma (STAD) 407
Thyroid Thyroid carcinoma (THCA) 568
Uterus Uterine Corpus Endometrial Carcinoma (UCEC), 643
Uterine Carcinosarcoma (UCS)

5.2.5 Experiment 5 — Comparison between GeneXNet & State-of-the-art models

We evaluate the multi-tissue classification performance of our GeneXNet model in
comparison with some of the current state-of-the-art deep CNN models specifically designed
for computer vision tasks. We perform the same multi-class classification in experiment 1 using
all the data but replacing our model with the publicly available implementations of ResNet
[46],[58], DenseNet [41], NasNet [40] and MobileNet [39],[43].

5.2.6 Experiment 6 — Comparison between different GeneXNet Architectures

We evaluate the multi-tissue classification performance of our GeneXNet model with
different architectures and sizes by tuning the parameters 6, 6z with values (0, 0.25, 0.5 and
1) and 6, with values (32, 64). These parameters define the percentage of dense and residual
sub-blocks in the network and the number of filters used in the convolution layers as described

in section 4.5.
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5.3 Training, Optimization and Evaluation

We treat our dataset as a very scarce and valuable resource since the biggest challenge in
using the underlying dataset to train our deep models is the very small number of available
tumor samples compared to the very large number of genes. We use stratified random sampling
to divide our dataset into 85% for training/validation and 15% for final testing. We train all our
models using stratified k-fold cross-validation experimenting with different fold sizes. We use
the validation data to optimize the hyperparameters of our models while the test data is strictly
used only once to evaluate the final performance of each model.

Training a deep multi-layer CNN architecture like GeneXNet is a very complex
optimization problem as it involves non-convex loss functions [67]. Adjusting the weights of
the network to reduce the classification error requires an optimization algorithm capable of
adapting the learning rate and leveraging information in the Hessian matrix of the loss function
[62]. Among the challenges we faced in model optimization is the very high dimensional
landscape of the network weight space resulting from training the network with the whole-
transcriptome wide gene expressions for every tumor sample. To overcome these problems, we
train our model using mini-batch Stochastic Gradient Descent (SDG) with an adaptive learning
rate optimization algorithm [62]. We experiment with Adam [50], AdaGrad [51] and RMSprop
[62]. We start with a learning rate of 1e™ and divide it by half when the validation loss plateaus
for more than 50 epochs.

We evaluate the classification performance of our GeneXNet models using the receiver
operating characteristics (ROC) curves [68]. For all our experiments across each of the cancer
tumor types, we report the average classification accuracy and ROC Area Under the Curve
(AUC) on the Test dataset. The ROC AUC has an advantage of being less sensitive to changes
in class distribution as it summarizes the performance over a range of tradeoffs between the
true positive and false positive rates [68]. To overcome any potential impact on the
classification performance due to class imbalance, we experimented with two different
methods for addressing class imbalance. We used Synthetic Minority Over-sampling [109] and
Adaptive Synthetic Sampling [110].

ALLDATA (26 ORGAN SITES, 33 TUMOR TYPES)
TRAINING & VALIDATION (85 %)
TRAINING (68%) VAL (17%)

SPLIT1
SPLIT 2 TEST (15 %)
SPLIT 3
SPLIT4
SPLIT5

Figure 5.1 Training with K-Fold Cross Validation
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5.4 Results

Experiment 1 - Multi-tissue Multi-class classification

The results of the first experiment which performed multi-class classification using ALL
the data including 26 organ sites covering 33 tumor types are shown in Table 5.4. Our
GeneXNet model was able to achieve excellent results with an overall classification accuracy
of 98.93% and a ROC AUC of 0.99 on the test dataset.

achieved 100% accuracy on 14 different tumor types, even for some tumor types which had

The results show that our model

very little human samples such as: Bile Duct Cholangiocarcinoma (CHOL), Eye Uveal
Melanoma (UVM) and Pleura Mesothelioma (MESO) which only had 45, 80 and 86 samples

respectively.

