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ABSTRACT 

 

The American University in Cairo, Egypt 

TID testing 

Name: Mohamed Sami Yusuf Abdelwahab 

Supervisor: Prof. Ahmed Abou-Auf 

 

Electronic devices often operate in harsh environments which contain a 

variation of radiation sources. Radiation may cause different kinds of damage to proper 

operation of the devices. Their sources can be found in terrestrial environments, or in 

extra-terrestrial environments like in space, or in man-made radiation sources like 

nuclear reactors, biomedical devices and high energy particles physics experiments 

equipment. Depending on the operation environment of the device, the radiation 

resultant effect manifests in several forms like total ionizing dose effect (TID), or single 

event effects (SEEs) such as single event upset (SEU), single event gate rupture 

(SEGR), and single event latch up (SEL).  

TID effect causes an increase in the delay and the leakage current of CMOS 

circuits which may damage the proper operation of the integrated circuit. To ensure 

proper operation of these devices under radiation, thorough testing must be made 

especially in critical applications like space and military applications. Although the 

standard which describes the procedure for testing electronic devices under radiation 

emphasizes the use of worst case test vectors (WCTVs), they are never used in radiation 

testing due to the difficulty of generating these vectors for circuits under test. 

For decades, design for testability (DFT) has been the best choice for test 

engineers to test digital circuits in industry. It has become a very mature technology 

that can be relied on. DFT is usually used with automatic test patterns generation 

(ATPG) software to generate test vectors to test application specific integrated circuits 

(ASICs), especially with sequential circuits, against faults like stuck at faults and path 

delay faults. Surprisingly, however, radiation testing has not yet made use of this 

reliable technology. 

In this thesis, a novel methodology is proposed to extend the usage of DFT to 

generate WCTVs for delay failure in Flash based field programmable gate arrays 

(FPGAs) exposed to total ionizing dose (TID). The methodology is validated using 

MicroSemi ProASIC3 FPGA and cobalt 60 facility. 
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Chapter 1 

Summary 

Electronic devices may be exposed to several sources of ionizing radiation. The 

radiation sources can be found in terrestrial, extra-terrestrial and man-made radiation 

environments. In terrestrial environment, the sources can be neutrons found in the 

atmosphere, or alpha particles emitted from defects inside chip’s materials. In extra-

terrestrial environment, such as space the sources can be trapped particles around the 

Earth’s atmosphere, particles originating from the sun, or high energy galactic cosmic 

rays’ particles. The man-made radiation environments include nuclear reactors, 

biomedical devices, and high energy particles physics experiments equipment.  

The radiation sources can cause several forms of damage to the correct 

operation of electronic devices under radiation. Depending on the radiation source and 

the environment which the device operates in, several radiation resultant effects can 

occur. The resultant effects can cause permanent or temporary failures in the device 

exposed to radiation. These effects can manifest in the form of single-event effects such 

as single-event upset, single-event gate rupture, and single-event latch-up, or total 

ionizing dose effect. 

For the proper design of electronic devices exposed to radiation sources, a 

standard test procedure must be applied to ensure proper operation of devices under 

radiation. MIL-STD-883, method 1019 i.e. the standard test procedure to test electronic 

devices under radiation emphasizes the use of worst-case test vectors (WCTVs) in the 

testing procedure. However, worst-case test vectors are not used in radiation testing due 

to the difficulty in generating such vectors for complex circuits. 

Several efforts have been made to identify worst-case test vectors for ASICs 

[1]-[6], however, there has been no effort to identify worst-case test vectors for FPGA 

except [7]. This effort only works on combinational circuits or sequential circuits 

characterized by the presence of flip-flops at the primary inputs and outputs of the 

circuit. However, these conditions are very rare as most designs are composed from 
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complex sequential circuits. The problem of testing sequential circuits is their lack of 

controllability and observability in the internal registers. 

Design for testability (DFT) has been proposed since decades to overcome this 

problem by replacing the normal registers in a design by scan cells. This will result in 

an increase of the controllability and observability of the internal registers. However, 

DFT techniques were only used for ASIC, hence FPGA macro libraries do not include 

scan cells as DFT was not meant for FPGA designs. 

In this thesis, a novel methodology is proposed to generate WCTV for flash-

based FPGA exposed to total-ionizing-dose effect. Also, two techniques are proposed 

to test FPGA designs using the generated WCTV. The first technique depends on 

altering the normal FPGA design flow to include scan cells which are not found in the 

FPGA macro libraries. The second technique depends on the reprogram ability of 

FPGA to make the off-inputs along the target path to be test have non-controlling value 

to propagate a transition along the path without being masked.  

The methodology is validated by implementing different design using 

Microsemi ProASIC3 A3P125-208PQFP flash-based FPGAs and total dose using 

Cobalt 60 radiation facility. The experimental results show the significance of using 

WCTV in total-dose testing of FPGA devices. 

The rest of the thesis is organized as follows. Chapter two includes a review on 

different radiation sources and effects. Chapter three focuses in the TID effect on 

CMOS circuits and floating gate MOS transistor which are the switch elements in flash-

based FPGA. Chapter four introduces a review on DFT basics and path delay testing. 

Chapter five discusses the previously developed efforts to generate WCTV of ASICs 

and FPGAs. Chapter six introduces the novel proposed methodology to identify WCTV 

for sequential circuits in flash-based FPGA using DFT techniques. Chapter seven 

contains the experimental results done to validate the proposed methodology. Finally, 

the thesis ends by chapter eight which concludes the work done in this thesis and gives 

some outlines of future work that may be done. 
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Chapter 2 

Radiation effects review 

Electronic devices often operate in harsh environments which contain a variety 

of radiation sources. These radiation sources may cause different kinds of damage to 

the proper operation of the devices. Their sources can be found in terrestrial 

environments due to neutrons which are found in the atmosphere, or alpha particles 

which are emitted from defects found inside chips materials. They are also found in 

extra-terrestrial environments like space due to trapped particles around the Earth’s 

atmosphere, particles which originated from the sun and high energy galactic cosmic 

rays’ particles. Also, there are sources of radiation which originated from artificial man-

made radiation found in nuclear reactors, biomedical devices and high energy particles 

physics experiments equipment. 

The basic concept of ionizing radiation is that it transfers an amount of energy 

to the material exposed to its source. This deposited energy can cause a variation of 

effects in electronic devices such as faults in memory bits, increase in leakage current 

and increase in delay which can cause a total functional failure of the device. 

2.1 Radiation sources 

Since electronic devices are widely used in many environments including 

terrestrial, extra-terrestrial and man-made artificial radiation environments, an analysis 

of their characteristics is needed in order for these devices to operate properly in this 

environment. 

2.1.1 Terrestrial environment  

Neutrons found in Earth’s atmosphere and alpha particles emitted from defects 

inside integrated circuit (IC) material are the most important sources of radiation in the 

terrestrial environment. 

Atmospheric neutrons originate from the interaction between the galactic 

cosmic rays and the outer layers of Earth’s atmosphere. Although they are not charged, 
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they can transmit energy to the target materials as they are able to trigger some nuclear 

reactions. As cosmic rays enter the Earth’s atmosphere, they interact with oxygen and 

nitrogen and generate particles including protons, muons, neutrons and pions. The 

number of originated particles first increases and then decreases as the cosmic rays 

enter the atmosphere. This is because the atmosphere shielding dominates over the 

multiplication effect. As shown in Figure 1, the atmospheric neutron flux increases with 

altitude and reaches a peak value at approximately 15 Km. That is the altitude in which 

avionics operate, and this is why avionics electronic devices are most threatened by 

neutrons [8]. 

 

Figure 1: Flux of neutrons in the terrestrial environment as a function of altitude [8]. 

Another source of radiation are the alpha particles which are emitted as a result 

of the radioactive decay of defects inside chip material. Elements such as Uranium, 

Thorium, Platinum and Hafnium, which are used intentionally in the fabrication of 

Integrated Circuits (IC) or can be unwanted defects in the chip material, are the source 

of alpha particles. These elements or defects are the most responsible source for soft 

errors occurring in electronic devices. As the technology advances and the feature size 

of IC decreases, the soft errors induced by alpha particles are becoming more important 

than those induced by atmospheric neutrons. Also, particles like muons are gaining 
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more attention as they can cause threats to Complementary Metal Oxide Semiconductor 

(CMOS) circuits with the continuous decrease in the device dimensions [9]. 

2.1.2 Space 

Space is one the harshest environments that electronic devices can operate in, 

and it is also one of the most complex environments as it contains all kinds of natural 

nuclei, from protons to Uranium. As shown in Figure 2, the three main sources of these 

particles are: 

1. High energy galactic cosmic rays. 

2. Solar particle events 

3. Particles trapped in the magnetospheres of other planets 

 

Figure 2: Schematic illustration of three main sources of radiation in space [8]. 

Galactic Cosmic Rays (GCRs) have a spectrum that extend to very high 

energies. As the name suggests, GCRs come from outside the solar system, although 

their source and acceleration method are not yet completely clear. They have probably 

been accelerated to the speed of light for millions of years and have travelled many 

times across the galaxy. For the most part they are made of protons, but they can include 

all kinds of elements. Their energy can reach a very high level, up to 1011 GeV, which 

makes them very penetrating and impossible to shield with reasonable amounts of 

materials. Some of the GCRs interact and emit gamma rays, and that is how we can 

know that they have passed through the galaxy. 
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The sun is the second source of space ionizing particles. Their energies can 

reach values greater than 10 MeV, and their fluxes depend on the solar activity cycle. 

Solar activity is cyclic, which changes its value from high activity every 7 years and 

low activity every 4 years. Two events occur in the solar activity cycle. The first is solar 

particle events, which consist of solar flares and coronal mass ejections, and the second 

one is loss of mass in the sun, which causes some protons and electrons to escape the 

sun’s gravity and acquire high energy. These protons and electrons have a magnetic 

field which in turn can interact with planetary magnetic fields. 

Earth’s magnetospheres are objects which originated from the interaction 

between the magnetic field of the solar wind and the Earth’s own magnetic field, which 

has two components, an intrinsic one and an external one from the solar wind. The 

Earth’s magnetic field forms a natural barrier against high energy solar wind flow. With 

the interaction between the solar flares and the solar wind with the Earth’s magnetic 

field, some electrons are trapped inside the Earth’s magnetosphere. Due to the 

interaction between the galactic cosmic rays and Earth’s magnetic field, some protons 

are trapped in the magnetosphere of Earth. These particles which have energies up to 5 

MeV and 800 MeV, once trapped inside Earth’s magnetosphere move in spiral lines 

bouncing from one pole to another. Also, these particles form a radiation belt around 

the Earth called the Van Allen radiation belt. It consists of two belts; the outer belt 

which is made for the most part of electrons which have an energy up to 10 MeV, and 

an inner belt which is made of both electrons and protons and has protons with energy 

of about 100 MeV and electrons with energy in the range of hundreds of KeV. 

Due to the complexity of the space environment, it is very difficult to assess the 

amount of ionizing radiation hitting a system in space, and it is also dependent on the 

cycle of solar activity. Furthermore, the exact amount of radiation that affects a specific 

electronic device depends on its location inside the spacecraft or satellite that is 

operating in due to the shielding effect of the materials used. In a context like space, 

one cannot just overdesign the electronic systems because the addition of this weight 

when applied to spacecraft or satellites has a high cost. Furthermore, these devices lack 

the power to support overdesigned electronic systems. This is why complex simulation 
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tools and models are used to predict the dose affecting the devices and design them 

within the appropriate margins[8] 

2.1.3 Man-made radiation 

Another source of ionizing radiation can be artificially man-made, such as 

biomedical devices and high energy particles physics experiment equipment. In fact, 

doses that may exceed 100 Mrad(Si) are expected in the planned upgrade of the Large 

Hadron Collider (LHC) at CERN in Switzerland. To be able to compare this value, 

most missions in space by the National Aeronautics and Space Administration (NASA) 

expect a dose of less than 100 Krad(Si). That is why the design of devices in this 

equipment is characterized by the use of dedicated rad-hard libraries which have a 

layout that is made specially to avoid the problems of standard design and ultimately to 

withstand the high levels of radiation found in these environments. 

Nuclear power plants are another source of man-made radiation. For example a 

fusion reactor like the one found in ITER neutral beam test facility, electronic devices 

are expected to be hit by large fluxes of neutrons of energies up to 14 MeV, the doses 

expected in the ITER environment can reach a value of 50 rad(Si) in one operating hour 

[10]. 

2.2 Radiation effects mechanisms 

To analyze and design electronic devices to operate in radiation environments, 

one must study the radiation effect mechanism on the target material. Figure 3 shows 

one of these mechanisms, which occurs when a charged particle comes close to an atom. 

Due to the Coulomb force associated with the secondary particle, some electrons from 

the target atom get extracted, which in turn produces electron-hole pairs. In the case 

where the target material is metal, due to the high mobility of electrons and holes and 

because there is no band gap, the electrons and holes recombine immediately without 

causing any observable radiation effect. For dielectric materials like SiO2, depending 

on the applied electric field, an accumulation of holes in the dielectric can occur which 

may result in parasitic energy levels inside or on the surface of the oxide, resulting in 

the Total Ionization Dose (TID) effects as shown in Figure 4 [11]. 
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Figure 3: Coulomb interaction between charged particle and an atom [11] 

 

Figure 4: Physical phenomena in general solid and dielectric induced by high energy charged 

particle[11] 

Another radiation effect mechanism is illustrated in Figure 5. The radiation 

effect starts with the displacement of lattice atoms in the target material due to the 

collision of particles including photons and neutrons. This displacement can cause 

dislocation loops and interstitials, which in turn results in some changes in the 

characteristics of the target material [11]. 
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Figure 5: Lattice displacement due to radiation effect [11]. 

2.3 Radiation resultant effect 

The resultant effect of the radiation mechanisms mentioned before depends on 

the type of radiation source that the target material has been exposed to, and the 

environment in which the device operates. 

2.3.1 Total Ionization Dose effects 

 TID is defined as the amount of energy transferred to the target material due to 

ionization radiation. The unit of measurement is rad, which is an amount of energy 

equal to 100 ergs transferred to one gram of the target material. Due to the dependency 

of the amount of energy transferred onto the target material, the radiation dose is usually 

followed by the target material. Another unit of measurement for TID is gray (Gy), one 

rad is equal to 100 Gy. The main effects of TID in electronic devices are positive charge 

trapping (holes) in the insulation layer, and the generation of interface states in the 

insulation layer [8]. TID effects can be observed in electronic devices operating in space 

and in man-made radiation environments such as the ones in nuclear power plants or 

high energy particles physics experiment labs. 

One of the most susceptible materials to TID is the silicon oxide (SiO2) which 

is one of the most essential parts in the Metal Oxide Semiconductor (MOS) structure. 

