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Abstract

With the huge advancements in miniature sensors, actuators and processors depend-
ing mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS),
many researches are now focusing on developing miniature flying vehicles to be used
in both research and commercial applications.

This thesis work presents a detailed mathematical model for a Vertical Takeoff
and Landing (VTOL) type Unmanned Aerial Vehicle(UAV) known as the quadrotor.
The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler
method, the formulated model is detailed including aerodynamic effects and rotor
dynamics that are omitted in many literature. The motion of the quadrotor can be
divided into two subsystems; a rotational subsystem (attitude and heading) and a
translational subsystem (altitude and x and y motion). Although the quadrotor is
a 6 DOF underactuated system, the derived rotational subsystem is fully actuated,
while the translational subsystem is underactuated.

The derivation of the mathematical model is followed by the development of four
control approaches to control the altitude, attitude, heading and position of the
quadrotor in space. The first approach is based on the linear Proportional-Derivative-
Integral (PID) controller. The second control approach is based on the nonlinear
Sliding Mode Controller (SMC). The third developed controller is a nonlinear Back-
stepping controller while the fourth is a Gain Scheduling based PID controller.

The parameters and gains of the forementioned controllers were tuned using Ge-
netic Algorithm (GA) technique to improve the systems dynamic response. Simula-
tion based experiments were conducted to evaluate and compare the performance of
the four developed control techniques in terms of dynamic performance, stability and
the effect of possible disturbances.

Keywords: Quadrotor, Quadcopter, UAV, VTOL, Nonlinear Control, PID, Sliding
Mode Control (SMC), Backstepping, Gain Scheduling, Genetic Algorithm (GA).
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Chapter 1

Introduction

This chapter will first discuss the objectives and motivation behind writing this thesis.

A brief introduction about Unmanned Aerial Vehicles (UAVs), their history, types

and uses will then be presented. We will then move to the quadrotor type UAVs

and discuss their concept and architecture. Lastly, the structure of the thesis will be

outlined.

1.1 Objectives and Motivation

This thesis work will focus on the modeling and control of a quadrotor type UAV.

The reason for choosing the quadrotor is in addition to its advantages that will be

addressed later, the research field is still facing some challenges in the control field

because the quadrotor is a highly nonlinear, multivariable system and since it has six

Degrees of Freedom (DOF) but only four actuators, it is an underactuated system [1].

Underactuated systems are those having a less number of control inputs compared to

the system’s degrees of freedom. They are very difficult to control due to the nonlinear

coupling between the actuators and the degrees of freedom [2]. Although the most

common flight control algorithms found in literature are linear flight controllers, these

controllers can only perform when the quadrotor is flying around hover, they suffer

from a huge performance degradation whenever the quadrotor leaves the nominal

conditions or performs aggressive maneuvers [3].

1



The contributions of this work are: deriving an accurate and detailed mathemat-

ical model of the quadrotor UAV, developing linear and nonlinear control algorithms

and applying those on the derived mathematical model in computer based simula-

tions. The thesis will be concluded with a comparison between the developed control

algorithms in terms of their dynamic performance and their ability to stabilize the

system under the effect of possible disturbances.

1.2 Unmanned Aerial Vehicles

The definition for UAVs varies from one literature to the other. For our purposes,

UAVs are small aircrafts that are flown without a pilot. They can either be remotely

operated by a human or they can be autonomous; autonomous vehicles are controlled

by an onboard computer that can be preprogrammed to perform a specific task or

a broad set of tasks. While in other literatures, UAVs may refer to powered or

unpowered, tethered or untethered aerial vehicles [4]. The definition used in this

thesis is based on that of the American Institute of Aeronautics and Astronautics [4]:

An aircraft which is designed or modified not to carry a human pilot and

is operated through electronic input initiated by the flight controller or

by an on board autonomous flight management control system that does

not require flight controller intervention.

UAVs were mainly used in military application but recently they are being deployed

in civil applications too [5].

1.2.1 History of UAVs

UAVs were first manufactured by Lawrence and Sperry (USA) in the year 1916. They

called it the Aviation Torpedo shown in Figure 1-1 and they were able to fly it for a

distance of 30 miles. It was reported that Lawrence and Sperry used a gyroscope to

balance the body [5].
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Figure 1-1: Lawrence and Sperry UAV [5]

1.2.1.1 Military History

A great interest was shown by the USA to develop UAVs to be used in the World

War I (WWI) and two projects where funded. The first was by Elmer Sperry to

develop the “Flying Bomb” UAV and the second project was the “Kettering Bug”

manufactured by General Motors. Both projects were cancelled and the funding

stopped as they proved unsuccessful. This is due to the fact of the absence of the

required technological advances in the fields of guidance systems and engines [6].

Development of UAVs started increasing tremendously by the end of the 1950s, the

USA deployed them during the Vietnam War to decrease the casualties in pilots when

flying over hostile territories. After their success, the USA and Israel decided to invest

more to build smaller and cheaper UAVs, they used small motors like those found in

motorcycles to result in smaller sized and lighter UAVs. In addition, a video camera

was added on the UAVs to transmit images to the ground operator. In 1991, the USA

used UAVs extensively in the Gulf War, and the most famous model was the Predator

shown in Figure 1-2. UAVs were intensively used by the USA in many conflicts and

wars in the late 1990’s and early 2000’s and later on, UAVs were used extensively in

the war against Iraq [7].
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Figure 1-2: Predator Military UAV [5]

1.2.1.2 Civil History

The uses of UAVs were not only confined to military use; in 1969, NASA grew a

concern to automatically control an aircraft, the first trials was the PA-30 program.

The program was successful but they had a pilot onboard to take over the control

of the aircraft in case anything went wrong. Other research programs followed the

success of the PA-30 program like: Drones for Aerodynamic and Structural Testing

(DAST) and Highly Maneuverable Aircraft Technology (HiMAT) programs [8]. Fol-

lowing that era, in the 1990’s NASA then partnered with industrial companies to

develop a nine-year long research project called the Environmental Research Aircraft

and Sensor Technology Project (ERAST). They developed several UAVs models that

were able to fly for altitudes up to 30 Km and endured flights up to 6 months. The

resulting UAV models included the: Pathfinder, Helios, Atlus and Perseus B. The de-

veloped UAVs carried several sensors to carry out environmental measurements, the

onboard sensors included a camera, a Digital Array Scanned Interferometer (DASI)

and an active detect, see and avoid (DSA) system [8].

1.2.2 Applications of UAVs

In addition to the military use, UAVs can be used in many civil or commercial ap-

plications that are too dull, too dirty or too dangerous for manned aircrafts. These

uses include but not limited to:
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Earth Science observations from UAVs can be used side-to-side with that acquired

from satellites. Such missions include [8]:

(a) Measuring deformations in the Earth’s crust that may be indications to natural

disasters like earthquakes, landslides or volcanos [8].

(b) Cloud and Aerosol Measurements [8].

(c) Tropospheric pollution and air quality measurements to determine the pollution

sources and how plumes of pollution are transported from one place to another

[8, 9]..

(d) Ice sheet thickness and surface deformation for studying global warming [8].

(e) Gravitational acceleration measurements, since the gravitational acceleration varies

near Earth, UAVs are used to accurately measure gravitational acceleration at

multiple places to define correct references [8].

(f) River discharge is measured from the volume of water flowing in a river at multiple

points. This will help in global and regional water balance studies [8].

Search and rescue UAVs equipped with cameras are used to search for survivors

after natural disasters like earthquakes and hurricanes or survivors from shipwrecks

and aircraft crashes [9, 10].

Wild fire suppression UAVs equipped with infrared sensors are sent to fly over

forests prone to fires in order to detect it in time and send a warning back to the

ground station with the exact location of the fire before it spreads [8–10].

Law enforcement UAVs are used as a cost efficient replacement of the traditional

manned police helicopters [10].

Border surveillance UAVs are used to patrol borders for any intruders, illegal

immigrants or drug and weapon smuggling [5, 8, 10].
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Research UAVs are also used in research conducted in universities to proof certain

theories. Also, UAVs equipped with appropriate sensors are used by environmental

research institutions to monitor certain environmental phenomena like pollution over

large cities [10].

Industrial applications UAVs are used in various industrial applications such as

pipeline inspection or surveillance and nuclear factories surveillance [9, 10].

Agriculture development UAVs also have agriculture uses such as crops spraying

[5, 9, 10].

1.2.3 Classification of UAVs

There are different ways to classify UAVs, either according to their range of action,

aerodynamic configuration, size and payload or according to their levels of autonomy.

1.2.3.1 Range of Action Classification

UAVs can be classified into 7 different categories based on their maximum altitude

and endurance as follows [9]:

(a) High-Altitude Long-Endurance (HALE): they can fly over 15000 m high

with an endurance of more than 24 hr. They are mainly used for long-range

surveillance missions.

(b) Medium-Altitude Long-Endurance (MALE): they can fly between 5000-

15000 m of altitude for a maximum of 24 hr. MALE UAVs are also used for

surveillance missions.

(c) Medium-Range or Tactical UAV (TUAV): They can fly between 100 and

300 km of altitude. They are smaller and operated with simpler systems that

their HALE and MALE counterparts.
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(d) Close Range UAV: They have an operation range of 100 km. They are mainly

used in the civil application such as powerline inspection, crop-spraying, traffic

monitoring, homeland security, etc..

(e) Mini UAV (MUAV): They have a weight of about 20 kg and an operating

range of about 30 km.

(f) Micro UAV (MAV): They have a maximum wingspan of 150 mm. They are

mainly used indoors where they are required to fly slowly and hover

(g) Nano Air Vehicles (NAV): They have a small size of about 10 mm. they are

mainly used in swarms for applications such as radar confusion. They are also

used for short range surveillance if equipped with an equally small camera.

1.2.3.2 Aerodynamic Configuration Classification

UAVs can be classified into four main categories based on their aerodynamic config-

uration as follows [9]:

(a) Fixed-wing UAVs: require a run-way to take-off and land. They can fly for

a long time and at high cruising speeds. They are mainly used in scientific ap-

plications such as meteorological reconnaissance and environmental monitoring,

shown in Figure 1-3.

Figure 1-3: Fixed-Wing UAVs [5]
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(a) Single Rotor (b) Coaxial

(c) Quadrotor (d) Multi-Rotor

Figure 1-4: Rotary-Wing UAVs [4]

(b) Rotary-wing UAVs: they can take off and land vertically. They can also

hover and fly with high maneuverability. The Rotary-wing UAVs can be further

classified into four groups [4]:

(i) Single-rotor: they have a main rotor on top and another rotor at the tail

for stability, same like the helicopter configuration. Shown in Figure 1-4(a).

(ii) Coaxial: they have two rotors rotating in opposite directions mounted to

the same shaft. Shown in Figure 1-4(b).

(iii) Quadrotor: they have four rotors fitted in a cross-like configuration. Shown

in Figure 1-4(c).

(iv) Multi-rotor: UAVs with six or eight rotors. They are agile type and fly

even when a motor fails, as there is redundancy due to the large number of

rotors. Shown in Figure 1-4(d).

Increasing the number of rotors in turn increases the payload and maximum

altitude of the UAVs but it comes at the cost of increasing the size and power

consumption.

(c) Blimps UAVs: which may look like balloons or airships, they ensure lifting by
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their helium-filled body. They are very light and have a large size. They can fly

for a long time and at low speeds, shown in Figure 1-5.

(d) Flapping-wing UAVs: they are inspired from birds and flying insects. These

UAVs have small wings and have an extremely low payload and endurance. On

the other hand, they have low power consumption and can perform vertical take-

off and landing. This class of UAVs is still under development, shown in Figure 1-6

[5].

Figure 1-5: Blimps UAVs [5]

Figure 1-6: Flapping Wing UAVs [5]

1.2.3.3 Size and Payload Classification

UAVs can be classified into five main classes based on their size and payload. Figure 1-

7 shows examples of these five classes as described below [3]:

(a) Full-Scale UAVs: these are normal sized vehicles, shown in Figure 1-7(a). Al-

though a pilot can be present on board, the vehicle is capable of autonomous
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flying. The purpose of the pilot is to backup when trying complex flight tests

and maneuvers. Also, these vehicles have the highest payload and endurance.

(b) Medium-scale UAVs: these are the vehicles mainly used for security missions.

They have a relatively high payload of 10 kg enabling having heavy and high-

quality navigation sensors on board, thus achieving dependant flights. Figure 1-

7(b) shows an example of the Medium Scale UAV used in the US army.

(c) Small-scale UAVs: these are mainly UAVs based on Radio Controlled (RC)

toys, they have a lower payload of the range 2 to 10 kg, which enables them to

carry adequate quality navigation sensors. An example of a small-scale UAV is

shown in Figure 1-7(c).

(d) Mini UAVs: portable UAVs that are able to fly indoors and outdoors with a

payload of less than 2 kg which is sufficient to carry small lightweight sensors.

