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1. Chapter One 

1.1. Motivation for the Thesis 

After deregulation in 1979 airline carriers face a fierce competition due to the ever 

increasing introduction of low fare carriers in to the airline market [1]. Prior to 

deregulation airline companies have no power over setting or controlling the price of 

a ticket and their routes. It was the Civil Aeronautics Board (CAB) that sets the 

routes and the corresponding fare ticket that an airline has to operate by. As such, 

carriers simply accept passengers on first come first served policy, since carriers has 

no control over managing their revenues, until all the available seats are sold. 

Following deregulation, airline carriers start looking for ways of managing their 

revenues in order to compete in the market, and this leads to the evolution of 

different techniques of Airline Revenue Management (ARM). Revenue Management 

(RM), also called yield management or perishable asset management, is “Selling the 

right seat at the right time to the right passenger for the right price” [2]. That is, RM 

seeks to develop effective methodologies to allocate different seats at different 

prices in order to maximize revenue. As a result of the fierce competition in the 

market almost all established airlines has less control over the fare structure, but 

exploit the opportunity of using capacity control and overbooking models in order to 

compete. Accordingly, RM concentrates on two core types of problems that exist in 

the airline industry, namely, capacity control and overbooking. Capacity control 

methods and models primarily provide a decision support for making decision of 

whether to accept or deny a seat reservation request by a customer at a given time. 

The second type of problem exists because of the probabilistic nature of show-ups 

during time of departure. That is, booked customers sometimes may not show-up for 

different reasons with or without cancellation. In order to avoid spoilage cost (that is 

lost revenue due to flying with empty seats) airlines are advised to use the methods 

and models of overbooking. However, sometimes the number of show-ups during 

time of departure may be higher than the available physical capacity, and in such 

cases there will be compensation and loss of good will cost incurred by the airline.  

Hence, the overbooking model will consider all the costs involved in order to 

determine the optimal number of overbooking to be made in each class for a specific 

flight so that revenue is maximized.  In short, while capacity control allocates seats 



11 
 

for fare-classes, overbooking reserves seats beyond the physical capacity of the 

aircraft both with the objective of maximizing the revenue.  

 

The overbooking model considers the lost revenue due to cancellations and no-

shows that will result in flying with empty seats, and the loss of good will and 

compensation cost due to excess number of show-ups than the available capacity. 

The overbooking problem is generally classified as static and dynamic based on the 

assumptions. Though the dynamic overbooking problem treats the overbooking 

problem in its realistic nature by taking into consideration the dynamic nature of 

cancellation over a period of time, it is not used by many airlines due to its 

mathematical intractability for a real world data. The static overbooking, which many 

airline use, simplifies the nature of the problem to make it mathematically tractable 

for real world data and daily use. However, many of the static overbooking models 

are modeled for a single class problem and did not include the loss of good will cost, 

and uses simplified form of the compensation cost in the development of the model. 

Furthermore, the commercial RM models are constructed based on the assumption 

that the demand distribution is simply the product of the show-up rate and 

overbooking limit, which is not the case when evaluated both on a theoretical and 

practical basis [3].  

 

1.2. The Booking System Environment in the Airline Industry  

The booking process in an airline reservation system begins with a request by a 

customer for a particular itinerary. Then the customer will be presented with 

alternative routes and their corresponding prices for the requested itinerary. An 

itinerary may involve a single origin and single or multiple destinations. A single 

origin destination flight is known as single-leg flight, and a flight that involves one or 

more legs is called multiple-leg flight. If the customers‟ bid price is greater than or 

equal to the threshold value of the ticket price for that particular itinerary, the booking 

operator accepts the request; otherwise he rejects the request. The demand at the 

point of opening of the booking process, which usually starts three months earlier 

than the flight date, is low and will increase gradually, and then when the departure 

date approaches demand falls down. Experience shows that low fare class 

passengers book earlier than high fare class passengers. In light of this pattern, the 
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task of the booking operator with the help of the RM tools, which are integrated in the 

computer reservation system (CRS), is to determine the best policy in determining 

whether to accept or reject a reservation request made by a customer at period T.  

This decision is crucial, since selling more seats to low fare-class passengers will 

lead to the loss of revenue that would have been generated from potential high fare 

class customers. On the other hand, rejecting many reservation request of a low fare 

class customer hoping for future high fare class passenger booking request will also 

increase the risk of flying with empty seats resulting in loss of revenue. In addition to 

the capacity control problem, the booking operator also has to decide the 

overbooking pad in each class. The overbooking pad is the number of extra 

bookings that the airline would like to make in excess of the physical capacity of the 

aircraft in order to account for the fact that some of the booked customers may not 

show or cancel during the day of departure. Even with the application of overbooking 

aircraft may fly with empty seats, in such cases the lost revenue is called spoilage 

cost.  

1.3. RM problems 

Revenue management problems occur in almost all service industries where 

reservation is part of the business process. Transportation sectors such as Airlines, 

auto rental, railway, tour operators, cargo, and cruises are few examples that use 

RM tools. In addition, hotels and lodging facilities, healthcare industries, apparel 

industries, and telecommunication companies are also areas where RM has found 

application [4]. A comprehensive study on the aspects of revenue management in 

the airline industry can be found in [5]. [6] has also outlined the characteristics of 

revenue management looking at it from a general perspective in addition to 

introducing a new term; Perishable Asset Revenue management (PARM). A 

comprehensive survey of RM problems can be found in [7] and [8]. The following 

characteristics are some of the common denominator found in the problem of RM in 

all the service industries [9].  

1. Capacity is fixed, 

2.  Capacity is a perishable asset,  

3. Available seat or asset can be reserved or sold in advance, 

4. Demand is very erratic, 
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5. Demand can be partitioned in accordance with the associated price of the 

seat 

As pointed out in the earlier section, the two most important questions that the RM 

system tries to answer are the seat inventory control and the overbooking level. 

Since there is little control over price because of the competition in the airline 

industry to improve revenue, the airline industries focus has shifted in trying to find 

the optimal number of mixes of discount fares and full fares in order to maximize 

their revenue. According to [10] the profit contribution of a full fare sale over a 

discounted fare was estimated to be around $50 million annually, making the 

consideration of the seat inventory control an important aspect in RM. In addition, 

booking level control has also produced a substantial profit margin that it has to be 

considered as an important aspect of RM. For example, Lufthansa, the German 

airline, credits a revenue increase of € 150 million in 2005 for the practice of 

overbooking, which makes overbooking one of the prominent airline revenue 

management techniques used at Lufthansa [11]. However, though capacity control 

and overbooking are the predominantly considered RM problems, McGill and van 

Ryzin has also identified pricing and forecasting as additional RM problems [7]. As 

outlined above, since the fare structure is predominantly affected by the fare 

structure offered by competitors of the same flight in the market, it makes the control 

over price extremely difficult for the airline industries. Consequently, pricing has 

drawn little interest and attention for researchers. In comparison, forecasting, which 

is at the heart of all RM tools since the inputs in working with capacity control and 

overbooking are drawn from the forecasts, has drawn some attention recently [12]. 