The band diagram for an n-type MOS structure on a p-substrate and biased at positive 

voltage is illustrated in Figure 6. 
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Figure 6: Band diagram of an n-type MOS biased at positive voltage [8] 

Due to the transferred energy from the radiation to the silicon dioxide, some 

electron-holes pairs are generated inside the SiO2. Some of these pairs are quickly 

recombined again in the oxide in a process called initial recombination. The amount of 

pairs that go through this process depends on the applied electric field, the transferred 

energy and the type of charged particle i.e. the source of radiation. The remaining pairs 

which survive the initial recombination process are called charge yield. The electrons 

in these pairs are attracted to the positive biased gate because of their high mobility, 

while the holes which are heavier and have lower mobility are attracted slowly 

compared to the speed of electrons to the silicon substrate. The holes remaining near 

their points of generation cause negative voltage shift in the characteristics of the MOS 

device, such as the threshold voltage [12]. 

As the holes which survived the initial recombination process are attracted to 

the silicon substrate, they move in a hopping transformation which depends on 

temperature and the applied electric field. This hopping process is called polaron 

hopping. The holes movement can take from about 10-17 seconds at room temperature 

and much longer at lower temperatures. 

The holes continue their hopping movement until they reach the Silicon/Silicon 

Oxide (SiO2) interface in case the gate is biased at a positive value. Some holes go to 

the Silicon substrate, and some others are trapped in defects sites whose density is 

higher near the Silicon/ Silicon Oxide (SiO2) interface. These trapped holes can cause 
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permanent negative voltage shift in the characteristics of the MOS structure. This can 

cause a voltage shift in the threshold voltage and inversion of the channel which may 

cause leakage current to flow in the OFF state, leading to an increase in the static power 

of the integrated circuits. The number of trapped holes depends on the number of holes 

that survive the initial recombination process, and the quality of the oxide [8][12]. 

When holes are trapped near the Si/SiO2 or during the hopping process, some 

hydrogen ions (protons) can be released. These hydrogen ions arrive at the interface 

which cause the generation of interface traps. These interface traps can exchange 

carriers with the channel, and their occupancy depends on the position of the Fermi 

level at the interface. The creation of these traps is much slower than the charge 

accumulation due to the trapped holes near the interface, but it also depends on the 

applied electric field. Interface traps can cause a positive shift in the threshold voltage 

of the NMOS transistor and a negative voltage shift in the threshold voltage of the 

PMOS transistor. It can also affect the mobility of the transistor which in turn decreases 

its current capability and causes timing degradation of the integrated circuits [8][12]. 

2.3.2 Single-Event effects 

Single-Event effects (SEE) are caused by the passage of high-energy particles 

(heavy ion) through sensitive regions of an electronic device. They can be classified 

into two categories depending on their effects. Soft, in which the damage is not 

permanent e.g. soft errors in memory circuits, and hard in which the damage is 

irreversible e.g. the rupture of the dielectric in the gate. Some other SEE may or may 

not cause damage depending on the operation of the electronic device, such as in the 

case of a single-event latch-up, in which the time to cut the power supply after the 

occurrence of the event decides whether or not there is damage to the device [8]. 

Some of the main SEE are [8][13]: 

1- Single-event upset (SEU):  

A soft SEE which is characterized by the flipping of the value of a single bit 

in a memory due to a single ionizing particle. It is also known as soft error. 

It is important to mention that the correct value of the memory bit can 

restored by rewriting the bit again i.e. the damage is not permanent. 
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2- Single-event gate rupture (SEGR): 

A hard SEE which is characterized by the rupture of the gate of a MOSFET, 

in which this rupture or damage is irreversible or permanent. 

3- Single-event latch-up (SEL): 

A SEE that its damage depends on the operation of the circuit after being 

exposed to radiation. It is characterized by the activation of parasitic bipolar 

structures in CMOS circuits, which leads to a sudden increase in supply 

current. Depending on the time taken to cut the power source of the circuit, 

there may or may not be damage to the device. 
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Chapter 3 

Total Ionizing Dose effect in CMOS circuits 

Total Ionizing Dose effect “TID”, which affects electronic devices operating in 

radiation environments like space and man-made radiation environment found in 

nuclear reactor, can cause several physical damages on the correct operation of CMOS 

circuits. These damages are due to the ionizing-radiation effect on the material used in 

the fabrication of CMOS circuits, specially the MOS structure. In this chapter, some of 

the damages caused by the “TID” effect on MOS transistors are illustrated, as well as 

TID testing techniques. 

3.1 TID effect in MOS transistor 

When MOS transistors are exposed to ionization radiation, electron-hole pairs 

are generated by the interaction of the high-energy particles with the atoms of the 

dielectric (SiO2). The density of the generated electron-hole pairs along the track of the 

high-energy particles exposed to the target material, is directly proportional to the 

energy transferred to the target material. Linear energy transfer (LET) or stopping 

power which expresses the loss of energy per unit length (dE/dx), is related to the 

energy that enters a discrete plane of the target material (∆EE) and the radiation energy 

that leaves material plane (∆EL) by the following equation [14] 

∆𝐸𝐿(𝛾) = ∆𝐸𝐸(𝛾) 𝑒𝑥𝑝 (−
𝜇𝑒𝑛

𝜌
𝜌∆𝑥)                                  (1) 

where 𝜇𝑒𝑛/ 𝜌 is the mass attenuation coefficient of the target material, 𝜌 is the target 

material density, and ∆𝑥 is the thickness of the target material. The LET for protons 

shows a monotonic decrease with increasing energy of protons, while in the case of 

electrons, the LET decreases as a function of particle energy for energies below 1 Mev, 

while it increases for higher energies as shown in Figure 7 [15]. 
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Figure 7: Linear energy transfer for protons and electrons as a function of particle energy [15] 

The electrons generated along the track of the charged particles are mostly 

swept rapidly toward the gate (positive charge side), due to their high mobility, while 

the holes with lower mobility are swept in a relatively slow motion compared to the 

electrons, to the oxide-Silicon (SiO2/Si) interface. A fraction of the holes moving 

toward SiO2/Si interface will get trapped, which results in the formation of positive 

oxide-trap charges [16]. 

In addition to the oxide traps, interface traps can also be generated at the SiO2/Si 

interface. These interface traps are a result of the interaction between the hydrogen ions 

that can drift to the interface. The interface traps generation process occurs in a longer 

time compared to the oxide charges generation process. They act as energy levels within 

the silicon band-gap. Interface traps can be negative or positive, depending on the 

location of the Fermi level at the interface, if the Fermi level at the interface is below 

the trap energy, it acts as a donor and the interface trap is positively charged, and if the 

Fermi level at the interface is above the trap energy, it acts as an acceptor and the 

interface trap is negatively charged. Positive interface traps causes negative threshold 

voltage shifts for p-channel transistors, while negative interface traps causes positive 

threshold voltage shifts for n-channel transistors [12]. 
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Due to the oxide charges and interface traps, degradation of the MOS transistors 

characteristics occurs. Most common and critical degradations are threshold voltage 

shifts, mobility degradation and induced leakage current in CMOS devices. 

3.1.1 Threshold voltage shifts 

For MOS transistors, the total threshold voltage shifts due to TID is the sum of 

the threshold voltage shifts due to both oxide charge traps and interface traps which can 

be expressed by the following equation  

∆𝑉𝑡ℎ = ∆𝑉𝑜𝑡 + ∆𝑉𝑖𝑡                                                                (2) 

where ∆𝑉𝑜𝑡 is the threshold voltage shift due to oxide charge traps, and ∆𝑉𝑖𝑡 is the 

threshold voltage shift due to interface traps. They can be determined by the following 

equation: 

∆𝑉𝑜𝑡,𝑖𝑡 =
−1

𝐶𝑜𝑥 𝑡𝑜𝑥
 ∫ 𝜌𝑜𝑡,𝑖𝑡(𝑥)𝑥𝑑𝑥                                             (3)

𝑡𝑜𝑥

0

 

where 𝜌𝑜𝑡,𝑖𝑡(𝑥) is the charge distribution of radiation-induced oxide charge traps or 

interface traps. For positive charges, the threshold voltage shift is negative, in contrast, 

for negative charges, the threshold voltage shift is positive [12]. 

 The effect of oxide charge traps is illustrated in Figure 8. For n-channel 

MOSFET, the oxide charge traps shift the Vgs bias point by a negative value, which 

results in a reduction of the threshold voltage and in an increase of the drive current and 

the off-state current. For p-channel MOSFET, the oxide charge traps also shifts its bias 

point by a negative value, which results in an increase in the threshold voltage and a 

reduction of the drive and off-state currents [15]. 
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Figure 8: Illustration of the oxide charge traps on n and p channel MOSFETs [15]. 

The effect of interface traps is illustrated in Figure 9. Interface traps cause an 

increase in the subthreshold swing of both n and p channel MOSFETs. Figure 9 also 

shows that the threshold voltage is also impacted by the interface traps, for n channel 

MOSFET interface traps cause a shift in the threshold voltage by a positive value, while 

for a p channel MOSFET interface traps cause a shift in the threshold voltage by a 

negative value [15]. 

 

Figure 9: Illustration of the effect of the interface traps on n and p channel MOSFETs [15] 
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The effect of oxide charge traps on the threshold voltage shift can have a little 

neutralization at high dose rate and short time, while the effect of interface traps won’t 

have enough time to build up. So, for high dose and short time, the shift in the threshold 

voltage can be large and negative for both n and p channel MOSFETs. For n-channel 

MOSFET large negative shift in the threshold voltage can lead to an increase in the 

leakage static power of the integrated circuit, which can lead eventually to a failure in 

the integrated circuit [12]. 

At moderate dose rates, the effect of oxide charge traps can have some 

neutralization, and interface traps can occur. Therefore, the threshold voltage shift due 

to both oxide charge traps and interface traps can be large. For n-channel MOSFET the 

threshold voltage shift due to oxide charge is negative, while the threshold voltage shift 

due to interface traps is positive, thus, they compensate each other, and even if the 

individual threshold voltage shift is large, the net threshold voltage shift can be small, 

and the failure level of the integrated circuit due to radiation can be relatively high. For 

p-channel MOSFET, the threshold voltage shift due to oxide charge traps and interface 

traps has a negative value, therefore, they add to each other unlike the n-channel 

MOSFET case [12]. 

Radiation induced charge buildup decreases rapidly with the decrease in the 

oxide thickness, and the threshold voltage shift is directly proportional to the oxide 

thickness by the following equation [15] 

∆𝑉𝑜𝑡 ∝ 𝑡𝑜𝑥
2                                                                     (4) 

This relation indicates that with the advancement in CMOS technology and the scaling 

down of the oxide thickness, the threshold voltage shift is reduced. Instead, charge 

trapping in the shallow trench isolation (STI) dielectrics, which thickness is much larger 

than that of the gate oxide, has become more dangerous threat in modern CMOS 

technologies. As a result, interface traps and oxide charge traps in the thin gate oxides 

are not a concern, and the total dose effects are dominated by oxide charge traps in the 

field oxides even at low dose of radiation [12][15]. 



18 

 

 

 

Figure 10: Illustration of the decrease in the threshold voltage shift with the scaling down of the gate 

oxide [17] 

Other factors that can affect the value of the threshold voltage shift are the 

transistor dimensions (width “W” and length “L”) and the device type. The narrower 

the width (W), the larger is the magnitude of the threshold voltage shift, this is valid for 

both n and p channel MOSFETs, and for width values larger than about 1 µm, the 

threshold voltage value should not be critical. Also, the shorter the length (L) of the 

transistor, the larger is the magnitude of the threshold voltage shift. For larger values 

of width (W) and length (L) of the transistor, the value of the threshold voltage shift is 

small and there is no important dependency on the transistor size [18]. 

3.1.2 Carriers mobility degradation 

Interface traps and oxide charge traps have other effects in addition to threshold 

voltage shift that can affect MOS transistors. They can affect the carries mobility in the 
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MOS device. These effects can cause degradation in the drive capabilities of the MOS 

transistor, degrading the timing parameters of an integrated circuit, which may cause 

timing failure in the electronic circuit operation. 

During the oxide charge traps formation process, holes which survived the 

initial recombination process are attracted to the silicon substrate. The holes transport 

through the Silicon Oxide (SiO2) by a process called “Polaron hopping” which depends 

on the temperature and the applied electric field. Polaron causes an increase in the 

effective mass of the holes and a decrease in the holes mobility [12]. 

Like oxide charge traps, interface traps will also exchange charges with an 

adjacent silicon layer, but unlike oxide charge traps, interface traps are located exactly 

at the interface. Hence, there is no barrier to trapping and detrapping of carriers in the 

near surface silicon. That is why interface traps can have a significant effect on the 

mobility of the carries in the MOS device [15]. 

Both oxide charge traps and interface affects the mobility of carriers in a MOS 

transistor, but as illustrate in Figure 11, interface traps have a first order effect on the 

effective mobility of carriers of a MOS transistor, while oxide charge traps have a much 

weaker effect. This is due to the fact that scattering of carriers from interface traps is 

much more efficient than the more distant oxide charge traps in causing mobility 

degradation of carriers in a MOS transistor [17]. 

 

Figure 11: Mobility of carriers normalized to the pre-irradiation values as a function of interface traps 

density for devices with high and low interface traps and oxide charge traps densities [17] 
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3.1.3 Induced leakage current 

In commercial CMOS technologies, another phenomenon resulting from the 

damage of the TID effect on the transistors, is the radiation induced leakage current 

(RILC). Basically, this phenomenon depends on two damaging mechanisms that 

happens to CMOS circuits exposed to TID effect. The first mechanism is the threshold 

voltage due to the silicon dioxide charge traps, and the second mechanism is the built-

up charges in the filed oxide p-substrate. This phenomena is illustrated in Figure 12, 

which is a plot of the gate leakage current, versus gate voltage, for a  non-irradiated p-

substrate capacitor and a capacitor irradiated to 5.3 Mrad(Si) with Co-60 gamma rays 

at a gate bias of 0.3 V[12]. 

 

Figure 12: Gate oxide leakage current versus gate voltage for a non-irradiated capacitor and an 

irradiated capacitor to 5.3 Mrad(Si) [12] 

With the technology scaling down, the gate oxide thickness tends to ultra-thin 

oxides, which makes modern IC less susceptible to radiation damage, but the filed 

oxides of advanced commercial technologies are still much thicker than the gate oxides 

and the radiation response increases proportionally with the oxide thickness. Thus, the 
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effect of field oxides is the most dominant effect of TID and its effect is the main 

concern and radiation problem of these modern technologies [12]. 

There are two common types of filed oxides used in the manufacturing of 

CMOS circuits, which are different in their formation method and their shape. The first 

type is local oxidation of silicon (LOCOS), which has been replaced by commercial IC 

manufacturers with the second type “shallow-trench isolation (STI)” for advanced 

submicron technologies. Figure 13(a) shows a cross section of an n-channel transistor 

with LOCOS isolation, showing the built-up charges in the area called “bird’s beak 

region”. Figure 13(b) shows a cross section of an n-channel transistor with STI 

isolation, showing the built-up charges [12]. 