The small size, low cost and ease of maintenance of these UAVs makes them the

most common test- bed UAVs in research applications. An example of a mini

UAV is shown in Figure 1-7(d).

(e) Micro UAVs: mainly used indoors due to their very small size. They have

a payload of less than 100 g which makes it very hard to be equipped with

navigation and guidance sensors. The research challenge regarding these micro

UAVs is to design light-weight navigation and guidance sensors. An example of

a micro UAV is shown in Figure 1-7(e).

1.2.3.4 Levels of Autonomy Classification

UAVs can be also classified according to their level of autonomy. The National Insti-

tute of Standards and Technology published a framework that can be used to classify

UAVs according to their autonomy level which is defined by three metrics namely:

Human Independence (HI), Mission Complexity (MC) and Environmental Complex-

ity (EC) [3, 4]. The framework proposes five levels of autonomy [4]:
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(a) Full-Scale UAV (b) Medium-Scale UAVs

(c) Small-Scale UAVs (d) Mini UAV (e) Micro UAV

Figure 1-7: Size Classification [3]

(a) Level 1: Full human interaction is needed to operate these UAVs as they are

purely remotely controlled. Level 1 UAVs are mainly used for the least complex

missions.

(b) Level 2: Still require human interaction but can perform more complex missions

than level 1 UAVs.

(c) Level 3: Moderate level of human interaction with moderate mission complexity.

(d) Level 4: Minimal human interaction, used in missions where the environment

is complex and dynamic and the reaction time of human operator may not be

sufficient to correctly navigate the UAV.

(e) Level 5: Zero human interaction, used to carry out missions in the most complex

environments. Literature claims that level 5 UAVs do not currently exist and they

serve as a goal for future research.
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Although the National Institute of Standards and Technology proposed a five lev-

els classification framework that can be validly applied to UAVs, Kendoul finds that

framework is insufficient for a proper classification of current UAV systems and pro-

posed a new eleven-level framework called Autonomy Levels for Unmanned Rotorcraft

Systems [3]. In his new framework, Kendoul used six metrics to classify UAVs which

are: External System Independence (ESI), Environment Complexity (EC), Mission

Complexity (MC), External System (ES), Situational Awareness (SA) and Real Time

(RT) [4]. The framework is shown in Figure 1-8.

12



Figure 1-8: Kendoul’s 11-level Framework [3]
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1.3 Quadrotors

The quadrotor concept for aerial vehicles was developed a long time ago. It was

reported that the Breguet-Richet quadrotor built in 1907 had actually flown. A

quadrotor is considered to be a rotary-wing UAV due to its configuration that will be

discussed later.

1.3.1 The Quadrotor Concept

A quadrotor consists of four rotors, each fitted in one end of a cross-like structure as

shown in Figure 1-9. Each rotor consists of a propeller fitted to a separately powered

DC motor. Propellers 1 and 3 rotate in the same direction while propellers 2 and

4 rotate in an opposite direction leading to balancing the total system torque and

cancelling the gyroscopic and aerodynamics torques in stationary flights [1, 11].

Figure 1-9: Quadrotor Configuration

The quadrotor is a 6 DOF object, thus 6 variables are used to express its position

in space (x, y, z, φ, θ and ψ). x, y and z represent the distances of the quadrotor’s

center of mass along the x,y and z axes respectively from an Earth fixed inertial frame.

φ, θ and ψ are the three Euler angles representing the orientation of the quadrotor. φ

is called the roll angle which is the angle about the x-axis, θ is the pitch angle about

the y-axis, while ψ is the yaw angle about the z-axis. Figure 1-10 clearly explains

the Euler Angles. The roll and pitch angles are usually called the attitude of the

quadrotor, while the yaw angle is referred to as the heading of the quadrotor. For
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the linear motion, the distance from the ground is referred to as the altitude and the

x and y position in space is often called the position of the quadrotor.

Figure 1-10: Euler Angles for a Quadrotor UAV

To generate vertical upwards motion, the speed of the four propellers is increased

together whereas the speed is decreased to generate vertical downwards motion. To

produce roll rotation coupled with motion along the y-axis, the second and fourth

propellers speeds are changed while for the pitch rotation coupled with motion along

the x-axis, it is the first and third propellers speeds that need to be changed.

One problem with the quadrotor configuration is that to produce yaw rotation,

one need to have a difference in the opposite torque produced by each propeller pair.

For instance, for a positive yaw rotation, the speed of the two clockwise turning rotors

need to be increased while the speed of the two counterclockwise turning rotors need

to be decreased [11, 12]. Figure 1-11 shows how different movements can be produced,

note that a thicker arrow means a higher propeller speed.

1.3.2 Advantages and Drawbacks of Quadrotors

Some advantages of the quadrotor over helicopters is that the rotor mechanics are

simplified as it depends on four fixed pitch rotors unlike the variable pitch rotor in

the helicopter, thus leading to easier manufacturing and maintenance. Moreover, due
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Figure 1-11: Generated Motion of the Quadrotor [13]

to the symmetry in the configuration, the gyroscopic effects are reduced leading to

simpler control.

Stationary hovering can be more stable in quadrotors than in helicopters due to

the presence of four propellers providing four thrust forces shifted a fixed distance

from the center of gravity instead of only one propeller centered in the middle as in

the helicopters structure [1].

More advantages are the vertical take-off and landing capabilities, better maneu-

verability and smaller size due to the absence of a tail [14], these capabilities make

quadrotors useful in small area monitoring and buildings exploration [15].

Moreover, quadrotors have higher payload capacities due to the presence of four

motors thus providing higher thrust [1].

On the other hand, quadrotors consume a lot of energy due to the presence of

four separate propellers [15]. Also, they have a large size and heavier than some of

their counterparts again to the fact that there is four separate propellers [15, 16].

1.4 Thesis Structure

This thesis is organized as follows, Chapter 2 presents a deep literature review of

the commonly used control algorithms in the quadrotors field together with some

of the famous hardware platforms. Chapter 3 presents the mathematical modeling

of a quadrotor UAV based on the Newton-Euler formalism in full details including

the rotor dynamics and aerodynamic effects acting on the quadrotor body. Chapter 4

shows four developed control techniques to control and stabilize the attitude, heading,
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altitude and position of the quadrotor in space. The controllers are verified using

computer simulations and the results of these simulations are shown. Chapter 5

presents the discussion of the results acquired in the previous chapter and finally

Chapter 6 shows the conclusion and future work for this thesis.
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Chapter 2

State of the Art

Since the advances in technologies and the ability to manufacture miniature sensors

and controllers using the Micro-Electo-Mechanical Systems (MEMS) technologies,

there have been a lot of advances in the UAVs area. A lot of the research conducted

focused on the quadrotor due to its previously mentioned advantages of easier man-

ufacturing, compactness and maneuverability among others. Some literature focused

only on developing a control algorithm to be applied in a simulation environment

while others developed quadrotors models to test their proposed flight algorithm on.

This chapter discusses some of the most commonly used control techniques and some

of the hardware platforms used in research.

2.1 Control

There are several control techniques that can be used to control a quadrotor varying

between the classical linear Proportional-Integral-Derivative (PID) or Proportional-

Derivative (PD) controller to more complex nonlinear schemes as backstepping or

sliding-mode controllers. The flight control systems can be classified into four main

categories which are: linear fight control systems, non-linear flight control systems,

hybrid and learning-based flight control systems [3]. It was found that the most

common control technique used is the PID or PD controller. Although it is a lin-

ear controller used for the nonlinear multivariable quadrotor system, it was proven
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successful in many literature [17].

2.1.1 Linear Flight Control Systems

They are the most common and conventional flight control systems, typically based

on PID, Linear Quadratic (LQ) or H∞ algorithms. It was reported that in the

late 1960’s, a full scale helicopter achieved autonomous waypoint navigation using a

classical linear control technique [3].

PID and LQ Bouabdallah et al. proposed the usage of PID and LQ control tech-

niques to be applied on an indoor micro quadrotor, it was found out that these two

types of controllers performed comparably and were able to stabilize the quadrotor’s

attitude around its hover position when it undergoes little disturbances [11, 17]. Li

and Li used the classical PID to control the position and orientation of a quadrotor

and it was able to stabilize in a low speed wind environment [14]. Yang et al. used

a self tuning PID controller based on adaptive pole placement to control the atti-

tude and heading of a quadrotor. Simulation showed that the proposed controller

performed well with online tuning of the parameters [18].

H∞ Raffo et al. used an H∞ controller to stabilize the rotational angles together

with a Model Predictive Controller (MPC) to track the desired position [19]. The

effect of wind and model uncertainties was added to the simulated model and it

performed robustly with a zero steady-state error. H∞ is a linear robust controller;

robust controllers are those taking into account parametric uncertainty and unmod-

eled dynamics. It is reported that it is used for control of full-scaled helicopters

[3].

Switched Dynamics and Gain Scheduling To use a linear controller to control

a nonlinear system like a quadrotor, the nonlinearity of the system can be modelled

as a collection of simplified linear models. This is the concept of gain scheduling and

it is commonly used to design flight controllers. Gillula et al. divided the state space
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model of a STARMAC quadrotor to a set of simple hybrid modes and this approach

enabled the quadrotor to carry out aerobatic maneuvers [3, 20]. Also, Ataka et al.

used gain scheduling on a linearized model of the quadrotor around some equilibrium

points and tested the controllability and observability of the resulting system [21].

Amoozgar et al. used a gain scheduled PID controller with the later’s parameters

tuned using a fuzzy logic inference scheme to control a quadrotor. The system was

tested under actuator fault conditions and compared with the performance of the

conventional PID controller. The results showed a better performance for the gain

scheduled PID controller [22]. Sadeghzadeh et al. also use a gain scheduled PID

controller applied to a quadrotor dropping a carried payload at a designated time.

The algorithm was able to stabilize the system during the dropping operation [23].

2.1.2 Nonlinear Flight Control Systems

Due to the fact that the dynamics of the quadrotor is of a nonlinear nature, developing

nonlinear control algorithms to be used as flight controllers was necessary. There is

a variety of nonlinear control algorithms applied to quadrotors including: feedback

linearization, model predictive control, backstepping and sliding-mode.

Backstepping and Sliding-mode Backstepping is a recursive control algorithm

that can be applied to both linear and nonlinear systems [3]. In a more recent paper,

Bouabdallah and Siegwart proposed the use of backstepping and sliding-mode non-

linear control methods to control the quadrotor which gave better performance in the

presence of disturbances. [15]. Waslander et al. proposed developing controllers that

can stabilize the quadrotor in an outdoors environment, they compared the perfor-

mance of an integral sliding-mode controller vs. a reinforcement learning controller.

They reached a conclusion that both controllers were able to stabilize the quadrotor

outdoors with an improved performance over classical control techniques [24]. Madani

and Benallegue used a backstepping controller based on Lyapunov stability theory

to track desired values for the quadrotor’s position and orientation. They divided

the quadrotor model into 3 subsystems: underactuated, fully-actuated and propeller
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subsystems. Their proposed algorithm was able to stabilize the system under no

disturbances [25]. Fang and Gao proposed merging a backstepping controller with

an adaptive controller to overcome the problems of model uncertainties and exter-

nal disturbances. The proposed adaptive integral backstepping algorithm was able

to reduce the system’s overshoot and response time and eliminate steady state error

[26]. Lee et al. used a backstepping controller to control the position and attitude of

a quadrotor, the proposed controller was tested in a noisy environment and gave a

satisfactory performance [27]. Zhen et al. combined a backstepping controller with an

adaptive algorithm to control the attitude of a quadrotor. A robust adaptive function

is used to approximate the external disturbances and modeling errors of the system.

Simulations showed the success of the proposed controller in overcoming disturbances

and uncertainties [28]. González et al. proposed using a chattering free sliding mode

controller to control the altitude of a quadrotor. The proposed controller performed

well in both simulations and on a real system in the presence of disturbances [29].

Feedback Linearization Feedback linearization is a control techniques that uses a

nonlinear transformation between the system’s nonlinear state variables to linear ones.

Linear algorithms can be then used to stabilize the transformed linear system which

will then be inversely transformed back into the original state variables. Kendoul

et al. was able to control a quadrotor in several flight tests based on the concept of

feedback linearization [3, 30].

Model Predictive Control (MPC) Model predictive control relies on predicting

the future states of the system and tracking the error to give an improved performance

[3]. Alexis et al. relied on a MPC to control the attitude of a quadrotor in the presence

of atmospheric disturbances. The proposed algorithm behaved well in performing

rough maneuvers in a wind induced environment as was able to accurately track the

desired attitude [31]. Sadeghzadeh et al. also used a MPC applied to a quadrotor

in dropping a carried payload, the MPC was able to stabilize the system with a

promising performance [23].
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2.1.3 Learning-Based Flight Control Systems

Opposing the previous control techniques, learning based flight control systems do

not need a precise and accurate dynamic model of the system to be controlled. On

the other hand, several trials are carried out and flight data are used to “train” the

system. There are many types of learning-based flight control systems, the most

widely used are: neural networks, fuzzy logic and human-based learning.