Table 5.4 Results Of Multi-Tissue Classification Using 26 Organ Sites Covering 33 Tumor Types

Anatomical Site Cancer Tumor Type(s) Total Classification
of Origin Samples Accuracy (%)

Adrenal Gland | Adrenocortical carcinoma (ACC), 265 100
Pheochromocytoma and Paraganglioma (PCPG)

Bile Duct Cholangiocarcinoma (CHOL) 45 100

Bladder Bladder Urothelial Carcinoma (BLCA) 433 98.46

Bone Marrow Acute Myeloid Leukemia (LAML) 151 91.3

Brain Glioblastoma multiforme (GBM), 703 100
Brain Lower Grade Glioma (LGG)

Breast Breast invasive carcinoma (BRCA) 1222 99.46

Cervix Cervical squamous cell carcinoma and endocervical 309 100
adenocarcinoma (CESC)

Colorectal Colon adenocarcinoma (COAD), 698 99.05
Rectum adenocarcinoma (READ)

Esophagus Esophageal carcinoma (ESCA) 173 96.15

Eye Uveal Melanoma (UVM) 80 100

Head and Neck | Head and Neck squamous cell carcinoma (HNSC) 546 100

Kidney Kidney Chromophobe (KICH), 1021 99.35
Kidney renal clear cell carcinoma (KIRC),
Kidney renal papillary cell carcinoma (KIRP),

Liver Liver hepatocellular carcinoma (LIHC) 424 98.44

Lung Lung adenocarcinoma (LUAD), 1145 99.42
Lung squamous cell carcinoma (LUSC)

Lymph Nodes Lymphoid Neoplasm Diffuse Large B-cell 48 87.5
Lymphoma (DLBC)

Ovary Ovarian serous cystadenocarcinoma (OV) 379 98.25

Pancreas Pancreatic adenocarcinoma (PAAD) 182 96.43

Pleura Mesothelioma (MESQ) 86 100

Prostate Prostate adenocarcinoma (PRAD) 551 97.59

Skin Skin Cutaneous Melanoma (SKCM) 472 98.59

Soft Tissue Sarcoma (SARC) 265 100

Stomach Stomach adenocarcinoma (STAD) 407 98.39

Testis Testicular Germ Cell Tumors (TGCT) 156 100

Thymus Thymoma (THYM) 121 100

Thyroid Thyroid carcinoma (THCA) 568 97.67

Uterus Uterine Corpus Endometrial Carcinoma (UCEC), 643 100
Uterine Carcinosarcoma (UCS)

(ALL Sites) (All Tumors) 11,093 98.93
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Experiment 2 - Multi-Tumor Binary classification

The results of the second experiment which performed binary classification for the 11
selected individual organ sites are shown in Table 5.5. Our GeneXNet model was able to
achieve 100% accuracy for 8 different tumor types and between 95.35% to 99.42% accuracy

for the remaining tumors.

Table 5.5 Results Of Multi-Tumor Binary Classification For 11 Individual Organ Sites

Anatomical Site of Total Full Training Transfer Learning &
Origin Samples Finetuning
(Human Organ) Accuracy (%) | ROC | Accuracy (%) | ROC
AUC AUC
Bladder 433 96.92 1.0 95.38 0.99
Breast 1222 98.37 0.998 98.37 1.0
Colorectal 698 100 1.0 100 1.0
Head and Neck 546 98.78 0.985 92.68 1.0
Kidney 1021 100 1.0 100 0.97
Liver 424 100 1.0 98.44 1.0
Lung 1145 99.42 1.0 99.42 0.94
Prostate 551 97.59 0.961 97.59 0.94
Stomach 407 96.77 0.979 96.77 0.88
Thyroid 568 95.35 0.981 93.02 1.0
Uterus 643 100 1.0 100 0.89
Bile Duct” 45 - - 85.71 0.89
Esophagus” 173 - - 92.31 0.99

Experiment 3 - Comparison between Transfer Learning and Full Training

The results of the third experiment which performed transfer learning are shown in Table
5.5. The results show that transfer learning managed to achieve excellent results which are
comparable to the results achieved using full training.

