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ABSTRACT 
The American University in Cairo 

Rechargeable Battery Modeling and Lifetime Optimization 

Naglaa El Agroudy 

Thesis Advisor: Dr. Yehea Ismail 

 

Battery lifetime is one of the most important design considerations in rechargeable 

battery operated devices. Understanding the battery nonlinear properties is essential for 

appropriate battery modeling. Optimizing the battery lifetime depends greatly on the 

discharge current profile. Changing the profile shape can be done through averaging 

techniques, scheduling techniques, introducing recovery periods…etc. This work 

investigates the different techniques that can be used to enhance the battery lifetime. It is 

shown that 15-60% of lifetime savings can be achieved through using average current 

profile instead of variable current profile. This work also provides a comparison between 

different configuration techniques for multi-cell systems. Also, a new hybrid battery 

model is introduced which combines the battery electric circuit characteristics together 

with the nonlinear battery properties. 

  



 
IV 

TABLE OF CONTENTS 

 

I. INTRODUCTION ........................................................................................................... 8 

A. Motivation of Work.................................................................................................. 8 

B. LITERATURE REVIEW ................................................................................................ 9 

1. Battery Properties ................................................................................................ 9 

2. Battery Models ................................................................................................... 13 

3. Battery Management and Optimization ............................................................ 28 

II. LITHIUM-ION BATTERY STUDY ................................................................................... 32 

III. PROPOSED HYBRID BATTERY MODEL .................................................................... 35 

IV. LITHIUM ION BATTERY SIMULATION RESULTS ...................................................... 39 

V. MULTI-CELL STUDY .................................................................................................... 49 

VI. CONCLUSION .......................................................................................................... 53 

VII. PUBLICATIONS ........................................................................................................ 54 

VIII. REFERENCES ........................................................................................................... 55 

APPENDIX A ....................................................................................................................... 60 

APPENDIX B ....................................................................................................................... 63 

 

  



 
V 

LIST OF FIGURES 

Figure 1: Usable Capacity vs. Cycle Number [5] ............................................................... 11 

Figure 2: Usable Capacity vs. Storage Time [5] ................................................................. 13 

Figure 3: Thevenin Based Electrical Battery Model [5] ..................................................... 15 

Figure 4: Impedance Based Electrical Battery Model [5] ................................................. 16 

Figure 5: Runtime Based Electrical Battery Model [5] ...................................................... 16 

Figure 6: Comprehensive Electrical Battery Model [5] ..................................................... 17 

Figure 7: Usable Capacity vs. Battery Current [5] ............................................................. 18 

Figure 8: Non-linear relation between Voc and Vsoc [5] ................................................. 19 

Figure 9: Transient Response to a Step Load-Current Event [5] ...................................... 19 

Figure 10: Stochastic Process Representing the Cell Behavior [22] ................................. 21 

Figure 11: Kinetic Battery Model [1] ................................................................................. 22 

Figure 12: Lithium Ion Battery Operation [4] ................................................................... 24 

Figure 13: Physical Picture of Rakhmatov Diffusion Model [1] ........................................ 25 

Figure 14: IntelBatt Architecture [29] ............................................................................... 31 

Figure 15: Cell Switching Circuit Design [29] .................................................................... 31 

Figure 16: Nonlinear Discharge vs. Linear Discharge ........................................................ 34 

Figure 17: Nonlinear Discharge vs. Linear Discharge - 2nd. Curve ................................... 34 

Figure 18: New Proposed Hybrid Model........................................................................... 36 

Figure 19: Hybrid Model vs. Electric Circuit Model .......................................................... 37 

Figure 20: Slope of Recovery ............................................................................................ 43 

Figure 21: Capacity vs. Average Current ........................................................................... 44 

Figure 22: Simulated loads with Same Average Current but Different Frequencies ....... 46 

Figure 23: on the x-axis: ratio between Lifetime of the Variable Current Profile to 
Lifetime of the Average current, and on the y-axis: the duty cycle of the variable current 
profile. (a) Average current of the variable profiles = 100mA. (b)Average current of the 
variable profiles = 200mA. (c) Average current of the variable profiles = 300mA. .......... 48 
 

 

 



 
VI 

Figure 24: Multi Cells in Parallel Configuration vs. Single Cell .......................................... 49 

Figure 25: Lifetime Improvements over Using Serial Configuration ................................ 52 

Figure 26: Hybrid Battery Model ...................................................................................... 63 

Figure 27: Voc(SOC) of the Hybrid Model .......................................................................... 64 

Figure 28: Rseries of the Hybrid Model ............................................................................... 65 

Figure 29: Rtransient_S of the Hybrid Battery Model ............................................................ 66 

Figure 30: Rtransient_L of the Hybrid Battery Model ............................................................ 67 

Figure 31:Ctransient_S of the Hybrid Battery Model ............................................................. 68 

Figure 32: Ctransient_L of the Hybrid Battery Model ...................................................... 69 

  



 
VII 

LIST OF TABLES 

Table 1: Comparison of Electrical Circuit Models [5] ........................................................ 17 

Table 2: Hybrid Battery Model Parameters ...................................................................... 37 

Table 3: Comparison of Simulation Time of Different Battery Models ............................ 38 

Table 4: Variable Current Load Sets [3] ............................................................................ 40 

Table 5: Lifetime Values Obtained from SPICE Simulation ............................................... 41 

Table 6: Simulation Delta From DualFoil .......................................................................... 42 

Table 7: Lifetime of Iaverage vs. Lifetime of Ivariable ...................................................... 45 

Table 8: Multi Cells in Parallel Configuration vs. Single Cell ............................................. 49 

Table 9: Comparison between Three Multi-Cell Configurations ...................................... 51 

 

 



 
8 

I. INTRODUCTION 

A. Motivation of Work 

 Many electronic devices and equipment are now depending on rechargeable 

batteries for their operation.  Rechargeable batteries are able to store energy then deliver 

it to the attached load whenever needed. The main concern for the designers of battery 

operated systems is how to increase the lifetime of the battery. This can be done through 

many techniques like increasing the number of cells, optimizing the battery discharge 

profile, introducing idle periods for the battery to recover…etc. The battery has a 

nonlinear operation which means that the relation between the load current and the 

lifetime of the battery is not linear. The capacity that can be extracted from the battery 

depends greatly on the discharge load current profile [1].  In order to optimize the battery 

lifetime, many battery properties need to be understood. This work presents a study about 

the different battery nonlinear properties and the different models that are used to 

represent these properties. This work presents a study for single and multi cell battery 

systems and a study for different configurations of connecting the battery cells and 

decides which of them is better for the system lifetime. Also, this work introduces a new 

hybrid battery model that takes into consideration the battery nonlinear behavior together 

with the battery electric characteristics. 