Neural Network Efe used a Neural Network to simplify the design of a PID con-

troller and decrease the computational time and complexity [32].

Fuzzy Logic The idea behind fuzzy logic is to translate the knowledge and actions

of skilled human beings to a set of rules that can be used by a machine to execute a

certain task usually executed by humans. So for flight control systems, a skilled pilot

is usually the one doing the training for a fuzzy logic system [3].

2.1.4 Hybrid Flight Control Systems

In recent literature, it was found out that using only one type of flight control al-

gorithms was not sufficient to guarantee a good performance, specially when the

quadrotor is not flying near its nominal condition, so researchers are now propos-

ing using more than one type of flight control algorithms. Azzam and Wang used

a PD controller for altitude and yaw rotation and a PID controller integrated with

a backstepping controller for the pitch and roll control. An optimization algorithm

was used instead of the pole placement technique to overcome the difficulty of pole

placement in a nonlinear time variant system. The system was divided into rotational

and translation subsystems where the translation subsystem stabilizes the quadrotor

position in flight and generates the needed roll and pitch angles to be fed to the

rotational subsystem [5]. Nagaty et al. proposed the usage of a nested loop control

algorithm; the outer loop consists of a PID controller responsible for the generation

of the desired attitude angles that would achieve the desired position. These attitude
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angles are then fed to the inner loop. The inner loop stabilization controller relies on

the backstepping algorithm to track the desired altitude, attitude and heading [33].

2.2 Available Hardware Platforms

A lot of universities are using quadrotors for research, whether it is a control oriented

research or autonomous systems and navigation oriented research. We will show here

a brief overview of some of the famous quadrotor hardware used by universities and

research groups.

Bouabdallah et al. used a platform called the OS4 for testing their proposed

control algorithms, the OS4 was manufactured and assembled in their laboratory

[11]. Hoffmann et al. used the STARMAC II UAV to study the aerodynamic effects

on the quadrotor when operating far from the hovering position [34]. The X4-Flyer is

used in the Australian National University [35]. Also, the Mesicopter was developed

by Stanford university using off-the-shelf components [35].

Other universities and research groups would rather save the time, cost and effort

of building a quadrotor model from scratch and use a commercially available platform.

One of the most widely used platform is the one produced by AscTec [36] company,

which is a company that sells quadrotors specially designed to be used in research

related tasks. Their models were used by a lot of universities and research groups such

as: the Aerospace Controls Lab, MIT [37] and the Robust Robotics Group, MIT [38]

and in GRASP Lab, University of Pennsylvania [39]. Another widely used platform is

the Draganflyer from Draganfly Innovations [40] also used by the Aerospace Controls

Lab, MIT [37] [3].

There is also the German company Microdrones [41] that develops UAVs to be

used in many applications such as aerial surveillance by police, power lines inspec-

tion, aerial terrain mapping, bridge inspections among others. Another company is

the French company Parrot [42], their model AR.Drone is mainly designed for enter-

tainment purposes and it can be remotely controlled by an iPhone.
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2.3 Research Challenges

After an intensive literature review of the control algorithms applied on quadrotors,

it was found out that one of the research challenges facing researchers in this field is

flying the quadrotor outside the linear or hovering region. Also, there no work focused

on having a comparative study that compares between employing different types of

controllers on the quadrotor system and comparing their performances in stabilizing

the quadrotor under different flight conditions and this will be the focus of this work.
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Chapter 3

System Modeling

In this chapter, the kinematics and dynamics models of a quadrotor will be derived

based on a Newton-Euler formalism with the following assumptions:

� The structure is rigid and symmetrical.

� The center of gravity of the quadrotor coincides with the body fixed frame

origin.

� The propellers are rigid.

� Thrust and drag are proportional to the square of propeller’s speed.

After deriving the kinematics and dynamics models of the quadrotor, the aerody-

namic effects acting on the quadrotor body will be discussed together with the rotor

dynamics of the actuators of the quadrotor. The chapter will be ended with formulat-

ing a state space model for the quadrotor system that will be used in the subsequent

modeling chapter.

3.1 Kinematic Model

In order to discuss the modeling of the quadrotor, we first need to define the coordinate

frames that will be used. Figure 3-1 shows the Earth reference frame with N, E and

D axes and the body frame with x, y and z axes. The Earth frame is an inertial
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frame fixed on a specific place at ground level as its name implies, it uses the N-E-D

notation where the axes point to the North, East and Downwards respectively. On

the other hand, the body frame is at the center of the quadrotor body, with its x-axis

pointing towards propeller 1, y-axis pointing towards propeller 2 and the z-axis is

pointing to the ground.

Figure 3-1: Quadrotor Reference Frames

The distance between the Earth frame and the body frame describes the absolute

position of the center of mass of the quadrotor r = [x y z]T . The rotation R from

the body frame to the inertial frame describes the orientation of the quadrotor. The

orientation of the quadrotor is described using roll, pitch and yaw angles (φ, θ and ψ)

representing rotations about the X, Y and Z-axes respectively. Assuming the order of

rotation to be roll (φ), pitch (θ) then yaw (ψ), the rotation matrix R which is derived

based on the sequence of principle rotations is:

R =


cθcψ sφsθcψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cθcψ cφsθsψ − sθcψ

−sθ sφcθ cφcθ

 (3.1)

where c and s denote cos and sin respectively. The derivation of the rotation
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matrix R is shown in details in Appendix A.1.1.

The rotation matrix R will be used in formulating the dynamics model of the

quadrotor, its significance is due to the fact that some states are measured in the

body frame (e.g. the thrust forces produced by the propellers) while some others

are measured in the inertial frame (e.g. the gravitational forces and the quadrotor’s

position). Thus, to have a relation between both types of states, a transformation

from one frame to the other is needed.

To acquire information about the angular velocity of the quadrotor, typically

an on-board Inertial Measurement Unit (IMU) is used which will in turn give the

velocity in the body coordinate frame. To relate the Euler rates η̇ = [φ̇ θ̇ ψ̇]T that are

measured in the inertial frame and angular body rates ω = [p q r]T , a transformation

is needed as follows:

ω = Rrη̇ (3.2)

where

Rr =


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ


Around the hover position, small angle assumption is made where cosφ ≡ 1, cos θ ≡ 1

and sinφ = sin θ = 0. Thus Rr can be simplified to an identity matrix I [33]. The

derivation for the previous transformation is shown in Appendix A.1.2.

3.2 Dynamics Model

The motion of the quadrotor can be divided into two subsystems; rotational subsys-

tem (roll, pitch and yaw) and translational subsystem (altitude and x and y position).

The rotational subsystem is fully actuated while the translational subsystem is un-

deractuated [33].
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3.2.1 Rotational Equations of Motion

The rotational equations of motion are derived in the body frame using the Newton-

Euler method with the following general formalism,

Jω̇ + ω × Jω +MG = MB (3.3)

Where:

J Quadrotor’s diagonal inertia Matrix

ω Angular body rates

MG Gyroscopic moments due to rotors’ inertia

MB Moments acting on the quadrotor in the body frame

The first two terms of Equation 3.3, Jω̇ and ω×Jω, represent the rate of change of an-

gular momentum in the body frame. While MG represent the gyroscopic moments due

to the rotors’ inertia Jr. The Gyroscopic moments are defined to be ω × [0 0 JrΩr]
T ,

thus the rotational equation of the quadrotor’s motion can be written as [33],

Jω̇ + ω × Jω + ω × [0 0 JrΩr]
T = MB (3.4)

Where:

Jr rotors’ inertia

Ωr rotors’ relative speed Ωr = −Ω1 + Ω2 − Ω3 + Ω4

The reason behind deriving the rotational equations of motion in the body frame

and not in the inertial frame, is to have the inertia matrix independent on time.
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Inertia Matrix

The inertia matrix for the quadrotor is a diagonal matrix, the off-diagonal elements,

which are the product of inertia, are zero due to the symmetry of the quadrotor.

J =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.5)

Where Ixx, Iyy and Izz are the area moments of inertia about the principle axes in

the body frame.

Gyroscopic Moment

The gyroscopic moment of a rotor is a physical effect in which gyroscopic torques or

moments attempt to align the spin axis of the rotor along the inertial z-axis [43].

Moments Acting on the Quadrotor (MB)

For the last term of equation (3.4), there is a need to define two physical effects

which are the aerodynamic forces and moments produced by a rotor. As an effect of

rotation, there is a generated force called the aerodynamic force or the lift force and

there is a generated moment called the aerodynamic moment. Equations (3.6) and

(3.7) show the aerodynamic force Fi and moment Mi produced by the ith rotor [5].

Fi =
1

2
ρACT r

2Ω2
i (3.6)

Mi =
1

2
ρACDr

2Ω2
i (3.7)
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where

ρ air density

A blade area

CT , CD aerodynamic coefficients

rb radius of blade

Ωi angular velocity of rotor i

Clearly, the aerodynamic forces and moments depend on the geometry of the propeller

and the air density. Since for the case of quadrotors, the maximum altitude is usually

limited, thus the air density can be considered constant, Equations (3.6) and (3.7)

can be simplified to [33],

Fi = KfΩ2
i (3.8)

Mi = KMΩ2
i (3.9)

Where Kf and KM are the aerodynamic force and moment constants respectively and

Ωi is the angular velocity of rotor i. The aerodynamic force and moment constants

can be determined experimentally for each propeller type.

By identifying the forces and moments generated by the propellers, we can study

the moments MB acting on the quadrotor. Figure 3-2 shows the forces and moments

acting on the quadrotor. Each rotor causes an upwards thrust force Fi and generates

a moment Mi with direction opposite to the direction of rotation of the corresponding

rotor i.

Starting with the moments about the body frame’s x-axis, by using the right-hand-

rule in association with the axes of the body frame, F2 multiplied by the moment arm l

generates a negative moment about the y-axis, while in the same manner, F4 generates
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Figure 3-2: Forces and Moments acting on Quadrotor

a positive moment. Thus the total moment about the x-axis can be expressed as

Mx = −F2l + F4l

= −(KfΩ2
2)l + (KfΩ2

4)l

= lKf (−Ω2
2 + Ω2

4) (3.10)

For the moments about the body frame’s y-axis, also using the right-hand-rule,

the thrust of rotor 1 generates a positive moment, while the thrust of rotor 3 generates

a negative moment about the y-axis. The total moment can be expressed as,

My = F1l − F3l

= (KfΩ2
1)l − (KfΩ2

3)l

= lKf (Ω2
1 − Ω2

3) (3.11)

For the moments about the body frame’s z-axis, the thrust of the rotors does
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not cause a moment. On the other hand, moment caused by the rotors’ rotation as

per Equation 3.7. By using the right-hand-rule, the moment about the body frame’s

z-axis can be expressed as,

Mz = M1 −M2 +M3 −M4

= (KMΩ2
1)− (KMΩ2

2) + (KMΩ2
3)− (KMΩ2

4)

= KM(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)) (3.12)

Combining equations (3.10), (3.11) and (3.12) in vector form, we get,

MB =


lKf (−Ω2

2 + Ω2
4)

lKf (Ω2
1 − Ω2

2)

KM(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4)

 (3.13)

where l is the moment arm, which is the distance between the axis of rotation of each

rotor to the origin of the body reference frame which should coincide with the center

of the quadrotor.

3.2.2 Translational Equations of Motion

The translation equations of motion for the quadrotor are based on Newton’s second

law and they are derived in the Earth inertial frame [33],

mr̈ =


0

0

mg

 +RFB (3.14)

Where

r = [x y z]T Quadrotor’s distance from the inertial frame

m Quadrotor’s mass

g gravitational acceleration g =9.81m/s2

FB nongravitational forces acting on the quadrotor in the body frame
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Nongravitational Forces Acting on the Quadrotor

When the quadrotor is in a horizontal orientation (i.e. it is not rolling or pitching), the

only nongravitational forces acting on it is the thrust produced by the rotation of the

propellers which is proportional to the square of the angular velocity of the propeller

as per Equation (3.8). Thus, the nogravitational forces acting on the quadrotor, FB,

can be expressed as,

FB =


0

0

−Kf (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

 (3.15)

The first two rows of the force vector are zeros as there is no forces in the X and

Y directions, the last row is simply an addition of the thrust forces produced by the

four propellers. The negative sign is due to the fact that the thrust is upwards while

the positive z-axis in the body framed is pointing downwards.

FB is multiplied by the rotation matrix R to transform the thrust forces of the

rotors from the body frame to the inertial frame, so that the equation can be applied

in any orientation of the quadrotor.