Of all the four mentioned RM problems, this thesis considers the overbooking 

problem and a comprehensive definition and nature of the problem is presented 

below. 

 

1.4. Overbooking 

Overbooking is the process of selling more flight tickets than the available physical 

seats [13]. Overbooking is practiced in order to compensate the number of 

cancellations and no-shows that occur during the departure time. According to [11], 

on average 15% of American airline seats could have been spoiled if overbooking 

were not practiced. Though overbooking could save or generate a significant amount 
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of the revenue, it could also result in compensation cost or payouts and loss of 

customer goodwill cost when the number of show-ups exceeds the available 

capacity. Especially, when there are a number of competitors in the market, loss of 

customer goodwill should not be tolerated, as such this paper tries to model the cost 

of loss of customer goodwill and incorporate it in the cost function model. Therefore, 

the aim of solving the overbooking problem is to calculate the optimal number of 

excess seat pads (ticket to be sold) while maximizing the net profit, which is the 

revenue produced from selling tickets minus the compensation, loss of customer 

goodwill, and expected lost revenue. The specific problem to be studied in this thesis 

is explained below, and will also be elaborated in the subsequent sections. Before 

introducing the overbooking problem, it is crucial to describe the nature and 

characteristics of overbooking as it exists in the airline industry.  

 The booking operator must decide the optimal number of overbooking during 

the opening time of the booking process. 

 The booking operator cannot observe the no-show during making the decision 

of making the overbooking  

 No opportunity to recover the cost of flying with empty seats. That is, the seat 

of an airline is perishable (has specific time of use). 

  The show-up of passengers is very erratic 

 If show-up exceeds the seat capacity, denied boarding passengers should be 

compensated 

 If capacity exceeds the show-up, cost of lost opportunity will be incurred by 

the airline 

 

 

1.5. Problem Definition 

Overbooking is an airline revenue management (ARM) technique which seeks to 

account for the no-shows and cancellations by making more reservations than the 

available capacity in order to maximize revenue. The approaches for the 

overbooking problem can be broadly categorized as static and dynamic models. In 

the static model, the dynamic nature of reservation (cancellations over a period of 
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time) is ignored, and the concern is to find the optimal number of overbooking at the 

opening period of the reservation that minimizes cost or maximizes revenue. The 

dynamic model considers the dynamic nature of reservation, and seeks to find a 

policy by which the booking operator decides whether to accept or reject a request 

made by a customer for a reservation of a certain class at time T. Although dynamic 

overbooking models treat the overbooking problem in its realistic state, generally the 

models are mathematically intractable for a real world problem. As such, many of the 

commercial RM systems used by the airlines are static models [3]. Therefore, this 

thesis seeks to extend the static overbooking model by incorporating a realistic cost 

function of overbooking and relaxing some of the assumptions made in prior studies.  

 

1.6. Objectives 

The objectives of this study include: 

 

 Model the overbooking problem for a single-leg multi-fare class problem as a 

cost minimization and a revenue maximization problem. 

 Develop the overbooking problem in such a way that it could be constrained 

by a user defined probability of loss of the revenue. 

 Compare the results of both models 

 Model the cost function of the overbooking problem based on a realistic 

distribution of the no-show data. 

 Propose a suitable optimization procedure for the overbooking model 

1.7. Thesis Overview  

A literature review of the overbooking models is explained and presented in chapter 

2. Chapter 3 presents the mathematical formulation of the overbooking problem 

using a realistic distribution of the no-show data, and a solution approach using both 

the closed form and a Monte Carlo simulation for the use of the derivative free 

Nelder Mead algorithm [14]. Chapter 4 presents a numerical analysis and evaluation 

of the proposed solution approaches in solving the overbooking model. Finally, 

Chapter 5 and 6 presents the conclusion and recommendation for future work 

respectively. 



16 
 

2. RM Methods and Literature Review  

2.1. Overbooking 

Overbooking is the practice of intentionally selling more seats than the available 

physical capacity of the plane in order to compensate the number of no-shows and 

cancellation, which can be as high as 15% [15], during the time of departure. A more 

recent study shows that the benefits obtained from using overbooking accounts for 

an average of $1 billion increase in revenue per year [16]. Though overbooking can 

improve the revenue of an airline it has also risks associated with it, when the 

number of show-ups is greater than the fixed capacity. That is, when the number of 

show-ups is greater than the available capacity, some of the passengers who 

already bought a ticket will be bumped (i.e. denied boarding) of the flight either 

voluntarily or involuntarily. In both case there is a financial loss that the airline should 

incur in the form of compensation cost to be paid toward the bumped passengers. In 

addition to the compensation cost, the bumped passengers will retain a bad image of 

the service that should be considered as loss of customer goodwill cost, which will 

have a massive long term impact on the business of the airline. However, it was 

estimated that financial loss due to overbooking is less when compared with not 

practicing overbooking [17]. Accordingly, the objective of the overbooking model is to 

find the optimal number of overbooking level that the airline should reserve in order 

to minimize the expected cost or maximize the expected revenue.  

The history of overbooking goes back to the pioneering work of Beckmann and 

Bobkowski [18]. Their statistical modeling of the overbooking problem laid a 

foundation for today‟s revenue management in the airline industry. The first 

overbooking model proposed by Beckmann was a single leg single fare-class 

problem, which is a very simplified form of the actual overbooking problem that 

airline faces. His model tries to determine the optimal overbooking level by balancing 

the spoilage cost (lost revenue due to empty seats) with compensation cost (lost 

revenue due to bumping of passengers). Thompson [19] developed an overbooking 

model for a two fare class using the cancellation rates while ignoring the probability 

distribution of the demand and the no-show rates. His model determines the 

overbooking limit for a given probability of overbooking. Thompson‟s work has been 
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extended by Taylor as well as by Rothstein and Stone [20]. Taylor‟s overbooking 

model, though is a very simplified model, has been implemented and used by many 

airlines for their booking level control. It was also considered that Taylor‟s model was 

used as a basis for a family of subsequent overbooking models. Bodily and Pfeifer 

