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ABSTRACT 

In this study, a new device for wind energy harvesting on a small-scale was proposed. 

This system is well suited for powering remote wireless sensors as a cheaper, more 

environmentally friendly alternative to conventional dry cell batteries which is a need 

that is being addressed by many recent research studies. The device consists of a 

cantilever beam with the free end attached to a square section box that is subjected to the 

air stream inducing aero-elastic flutter. Flutter is a coupled torsion, plunge instability that 

has been historically studied to be avoided by aerospace and civil engineers. A magnet is 

attached to the beam and a stationary coil is used to generate electrical power. A finite 

element model for the device was achieved by formulating a set of ordinary differential 

equations that integrate the mechanical model of the beam with the aero-elastic flutter of 

the square section at the tip and the electromagnetic effect of the energy harvesting coil, 

and they were numerically solved. Wind tunnel experiment runs were carried out for a 

system with a 30 cm beam and a 30 cm long 5cm wide cross section for wind speeds of 

2.4 to 3.2 m/s and electric loads of 40 Ω to 4 MΩ. The numerical predictions were found 

to compare favorably with the experimental results in terms of the induced voltage, 

frequency, and power output.  
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NOMENCLATURE 

 

A Beam cross section area 

b Geometrical characteristic  (Section width × Length) 

B Electro-magnetic flux 

[C] Damping matrix 

CD Drag coefficient 

CL Lift coefficient 

D Drag force 

DCu Coil wire diameter 

Di Coil inner diameter 

Do Coil outer diameter 

E  Modulus of elasticity 

{F} Force Vector 

FA Aero-elastic force 

Fn Electro-magnetic force 

hb Coil height 

i Electric current 

I Second moment of area for the beam section  

[K] Stiffness matrix 

l Length in the beam direction 

L  Lift force 

Lc Coil inductance 

lw Coil wire length 

[M] Mass matrix 

N Number of coil turns 

RC Coil resistance 

RL Load resistance 

U  Mean air velocity  

Urel Relative air velocity  

V Voltage drop across the load resistance 

{v} vector of nodal speeds 

vn Speed of the node where the magnet is present 

w Transverse displacement 

α angle between actual air velocity and relative air velocity 

β Stiffness matrix coefficient 

γ Mass matrix coefficient 
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{δ} Nodal degrees of freedom 

θ Torsional displacement (cross-section rotation) 

μ0 Air permeability 

ρ Beam density 

ρair Air density 

ρCu Copper resistivity 

subscript 

e Element related 
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1 INTRODUCTION AND LITRETURE REVIEW 

 

1.1 Energy Harvesting Techniques 

Energy harvesting techniques rely on the generation of energy from existing 

ambient energy sources that are otherwise not utilized in that capacity.  Energy 

harvesting has witnessed a significant growth in the past few years due to the increasing 

quest to use clean technologies to produce energy from renewable and abundant sources. 

One promising technology is to provide sustainable energy for portable low-power 

electronic devices in an attempt to reduce their reliance on batteries which normally have 

a limited lifespan and require periodic replacement. Developing small-scale renewable 

energy systems is a topic that has been investigated in many previous research works. 

The main concern for such research is how to make the power generating technology as 

efficient and economical as possible. The integration of energy harvesting devices with 

wireless sensor networks, such as traffic and weather sensors, can have a significant 

impact on the implementation of this technology, especially if self-powered devices can 

be developed at low cost and deployed in inaccessible or potentially hostile environments 

to transmit signals to receiving stations over an extended period of time. The technology 

can also have a tremendous impact if these devices could be utilized to provide electric 

power for remote residential communities deprived of electricity from the grid. 
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1.2 Using Mechanical Vibrations to Induce Current 

A number of ambient energy sources have been recognized to be promising for 

energy harvesting, including heat waste, mechanical vibration, wind, solar energy, 

rainfall, human movement, seismic forces, traffic, and sea waves. While most of these 

sources can be exploited for energy harvesting, mechanical vibration seems particularly 

appealing due to the convenience of directly converting mechanical energy into electrical 

energy through various well-established transducers. In this context, vibration-based 

energy harvesters relying on electromagnetic [1], piezoelectric [2], electrostatic [3] and 

hybrid [4] principles have been reported. A vibration-based energy harvester typically 

consists of an elastic element that vibrates relative to a housing when subjected to 

external forces or base motion.  In electromagnetic energy generation, for example, 

energy is generated by attaching a magnet to a vibrating spring-loaded mass in such a 

manner that it oscillates past an electric coil to generate electrical energy.  