 

Figure 13: cross section of a) n-channel transistor with LOCOS isolation and b) n-channel transistor 

with STI isolation [12] 

Radiation induced leakage current in shallow-trench isolation (STI) oxides is 

typically caused due to the exposure of high fluxes of ionizing radiation. Micro-doses 

of damage caused by a single ion strike have also been observed in submicron CMOS 
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technologies. Induced leakage current in STI can cause an increase in the standby 

current in modern CMOS integrated circuits. The increase of the standby current of 

CMOS shift registers which are manufactured in a commercial 130 nm process is 

illustrated in Figure 14 [15]. 

 

Figure 14: Normalized increased standby current in CMOS shift registers manufactured in 130 nm 

process as a function of the TID dose in krad [15] 

The induced leakage current in the STI oxide which causes an increased in the 

standby current in the integrated circuits is caused by the leakage paths created because 

of the built-up charges by the TID effect. These leakage paths include: drain to source 

leakage in a single n-channel MOSFET, drain to source leakage between two n-channel 

transistors, and source to well leakage between different devices. The mechanism for 

these leakage paths are the same, it is basically because of the positively charged oxide 

traps invert an adjacent p-type silicon layer, which enables the flow of current from 

isolation region to another [15]. 

In the drain to source leakage path, built-up charges in the isolation dielectric at 

the interface along the sidewalls of the STI oxide are the cause of the creation of a 
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leakage path, which becomes the most significant cause to the standby current in n-

channel MOSFET as illustrated in Figure 15. The impact of the STI radiation damage 

on the standby current for a n-channel MOSFET manufactured by a 180 nm process by 

the Taiwan Semiconductor Manufacturing Company (TSMC) is shown in Figure 16. 

The data shows a significant increase in the drain source current above 200 krad(SiO2), 

and the drain source current reaches a value above 100 nA at 500 krad(SiO2) of total 

dose [15]. 

 

Figure 15: a) Illustration of drain source leakage path in a n-channel MOSFET and b) its cause; built-

up charges in the isolation oxide [15] 

 

Figure 16: Impact of STI radiation damage on the current-voltage characteristics of n-channel 

MOSFET fabricated in TSMC 180 nm CMOS process [15] 
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For the drain to source leakage between two n-channel transistors, and source 

to well leakage between different devices, the leakage paths are interdevice paths 

between two adjacent n-channel transistors or between the n+ drain/source of one n-

channel transistor and the n-well of an adjacent p-channel transistor, unlike the case for 

the drain source leakage in which the leakage path is in the same device. The leakage 

path between two n-channel transistors is illustrated in Figure 17, and the leakage path 

between an n-channel transistor and a p-channel transistor is illustrated in Figure 18 

[15]. 

 

Figure 17: Leakage path between two adjacent n-channel transistors [15] 

  

Figure 18: Leakage path between the source of n-channel MOSFET and the n-well of p-channel 

MOSFET [15] 
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The leakage paths between two different devices can be observed in the example 

of two inverters chain shown in Figure 19. Path (a) drains current from VDD to ground 

because of the leakage path between the drains of two adjacent n-channel MOSFETs. 

This path is completed by the p-channel MOSFET in the second inverter and the n-

channel MOSFET in the first inverter. Path (b) also drains current from VDD to ground 

because of the leakage path between the drain of the n-channel MOSFET of the first 

inverter to the n+ well of the p-channel MOSFET of the first inverter. This path is 

completed by the n-channel MOSFET of the first inverter [15]. 

 

Figure 19: Example of how interdevice leakage can increase the standby current of an inverter chain. 

Path (a) represents the leakage path between two n-channel MOSFETs. Path (b) represents the leakage 

path between the drain of n-channel MOSFET and the n+ well of p-channel MOSFET [15] 

The effect of the leakage current caused by the field oxides can be modeled as 

a parasitic field-oxide transistor which is in parallel with the gate-oxide transistor. 

Consider the case at the edges of the gate transistor where the gate polysilicon overlaps 

with the field oxide, the parasitic parallel field-oxide transistor is formed by the gate 

polysilicon, a portion of the field-oxide and the source and the drain of the gate 

transistor. As illustrated in Figure 20, during the preirradiation, the threshold voltage of 

the parasitic field-oxide is relatively large due to the large thickness of the field oxide, 

but with the radiation and the charge built-up process in the field oxide, a negative 

threshold voltage shift occurs in the parasitic field-oxide transistor, which shifts its 

drain to source leakage current versus the gate to source voltage curve to the left. If the 

value of this threshold voltage shift is high enough, it can cause an increase in the 



26 

 

 

“OFF” state leakage current of the gate transistor, which can prevent the gate transistor 

from being completely turned off. This effect can add significantly to the standby 

current of an integrated circuit [12]. 

 

Figure 20: I-V curves for parasitic field-oxide and gate-oxide transistors showing the increase in the 

standby currents caused by the leakage in the field oxides [12] 

3.2 TID effect in floating gate MOS 

Field programmable gate arrays (FPGA) have become one of the most 

important devices in the electronic industry, with its high logic density, fast 

deployment, and reprogram ability, FPGA is the best choice for projects with limited 

budget and resources, and tight schedules. Flash based FPGA has advantages over other 

technologies like SRAM, of being re-programmable and nonvolatile. To analyze the 

radiation effect on flash-based FPGA, an analysis of the radiation effect in the switch 
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element, which consists of floating gate MOS, is required. In fact, the radiation response 

of the floating gate MOS is the dominant response in flash-based FPGA [19]. 

3.2.1 Floating gate MOS 

Flash-based FPGA switch element consists of two floating gate NMOS 

transistors as illustrated in Figure 21. The first transistor, which is called the switch 

transistor, is responsible for turning on or off the data path, the other transistor, which 

is called the program/sense transistor, is responsible for programming the floating gate 

voltage and sensing the current during threshold voltage measurement. The switch and 

the program/sense transistors have the same control gate and the same floating gate. 

Depending on the threshold voltage, the switch transistor can be turned on or off. This 

threshold voltage is determined by the charge stored in the floating gate by a mechanism 

called Fowler-Nordheim tunneling through the thin gate oxide during the process of 

programming and erasing the FPGA. To turn the switch transistor on, a low threshold 

voltage must be programmed in the floating gate, and to turn the switch transistor off, 

a high threshold voltage must be “erased” in the floating gate [19]. 

 

Figure 21: a) Layout of the switch element for the flash-based FPGA. b) Schematic showing the cross 

section X-X’ [20] 
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Figure 22 shows the structure of the floating gate transistor. It is an NMOS 

transistor with a tunnel oxide, which is composed of silicon dioxide, and between the 

floating gate, which is composed of poly silicon, and the control gate, which is also 

composed of poly silicon, there exists a layer of inter-poly oxide-nitride-oxide (ONO) 

composite dielectric [19]. 

 

Figure 22: Schematic of the floating gate transistor in flash-based FPGA [20] 

The energy band diagrams for the floating fate MOS for the high and low 

voltage threshold cases are illustrated in Figure 23 and 24, respectively. For the high 

threshold voltage or the “erased” state case, the threshold voltage of the transistor is 

affected by three mechanisms which are induced by the radiation: holes which are 

injected into the floating gate, trapped holes in the oxides, and emission of electrons 

over the poly-silicon/oxide barriers. When radiation hits the floating gate MOS, some 

electron-hole pairs are generated, which cause, depending on the applied electric field, 

injection and trapping of holes in the floating gate and the oxides, by increasing the 

electric field the number of tapped and injected holes increases. These trapped and 

injected holes result in a decrease in the threshold voltage. When the energy of photons 

caused by the radiation exceeds the potential barrier, electron emission occurs, which 

also cause a reduction in the threshold voltage [19]. 
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Figure 23: Energy band diagram for the floating MOS transistor for the high threshold voltage or 

“erased” case, showing the radiation mechanisms that affects the threshold voltage [19] 

 

Figure 24: Energy band diagram for the floating MOS transistor for the low threshold voltage or 

“programmed” case, showing the radiation mechanims that affects the threhold voltage [19] 
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The relation between the threshold voltage of the floating gate MOS transistor 

and the electronic charge stored on the floating gate can be determined by the following 

equation: 

𝑉𝑡ℎ =  𝑉𝑠𝑖 + 
𝑄𝑓𝑔𝑑𝑜𝑛𝑜

𝜖𝑜𝑥
                                                    (5) 

where Vsi is the threshold voltage determined by processing and it is a function of many 

variables including the dielectric thickness; Qfg is the net electronic charge per unit area 

stored on the floating gate; dono is the effective oxide-nitride-oxide (ONO) thickness; 

𝜖𝑜𝑥 is the oxide permittivity [19]. 

3.2.2 Threshold voltage shift 

The threshold voltage shift in the floating gate MOS transistor is mainly due to 

three radiation induced mechanisms: injection of holes into the floating gate, trapped 

holes into the oxide, and electrons emission over the poly-silicon/oxide barriers. The 

holes injected and trapped into the floating gate and the oxide are due to the generated 

electron-hole pairs generated from the radiation, and the electron emission occurs if the 

photons induced by the radiation have more energy than the potential barrier. These 

three phenomena cause a reduction in the threshold voltage shift of the floating gate 

MOS transistor. The dependency of the threshold voltage on the radiation can be 

determined by the following relation: 

𝑉𝑡ℎ(𝛾) =  𝐶0 + 𝐵𝑉𝑏𝑖𝑎𝑠 + [𝐶1 − 𝐵𝑉𝑏𝑖𝑎𝑠] exp(−𝐴𝛾)                      (6) 

where 𝛾 is the total ionizing dose, 𝑉𝑏𝑖𝑎𝑠 is the control gate bias, and 𝐶0, 𝐶1, B and A are 

physical constants [20]. 

The Id versus Vg curves for the high threshold or “erased” state flash cell before 

and after irradiation is illustrated in Figure 25, and Figure 26 shows the curves for the 

low threshold voltage or “programmed” state flash cell. Figure 27 shows the threshold 

voltage of both “erased” and “programmed” state flash cell, showing experimental data 

fitting to the model determined by equation (6) [20]. 
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Figure 25: TID effect on the high threshold voltage flash cell [20] 

 

Figure 26: TID effect on the low threshold voltage flash cell [20] 
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Figure 27: Experiment threhold voltage versus total dose for both low threshold and high threshold 

voltage flash cells and model prediction (dashed line) [20] 

3.2.3 Propagation delay degradation 

The threshold voltage shift in the floating gate MOS transistor of flash-based 

FPGA, affects the circuit parameters, one of the most important aspects of the effects 

of the threshold-voltage shift, is the degradation in the propagation delay. Propagation 

delay versus total dose experiment was conducted on a 1000-stage inverter string on a 

second-generation flash-based FPGA, named ProASICPLUS APA family. The 

experimental data for the propagation delay for both biased and unbiased cases is 

illustrated in Figure 28. As shown in Figure 28, the propagation delay degradation 

seems to have a total-dose threshold, this threshold has a higher value for the unbiased 

case than the biased radiation case [19]. 
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Figure 28: Experimental propagation delay versus total dose for 1000 inverter string [19] 

The comparison between the SPICE simulation prediction and the actual 

experimental data of the propagation delay for unbiased and biased radiation conditions 

are shown in Figure 29 and 30, respectively. As shown in the figures, the experimental 

data fits the simulation prediction for the biased radiation condition, but the 

experimental data has less degradation than the simulation prediction for the unbiased 

radiation condition [19]. 

 

Figure 29: Propagation delay experimental data compared to SPICE simulation predictions for the 

unbiased case [19] 
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Figure 30: Propagation delay experimental data compared to SPICE simulation predictions for the 

biased case [19] 

Also, one of the factors that affects the propagation delay degradation, is the 

placement and routing of the VersaTiles in the FPGA fabric. The study in [21] shows 

that for accumulated total ionizing dose over 20 krad(Si), the placement and routing of 

VersaTiles in the critical path, seems to play a significant role in determining the 

percentage of the propagation delay degradation. 

3.3 TID testing  

Understanding the nature of testing equipment and environment is crucial to 

successfully simulate the real radiation effect, that is why the determination of the 

nature and specifications of radiation sources is an important issue. Also, the testing 

techniques should be standardized by testing procedure to ensure the reliability of the 

applied test. For total ionizing dose (TID) effect testing, the MIL-STD-883, method 

1019 is the standard test that should be followed in TID testing, also Gamma sources 

(especially cobalt-60 Co60) are commonly used in TID testing. 

The MIL-STD-883, method 1019, used in TID testing, emphasizes to use test 

vectors which should cause the worst radiation effect in the tested devices (worst case 

test vectors “WCTV”). However, it is very difficult to generate these worst-case test 

vectors due to the complexity of the designs. Actually, most TID testing don’t use 

WCTVs due to the difficulty of generating these vectors [7]. 
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Chapter 4 

Design for testability 

With the tremendous advances in the manufacturing technology of electronic 

devices, integrated circuits can now have billions of transistors that operate at very high 

ranges of frequency that can reach the gigahertz range. These advances pose more 

difficulties for chips testing for several reasons. The increased clock frequency requires 

automatic test equipment (ATE) that can operate in the same range of circuit under test 

(CUT). This is because stuck-at faults tests, which are the most common model used in 

digital circuits, have more effectiveness when they are applied at the circuit’s rated 

clock speed. Those ATE that can operate at these high ranges of frequency, can have a 

very high cost, which make the testing of such devices very expensive. Also, the 

increased amount of input and output ports in integrated circuits, especially 

microprocessors which represents the leading edge in the VLSI technology trend, 

increase the cost of ATE required to test such devices, and it can also cause a high 

increase in the testing execution time. Another factor that affects the complexity of chip 

testing is the increased transistor density: the higher the transistor count, the higher the 

complexity of testing. This is due to the increase in the internal modules inside the same 

chip. These internal modules become more difficult to access which in turn makes it 

more difficult to generate test patterns  [22][23]. 

In the early stages of the history of manufacturing integrated circuits, the design 

and test phases were regarded as two separate functions, which were done by two 

separate groups of engineers. During the design phase, the design engineer’s job was to 

ensure that the required functionality is implemented based on the design specifications, 

without any concerns about how this device will be tested after the manufacturing. 

While, during the test phase, the test engineer’s job was to find a way to test the 

manufactured device in an effective way within a reasonable time. This approach 

worked well in the small scale integrated circuits (SSI) where the integrated circuits 

consisted of combinational circuits or simple finite state machines. But, with the 

advance in technology and the movement toward the very large scale integrated circuits 
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(VLSI) era, this approach could not keep up with the increased circuit complexity. 

Another approach was introduced in the early 1980s to test VLSI devices, which relied 

on fault simulation to measure the fault coverage of the supplied functional patterns. 

Functional patterns were developed to test design with long sequential depth, by 

stimulating all internal states and detecting all possible manufacturing defects. But, this 

approach failed to increase the fault coverage beyond 80% and the manufactured 

devices suffered from low quality. That is why it became clear that more attention 

should be paid to design devices with high fault coverage, as many devices were good 

from the functionality point of view, but failed in performance point of view due to the 

high-test cost or low quality. This has led to the introduction of the Design For 

Testability (DFT) engineering in the industry [24]. 