Experiment 4 — Transfer Learning for Tumors with very little data

The results of the fourth experiment which performed transfer learning to build binary
classifiers for organ sites which did not have sufficient data to be trained independently are
shown in the last two rows of Table 5.5. Transfer learning was able to solve the problem for
tumor sites such as Bile Duct and Esophagus which did not have sufficient data to be trained
independently. By finetuning the pre-trained model, we were able to achieve 92.31% accuracy
for Esophageal carcinoma (ESCA) and 85.71% accuracy for Bile Duct Cholangiocarcinoma

(CHOL) despite that these sites only had 147 and 45 samples respectively.
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Experiment 5 — Comparison between GeneXNet and State-of-the-art CNN models

The results of the fifth experiment for evaluating the performance of our GeneXNet model
in comparison with state-of-the-art CNN models is shown in Table 5.6. A comparison between
the ROC curves for the different models is shown in Figure 5.2. These results demonstrate that
our GeneXNet model consistently outperformed other CNN models by a large margin. The
classification accuracy achieved by our model is 98.93% which is significantly higher than the
other models which achieve an accuracy below 37%. Figure 5.2 shows that our model produced

a much higher ROC curve in comparison to the other models.

Table 5.6 Classification Performance Of GeneXNet In Comparison With State-Of-The-Art CNN Models

Network Model Accuracy (%) | ROC AUC | Cross Entropy
Loss
GeneXNet 98.93 0.99 0.06
ResNet-50 v2 [46] 36.96 0.86 49
DenseNet-121 [41] 22.33 0.79 6.09
NasNetMobile [40] 21.61 0.84 2.58
MobileNet v2 [39] 24.96 0.8 5.99
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Figure 5.2 Comparison of ROC curves for Multi-Tissue classification between our GeneXNet
model and state-of-the-art CNN models. Our model produced a much higher ROC curve and

outperformed other models by a large margin.
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To provide more insight on this degradation in performance for state-of-the-art models,
Figure 5.3 shows a comparison between the training and validation curves for each model by
plotting the cross-entropy loss across the training epochs. Figure 5.3 demonstrates that training
these state-of-the-art models which were specifically designed for computer vision tasks,
suffered from severe overfitting when presented with the underlying dataset that includes
whole transcriptome gene expressions from multiple tumors types.

On the other hand, our GeneXNet model was able to achieve high accuracy in multi-tumor
classification while avoiding overfitting. This ability is attributed to the architecture of our
model that is designed specifically to target the complex nature of gene expressions and which
incorporates both dense and residual learning layers that perform a regularizing effect which

allows the network to overcome overfitting.

Training/Validation Cross-Entropy Loss
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Figure 5.3 Comparison of training and validation Cross-Entropy Loss for Multi-Tissue classification,
between GeneXNet and other models. Our model achieved minimum loss while other models suffered

severe overfitting. Dashed curves are training and solid are validation.
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5.5 Analysis of Classification Results

The results of our classification experiments have demonstrated how the design of our
proposed Gene eXpression Network (GeneXNet) can be used as a general end-to-end learning
system for classification across multiple cancer tissue types without performing the prerequisite
process of gene feature selection. We demonstrated how our model can specifically target the
complex nature of the whole-transcriptome gene expression data and addresses the lack of
training samples, without suffering from severe overfitting in comparison to using the current
state-of-the-art deep CNN models which have been designed specifically for computer vision
tasks. Our model has allowed training deeper network architectures with complex data like
whole-transcriptome gene expressions, despite the large number of genes. The experiments
demonstrated that our model design which combines both dense and residual learning layers,
performs a regularizing effect which helps avoid overfitting and degradation in performance as
the network depth increases. This is achieved by means of re-using the gene expression feature
maps learned by different layers, which increases the variation of input signals fed to
subsequent layers since it represents the collective knowledge of the network. The connectivity
of the dense layers provide each layer with more direct access to the gradients from the loss
function and the original input signal, while the residual layers with identity mappings provide
a direct path for information propagation in the forward and backward passes.

The results of our Transfer Learning experiments have demonstrated that the comprehensive
genomic signatures learned by training our model using all the data allowed us to perform
efficient transfer learning by using the pre-trained model as a generic feature extractor to build
additional classifiers for any of the individual tumor sites, especially for the organ sites which
were lacking sufficient patient samples to be trained independently. These results have
demonstrated how transfer learning was able to solve one of the biggest challenges in cancer
classification which is lack of patient samples. The experiment demonstrated that by reusing
the weights of the pretrained GeneXNet model, we were able to use the same network for
feature extraction on a different cancer tumor type. The experiments have also demonstrated
that the discriminative molecular features for one cancer classifier were also relevant for other
cancer types. The results demonstrated that our pretrained model was able to learn the complex
types of genomic signatures collected from multiple cancer tissue types and that it was able to

effectively function as a generic model for cancer classification.
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5.6  Visualizing Class-Discriminative Localization Maps