A review of the pertinent literature reveals that most of the reported studies are 

based on the fact that mechanical vibration is readily available as a source of energy at 

our disposal. Emphasis in many of studies was placed upon developing effective means 

to convert mechanical energy, typically provided by a dynamic shaker in a lab, into more 

useful forms of energy. These shaker tests provide useful tools to assess the performance 

of the developed devices at favorable drive conditions. However, mechanical vibration 

generally does not exist on its own by nature which is a limitation on the development of 

a truly sustainable energy harvester, unless a renewable energy source can be exploited to 

generate that mechanical vibration.  
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1.3 Wind Energy 

 Wind power can be harvested in several forms. For many years, the generation of 

renewable energy from wind has been centered on the use of rotating machinery, 

primarily wind turbines. While wind farms are known to be an effective means to 

generate power, their use in developing countries is faced with several challenges, 

including prohibitive costs of infrastructure, including land, civil work, electrical work, 

transmission lines and approach roads. In addition, the cost of the wind turbines often 

poses a financial burden for the governments and investors. The current market would 

therefore welcome innovative ideas aiming at the development of cost-effective, compact 

and efficient means of energy generation mechanisms that can possibly fit in remote 

areas without the need for expensive dedicated machinery that need to be strategically 

located in places that may be hard to access. 

 

1.4 Motivation 

Technological advances resulted in the use of many new small wireless energy 

efficient electronic sensing devices. These devices are generally powered by dry cell 

batteries that need frequent replacement and recharging. In order to power such devices 

extensive research is ongoing in order to achieve an economic system to harvest, 

otherwise wasted, energy from the ambient environment. Systems that use wind energy 

in order to induce mechanical vibrations have been the focus of many of these recent 

studies. Such a system can be suited to developing countries such as Egypt, as it shall be 

cheap to make on a small scale avoiding the use of small rotors and bearings that make 
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similar scale wind turbines impractical to use. It can also be a more environment friendly 

replacement for batteries in applications where wind is abundant.  

 Around 200 million dry cell batteries are spent in Egypt annually [5]. Improper 

disposal of these spent batteries to the landfill results in the contamination of the 

underground water with chemicals leaking out of them such as mercury and zinc oxides 

[6]. Being able to replace even a small percentage of the number of batteries used 

annually with a cheaper, and less polluting alternative will make substantial amount of 

saving in addition to the positive environmental impact to such an alternative. At a small 

scale conventional wind turbines become an expensive solution as they require small 

delicate bearings. Wind turbines also tend to have low efficiency at smaller scale [7]. 

 

1.5 Literature Review 

In 1984, Dag Pike [8] showed how wind can be used to generate energy as rotors 

tend to move due to the pressure difference that is generated during their rotation 

according to what is known as the Magnus effect (Figure 1). However, for the system to 

work, it needs small DC motors to power each of the rotors. Then a greater amount of 

energy will be generated when the entire assembly of rotors starts to move. This system 

is also expensive and hard to shrink for smaller scale as it would still be hard to make 

smaller motors and bearings. 

The idea of using fluid flow induced vibrations to generate power was introduced 

by Mckinney and DeLaurier [9] in 1981 when wind tunnel tests were performed on a 

symmetrical wing  with an airfoil cross section that is free to translate vertically and use 
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the output to produce energy. The process efficiency was found to be comparable to the 

efficiencies of a regular windmill.  

 

Figure 1: Magnus Effect Wind generator [8] 

A similar design was used by Jones et al. [10] in 2003. However, the wing was immersed 

in a water tunnel. The model they developed took into account both the vertical 

translation of the wing and the angular displacement, providing a clearer explanation for 

the lift forces associated with the flutter angle as shown in Figure 2.  The experimental 

design consisted of two wings that were allowed to move vertically and rotate; they were 
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installed to be out of phase and their motion was converted into rotary motion through 

the mechanism shown in Figure 3. 

 

Figure 2: The lift force as it varies with the angular movement of the wing [10] 

 

 

Figure 3: Front and top views of the flutter engine [10] 

Wang et al. [11] proposed a system that uses the phenomenon of Kármán vortex 

in a water channel to generate power. A bluff body was placed in the water stream and 
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the vortices formed downstream of it were used to move a diaphragm (Figure 4). A 

magnet is fixed over the diaphragm and a stationary coil is placed near it in order to 

induce current. A prototype of a volume of 37.9 cm
3
 of the system was tested and a 

power of 1.77 μW was obtained. 

 

Figure 4: The electromagnetic harvester devised by Wang et al. [11] 

Bernitsas et al. [12] introduced a new concept for harnessing the energy of ocean 

waves by using the phenomenon of vortex shedding; it was named Vortex Induced 

Vibration Aquatic Clean Energy VIVACE. This system consists of rigid cylinders 

mounted on elastic springs (Figure 5). A transmission mechanism is used to connect the 

cylinders to power take-off system. A model was devised for the system and verified 

using a free surface water channel prototype. 
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Figure 5: VIVACE system [12] to the left is a proposed configuration for a plant and to 

the right is a detail showing a single cylinder 

 

In 2007, Shawn Frayne [7, 13], invented a mechanism that relied on the theory of 

aerodynamic flutter. This time the mechanism was a flexible belt under tension that 

would undergo angular and transverse vibrations due to the lift forces that arise from the 

pressure difference existing because of the fluid flow. A magnet was attached to one end 

of the taut belt and fixed a coil near that end in order to generate electricity on a small 

scale as shown in Figure 6.    