[21] also studied the static overbooking problem using the probability of customer 

cancellation and no-shows for a single fare-class problem, which is a highly 

simplified form of the actual scenario. All the above models deal either with a single 

fare-class or two fare-class overbooking model, which is not always the case for a 

real world problem. Latter researches, however, consider the multi fare-class 

overbooking problem [22],[23],[24]. Chi [22] considers the multi fare-class 

overbooking problem and develops a dynamic programming model. His model 

determines the maximum overbooking level that should be used in every fare-class 

for a known demand and show-up distribution of every class. He further assumed 

that cancellations can be made without any penalty cost, which made his model 

inaccurate since there is a penalty for cancellations. Coughlan [23] extends the multi 

fare-class overbooking problem by introducing the last minute passengers (also 

called go-shows, are customers who show-up during service time without any prior 

reservation). His model assumes the demand, the show demand, and the 

cancellations are all independently normally distributed. However, the assumption 

that the booking is independently normally distributed is incorrect [19], and in the 

literature it commonly is assumed to follow a Poisson distribution. Furthermore, his 

proposed direct search algorithm for solving the complicated closed form 

overbooking model doesn‟t guarantee optimality. [24] developed a mathematically 

tractable static and dynamic overbooking model that provides an upper and lower 

bound for the overbooking level based on the expected revenue approach. They 

proposed two different static overbooking models based on the demand information 

available for the user. Moreover, no-shows and cancellation probabilities are 

considered class based in order to make the model more realistic. However, their 

model like all the models in this class does not consider the interaction that exists 

between classes.  

The methods to make overbooking decisions are broadly categorized in to two, 

namely, static and dynamic overbooking. A review of the two approaches along with 

their advantages and disadvantages is presented below. 
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2.2.1 Static overbooking 

Because of its simplicity and applicability for real world data, the static overbooking 

model is the widely used approach in the airline industry. The static overbooking 

model did not consider the dynamic nature of customer cancellations overtime. What 

this model does is that it determines the excess amount of ticket sells to be made by 

considering the number of cancellation and no-shows from a probability distribution, 

where the parameters of it will be updated every time a new data is available for 

consideration. In static model the distinction between no-shows and cancellation is 

unnecessary, since cancellations (that happened before the time of departure) could 

be substituted by other customers. However, cancellation that may occur during the 

day of departure may simply be considered as no-shows in the formulation of the 

static overbooking problem. Hence, the important factor in getting the overbooking 

level in a static overbooking model is to determine the show-up (show demand as it 

is commonly referred) rates of that particular flight. One of the widely used static 

overbooking models is based on the binomial distribution for the show-ups [25], 

since the cancellation which occurs during the service time can lump with the no-

shows. Other models use the normal distribution and the beta distribution for the 

show-ups in modeling the overbooking [26]. In its simplified form, the static 

overbooking model is similar to that of the newsboy problem. Though the static 

model is simple, flexible, and mathematically tractable for real world data, it failed to 

capture the dynamic nature of customer cancellations that occur in the course of the 

reservation period.  The approach that considers the dynamic nature of cancellations 

so that treating the overbooking problem relatively in its realistic state is known as 

dynamic overbooking model. A comprehensive discussion the available literature on 

dynamic overbooking is presented in the following section.  

 

 

2.2.2 Dynamic overbooking 

The need to include cancellations that occur during the course of the booking 

process (thereby eliminate the drawback of the static overbooking model) made 

researchers to model the overbooking problem as a dynamic model. Though, there 
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are so many dynamic overbooking models available for the single leg overbooking 

problem, due to their mathematically intractability for real world data, airlines use the 

static overbooking models. The models in this class are generally formulated based 

on the Markov Decision Process (MDP) [27],[28],[29]. Rothstein [27] was the first to 

formulate the single leg single fare-class overbooking as a dynamic programming 

problem that determines an overbooking policy. In addition, Rothstein assumed that 

the probability of cancellation is independent of the number of already made 

reservations, which could affect the accuracy of the model. His general model, 

however, were mathematically intractable due the curse of dimensionality as the 

state space of the system is the number of reservation, which is substantially large 

for a dynamic programming approach. In order to overcome the computational 

difficulties [15] proposed two methods: (1) reducing the size of the state by 

aggregating them or (2) “develop a theory of structure of optimal solution” in order to 

reduce the time for computation. Alstrup et al [28] followed the first approach 

proposed by Chatwin in their dynamic programming model formulation for a two fare-

class problem. Their model not only extends Rosthetein by considering a two fare 

class problem, but also considers the cost of down grading customers (that is, the 

cost of allocating seats of high fare contenders in a lower fare-class seat). In order to 

reduce the size of the state space of the system, they grouped the reservation and 

cancellations in group of five, reducing the size by a factor of 25. Their model is 

solved by two dimensional stochastic dynamic programming. The second approach 

was used by Chatwin himself in his thesis, in which he proposes two multi-period 

overbooking models for a single-leg single fare-class service.  

 

 

 

2.3 Overbooking in practice 

The overbooking models in use today are mainly the static models based on 

simplifying assumptions regarding the distribution of no-shows, demand, and fare-

class. However, the literature is full of dynamic overbooking models, which has found 

relatively no use in practice since those models are mainly mathematically 

intractable and require a lot of time to solve them. Moreover, the booking personnel 

in the airline industries are not optimization experts to understand and fully utilize the 
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advantages of the dynamic overbooking model. To that effect, the booking experts 

would prefer to use a simple model (one that has fewer input data) to estimate the 

level of overbooking. They also prefer the static overbooking over the dynamic 

overbooking for the static overbooking model requires a single run while the dynamic 

overbooking requires running the model now and then as far as new booking and 

cancellations are made. The widely known commercial revenue management 

software (PROS) has an overbooking module embedded in it.   

 

2.4 Literature gap and contribution 

Generally, the literature on overbooking could be categorized as static and dynamic 

models. The static overbooking model could be further categorized based on the 

number of classes the overbooking model deals with (usually, a single fare class is 

considered). Those models which are constructed for a single fare class fail to 

capture the value of the different seats in the classes by making all classes as 

having equal value. Furthermore, models constructed for two class case did not 

consider the interaction between classes that exist in the real world system. That is, 

since upgrading a low fare class seat customer to a high fare class seat is possible, 

the interaction between classes should not be ignored in the overbooking model. 

In this thesis a static overbooking model is developed using two different probability 

distributions (Binomial and the generalized extreme value distribution) for the show-

up or no-show in modeling the cost function. An attempt was made to solve the 

model using both closed form expression and a Mote-Carlo simulation using the 

derivative free optimization approaches. Furthermore, the model was made to be 

flexible so that it could be transformed with a user defined constraint into a 

constrained optimization problem. This particular feature of this overbooking model is 

important for decision makers who are sensitive to both customer reaction upon 

denied boarding and profit loss. The model developed in this thesis could be used for 

any classes the airline wish to make and for any kind of distribution that the particular 

airline‟s data may have. An attempt to include the loss of good will cost, which was 

not included in overbooking models in past papers, in order to make the cost function 

realistic, was made using the Taguchi Quality Loss function [30]. Furthermore, the 

fact that the paper models the cost function based on realistic probability 
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distributions based on the historical data is a relaxation of the assumptions made in 

prior studies since in the past the cost function was mainly modeled based on the 

binomial distribution.  