We introduced a visualization method in section 4.10 to identify a class discriminative
Gene-Class Activation Map (Gene-CAM) which is a localization map extracted from the gene
expression input samples. We apply the visualization procedure to the underlying dataset to
produce a Gene-CAM for each of the 33 individual tumor types and visualize them using
heatmaps. Figure 5.4 shows the resulting heatmaps of four selected tumor types (Breast, Liver,
Stomach and Uterus). We used a GeneXNet with 4 blocks which produces feature activation
maps of dimensions (5, 5, 2048) after the 4th block. By mapping the resulting Gene-CAM to
each input sample, the network was able to identify a subset of 75 discriminative genes. For
visualization, we apply a threshold where each heatmap shows the top 20 genes influencing the
underlying tumor across 20 randomly selected samples. The rows represent the genes and the
columns represent the samples and the values are the normalized gene expression levels. The
gene symbols are displayed on the right side of each row together with the percentage of
samples which have also identified this gene in their Gene-CAM. Each map is a visual

representation of the discriminative genes used by the network to correctly classify the tumor.
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Figure 5.4 Visualizing class-discriminative localization maps highlighting the important regions in the gene expressions

which influenced the tumor class prediction. Each map shows the top 20 genes across 20 random samples and is a visual

representation of the discriminative genes used by our network to correctly classify the tumor. The rows represent genes,

columns represent samples and the values are the gene expression levels.

AUC SID: 800-09-0336

Name: Tarek Khorshed



96|

5.7 Biological Significance of Visualizing Class-Discriminative Maps

The strength of our method is that the network was able to automatically identify a small
subset of class-discriminative genes out of the total 60,483 genes originally included in each
individual sample. What was also very interesting about these results is that the network
automatically identified the TP53 gene as one of the top features common across all tumor
types. This result implicitly validates our procedure since the TP53 is considered the most
commonly mutated gene in all cancers which produces a protein that suppresses the growth of
tumors [4].

We also observed from our experiments that some of the identified discriminative genes
were also common in at least 30% of samples across different tumor types even though the
tissues belonged to different organ sites. This subset includes: TP53, TTN, MUC16, LRP1B,
CSMD3, PIK3CA, MUC4, RYR2, USH2A, FLG, PTPRD, CSMD1. These discriminative
genes identified by the network have great biological significance for early cancer diagnosis.
For example, the mutations of PIK3CA gene are one of the most common in Breast cancer and
are reported in over one third of cases [112]. Mutations in TTN gene are associated with one
of the most common inherited cardiac disorders known as Hypertrophic Cardiomyopathy
(HCM) [111]. MUC16 has a biological role in the progression of Ovarian tumors and there has
been substantial work to develop therapeutic approaches to eradicate Ovarian tumors by
targeting MUC16 [113]. LRP1B is frequently mutated in Melanoma, Non-small Cell Lung
cancer (NSCLC) and other types of tumors. LRP1B is also a potential contributor to the
emergence of chemotherapy resistance while treating cancer patients [114]. CSMD3 was
identified as the second most frequently mutated gene in Lung cancer after TP53 [4]. MUC4
is a membrane bound mucin gene responsible for progression of several cancers due to its anti-
adhesive properties including Bile Duct, Breast, Colon, Esophagus, Ovary, Lung, Prostate,
Stomach and Pancreas [111]. Mutations of RYR2 gene are a common cause of abnormal heart
failures such as Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) [111].
PTPRD is frequently mutated in various types of cancer, including Glioblastoma, Melanoma,
Breast and Colon [4]. CSMD1 has been found as a tumor suppressor in the development of
Breast cancer [111]. To validate our visualization results, we compared the subset of
discriminative genes identified by our network with the top mutated genes reported in the
underlying dataset based on percentage of cases with simple somatic mutations [38]. We
observed from this comparison that the set of discriminative genes identified by our network
were also identified among the top mutated genes in 92% of the samples.
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5.8  Visualizing Molecular Clusters of Intermediate Feature Maps