3.3 Aerodynamic Effects

In the previous dynamics formulation, the aerodynamic effects acting on the quadrotor

body were neglected. However, in order to have an accurate and realistic model to be

used in simulations, aerodynamic effects should be included. There are namely two

types of aerodynamic effects, drag forces and drag moments [44].

3.3.1 Drag Forces

Due to the friction of the moving quadrotor body with air, a force acts on the body

of the quadrotor resisting the motion. As the velocity of travel of the quadrotor

increases, the drag forces in turn increase. The drag forces Fa can be approximated
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by,

Fa = Ktṙ (3.16)

where Kt is a constant matrix called the aerodynamic translation coefficient matrix

and ṙ is the time derivative of the position vector r. This indicates that there is

an extra force acting on the quadrotor body, the translational equation of motion

Equation (3.14) should be rewritten to be,

mr̈ =


0

0

mg

 +RFB − Fa (3.17)

3.3.2 Drag Moments

The same as the drag force, due to the air friction, there is a drag moment Ma acting

on the quadrotor body which can be approximated by,

Ma = Krη̇ (3.18)

where Kr is a constant matrix called the aerodynamic rotation coefficient matrix and

η̇ is the Euler rates. Accordingly, the rotational equation of motion expressed by

Equation (3.4) can be rewritten to as,

Jω̇ + ω × Jω + ω × [0 0 JrΩr]
T = MB −Ma (3.19)

3.4 Rotor Dynamics

The motors typically used in quadrotors are brushless DC motors that provide high

torque and little friction. In the following derivation, it is assumed that the rotors

are nongeared with rigid mechanical coupling between the motors and the propellers.

The dynamics of a brushless DC motor at steady state is the same as a conventional
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DC motor. The schematic for a brushless DC motor at steady state is shown in

Figure 3-3.

Figure 3-3: DC Motor Schematic Diagram

Using Kirchhoff’s voltage law, the following equation can be derived

v = Rmotia + Lmot
dia
dt

+KmotΩ (3.20)

where Rmot and Lmot are the ith motor’s resistance and inductance respectively, ia

is the armature current, v is the input voltage and the term KmotΩ represents the

generated emf, e, with Kmot as the motor torque constant. Since the quadrotor relies

on small motors, their inductance is very small and thus can be neglected leading to

v = Rmotia +KmotΩi (3.21)

or

ia =
v −KmotΩi

Rmot

(3.22)

Moving to the mechanical derivation

JrΩ̇i = Tmot − Tload (3.23)

where Tmot is the torque produced by the motor which is equal to Keia, where Ke is

the motor’s electric constant and for small motors it is approximately equal to Kmot.

Tload is the load torque which is the torque generated from the propeller system which
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is KMΩ2 as per Equation (3.7). Substituting the equations of Tmot and Tload together

with the current equation from Equation (3.22) yields,

JrΩ̇i = Kmot
v −KmotΩi

Rmot

−KMΩ2
i (3.24)

After simplification the voltage can be written as a function of the rotor’s velocity as

follows

v =
Rmot

Kmot

JrΩ̇i +KmotΩi +KMRmotΩ
2
i (3.25)

The rotor dynamics can be approximated to a first order lag transfer function with

its parameters (gain and time constant) identified experimentally by using a system

identification tool (e.g. MATLAB’s System Identification Toolbox). The transfer

function maps the desired propeller’s speed to the actual speed [16]. Depending

on the [OS4] quadrotor hardware in [16], the first order lag transfer function was

identified to be,

G(s) =
Actual rotor speed

Commanded rotor speed
=

0.936

0.178s+ 1
(3.26)

Brushless DC motor typically have their own embedded controllers and they work

with a Pulse Width Modulated (PWM) signal. The voltage supplied to the brushless

DC motor is directly proportional to the RPM of their rotation, the relationship can

be found by a black box identification process for the motor and propeller pair. The

constant of proportionality of this linear relationship appears as a gain in the transfer

function in (3.26). The application of the rotor dynamics transfer function will be

further elaborated in Section 4.1.

3.5 State Space Model

Formulating the acquired mathematical model for the quadrotor into a state space

model will help make the control problem easier to tackle.
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3.5.1 State Vector X

Defining the state vector of the quadrotor to be,

X =
[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

]T
(3.27)

which is mapped to the degrees of freedom of the quadrotor in the following manner,

X =
[
φ φ̇ θ θ̇ ψ ψ̇ z ż x ẋ y ẏ

]T
(3.28)

The state vector defines the position of the quadrotor in space and its angular and

linear velocities.

3.5.2 Control Input Vector U

A control input vector, U , consisting of four inputs; U1 through U4 is defined as,

U =
[
U1 U2 U3 U4

]
(3.29)

Where

U1 = Kf (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) (3.30)

U2 = Kf (−Ω2
2 + Ω2

4) (3.31)

U3 = Kf (Ω2
1 − Ω2

3) (3.32)

U4 = KM(Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4) (3.33)

Equations (3.30) through (3.33) can be arranged in a matrix form to result in,


U1

U2

U3

U4

 =


Kf Kf Kf Kf

0 −Kf 0 Kf

Kf 0 −Kf 0

KM −KM KM −KM




Ω2

1

Ω2
2

Ω2
3

Ω2
4

 (3.34)
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U1 is the resulting upwards force of the four rotors which is responsible for the

altitude of the quadrotor and its rate of change (z, ż). U2 is the difference in thrust

between rotors 2 and 4 which is responsible for the roll rotation and its rate of change

(φ, φ̇). U3 on the other hand represents the difference in thrust between rotors 1

and 3 thus generating the pitch rotation and its rate of change (θ, θ̇). Finally U4

is the difference in torque between the two clockwise turning rotors and the two

counterclockwise turning rotors generating the yaw rotation and ultimately its rate

of change (ψ, ψ̇). This choice of the control vector U decouples the rotational system,

where U1 will generate the desired altitude of the quadrotor, U2 will generate the

desired roll angle, the desired pitch angle will be generated by U3 whereas U4 will

generate the desired heading.

If the rotor velocities are needed to be calculated from the control inputs, an

inverse relationship between the control inputs and the rotors’ velocities is needed,

which can be acquired by inverting the matrix in Equation (3.34) to give,


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


1

4Kf
0 1

2Kf

1
4KM

1
4Kf

− 1
2Kf

0 − 1
4KM

1
4Kf

0 − 1
2Kf

1
4KM

1
4Kf

1
2Kf

0 − 1
4KM




U1

U2

U3

U4

 (3.35)

Taking the square root of that, the rotors’ velocities can be calculated from the

control inputs as follows,

Ω1 =

√
1

4Kf

U1 +
1

2Kf

U3 +
1

4KM

U4

Ω2 =

√
1

4Kf

U1 −
1

2Kf

U2 −
1

4KM

U4

Ω3 =

√
1

4Kf

U1 −
1

2Kf

U3 +
1

4KM

U4

Ω4 =

√
1

4Kf

U1 +
1

2Kf

U2 −
1

4KM

U4 (3.36)
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3.5.3 Rotational Equation of Motion

Substituting equations (3.30) through (3.33) in equation (3.13), the equation of the

total moments acting on the quadrotor becomes

MB =


l U2

l U3

U4

 (3.37)

Substituting (3.37) into the rotational equation of motion (3.4) and expanding

each term with their prior definition from Chapter 3, the following relation can be

derived,
Ixx 0 0

0 Iyy 0

0 0 Izz



φ̈

θ̈

ψ̈

 +


φ̇

θ̇

ψ̇

×

Ixx 0 0

0 Iyy 0

0 0 Izz



φ̇

θ̇

ψ̇

 +


φ̇

θ̇

ψ̇

×


0

0

JrΩr

 =


l U2

l U3

U4


Expanding that, leads to,

Ixxφ̈

Iyyθ̈

Izzψ̈

 +


θ̇Izzψ̇ − ψ̇Iyyθ̇

ψ̇Ixxφ̇− φ̇Izzψ̇

φ̇Iyyθ̇ − θ̇Ixxφ̇

 +


θ̇JrΩr

−φ̇JrΩr

0

 =


l U2

l U3

U4

 (3.38)

Rewriting the last equation to have the angular accelerations in terms of the other

variables,

φ̈ =
l

Ixx
U2 −

Jr
Ixx

θ̇Ωr +
Iyy
Ixx

ψ̇θ̇ − Izz
Ixx

θ̇ψ̇ (3.39)

θ̈ =
l

Iyy
U3 −

Jr
Iyy

φ̇Ωr +
Izz
Iyy

φ̇ψ̇ − Ixx
Iyy

ψ̇φ̇ (3.40)

ψ̈ =
1

Izz
U4 +

Ixx
Izz

θ̇φ̇− Iyy
Izz

φ̇θ̇ (3.41)
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To simplify, define,

a1 =
Iyy − Izz
Ixx

a2 =
Jr
Ixx

a3 =
Izz − Ixx
Iyy

a4 =
Jr
Iyy

a5 =
Ixx − Iyy
Izz

b1 =
l

Ixx

b2 =
l

Iyy

b3 =
l

Izz

Using the above definition of a1 → a5 and b1 → b3, equations (3.39) through (3.41)

can then be rewritten in a simpler form in terms of the system states,

φ̈ = b1U2 − a2x4Ωr + a1x4x6 (3.42)

θ̈ = b2U3 + a4x2Ωr + a3x2x6 (3.43)

ψ̈ = b3U4 + a5x2x4 (3.44)

With the choice of the control input vector U , it is clear that the rotational subsystem

is fully-actuated, it is only dependant on the rotational state variables x1 → x6 that

correspond to φ, φ̇, θ, θ̇, ψ, ψ̇ respectively.

3.5.4 Translational Equation of Motion

Substituting equations (3.30) through (3.33) in equation (3.15), the equation of the

total moments acting on the quadrotor becomes,

FB =


0

0

−U1

 (3.45)

Embedding that into the translational equation of motion (3.14) and expanding the
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terms, we get

m


ẍ

ÿ

z̈

 =


0

0

mg

 +


cψcθ cψsφsθ sφsψ + cφcψsθ

cθsψ cθcψ + sφsψsθ cφsψsθ − cψsθ

−sθ cθsφ cφcθ




0

0

−U1



m


ẍ

ÿ

z̈

 =


0

0

mg

 +


(sφsψ + cφcψsθ)(−U1)

(cφsψsθ − cψsφ)(−U1)

(cφcθ)(−U1)

 (3.46)

Rewriting Equation (3.46) to have the accelerations in terms of the other variables,

we get

ẍ =
−U1

m
(sinφ sinψ + cosφ cosψ sin θ) (3.47)

ÿ =
−U1

m
(cosφ sinψ sin θ − cosψ sinφ) (3.48)

z̈ = g − U1

m
(cosφ cos θ) (3.49)

Rewriting in terms of the state variable X,

ẍ =
−U1

m
(sinx1 sinx5 + cosx1 cosx5 sinx3) (3.50)

ÿ =
−U1

m
(cosx1 sinx5 sinx3 − cosx5 sinx1) (3.51)

z̈ = g − U1

m
(cosx1 cosx3) (3.52)

It is clear here that the translational subsystem is underactuated as it dependant on

both the translational state variables and the rotational ones.

3.5.5 State Space Representation

Using the equations of the rotational angular acceleration. Equations (3.42) to (3.44),

and those of translation, Equations (3.50) to (3.52), the complete mathematical model

43



of the quadrotor can be written in a state space representation as follows,

ẋ1 = φ̇ = x2

ẋ2 = φ̈ = x4x6a1 − x4Ωra2 + b1U2

ẋ3 = θ̇ = x4

ẋ4 = θ̈ = x2x6a3 + x2Ωra4 + b2U3

ẋ5 = ψ̇ = x6

ẋ6 = ψ̈ = x2x4a5 + b3U4

ẋ7 = ż = x8

ẋ8 = z̈ = g − U1

m
(cosx1 cosx3)

ẋ9 = ẋ = x10

ẋ10 = ẍ =
−U1

m
(sinx1 sinx5 + cosx1 sinx3 cosx5)

ẋ11 = ẏ = x12

ẋ12 = ÿ =
U1

m
(sinx1 cosx5 − cosx1 sinx3 sinx5)

f(X,U) =



x2

x4x6a1 − x4Ωra2 + b1U2

x4

x2x6a3 + x2Ωra4 + b2U3

x6

x2x4a5 + b3U4

x8

g − U1

m
(cosx1 cosx3)

x10

−U1

m
(sinx1 sinx5 + cosx1 sinx3 cosx5)

x12

U1

m
(sinx1 cosx5 − cosx1 sinx3 sinx5)



(3.53)
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Chapter 4

System Control

In this chapter, the formulated quadrotor model will be used in open-loop simulations

and controller design. Four controllers will be developed, a linear PID controller, non-

linear Sliding Mode, Backstepping and Gain Scheduling controllers. The parameters

and gains of these controllers will be tuned using Genetic Algorithm (GA). Computer

based simulations will then be implemented on MATLAB/Simulink and will be used

to asses the performance of the developed controllers.