2.5 Ethiopian Airlines 

2.5.1 Company Overview 

Ethiopian airlines, also called Ethiopian, were founded in 1945 as the flag carrier of 

Ethiopia, operating out of Bole International Airport, Addis Ababa, Ethiopia. 

Currently, Ethiopian is one of the youngest and largest air carriers in the region, 

known for its service excellence and multiple routes in the region. Ethiopian is also 

known for its operational excellence and one of the most profitable carrier even 

during the recent financial crisis. Ethiopian serves 63 international destinations of 

which 40 destinations are in Africa, 8 destination in Europe and the Americas, 15 

destinations Middle East and Asia, and 17 destinations domestic with a total of 46 

aircrafts. Ethiopian has received awards and recognitions for its service and 

operational excellence from different organizations. The following are some of the 

awards the airline has archived during the course of its service. 

 Bombardier‟s "Airline Reliability Performance Award",2011 

 "Deal of the Year 2010 Award " , 2011 

 "The African Cargo Airline of the Year",2011 

 "The NEPAD Transport Infrastructure Excellence Awards”, 2009 

 "Airline of the Year Award",2009 

 "2008 Best Airline in Africa Award" 

 "The 2008 Brussels Airport Company Award" 

 "The 2008 Corporate Achievement Award" 

The following table summarizes the number and type of aircrafts that Ethiopian uses 

for its fleets to serve the 63 international destinations1.  

 

 

                                                           
1
 http://www.ethiopianairlines.com/en/corporate/fleet.aspx  

http://www.ethiopianairlines.com/en/corporate/fleet.aspx
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Aircraft type Number Seat capacity Total 

B E 

Boeing737-700 5 16 102 118 

Boeing737-800 5 16 138 154 

Boeing757-200 3  

 

16 

144 160 

1 154 170 

2 155 171 

1 159 175 

Boeing767-300ER 1  

 

24 

 

208 232 

1 210 234 

2 211 235 

2 213 237 

3 221 245 

1 30 190 220 

1 195 225 

Boeing777-200LR 5 34 287 321 

Boeing787-DreamLiner (on order) 10 24 246 270 

A350-900(on order from Air Bus) 12 30 318 348 

Bombardier Dash 8 Q400 8 0 78 78 

 

                      Table 1: Number and type of aircrafts operated by Ethiopian 

 

2.5.2 Overbooking practice at Ethiopian airlines 

Like many airlines, Ethiopian also claims to use overbooking and seat inventory 

control models to boost its revenue and compete in the market. Currently, Ethiopian  

uses the commercial revenue management system (i.e. PROS). PROS uses 

forecasting models (techniques) to determine the expected number of no-shows and 

cancellation, and make recommendation using the built in algorithms on the number 

of overbooking. As all other revenue management systems PROS also try to balance 

the risk of flying with empty seats and the risk of denying boarding. PROS has the 

passenger name record (PNR) and non PNR forecasting techniques. Considering 

Ethiopian data recording management system one can clearly see how Ethiopian 

http://en.wikipedia.org/wiki/Bombardier_Dash_8


23 
 

can practice overbooking using PROS. From the collected data one can see that 

there is no instance that show a practice of overbooking though the personnel claims 

they did. However, if they do overbook it can be said that Ethiopian can only use the 

non PNR no-show forecasting technique to determine the number of overbooking. 

Though Ethiopian claims to use overbooking in its practice, the number of empty 

flight seats due to either no-shows or cancellations or both in 2008 for example was 

estimated at 146,153. In 2009, 209,330 of cancellation and no-shows was recorded, 

which could be translated as 1774 full Boeing 737-800. In other words, the average 

load factor of all ET flights for 2008 and 2009 are approximately 73% and 69% 

respectively. In other words, almost 27% and 31% of the seats in 2008 and 2009 

were spoiled due to no-shows and cancellations, resulting in lost revenue or cost of 

lost opportunity. This figure evidently shows that the overbooking model or 

procedure that Ethiopian is currently using could not capture the lost opportunity. 

The problem could be originated either from the wrong application (use) of the 

revenue management system that they are using, or the inherent drawback of the 

overbooking model/module embedded in PROS. However, I could not check where 

the problem exactly is, due to the company‟s policy that prohibits examination of 

internal working procedures including primary data collection. Nevertheless, 

according to one of the heads of the booking section, Ethiopian overbooks based on 

the no-show rate without using the optimization module. That is, the overbooking 

level is calculated or set equal to the forecasted number of no-shows. The total 

average rate of no-shows and cancellations for Ethiopian considering all destination 

flights is approximately 27%, which is a significant rate that has to be addressed. 

That is, approximately 27 % of the booked passengers did not show-up at the gate 

for flight due to either cancellation or no-shows or both. The following charts 

summarize the number of no-shows that are reported during a six month time in 

2008 for flights to Middle East and African destinations respectively.  
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Figure 1: No-show data for Asia and Middle East destination during a six month period 

 

 

                   Figure 2: No-show data for African destination during a six month period 

 

 

2.6 Seat inventory control 

The seat inventory control is one of the most studied revenue management in the 

airline industry. The seat inventory control problem is concerned with allocating the 

seats to different prices so as to maximize revenue. In short, it tries to find the right 

mix of low fare seats and high fare seats in order to capture the demand over time 

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

A
U

H

B
A

H

B
EY B
JS

B
K

K

B
O

M

C
A

I

C
A

N

D
EL

D
X

B

H
K

G

JE
D

JU
B

K
R

T

SA
H

N
o

.o
f 

N
o

-s
h

o
w

s 

Destinations/stations 

Total No. of No-shows 

Total No. of No-shows

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

A
B

J

A
C

C

B
JM

B
K

O

B
ZV

D
A

R

D
K

R

D
LA

EB
B

FI
H

H
G

A

H
R

E

JI
B

JN
B

JR
O

K
G

L

LA
D

LB
V

LF
W

LL
W

LO
S

LU
N

N
B

O

N
D

J

ZN
Z

N
o

. o
f 

N
o

-s
h

o
w

s 

Destinations/station 

Total No. of No-shows 

Total No. of No-shows



25 
 

thereby maximize revenue. Thought it is possible to capture the maximum demand 

by selling more discounted (low fare) seats, it could also result in losing potential 

customers who are willing to pay the full fare. On the other hand, denying requests of 

booking of low fare customers anticipating future arrival of high fare customers may 

result in flying with empty seats, which is lost revenue.  Hence, managing the trade 

of is the primary purpose of the seat inventory control. However, it is difficult to 

determine the demand of each class earlier in time, since demand is erratic, that 

makes the seat inventory control problem difficult. That is, when and how to make 

the trade of is the essential question that the seat inventory control module could 

answer. Generally, the seat inventory control module will provide a protection level of 

the seats for each fare classes so that revenue will be maximized. This could be 

done either ahead of time (static seat inventory control) or during the booking 

process (dynamic seat inventory control). The seat inventory control could be applied 

either for a single leg flight or for a network of flights. For example, consider the two 

leg flight from Addis Ababa-Khartoum-Cairo. If the single leg approach is used, a low 

fare passenger who wants to travel from ADD-KTR-CAI might be denied a seat in 

preference of a high fare passenger who wants to travel from ADD-KTR. The single 

leg seat inventory control model could result in loss of revenue that could have been 

generated from a consideration of the combination of the full flight network. However, 

since airlines have a huge number of flight networks the seat inventory problem will 

be more difficult to analyze as compared to the example presented here in this 

section.  