We introduced a visualization method in section 4.10 for observing the molecular clusters
formed by intermediate gene expression feature maps learned by the network. We apply the
method using all the underlying dataset which includes 11,093 samples for 26 organ sites across
33 tumor types. We used a GeneXNet with four blocks to produce a molecular clustering of
the gene feature maps (Gene_Cluster_Maps) after each block. Each individual
Gene_Cluster_Map represents a molecular clustering that groups the tumors by organ site
based on the class discriminative gene localizations extracted from the gene expressions and
learned by the network after each block. As outlined in Table 4.2, the output depth after each
block is 256, 512, 1024 and 2048 respectively. Figure 5.5 shows a heatmap of the
Gene_Cluster_Map for the last block filtered for clusters with at least 200 samples per
cluster, which resulted in a total of 17 cluster groups comprising the 26 organ sites. The rows
represent the gene localization feature maps, the columns represent the samples and the values
are the normalized activations from the feature maps. The heatmap visually illustrates the
genomic relationships and high-level structures of the cancer tumor types across the different

sites of origin.
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Figure 5.5 Visualizing molecular clusters of intermediate feature maps to reveal genomic relationships across multiple
tumors that appeared influential in cancer progression. The heatmap shows a Gene Cluster Map of 17 cluster groups
comprising 33 tumors across 26 organ sites. Rows represent gene feature maps, columns represent samples and the values
are activations of feature maps. The heatmap visually illustrates the genomic relationships and high-level structures of the

cancer tumor types across the different organ sites.
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5.9 Biological Significance of Visualizing Molecular Clusters of
Intermediate Feature Maps

We observed from our experiments that the number of cluster groups learned by the network
in the Gene_Cluster_Maps decreases as we move towards the deep layers in the network. The
feature maps generated after the first block seem to have little in common across the different
tumor types which is evident by the very large number of resulting cluster groups. As we reach
the final network block, we observed that the Gene_Cluster_Map has less number of clusters
where more clusters have merged together to finally reach only 17 cluster groups. These results
have great significance since they demonstrate that as we go deeper in the network, the gene
feature maps become more abstract in the sense that they are less representative of the
individual tumor samples and more representative of the tumor classes.

We further analyzed the resulting cluster groups in-terms of membership of tumor organ
sites among the groups. We observed that although tissue site of origin was mostly a dominant
factor for cluster formation, but some clusters also included tumor types across multiple
different organs. We also observed that clusters were formed for tumor types which appeared
to have similar organs or tissue characteristics. For example, Bile Duct and Liver tumors
clustered together including Cholangiocarcinoma (CHOL) and Liver hepatocellular Carcinoma
(LIHC). Brain and Nervous system tumors clustered together including Brain Lower Grade
Glioma (LGG) and Glioblastoma multiforme (GBM). Kidney and Adrenal Gland tumors
formed multiple clusters including Chromophobe (KICH), Renal Clear Cell (KIRC), Renal
Papillary cell (KIRP) and Adrenocortical Carcinoma (ACC). Lymph Nodes and Bone Marrow
tumors clustered together including Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
(DLBC) and Acute Myeloid Leukemia (LAML). Many small overlapping clusters formed
together for Stomach, Colorectal, Esophagus and Pancreas tumors including STAD, COAD,
READ, ESCA and PAAD. Finally, the remaining clusters were dominated by mostly tumors
of a single organ site but also included less than 5% of other tumors types.

Visualizing the evolution of molecular clusters formed by intermediate gene feature maps,
has demonstrated how our proposed GeneXNet is functioning as a comprehensive multi-tumor
Cancer classifier. The network was capable of learning the complex molecular signatures and
genetic alterations shared by tumors across different tissue types and organ sites. This also
demonstrates how the network was able to perform efficient transfer learning by using the pre-
trained models as a generic multi-tumor feature extractor to build additional classifiers for any
individual tumor types especially for organ sites which were lacking sufficient patient samples

to be trained independently.
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CHAPTER 6

6. CONCLUSIONS

6.1 Motivation

The objective of our research has been to contribute in saving the lives of cancer patients
through early cancer diagnosis and detection. Our work in cancer classification helps in directly
solving one of the major challenges in cancer treatment, since patients are diagnosed at very
late stages when appropriate medical interventions become less effective and full curative
treatment is no longer achievable. To our knowledge, this is the first effort to develop a Multi-
Tissue cancer classifier based on a full set of whole-transcriptome wide gene expressions
collected from tumors across different tissue types without requiring a prerequisite process of
gene feature selection. We have contributed in providing medical professionals with more
confidence in using deep learning for medical diagnosis by providing some biological insights
on how complex deep learning models are performing cancer classification and making

predictions across multiple cancer tissues using gene expressions.