4.1 Open Loop Simulation

To verify the mathematical model, an open loop simulation was carried out using

MATLAB/Simulink. The quadrotor’s parameters were taken from Bouabdallah’s

PhD thesis which is based on the OS4 hardware [16]. The block diagram for the

simulation is shown in Figure 4-1.

Figure 4-1: Open Loop Block Diagram
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The rotors speed required for the quadrotor to hover was calculated using the

following equation

mg = 4Fi

mg = 4(KfΩ2
ih) (4.1)

where Ωih is the hover angular velocity of rotor i.

It is assumed that the only forces acting on the quadrotor are the four upwards

thrust forces of the four rotors and the downwards gravitational acceleration. Equa-

tion (3.34) is used to calculate the control input values for different rotor angular

velocities. When Ωih was fed to the open loop simulation model shown in Figure 4-1

in place of the angular velocities Ω1 through Ω4, it was observed that all the state

variables (x, y, z, φ, θ, ψ) and their derivatives were kept at a zero value. By increasing

the rotors’ speed above their hover value with the same value of increase, the only

change in the state variables was in the altitude of the quadrotor. Also, varying the

angular velocity of the 4 rotors, produced the respective roll, pitch or yaw motion.

These tests helped verify the correctness of the derived mathematical model and the

integrity of the open loop simulation.

Rotor dynamics are included in the “Control Input Calculation” block as the first

order lag transfer function shown in Equation (3.26). Similarly, in all the proceeding

block diagrams, the rotor velocities calculation based on the control inputs is followed

by the lag transfer function to map the desired rotor velocities to the actual ones.

4.2 Closed Loop Simulation

After the derived mathematical model of the quadrotor was verified using the open

loop simulation, the simulation environment is then extended to include an altitude,

attitude, heading, and position controllers. The frequency of the simulation envi-

ronment is set to 250 Hz with a fixed step size which is the average frequency of a

controller in an actual quadrotor system platform.
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4.2.1 Altitude Controller

The open loop simulation previously developed was expanded to include an altitude

controller as shown in the block diagram in Figure 4-2. The altitude controller takes

Figure 4-2: Block Diagram for Altitude Controller

an error signal e as an input which is the difference between the desired altitude zd

and the actual altitude z and produces a control signal U1.

4.2.2 Attitude and Heading Controller

To control the attitude and heading of the quadrotor, the open loop simulation was

modified to include the attitude and heading controllers as shown in Figure 4-3.

Similar to the attitude controller block, the attitude and heading controller take as

an input an error signal e which is the difference between the desired roll φd, pitch θd

and yaw ψd and their actual values φ, θ and ψ. The attitude and heading controller

produces the output signals U2, U3 and U4.

4.2.3 Position Controller

Unlike the altitude and orientation of the quadrotor, its x and y position is not

decoupled and cannot be directly controlled using one of the four control laws U1

through U4. On the other hand, the x and y position can be controlled through the

roll and pitch angles. The desired roll and pitch angles φd and θd can be calculated
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Figure 4-3: Block Diagram for Attitude and Heading Controller

from the translational equations of motion, Equations (3.47) and (3.48) as follows:

ẍ =
−U1

m
(sinφd sinψ + cosφd sin θd cosψ)

ÿ =
−U1

m
(cosφd sin θd sinψ − sinφd cosψ)

Since the quadrotor is operating around hover, which means small values for the roll

and pitch angles φ and θ, we can use the small angle assumption (sinφd ≡ φd, sin θd ≡

θd and cosφd = cos θd = 1) to simplify the above equations,

ẍ =
−U1

m
(φd sinψ + θd cosψ) (4.2)

ÿ =
−U1

m
(θd sinψ − φd cosψ) (4.3)

which can be written in a matrix form as,− sinψ − cosψ

cosψ −sinψ

φd

θd

 =
m

U1

ẍd
ÿd

 (4.4)
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which can be inverted to get

φd

θd

 =

− sinψ − cosψ

cosψ −sinψ

−1 m
U1

ẍd
ÿd


=
m

U1

− sinψ cosψ

− cosψ −sinψ

ẍd
ÿd


=
m

U1

−ẍd sinψ + ÿd cosψ

−ẍd cosψ − ÿdsinψ

 (4.5)

The calculated φd and θd have to be limited to the range between −20◦ and 20◦ to

fulfill the small angle assumption used in the derivation and this can be done via a

saturation function in the simulation.

The closed loop simulation for the altitude and attitude controllers is further

enhanced to include the position controller as shown in the block diagram in Figure 4-

4.

Figure 4-4: Position Controller Block Diagram (Complete System)

The controller blocks in the previous block diagrams can contain any type of

control algorithm, whether linear or nonlinear. All controllers input(s) are the error

related to some of the quadrotor’s states and produce an output which is either one

49



or several control inputs U1 through U4 or φd and θd if it is the position controller.

4.3 Parameters Tuning Using GA

For the proceeding control algorithms, tuning the controller constants (gains and dif-

ferent parameters) was done using GA. The objective function of the GA was set to

be the settling time of the response of the system. The GA is an iterative optimiza-

tion algorithm works in the following way; first it generates a random “population”

consisting of many individuals, which in our case will be a vector of values for the

controller gains. The fitness of the individuals of the population is evaluated using an

objective function, which is the settling time of the response of the system with these

values set as the control gains. Another population is then generated from the current

one using genetic operations like evolution, mutation and crossover and their fitness

is also evaluated. The “elite” of the two populations are then selected to form a third

population. The term “elite” indicates those individuals having the best fitness or the

least value of the objective function (settling time in our case). The algorithm keeps

on iterating until it reaches a population where all (or most of) its individuals are

elite individuals and returns the individual (the value for the control gains) that has

the least possible fitness (produces the least possible settling time for the system). In

this work, we have not gone through the process of implementing a GA from scratch

as this is out of our scope. Instead, the optimization toolbox in MATLAB was used

and it includes a built-in command for GA optimization. The Block Diagram for the

GA is shown in Figure 4-5.

Figure 4-5: Controller Tuning using Genetic Algorithm

50



4.4 PID Controller

After the mathematical model of the quadrotor along with its open loop simulation

are verified, a PID controller was developed. The PID controller generates the desired

control inputs for the quadrotor. The block diagram for a PID controller is shown in

Figure 4-6.

Figure 4-6: PID Controller Block Diagram

4.4.1 Altitude Control

A PID controller is developed to control the altitude of the quadrotor. It generates

the control input U1 which is responsible for the altitude for the quadrotor as per

Equation (3.30). The derived control law is as follows

U1 = kp(z − zd) + kd(ż − żd) + ki

∫
(z − zd)dt (4.6)

where

kp Proportional gain

zd Desired altitude

kd Derivative gain

żd Desired altitude rate of change

ki Integral gain
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4.4.2 Attitude and Heading Control

4.4.2.1 Roll Controller

Another PID controller is developed to control the roll angle φ of the quadrotor. The

derived control law generates the input U2 that controls the roll angle as follows

U2 = kp(φd − φ) + kd(φ̇d − φ̇) + ki

∫
(φd − φ)dt (4.7)

where

kp Proportional gain

φd Desired roll angle

kd Derivative gain

φ̇d Desired roll angle rate of change

ki Integral gain

4.4.2.2 Pitch Controller

A PID controller is developed to control the pitch angle θ of the quadrotor. The

derived control law generates the input U3 that controls the pitch angle as follows,

U3 = kp(θd − θ) + kd(θ̇d − θ̇) + ki

∫
(θd − θ)dt (4.8)

where

kp Proportional gain

θd Desired pitch angle

kd Derivative gain

θ̇d Desired pitch angle rate of change

ki Integral gain
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4.4.2.3 Yaw Controller

Similar to the pitch and roll controllers, a yaw controller was developed to generate

the control input U4 based on the following control law,

U4 = kp(ψd − ψ) + kd(ψ̇d − ψ̇) + ki

∫
(ψd − ψ)dt (4.9)

where

kp Proportional gain

φd Desired yaw angle

kd Derivative gain

φ̇d Desired yaw angle rate of change

ki Integral gain

4.4.3 Position Controller

After acquiring stable controllers for the altitude and the attitude of the quadrotor,

a complete position controller is developed. PID controllers are used to calculate the

desired accelerations ẍd and ÿd

ẍd = kp(xd − x) + kd(ẋd − ẋ) + ki

∫
(xd − x)dt (4.10)

ÿd = kp(yd − y) + kd(ẏd − ẏ) + ki

∫
(yd − y)dt (4.11)
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where

kp Proportional gain

xd Desired x position

kd Derivative gain

ẋd Desired x position rate of change

yd Desired y position

ẏd Desired y position rate of change

ki Integral gain

Plugging the values of the desired accelerations ẍd and ÿd into Equation (4.5), the

desired roll and pitch angles φd and θd can be calculated which are in turn fed to the

attitude controller previously expressed in Equations (4.7) and (4.8).

4.5 PID Controller Simulation

For the altitude controller, GA was used to choose the control gains for the PID

controller with a desired altitude zd of 2 m. No steady state error was observed, so

the PID controller was simplified to a PD controller by settling the integral gain ki

to zero. The control gains produced by the GA were kp = 5.2 and kd = 1.3. The

objective function used to evaluate the GA was the settling time of the system. GA

works to find control gains that would result in the least possible settling time for

the altitude of the quadrotor. Running the closed loop simulation with the acquired

gains resulted in a settling time of 1.3 sec and an overshoot of 1.4%.

Similarly, attitude, heading and position controllers gains were optimized using

GA, Table 4.1 shows a summary of the optimized control gains and the performance

of the system in terms of its settling time and overshoot. The response of the system

is shown in Figure 4-7 and the respective control inputs are shown in Figure 4-8.

Note that the reason the altitude response is in the negative z-axis is our previously

assigned N-E-D axes for the quadrotor, that the z-axis points downwards.

Due to the symmetry of the quadrotor, the controller for the pitch rotation is
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equivalent to that of the roll rotation. This theory was verified and proved using the

closed loop simulation and their results is shown in the attitude row in Table 4.1.

As with the roll and pitch, the performance of the y position controller was exactly

the same as the performance of the x position controller due to the symmetry of the

quadrotor.

Thus, a complete position and altitude PD controller was developed for the

quadrotor. This controller is able to perform well near hovering. The controller

was also tested in commanding the quadrotor to follow a circular trajectory as shown

in Figure 4-9.

Table 4.1: PD Controller Results

Desired Value kp kd Settling Time Overshoot

Altitude (z) 2 m 5.2 1.3 1.3 sec 1.4 %

Attitude (φ and θ) 5◦ 4.5 0.5 0.3 sec 2%

Heading (ψ) 5◦ 3.9 0.7 0.42 sec 1.9%

Position (x and y) 1 m 7.5 4.2 1.4 sec 1.9%
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(a) Altitude Response (b) Attitude Response

(c) Heading Response (d) Position Response

Figure 4-7: PD Controller Simulation Response
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(a) Control Input U1 (b) Control Input U2

(c) Control Input U3 (d) Control Input U4

Figure 4-8: PD Control Inputs

Figure 4-9: Trajectory Response under PD
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4.6 Gain Scheduling Based PD Controller

To overcome the shortcomings of the linear PD controller in its ability to only operate

in the linear near hover region, a gain scheduling based PD controller is proposed.

The theory behind gain scheduling is developing a set of controllers for different

operating points and switching between these controllers depending on the operating

point of the system [45]. In this work, a family of PD controllers will be developed,

each PD controller having different controller gains and will be able to stabilize the

quadrotor system in a certain range of operation. Gain scheduling will then be used

to choose an appropriate controller from the family of developed PD controllers.

This approach renders the classical PD controller an adaptive controller since the

controller’s parameters are adapting to different operating conditions. Similar to the

previously implemented controllers, GA was used to acquire the control gains, that

would result in the least possible settling time, for the family of PD controllers are

different operating points. The acquired gains were used in a look up table fashion

in the developed MATLAB/Simulink model. The Block Diagram for the developed

Gain Scheduling based PD controller is shown in Figure 4-10.

Figure 4-10: Gain Scheduling Block Diagram
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4.7 Gain Scheduling Based PD Controller Simula-

tion Results

4.7.1 Altitude Controller

GA was used to tune the parameters of the PD controller for the system, the param-

eters for different desired altitudes are shown in Table 4.2 together with the resulted

settling time for the system. In order to show the strength of the developed gain

Table 4.2: Altitude Gain Scheduling Based PD Controller Gains and Results

Desired Altitude kp kd Settling Time

1 m 8.91 3.75 0.98 sec

2 m 5.97 3.07 1.24 sec

3 m 4.67 2.71 1.42 sec

4 m 8.77 3.64 1.25 sec

5 m 5.06 2.79 1.51 sec

6 m 6.10 3.04 1.51 sec

7 m 5.14 2.79 1.64 sec

8 m 6.24 3.21 1.69 sec

9 m 4.64 2.67 1.82 sec

10 m 5.69 3.13 1.82 sec

scheduling based PD controller, it was tested to follow a wide range trajectory unlike

the step input that was used in the classical PD. The response shown in Figure 4-11

compares the performance of the classical PD to the gain scheduled PD.