 The remainder of this chapter will include literature review about the different 

battery properties, battery models and battery life time optimization techniques. The next 

chapters will be organized as follows: in chapter two, Lithium ion battery study for single 

cell will be conducted. In chapter three, a new hybrid battery model is introduced that 

includes the characteristics of both the electric circuit models and the analytical diffusion 

nonlinear model. Chapter four will include simulation results and observations for single 

cell lithium ion battery. Chapter five will include the multi-cell system study and the 

comparison between different cell operating configurations and studying which 

configuration is better for increasing the lifetime.  
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B. LITERATURE REVIEW 

1. Battery Properties 

Rechargeable batteries have many properties that define their charging/discharging 

characteristics. Ideally, for any discharge current, the battery capacity should stay 

constant [1]. All the energy stored in the battery should be totally consumed till the 

battery is empty. During discharge, the battery voltage is expected to be constant and it 

should drop to zero when the battery is fully discharged [1]. However, in reality, batteries 

behavior is highly nonlinear. To understand this nonlinear behavior, the following battery 

properties are going to be discussed in detail. 

a. Battery capacity 

The amount of electric charge that can be stored inside a battery is known as the 

capacity. It is measured in Ampere-Hour unit, which means that if the battery capacity is 

3 A.H, then if the battery is discharged with a constant 3A current, then it will be 

completely discharged after one hour. Batteries are characterized by two voltages. When 

the battery is fully charged, its initial voltage is called the open circuit voltage (Voc), and 

when it is fully discharged, its final voltage is called cut off voltage (Vcutoff) [2]. There are 

three ways to describe the battery capacity. The first definition is the theoretical capacity 

which represents the total amount of energy that can be extracted from the battery. The 

second definition is the standard capacity, which represents the amount of energy that can 

be extracted from the battery if standard loads are used to discharge it. The battery 

manufacturer specifies those standard loads. The third definition is the actual capacity of 

the battery, which is the amount of energy that can be extracted when a given load is used 

to discharge it. The battery efficiency is determined by the actual capacity of the battery 

and its lifetime. A system is battery efficient when it can get an improved actual capacity 

utilizing certain discharge profile characteristics of the actual application [2]. 

Understanding the battery capacity allows us to define the State of Charge (SOC) which 

is the percentage of the available capacity of the battery with respect to the maximum 
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available battery capacity. So the SOC is 100% if the battery is fully charged, and it is 

0% when it is fully discharged. 

b. Rate capacity effect 

The energy stored in a battery is the product of its voltage (V) by its capacity 

(Ampere-Hour). As mentioned earlier, in an ideal battery, the voltage remains the same 

during the whole discharge time and then drops to zero when the battery is completely 

empty. Also, for all load currents, the battery capacity is ideally constant. However, in 

reality, this behavior is different. During discharge, the battery voltage drops in a 

nonlinear fashion. The higher the battery load, the lower the battery effective capacity. 

This phenomenon is known as the rate capacity effect [1]. This is due to the non-

uniformity of the inactive reaction site distribution at the battery electrodes [2]. When the 

rate of discharge is low, the inactive reaction sites distribution is uniform. However, 

when a large current is drawn (i.e. rate of discharge is high), reduction occurs only at the 

outer surface of the cathode. An insoluble compound is formed on the cathode surface 

which hinders the active internal reaction sites. Despite the unutilized active cathode 

sites, the battery will appear as discharged [2].  

c. Recovery effect 

Battery can recover part of its lost capacity if it is left idle or is discharged very 

slowly. This results in an increase in the effective capacity and consequently the lifetime. 

At idle periods, the positive lithium Li
+
 ions concentration is uniform at the interface of 

the electrode with the electrolyte [2]. Li
+
 ions are consumed at the cathode-electrolyte 

interface (reduction reaction) during discharging and they are replaced with new Li
+
 ions 

that are released from the anode (oxidation reaction) into the electrolyte. When the rate of 

discharge is high (i.e. large current drawn), the rate at which the positive ions are 

consumed at the cathode becomes much higher than the rate with which the ions are 

released at the anode [2]. This will result in a non-uniform concentration gradient of the 

lithium ions in the electrolyte [3]. When the battery is allowed some idle time to recover, 

the lithium ions will diffuse through the electrolyte till their gradient becomes zero again. 
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Li
+
 ions will be uniformly distributed again; however their concentration will be less than 

that of a fully charged battery. When the concentration of the ions drops below a certain 

level, the battery will be declared as discharged as the electrodes reaction will no longer 

be able to take place [3]. 

d. Aging 

As the battery charge/discharge cycles increase, the actual capacity of the battery 

decreases, which is known as the aging effect [4]. This relationship is shown in Figure 1. 

This results in a lower lifetime for the battery for a given load. It was shown that during 

the first 450 charge/discharge cycles, 10-40% decrease happens in the deliverable 

capacities of the battery. One of the main causes of aging is cell oxidation which leads to 

film growth on the electrode [4]. This increases the battery internal resistance. This effect 

is nonreversible and it finally leads to battery failure.  

 

Figure 1: Usable Capacity vs. Cycle Number [5] 

Besides cell oxidation, complex battery operating conditions can expedite the aging 

process as well [6]. The aging process is affected by the temperature condition: the higher 

the temperature, the faster the aging process. For example, battery can operate for 2000 

cycles at room temperature (25°C) but it can only operate for 800 cycles at 55°C [5].  