6.2 Contributions

Our work has contributed to developing cancer classifiers with the capabilities of detecting
more complex types of genetic alterations driving cancer progression, by learning the genomic
signatures shared across multiple cancer tissue types. This was achieved by introducing a Deep
Learning framework for early cancer diagnosis and designing a comprehensive Multi-Tissue
cancer classifier based on molecular signatures of whole-transcriptome wide gene expressions.
Our cancer classifier is based gene expressions collected from human samples representing
multiple cancer tissue types and covering multiple organ sites.

We have contributed to eliminating the dependency on the prerequisite process of gene
feature selection which is performed by current state-of-the-art cancer classification methods
for discovering a predefined subset of informative genes to be used in the learning process.
This was achieved by designing our Deep Learning framework as an end-to-end learning
system for early cancer diagnosis which combines the process of gene feature selection and
classification into one integrated learning system.

We have contributed in developing cancer classifiers with the capabilities of taking full

advantage of genome-wide Next Generation Sequencing technologies to discover the
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correlated patterns of genes across the full set of DNAs in the human genome and across
multiple cancer tissue types. This was achieved by designing a new Deep Neural Network
architecture called Gene eXpression Network (GeneXNet), which is specifically designed to
address the complex nature of whole-transcriptome gene expressions. We demonstrated how
our model architecture can learn the sequence of DNA and RNA in cancer cells and identify
genetic changes that alter cell behavior and cause uncontrollable growth and malignancy. We
also demonstrated how our new model architecture has the capabilities for learning the
genomic signatures across multiple tissue types without requiring the prerequisite of gene
feature selection.

We have contributed to eliminating the dependency on huge amounts of patient data and
helped in solving one of the biggest challenges in cancer classification which is lack of patient
samples. This was achieved by designing a Deep Transfer Learning model that effectively
functions as a generic Multi-Tissue cancer classifier by learning genomic signatures collected
from multiple cancer tissue types. We demonstrated how our model can be used for Transfer
Learning to build classifiers for tumor types that are lacking sufficient patient samples to be
trained independently.

We have contributed to eliminating the manual process of handcrafting the design of deep
network architectures and contributed to eliminating the manual process of hyperparameter
optimization and fine-tuning on the target dataset. This was achieved by designing an end-to-
end Deep Reinforcement Learning framework that automatically learns the optimal Deep
Neural Network architecture together with the associated optimal hyperparameters that
maximizes the performance of our multi-tissue cancer classifier.

We have contributed in providing medical professionals with more confidence in using deep
learning for medical diagnosis by providing some biological interpretation on how complex
deep learning models are performing cancer classification and making predictions on cancer
tumors. This was achieved by designing visualization procedures to provide more biological
insight on how the proposed network model is learning genomic signatures of whole-
transcriptome gene expressions and accurately performing classification across multiple cancer
tumors. We have demonstrated how our network design provides the capability to visualize
gene localization maps highlighting the important regions in the gene expressions influencing
the tumor class prediction. We have also demonstrated how our network design provides the
capability to visualize the molecular clusters formed by intermediate gene expression feature
maps learned by the network which helps in revealing the genomic relationships of gene

expressions that are influential in the tumor progression.
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6.3  Analysis

Our classification experiments have demonstrated how the design of our proposed Gene
eXpression Network (GeneXNet) can be used as a general end-to-end learning system for
classification across multiple cancer tissue types without performing the prerequisite process
of gene feature selection. We demonstrated how our model can specifically target the complex
nature of the whole-transcriptome gene expression data and addresses the lack of training
samples, without suffering from severe overfitting in comparison to using the current state-of-
the-art deep CNN models which have been designed specifically for computer vision tasks.
Our model has allowed training deeper network architectures with complex data like whole-
transcriptome gene expressions, despite the large number of genes. The experiments
demonstrated that our model design which combines both dense and residual learning layers,
performs a regularizing effect which helps avoid overfitting and degradation in performance as
the network depth increases. This is achieved by means of re-using the gene expression feature
maps learned by different layers, which increases the variation of input signals fed to
subsequent layers since it represents the collective knowledge of the network. The connectivity
of the dense layers provide each layer with more direct access to the gradients from the loss
function and the original input signal, while the residual layers with identity mappings provide
a direct path for information propagation in the forward and backward passes.