The first problem that DFT tried to solve was to find simpler method to 

stimulate and access all internal states of sequential designs and to increase the fault 

coverage. Many methods of testability measure and ad hoc testability enhancement 

were introduced for this purpose. They were mainly used to increase the circuit’s 

controllability and observability. Controllability is defined as the difficulty in setting a 

certain signal to a certain value. Observability is defined as the difficulty in observing 

the state of a certain signal. However, these methods failed to reach high fault coverage 

that exceeds 90% for large designs. This was due to the fact that generating test patterns 

for sequential circuits is much harder than the case of combinational circuits, even with 

the aid of these testing methods. The problem in generating test patterns for sequential 

circuits is due to the existence of many internal states in the design which are difficult 

to set or observe from external pins. This led to the adoption of structured DFT 

techniques to control and observe these internal states by providing direct external 

access to memory elements. These reconfigured memory elements are called “scan 

cells”. By introducing them in the design, the problem of generating test patterns for 

sequential circuits becomes a problem of generating test patterns for combinational 

circuits. Many innovative algorithms were already developed to address this problem 

[24]. 

Design with scan cells became the most popular structured DFT technique. This 

design called “scan design” is implemented by replacing all or selected memory 
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elements with scan cells, each having additional input called “scan input” and one 

additional output called “scan output”. By connecting the scan output of one cell to the 

scan input of the next cell, a “scan chain” is created. Many scan designs and scan 

architectures have been proposed. A design where all the memory elements are 

transformed into scan cells is called “full-scan design”, where a design with almost all 

memory elements are transformed into scan cells is called “almost full-scan design”. A 

design where some memory elements are selected to be transformed into scan cells is 

called “partial-scan design”. Although, scan designs improved quality, diagnosability, 

and testability of designs, it is becoming inefficient to test deep submicron on 

nanometer VLSI designs. because of the increased cost of traditional test schemes using 

automatic test patterns generation (ATPG) software, and it is becoming hard to maintain 

high fault coverage for these nanometer designs from chip level to the board and system 

level. This led to a new approach that combines the scan design with the logic built in 

self-test (BIST). In this architecture, the circuits that generate test patterns to test the 

CUT and to analyze the output responses are all embedded in the chip or on the same 

board where the chip resides. Logic BIST is crucial safety critical and mission critical 

applications which can be found in defense/aerospace, automotive, and banking 

industries [22][24]. 

4.1 Ad-hoc Design for Testability 

Initially, numerous ad hoc techniques were proposed to enhance the testability 

of designs. These techniques involved making local adjustments to designs to improve 

their testability. While these techniques resulted in some improvements in the testability 

of designs, their main drawback was that they were local and not systematic. This 

means that they cannot be generalized for any design and they have to be repeated in a 

different manner for every design, which will produce unpredictable results [24]. 

Ad hoc techniques depend on good design practices learned from experience, 

some of which are [23]: 

1- Avoid asynchronous logic feedback: 

Feedback in the combinational circuit can cause oscillation for some inputs, 

which makes the generation of test patterns by automatic programs difficult 
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for these circuits. This is because test generation algorithms are only known 

to work with acyclic combinational circuits. 

2- Initializable flip flops: 

The initialization of flip flops can be easily done by adding a clear or reset 

input pin in the design. 

3- Avoid large number of fan-in: 

Gates with large number of inputs are difficult to observe and the output of 

such gates are difficult to control also. 

 One of the most famous ad hoc DFT techniques is test point insertion (TPI). 

Control or observation points are inserted as test points in the internal nodes of a design. 

The identification of these test points is commonly done by testability analysis. Figure 

31 shows an example of the insertion of an observation point for a logic circuit which 

has three low observability points. Point OP2 shows the structure of an observation 

point which is composed of a D type flip flop and a multiplexer. A low observability 

point is connected to input 0 of the multiplexer, and all observation points are serially 

connected into a shift register using input 1 of the multiplexer. A signal which called 

scan enable (SE) is used as the selector of the multiplexer. When SE has a value of 0 

and the clock is applied, the values of the low observability points are captured inside 

the D type flip flops. Then, when SE has a value of 1, the D type flip flops of OP1, OP2, 

and OP3 act as a shift register, allowing the observability of the captured values through 

primary output “OP_output” as shown in the figure [24]. 

 

Figure 31: Example of an observation point insertion [24] 
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Figure 32 shows an example of the insertion of a control point for a logic circuit 

which has three low controllability points. Point CP2 shows the structure of a control 

point which is composed of a D type flip flop and a multiplexer. The original connection 

between the source and destination ends in a low controllability node is cut, and instead 

a multiplexer is inserted. A signal which called test mode (TM) is used as the selector 

of the multiplexer. When TM has a value of 0 normal operation occurs and the value 

from the source end drives the value at the destination end through input 0 of the 

multiplexer. When TM has a value of 1 test mode occurs and the value of the destination 

end is driven from the D type flip flop of the low controllability point through input 1 

of the multiplexer. The D type flip flops of CP1, CP2, and CP3 in the low controllability 

nodes act as a shift register, so that the value required at the destination end can be 

shifted in the flip flops through the input called “CP_input” as shown in the figure. The 

drawback of this architecture is the increase in the delay of the circuit. That is why care 

must be taken in choosing the placement of controlling points especially in the critical 

path. Also, it is recommended to insert a “scan point” which is a combination of control 

and observation point to be able to observe the source end as well [24]. 

 

Figure 32: Example of a control point insertion [24] 
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4.2 Scan design 

To overcome the problem of ad hoc DFT techniques being local and not 

systematic, structured techniques were introduced allowing DFT engineers to follow a 

methodical process to improve the testability of designs. With structured DFT 

techniques, the testing process can be easily incorporated and budgeted for as part of 

the design flow, yielding the desired results. Also, these techniques can be easily 

automated. In fact, electronic design automation (EDA) vendors provide to engineers 

sophisticated DFT tools which simplify and speed up DFT tasks. One of the most 

popular and effective structured DFT technique is the scan design, which can achieve 

the targeted high fault coverage [24]. 

Scan design the structured DFT technique that is most widely used. Its 

implementation includes the transformation of memory elements to “scan cells”, which 

have an additional input port called “scan input” (SI) and an additional output port 

called “scan output” (SO), and by connecting the SO of one scan cell to the SI of the 

next cell, one or more scan chains are created. These scan designs can operate in three 

modes: normal mode, shift mode, and capture mode. In normal mode all test signals are 

turned off and the design operates in its original functionality configuration, while in 

shift and capture mode, a test signal called test mode (TM) is often used to turn on all 

test related signals [22]. Many scan architectures have been proposed, some of which 

are described in the following subsections. 

4.2.1 Muxed D scan design 

 In muxed D scan architecture, memory elements or flip flops are replaced with 

muxed D scan cells, which are composed as shown in Figure 33 of a multiplexer and a 

D type flip flop. The multiplexer uses a signal called “scan enable” SE as its selector, 

to select between the data input (DI) and the scan input (SI) [22]. 
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Figure 33: Illustration of a muxed D scan cell [22] 

Figures 34 and 35 show an example of a sequential circuit and its corresponding 

muxed D full-scan scan circuit respectively. The three D type flip flops FF1, FF2, and 

FF3 in Figure 34 are replaced with three muxed D scan cells SFF1, SFF2, and SFF3 in 

Figure 35. The data input (DI) ports of the scan cells are connected to the combinational 

logic like the original circuit. The scan input (SI) ports of scan cells SFF2 and SFF3 are 

connected to the output ports of their previous scan cells SFF1 and SFF2, respectively, 

to form a scan chain. The scan input port (SI) of the first scan cell is connected to the 

primary input port SI, and the output port of the last scan cell is connected to the primary 

output port SO. When the scan enable SE has a value of 1, shift mode is on, the scan 

cells act as a single scan chain, allowing shifting any combination values in the scan 

cells. When the scan enable SE has a value of 0, capture mode is on, allowing the scan 

cells to capture the test response from the combinational logic when the clock is applied 

[22]. 

 

Figure 34: An example of a sequential circuit [22] 
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Figure 35: Corresponding muxed D full scan circuit of the sequential circuit in figure 34 [22] 

As shown in Figure 35, combinational logic in the scan design has two types of 

inputs: pseudo primary inputs (PPIs) and primary inputs (PIs). The first type, PPIs, are 

the outputs of the scan cells connected to the combinational logic. The second type, PIs, 

are the external inputs to the circuit. Also, the combinational logic has two type of 

outputs: pseudo primary outputs (PPOs) and primary outputs (POs). The first type, 

PPOs, are the inputs of the scan cells, where the second type, POs, are the external 

outputs of the circuit [22]. 

4.2.2 Clocked scan design 

In clocked scan design, memory elements, or flip flops, are replaced by clocked 

scan cells, which resemble the normal flip flops. The only difference is that they operate 

by two different clock sources as shown in Figure 36. Like the muxed scan cell, clocked 

scan cell has two inputs, scan input (SI) and data input (DI). However, unlike the muxed 

scan cell which uses a multiplexer to select between the two inputs data, the selection 

of these two inputs is made using two independent clock sources, shift clock (SCK) and 

data clock (DCK) [22]. 
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Figure 36: Illustration of clocked scan cell [22] 

Figure 37 shows an example of the waveform of the operation of the clocked 

scan cell. The data clock (DCK) is used in normal or capture mode to capture the data 

value at the input port (DI), while the shift clock (SCK) is used in the shift mode to shift 

the data value at the input port (SI) into the cell [24]. 

 

Figure 37: Example of the waveform of the operation of the clocked scan cell [24] 

Figure 38 shows the corresponding clocked scan design of the sequential circuit 

in Figure 34. The three D type flip flops FF1, FF2, and FF3 in Figure 34 are replaced 

with three clocked scan cells SFF1, SFF2, and SFF3 in Figure 38. The difference 
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between the two architecture is that in muxed D scan design, a scan enable (SE) signal 

is used to distinguish between the test and normal operations, while in the clocked scan 

design, two independent clock sources, data clock (DCK) and shift clock (SCK), are 

used to distinguish between these two operations [22]. 

 

Figure 38: Clocked scan full design of the sequential circuit in figure 34 [22] 

The main advantage of the clocked scan architecture is that it eliminates the 

performance degradation due to the increase in the delay of the data input, like the case 

of the muxed D scan design, in which an insertion of a multiplexer in the data input is 

required. However, clocked scan cell requires additional clock routing for the shift 

clock source [24]. 

4.2.3 LSSD  

Level sensitive scan design (LSSD) replaces memory elements by LSSD scan 

cells. It is used for level sensitive latch based designs, unlike muxed D scan and clocked 

scan designs which are used for edge triggered flip flop based designs. Polarity-hold 

shift register latch (SRL) design, which can be used as an LSSD scan cell, is shown in 

Figure 39. It is composed of two latches, one master two ports D type latch (L1), and 

one slave D type latch (L2). Clock sources A, B, and C are used to select between the 
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data input port (D) and the scan input port (I), which drives the scan cell outputs (+L1) 

and (+L2). Either of these two outputs of the scan cell can drive the combinational logic 

in the design [24]. 

 

Figure 39: Illustration of the polarity-hold shift register latch (SRL) [24] 

Clock sources A, B, and C are applied in a nonoverlapping manner to guarantee 

race-free operation of the design. If the design is using output port (+L1) of the scan cell 

to drive the combinational logic, source clock (C) is used by the master latch (L1) to 

latch the data value from the input port (D) and output this value to the output port (+L1) 

of the scan cell. On the other hand, if the design is using output port (+L2) of the scan 

cell to drive the combinational logic, source clock (B) is used after source clock (C) to 

latch the data value from the master latch (L1) and output this value to the output port 

(+L2) of the scan cell. An example of the waveform of the operation of the polarity-

hold SRL scan cell is shown in Figure 40 [24]. 
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Figure 40: Example of the waveform of the operation of the polarity-hold SRL scan cell [24] 

Single latch design or double latch design can be used in the level sensitive scan 

design. In case of the single latch design, the combinational logic is driven by the output 

port (+L1) of the master D type latch (L1), while the slave D type latch (L2) is only used 

for scan testing. To prevent combinational feedback loops to occur due to the usage of 

latches instead of flip flops, there should be at least system clock sources C1 and C2. 

These system clock sources should be applied in a nonoverlapping manner. 

Combinational logic which are driven by the master latches of the system clock source 

C1 should drive the master latches of the second system clock source C2, and vice versa. 

Figure 41 shows the corresponding LSSD using single latch design using polarity-hold 

SRL for the sequential circuit in Figure 34 [22]. 
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Figure 41: LSSD using single latch design for the sequential circuit in Figure 34 [22] 

Figure 42 shows the corresponding LSSD double latch design using polarity-

hold SRL for the sequential circuit as previously shown in Figure 34. In normal mode, 

clock sources C1 and C2 are applied in a nonoverlapping fashion, and clock source C2 

is the same as clock source B. The test mode is similar to that of the muxed D scan 

design. The main difference is that in muxed D scan design a scan enable (SE) signal 

is used to distinguish between the shift and capture operations, while in the double latch 

LSSD, the distinction is done by applying nonoverlapping clocks in the clock sources 

A, B, C1, and C2 [22]. 

 

  

Figure 42: LSSD double latch design of the sequential circuit in Figure 34 [22] 



48 

 

 

The advantage of using LSSD is the possibility of the insertion of scan into latch 

based designs, while the major disadvantage is the requirement of additional clock 

sources routing, which increases the complexity of routing [24]. 

4.2.4 Enhanced scan design 

Enhanced scan design allows the storing of two data bits which can be applied 

consecutively to the combinational logic that is being driven by the scan cells, thus 

increasing the capacity of typical scan cell. This feature in enhanced scan design is 

achieved by the addition of a D type latch to a muxed D scan or clocked scan cell. An 

example of an enhanced scan design is show in Figure 43 [22]. 

 

Figure 43: An example of an enahnced scan design [22] 

Enhanced scan design is used especially in testing path delay fault, in which it 

is required to apply a pair of test vectors in an at-speed manner. With the use of 

enhanced scan design, applying two completely independent and arbitrary vectors to 

the circuit under test is possible and will increase the detection capability of the delay 

fault. In contrast to other scan designs that can only use two functionally dependent 

vectors, which are generated from the combinational logic in testing path delay fault. 

For the example shown in Figure 43, to apply a pair of test vectors <V1, V2>, the first 
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vector V1 is shifted in the scan cells of the design. Then it is stored, by making the 

update signal set to a value of 1, into the D type latches. After that, the update signal is 

set to a value of 0 to keep the values of the first vectors in the latches. The second vector 

is then shifted into the scan cells of the design. Then, the update signal is set again to a 

value of 1 to change the stored value in the D type latches from V1 to V2, while applying 

the clock source after exactly one clock cycle to capture the output response of the test 

vector in an at speed manner [22]. 