Also, as the depth of discharge increases and as the current cycle profile becomes 

demanding, the aging process speeds up [6]. The aging effect indicator is called the state 

of health of the battery (SOH) which can be determined by measuring the battery 
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impedance or conductance [7]. SOH is an indicator of how much capacity the battery is 

able to deliver compared to a new battery. It is defined as [7]  

                
         

         
                                                                       Equation 1 

 Where Qmax_aged is the maximum charge capacity of an aged battery, and Qmax_new 

is the maximum charge capacity of a new battery. When the SOH goes below 80%, the 

battery is assumed to be in mild fault condition. 

e. Temperature 

  Temperature highly affects the battery cycle life, where the cycle life is defined as 

the time the battery takes to go from a fully charged to a fully discharged state where its 

voltage reaches the cutoff voltage [4]. Electrolyte conductivity, electrolyte diffusion 

coefficients and the rate of electrochemical reactions are all properties of the battery 

material that are affected by temperature [5]. The battery internal chemical reactions slow 

down and its internal resistance increases when the battery operation happens in a 

temperature below the room temperature (below 23°C). This results in lower capacity 

delivered by the battery and higher voltage discharge curve [8].  However, if the 

temperature is higher than the room temperature, the internal chemical reactions rate 

increases which reduce the battery actual capacity if it is stored in the high temperature. It 

is found that it is best for the battery to operate in a temperature near the room 

temperature to improve aging [9].  

f. Self-Discharge 

Internal chemical reactions that take place inside the battery while being stored lead 

to loss in the battery stored charge. This phenomenon is known as the self-discharge. The 

type of the battery, the storage temperature and the state of charge all affect the self-

discharge rate. Figure 2 shows how the battery usable capacity decreases as the storage 

time increases. 
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Figure 2: Usable Capacity vs. Storage Time [5] 

2. Battery Models 

This section discusses the different battery models that are surveyed in literature. 

There are electrochemical models, electric models, analytical models, mathematical 

models and stochastic models. Each of these models varies in complexity as it takes 

into account certain battery properties that serve a certain purpose. The models may 

be used for battery design, circuit simulation or performance estimation.  We will 

discuss each of these models in detail. 

a. Electrochemical Models 

Electrochemical models are assumed to be the most complex models as they use 

six coupled time variant partial differential equations that are very difficult and time 

consuming to simulate [1,5].  Complex numerical algorithms are used to optimize the 

battery design aspects and relate both voltage and current information with the 

concentration distribution information [5]. The highly detailed description used by 

these models makes them the most accurate to describe battery processes as they are 

based on chemical processes that take place inside the battery, but in the same time it 

makes them very complex and difficult to use [1, 2, 10]. The most known 

electrochemical model for lithium ion cells is developed by Doyle et al [11]. This 

model is available in a Fortran program called Dualfoil that is used to simulate 

lithium ion batteries. Dual foil is available for free on the internet. For an input load 

profile from the user, Dualfoil can simulate all the changes in battery properties that 
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happen over time. However, very good detailed knowledge about the battery is 

needed by the user to be able to set fifty other battery parameters for Dualfoil like 

overall heat capacity, electrodes thickness, and initial salt concentration in the 

electrolyte…etc. Due to the high accuracy of the program, it is often used as a 

comparison against other models instead of using experimental results [1, 3, 8]. 

b. Electrical Circuit Models 

Battery electrical properties are modeled by SPICE circuits using voltage sources, 

look up tables, resistors and capacitors. Most of the electrical circuit models are 

characterized by the following [1]: 

 A capacitor to model the battery capacity.  

 At high discharge currents, lost capacity is determined using a discharge rate 

normalizer.  

 Load circuit to discharge the battery capacity. 

 Look up table for the voltage vs. state of charge. 

 Resistor to model the battery resistance. 

The electrical circuit models require some effort to configure as battery 

experimental data is required to develop the look up table. Also, they are less accurate 

than electrochemical models. They can have errors up to 12% in predicting battery 

lifetime. However, they are much simpler than the electrochemical models and 

computationally less complex [1]. There are three basic categories of the electrical 

circuit models: Thevenin, impedance, and runtime-based models [5]. 

i. Thevenin-Based Electrical Model 

Thevenin based model as shown in Figure 3, uses series resistor (RSeries) and an 

RC parallel network (RTransient and CTransient) to predict the battery response at a 

particular state of charge to transient load events. It assumes a constant open circuit 

voltage VOC(SOC). However, this assumption makes the model unable to give the 

battery voltage variations in steady state and its runtime information [5]. Some efforts 

were done to improve this disadvantage by adding additional components that take 
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into effect the runtime and the steady state response of the battery voltage.  In [12] 

VOC(SOC) is replaced by a variable capacitor representing the nonlinear VOC and 

SOC. However, this complicates the computation of SOC as it needs to integrate over 

the voltage which is now variable based on the variable capacitor. This model gives 

5% runtime error and 0.4V error in voltage value for constant charge and discharge 

currents. In [13], the nonlinear relationship between VOC and SOC is modeled but the 

transient behavior is ignored. In [14-16] additional mathematical equations are 

needed to compute the SOC and estimate runtime, and they are not implemented in 

circuit simulators. [17] used the battery physical process to extract a complicated 

electrical network that represents the open-circuit voltage (VOC) which complicates 

the whole model. All the above discussed Thevenin based models are unable to 

predict the battery lifetime in a simple accurate way in circuit simulators.  

 

Figure 3: Thevenin Based Electrical Battery Model [5] 

ii. Impedance-Based Electrical Model 

Impedance based models, as shown in Figure 4, uses an ac equivalent impedance 

model Zac to model the AC battery behavior. This complicated Zac network has to fit 

the impedance spectra which is a very difficult and complex process [5]. Another 

disadvantage of this model is that it is not able to predict the dc response of the 

battery or the lifetime as it can only work for a fixed temperature setting and fixed 

SOC [5,18].    