Our Transfer Learning experiments have demonstrated that the comprehensive genomic
signatures learned by training our model using all the data allowed us to perform efficient
transfer learning by using the pre-trained model as a generic feature extractor to build additional
classifiers for any of the individual tumor sites, especially for the organ sites which were
lacking sufficient patient samples to be trained independently. These results have demonstrated
how transfer learning was able to solve one of the biggest challenges in cancer classification
which is lack of patient samples. The experiment demonstrated that by reusing the weights of
the pretrained GeneXNet model, we were able to use the same network for feature extraction
on a different cancer tumor type. The experiments have also demonstrated that the
discriminative molecular features for one cancer classifier were also relevant for other cancer
types. The results demonstrated that our pretrained model was able to learn the complex types
of genomic signatures collected from multiple cancer tissue types and that it was able to

effectively function as a generic model for cancer classification.
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6.4 Biological Significance

Our work in cancer classification helps in directly solving one of the major challenges in cancer
treatment, since patients are diagnosed at very late stages when appropriate medical
interventions become less effective and full curative treatment is no longer achievable. To our
knowledge, this is the first effort to develop a Multi-Tissue cancer classifier based on a full set
of whole-transcriptome wide gene expressions collected from tumors across different tissue
types without requiring a prerequisite process of gene feature selection. We have contributed
in providing medical professionals with more confidence in using deep learning for medical
diagnosis by providing some biological insights on how complex deep learning models are
performing cancer classification and making predictions across cancer tumors.

We introduced a visualization method which uses the gradient information flowing in our
proposed Gene eXpression Network (GeneXNet) model to produce gene localization maps
highlighting the important regions in the gene expressions which influenced the resulting tumor
class prediction. The gene expression data is sparse and very high in dimensionality since it
represents a snapshot of the whole transcriptome rather than a predetermined subset of genes.
By identifying class-discriminative localization map in the gene expressions, we were able to
identify the subset of genes driving cancer progression and resulted in the model’s tumor class
prediction. Our experiments have demonstrated the strength of our method as our GeneXNet
model was able to automatically identify a small subset of class-discriminative genes out of the
total 60,483 genes originally included in each individual sample of our cancer tumor dataset.
The network automatically identified the TP53 gene as one of the top features common across
all tumor types which implicitly validates our procedure since the TP53 is considered the most
commonly mutated gene in all cancers. Our experiments also demonstrated that some of the
identified discriminative genes were also common in other samples across different tumor
types even though the tissues belonged to different organ sites. This subset includes: TP53,
TTN, MUC16, LRP1B, CSMD3, PIK3CA, MUC4, RYR2, USH2A, FLG, PTPRD, CSMD1.
These discriminative genes identified by the network have great biological significance for
early cancer diagnosis. For example, the mutations of PIK3CA gene are one of the most
common in Breast cancer and are reported in over one third of cases [112]. Mutations in TTN
gene are associated with one of the most common inherited cardiac disorders known as
Hypertrophic Cardiomyopathy (HCM) [111]. MUC16 has a biological role in the progression
of Ovarian tumors and there has been substantial work to develop therapeutic approaches to
eradicate Ovarian tumors by targeting MUC16 [113]. LRP1B is frequently mutated in
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Melanoma, Non-small Cell Lung cancer (NSCLC) and other types of tumors. LRP1B is also a
potential contributor to the emergence of chemotherapy resistance while treating cancer
patients [114]. CSMD3 was identified as the second most frequently mutated gene in Lung
cancer after TP53 [4]. MUC4 is a membrane bound mucin gene responsible for progression of
several cancers due to its anti-adhesive properties including Bile Duct, Breast, Colon,
Esophagus, Ovary, Lung, Prostate, Stomach and Pancreas [111]. Mutations of RYR2 gene are
a common cause of abnormal heart failures such as Catecholaminergic Polymorphic
Ventricular Tachycardia (CPVT) [111]. PTPRD is frequently mutated in various types of
cancer, including Glioblastoma, Melanoma, Breast and Colon [4].