The advantage of enhanced scan design over other architecture is that it allows 

to increase delay fault coverage because it makes applying two independent pair of 

vectors to test delay fault possible. However, in order to do that, enhanced scan design 

requires the implementation of an additional D type latch in the scan cell, and it may be 

difficult to maintain the timing between the update signal and the clock source in the 

testing operation. Furthermore, many false paths may be activated during the test 

operation, instead of functional data paths, which causes a problem of over-test. To 

overcome this, delay fault techniques which can be implemented with normal scan 

chains, like launch-on-shift (also called skewed load) and launch-on-capture (also 

called broad side) are used [22]. Also, it is worth mentioning that Intel Pentium 4 

processor used the enhanced scan design 

4.3 Logic Built-in self-test (BIST) 

Logic built-in self-test (BIST) circuits incorporates all the necessary circuits to 

test the digital logic of the circuit inside the chip itself or elsewhere on the same board. 

Logic BIST system commonly composes of four modules as shown in figure 44. The 

test pattern generator (TPG) unit, which is responsible for automatically generating test 

patterns to the inputs of the circuit to be tested, the circuit under test (CUT), the output 

response analyzer (ORA) unit, which is responsible for compacting the output 

responses of the CUT into a signature, and logic BIST controller, which is responsible 

for generating BIST timing control signals like scan enable signals and clocks to 

coordinate the operation of the other units TPG, CUT, and ORA. Output response 

analysis commonly uses compaction, that is why all storage elements in the ORA, TPG, 
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and CUT are required to be initialized to a known state and it is not allowed to propagate 

unknown values from the CUT to the ORA [22]. 

 

Figure 44: Common logic BIST system [22]. 

To generate test patterns or test sequences, TPGs commonly uses linear 

feedback shift registers (LFSRs), they can be used for pseudo random testing, pseudo 

exhaustive testing, and exhaustive testing. In Exhaustive testing, if an n-input 

combinational CUT is required to be tested, all possible 2n test patterns are required to 

be applied, this guarantees single stuck fault coverage of 100%, however for large value 

of n, the test time can be huge due to the high number of test patterns to be applied. To 

overcome this problem, pseudo random testing can be used. In pseudo random testing, 

a subset of the 2n test patterns are generated and fault simulation is used to calculate 

the exact fault coverage. Pseudo exhaustive testing generates 2w test patterns, where 

w<k<n and each output of the CUT depends at most on w inputs, to eliminate the 

requirement of the fault simulation and maintain 100% single stuck fault coverage [22]. 

Multiple input signature registers (MISRs), which is basically constructed form 

a linear feedback shift register (LFSR) with its inputs connected to an XOR gate, are 

commonly used in ORAs to compact the outputs response of the CUT. Usually, to 

decrease the hardware overhead in the ORA, a linear phase compactor, which is 

composed of a network of XOR gates connected to the inputs of the MISR, is used [22]. 
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4.4 Path delay testing 

With the scaling down of dimension as the technology advances, the probability 

of timing related defects increases, which poses new challenges for test engineers. The 

stuck at faults was the most favorite fault model for test engineers, however, this fault 

model cannot work with new design which are characterized with nanometer scale 

dimension. Stuck at fault check whether the signal designated for test has been set a to 

a constant value of 1 or 0 and cannot be changed, or in other word it checks if the signal 

takes an infinite amount of time to rise from 0 to 1 or vice versa. This model fails with 

current design in which very small delay defects can happen due to process variation, 

so another fault model must be introduced to address these small defects which should 

be applied in at speed manner to ensure proper operation of the device under the test. 

Path delay fault model is used to detect accumulated delay defects in critical paths of a 

design, which normal static timing analysis (STA) tool fails to fully addresses as more 

delay variations are caused by the scaling down of dimensions, thus ensuring the proper 

operation of a circuit within the range of the operating frequency, which will result in 

the end in an increase of the quality of the manufactured devices [23][25]. 

4.4.1 Path delay classification  

Path delay faults are different from stuck at faults in that not all test vectors 

applied to test for the designated fault have the same quality, or in other words the 

detection of the fault is not always guaranteed with all test vectors, some tests detect 

the fault independently of any other conditions, while some other detect the fault under 

some conditions. Path delay faults can be classified according to the sensitization 

criteria into: robust, non-robust, validatable non-robust, and functional sensitizable 

[26]. 

To begin with the classification of path delay faults, some terminologies should 

be introduced first. A gate’s “controlling value” is the value of the input of the gate that 

determines the output of this gate regardless of the values of the other inputs in the gate, 

and “non-controlling value” is the complement of the “controlling value” for a 

designated gate. For example, for AND gate, if one input has a value of “0”, the output 
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of this AND gate will be always “0”, so AND gate’s “controlling value” is “0” and its 

“non-controlling value” is “1”, while for example for an OR gate, this “controlling 

value” is “1” and the “non-controlling value” is “0”. An “on-input” signal for a path P 

is a signal that exists on the path P, while an “off-input” signal for a path P is a signal 

which resides in an input to a gate in path P but not an “on-input” signal. 

4.4.1.1 Robust testable path delay faults 

In robust sensitization criterion, if there is a fault on a path which can be 

sensitized under this condition, it is possible to observe this fault independently of other 

delays on the path’s “off-input” signals. To ensure robust sensitization conditions of a 

path tested by the sequence of vectors V1 and V2, the following conditions should be 

met. If the on-input of a gate on the path to be tested has a transition from its controlling 

value to its non-controlling value, the off-input can have any value while applying the 

first vector V1 but it has to have a stable non-controlling value while applying the 

second vector V2, or it can have a stable non-controlling value during both V1 and V2. 

If the on-input has a transition from its non-controlling value to its controlling value, 

the off-input must only have a stable non-controlling value. To illustrate this criterion 

more, consider the example of the AND gate shown in Figure 45, input “a” is the “on-

input” of the path under test, and input “b” is the “off-input”. S1 represents a stable 

input value of “1” under the sequence of two test vectors V1 and V2 used for path delay 

testing, and X1 represents an unspecified value during the application of the first test 

vector V1 (could be 1 or 0) and a stable 1 under the application of test vector V2. For 

the first case, the on-input has a 0 to 1 transition which corresponds to a transition from 

the controlling value to the non-controlling value of the AND gate. To ensure robust 

sensitization the off-input can have any value while applying the first vector, but must 

have a stable 1, which is the non-controlling value of the AND gate, while applying the 

second vector. In case the on-input has a transition from 1 to 0 which is a transition 

from the non-controlling value to the controlling value of the AND gate, the off-input 

can only have a stable 1 which is the non-controlling value of the AND gate while 

applying both vectors V1 and V2. 
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Figure 45: Robust sensitization criterion for an AND gate [26] 

Robust testable path delay faults are characterized by the existence of a 

sequence of test vectors that activates the required transition on the target path to be 

tested, also satisfying the early mentioned conditions for the off-inputs for every gate 

in the targeted path. An example of a robust testable path delay fault is shown in Figure 

46. Path {a, d, e, g} is a robust testable path, and as shown off-input “a” and “f” can 

have any value while applying the first vector. However, they must have a value of 1, 

which is the non-controlling value of the AND gate, while applying the second vector. 

This is because the on-input has a transition from 0 to 1, which is a transition from 

controlling to non-controlling value of the AND gate. Off-input “c” must have a stable 

0 (S0), which is the non-controlling value for the OR gate, since the on-input has a 

transition from 0 to 1, which is a transition from non-controlling to controlling value of 

the OR gate [26]. 

 

Figure 46: An example of a robust testable path delay fault [26] 

4.4.1.2 Non-robust testable path delay faults 

In non-robust sensitization criterion, if there is a fault on a path which can be 

sensitized under this condition, it is possible to observe this fault depending on the 

delays of other signals outside the path to be tested. The conditions for non-robust 

sensitization are less strict than robust sensitization. To show this consider the example 
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shown in Figure 47. The on-input “a” has a transition from 1 to 0, which is a transition 

from non-controlling to controlling value of the AND gate. However, the off-input “b” 

does not have a steady value of 1, which is the non-controlling value of the AND gate 

like the case in robust sensitization. Instead it undergoes a transition from 0 to 1, which 

is a transition from the controlling to non-controlling value of the AND gate. This 

results in an observable fault at the output of the gate depending on the arrival time of 

the transition of the off-input. If the transition of the off-input arrives later than the 

transition of the on-input, it will mask the propagation of the fault on the on-input to 

the output of the gate. In this case the test is called invalidated. On the other hand, if 

the transition of the off-input occurs before the transition of the on-input, the 

propagation of the fault will be observable at the output of the gate [26]. 

 

Figure 47: An example of non-robust sensitization of an AND gate [26] 

Non-robust testable path delay faults are characterized by the existence of both 

a sequence of test vectors that activates the required transition on the target path to be 

tested, and at least one off-input signal satisfies the early mentioned condition in the 

targeted path. An example of a non-robust testable path delay fault is shown in Figure 

48. If the transition in the off-input “d” arrives after the transition in the on-input “c”, 

the propagation of the fault at “c” will be masked and the test will be invalidated. If the 

transition in the off-input “d” arrives before the transition in “c”, the propagation fault 

will be observed at the output “e” [26]. 

 

Figure 48: An example of a non-robust testable path delay fault [26] 
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4.4.1.3 Validatable non-robust testable path 

delay faults 

To explain validatable non-robust testable path delay faults, consider the 

example shown in Figure 48. Rising transition in signal “d” is the only path that can 

mask the fault propagation of path {a, c, e} making its test invalidated. If the path in 

signal “d”, which is a robust path, is tested for delay faults and found that it is faulty, it 

will make the circuit faulty and the application of test of the non-robust path {a, c, e} 

becomes unnecessary. But if the path in signal “d” was found not faulty, which will 

make the transition in signal “d” arrive before the transition in “c”, making the path 

delay fault observable at the output “e”. The path delay fault in path {a, c, e} is then 

called a validatable non-robust testable path delay fault [26]. 

4.4.1.4 Functional sensitizable path delay faults 

In functional sensitization criterion, if there is a fault on a path which can be 

sensitized under this condition, it is possible to observe this fault depending on the 

delays of other signals outside the path to be tested just like the case in non-robust 

sensitization criterion. To show this, consider the example shown in Figure 49. The on-

input “a” has a transition from 1 to 0, which is a transition from non-controlling to 

controlling value of the AND gate. The off-input “b” has also a transition from 1 to 0 

like the on-input “a”. This results in an observable fault at the output of the gate 

depending if the transitions of both the on-input and the off-input arrive late [26]. 

 

Figure 49: An example of functional sensitization of an AND gate [26]. 

Functional sensitizable path delay faults are characterized by the existence of a 

sequence of test vectors that activates the required transition on the target path to be 

tested, and at least one gate in the target path has a transition from non-controlling value 
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to controlling value in both its on-input and off-input. An example of a functional 

sensitizable path delay fault is shown in Figure 50. The path delay fault in path {b, c, 

e}, which has a rising transition, will always under any sequence of test vectors be 

considered a functional sensitizable path delay fault. This is because signal “d” will 

always have a transition from 0 to 1, which is a transition from the non-controlling to 

controlling value of the OR gate, and so is the transition in signal “c”, and depending 

on the transition arrival times of signals “c” and “d”, the fault propagation can be 

observed at the output of the OR gate “e” [26]. 

 

Figure 50: An example of a functional sensitizable path delay fault [26] 

4.4.2 Path delay test methodologies  

In path delay fault testing, the type of the circuit under test and the DFT used 

decides how the test is applied. In this section, several path delay test methodologies 

are introduced. 

4.4.2.1 Slow-clock combinational test 

This methodology is applicable for combinational circuits or sequential circuits, 

which are characterized by the presence of flip-flops at their primary inputs and primary 

outputs. As shown in Figure 51, an input and output latch are added to the input and 

output of the circuit under test respectively. In normal operation, only one clock source 

control the latches i.e. system clock, its period is Tc. In testing operation, there should 

be two independently controllable clock sources which control the input and output 

latches. These clock sources should have a phase delay or a skew between them. To 

test the delay of a certain path, a sequence of two vectors V1 and V2 must be applied to 

the circuit under test. The first vector V1 is applied at time t0 to the input of the circuit 

under test, and after a time Ts, which should be longer than the system clock period to 
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ensure the stabilization of all signals in the circuit due to V1. The second vector is 

applied to the input of the circuit under test. The circuit under test must be allowed to 

run for exactly one clock period of its rated clock Tc. That is why the skew between the 

two clock sources in the input and output latches should be equal to the system clock 

period. If there is no fault in the path under test, the output of the circuit due to the 

second vector V2 should be observed in the output latch. In case the delay of the path 

under test exceeds the rated clock period i.e. faulty path, the output of the circuit due to 

V1 will be observed instead at the output latch [23][26]. 

 

Figure 51: Slow-clock combinational test methodology [26]. 

4.4.2.2 Normal-scan sequential test 

As mentioned before, path delay testing required the application of a sequence 

of two vectors. In sequential circuits with normal scan circuit i.e. with no hold latches, 

all primary inputs and internal states are controllable while applying the first, however, 

when applying the second vector, only the primary inputs are full controllable, and the 

internal states depends on the previous states due to the first vector. This requires that 

the second vector applied to the circuit under test be a function of the first applied 

vector. Two methods are used to generate the second vector as a function of the first 

vector. Scan-shift test or skewed-load test or launch-on-shift test method, generates the 

second vector by applying a one bit shift to the scan register, so the internal states of 
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the second states will be one bit shifted than the internal states of the first vector. The 

second method called broad-side test or launch-on-capture test, generates the second 

vector as a function of the first vector, and the internal states of the second vector are 

generated by propagating the combinational output due to the first vector into the scan 

registers [22][23][26]. The operation of the two methods is shown in Figure 52. 

 

Figure 52: Normal-scan sequential test methodology [23] 

In launch-on-shift test, the first vector V1 is scanned into the scan registers using 

a slow clock source. After that, one more period of this slow clock is applied to shift 

the bits in the scan register, and the internal states of V2 is applied to the scan register. 

As soon as the primary inputs of the second vector are applied to the circuit under test, 

the normal operation is on for exactly one rated clock period, and the outputs are 

latched. Primary outputs are observed and the internal bits of the scan register are 

scanned out to compare them with the expected outputs to check whether a fault 

occurred or not [23]. 

In launch-on-capture test, the first vector V1 is also scanned into the scan 

registers using a slow clock source, and then normal mode is on by making the signal 

test control TC equal to 1. This operation should be also controlled by the slow clock 

source. As a result, the combinational output due to the first vector is latched inside the 

scan register which are the internal states of the second vector V2. While the normal 

operation is on, one rated clock period should be applied to have the transition of 

V1V2. At the end of this rated clock period, the outputs are latched, and the scan 
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registers can be scanned out and compared with the expected outputs to check whether 

there is a fault or not [23]. 