 
16 

 

Figure 4: Impedance Based Electrical Battery Model [5] 

iii. Runtime-Based Electrical Model 

Using a complex circuit network, the runtime based electrical models (Figure 5) 

can simulate the battery lifetime and the dc response for constant loads in SPICE 

compatible simulators [5]. However those models cannot estimate accurately the 

battery lifetime or the voltage response for varying loads. Table 1 shows comparison 

between the different electrical models. This comparison indicates that none of these 

models can be implemented in circuit simulators to predict both the battery lifetime 

and I–V performance accurately [5].  

 
Figure 5: Runtime Based Electrical Battery Model [5] 
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Table 1: Comparison of Electrical Circuit Models [5] 

Predicting 

Capability 

Thevenin 

Based 

Model 

Impedance 

Based 

Model 

Runtime 

Based 

Model 

DC No No Yes 

AC Limited Yes No 

Transient Yes Limited Limited 

Battery 

Runtime 
No No Yes 

 

iv. Comprehensive Electrical Battery Model 

This model, developed by Min Chen et al., combines the transient capabilities of 

Thevenin based models, AC features of impedance-based models, and runtime 

information of runtime based model. The model is shown in Figure 6. The Ccapacity 

capacitor and the current controlled current source model the capacity, state of charge 

and the battery run time. Those components are inherited from the run time based 

models. The RC network that simulates the transient response is inherited from the 

Thevenin based models. A voltage controlled voltage source is used to relate the SOC 

to the open-circuit voltage. This model is a SPICE compatible model and can predict 

the battery runtime, steady state and transient response accurately. It captures the 

battery electrical characteristics: usable capacity (Ccapacity), open circuit voltage (VOC) 

and the transient response (RC network).   

 

Figure 6: Comprehensive Electrical Battery Model [5] 
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The total charge stored in the battery (SOC) is represented by the capacitor 

CCapacity which is obtained by converting the nominal battery capacity in 

Ampere.Hour to charge in Coulomb. 

      CCapacity = 3600 · Capacity · f1(Cycle) · f2(Temp)                                       Equation 2 

Where Capacity is the nominal capacity in Ampere Hour and f1 (Cycle) and f2 

(Temp) are cycle number- and temperature-dependent correction factors. 

The battery can be initialized to be fully charged or fully discharged by setting the 

initial voltage across CCapacity(VSOC) to be equal to 1 V or 0 V. The SOC of the battery 

is thus represented quantitatively by the VSOC. Figure 7 shows that the battery 

capacity varies with its current. Different currents owing to different voltage drops 

across the battery internal resistance lead to different state of charge values at the end 

of the discharge cycle which causes the variation of the capacity with the current [5].  

 

Figure 7: Usable Capacity vs. Battery Current [5] 

During battery charging/discharging, the current-controlled current source IBatt 

charges or discharges the capacitor CCapacity and as a result, the state of charge will 

change dynamically due to the change in VSOC. Thus, the battery lifetime can be 

determined when the battery voltage reaches the end of discharge voltage. The self 

discharge that happens when batteries are stored for long time is represented with the 

self-discharge resistor RSelf-Discharge. RSelf-Discharge is a function of SOC, temperature, 

and cycle number. The capacity retention curve shows that when no load is connected 

to the battery, the usable capacity decreases slowly with time (Figure 2) and thus the 

self discharge effect can be simplified as a large resistor or even ignored. 
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There is a non-linear relation between VOC and SOC as shown in Figure 8. The 

voltage-controlled voltage source VOC(VSOC) is used to represent this relation.  

 

Figure 8: Non-linear relation between Voc and Vsoc [5] 

The step response to a current event is shown in Figure 9 where the battery 

voltage responds slowly. The shaded RC network in Figure 6 represents the transient 

response of the battery. The instantaneous voltage drop of the step response is 

modeled by the series resistor Rseries. The short and long time constants of the step 

response are accounted for by RTransient_S, CTransient_S, RTransient_L, and CTransient_L.   

 

Figure 9: Transient Response to a Step Load-Current Event [5] 
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Based on numerous experiments, two RC time-constants are used instead of one 

or three or more. This is a tradeoff between accuracy and complexity and it keeps the 

error within 1mV for all the curve fittings.  

c. Stochastic Models 

The stochastic models use Markovian processes with probabilities to describe the 

battery behavior and the recovery effect. According to the physical characteristics of 

the battery, the probabilities are expressed in terms of parameters that are related to 

them [19-22]. A stochastic kinetic battery model was developed in [20-21]. In this 

model, since the lifetime of the battery highly depends on the load current frequency, 

therefore the recovery probability during idle periods is made dependent on the length 

of the idle periods. Another model describes the behavior of lithium ion batteries 

under pulsed discharge current is shown in Figure 10 [22]. This model uses a 

decreasing exponential function of the state of charge and discharge capacity to 

model the battery recovery effect. The discharge demand is assumed to be a Bernoulli 

driven stochastic process with Poisson distribution. The results of this model are 

compared to the results of the electrochemical model. The results show that the model 

has 4% maximum deviation from the electrochemical model with 1% average 

deviation. It also shows that a good qualitative description of the battery behavior is 

modeled under pulsed discharge current but no quantitative data is available as its 

results are in terms of only the gain and no number for the computed lifetime [1]. 