We introduced a visualization procedure for observing the evolution of molecular clusters
formed by intermediate gene expression feature maps learned by our GeneXNet model. The
genetic signatures learned by the feature maps in the deep layers make the network capable of
representing complex genetic alterations shared by tumors across different tissue types.
Visualizing the molecular clusters of gene expressions provides more insight on how the
network is learning small meaningful relationships between the genes which in turn describe
the characteristic influencing the Cancer tumor. Our experiments have demonstrated how this
visualization provides the opportunity to study the genomic relationships of gene expressions
across multiple cancer tissue types. We observed from our experiments that the number of
cluster groups learned by the network decreases as we move towards the deep layers. We
observed that the final network block has less number of clusters where more clusters have
merged together. These results have great significance since they demonstrate that as we go
deeper in the network, the gene feature maps become more abstract in the sense that they are
less representative of the individual tumor samples and more representative of the tumor
classes. We also observed from our experiments that although tissue site of origin was mostly
a dominant factor for cluster formation, but some clusters also included tumor types across
multiple different organs. We observed that clusters were formed for tumor types which
appeared to have similar organs or tissue characteristics. For example, Bile Duct and Liver
tumors clustered together. Brain and Nervous system tumors also clustered together. Kidney
and Adrenal Gland tumors formed multiple clusters, Lymph Nodes and Bone Marrow tumors
clustered together. Many small overlapping clusters formed together for Stomach, Colorectal,
Esophagus and Pancreas tumors. Visualizing the evolution of molecular clusters formed by
intermediate gene feature maps, has demonstrated how our proposed GeneXNet is functioning

as a comprehensive multi-tumor Cancer classifier.
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6.5 Future work

We believe there is great potential for further research to expand on our work for cancer
diagnosis. Our work focused on designing a multi-tissue cancer classifier based on Total RNA
Sequencing using gene expressions from coding mRNA. Future work can explore learning
more complex genomic signatures by including Omics data using other multiple forms of NGS
platforms and experimental strategies such as DNA hypermethylation, aneuploidy, non-coding
microRNA, DNA Copy Number Variants (CNV) and Reverse Phase Protein Arrays (RPPA).
This will provide the opportunity to create a more comprehensive repository of pretrained
models readily available for cancer classification using transfer learning.

One of the common approaches in classification is to use an Ensemble of multiple classifiers
(mixture of experts) to improve the classification accuracy. Future work can target cancer
diagnosis and improving classifier performance by designing Ensemble Models which could
integrate multiple genome-wide platforms by learning molecular signatures across multiple
forms of Omics data. Future work can also target using different Gene eXpression Network
models in addition to other network architectures and combine their classification decisions.

Future work can further expand on our visualization methods to provide more in-depth
biological insights to medical professionals and provide them with more confidence in using
deep learning for medical diagnosis. Our experiments have demonstrated how are proposed
network was able to automatically identify discriminative genes that were common across the
cancer tumor types even though the tissues belonged to different organ sites. We have provided
some biological significance for these identified genes for early cancer diagnosis. Future work
needs to expand further on these results and provide more in-depth biological interpretation on
the discriminative genes and their influence on early cancer diagnosis. Our experiments have
demonstrated how our proposed network is functioning as a comprehensive multi-tumor cancer
classifier by visualizing the evolution of molecular clusters formed by intermediate gene
feature maps. Future work could target to perform a more in-depth analysis and biological
evaluation of the clusters formed for different tumor types. This requires the research
collaboration with medical experts as it requires more in-depth knowledge of the medical

characteristics of the underlying human organs and their tissue characteristics.
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6.6 COVID-19

COVID-19 has shown a dramatic and devastating impact across the world. Predicting virus
diseases such as COVID-19 is extremely challenging, but there is great potential for the
application of deep machine learning for early detection and diagnosis. Although our work was
focused on cancer classification, but we believe that our proposed methods are applicable to
other diseases and Omics data in particular for COVID-19. Next generation sequencing
provides a great opportunity to investigate the mechanisms that underpin COVID-19 infections
and transmission. Future work should target the use of deep machine learning and Omics data
in the development of novel screening methods, drug molecules, vaccines, and potential
antibiotics. Future work should also explore the use of genomics and transcriptomics data to

predict the effects of new vaccines and drugs on patients.
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