4.7.2 Attitude Controller

For the roll and pitch control, GA was also used to find the controller gains for a set of

operating points. Table 4.3 shows the operating points together with their controller

gains and performance. Figure 4-12 shows a comparison between the performance of
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Figure 4-11: Altitude Response

the gain scheduled PD controller and the classical PD controller in following a varying

trajectory.

4.7.3 Heading Controller

Similar to the attitude controller, a look up table was synthesised for the heading con-

troller. The controller gains and their respective performances at multiple operating

points are shown in Table 4.4 and the response is shown in Figure 4-13.

The control inputs for the previous trajectories are shown in Figure 4-14.
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Table 4.3: Attitude Gain Scheduling Based PD Controller Gains and Results

Desired Attitude kp kd Settling Time

2◦ 6.29 0.694 0.26 sec

4◦ 5.89 0.675 0.27 sec

6◦ 7.10 0.737 0.24 sec

8◦ 7.04 0.742 0.25 sec

10◦ 4.25 0.573 0.31 sec

12◦ 5.69 0.661 0.27 sec

14◦ 5.90 0.678 0.27 sec

16◦ 5.24 0.637 0.28 sec

18◦ 3.05 0.486 0.37 sec

20◦ 5.40 0.657 0.29 sec

Figure 4-12: Attitude Response
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Table 4.4: Heading Gain Scheduling Based PD Controller Gains and Results

Desired Heading kp kd Settling Time

2◦ 6.25 0.921 0.38 sec

4◦ 3.28 0.669 0.53 sec

6◦ 4.96 0.809 0.52 sec

8◦ 3.75 0.697 0.60 sec

10◦ 4.00 0.775 0.64 sec

12◦ 3.94 0.816 0.69 sec

14◦ 4.51 0.991 0.75 sec

16◦ 2.27 0.570 0.825 sec

18◦ 3.31 0.821 0.84 sec

20◦ 4.70 1.20 0.88 sec

Figure 4-13: Heading Response
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(a) Control Input U1 (b) Control Input U2

(c) Control Input U3 (d) Control Input U4

Figure 4-14: Gain Sheduling based PD Control Inputs
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4.8 Sliding Mode Controller

Since the quadrotor system is a nonlinear type system, we proposed using a nonlinear

Sliding Mode Controller (SMC) to control the states of the quadrotor.

4.8.1 Introduction to SMC

A SMC is a type of Variable Structure Control (VSC). It uses a high speed switching

control law to force the state trajectories to follow a specified, user defined surface in

the states space and to maintain the state trajectories on this surface [46]. The control

law for a SMC consists of two parts as per Equation (4.12); a corrective control part

and an equivalent control part. The corrective control function is to compensate any

variations of the state trajectories from the sliding surface in order to reach it. The

equivalent control on the other hand, makes sure the time derivative of the surface is

maintained to zero, so that the state trajectories would stay on the sliding surface.

U(t) = Uc(t) + Ueq(t) (4.12)

Where

U(t) Control Law

Uc(t) Corrective Control

Ueq(t) Equivalent Control

A block diagram showing the SMC is shown in Figure 4-15.

Figure 4-15: SMC Block Diagram
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4.8.2 Attitude Control

The sliding mode attitude controller is based on the approach used by Bouabdallah

and Siegwart [15].

4.8.2.1 Roll Controller

The SMC is used to track a reference trajectory for the roll angle. The error in the

roll is defined as,

e = φd − φ (4.13)

The sliding surface is defined as,

s = c1e+ ė (4.14)

where c1 is a constant that has to be greater than zero. This format is a common for-

mat for the sliding surface in tracking problems. The derivative of the sliding surface

defined in Equation (4.14) with the substitution of Equation (4.13) is formulated as

the following,

ṡ = c1ė+ ë

= c1(φ̇d − φ̇) + φ̈d − φ̈ (4.15)

A Lyapunov function is then defined to be,

V (e, s) =
1

2
(e2 + s2) (4.16)

Based on the Lyapunov function, an exponential reaching law is proposed for the

sliding mode controller as follows

ṡ = −k1sgn(s)− k2s (4.17)
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where

sgn(s) =

 −1 if s < 0;

1 if s > 0.

and k1 and k2 are design constants. To satisfy the sliding mode condition sṡ < 0,

limits has to be set on k1 and k2 such as k1 > 0 and k2 > 0. By equating the proposed

reaching law (4.17) to the derivative of the sliding surface in Equation (4.15) and

substituting φ̈ by its definition from Equation (3.42), the control input U2 is calculated

to be,

U2 =
1

b1
[k1sgn(s) + k2s+ c1(φ̇d − φ̇) + φ̈d + a2θ̇Ωr − a1θ̇ψ̇] (4.18)

4.8.2.2 Pitch Controller

Following exactly the same steps as the roll controller, the control input U3 responsible

of generating the pitch rotation θ is calculated to be,

U3 =
1

b2
[k1sgn(s) + k2s+ c1(θ̇d − θ̇) + θ̈d − a4φ̇Ωr − a3φ̇ψ̇] (4.19)

4.8.2.3 Yaw Controller

Following the same steps as the roll and pitch controller, the control input U4 respon-

sible of producing the yaw rotation ψ is calculated to be,

U4 =
1

b3
[k1sgn(s) + k2s+ c1(ψ̇d − ψ̇) + ψ̈d − a5φ̇θ̇] (4.20)

4.8.3 Altitude Control

As what has been done with the development of the attitude controllers, an altitude

SMC is implemented. The error is defined as,

e = z − zd (4.21)
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where zd is the desired altitude of the quadrotor. The sliding surface is defined as

previously

s = c1e+ ė (4.22)

Also, c1 has to be a positive constant. The derivative of the sliding surface is then

equated to the exponential reaching law as follows

−k1sgn(s)− k2s = c1(ż − żd) + z̈ − z̈d (4.23)

Substituting z̈ by its definition from equation (3.52), the control input U1 is calculated

to be

U1 =
m

cosφ cos θ
[k1sgn(s) + k2s+ c1(ż − żd) + g − z̈d] (4.24)

4.9 SMC Simulation

As for the previously implemented PD controller, GA was used to find the design

parameters (c1, k1 and k2) for the implemented SMCs to achieve the least settling time

for the system. Table 4.5 show the GA generated design parameters and the resulting

settling time and overshoot of the system. The response is shown in Figure 4-16. The

problem of chattering is clear in the response plots and the problem to overcome it

will be addressed in Section 4.10.

Table 4.5: SMC Results

Desired Value c k1 k2 Settling Time Overshoot

Altitude (z) 2 m 6.98 2.66 6.64 0.57 sec 2%

Attitude (φ and θ) 5◦ 4.68 1.99 1.80 0.8 sec 1.9%

Heading (ψ) 5◦ 5.24 1.72 4.33 0.74 sec 1.7%

Due to the symmetry of the quadrotor, the results for the pitch controller were
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(a) Altitude Response (b) Attitude Response

(c) Heading Response

Figure 4-16: SMC Controller Simulation Response

exactly the same as that of the roll and accordingly the GA produced the same control

gains.

4.10 SMC Chattering Reduction

As shown in Figure 4-16, there is a clear chattering effect which is a common outcome

of a SMC due to its switching nature. The presence of the sgn term in the SMC’s

control law makes it a discontinuous controller. Figure 4-17 shows that whenever the

value of the surface s is positive, the control law works to decrease the trajectory to

reach the sliding surface (s = 0) at point a. Ideally it should continue sliding on

the surface once hitting it, but due to the delay between the change of sign of s and

the the change in the control action, the trajectory passes the surface to the side
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(s < 0). Accordingly, the control law works to drive the trajectory again to (s = 0),

yet it passes it and this causes the famous chattering effect. The main drawbacks of

chattering are that it causes the excitation of unmodeled system dynamics that yields

a possible instability of the system. In addition to that it is associated with a high

power consumption and possible actuator damage. These drawbacks make the SMC

hard to be implemented on real systems [29].

Figure 4-17: The Chattering Effect [29]

The chattering can be observed more clearly in the plot of the derivative of the

sliding surface ṡ for the altitude shown in Figure 4-18.

Figure 4-18: Derivative of Sliding Surface for c1 = 6.98, k1 = 2.66 and k2 = 6.64

4.10.1 Re-tuning using GA

In a trial to eliminate chattering effect, we proposed a mathematical formula to have

a numerical value for the chattering based on calculating the difference in areas under
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the desired and actual response graphs starting from the settling time until the end

of the simulation time.

chat =

∫ Tend

Ts

‖φ− φd‖ dt (4.25)

where

Ts Settling Time for Roll Response

Tend Simulation End Time

By visual inspection, Equation (4.25) did not provide accurate means of numer-

ically measuring the chattering of the SMC. Hence, another method was proposed

and verified for measuring the chattering which depends on the time derivative of the

sliding surface s. The lower ṡ is, the lower the chattering.

chat = max
Ts→Tend

ṡ (4.26)

4.10.1.1 Simulations

The result of Equation (4.26) was used as an objective function for the GA to calculate

the design gains. Table 4.6 shows the GA generated design parameters that result

in the least chattering and based on these parameters the resulting settling time and

overshoot of the system. The response is shown in Figure 4-19.

Table 4.6: SMC Results with Minimal Chattering

Desired Value c k1 k2 Settling Time

Altitude (z) 2 m 2.84 0.0011 1.49 3.11 sec

Attitude (φ and θ) 5◦ 1.49 0.0062 0.0474 15 sec

Heading (ψ) 5◦ 4.94 0.0016 0.7334 5.25 sec

Using the chattering as the objective function of the GA led to the desired reduc-

tion of chattering but as a counter effect, the settling time of the system was largely
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(a) Altitude Response (b) Attitude Response

(c) Heading Response

Figure 4-19: SMC Controller Simulation Response with Chattering Reduction

affected. It resulted in an increase in the altitude’s settling time from 0.57 sec to 3.11

sec. Figure 4-20 shows the derivative of the surface clearly indicating the absence of

chattering. The attitude’s settling time increased from 0.8 sec to 15 sec. While that

of the heading increased from 0.74 to 5.25 sec.

For a final trial to optimize the traditional SMC, compromising between its per-

formance in terms of the settling time and chattering, the objective function given to

the GA was both the settling time and chattering of the roll angle. The control gains

were found to be c1 = 1.98, k1 = 0.0010 and k2 = 1.33 and they resulted in a settling

time of 3.57 sec and a minimal chattering effect as shown in Figure 4-21.
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Figure 4-20: Derivative of Altitude’s Sliding Surface

Figure 4-21: Roll Response for c1 = 1.98, k1 = 0.0010 and k2 = 1.33

4.10.2 Discontinuous to Continuous Control Law

Another approach was proposed to get rid of the chattering effect. As stated ear-

lier, the reason behind chattering is the discontinuity of the control law due to the

presence of sgn function which is a discontinuous function. Replacing sgn with the

saturation function sat will change the control law to be a continuous one instead

of discontinuous. Figure 4-22 shows graphs of both functions. The sat function is

defined by,

sat(s) =

 s if |s| ≤ 1;

sgn(s) if |s| > 1.

Thus, to implement this modification on the SMCs for our system, the sgn(s)

terms in Equations (4.18), (4.19), (4.20) and (4.24) should be replaced by sat(s/ε).
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Figure 4-22: sgn vs. sat Functions [29]

Where ε is a constant that determines the slope of the line between 1 and -1, this

region is called the boundary region or boundary layer. Higher values ε means a

thicker boundary layer and thus an increase in the error [47].

4.10.2.1 Simulations

Using the obtained control parameters in Table 4.5 with the modified control laws

(replacing sgn(s) by sat(s/ε) in Equations (4.18), (4.19), (4.20) and (4.24)), chatter-

ing was eliminated as shown in Figure 4-23, the response graphs for altitude, attitude

and heading respectively. Also, the control inputs are shown in Figure 4-24. More-

over, the quadrotor was commanded to follow a circular trajectory and its response

graph is shown in Figure 4-25
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(a) Altitude Response (b) Attitude Response

(c) Heading Response

Figure 4-23: Modified SMC Controller Simulation Response

74



(a) Control Input U1 (b) Control Input U2

(c) Control Input U3 (d) Control Input U4

Figure 4-24: SMC Control Inputs

Figure 4-25: Trajectory Response under SMC
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4.11 Backstepping Controller

In this section, a Backstepping controller is used to control the attitude, heading and

altitude of the quadrotor. The Backstepping controller is based on the state space

model derived in (3.53).