Also, the model does not handle the battery nonlinearity and variable discharge 

current profiles.  
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Figure 10: Stochastic Process Representing the Cell Behavior [22] 

d. Analytical Models 

i. Peukert’s Law 

This law is the simplest analytical battery model where the lifetime under a 

constant load is represented by [3]: 

            
 

  
                                                                                      Equation 3 

Where L is the lifetime, I is the discharge current, a (battery capacity) and b 

(Peukert’s constant) are appropriate coefficients. However, for variable discharge 

current, this law does not hold. With this law, all load profiles with the same average 

current will have the same battery lifetime, which is experimentally not true. So this 

law holds only for constant loads and fails with variable loads. 

ii. Kinetic Battery Model 

Manwell and McGowan developed the KiBaM [23-25] where it uses the chemical 

kinetics process as its basis and hence the name Kinetic. In Figure 11 below, the 

model uses two wells over which the battery charge is distributed. The first well is the 

available charge well and the second is the bound charge well.  
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Figure 11: Kinetic Battery Model [1] 

The available charge well denoted with y1(t) has a fraction c of the total capacity, 

where a fraction 1- c is in the bound charge well denoted with y2(t). The load i(t) is 

supplied directly with electrons from the available charge well and those electrons are 

then substituted with another ones from the bound charge well. In between the two 

wells, there is a valve with fixed conductance k. The height difference between the 

two wells determines the rate at which charge flows between them. The heights are 

given by [1]: 

 

             
  

 
                                                                                    Equation 4 

             
  

   
                                                                                 Equation 5 

The following differential equations system describes the change of the charge in 

the two wells [1]:  

     

   

  
                

   

  
                       

                                                       Equation 6 
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With initial conditions:  y1(0) = c .C and y2(0) = (1 - c).C, where C is the total 

battery capacity. When the available charge well becomes empty, the battery is 

considered fully discharged. The height difference between the two wells increases 

when a load is applied to the battery as the available charge then decrease. When the 

load is removed, the two heights become equal again as the charge flows from the 

bound charge well to the available charge well. So the battery recovers some of its 

charge during idle times and will last longer than the case of applying continuous load 

with no idle periods. Besides the recovery effect, this model also takes into account 

the rate capacity effect. The available charge well will be drained faster with higher 

discharge current as the flow of charge from the bound well to the available well will 

not be able to cope with the fast charge drainage [1].  Therefore the battery effective 

capacity will be lower as more charge in the bound well will remain unused. The 

differential equations (6) can be solved for the case of a constant discharge current 

[i(t) = I ] using Laplace transforms, which yields [1] : 

 
                  

                   

  
 

                

  
 

                                         
                    

  

                                         

Equation 7 

Where k’ is defined as     
 

      
 , y1,0 and y2,0 are the amount of available and 

bound charge, respectively, at t = 0, and y0= y1,0+ y2,0. 

iii. Rakhmatov Diffusion Model 

This model was developed by Rakhmatov and Vrudhula [3].  When the battery is 

discharged, the electrons are released from the anode to the external circuit 

(oxidation), while the cathode accepts electrons from the circuit (reduction) as shown 

in Figure 12.  
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Figure 12: Lithium Ion Battery Operation [4] 

 The chemical processes are reversed when the battery is charged. The 

electrochemical phenomena that happens inside the battery is treated by this model at 

a high abstraction level which makes the model less complex but still it captures the 

main battery nonlinear characteristics. The reaction at the electrode involves electrons 

v
-
, oxidized species O and reduced species R [3] :  

                   

                                                 Equation 8 

                

 
The electro-active species are uniformly distributed in the electrolyte when no 

load is connected (Figure 13a). When a load is connected and the electrons flow is 

established, the number of species near the electrode starts to decrease due to the 

electrochemical reaction and it creates a non-zero concentration gradient across the 

electrolyte (Figure 13b). When the load is switched off, the battery will start to 

recover as the concentration near the electrode surface will start to increase due to 

diffusion till the concentration gradient becomes zero again. The electro-active 

species concentration in the electrolyte will be less than the initial value though they 

are now uniformly distributed in the electrolyte (Figure 13c). The cathode reaction 

can no longer take place when the O concentration near it drops below a certain level 

(Figure 13d). Also the anode reaction cannot take place when the R concentration 

drops below a certain level. The model assumes that both the anode and cathode have 
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the same behavior to simplify the analysis and in the same time does not impair the 

accuracy of the lifetime prediction [3]. The time to failure is that when the reaction 

can no longer take place at the electrode.  

 

 

Figure 13: Physical Picture of Rakhmatov Diffusion Model [1] 

The concentration of the electro-active species at time t and distance x Ɛ [0, w] is 

denoted by C(x,t). For the full battery the concentration is constant over the length of 

the electrolyte: C(x, 0) = C*, x Ɛ [0, w], where C* is the initial concentration and 

        
      

   . The battery is considered empty when C (0, t) drops below the 

cutoff level Ccutoff. To calculate the lifetime of the battery in one cycle, an analytical 

expression for      needs to be found. 

The evolution of the concentration is described by Fick’s law [3]:  

   
          

       

  

       

  
  

        

   

                                                                     Equation 9 

a. Charged state 
b. Before recovery 
c. After recovery 
d. Discharged State 
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Where J (x, t) is the flux of the electro-active species at time t and distance x from 

the electrode, and D is the diffusion coefficient. The flux at the electrode surface (x = 

0) is proportional to the current [i(t)]. The flux on the other side of the diffusion 

region (x = w) equals zero. This leads to the following boundary conditions [3]:  

     

       
       

  
        

    

   

   
       

  
        

                                                      Equation 10 

Where A is the area of the electrode surface, F is Faraday’s constant and v is the 

number of electrons involved in the electrochemical reaction at the electrode surface. 