 

Figure 6: The Micro-Scale Windbelt developed by Shawn Frayne that can power light 

and temperature sensors [13] 
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A different design was used in the flutter mill devised by Tang et al., [14] in 

2009. A cantilevered flexible web was suspended by springs to flutter in axial fluid flow. 

An electromagnetic method was used to harvest the energy generated by fixing a 

conductor circuit on the web and fixing it between magnetic panels as shown in Figure 7. 

 

Figure 7: The design of the flutter-mill devised by Tang et al., [14] 

 

In 2009, Zhu et al., [15] devised a different model of a flow energy harvester in 

which an air foil is subjected to an air stream where the air foil is rotated by an actuator 

along its axis and is installed on a spring and a damper (Figure 8). They were able to 

investigate the performance of the system through 2D and 3D numerical models 



10 

 

 

Figure 8: A Schematic of the flapping foil Energy Harvester [16] 

In 2009, Barrero-Gil et al., [16] analytically explore the use of one-degree-of-

freedom transverse galloping to obtain energy. They established relations between the 

flow velocity and energy efficiency for air foils of different masses and cross-section 

geometries. 

Jung et al., [17], in 2009, used a permanent magnet and a coil to harvest the wake 

galloping of a spring supported cylinder subjected to an air stream as shown in Figure 9. 

They carried out wind tunnel tests to verify the effectiveness of their proposed device. 

In 2011, Bibo et al., [18] devised a micro wind power generator for which they 

developed a nonlinear single mode model and verified its results experimentally.  They 

embedded a piezoelectric beam at the end of a cavity that is subjected to a wind stream. 

As the wind blows the beam vibrates mimicking the oscillations of the reeds of music-

playing harmonica (as shown in Figure 10). 
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Figure 9: The experimental setup used by Jung et al., [17] 

 

Figure 10: Operation Concept of the Micro-Power Generator devised by Bibo et al., 

[18] 
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Also in 2011, Sirohi and Mahadik [19] proposed a devise that consists of 

cantilever beams with their ends attached to a triangular cross section that is subjected to 

a wind stream. They bonded piezoelectric sheets to the beams to generate electrical 

energy (Figure 11). They fabricated and tested their device and were able to generate up 

to 53 mW which was enough for their intended purpose of powering low-power sensors. 

 

Figure 11: Galloping Energy harvester devised by Sirohi and Mahadik [19] 
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1.6 Aerodynamic Instability Phenomena 

Most of the devises described in the previous section as well as the devise proposed in 

this thesis rely on aerodynamic instability phenomena. These phenomena have been 

historically studied by civil and aerospace engineers as undesirable phenomena that 

should be studied and avoided when designing bridges, high tension suspended power 

cables, and airplane wings. Figure 12 shows the case of the collapse of Tacoma Narrows 

bridge which collapsed in 1940 causing civil engineers around the world to further 

investigate the causes of flutter and consider it while designing suspension bridges [20]. 

 

Figure 12: The flutter of Tacoma Narrows Bridge before its collapse [20] 
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These Phenomena include vortex induced vibrations, wake galloping, buffeting and 

divergent oscillations. Figure 13 shows the variation of the vibration amplitude with the 

increase of wind velocity for each case [21]. 

 

Figure 13: A comparison between amplitude variation with velocity curves of different 

aerodynamic instability phenomena adopted from Jung and Lee [21] 

 

Vortex induced vibrations are associated with periodic lift forces caused by vortex 

shedding that may occur at a specific range of wind speeds for which the exciting 

frequency is close to the natural frequency of the vibrating body. The resulting vibrations 

will depend on Reynold’s number, and the turbulence of the incoming wind near the 

boundary layer of the vibrating body as explained by Dowell [22]. 

Wake galloping the phenomenon upon which Jung et al., [17] relied when setting 

up the design for their devise as previously shown in Figure 9 relies on a vortex that is 

generated when wind passes by a stationary obstacle forming behind it what is known as 

Kármán vortex trail. This vortex trail, as explained by Den Hartog [23], consists of 

pattern of consecutive clockwise and counterclockwise vortices that can cause vibrations 

in bodies placed downstream. This phenomenon was originally noted and studied for 

multiple stacked cables in suspended power transmission lines. 