4.4.2.3 Enhanced-scan test 

The normal-scan sequential test restricts the choice of the second vector applied 

to test a certain path in the circuit to a vector whose internal states are generated from 

either a shift operation of the internal states of the first vector, or as function from the 

combinational output due to the first vector. In enhanced-scan test, any arbitrary two 

vectors can be chosen to test a certain path. This is achieved by the additional latches 

added to normal-scan design, and the hold signal, which allows the storing of the 

internal states of the first vector until the application of the second vector. The operation 

of this methodology is shown in Figure 53 [23]. 

 

Figure 53: Enhanced-scan test methodology [23] 

In this methodology, the first vector’s internal states are first scanned into the 

scan registers via the SCANIN input while setting the test control TC signal to 0. This 

operation is usually done with a slow clock source to decrease power dissipation and to 

ensure that no delay fault in the scan paths interfere with the test process. Then, the 

hold signal is set to 1 to transfer these internal states to the hold latches. The internal 

states of the second vector are then scanned into the scan registers while the signals due 

to the first vector stabilizes. After that, the primary inputs of the second vector are 

applied while setting the hold signal to 1 and the test control to 1 to have a normal 

operation for exactly one rated clock period. This will result in the required transition 

V1 V2 in the hold latches and the inputs of the combinational circuit. At the end of 

this rated clock period, the outputs are latched, and the internal states are scanned out 

to be compared with the expected outputs to check if there is a fault or not [23]. 
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Chapter 5 

WCTV generation for ASIC and FPGA 

MIL-STD-883, method 1019, is the standard that should be followed to test 

electronic circuit under TID effect. The standard emphasizes the use of worst case test 

vectors in testing electronic circuits, however, worst case test vectors are not typically 

used in the testing process, due to the difficulty of generating these vectors for the 

circuit under test. But, several methodologies have been proposed to generate worst 

case test vectors for electronic circuits exposed to TID effect. In this chapter, a review 

of some methodologies that targets both, application specific integrated circuits 

(ASICs), and field programmable gate arrays (FPGAs), is presented. 

5.1 WCTV for ASICs 

The methodology in [1] generates worst case test vectors for leakage current 

failure induced by TID in ASIC cells for both combinational and sequential circuits. 

The methodology uses normal ASIC design flow tools to generate the worst case test 

vectors. First, the failure in each cell in the library used is analyzed, and a fault model 

for every cell is developed. SPICE simulation is used to validate these fault models 

using the target process transistor parameters and parametric degradation from total 

dose experiments. Then, a package of VHDL/Verilog functions is developed 

implementing the fault models mentioned before. After that, two identical instances of 

netlist of the circuit under test, generated from normal synthesis tools, are added to the 

testbench, allowing simultaneous simulation of the circuit under test under both 

irradiation input vectors (I), and post irradiation input vectors (P). Finally, by using 

normal simulation tools, all possible combinations of irradiation input vectors and post 

irradiation input vectors are applied to the circuit under test, to find the vectors that will 

make the circuit exhibits maximum leakage current (max_IL). The testbench setup for 

this methodology is shown in Figure 54.  
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Figure 54: Testbench setup to identify worst case test vectors for leakage current failure in ASICs [1]. 

Another methodology is proposed in [2] to generate worst cast test vectors for 

logic failure in combinational circuits of ASIC exposed to TID effect. The methodology 

starts with the register transfer level (RTL) VHDL or Verilog of the design, then by 

using synthesis tool, a netlist composed of the standard cells found in the library used 

is generated, which can be expressed in VHDL or Verilog. Each cell in the generated 

netlist is then analyzed and a fault model is developed based on the logic failure analysis 

of the cell, and this model is validated using SPICE simulation with the transistor 

parameters extracted from the technology used in the synthesis and the transistor 

parametric degradation from total dose experiments. Depending on the cell, the fault 

model can be stuck at 0 or stuck at 1. A ranking system is then developed to order the 

cells per their sensitivity to TID effect induced by radiation. The methodology then 

targets the cells with the highest sensitivity, and automatic test pattern generation 

(ATPG) tools like Mentor Graphics FastScan is used to insert a stuck at 0 or stuck at 1, 

depending on the targeted cell and its fault model, at the output of the cell. The ATPG 

tool will generate input test patterns, which will be the WCTV of the design under test, 

and the fault will manifest at the primary output of the circuit. 

The advantage of this methodology, is that it decreases significantly the time 

needed if exhaustive search is used for the identification of WCTVs, especially large 

design with high number of inputs and large number of transistor count, for example 

the exhaustive search for WCTV of 64x64 multiplier requires 2256 combinations of 
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irradiation and post irradiation input test vectors to be simulated, which is impossible 

to do. However, the disadvantage of this methodology, is that it only applies to 

combinational circuits of ASIC, but most ASIC design are composed of sequential 

circuits. 

A new methodology is proposed in [3] that makes use of genetic algorithm in 

the identification of WCTV for leakage current failure in ASICs exposed to TID effect. 

This methodology also develops a fault model for each cell in the library used, but in 

this time the fault model includes the effect of the leakage current induced in the field 

oxide, and these fault models were implemented using VHDL functions. The design is 

first synthesized using normal synthesis tools, and a netlist written in Verilog is 

generated. The synthesized netlist in Verilog along with the fault models of each cell 

mentioned before written as VHDL functions are simulated in Mentor Graphics Questa 

simulation tool. A smart search algorithm based on genetic algorithm principles is then 

used instead of the exhaustive search method which can take very long time in designs 

with large number of inputs for the identification of the WCTV. This search algorithm 

is written in System Verilog simulating the design under test using normal simulation 

tools. The authors compare between the exhaustive search algorithm and the search 

algorithm based on genetic algorithms for an example design of an 8x8 multiplier. The 

search algorithm based on genetic algorithm significantly reduced the time for the 

identification of WCTV to an order of a few seconds compared to a whole two days 

that the exhaustive search require to generate WCTV for a simple design like an 8x8 

multiplier. 

This methodology significantly reduced the time needed for the identification 

of WCTV of designs, compared to the time needed by the exhaustive search algorithm 

which can be impossible in some cases where the design is characterized by a large 

number of inputs and a high number of transistor count. And although, the fault model 

includes the effect of local oxidation for silicon (LOCOS) which is not used in modern 

technologies, the authors mention that the fault model is still applicable for a more used 

technology like shallow trench isolation (STI). 

In [4] another methodology is proposed for the identification of WCTV for logic 

faults in ASIC exposed to TID effect. This methodology begins also with the 
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development of fault models for logic failure for each cell in the library used, but this 

methodology includes process technologies that exhibit field oxide (FOX) edge leakage 

which wasn’t discussed in the other methodologies. Including the FOX leakage in the 

fault model of the cells will increase the accuracy of the failure analysis of cells, because 

as the technology advances, the FOX leakage becomes the dominate contributor to the 

device failure. These new fault models are then implemented using VHDL or Verilog, 

and a logic simulator like Mentor Graphics ModelSim is used for the identification 

input vectors combination satisfying the excitation and manifestation conditions. A 

ranking system is then developed to order each cell according to their sensitivity to 

logic failure due to TID effect, and by targeting the cells with the highest sensitivity by 

inserting a stuck at 0 or stuck at 1, depending on the fault model of the designated cell, 

ATPG software tool like Mentor Graphics FastScan can be used for the identification 

of inputs vectors that manifest these stuck at faults at the primary outputs of the design 

under test, and these vectors will be the WCTV for this design if it is guaranteed that 

no logical masking happens between the vectors. The flow diagram of the mentioned 

methodology is shown in Figure 55. 

 

 

Figure 55: Flow diagram to identify worst case test vector for ASICs [4] 
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A new methodology designed especially for ASIC composed of sequential 

circuits is proposed in [5]. The methodology is used for the identification of WCTV for 

leakage, logic, and delay failure of sequential circuits in ASIC exposed to TID effect. 

The difference between combinational circuits and sequential circuits, is that the later 

are characterized by the presence of memory elements. So, in order to test sequential 

circuits for a single fault, a sequence of test vectors is required to be applied to the 

circuit to initialize the memory elements to a known state, as opposed to the case of 

combinational circuits where a single test vector can be applied to the circuit to test it 

for a single fault. The authors classify sequential circuits into two broad categories: 

cycle-free circuits, which are characterized by the absence of feedbacks between the 

flip-flops making the length of test vectors sequence bounded by its sequential depth 

which is determined by the number of flip-flops in the circuit, like pipelined sequential 

circuits, and cyclic circuits, which are characterized by an undefined sequential depth 

which make the upper limit of test vectors sequence also undefined, like finite state 

machines circuits.  

For cycle-free sequential circuits, the authors report that flip-flops are not the 

dominant contributor to the circuit failure due to TID effect, instead the combinational 

logic existing between flip-flops are the dominant contributors. In the methodology, an 

equivalent combinational circuit is constructed from the original sequential circuit by 

removing its memory elements, and then fault model of each cell is developed to rank 

the cells in order of their sensitivity to failure induced by TID effect. Then, ATPG tool 

is used to generate input test vectors to exhibit stuck at 0 or stuck at 1 fault at the outputs 

of the most sensitive cells in the design depending on the developed fault models. These 

input test vectors are the WCTV for the designated failure of the original sequential 

circuit. These vectors must be applied for a number of clock cycles equal to the number 

of the flip-flops in the design under test to fill the memory elements with the required 

states. For cyclic sequential circuits, the equivalent combinational circuit is also 

constructed, but this time its inputs are the primary inputs of the original circuit and the 

registers of the previous state. ATPG tool is also used to generate test vector sequence 

that will induce a stuck at 0 or stuck at 1 faults at the outputs of the most sensitive cells 
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in the design, and the fault will be exhibited in the primary outputs of the original 

circuit. 

Although this methodology was the first to address generation of WCTV 

especially for sequential circuits, as the generation of these vectors is very hard due to 

difficulty in controlling the internal states of the memory elements in sequential circuits, 

however, this methodology cannot be applied to large designs with large number of 

memory elements, because it will be more harder and even impossible to generate input 

vectors sequence that will initialize memory elements to known states. 

Another effort is presented in [6] to generate WCTV for delay failure in ASIC 

exposed to TID effect. The methodology starts first with introducing a novel fault 

model for delay failure in sequential circuits. The methodology explains that the 

maximum frequency that a sequential circuit can operate depends on the maximum 

delay in the combinational logic between any two flip-flops or what is called critical 

path. In order to have a delay failure induced by TID effect, the delay in the 

combinational logic in a chosen critical path must exceed the slack made by the 

operating frequency. The methodology generates WCTV using two steps. The first step 

is to identify number of critical paths that can be candidates for the testing, these paths 

should have the longest delay between primary inputs and primary outputs, and by 

using directed graph and the developed fault models, the candidates critical paths for 

testing can be identified. The second step is to identify a set of irradiation and post 

irradiation input vectors that will exhibit maximum delay in the paths generated from 

the first step. For this step, an algorithm based on genetic algorithm is developed to 

identify the test vectors maximizing the delay of the candidates critical paths generated 

from the first step using the developed fault model.  

The advantage of this methodology is that it didn’t rely on exhaustive search for 

the generation of WCTV, which in large design with high number of inputs and 

sequential circuits with large number of states can take very long time to implement or 

it can be even impossible to simulate such huge number of possibilities. Instead, the 

methodology used genetic algorithm basics to develop a search algorithm to generate 

WCTV, which in this case will take much less time to complete compared to the 
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exhaustive search method. Giving this, the methodology can be applied to large designs 

which are characterized by large number of inputs and internal states. 

5.2 WCTV for FPGA 

All the mentioned methodologies above depended on the transistor level circuit 

information, which can be easily extracted in case of a design using standard cell based 

ASIC, however, this information are proprietary and cannot be shared with normal 

users in case of FPGAs. That is why, it has been hard to identify WCTV for FPGA 

exposed to TID effect. 

There has not been any effort to identify WCTV for FPGA exposed to TID 

effect except in [7], which proposes a methodology to identify WCTV for delay failure 

in flash-based FPGA. The authors built their methodology on the fact that floating gate 

transistor, which is the switch element in flash-based FPGA, is the dominant factor in 

the degradation of flash-based FPGA induced by TID effect. Since the transistor level 

circuit of each cell in the FPGA cannot be shared with normal user, the state of each 

floating gate transistor (whether it is used or not) in each cell cannot be known, that is 

why the methodology depends on probability analysis to estimate the number of 

floating gate transistors used in every cell in the FPGA. The authors then explain that 

in order for a delay failure to manifest in the operation of the FPGA, the delay of the 

combinational logic between two flip-flops must exceed the slack value for the 

operating frequency of the FPGA. The identification of WCTV is done through three 

steps. First, by using the static timing analysis (STA) tool of the FPGA vendor, some 

candidates critical paths with the highest delay are identified. Second, from these 

critical paths, the path with the highest estimated number of floating gate transistors 

and the highest estimated probability to occur is chosen. Third, ATPG tool like Mentor 

Graphics FastScan is used to identify input test vectors that will allow a signal to toggle 

its value from 0 to 1 without being masked by other signals in the chosen path. The 

toggling must manifest its value at the primary output of the circuit under test to be able 

to observe the fault. These input test vectors are the WCTV for the design implemented 

in the FPGA. 



67 

 

 

Although this methodology was one of its kind, because it was the first effort to 

identify WCTV for FPGA design, and it only depends on the information that the FPGA 

vendor give to normal users, however, this methodology only applies to combinational 

circuit of sequential circuits characterized by a flip-flop at the input and a flip-flop at 

the output of the circuit, and that is very rare to find in today’s design, as most of the 

designs consists of complex sequential circuits with many flip-flops and internal states. 
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Chapter 6 

Methodology 

A novel methodology is proposed to generate WCTV for flash-based FPGA 

exposed to TID effect. The methodology is based on the delay failure analysis and fault 

model developed in this effort [7]. The authors have developed methodology to 

generate WCTV, but only for combinational circuit or sequential circuits characterized 

by the presence of flip-flops at the primary inputs and outputs of the circuit under test. 

However, this is a very rare case as most designs contain complex sequential circuits. 

In this thesis, a novel methodology is proposed to target complex sequential circuits by 

adopting DFT techniques which originally used for testing complex ASIC designs. The 

methodology is verified experimentally by implementing different designs on 

MicroSemi ProASIC3 and exposing them to total ionizing dose using Cobalt 60 facility.  

6.1 Failure analysis 

For a synchronous circuit, the maximum operating frequency is determined by 

modeling the design into a combinational circuit between the source and destination 

registers as shown in Figure 56. The clock period must satisfy the following equation: 

𝑇𝑐𝑙𝑘 ≥  𝑡𝑑 + 𝑡𝑐𝑞 + 𝑡𝑠𝑢                                                          (1) 

where 𝑡𝑑is the propagation delay of the combinational circuit between the source and 

destination registers, 𝑡𝑐𝑞is the clock to output delay of the source register, and 𝑡𝑠𝑢 is the 

setup time of the destination register [7]. 