It is possible to obtain an analytical solution for the set of partial differential 

equations together with the initial condition and the boundary conditions using 

Laplace transforms. From that solution one can obtain the following solution [3]: 

     
 

                             
   

 
 

 
          

      
   

 

 
        Equation 11 

Letting    
   

 
  and              , then the following equation relates the 

load, the time to failure and the two battery parameters   and  :  

            
 

 
           

 

 
            

                        Equation 12 

The battery is empty when the apparent charge lost α is equal to the battery 

capacity. Rakhmatov et al. then tries to simplify the above equation by solving for 

two general cases: the constant load case and the variable load case. For the constant 

case, i(t) can be replaced by constant I, and the equation becomes:  

                
         

     

 
                                                   Equation 13 

And for the variable load case, they assumed that the current will be approximated 

by step function in form of:  

                                   
                                 Equation 14 

And then the model equation becomes:  
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                                                     Equation 15 

Where 

                         
                           

    
 
    

It was proven in [1] that Rakhmatov’s Diffusion Model is a continuous version of 

the KiBaM. KiBaM is considered to be a first order approximation of the Diffusion 

Model. The Diffusion model can be used for any type of loads and it captures the 

nonlinear characteristics of the battery. It can predict the lifetime with maximum error 

of 4% [3].  
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3. Battery Management and Optimization 

Battery managing and optimizing the battery lifetime is one of the most important 

research topics in the field of battery operated handheld electronic devices. There are a 

lot of techniques and approaches to manage the battery system. One approach of 

managing the battery is to scale the supply voltage of the system [2]. Vdd is selected to 

find a tradeoff between the battery capacity and performance.  The purpose is to optimize 

the battery discharge delay product, which is the product of the actual charge and the 

delay of the circuit for a given task [2]. In order to minimize the battery discharge delay 

product, a certain Vdd value is needed to be found. This technique does not aim at 

modifying the current discharge profile shape. Selecting a constant supply voltage to 

optimize the battery discharge delay product can be done if the current discharge profile 

of a given circuit can be statically determined [2].  

Another technique for battery-driven system level power management is based on 

monitoring the state of charge of the battery and accordingly controlling the state of 

operation of the system [2]. For example, for a digital audio recorder that is battery 

operated, when the battery approaches a completely discharged state, the audio quality is 

degraded gracefully. This is done by monitoring the battery output voltage, and when it 

goes below a certain threshold, the quality of the device is degraded in order to extend the 

battery life. This technique is based on the rate capacity effect property of the battery [2]. 

There are also battery scheduling techniques that adapt a schedule for when to turn 

on/off the cells in order to enhance the lifetime [2]. There are two classes of battery 

scheduling techniques, the static scheduling that does not make use of any run time 

information, and the dynamic scheduling which is based on some aspects of the battery 

properties during run time [2]. 

As we mentioned earlier, the static scheduling technique does not make use of either 

the system discharge profile or the battery state of charge. Serial scheduling is one type of 

this technique where all batteries are discharged one after the other [2]. Another approach 

is random scheduling, where a cell is chosen at random at each discharge interval and it is 

discharged for a fixed time. Another static scheduling approach is the Round-Robin 

Scheduling where a battery cell is chosen in round robin method for each discharge 
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interval. In comparison to the serial scheduling approach, random scheduling and round-

robin scheduling are better in terms of system lifetime because they allow recovery time 

for the cells during idle periods of time.   A selector circuit to switch between the 

different cells is required in both techniques. It was found that the higher the switching 

frequency, the higher the improvements in the battery capacity but this happens with 

diminishing returns due to the large time constraints related to the batteries and the 

energy consumed in the switching circuit [2].    

A modified round robin technique takes into account the battery output voltage where 

the round robin is used until the output voltage of one or more batteries go below a 

certain threshold [2]. When one or more battery voltage is below the threshold, they are 

disconnected from the scheme and they are given some idle time for recovery. When they 

recover enough charge, they are put back to the round robin scheme. When all the 

batteries voltage is below the threshold, they are then all discharged in the fixed round 

robin scheme. In another approach, the round robin fashion is used but with a variable 

discharge interval depending on the state of charge of the battery [2].  

 

Jiong et al. proposed two battery aware scheduling techniques. The first aims at 

maximizing the utilization of the battery capacity by optimizing the discharge power 

profile. The second one aims at reducing the discharge power consumed and to flatten the 

discharge power profile [26]. It is based on variable voltage scheduling via efficient slack 

time re-allocation. This technique is suitable for systems that have voltage scalable 

processing elements.  Those techniques were achievable via developing an evaluation 

metric that is aware of the battery discharge power profile. They showed that 29% 

increase in battery lifetime can be achieved by optimizing the power discharge profile. It 

was also found that the variable voltage scheduling scheme with slack allocation 

increases the lifetime by 76% vs. the non-scalable scheme [26]. They have used the fact 

that reducing the average discharge current increases the lifetime and they achieved this 

through voltage scaling and processing elements shutoff. Performing schedule 

transformations that does not violate the original schedule constraints helps in optimizing 

the discharge current profile and therefore improve the utilized battery capacity [26].   
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Rakhmatov et al. addressed the task sequencing problem with and without voltage 

scaling in order to increase the battery lifetime by shaping the discharge profile. They 

used the diffusion model developed earlier by them as a basis of a battery aware cost 

function to develop algorithms for the task sequencing. They also utilized the insertion of 

recovery periods to increase the lifetime and voltage scaling for delay slack distribution 

[27].  

Benini et al. investigated using battery related information like the output voltage, 

depth of discharge or state of charge to perform dynamic battery scheduling. They did not 

schedule the battery cells to operate each in a unique time slice, but depending on the 

battery information observed, the battery will be discharged for a different amount of 

time. They assumed that the dynamic scheduling provide better opportunity to enhance 

the battery lifetime than static scheduling as it can utilize the idle times during which 

charge recovery happens [28].  

Another approach for managing a battery system is introduced by Suman Mandal et 

al. They proposed a new battery system, IntelBatt.  It aims at saving more energy through 

introducing a new intelligent battery cell array (IBCA) manager [29]. The IBCA manager 

monitors the cells status and optimizes its capacity through cell scheduling. IntelBatt can 

be used for any battery operated electronic equipment since it does not assume any 

equipment knowledge. It consists of three main components: cell array, cell switching 

circuit and the IBCA manager (Figure 14).  The cell array is a collection of banks, where 

inside each bank there are one or more cells in parallel connection. The cell switching 

circuit (CSC) connects the battery’s main terminals to the cell array. The CSC circuit, as 

shown in Figure 15, consists of a matrix of two switches. A control signal can turn the 

switches on/off such that any cell can be connected to any bank. Based on a code word, 

the IBCA manager can configure the cell switching circuit. The cell scheduling algorithm 

is based on the discharge cycle length and the battery life.  Given the load current It and 

Vcell,i, the most efficient cell configuration should meet the following conditions: For 

each cell k, Ik < Ik
max

 and Vcell,k > Vcell, k
cutoff

. The minimum voltage needed in a bank is 

given by Vmin . I
max

 is the current that can be drawn from the cell safely without causing a 

short circuit. V
cutoff

 is the cell discharge limit. At least one cell in each bank is necessary 
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to maintain the output voltage level.  If there are n available cells and k banks, cell 

selection can be formulated as the determination of a subset of all possible k clusters [29]. 