(d) Divergent oscillations (b) Wake galloping (c) Buffeting (a) Vortex-induced vibration 
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Buffeting vibrations are vibrations associated with randomly generated 

fluctuating forces that occur due the turbulent flow as explained by Dowell [22]. This 

phenomenon is widely studied for designing wind resistant structured. However it does 

not offer a stable force of vibration for energy harvesting. 

Divergent oscillations, such as galloping of power transmission cables with snow 

formation and flutter of aircraft wings, are aero-elastic instabilities that cause the 

vibrations to self initiate at a certain threshold of wind velocity. When this threshold is 

exceeded the amplitude of the oscillations are directly correlated with the increase in 

wind speed as shown in Figure 13 [21]. 

 The term “aero-elastic galloping” is historically used by civil engineers for  fluid 

forces that occur due to an angle between the wind direction and the resulting force due 

to nonsymmetrical cross sections of certain slender shapes can result in negative damping 

that causes a single degree of freedom instability as explained by Den Hartog [23].  

   

Figure 14: The slender cross sections for which resulting wind force directions cause 

galloping [23] 

Aero-elastic flutter is another type of divergent oscillations that is defined as the 

coupled torsion-plunge instability of a structure due to the forces induced by fluid flow. 
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This phenomenon has been thoroughly studied by aerospace engineers trying to avoid its 

damaging effect on airfoil structures [24]. Both the lift force and the pitching moment 

will be dependent on the velocity of the body, so they will be subtracted from the 

system’s damping. If the total damping term becomes negative, which means that more 

energy will be pumped into the system, vibrations will be initiated [22].  

 

1.7 Research Objectives 

The objective of the present research is to address the key concept of generating 

mechanical vibration from fluid flow, and exploiting the ensuing motion to harvest useful 

energy. The work is motivated by the continual worldwide quest to exploit renewable 

energy sources through novel means, together with the ubiquity of fluid flow as a clean 

and sustainable source of energy. While, for many years, the generation of energy from 

fluid flow has been centered on the use of rotating machinery, the concept presented 

herein departs radically from the conventional turbine technology. It relies on the 

development of small, scalable devices that can easily be installed wherever power is 

needed. In this context, the phenomenon of aero-elastic flutter needs to be exploited, 

wherein an incoming flow of fluid causes self-sustained oscillations in an elastic 

structure in contact with the fluid. The ensuing mechanical motion is then converted into 

useful electric power through an electromagnetic transducer that is integrated with the 

device. Conceptually the proposed device consists of an elastic cantilever beam that 

carries a tip mass in the form of a lightweight box having a square cross-section to 

undergo flutter when placed in a wind stream. A magnet is placed on the beam, and a coil 

is fixed around it, so when flutter occurs an electric current is induced in the coil. As 
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such, the device contains few mechanical parts requiring minimal or no maintenance, 

which makes it an ideal candidate for a power enabler in many applications where the 

use of other energy sources may be too costly or infeasible. The device is particularly 

adaptable to provide sustainable energy for remote low-power electronic devices that are 

placed wherever access to wind flow is available.  

Emphasis is placed on studying the system performance at different air speeds 

while accounting for the design parameters such as the beam length, the square section 

dimensions, and its respective lift and drag characteristics (which depend on Reynolds’ 

number for the flow [24])in an attempt to formulate a dynamic model to be verified 

experimentally through wind tunnel testing.  

1.8 Thesis Organization 

This remainder of this thesis is organized into four chapters. Chapter 2 presents the 

design of the proposed energy harvester together with the numerical model that is 

formulated to predict the dynamic performance in terms of the mechanical displacements 

and output voltage and electric power as a function of the incoming wind characteristics 

and load resistance. Chapter 3 presents the setup for the experimental wind tunnel tests as 

well as the procedures followed to complete these tests. Chapter 4 illustrates the 

experimental results in comparison with the model predicted ones. Finally, Chapter 5 

presents conclusions and recommendations for future work.   
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2 HARVESTER DESIGN AND MODELING 

A square section light weight material box is fixed to the free end of a flexible 

cantilever beam. Due to the air flow the box exhibits rotational and transverse motions 

which are associated with flutter. Inducing and maintaining this self-excited vibration is 

pivotal to the design of the wind harvester. Energy can be extracted in a number of ways 

including electromagnetic and piezoelectric techniques. This chapter presents the finite 

element model that is developed to study the dynamics of the flutter foil. The treatment is 

organized in three subsections detailing the mechanical, aero-elastic and 

electromechanical models. 