The static seat inventory control model determines the right mix of low fare class 

seats and high fare class seats before the booking process starts using a demand 

forecast as an input [5]. However, since demand arrival could be different from the 

forecast (that is used as an input in the static seat inventory control), the model could 

fail to account this fact. Hence, in order to consider the realistic situation and come 

up with a more accurate seat protection level, researchers have developed a 

dynamic seat inventory control model [5].  

The interested read could find a detailed literature review of seat inventory control in 

[4]. However, here are some of the prominent papers that deal with the problem in 

discussion. Brumelle and McGill [31], Littlewood [32], and Belobaba [33] present a 

static single leg seat inventory control model. Belobaba‟s Expected Marginal Seat 
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Revenue (EMSR) laid the foundation and framework for dealing multiple fare class 

seat inventory problems. Williamson [34] developed a model that accounts the 

network interactions that eliminates the draw backs of the static seat inventory 

model. 
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3. Model Development 

3.1 Proposed Mathematical Model 

Problem statement  

Overbooking is an airline revenue management (ARM) technique which seeks to 

account for the no-shows and cancellations by making more reservations than the 

available capacity in order to maximize revenue. The approaches for the 

overbooking problem can be broadly categorized as static and dynamic models. In 

the static model, the dynamic nature of reservation (cancellations over a period of 

time) is ignored, and the concern is to find the optimal number of overbooking at the 

opening period of the reservation that minimizes cost. The dynamic model considers 

the dynamic nature of reservation, and seeks to find a policy by which the booking 

operator decides whether to accept or reject a request made by a customer for a 

reservation of a certain class at time T. Although dynamic overbooking models treat 

the overbooking problem in its realistic state, generally the models are 

mathematically intractable for a real world problem. As such, many of the 

commercial RM systems used by the airlines are static models (Amaruchkul et al., 

2011). Therefore, this paper seeks to extend the static overbooking model by 

incorporating a realistic cost function of overbooking and relaxing some of the 

assumption made in prior studies.  

Mathematical formulation of the Problem 

Consider a single leg flight having a maximum capacity of C, with multiple (m) fare 

classes. The booking operator accepts customers request for booking or 

cancellations for an already made reservation until the day of departure. A 

passenger who made a reservation may not show-up on the departure day or 

cancels his reservation at any time before and on the day of departure. Cancellations 

have a refund which is proportional to and a fraction of the fare ticket that the 

customer already bought. In order to accommodate for the no-shows and 

cancellations, the airline should make overbooking. However, if the number of 

customers that show up exceeds the maximum capacity of the airplane, customers 

will be bumped either voluntarily or involuntarily, which in both cases the airline has 
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to make a compensation for its bumped passengers. If the number of show-ups 

during the time of departure is less than the capacity, the aircraft will fly with empty 

seats resulting in lost revenue. Although the overbooking problem was extensively 

studied, the proposed models are mainly based on some simplifying assumptions. 

Hence the objective is, to develop a mathematical model that determine the optimal 

number of overbooking which minimizes the compensation, loss of revenue and loss 

of customer goodwill cost in order to maximize the expected revenue of the airline 

while relaxing some of the assumption made in prior studies. Two static overbooking 

models will be developed. The first will determine the total overbooking limit without 

considering the different fare classes. The second model will consider the class 

dependent cancellations and no-shows, and the associated costs to model the 

overbooking problem. However, since these models were developed before having 

the data from Ethiopian airlines, some of the input parameters used in developing 

these two approaches were found to be inapplicable with the current data the airline 

has. Therefore, it was necessary to develop a model that can be used with the 

current data structure without compromising the qualities of those already developed 

models. In effect, a stochastic overbooking model using Mote Carlo simulation 

approach was used to determine the optimal number of overbooking.  

Notations 

C= Capacity, C= ∑   
 
    , where i is an index of the booking class  i=1,2,3,…,m 

ti= Demand in fare class i. 

fi= ticket price for fare-class i  

yi= number of overbooking for fare class i ,    Y  ∑   
 
    

si = penalty cost of an overbooking corresponding to fare-class i 

ei= the amount of refund for fare class i 

Pi= probability that a booked seat is in fare class i      ∑   
 
      

βi = show-up probability of fare-class i 

δi = cancellation probability of fare class i 
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αi = probability of involuntarily bumped passengers in fare class i 

Theoretical Framework 

The following chart shows the conceptual model of the overbooking problem, up on 

which the mathematical model will be built on.  
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                        Figure 3: a theoretical framework showing the four possible outcomes under overbooking 
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3.2 Closed Form approach 

3.2.1   Case I- show-up follows Binomial Distribution   

Revenue 

The number of bookings (  ) for a certain class is the minimum of the total random 

demand or the capacity add up with the optimal overbooking of that specific class.  

i.e,         = min*        +                     for      i=1, 2, 3,…,m 

Hence the total random booking for a certain flight will be: 

N= ∑    *        +
 
    

The demand for each class or the total random demand is assumed to follow 

binomial distribution. Hence, the expected revenue from all the different classes can 

be modeled as follows.  

The expected number of bookings for a certain class i is: 

 (  )        

Hence the corresponding expected revenue R will be: 

 ( )  ∑  

 

   

       ∑  

 

   

  (  )       ( ) 

However, the above expected revenue is just calculated without considering the 

number of cancellations, which are entitled for a fraction of the fare they paid. The 

lost revenue due to cancellations will be included under the spoilage cost and will be 

subtracted from the above expected revenue in order to find the actual revenue.  

 

Compensation cost 

The compensation cost is incurred when the number of show-ups during the 

departure time exceeds the available capacity of the aircraft. In such cases, the extra 

passengers, who are either voluntarily or involuntarily bumped from boarding, should 

be compensated by providing them accommodation until they get a seat on the next 
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flight on the same airline or on a different air carrier. Compensation may also include 

monetary values in addition to accommodation.  