 

Figure 14: IntelBatt Architecture [29] 

 

 

Figure 15: Cell Switching Circuit Design [29] 
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II. LITHIUM-ION BATTERY STUDY 

The previous discussion indicates that understanding the nonlinear battery properties 

is very important in order to be able to model and optimize a battery system. This 

research aims at studying the lithium ion battery system and understands how the battery 

system can be optimized in order to achieve better lifetime of the cell. Both single cell 

and multi-cell systems will be studied. In this chapter and the coming ones, we will study 

the behavior of the lithium ion battery under various workloads. We will try to 

understand how it behaves and what affects its behavior. We are going to use Rakhmatov 

diffusion battery model to simulate the battery in SPICE simulator. Instead of using the 

two cases for constant and variable loads that Rakhmatov used, we are going to use the 

very general case in equation 12 to run our simulations. This will allow us to not only 

simulate constant and variable step function loads, but to simulate any variable load of 

any profile. In order to be able to use a SPICE simulator to predict the lifetime of the 

battery without having to use the complex algorithm developed by Rakhmatov, we are 

going to put equation 12 in another form. 

        
 

 
           

 

 
            

             Equation 12 revisited 

Let’s consider the first term      
 

 
  : it corresponds to a perfectly linear battery 

where the lifetime is the capacity divided by the constant current L = α/Iconst (or more 

generally the integral of the current) like Peukert’s law. The second term of the equation 

represents the battery nonlinearity as derived from Rakhmatov model. Now since L 

(lifetime) is in the exponential form, then solving the equation becomes very complex. So 

we will find L by solving the integral at each time step (assuming L= const = t enabling 

us to take it outside the integration). Then we solve the integration at each time step till 

we reach that the R.H.S is equal to α. At time t = 0, the R.H.S of the equation is equal to 

zero, where at t = L, the R.H.S is equal to α which means that the battery is fully 

discharged. Thus we can put the equation in the following form to represent the battery 

state of charge SOC: 
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SOC(%) = 100 - 100 *  
      

 

 
           

 

 
             

      

 
         Equation 16 

When SOC reaches zero, then the battery reaches the end of the lifetime for this 

discharging cycle. Notice that we used also the first ten terms of the summation as proved 

before to be sufficient and good approximation. At each time step, we will assume that L 

= t and thus it will become a constant value at each step, so we will take it out of the 

integral and the equation will then be: 

SOC(%) = 100 - 100 * 
      

 

 
                  

 

 
        

       

 
     Equation 17 

This equation can be easily solved in a SPICE simulator. When solving it, we had 

a problem with the exponential blow up limit as its value built up rapidly, so we applied a 

correction factor to decrease the exponential value without affecting the final result of the 

SOC.  

SOC(%) = 100 - 100 * 
      

 
                     

 
            

      

 
      Equation 18 

Where CF is the Correction Factor and it will be adjusted when simulating to 

adjust the exponential value. This form of the equation is general for any current profile 

and will be used in the following studies.  We used the least mean square estimation 

method in order to obtain the two battery parameters          We used the 10 workloads 

from [3] that are collected from experimental data in order to get the         values. The 

details are shown in appendix A. We got           and          

We will first simulate using equation 18 to show the nonlinear behavior of the 

battery that this model is able to detect. Figure 16 shows the simulation of two batteries 

with a pulsed discharge current as the load, one of the batteries exhibits the nonlinear 

battery characteristics and the other does not. 
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Figure 16: Nonlinear Discharge vs. Linear Discharge 

Figure 17 is a closer look at the above simulation results. In the case of the 

nonlinear discharge, recovery takes place when the battery is idle. While in the linear 

discharge case, no recovery is taking place. Also it is noticed that the nonlinear battery 

exhibits nonlinear discharge curve, while the linear battery has a linear discharge curve. 

 

Figure 17: Nonlinear Discharge vs. Linear Discharge - 2nd. Curve 
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III. PROPOSED HYBRID BATTERY MODEL 

 In this chapter, we propose a new hybrid battery model that takes care of the 

battery nonlinearity (the recovery effect and the rate capacity effect) together with the 

electric circuit characteristics. This model is a hybrid model that combines the electric 

circuit model by Min Chen et al. with Rakhmatov analytical diffusion model. Min Chen’s 

electric model (Figure 6) made the RC network parameters function of the SOC as 

follows [5]: 

                                                          Equation 19 

                                                                                               Equation 20 

                                                                                                   Equation 21 

                                                                                         Equation 22 

                                                                                            Equation 23 

                                                                                         Equation 24 

 Where the coefficients of the exponentials and the other constants can be 

determined from experiments that measure the VOC and the RC network parameters [5]. 

The value of the SOC in the equations would be determined with the value of Ccapacity 

(Figure 6). In this model, Ccapacity is assumed to be a constant value which was shown by 

our previous analysis that it is not true. The battery would have different capacities 

depending on the load profile due to its nonlinearity. So assuming Ccapacity to be constant 

will ignore the battery nonlinearity and will not take into account the recovery effect.  So 

we propose to introduce a new equation taken from the diffusion model to the above 

electric model to take this into account. Since that VSOC across the Ccapacity varies from 0 

to 1, where 0 is fully discharged and 1 is fully charged, then we can remove the Ccapacity, 

and calculate the VSOC from the SOC equation we got in the previous chapter: 

SOC(%) = 100 - 100 * 
      

 

 
                    

 

 
           

      

 
  Equation 25 

Then 
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VSOC = SOC/100                                                                            Equation 26 

 So we will introduce the two parameters: α and β to the electric model. Now this 

model will take into account the rate capacity effect and the recovery effect. 