  

2.1 Harvester Design 

Figure 15 shows a schematic illustration of the proposed design. A lightweight 

box having a square cross-section is mounted at the tip of a flexible cantilever beam 

facing an incoming steady wind stream with a mean speed U. Wind-induced vibration 

causes the box to flutter in the transverse direction, leading to self-excited bending 

vibrations in the beam. Energy is harvested using a pair of magnets sandwiching the 

beam that move past stationary coils, as indicated. The time-varying lift and drag forces 

depend on the relative motion of the structure and the surrounding air and are responsible 

for the ensuing vibration of the structure. These aerodynamic loads will be studied in the 

next section. 
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Figure 15: Schematic illustration of proposed design (top view) 

 

2.2 Purpose of the Finite Element Model 

A model has been devised in order to investigate the systems performance and 

predict its response for different wind speeds and system parameters. The model 

integrates the system’s structure with the predicted aerodynamic forces and the effect of 

the electromechanical system in order to calculate the resulting voltage drop across 

different resistances attached to the system at different wind speeds. 

 

2.3  Model for the System Structure 

The beam was divided into two-node elements subject to both transverse and 

rotational displacements represented by the odd and even numbered elements in the 

displacement vector, respectively, as depicted in Figure 16 [25]. The axial loading on the 

beam was neglected due to relatively small rotation angles. 
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Figure 16: The Deformed configuration of the beam element adopted from [25] 

 

The mass and stiffness matrices were found to be as shown below (refer to Appendix A 

for their derivation) [25] 
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    (2) 

The mass moment of inertia of the square section box is calculated which will be 

equal to 1/6 × box mass × squared side width assuming uniformly distributed mass. It 

will be added along with the box mass to the tip node diagonal elements after assembling 

the mass matrix. The stiffness and force matrices are also assembled.  
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 The damping matrix is estimated as [C] = γ [M] + β [K] as it was estimated by 

De Marqui et al., [26]. This damping term only includes mechanical damping in the 

system whereas electromagnetic damping will be included later in the force terms. Initial 

assumptions were made for the values of constants γ and β until an estimate that produces 

a stable response that provides realistic peak values for the tip displacement that was 

experimentally verified was settled upon. 

 

2.4 Aero-elastic Model 

For spring supported body shown in Figure 17 having Geometrical characteristic 

b (equals to section width multiplied by the body length) subjected to a steady flow of 

velocity U and fluid density ρair, where θ is the angle of inclination of the square section 

and α is the angle between the flow velocity and relative velocity of the wind Urel to the 

square section moving at a velocity    the steady fluid dynamic forces per unit length will 

be: [24, 27] 

 

Figure 17: Air loads acting on square section 
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              (4) 

where D & L are the drag and lift force that are by definition the force in the direction of 

the relative velocity of the wind and the force perpendicular to it. CL and CD are the lift 

and drag coefficients which are dimensionless coefficients for which there are readily 

available experimentally obtained curves for the different cross sections. These 

coefficients are evaluated at an angle equal to the difference between the section 

inclination and the relative wind velocity. 

From geometry, we note: 

cosrelU Ua        (5) 

Resolving the forces along the transverse direction gives: 

                            (6) 

which can be written as: 

   
 

 
     

                                     (7) 

where 

1tan
w

U
a   
  

 
     (8) 

The lift and drag coefficients that are present in equations 3 and 4 are highly 

dependent on the section geometry, as well as the flow characteristics, mainly Reynolds 

number. Different studies have been made to investigate the variation of the lift and drag 

coefficients with the angle of attack for rectangular sections; however their study was 
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limited to small angles of attack [28, 29]. Mukhopadhyay et al., [27] experimentally 

obtained values for the lift and drag coefficients for the square section at different values 

for Reynolds number. At Reynolds number of 2700 the lift and drag coefficients were 

found to vary with the angle of attack as depicted in Figure 18. Ignoring the wind effect 

on the beam and the moment on the square section the force vector will be reduced to a 

point force at the tip of the beam. 

 

Figure 18: Variation in lift and drag coefficients with time [27] 

 

2.5 Electromagnetic Model 

In 2004 Poulin et al., [30] presented a model for the effect of inducing current 

electromechanically using a magnet and a coil on a system having a single degree of 

freedom system where there is only a linear motion of the magnet in the direction of the 

coil axis of the coil. The magnet was found to act on the system with a force proportional 

to the induced current, and the induced current is proportional to the magnet velocity as 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-0.5

0

0.5

1

1.5

Angle of Attack [Degrees]

 

 

Drag Coefficient

Lift Coefficient



24 

 

given by the equations below. Since the magnet in our devised system is placed near the 

fixed end where the angle of rotary action can be neglected, the same equation can apply 

[30]. 

     
   

  
       

  

  
      (9) 

   
 

     
     

   

  
   

  

  
     (10) 

Where n is the node at which the magnet is placed, B is the magnetic flux density, 

lw is the wire length of the coil, i is the electric current, V is the voltage drop across the 

load resistance, Rl is the load resistance, Rc is the coil resistance, and Lc is the coil 

inductance. Note that the electromagnetic damping term, which is the term multiplied by 

the node velocity, is included in the calculation of the current which is in turn used to 

calculate the force. 