 

Figure 56: Synchronous circuit’s model [7]. 
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Depending on the value of the setup slack, delay failure can occur in the target 

design. If the setup slack is positive, then the circuit will operate normally under the 

specified clock period. However, if the setup slack is negative a delay failure will occur 

in the circuit operating with the specified clock period. The decrease in the setup slack 

can be expressed as: 

∆𝑆𝑠𝑢 = −(∆𝑡𝑑 + ∆𝑡𝑐𝑞 + ∆𝑡𝑠𝑢)                                          (2) 

as seen from the above equation, the decrease of the setup slack depends on the increase 

in the propagation delay of the combinational circuit, the clock to output delay of the 

source register, and the setup time of the destination register. 

To identify the different factors contributing to the increase of the delays of the 

parameters mentioned in (2), an analysis of the cells composing the FPGA under test 

must be done. In this thesis MicroSemi ProASIC3 flash FPGA is the chosen FPGA for 

the analysis. This FPGA consists of a sea of logic cells called VersaTiles. Each 

VersaTile can be configured as either a three-input lookup table (LUT), or as a D-type 

flip-flop/latch (with or without enable) as shown in Figure 57 [27].  

 

Figure 57: Various configurations of VersaTile [27] 

The configuration of Versatiles is done by programming the 31 FG switches in 

each VersaTile as shown in Figure 58. The transistor level schematic of these FG 

switches is shown in Figure 59 [7]. 
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Figure 58: Schematic diagram of a VersaTile [7] 

 

Figure 59: Transistor level of a FG switch [7] 

The exact configuration of each FG switch in a VersaTile is proprietary and 

cannot be shared with normal user. However, the analysis in [7] indicates that there 

may be one, two, or three FG switch in the path from the input of the VersaTile to the 

output. The rest of the FG switches are used for the connection of other nodes to the 

ground. Furthermore, in the delay failure analysis in [7], FG switches are assumed to 

be the dominant factor in the increase of the delay parameters mentioned before in 

equation (2) due to TID effect.  
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In addition to the FG switches found in each Versatile, which can include one, 

two, or three FG switches in the path from the input to the output, FG switches can also 

be found in the interconnection between different VersaTiles. These switches are used 

to connect VersaTiles and larger functions with any of the four-level routing hierarchy. 

Therefore, the decrease in the setup slack due to TID effect is dominant by the 

degradation of the FG switches found in the paths of setup time of the destination 

register, clock to output delay of the source register, combinational circuit between the 

source and the destination register, and the interconnection between the VersaTiles. It 

has been found that the clock to output path contains one FG switch, and the setup time 

path contains two FG switches. Each cell in the combinational circuit can have from 

one to three FG switches depending on its configuration based on the required 

functionality of the cell. The interconnection between the cells can have any number of 

FG switches. Therefore, the total decrease of the setup slack due to TID effect taking 

only in consideration the increase in the delay of FG switches can be expressed by the 

following equation: 

∆𝑆𝑠𝑢 = −(∆𝑡𝑠𝑤×𝑁 + 3)                                                       (3) 

where ∆𝑡𝑠𝑤 is the increase of the delay in the FG switch due to TID effect, and 𝑁 is the 

estimated number of FG switches in the combinational circuit between the source and 

destination registers and the interconnections between the cells. There is an addition of 

three FG switches to the estimated number of FG switches to account for the switches 

in the clock to output and setup time paths [7]. 

6.2 Fault model 

To identify WCTV for a design, a fault model must be developed, which 

abstracts the targeted failure at a certain level of circuit representation. In this thesis, 

the fault model developed in [7] is used to identify WCTV for sequential circuits in 

flash-based FPGA.  

As it has been established before, the increase in the delay of the FG switches 

is the dominant factor in the decrease in the setup slack due to TID effect. However, 

the exact number of the FG switches in the combinational circuit between the source 

and the destination registers, and the FG switches in the interconnections between the 
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cells in a certain path i.e. 𝑁 cannot be exactly determined as they are proprietary to the 

FPGA vendor. This is because the number of FG switches in a VersaTile depends on 

the required functionality to be implemented in this VersaTile. Several configurations 

of the switches in a certain VersaTile can result in the same functionality. Furthermore, 

the four-level hierarchical routing makes it impossible for the normal user to 

deterministically estimate the exact number of FG switches in the routing nets. Thus, 

the authors in [7] followed an approach based on probability to find the total estimated 

number of FG switches in a certain path i.e. 𝑁̂.  

To determine an estimated number of FG switches for a given cell i.e. 𝑘̂, every 

configuration of the switches in the VersaTile that results in the same functionality must 

be analyzed. The probability that the cell has a particular number of FG switches is the 

number of configurations that results in this number of switches divided by the number 

of the total possible number of configurations that results in the same functionality of 

the cell. For example, NOR3 cell has three inputs X1, X2, and X3. There could be 28 

different configurations of FG switches inside the VersaTile that will result in a 

functionality of a three input NOR gate. The estimated number of FG switches from 

every input to the output of the cell is shown in Table I. For the path from input X1 to 

output Y, the most probable number of FG switches i.e. 𝑘̂ is equal to 1 with a probability 

of 15/28. The most probable number of FG switches from input X2 to output Y equal 

to 2 with a probability of 27/28. For input X3 to output Y path the most probable number 

of FG switches is 3 with a probability of 20/28. Thus, the most probable estimated 

number of FG switches for NOR3 𝑘̂ is equal to 2 and it is along the path from input X2 

to output Y [7]. 
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Table I 

Estimated number of FG switches along the paths from every input to the output of a NOR3 cell [7] 

 

Input Output 
Estimated number of 

FG switches (𝑘̂) 
Probability 

X1 Y 3 13/28 

X1 Y 1 15/28 

X2 Y 1 1/28 

X2 Y 2 27/28 

X3 Y 2 8/28 

X3 Y 3 20/28 

 

On the other hand, for an OR3 cell, there is only one configuration of the FG 

switches in the VersaTile to have a functionality of a three input OR gate. That is why 

in this case the exact number of FG switches along the paths from its input to the output 

of the cell can be determined. The number of FG switches along the paths of every input 

to the output of the cell is shown in Table II [7]. 

Table II 

Estimated number of FG switches along the paths from every input to the output of an OR3 cell [7] 

 

Input Output 
Estimated number of 

FG switches (𝑘̂) 
Probability 

X1 Y 1 1 

X2 Y 2 1 

X3 Y 2 1 

 

This uncertainty in determining the exact number of FG switches along the path 

of the combinational circuit between the source and destination registers, and the 

routing nets between the VersaTiles, results in an estimated increase in the delay along 

a chain of VersaTiles, which can be given by the following equation [7]: 

∆𝑡𝑑 = ∆𝑡𝑠𝑤×𝑁̂                                                                (4) 

The experiments conducted in [7] reveals that there is an increase in the delay 

along a chain of VersaTiles with the increase of 𝑁̂ at different total dose level below 65 

krad(Si). The experiments also show that the relationship between the increase in the 
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delay and the increase of the estimated number of switches is nonlinear for almost all 

cases. Hence, in this methodology, critical paths with the highest number of estimated 

FG switches along the path are targeted for delay testing to identify WCTV for 

sequential circuits of flash-based FPGA exposed to TID effect. 

6.3 WCTV generation for sequential circuits 

In the previous effort [7] a methodology has been proposed to generate WCTV 

of flash-based FPGA exposed to TID effect. However, this methodology is only limited 

to combinational circuits or sequential circuits characterized by the presence of flip-

flops at the primary inputs and outputs of the circuit under test. These cases are very 

rare to find as most designs consist of complex sequential circuits. In this thesis, a new 

methodology is proposed to generate WCTV for sequential circuits in flash-based 

FPGA using DFT techniques which are usually used for testing manufacturing defects 

in ASIC chips. 

Generating test patterns for sequential circuits is harder than generating test 

patterns for combinational circuits. This is because in sequential circuits, in order to 

test a certain fault e.g. path delay fault, not only a pair of vectors must be applied to the 

primary inputs of the circuit under test, but also the internal states of registers in the 

sequential circuit must be controlled and initialized to a determinant value. Controlling 

these internal registers is difficult and maybe impossible for complex designs with high 

number of registers [24]. To overcome this issue, test engineers often rely on structured 

DFT techniques to increase the controllability and observability of these internal 

registers. The increase in the controllability and observability is done by replacing 

normal registers with scan cells. Despite the fact that DFT techniques were widely used 

for decades in testing complex sequential circuits, they were never used in radiation 

testing to generate WCTV for designs under test. Furthermore, DFT techniques were 

usually used in testing ASIC devices, however, DFT is never meant for FPGA designs 

that is why scan cells are not included in the FPGA macro libraries.  

To generate WCTV for delay failure of sequential circuits in flash-based FPGA, 

path delay fault is used. Path delay fault is used to detect accumulated delay defects in 

critical paths of a certain design. So, in this methodology a number of critical paths of 
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the design under test is chosen based on the maximum estimated number of FG switches 

along the path.  

There exist several types of path delay faults some of which are mentioned in 

section 4.4.1. In this methodology, robust testable path delay fault is chosen. This is 

because WCTV will be the input test patterns that will stimulate delay fault in the 

critical path with the highest estimated number of FG switches along the path and 

manifest this fault in the primary output of the circuit, and there must be no other delay 

faults which can interfere with the transition in the targeted path. This will ensure an 

observation of the delay fault for only the targeted path in the primary output of the 

circuit. Furthermore, to ensure correct observability, this methodology even put more 

restrictions on the conditions for robust testable path delay mentioned in section 4.4.1.1 

by making the off-inputs of gates along the path have only a steady non-controllable 

value. To illustrate the difference between the two conditions consider the example 

shown in Figure 60. In a), normal robust sensitization conditions are shown for an AND 

gate. If the on-input has a transition from the controlling value to the non-controlling 

value, the off-input can have any value during the application of the first vector and a 

non-controlling value during the second vector. On the other hand, if the transition of 

the on-input is from the non-controlling value to the controlling value, off-input must 

have a steady non-controlling value during the application of the two vectors. However, 

in b) whether the on-input has a transition from the controlling value to the non-

controlling value or vice versa, off-input must have a steady non-controlling value 

during the application of the two vectors. 

 

Figure 60: Conditions of an AND gate for: a) normal robust sensitization and b) modified robust 

sensitization for WCTV generation 



76 

 

 

To generate test patterns that will stimulate path delay fault on a target path 

based on the early mentioned conditions, ATPG tools such as Mentor Graphics 

FastScan are used. However, for sequential circuits these ATPG tools, even state of art 

of these tools fail to generate test patterns for sequential circuits due to the lack of 

controllability and observability for the internal registers in the circuit. This is why test 

engineers modify their designs and replace normal registers with scan cells. This is a 

normal design step in the ASIC flow and standard cells library provide the designer 

with scan cells. However, scan cells are not included in the FPGA macro libraries. 

To overcome this issue in FPGA design flow, the netlist generated from the 

RTL code by the FPGA vendor synthesis tool is used with DFT tools such as Mentor 

Graphics DFTAdvisor. FPGA vendors like Microsemi provides the user with EDA 

tools to program their design in the target FPGA. A simple configuration can be made 

to make the synthesis tool of the FPGA vendor such as Synplify Pro, which is used by 

Mircrosemi EDA tool Liber SOC, generate a netlist from the RTL code. The netlist can 

be written in Verilog or VHDL. This netlist can be used by DFT tools to replace every 

normal flip-flop in the design with a scan cell to increase the controllability and 

observability of the internal registers.  

The DFT tool connects the scan cells to each in a scan chain. In the scan chain, 

every output of the scan cell is connected to the “scan-in” input of the next scan cell. A 

primary input is added to the design which is the “scan-in” input of the first scan cell in 

the scan chain. Also, a primary output is added to the design which is the output of the 

last scan in the scan chain. A control signal i.e. scan enable SE is also added to the 

design to distinguish between the normal operation and the testing operation where the 

scan chain acts as a shift register. An example of a sequential circuit and its 

corresponding scan design is shown in Figure 61. In this methodology, muxed D scan 

architecture, discussed in section 4.2.1, is chosen.  
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Figure 61: An example of a sequential circuit and its corresponding muxed D scan design 

The new netlist generated from the DFT tool containing scan cells can now be 

delivered to ATPG tool such as Mentor Graphics FastScan to generate test patterns for 

path delay fault of the target path. In FastScan, path delay fault must be chosen as the 

fault type. This can be done by setting the fault type to path delay fault in a “.do” file 

that runs when the tool starts. An example of such script is shown in Figure 62. 

 

Figure 62: An example of a script to set the fault type to path delay fault 

The target path must be described in a “. asci” file where every cell in the path 

between the source register and the destination register is listed in order. The path 

should start and ends with a register which can controlled i.e. scan cell. An example of 

such description of a path is shown in Figure 63. 
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Figure 63: An example of a “.asci” file describing a path in a design 

Launch-on-capture path delay test methodology, discussed previously in section 

4.4.2.2, was chosen to generate test patterns to test a certain path. This is because 

launch-on-capture methodology is the best methodology that can describe the normal 

operation of the design under test. Launch-on-capture begins with an initialization of 

the internal states of a sequential circuit to some values due to the application of the 

first vector. The second vector is generated from the output of the combinational logic 

between the registers. This can easily occur in the normal operation of the design test 

if the internal states of the design reach values equal to the internal states due to the 

application of the first vector, and then the primary inputs have values equal to the 

second vector of the test patterns. In contrast to enhanced scan test for example, which 

generates any two independent test patterns that can never occur within the normal 

operation of the design under test. 

After determining the path to be tested and the test methodology, in our case 

launch-on-capture, FastScan generates a file with the test patterns that can test delay 

fault in the target path. This file describes the procedure required for testing the required 
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path using the generated test patterns. The test patterns consist of a sequence of two test 

vectors and a scan chain vector. Each test vector consists of values to be applied in the 

primary input of the design under test. The scan chain consists of a set of values that 

the internal registers should be initialized to. An example of the procedure to be applied 

and the test patterns is shown in Figure 64. These primary inputs and the scan chain 

vector are the WCTV for delay failure for a certain sequential design.  

 

 

Figure 64: Part of an example of the generated file by FastScan describing the procedure and test 

patterns for testing a path delay fault 

To test a certain design in a flash-based FPGA with the generated WCTV 

resulted from the above methodology, two techniques were developed to apply the test 

patterns to the target path with the highest estimated number of FG switches. The first 

technique depends on altering FPGA design flow to include the scan cells in the design. 

The second technique depends on the programmability characteristic of FPGA to test a 

particular path with the developed WCTV.   