Assuming that the show-up follows binomial distribution, the probability that there are 

exactly ωi show-ups out of the (Ci + yi) bookings is: 

  (     )    (
     
  

)   
   (    )

(        )                            

The expected number of show-ups will be: 

 (  )  ∑    

     

     

(
     
  

)   
   (    )

(        ) 

 (  )          

 ( )  ∑ ∑    

     

    

(
     
  

)   
   (    )

(        ) 

 

   

 

 ( )   ∑ (  )

 

   

 

Now let us say the function F (     ) is the compensation cost, then:   

  (     )  

{
  
 

  
 

                                                           

∑  [ (  )    ∑ (    (  ))
 
     ]

 

   

                                                        

∑  , (  )   -

 

   

                                                       ( )

 

The second element of the cost function explains the fact that if there are extra 

numbers of show-ups in the ith class, they can be made to board to the (i+n) classes 

if there are empty seats in the (i+n) classes. Allocating high fare class contenders to 

an empty lower fare class seat is considered as downgrading, and is not allowed to 

be practiced as an option (at least in theory). In the first element of the above 

equation the value of the cost function is zero, though there is a loss in revenue 

(when         ) since there will be an empty seat in the flight, and this cost is termed 

as a spoilage cost, which should be considered differently.  
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Cost due to loss of customer goodwill  

Customer goodwill is an important market share factor in the hospitality industry in 

general. Involuntarily bumped passengers regardless of the monetary 

compensations they are entitled with upon denied boarding, they will retain a bad 

image about the service of the airline especially if they knew they were overbooked 

than it was because of a minor clerical error. Though airlines did not inform their 

denied boarding customers about the true reason, customers will find out the reason 

in one way or another. As such, considering the loss of customer goodwill cost in the 

overbooking model will improve the performance of the model in managing customer 

perception of quality, which could have an impact on the revenue of the airline in the 

long run if not considered. The overbooking models in the literature did not consider 

this important factor, though many explained its qualitative impact on the airline‟s 

market share in the long run. Therefore, modeling the loss of customer goodwill cost 

is important in minimizing the risk of losing potential customers. Being the case, this 

thesis proposes the use of quality loss function of Taguchi in modeling [30] the cost 

of loss of customer goodwill.  

Taguchi method could be used to model the cost of loss of goodwill of involuntarily 

bumped passengers. Of the expected    show-ups let us assume xi passengers are 

involuntarily bumped passengers. The nominal value/number of involuntarily bumped 

passengers should always be assumed zero, since involuntarily bumping is 

undesirable. Now, using the quality loss function, the loss of goodwill cost can be 

modeled as follows.  

 (  )  ∑   
 

 

   

 

Furthermore, using the binomial model, the probability that there are exactly 

   involuntarily bumped passengers out of the expected    show-ups will be: 

  (     )    (
     
  

)   
   (    )

(        )                            

Hence, the expected number of involuntarily bumped passengers is:  
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 (  )  ∑    

     

    

(
     
  

)   
   (    )

(        ) 

However, in its shortest form the expected number of the involuntarily bumped 

passengers is: 

 (  )     (          ) 

Hence, the expected loss of customer good will cost due to involuntarily bumping is: 

 ( )  ∑ *   (          )+
 

 

   

          ( ) 

 

Spoilage cost 

Spoilage cost is incurred when the number of reserved show-ups is less than the 

capacity available. This could happen when customers cancel their reservation or did 

not show-up without cancelling. In the former case customers are entitled to a 

refund, which is a fraction of the ticket fare, up on cancellation. Customers who did 

not show-up at the departure time without cancelling their reservations will not be 

refunded whatsoever.  

No show probability=      

Hence the probability of a refund will be: 

 (                   )  (                        ) 

 (    )     

Let     be the expected number of no-shows with cancellations, who are entitled for a 

refund, out of the (Ci + yi) bookings. Hence, the probability that there are exactly 

   no-shows with cancellation out of the (Ci + yi) bookings is: 

  (     )    (
     
  

) ((    )    )
  
 (  (    )    )

(        ) 

The expected number of no-shows with cancellations would be: 
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 (  )  ∑    

     

    

(
     
  

) ((    )    )
  
 (  (    )    )

(        ) 

Or in short, 

 (  )  (    )          

The expected lost revenue due to cancellations, L(r) 

 ( )  ∑ ∑      

     

    

(
     
  

) ((    )    )
  
 (  (    )    )

(        )

 

   

 

 ( )  ∑   (    )          

 

   

                   ( ) 

No shows without cancellations could be obtained as follows: 

 (  )  (    )  (    )       

Hence the expected lost revenue due to no-shows without cancellations could be 

obtained by multiplying the fare of a class by the number of no-shows as given 

below: 

 (                                 )  ∑   (    )          

 

   

 

Finally, the Net Expected Revenue (NER) at departure time will be: 

      ( )     (     )    ( )    ( )        ( ) 

Hence the objective is to maximize the Net Expected Revenue:  

Maximize 

    ( )  ∑  

 

   

          (     )  ∑ *   (          )+
 

 

   

  ∑   (    )          
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The above model could be used to find the optimal number of the overall 

overbooking pad for the specific flight. However, sometimes it might be desirable to 

find the optimal number of overbooking for each class rather than the optimal 

number of overbooking for the flight. In such cases, a slight modification of the above 

model is essential, and the following section presents a model for class dependent 

overbooking. 

Class Dependent Overbooking Model 

Keeping all the assumption regarding the show-up distribution as binomial, the 

optimal overbooking limit for each class could be modeled as follows. 

 

Revenue 

The revenue generated by a certain class is the product of the ticket fare by the 

number of bookings of that class. Hence the total revenue generated by all the 

bookings could be: 

 ( )   ∑  

 

   

  (  )          ( ) 

 

Compensation cost 

Following the same reasoning as presented in the optimal overall overbooking model 

presented in section I, the compensation cost in case of a class dependent 

overbooking will be: 

  (     )  

{
  
 

  
 

                                                           

∑  [ (  )    ∑ (    (  ))
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Where,  

 (  )  ∑    

     

       

(
     
  

)   
   (    )

(        ) 

And  

 ( )  ∑ ∑    

     

       

(
     
  

)   
   (    )

(        ) 

 

   

 

 ( )   ∑ (  )

 

   

 

Cost due to loss of customer Goodwill 

The model developed in section-1 could easily be modified by replacing the 

term       by   . Hence, the model will be: 

 ( )  ∑ 

 

   

*  (       )+
        ( ) 

 

 

 

Lost revenue or spoilage cost 

Following similar reason as in the cost due to customer good will, the 

expected loss of revenue due to empty seat flight could be modeled by 

replacing the term       by   . Hence the model will be: 

 

 ( )   ∑  (    )

 

   

               ( ) 

Therefore, the net expected revenue as a function of    will be: 

Maximize         (  ): 

   (  )  ∑  

 

   

  (  )    (     )  ∑ 

 

   

*  (       )+
  ∑  (    )
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3.2.2  Case II: No-show rate follow Generalized Extreme 

Distribution 

In section I, the show-up distribution was assumed to follow binomial. Furthermore, 

the model developed in that section was prior to collecting the data from the Airline, 

and as such the input parameters used in developing the model did not reflect the 

actual data that the airline has. Accordingly, in this section and in the next section a 

variant of the previous model that captures the nature of the airlines data with 

minimal input parameters will be developed. In addition, the model developed in this 

section considers an alternative  no-show distribution, the Generalized Extreme 

value Distribution (GED), which has been found appropriate for describing the no-

show distribution of the historical data for Ethiopian.  