We add the magnet mass m to the node at which the magnet is place at the 

diagonal of the mass matrix and the mass moment of inertia to the diagonal element of 

the following row. The magnet force is added to the corresponding line in the force 

vector and assuming that the magnet is on the side of the beam a moment term is added 

to the following element in the force vector. 

The added force will be: 

              (11) 

The magnetic flux density was estimated for the average distance between the 

magnet and the coil using a color coded graphical plot available on the magnet supplier’s 

website. The number of turns of the coil needed to calculate the wire length and the coil 
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inductance was estimated based on the dimensions of the coil and the measured wire 

diameter using the equations used by Poulin et al., [30]. 

  
         

    
       (12) 

   
         

 
     (13) 

   
   

         
 

    
     (14) 

A check can be made to verify the used values for the wire length and the wire diameter 

by measuring the coil resistance and comparing it to the resistance that can be calculated 

using the following equation from Poulin et al., [30]. 

   
      

    
       (15) 

The resulting electric power can be calculated for a given load resistance at each value of 

the electrical current using the following equation. 

            (16) 

 

2.6 Governing Equations 

The element equations of motion are then solved by using Lagrange’s solution for 

ordinary differential equations. Upon assembly, the equations of motion for the flutter 

foil are expressed as: 

                              (17) 
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Where F is the force vector containing only two transverse forces (the aero-elastic force 

at the tip and the electromagnetic force at the magnet location nod) and δ is a vector 

containing the node displacement and rotations as follows. 

       

 
  
 

  
 

  

  

  

  

 
  

   
  
 

  
 

       

 
 
 
 

 
 
 

 
 
 
  
 
 
  

  
 
 
 

 
 
 

  

The system’s governing equations are then reduced to first order ordinary 

differential equations in preparation for a numerical solution. They will become as 

follows: 

                                  (18) 

              (19) 

  

  
                         (20) 

These equations were solved using multistep numerical formulas and time 

responses were obtained. An initial condition was used the beam nodes were all assumed 

to have zero displacement and velocities that are proportional to the beam’s static 

deflection (nodes closer to the fixed end are assumed to have lower velocity than nodes 

closer to the free end). The beam was divided into 22 elements with the magnet placed at 

the second element. Figure 19 shows a flowchart of the used model methodology. 
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Figure 19: A flowchart for the solution process of the numerical model 
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3 EXPERIMENTAL WORK 

An experiment was set in order to compare the proposed analytical model with 

the actual results that can be attained. In the following section the experiment done will 

be thoroughly explained.    

3.1 Experimental Setup 

As shown in Figure 20, a stainless-steel beam (0.45 mm thick 25 mm wide and 

300 mm long) is fixed on a bracket from one end using a bolt, nut and a washer. A light-

weight square sectioned end made of paper stiffened with cardboard is attached to the 

other side of the beam. An NdFeB Grade N42 ring magnet (6.35 mm inner diameter, 

12.7 mm outer diameter and 12.7 mm thickness) is attached to the stainless-steel beam 30 

mm away from the fixed end and a coil is fixed in front of it. This entire setup is inserted 

Figure 20 Experimental Setup 
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into a wind tunnel with a variable frequency drive.  The coil ends are then connected by a 

wire to a variable resistance (resistance decade box). A data acquisition/analyzer (LMS 

Pimento) is connected in parallel with the variable resistance. This analyzer is connected 

to a laptop for real-time reading of the transient volt generated by the system.  A 

handheld metal vane anemometer was used to verify the wind speed at each frequency 

set for the wind tunnel drive. The table below shows the properties of the used materials. 

 

Table 1: Properties used for the experimental results 

 

 

Square section     

Mass 27 g 

Width 5 cm 
Length 30 cm 

   Beam     

Modulus of  Elasticity (E) 207  Gpa 

Density (ρ) 7800 kg/m
3 

Thickness 0.45 mm 

Width 25.4 mm 

Beam Length (l) 30 cm 

   Mechanical damping   

Assumed mass matrix coefficient (γ) 0 rad/s 

Assumed stiffness matrix coefficient (β) 10 
-5 s/rad 

   Air Properties     

Air density (ρair) 1 kg/m
3 

Air permeability (μ0) 4π × 10 
-7 V s /(Am) 

   Electromagnetic system   

Magnetic flux density at average gap (B) 0.045 tesla 

Coil length (hb) 7 mm 

Coil outer diameter (Do) 12 mm 

Coil inner diameter (Di) 4.5 mm 

Coil wire diameter (Dcu) 0.11 mm 

Coil wire resistivity (ρcu) 17 × 10 
-9 Ωm 
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3.2 Experimental Procedure 