In normal FPGA design flow, the design begins with writing RTL code in 

Verilog or VHDL. Then, the synthesis tool translates this code into gates in the form of 

netlist which can be written in Verilog or VHDL. This netlist is then placed and routed 

by the vendor EDA tool. The tool then generates programming data describing the 

design to be downloaded in the FPGA. In order to include scan cells in the mentioned 

flow, the netlist generated from the synthesis tool is delivered to a DFT tool such as 

Mentor Graphics DFTAdvisor to replace normal registers with scan cells and connect 
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them in a scan chain, and to add input and output to control the testing operation. The 

DFT tool generates a modified netlist of the original netlist generated from the FPGA 

vendor’s synthesis tool which is also written in Verilog or VHDL. The modified netlist 

is then exported to the FPGA vendor’s EDA tool. However, a new RTL design 

describing the scan cell must be included first to the project. An example of such 

Verilog code describing the scan cell is shown in Figure 65. To minimize the 

differences between the original design and the modified design with scan cells, the 

new design must be confined in the exact same area as the original one. This is done by 

defining a particular region for the place and route tool to place the macros of design 

inside it, and also constraining all the routing inside this region. 

 

Figure 65: An example of a Verilog code describing a scan cell 

Hence, the modified netlist can then be placed and routed by the EDA tool to 

generate programming data to download the desired design in the FPGA. The modified 

design can now be downloaded to the target FPGA, and the test procedure described by 

FastScan can be applied to test the design using the generated test patterns. 

A logic BIST is implemented with the modified design in the FPGA to generate 

the scan chain vector and the required primary inputs specified by the ATPG tool. The 

logic BIST is also used to check the output of the circuit against the expected output to 
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check whether there is a delay failure in the target path or not. The transition between 

the two vectors and the checking of the output must be made in an at-speed manner 

with the target operating frequency.  

The disadvantage of this technique is the modification of the original design by 

adding a multiplexer, input pins, and output pins to the original design. This causes an 

increase in the delay of the circuit under test. However, the increase is minimum due to 

the confinement of the modified design in the exact same area of the original one. 

Another technique was introduced to overcome the disadvantage of the early 

mentioned technique which uses the reprogram ability characteristic of the FPGA. 

Since only one path is required to be tested by propagating a transition along the path 

without being masked by other signals, no need to replace all the registers in the design 

with scan cells. This is done by transforming the cells along the path to act as a buffer 

or as an inverter to the transition on the target path in a similar technique to the one 

mentioned in [28] as shown in Figure 66. This will result in no modification and no 

increase in the delay of the path to be tested. In order to do that, every off-input of every 

cell along the path to be tested should always have a steady non-controlling value. The 

transition is done by applying a transition from high to low or vice versa to the input of 

the source register in the target path. The transition will go from the source register to 

the destination register without being masked by other signals since all the off-inputs 

have non-controlling value during the transition. The output of the transition can be 

latched by the destination register. The output of the destination register can then be 

compared with the expected output and observed at the primary output to know whether 

there is a fault or not in the target path.  

 

Figure 66: Proposed technique to test a path by modifying off-inputs of cells along the path 
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XOR gates can act as a buffer or as an inverter of the propagating transition 

along the path depending on the off-inputs. If the off-inputs of the XOR gate have a 0 

value, the gate will act as a buffer, and if the off-inputs have a value of 1, the gate will 

act as an inverter.  That is why the values of the off-inputs for every cell along the path 

to be tested should be equal to the value that the generated test patterns will force on 

these inputs if they are applied based on the procedure described by the ATPG tool. 

This will ensure that this technique have the exact transition that will happen in the 

normal operation of the circuit under test. 

A logic BIST is implemented with the design in the FPGA to propagate the 

transition in the input of the source register. This transition must be made in an at-speed 

manner to test if the target path has a delay more than the rated clock period of the 

design under test. Also, the output must be checked with the expected output during 

exactly one rated clock period that the design is intended to operate at. 

The advantage of this technique over the other technique is that no extra cells 

and thus no extra delay is added in the target path to be tested. Thus, giving similar 

behavior of the target path in the design to be tested. 
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Chapter 7 

Experimental results 

The methodology mentioned in chapter 5 was validated using two designs: an 

8x8 multiplier and S1423, a benchmark circuit from ISCAS’89 benchmark circuits 

[29]. Both designs were implemented using Microsemi ProASIC3 A3P125-208PQFP 

flash-based FPGAs. The FPGAs were exposed to total dose using Cobalt 60 radiation 

facility at a dose rate of 100 rad/s. In this chapter the experimental results of both 

designs are presented.  

7.1 8x8 multiplier 

In order to validate the proposed methodology in identifying WCTV, a design 

which does not need to be modified to identify WCTV is chosen. Then, a comparison 

between the results before and after the modification is made. For this purpose, an 8x8 

multiplier which is a combinational circuit with flip-flops at the primary inputs and the 

primary outputs. The worst-case path i.e. the path with the highest estimated number of 

FG switches in the multiplier is shown in Figure 67.  

 

Figure 67: Worst-case path for the 8x8 multiplier 
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Identification of WCTV for this worst-case path is made by using Mentor 

Graphics FastScan ATPG tool. The tool indicates the first vector in the sequence of test 

patterns to be (A=01011101 and B=01001001), and the second vector to be 

(A=01011101 and B=11001001). Microsemi static timing analysis tools, SmartTime, 

identifies the pre-rad maximum frequency of operation for the worst-case path to be 

134 MHz. So, an arbitrarily operating frequency is chosen to be 130 MHz to leave a 

reasonable margin for positive slacks in the critical paths. The FPGAs were exposed to 

total dose using Cobalt 60 radiation facility at a dose rate of 100 rad/s. Using the above 

conditions, the multiplier failed at 10 krad(Si).  

The circuit is then modified using the first technique mentioned in section 6.3 

to test the same worst-case path shown in Figure 67. This technique replaces all the 

registers in the original circuit by scan cells by using the netlist generated by DFT tool 

Mentor Graphics DFTAdvisor. ATPG tool Mentor Graphics FastScan identify the test 

patterns and the scan chain vector to test the target path. The tool indicates the first 

vector in the sequence of test patterns to be (A=01011101 and B=11001001), the second 

vector to be (A=10000100 and B=01000000), and the scan chain vector to be 

00101110101001001000000010010110. The circuit with the scan insertion also failed 

at 10 krad(Si) when running at a frequency of 123 MHz. This reduction in the operating 

frequency between the original design and the modified design is due to the addition of 

multiplexers to transform normal registers to scan cells. However, the reduction is very 

low indicating a comparable total dose failure between the original design and the 

modified design. 

The circuit is also modified using the second technique mentioned in section 6.3 

to test the worst-case path shown in Figure 67. The technique depends on altering off-

inputs of every cell along the path to have a steady non-controlling value to prevent any 

masking in the transition along the target path. A logic BIST circuit is embedded with 

the design to start a transition at the input of the source register and compare the output 

in an at-speed manner. The modified circuit also failed at 10 krad(Si) when running at 

a frequency of 130 MHz. 

To show the significance of the WCTV, test patterns were generated to test best-

case path i.e. the path with minimum estimated number of FG switches. The best-case 
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path is shown in Figure 68. For the original multiplier, Mentor Graphics FastScan 

ATPG tool indicates that the first vector in the sequence of test patterns to be 

(A=10111111 and B=10010010), and the second vector to be (A=10111100 and 

B=00011011). The operating frequency was also chosen to be 130 MHz. The FPGAs 

were exposed to total dose using Cobalt 60 radiation facility at a dose rate of 100 rad/s. 

Using the above conditions, the multiplier failed at total dose above 65 krad(Si), where 

ProASIC3 are reported to be failing functionally after that level [7]. 

 

Figure 68: Best-case path for the 8x8 multiplier 

Again, the original circuit is modified based on the second technique mentioned 

in section 6.3 to test the best-case path shown in Figure 68. A logic BIST circuit was 

also embedded with the design to start a transition at the input of the source register and 

compare the output in an at-speed manner. The modified circuit also failed at total dose 

above 65 krad(Si) when running at a frequency of 130 MHz. 

Experimental results for the original multiplier, the modified design based on 

the first technique, and the modified design based on the second technique are 

summarized in Table III. As shown in Table III, the test vectors for worst-case paths 

using the first technique are the same as the test vectors using the second technique. 

This is because the difference in the two techniques is how the test is applied to the 

circuit under test. However, for the circuit under test the WCTV will be the test vectors 

including the first and second vector which will be applied to the primary inputs of the 

design, and the chain vector which the internal registers should be initialized at during 

the application of the primary inputs vectors. 

 

 



86 

 

 

 

 

Table III 

Summary of the total dose experimental results of the 8x8 multiplier 

  

Test case Test vectors 
Failure level 

krad(Si) 

Worst-case (original design) 
A=01011101, B=01001001 

A=01011101, B=11001001 
10 

Worst-case (1st technique 

modification) 

A=01011101, B=11001001 

A=10000100, B=01000000 

Chain=00101110101001001000000010010110 

10 

Worst-case (2nd technique 

modification) 

A=01011101, B=11001001 

A=10000100, B=01000000 

Chain=00101110101001001000000010010110 

10 

Best-case (original design) 
A=10111111, B=10010010 

A=10111100, B=00011011 
>65 

Best-case (2nd technique 

modification) 

A=01000100, B=11101111 

A=00001000, B=10000000 

Chain=01111101000101101000000100101101 

>65 

 

The comparison of the failure levels of the original circuit with the modified 

circuits implemented are similar which proves that the proposed techniques reflect the 

actual failure level of the original circuit. Furthermore, the comparison between the 

worst and best-case failure levels indicates the significance of using worst-case test 

vectors in total dose testing of FPGA devices. 

7.2 S1423 

Another sequential circuit was examined to validate the proposed methodology. 

S1423 which is a more complex sequential circuit from ISCAS’89 sequential 

benchmark circuits [29], was used. In contrast to the multiplier circuit mentioned 

before, ATPG tool Mentor Graphics FastScan cannot generate test patterns for the 

design due to the lack of controllability and observability of the internal registers. That 

is why the circuit must first be modified to increase the controllability and observability 
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of the internal registers by replacing them with scan cells. The replacement process is 

done using DFT tool Mentor Graphics DFTAdvisor. The generated netlist from the 

DFT tool is then delivered to the ATPG tool to generate test patterns, to test the worst-

case path of the design i.e. the path with highest estimated number of FG switches, 

shown in Figure 69.  

 

Figure 69: Worst-case path for S1423 circuit 

The tool indicates the first vector in the sequence of test patterns to be 

01101111011100101, the second vector to be 00000110101101010, and the scan chain 

vector to be 000110101111000110011000011011111000110111111000100000 

10011011101010111001. Where the test vector must be applied to the following 

primary inputs of the design respectively {G0, G1, G10, G11, G12, G13, G14, G15, 

G16, G2, G3, G4, G5, G6, G7, G8, G9}. 

The circuit was also modified using the second technique mentioned in section 

6.3 to test the worst-case path shown in Figure 69. A logic BIST circuit was also 

embedded with the design to start a transition at the input of the source register and 

compare the output in an at-speed manner. The modified circuit based on the second 

technique was again implemented using Microsemi ProASIC3 A3P125-208PQFP 
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flash-based FPGAs. The FPGAs were exposed to total dose using Cobalt 60 radiation 

facility at a dose rate of 100 rad/s. The modified circuit failed at 9 krad(Si) running at 

a frequency of 110 MHz 

To show the significance of the WCTV for this circuit, test patterns were 

generated to test best-case path i.e. the path with minimum estimated number of FG 

switches. The best-case path is shown in Figure 70. DFT tool Mentor Graphics 

DFTAdvisor was also used to generate a netlist where the normal registers are replaced 

with scan cells. The netlist is used by ATPG tool Mentor Graphics FastScan to generate 

test patterns for best-case path testing. The tool indicates the first vector in the sequence 

of test patterns to be 01001111111100101, the second vector to be 

00000110111101010, and the scan chain vector to be 000110101111001000101010 

00101111101011001011100010000000011011101010101001. 

 

Figure 70: Best-case path for S1423 circuit 

Similar to the multiplier experiment, the original circuit is modified based on 

the second technique mentioned in section 6.3 to test the best-case path shown in Figure 

70. A logic BIST circuit was also embedded with the design to start a transition at the 

input of the source register and compare the output in an at-speed manner. The modified 

circuit also failed at total dose above 65 krad(Si) when running at a frequency of 110 

MHz. This again indicates the significance of using WCTV in total dose testing of 

FPGA devices. 

Experimental results of S1423 modified circuit based on the second technique 

to test worst-case and best-case paths are shown in Table IV. The test vectors are to be 

applied to the primary input vector {G0, G1, G10, G11, G12, G13, G14, G15, G16, G2, 

G3, G4, G5, G6, G7, G8, G9} of the benchmark circuit. 
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Table IV 

Summary of the total dose experimental results of the S1423 circuit 

 

Test case Test vectors 
Failure level 

krad(Si) 

Worst-case (2nd technique 

modification) 

01101111011100101 

00000110101101010 

Chain=000110101111000110011000011011111000 

11011111100010000010011011101010111001 

9 

Best-case (2nd technique 

modification) 

01001111111100101 

00000110111101010 

Chain=000110101111001000101010001011111010 

11001011100010000000011011101010101001 

>65 
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Chapter 8 

Conclusion and future work 

8.1 Conclusion 

In this thesis, a novel methodology was introduced to identify worst-case test 

vectors for delay failures induced by TID effect in sequential circuits implemented in 

flash-based FPGA. The methodology uses a previously developed fault model that 

indicates that the degradation of floating gate switches i.e. the switch element in flash-

based FPGA is the dominant factor causing delay failure in flash-based FPGAs induced 

by TID effect.  

The methodology generates test vectors for sequential circuits using DFT 

techniques. DFT techniques were used as even state of art ATPG tool fails to generate 

test vectors for sequential circuits due to their lack of controllability and observability 

of their internal registers. DFT tool such as Mentor Graphics DFTAdvisor was used to 

increase the controllability and observability of the internal registers by replacing them 

with scan cells. ATPG tool such as Mentor Graphics FastScan can then be used with 

the modified design with scan cells to generate worst-case test vectors by targeting the 

path with highest number of estimated floating gate switches. 

Two techniques were developed to test sequential circuits with the generated 

worst-case test vectors. The first technique relies on altering the normal design flow of 

FPGA to include scan cells in the design. This is because normal FPGA macro libraries 

does not include scan cells as DFT is not meant for FPGA design. Modified design with 

scan cells generated from DFT tool is placed and routed in the exact same area of the 

original design to minimize the differences. The second technique relies on the 

reprogram ability of FPGA. The off-inputs along the target path are modified to have 

non-controlling values, which will propagate a transition along the target path without 

being masked by other signals. Thus, maintaining the path under test without any extra 

delay. 
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The methodology was experimentally validated by implementing different 

sequential circuits designs using Microsemi ProASIC3 A3P125-208PQFP flash-based 

FPGAs and total dose using Cobalt 60 radiation facility. 

This work was submitted to the IEEE conference on Radiation Effects on 

Components and Systems (RADECS) to be published in its proceedings. 

8.2 Future work 

More complex sequential circuits are needed to validate the proposed 

methodology in generating worst-case test vectors. The methodology should be 

modified to generate worst-case test vectors for leakage current failure in flash-based 

FPGA. The methodology should also be applied to ASIC where DFT techniques were 

used for decades to detect manufacturing defects. 
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