 

_________________________________________________________________________________ 

Notations and Terms 

Pi= ticket price for fare-class i  

yi= number of overbooking for fare class i ,    Y  ∑   
 
    

    The number of no-shows and cancellations in class i, with p.d.f f(x). (    is a r.v.) 

Si = penalty cost of an overbooking corresponding to fare-class i 

ei= the opportunity cost of flying with an empty seat for fare class i 

___________________________________________________________________________ 

 

1. Revenue 

The revenue generated from the booking (y) passengers in each class could be 

obtained by multiplying the price of each ticket the overbooking level made in that 

class. 

  ∑  

 

   

             ( ) 
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2. Compensation cost 

 

 (   )  ∑  

 

   

 ,     -                                     

Otherwise, 

 (   )  ∑      [      ∑    (       )  )

 

     

]        ( )                                  

 

   

 

 

The second term of the above equation implies the fact that, extra arrivals for a seat 

in one class may be assigned a seat if there is empty seat in another class. 

 

3. Spoilage cost (cost of lost opportunity) 

 (   )  ∑  

 

   

 ,     -                                     

Otherwise, 

 (   )  ∑      [      ∑    ( 
 
     )  )

 

     

]                                  

 

   

   ( ) 

 

Therefore, the net revenue would be modeled as:   

 



39 
 

 ( )  ∑  

 

   

    

{
 
 
 
 
 

 
 
 
 
 

     
{
 
 

 
 ∑    (  [      ∑    (       )

 

     

]   )                                  

 

   

 

∑  ,     -

 

   

                                               

{
 
 

 
 ∑    (  [      ∑    (       )
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Since the number of no-shows is a continuous variable, the expected net revenue 

could be rewritten as: 

 

 ( )  ∑    
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This model could be easily solved using Mat Lab‟s numerical integration function 

instead of using derivatives and iterative solution approaches such as the Quasi-

newton method and other derivative based unconstrained optimization algorithms. 

However, since the closed form equation of the expected revenue, in this case has 

been found difficult solving using derivatives, a Monte Carlo simulation with a 

derivative free unconstrained optimization of the Nelder Mead algorithm [14] was 

adopted. However, assuming that the cost of lost opportunity is the mean value of all 

the classes, this model could be solved for any number of classes using derivatives. 

As such, a procedure of solving the model using derivatives will be presented as 

follows. 

In order to simplify the task let us consider minimizing the expected cost instead of 

maximizing the expected revenue. In this case the model would be reduced in to the 

following form. 
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Minimize Z(y): 
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)   

  

 

)

 

   

 ( )  

 ∑   (∫   (      ( ∑    ∫(     )

  

 

  

 

     

) 

 

  

) ( )  

 

   

 

 

Remember that the above model is based on the assumption that higher fare class 

contenders could not be bumped into lower fare class seats, or in other words 

downgrading is not allowed. However, this is a hypothetical case which does not 

have any application in reality (at least at Ethiopian). In fact, it is strictly forbidden to 

bump cloud nine passengers into the economy class in any flight. Therefore, there is 

the freedom to bump economy class of those extra high fare passenger show-ups 

into a low fare seat in the economy or a business class seat if there is any empty 

seat there. Considering the practical situation, that is downgrading within the 

economy class and upgrading economy class passengers into cloud nine seats, the 

model will further be restructured and simplified as follows. 

 ( )  ∑∫   (         ∑ ∫(     )

 

  

 

     

   ) ( )  

  

 

 

   

 ∑∫   (         ∑ ∫(     )  

  

 

 

     

)

 

  

 

   

 ( )   

Now, let us consider the two fare class scenario in the economy and the no-

overbooking rule in the cloud nine case. In order to accommodate the number of no-

shows in the cloud nine, it should be overbooked in the economy without violating 

the rule of no-overbooking in cloud nine. To do so, consider the whole sit as if it is an 

economy class seat and then make the overbooking, finally set aside the number of 

business class seats not overbooked.   

Let       be the overbooking levels in fare class-1 and fare class-2 respectively 
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          Represent the number of no-shows in fare class-1 and fare class-2 

          Represent the cost of lost opportunity.  

           Represent the compensation cost of each class. In practice a linear 

compensation plan is used, and hence the compensation cost for all denied 

passengers will be the same regardless of which class they belong. 

Now let us assume that the cost of lost opportunity for each class be the average of 

the individual fare classes. The weighted mean of the cost of lost opportunity will be 

considered in order to minimize the error that could be introduced as a result of the 

assumption made. Hence, the weighted mean for the cost of lost opportunity could 

be obtained as: 

  
         
     

                                   

 

This approximation of the cost of lost opportunity greatly simplifies our objective 

function into a form that finally would give a closed form solution approach. Using the 

weighted cost of lost opportunity makes all the seats as having the same value, and 

consequently reducing the objective function into a single variable minimization 

problem. Since the objective function has been solved without making such a 

simplifying assumption it would be good to compare the solutions and other 

measuring parameters of the two approaches.  With our assumption, the no-shows 

in each class could sum up without any multiplying factor (since all the seats are 

having the same value) as in the overbooking case; the sum of each variable could 

be reduced into a single variable of overbooking and no-show. 

Hence,         will be the total overbooking 

Likewise,         will be the overall no-show 

Therefore, the reduced form of the objective function would be: 

 ( )   ∫(   ) ( ) ( )   ∫(   )

 

 

 

 

 ( ) ( ) 
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Solving this equation would be straightforward using Leibniz Rule, which provides a 

means of differentiation under the integral. The Leibniz Rule says that if we have an 

integral of the form []: 

∫  (   ) ( )

  

  

 

Then for   (     ) the derivative of this integral is thus expressible 

 

  
∫  (   ) ( ) 

  

  

 ∫
 

  
 (   ) ( )

  

  

 

Provided that both       
  

  
 are continuous over the region ,     -  ,     - 

Making use of Leibniz Integral Rule, the objective function could be minimized at a 

relative ease. 