The wind tunnel was operated at three different wind speeds. For each run the 

resistance decade box is set to the required resistance, and the square sectioned airfoil is 

set to start from rest. Forty seconds are recorded using the analyzer software for each run 

to insure that the system is passed the transient phase and the vibrations that it has 

definitely reached a steady state. Five runs were made for every wind tunnel frequency to 

reach a total of fifteen runs. 
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4 RESULTS 

4.1 Transient Response comparisons 

The experiment was performed over a resistance range of 40 Ω to 4 MΩ and the 

transient voltage was recorded for different wind speeds. The transient peaks are 

observed to grow until they reach a steady state. An oscillatory behavior for the steady 

state peaks for the experimental results is noted which may be caused by some turbulence 

in the air stream. The top part of Figure 21 shows the transient voltage response as 

predicted by the model for 100Ω resistance at 3.2 m/s wind speed as an example. 

Appendix B provides similar figures for all the other experimental runs. The model 

predicted system responses in all cases appear to be closely matched by the 

experimentally recorded outcome for their cases; however the oscillatory components 

seem to be diminished. 

 

4.2 Frequency Comparisons 

The model predicted frequency for all the model runs made is about 1.9 Hz which 

is the natural frequency of the system that was not noticeably affected by adding the 

electromagnetic effect at any load resistance or by changing the wind speed. The 

experimentally measured dominating first mode frequency was around 1.7 Hz that did 

not change noticeably for any of the runs either. 
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Figure 21: On top is the model predicted time response for the system using 100 ohm 

resistance at the wind speed of 3.2 m/s and below it is the experimentally measured 

response for it 
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4.3 Voltage and Power Comparisons at Steady State 

The maximum achieved power for the three experimentally measured wind speeds of 

were found to occur at 100 Ω resistance and the model predicted power peak value was 

found to be at approximately the same value for the load (Figure 22, Figure 23, and 

Figure 24). The output power was predicted to be directly proportional to the wind speed 

which was verified by the experimental results. With the magnet and coil used the 

maximum power achieved for a single magnet and coil was around 1.7 μW. The model 

was capable of predicting the increasing power trend with the load resistance until the 

peak then the decrease that occurs for higher values of load resistance. 

4.4 Tip Displacement and Tip Rotation 

Although tip displacement and rotation were not accurately measured in the lab, the 

amplitudes predicted by the model visually match what was noticed in the experimental 

runs. It was also found out that the force applied by the electro-magnetic system on the 

model did not have much effect on the structural Dynamics of the system (Figure 25 and 

Figure 26) 
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Figure 22: Graphs showing the correlation between the experimental (denoted by *) and 

the model predictted values (denoted bu (-) for the volt (in the top drawing) and the 

power (in the bottom drawing) for different values of load resistance for wind speed of 

2.3 m/s 
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Figure 23: Graphs showing the correlation between the experimental (denoted by *) and 

the model predictted values (denoted bu (-) for the volt (in the top drawing) and the 

power (in the bottom drawing) for different values of load resistance for wind speed of 

2.7 m/s 
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Figure 24: Graphs showing the correlation between the experimental (denoted by *) and 

the model predictted values (denoted bu (-) for the volt (in the top drawing) and the 

power (in the bottom drawing) for different values of load resistance for wind speed of 

3.2 m/s  
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Figure 25: Model predicted tip displacement time plots where the electromagnetic effect 

and the magnet mass are removed and they are present in the bottom drawing 
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Figure 26: Model predicted tip displacement time plots where the electromagnetic effect 

and the magnet mass are removed and they are present in the bottom drawing 
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5 CONCLUSIONS 

 

In this study, a new small-scale wind energy harvester was devised, modeled and 

experimentally verified. The model was achieved by analytically formulating a set of 

ordinary differential equations that complement the mechanical model of the beam with 

the aero-elastic flutter of the square section at the tip and the electromagnetic effect of 

the energy harvesting coil. These ordinary differential equations were numerically solved 

for an adequate time span to insure a steady state is reached. Wind tunnel experiments 

were carried out for different wind speeds and electric loads that would allow proper 

representation of the power and voltage plots, and the model was found to predict the 

system’s behavior very well. 

This system converts kinetic energy into electrical energy using a very 

economical setup that can be used to supply wireless sensors providing an echo-friendly 

alternative to alkaline batteries that are used once and land-filled. This system is very 

simple and can result in great savings in battery costs and can be a good solution to 

power sensors that are not accessible for battery change.  

The maximum achieved power for the used model at 5 m/s wind speed was 1.7 

μW which is relatively low. However, this system can still undergo many improvements. 