4.11.1 Introduction to Backstepping

Backstepping is a recursive control algorithm that works by designing intermediate

control laws for some of the state variables. These state variables are called “virtual

controls” for the system [48]. Unlike other control algorithms that tend to linearize

nonlinear systems such as the feedback linearization algorithm, backstepping does not

work to cancel the nonlinearities in the system. This leads to more flexible designs

since some of the nonlinear terms can contribute to the stability of the system. An

example of such terms that add to the stability of the system are state variables

taking the form of negative terms with odd powers (e.g. −x3), they provide damping

for large values of x [48, 49].

4.11.2 Attitude and Heading Control

The backstepping controller implemented to control the quadrotor’s orientation is

based on the control approaches proposed in [33] and [15].

4.11.2.1 Roll Controller

The first two states of the state space model in Equation (3.53) are the roll angle and

its rate of change. Extracting those we get:

ẋ1 = x2 (4.27)

ẋ2 = x4x6a1 − x4Ωra2 + b1U2 (4.28)

The roll angle subsystem is in the strict feedback form (only the last state is a function

of the control input U2) which makes it easy to pick a positive definite Lyapunov
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function for it,

V1 =
1

2
z21 (4.29)

where z1 is the error between the desired and actual roll angle defined as follows,

z1 = x1d − x1 (4.30)

The time derivative of the Lyapunov function defined in Equation (4.29) is derived

to be,

V̇1 = z1ż1 (4.31)

= z1(ẋ1d − ẋ1) (4.32)

and from Equation (4.27) this can be rewritten as,

V̇1 = z1(ẋ1d − x2) (4.33)

According to Krasovskii–LaSalle principle, the system is guaranteed to be a stable

system if the time derivative of a positive definite Lyapunov function is negative

semi-definite [48]. To achieve that, we choose a positive definite bounding function

W1(z) = c1z
2
1 to bound V̇1 as in Equation (4.34). This choice of W1(z) is also a

common choice for a bounding function for strict feedback systems [48].

V̇1 = z1(ẋ1d − x2) ≤ −c1z21 (4.34)

where c1 is a positive constant. To satisfy this inequality the virtual control input

can be chosen to be,

(x2)desired = ẋ1d + c1z1 (4.35)

Defining a new error variable z2 to be the deviation of the state x2 from its desired
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value,

z2 = x2 − ẋ1d − c1z1 (4.36)

Rewriting Lyapunov’s function time derivative V̇1 in the new coordinate (z1, z2)

we get,

V̇1 = z1ż1

= z1(ẋ1d − x2)

= z1(ẋ1d − (z2 + ẋ1d + c1z1))

= −z1z2 − c1z21 (4.37)

Note that the presence of the term z1z2 in V̇1 may not lead to a negative semi-

definite time derivative but this will be taken care of in the next iteration of the

backstepping algorithm. The next step is to augment the first Lyapunov function V1

with a quadratic term in the second error variable z2 to get a positive definite V2,

V2 = V1 +
1

2
z22 (4.38)

with time derivative,

V̇2 = V̇1 + z2ż2

= −z1z2 − c1z21 + z2(ẋ2 − ẍ1d − c1ż1) (4.39)

Choosing the positive definite bounding function to be W2(z) = −c1z21−c2z22 where

c2 is a positive definite and substituting by the value of ẋ2 from equation (4.28) leads

to the following inequality,

V̇2 = −z1z2 − c1z21 + z2(x4x6a1 − x4Ωra2 + b1U2 − ẍ1d − c1ż1) ≤ −c1z21 − c2z22
(4.40)
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Solving the last inequality, the control input U2 can be written as,

U2 =
1

b1
(−c2z2 + z1 − x4x6a1 + x4Ωra2 + ẍ1d + c1ẋ1d − c1x2) (4.41)

4.11.2.2 Pitch Controller

The pitch controller is derived in the same manner as the roll controller. The states

used are,

ẋ3 = x4 (4.42)

ẋ4 = x2x6a3 + x2Ωra4 + b2U3 (4.43)

And the error in pitch is defined as z3 = x3d − x3 leading to a positive definite

Lyapunov function,

V3 =
1

2
z23 (4.44)

with time derivative,

V̇3 = z3ż3

= z3(ẋ3d − x4) (4.45)

Choosing the bounding function to be W3(z) = −c3z23 with c3 a positive constant,

the desired x4 state is,

(x4)desired = ẋ3d + c3z3 (4.46)

and the error in state x4 is,

z4 = x4 − ẋ3d − c3z3 (4.47)
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Rewriting the Lyapunov function’s time derivative

V̇3 = z3ż3

= z3(ẋ3d − (z4 + ẋ3d+ c3z3))

= −z3z4 − c3z23 (4.48)

Augmenting the previous Lyapunov function with a quadratic term in the error

variable z4,

V4 = V3 +
1

2
z24 (4.49)

Defining a new bounding function to be W4(z) = −c3z23 − c4z24 with c4 a positive

constant, the following inequality can be reached,

V̇4 = −z3z4 − c3z23 + z4(ẋ4 − ẍ3d − c3z3) ≤ −c3z23 − c4z24 (4.50)

replacing x4 with its definition from equation (4.43) and solving for U3. The roll angle

control input is found to be,

U3 =
1

b2
(−c4z4 + z3 − x2x6a3 − x2Ωra4 + ẍ3d + c3ẋ3d− c3x4) (4.51)

4.11.2.3 Yaw Controller

Following exactly the same steps as the roll and pitch controllers, the control input

for the yaw angle is derived to be,

U4 =
1

b3
(−c6z6 + z5 − x2x4a5 + ẍ5d + c5ẋ5d − c5x6) (4.52)

with

z5 = x5d − x5 (4.53)

z6 = x6 − ẋ5d − c5z5 (4.54)
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and c5 and c6 are positive constants.

4.11.3 Altitude Control

For the altitude controller, the control input U1 is derived in the same manner as

U2, U3, U4 to be

U1 =
m

cosx1 cosx3
(−z7 + g − ẍ7d − c7ẋ7d + c7x8 + c8z8) (4.55)

with

z7 = x7d − x7 (4.56)

z8 = x8 − ẋ7d − c7z7 (4.57)

and c7 and c8 are positive constants.

4.12 Backstepping Controller Simulation

The control inputs U1 through U4 derived in sections 4.11.2 and 4.11.3 were added

to the previously implemented simulation model and similar to the PD and the SMC

controllers, GA was used to tune the parameters of the Backstepping controllers. The

parameters to be tuned are c1 through c8. The objective function used for the GA was

the settling time of the system. Table 4.7 shows the optimized parameters acquired

from the GA and the resulting settling time for the attitude, heading and altitude of

the quadrotor. Figure 4-26 shows the response when running the simulation with the

constants in Table 4.7 and Figure 4-27 shows the control inputs.
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Table 4.7: Backstepping Controller Constants and Results

Desired Value c1/c5/c7 c2/c6/c8 Settling Time Overshoot

Attitude (φ and ψ) 5◦ 5.52 3.40 0.80 sec 1.9%

Heading (ψ) 5◦ 3.07 4.71 0.86 sec 1.6%

Altitude (z) 2 m 6.11 7.96 0.58 sec 2 %

(a) Attitude Response (b) Heading

(c) Altitude Response

Figure 4-26: Backstepping Controller Simulation Response
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(a) Control Input U1 (b) Control Input U2

(c) Control Input U3 (d) Control Input U4

Figure 4-27: Backstepping Control Inputs
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Chapter 5

Results Discussion

5.1 Varying Trajectory

To be able to compare fairly between the four implemented control techniques, the

response graph of the system under the effect of each the four controllers was plotted

superimposed on one another. Figure 5-1 shows the altitude response while Figures 5-

2 and 5-3 show the attitude and heading responses respectively.

Figure 5-1: Altitude Response
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Figure 5-2: Attitude Response

Figure 5-3: Heading Response

5.2 Performance in a Windy Environment

Disturbance was then added to the quadrotor model in the form of additional forces

and moments to give the effect of operating the quadrotor in a windy environment.

The forces were added to the right hand side of the system’s translational equation

of motion (Equation (3.14)) as Gaussian noise with zero mean and with a maximum

value of 1 N. The added moments were also added to the right hand side of the

system’s rotational equation of motion (Equation (3.4)) as Gaussian noise with zero

mean and a maximum value of 0.5 Nm. The system was commanded to follow a

certain desired altitude and attitude. The performance of the system under the effect
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(a) Attitude Response with a desired attitude
of 2m

(b) Attitude Response with a desired attitude
of 5◦

Figure 5-4: System Response in a Windy Environment

of wind is shown in Figure 5-4 for PD, SMC and Backstepping.

5.3 Nonhovering Operation

In order to operate the system outside its linear region (the hovering condition)

a nonlinear controller has to be used. Applying the SMC and the Backstepping

controller, the system response for the altitude, attitude and heading is shown in

Figure 5-5. Since the SMC and the Backstepping controller are nonlinear controllers,

their tuning is not affected by the operating region. Thus, the control gains acquired

in Tables 4.5 and 4.7 were used.

When the PD controller was used to operate the system outside its linear region

(more than 20◦) of orientation, the system went unstable.
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(a) Attitude Response with a desired attitude
of 8 m

(b) Attitude Response with a desired attitude
of 80◦

(c) Heading Response with a desired heading
of 80◦

Figure 5-5: System Response When Operated Outside the Linear Region

5.4 Summary of Findings

Linear Operation The four employed controllers developed to control the quadro-

tor model under consideration gave comparable dynamic performances in terms of

settling time and overshoot when they were deployed in near hover stabilization of

the quadrotor. When first implemented, the SMC resulted in an undesirable chat-

tering effect which was very notable in the attitude response unlike the altitude’s.

This chattering effect was then eliminated by using a modified version for the control

law rendering the response chattering free. Tables 5.1 and 5.2 show a quantitative

comparison between the performance of the PD, SMC and Backstepping controllers

in terms of the settling time and overshoot of the system’s response respectively.
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Nonlinear Operation When the controllers were used outside of the linear region

(away from hover), the PD controller failed to stabilize the system due to the fact

that PD comes out of a family of linear controllers. On the other hand, the SMC and

the Backstepping controller were able to stabilize the system with a good dynamic

performance as shown in Tables 5.3 and 5.4. The developed gain scheduled PD

controller was also not able to stabilize the system as it is also based on the linear

PD controller.

PD One notable advantage of the PD controller over the other implemented con-

trollers is that its control law is not a function of the system parameters, it is only

a function of the state error and its derivative making the control law less computa-

tionally intensive and easier to implement. Also, the controller is less prone to slight

variations or uncertainties in system parameters.

Gain Scheduled PD A gain scheduling based PD controller is essentially a PD

controller with its gains tuned for a different set of operating conditions, thus its

performance at following a fixed value trajectory is the exactly the same as the per-

formance of the classical PD. On the other hand, the gain scheduled PD controller

performs better than the traditional PD controller when following a varying tra-

jectory, which is a more practical or realistic application for a quadrotor UAV. A

quadrotor is more likely to be commanded follow a changing trajectory rather than

flying to fixed place in space and hovering or maintaining its position there.

A worth mentioning drawback of the Gain Scheduling algorithm is the criticality

of the switching time, the switching from a set of controller gains to the other has

to be done in infinitesimally small time to guarantee a good performance. This is a

critical issue in some quadrotor applications that mainly rely on Gain Scheduling such

as the load drop applications, if the switching is not done once the load is dropped,

the quadrotor might overshoot and go unstable.
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Control Effort Comparison Comparing the four developed controllers in terms

of their generated control signals, U1 through U4, PD comes out to be the most energy

efficient (as shown in Figure 4-8) followed by Backstepping (Figure 4-27) and then

SMC (Figure 4-24). Gain scheduling based PD controllers (with their control signal

shown in Figure 4-14) suffer from spikes in the control signals due to the sudden

transition between one set of controller gains to the other, these sudden transitions

will probably lead to system instability if the controller was implemented on a real

system. To overcome this effect, a smoothing filter needs to be used to result in a

smooth transition before sending the control signals to the actuators. Also, changing

the switching variable to be the error of the state instead of the desired set point

might lead to decreasing the presence of the spikes in the control signals.

Windy Environment When operating in a windy environment, which was simu-

lated by Gaussian noise of zero mean, the performance of the modified SMC suffered

a huge degradation. This is due to two reasons; the first of them is that the presence

of noise excites the chattering phenomenon and cancels the effect of the boundary

layer. The second reason for the degradation of the performance of the SMC is that

the system model is changed by the added forces and moments that simulate the

windy environment. As a consequence to that change, the time derivative of the Lya-

punov functions is not guaranteed to be negative semi-definite anymore thus causing

the system to be unstable. While the performance of the PD and the Backstepping

controllers was comparable in controlling the quadrotor’s altitude, yet Backstepping

also suffered a slight performance degradation in stabilizing the quadrotor’s attitude.