Taking the first order derivative on both sides of the objective function: 
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   ( )  (    ( ) )      

       ( )                                                       

Now set the first derivative to zero to find the closed form expression for the 

overbooking level. 

  ( )  (    ( ) )    

(   ) ( )    

Solving this for F(y) would give us: 

 ( )  
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 Now let us check the convexity of the objective function by taking the second 

derivative of the objective function. 

  ( )

  
   ( )   (   ( )) 

   ( )

   
 (   ) ( )    

Since the second derivative of the function is nonnegative, our objective function is 

convex. The value of  ( ) is the probability that the number of no-shows will not 

exceed y for the given values of the compensation and cost of lost opportunity.  

The expression for  ( ) under the assumption of the weighted mean for the cost of 

lost opportunity is the same as that of the News Boy problem. This expression will be 

used to find the overbooking level and will be compared with the results of the 

derivative free approach to investigate its applicability for the case considered. 

 

3.2.2 Solution approach using Monte Carlo Simulation  

The above stochastic model is solved by using a derivative free optimization 

algorithms (both the Nelder mead and Genetic algorithms were used) in order to 

eliminate some of the drawbacks of using the derivative based solution approach. 

The Monte Carlo simulation does not only, eliminate the assumption of making the 

whole seat as if they have identical values, but also has the flexibility to run it for a 

variety of probability loss values as required by the decision maker. The simulation 

approach can be used for any number of fare-classes that the airline may have. This 

would in effect make the Mote Carlo simulation approach an advantage over the 

closed form equation. 

 

The objective is to find the optimal overbooking level (  ) that maximizes revenue.  

 

Revenue 
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Compensation cost  
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Lost Revenue (cost of lost opportunity) 
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Objective: 

Maximize:  

Net Revenue =  ( )    (   )    (   ) 

This model could be modified to accept a user defined constraint function. As an 

example, the probability of loss could be considered as a constraint and the above 

unconstrained maximization problem would be transformed into a constrained 

maximization problem as shown below: 

Maximize:  

 

Net Revenue =  ( )    (   )    (   ) 

Subject to: 

           (                  )     

Where, v is the user defined value for the probability of loss. This is also one of the 

advantages of this model over previous models which lack this flexibility. 

 

3.3 Model Characterization and identification 

The model, which developed based on the extreme value distribution for the no-

show data, is to be identified as unconstrained non-linear programming (UNLP). For 

a large number of fare ticket classes and variable demand rates solving the model 

using derivatives could be extremely difficult and take a considerable amount of time. 

However, the model could be simplified with some reasonable approximations as 

explained in the previous section. Furthermore, with the current data management 

system and relatively low variation between fare classes in use at Ethiopian, the 

model could be solved in relatively minimal time. Again, for large values of the 

authorization level, and fare classes the simulation approach proposed for solving 

this model requires a much less amount of time as compared to the derivative based 

solution approaches. The Monte Carlo simulation approach uses direct search 

algorithms as the solution approach. More specifically, the Nelder Mead direct 
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search algorithm of Mat Lab was used for solving the models, though this algorithm 

does not guarantee optimality.  

3.4 Sample Data 

For the purpose of this study in verifying and measuring the performance of the 

proposed model, a historical data of booking, no-shows, and cancellation was 

collected. An 18 months (six months from each of the year of 2008/09/10) data was 

collected for the purpose of fitting the data in to a probability density function (PDF).  

An out bound station with a daily flight (ADD-DXB) and another station with a lower 

load factor as compared to other stations (due to no-shows, ADD-CAI) were chosen 

for the analysis of the data. Then, the six months data of no-shows and rate of no-

shows from each year were fit separately in to a PDF. 

Since the number of bookings for each day differs, first the rate of no-shows was 

fitted to see the probability density function (PDF) of the smoothed variable. Then, 

the no-show data was fitted without considering the variation in the number of 

bookings, to see if there could be a significant difference in the PDF of the two 

variable fits. For the flight destinations in our case example it was found that both the 

rate of no-show and the no-show data‟s PDF follow the same distribution. A closer 

look at the number of bookings, no-shows as well as the load factor of Ethiopian 

airlines shows that Ethiopian has insignificant number of denied boarding (one per 

twenty thousand). However, this could be the case not only because of the low 

overbooking level but sometimes demand goes below the capacity. When it is the 

case that demands are expected to be lower than the available seat capacity, a 

competitive air fare structure should be used in order to attract potential customers. 

Ethiopian has affixed fare structure from which a customer could choose, and this 

fare structure is calculated mainly based on the minimum number of load factors 

forecasted so that the airline operates with an anticipated profit even if it is flying with 

a lot of empty seats.  

The statistics toolbox of Mat Lab was also utilized in checking the distribution of the 

historical data after a general distribution fit comparisons were made on the „EasyFit‟ 

software.  The „EasyFit‟ software [36] is helpful in generating the best distribution fit 

appropriate for our data. However, I also used the manual fitting toolbox in Mat Lab 

to check if the results from the „EasyFit‟ software are acceptable. The EasyFit 
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software is commercial software developed by „mathwave data analysis and 

simulation‟ project, and a trial version of it could be downloaded for a one month use. 

For the case of Ethiopian (with respect to the data at hand), the assumption that the 

no-show and cancellation data follow beta, normal or gamma distribution is not 

applicable even though it might be the case for other airlines as pointed out in the 

literature review. A detailed comparison of the fit based on three (Kolmogorov-

smirnov, Anderson-Darling, and chi-squared) goodness of fit (gof) test shows that, 

the generalized extreme value distribution is the best fit distribution for our no-show 

and cancellation data. This was also approved by manually fitting the data in Mata 

Lab‟s „dfittool‟. An example showing the fitted data for ADD-BXD and ADD-CAI is 

give below along with the test statistic of the chosen gof test.  

 

                        Figure 4:  pdf of no-shows for ADD-DBX 
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                        Figure 5: a histogram of no-shows fitted to pdf of GED for ADD-DBX 

 

 

 

               Figure 6: a histogram of no-show rates fitted to pdf of GED for ADD-DBX 
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                                            Figure 7: pdf of GED for ADD-DBX no-show rate data 

The following pdf shows the no-show rate and no-show values fitted for ADD-CAI 

route respectively. 

 

Figure 8: a histogram of no-show rates fitted to pdf of GED for ADD-CAI 

Probability Density Function

Gen. Extreme Value  (0.05979; 0.0462; 0.08639)

x

0.40.30.20.10

f(
x)

8

7.2

6.4

5.6

4.8

4

3.2

2.4

1.6

0.8

0

Probability Density Function

Histogram Gen. Extreme Value

x

0.320.280.240.20.160.120.080.040

f(
x
)

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0