The used electromagnetic damping, and magnet mass do not have any noticeable effect 

on the system dynamics which allows the use of multiple magnets and coils which can, in 

turn, significantly increase the power output. Piezoelectric materials can be also used to 

supply additional power. Moreover, additional work can be made to optimize the system 



40 

 

using more powerful magnets and coils which was not the focus of this study. Using the 

devised model can also help optimize all the system parameters such as the beam, and 

square end dimensions. However, optimizing the magnet location may need more effort 

in estimating the average magnetic flux for each case. 
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APPENDIX A: DERIVATION OF BEAM MASS AND STIFFNESS 

MATRICES 
 

For a uniform beam element following Euler-Bernoulli theory, each node has 

translational and rotational displacements. Given below is the derivation for the mass and 

stiffness matrices for this beam element as explained by Chandrupatla [25]. 

The transverse displacement of any point within the element can be assumed to follow a 

cubic equation as follows. 

                          
        

  (21) 

 

    

a0(t), a1(t), a2(t) and a3(t) must satisfy the following conditions 

            

             

             

              

 

This will yield the following equations 

           

           

      
 

  
                                  

      
 

  
                                

   (22)  

By substituting Equation (22) into Equation (21) 



45 

 

           
  

  
   

  

  
         

 

  
  

  

  
  

  

  
            

  

  
   

  

  
        

  
  

  
  

  

  
               (23) 

 

This can be expressed as  
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Where 

         
  

  
 
  

  

  
 
   

 

  
  

  

  
 
 

  

  
 
      

  

  
 
  

  

  
 
    

  

  
 
 

  

  
 
     

(25) 

The Kinetic Energy of the system can be expressed as: 

    
 

 
    

       

  
 
 

  
  

 
 

 

 
                 (26) 

Substituting Equation (24) into Equation (26) element mass matrix can be calculated as 

follows: 

                 
  

 
       (27) 

Substituting Equation (25) into Equation (27) and integrating over the element length 

     
    
   

 
 
 
 
 

              
       

         
 

              
         

         
  

 
 
 
 

 

The Strain Energy of the system can be expressed as: 
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Substituting Equation (24) into Equation (28) element stiffness matrix can be calculated 

as follows: 

         
   

   

 

  
   

      
  

 
     (29) 

Substituting Equation (25) into Equation (29), getting the second partial derivative with 

respect to x then integrating over the element length we get the following equation 
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APPENDIX B: TIME DOMAIN VOLTAGE PLOTS FOR THE 

REMAINING MODEL VERIFIED EXPERIMENTAL RUNS 

 

Figure 27: On top is the model predicted time response for the system using 40 ohm 

resistance at the wind speed of 2.3 m/s and below it is the experimentally measured 

response for it 
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Figure 28: On top is the model predicted time response for the system using 100 ohm 

resistance at the wind speed of 2.3 m/s and below it is the experimentally measured 

response for it 
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Figure 29: On top is the model predicted time response for the system using 400 ohm 

resistance at the wind speed of 2.3 m/s and below it is the experimentally measured 

response for it 
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Figure 30: On top is the model predicted time response for the system using 4 Kohm 

resistance at the wind speed of 2.3 m/s and below it is the experimentally measured 

response for it 
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Figure 31: On top is the model predicted time response for the system using 4 Mohm 

resistance at the wind speed of 2.3 m/s and below it is the experimentally measured 

response for it 
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Figure 32: On top is the model predicted time response for the system using 40 ohm 

resistance at the wind speed of 2.7 m/s and below it is the experimentally measured 

response for it 
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Figure 33: On top is the model predicted time response for the system using 100 ohm 

resistance at the wind speed of 2.7 m/s and below it is the experimentally measured 

response for it 
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Figure 34: On top is the model predicted time response for the system using 400 ohm 

resistance at the wind speed of 2.7 m/s and below it is the experimentally measured 

response for it 
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Figure 35: On top is the model predicted time response for the system using 4 Kohm 

resistance at the wind speed of 2.7 m/s and below it is the experimentally measured 

response for it 
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Figure 36: On top is the model predicted time response for the system using 4 Mohm 

resistance at the wind speed of 2.7 m/s and below it is the experimentally measured 

response for it 
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Figure 37: On top is the model predicted time response for the system using 40 ohm 

resistance at the wind speed of 3.2 m/s and below it is the experimentally measured 

response for it 
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Figure 38: On top is the model predicted time response for the system using 400 ohm 

resistance at the wind speed of 3.2 m/s and below it is the experimentally measured 

response for it 
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Figure 39: On top is the model predicted time response for the system using 4 Kohm 

resistance at the wind speed of 3.2 m/s and below it is the experimentally measured 

response for it 
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Figure 40: On top is the model predicted time response for the system using 4 Mohm 

resistance at the wind speed of 3.2 m/s and below it is the experimentally measured 

response for it 
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