This is due to the fact that the Backstepping’s reaching law design also depends on

a Lyapunov function and the added forces and moments cause its time derivative not

to be guaranteed negative semi-definite. Figure 5-6 shows the time derivative of the

Lyapunov function under the effect of wind, while Figure 5-7 shows it in the no wind

condition.
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Choice of Controller The choice of the controller to be used will depend mainly

on the application, if the quadrotor is to be operating near a hovering condition,

a PD controller will be sufficient to stabilize it. On the other hand, if it will be

performing tough acrobatic maneuvers thus operating outside its linear region, a

SMC or a Backstepping controller should be employed. The environment too will

help make the choice, for example simulations showed that PD and Backstepping

controllers were more robust to disturbances which might come in the form of a

windy environment.

Table 5.1: System Settling Time Response Under Different Controllers in the Linear
Region

Controller Altitude Attitude Heading

2 m 5◦ 5◦

PD 1.3 sec 0.3 sec 0.42 sec

SMC 0.57 sec 0.8 sec 0.74 sec

Backstepping 0.58 sec 0.77 sec 0.86 sec

Table 5.2: System Overshoot Response Under Different Controllers in the Linear
Region

Controller Altitude Attitude Heading

2 m 5◦ 5◦

PD 1.4% 2% 1.9%

SMC 2% 1.9% 1.7%

Backstepping 2% 1.8% 2%

91



Table 5.3: System Settling Time Response Under Different Controllers in the
Nonlinear Region

Controller Altitude Attitude Heading

8 m 80◦ 80◦

SMC 1.90 sec 1.42 sec 1.37 sec

Backstepping 2.02 sec 1.54 sec 1.75 sec

Table 5.4: System Overshoot Response Under Different Controllers in the Nonlinear
Region

Controller Altitude Attitude Heading

8 m 80◦ 80◦

SMC 0 % 0 % 0 %

Backstepping 0 % 0 % 0 %

(a) SMC (b) Backstepping

Figure 5-6: Lyapunov Function Derivative Under the Effect of Wind
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(a) SMC (b) Backstepping

Figure 5-7: Lyapunov Function Derivative in no Wind Condition
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Chapter 6

Conclusion

The goal of this work was to derive a mathematical model for the quadrotor Un-

manned Aerial Vehicle (UAV) and develop linear and nonlinear control algorithms to

stabilize the states of the quadrotor, which include its altitude, attitude, heading and

position in space and to verify the performance of these controllers with comparisons

via computer simulations.

The mathematical model of a quadrotor UAV was developed in details including its

aerodynamic effects and rotor dynamics which we found lacking in many literatures.

Four control techniques were then developed and synthesized; a linear Proportional-

Integral-Derivative Proportional-Derivative (PD) controller, a Gain Scheduling based

PD controller, a nonlinear Sliding Mode Controller (SMC) and a nonlinear Backstep-

ping controller. A complete simulation was then implemented on MATLAB/Simulink

relying on the derived mathematical model of the quadrotor. The simulation envi-

ronment was used to evaluate the mentioned controllers and compare their dynamic

performances under different types of input conditions.

Tuning the parameters and constants of the four used controllers was done using

Genetic Algorithm (GA) where the objective function was the dynamic response of the

system in terms of its settling time and/or overshoot. The four controllers performed

comparably in near hovering operation of the quadrotor in the range of 0 ∼ 20◦

of attitude and heading. The Gain Scheduling based PD controller gave a better
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performance than the traditional PD controller when the quadrotor was commanded

to follow a varying trajectory. The SMC and Backstepping controllers gave better

performance outside the linear hovering region due to their nonlinear nature. The PD

and Backstepping controllers gave better performance than all the other controllers

when the effect of wind was added to the system. The wind effect was modeled as

extra forces and moments on the quadrotor body.

For future work, we recommend testing the Gain Scheduled PD controller in load

drop applications and actuators failure conditions and compare it to the three other

controllers. Also, changing the Gain Scheduled PD to have the switching to be a

function of the error and its derivative instead of the desired final value. This might

enhance its performance in following a varying trajectory. One valuable addition

would be the robustification of the developed control techniques against wind as this

is a common problem with quadrotors control and our simulation results showed a

huge degradation of the performance of the controllers when the system was exposed

to wind. Moreover, in our work it was assumed that all the model parameters are

known accurately without any uncertainties, which is not the case in reality, thus,

developing adaptive control algorithms to count for the system uncertainties would

enhance the performance of the quadrotor when operating in a real environment.

Adding an integral action to the developed Backstepping controller will lead to the

formulation of an adaptive control algorithm robust to system uncertainties. More-

over, sensors were assumed to be perfect which is not the case in reality, sensors

modeling and noise need to be taken into consideration and checking the effect on

system stability under the effect of the developed controllers. Last but not least,

implementing the developed control techniques on a real quadrotor hardware to give

a more fair comparison between their performances.
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Appendix A

System Modeling Derivations

A.1 Kinematics Model

A.1.1 Rotation Matrix R

To describe the orientation of the quadrotor in space, 2 intermediate coordinate sys-

tems need to be defined; the vehicle-1 frame and the vehicle-2 frame together with

the previously defined inertial frame and body frame [50].

The inertial frame is rotated about its y-axis by the yaw angle ψ to get the vehicle-

1 frame. The transformation from the inertial frame to the vehicle-1 frame is given

by

Rv1
i =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (A.1)

The notation Rv1
i indicates a rotation from frame Fi which is the inertial frame to

frame Fv1 which is the vehicle-1 frame.

The resulting frame v1 is then rotated by the pitch angle θ around its y-axis to

result in the vehicle-2 frame. The transformation from the vehicle-1 frame to the
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vehicle-2 frame is given by

Rv2
v1 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (A.2)

The last rotation is the rotation of the vehicle-2 frame about its x-axis to result

in the body frame. The transformation from the vehicle-2 frame to the body frame

is given by

Rb
v2 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (A.3)

Finally the rotation matrix or transformation from the inertial frame to the body

frame is given by

Rb
i = Rb

v2R
v2
v1R

v1
i

=


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosψ sinψ 0

− sinψ cosψ 0

0 0 1



=


cθcψ cθsψ −sθ

sψsθcψ − cφsψ sφsθsψ + cφsψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (A.4)

where c and s denote cos and sin respectively. Note that due to the premultipli-

cation rule of rotation matrices, the order of rotation (ψ followed by θ followed by φ)

is opposite to that of the order of multiplication (φ followed by θ followed by ψ).

In order to get the rotation matrix that transforms the body frame to the inertial

frame, the previous rotation matrix Rb
i is transposed, yielding

R = (Rb
i)

T = Ri
b
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=


cθcψ sφsθcψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cθcψ cφsθsψ − sθcψ

−sθ sφcθ cφcθ

 (A.5)

A.1.2 Euler Rates

The transformation between the Euler rates η̇ = [φ̇ θ̇ ψ̇]T and angular body rates

ω = [p q r]T shown in Equation (3.2) is derived as follows [50]


p

q

r

 = R(φ̇)


φ̇

0

0

 +R(φ)R(θ̇)


0

θ̇

0

 +R(φ)R(θ)R(ψ̇)


0

0

ψ̇

 (A.6)

Note that φ̇, θ̇ and ψ̇ are small thus R(φ̇) = R(θ̇) = R(ψ̇) = I, then


p

q

r

 =


φ̇

0

0

 +


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




0

θ̇

0

 +


1 0 0

0 cosφ sinφ

0 − sinφ cosφ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




0

0

ψ̇



=


φ̇− sin θψ̇

cosφθ̇ + sinφ cos θψ̇

− sinφθ̇ + cosφ cos θψ̇



=


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ



φ̇

θ̇

ψ̇

 (A.7)
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Appendix B

Quadrotor Parameters

This appendix contains the quadrotor parameters used in the simulations. These

parameters are adopted from Bouabdallah’s thesis [16].

Table B.1: Quadrotor Parameters and Constants

Parameter Description Value unit

Ixx MOI about body frame’s x-axis 7.5e-3 kg.m2

Iyy MOI about body frame’s y-axis 7.5e-3 kg.m2

Izz MOI about body frame’s z-axis 1.3e-2 kg.m2

l Moment arm 0.23 m
Jr Rotor inertia 6e-5 kg.m2

m Quadrotor mass 0.650 kg
Kf Aerodynamic force constant 3.13e-5 N s2

KM Aerodynamic moment constant 7.5e-7 Nm s2

Rmot Motor circuit resistance 0.6 Ω
Kmot Motor torque constant 5.2 mNm/A
Kt Aerodynamic translation coefficient diag(0.1, 0.1, 0.15) Ns/m
Kt Aerodynamic rotation coefficient diag(0.1, 0.1, 0.15) Nm s
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Appendix C

Listings

C.1 Quadrotor Parameters Initialization

1 clear

2 clc

3 close all

4 %% Ineria

5 Ixx=7.5e-3;

6 Iyy=7.5e-3;

7 Izz=1.3e-2;

8 % axel length

9 l=0.23;

10 %% rotor inertia

11 Jr=6e-5;

12 %% mass

13 m=0.650;

14 g=9.81;

15 %% aerodynamic force and moments constant

16 kf=3.13e-5;

17 km=7.5e-7;

18 %% aerodynamic coefficients

19 Krx=0;%0.1;

20 Kry=0;%;0.1;
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21 Krz=0;%0.15;

22 Ktx=0;%0.1;

23 Kty=0;%0.1;

24 Ktz=0;%0.15;

25 %% constants calculations

26 a1=(Iyy-Izz)/Ixx;

27 a2=Jr/Ixx;

28 a3=(Izz-Ixx)/Iyy;

29 a4=Jr/Iyy;

30 a5=(Ixx-Iyy)/Izz;

31 b1=l/Ixx;

32 b2=l/Iyy;

33 b3=l/Izz;

34 %% Rotor Dynamics

35 R mot=0.6; %Motor Circuit Resistance

36 K mot=5.2; %Motor Torque Constant

37 %% Disturbances

38 noise rot=0;

39 noise trans=0;

40 %% PID Constants

41 ki Z=0;

42 ki Theta=0;

43 ki Phi=ki Theta;

44 ki Psi=0;

45 %% desired velocities and accelerations

46 z dot d=0;

47 phi dot d=0;

48 theta dot d=0;

49 psi dot d=0;

50 phi dot dot d=0;

51 theta dot dot d=0;

52 psi dot dot d=0;

53 z dot dot d=0;

54 x dot d=0;

55 y dot d=0;

56 %% hover omega
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57 omega hover=sqrt( (m*g)/(4*kf) );

58 deltaU1 max=kf*4*omega hoverˆ2;

59 deltaU2 max=kf*omega hoverˆ2;

60 deltaU4 max=km*2*omega hoverˆ2;

61 omega max=(90*100)*9000*(2*pi/(60)); %90% of 9000 rpm to rad/s

62 U1 max=kf*4*omega maxˆ2;

63 U2 max=kf*omega maxˆ2;

64 U4 max=km*2*omega maxˆ2;

C.2 GA Parameters Tuning

1 clear

2 clc

3 close all

4 initialize

5

6 %[k,Perf]=ga(@performancePID, 4)

7 %[k,Perf]=ga(@performancePIDGS, 2)

8 %[k,Perf]=ga(@performanceBackstepping, 2)

9 [k,Perf]=ga(@performanceSMC,3,[],[],[],[],[0.001;0.001;0.001],[])

C.3 GA Objective Function

1 function perf=performanceSMC(k)

2

3 assignin('base', 'c phi', 1)

4 assignin('base', 'k1 phi', 1)

5 assignin('base', 'k2 phi', 1)

6

7 assignin('base', 'c theta', 1)
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8 assignin('base', 'k1 theta', 1)

9 assignin('base', 'k2 theta', 1)

10

11 assignin('base', 'c psi', 1)

12 assignin('base', 'k1 psi', 1)

13 assignin('base', 'k2 psi', 1)

14

15 assignin('base', 'c z', k(1))

16 assignin('base', 'k1 z', k(2))

17 assignin('base', 'k2 z', k(3))

18

19 assignin('base','epsilon',0.1)

20

21 assignin('base', 'z d', -12)

22 assignin('base', 'phi d', 0) %(5*2*pi)/360

23 assignin('base', 'theta d', 0)

24 assignin('base', 'psi d',0)% (5*2*pi)/360)

25

26 sim modelSMC ChatRed altitude orientation

27

28 S=stepinfo(z out.signals.values,z out.time);

29 settlingTz=S.SettlingTime;

30

31 perf=settlingTz
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C.4 Quadrotor Model
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C.4.1 Quadrotor Dynamics
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C.4.2 System Input Calculation

C.4.3 Motor Speed Calculation

109



C.4.4 Controller Blocks

C.4.4.1 PID
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C.4.4.2 SMC
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C.4.4.3 Backstepping
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