 The new proposed hybrid model is shown in Figure 18. 

 

Figure 18: New Proposed Hybrid Model 

And below are the new hybrid model equations: 

VSOC =     
     

 
                     

 
            

     

 
                                           Equation 27 

                                                             Equation 28 

                                                                                                Equation 29 

                                                                                                     Equation 30 

                                                                                           Equation 31 

                                                                                               Equation 32 

                                                                                            Equation 33 

 Table 2 shows the parameters used to simulate this model. The parameters a1 

through g3 are taken from Min Chen’s electric circuit model in order to be able to 

compare against it. 

SOC from 

Rakhmatov’s 

Model 
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Table 2: Hybrid Battery Model Parameters 

a1 -1.031 b1 0.1562 d1 -752.9 g1 -6056 

a2 -35 b2 -24.37 d2 -13.51 g2 -27.12 

a3 3.685 b3 0.07446 d3 703.6 g3 4475 

a4 0.2156 c1 0.3208 f1 6.603 α 2418.499 

a5 -0.1178 c2 -29.14 f2 -155.2 β 0.036 

a6 0.3201 c3 0.04669 f3 0.04984     

 

 The above model was simulated in Cadence (schematics are included in appendix 

B). Figure 19 shows the simulation results of our hybrid model vs. the electric circuit 

model. We used a constant current of 100mA to discharge the battery. We found that the 

battery SOC is linear as expected in the electrical model while the nonlinear behavior was 

captured by our hybrid model as expected. On the other hand, the nonlinear output 

voltage was captured with our model and it is following the output voltage of the electric 

circuit model. The VSOC of our model is an exact match for VSOC  calculated from 

Rakhmatov’s model.  

 

Figure 19: Hybrid Model vs. Electric Circuit Model 

 Table 3 shows the run time taken by the hybrid model against each of the linear 

battery model, the Rakhmatov Diffusion model and the Electrical model. Our model 

takes reasonable simulation time compared to the other models. It is taking slightly more 

Hybrid Model 

Electrical Model 

Hybrid Model 

Electrical Model 
VSOC 

 

Vbattery 

 

Rakhmatov Model 
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time than the other models but that is due to the more accuracy and features that are taken 

into account. 

Table 3: Comparison of Simulation Time of Different Battery Models 

Model Linear Electrical Diffusion Hybrid 

Simulation Time (sec) 2.3 6.6 2.3 9.2 

Post Processing Time (sec) 1.1 1.0 5.1 6.5 
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IV. LITHIUM ION BATTERY SIMULATION RESULTS 

 First, using the same battery parameters used by Rakhmatov (i.e. same α and β). 

We simulated the 22 variable current profiles as shown in Table 4. Those are the loads 

simulated by Rakhmatov. We verified that our general form of Equation 18 is valid. The 

table includes the profile number in column 1, the current value in column 2 and the 

corresponding duration time in column 3. For example, C1 will have current of 628mA 

from time 0 to time 19.5s, then it will be idle from 19.5s to 26s, then it will have again 

current of 628mA from time 26s till the  battery is empty. For profiles with periodic loads 

the first period is enclosed between brackets and then the bracket is followed with the 

number of repetitions of the period. For example in C13, the enclosed period will be 

repeated for 5 times. For the time set, the brackets are followed with the repetition 

number as well as the total duration of one period (i.e. C13: the total period duration is 

22.5 minutes). For the last case, C22, the current is incrementing by 5 mA each minute 

till the battery is completely discharged. 
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Table 4: Variable Current Load Sets [3] 

Profile 

Number Current Value set (mA) Timing set (min) 

C1 628,0,628 0, 19.5, 26 

C2 494.7,0,494.7 0, 31, 41.3 

C3 425.6,0,425.6 0, 41, 54.6 

C4 292.3,0,292.3 0, 74.6, 99.5 

C5 222.7,0,222.7 0, 105.7, 140.9 

C6 628,0,628 0, 19.5, 29.9 

C7 628,0,628 0, 19.5, 22.1 

C8 628,0,628 0, 23.4, 29.9 

C9 628,0,628 0, 15.6, 22.1 

C10 300, 628, 494.7, 252.3, 234.1, 137.9, 113.9, 265.6 0, 0.5, 5.5, 10.5, 35.5, 60.5, 85.5, 110.5 

C11 300, 113.9, 137.9, 234.1, 242.3, 494.7, 628. 265.6 0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5, 110.5 

C12 300, 113.9, 137.9, 234.1, 242.3, 494.7,0, 300, 628, 265.6 0, 0.5, 25.5, 50.5, 75.5, 100.5, 105.5, 130.5, 131, 136 

C13 300, (628, 494.7, 252.3, 234.1, 137.9, 113.9)5, 256.6 0, (0.5, 1.5, 2.5, 7.5, 12.5, 17.5)(5, 22.5), 110.5 

C14 300, (113.9, 137.9, 234.1, 252.3, 494.7, 628)5, 256.6 0, (0.5,5.5, 10.5, 15.5, 20.5, 21.5)(5, 22.5), 110.5 

C15 222.7, 204.5, 108.3, 84.3, 222.7 0, 50, 100, 150, 200 

C16 84.3, 108.3, 204.5, 222.7, 222.7 0, 50, 100, 150, 200 

C17 84.3, 108.3, 204.5, 0, 222.7, 222.7 0, 50, 100, 150, 200, 250 

C18 (84.3, 108.3, 204.5, 222.7)10, 222.7 (0, 5, 10, 15) (10,20), 200 

C19 (75.5, 94.9, 204.5, 222.7)10, 222.7 (0, 5, 10, 15) (10,20), 200 

C20 (494.7, 628) inf (0,1) (inf, 2) 

C21 (494.7, 628, 57.6) inf (0, 1, 2) (inf, 3) 

C22 (5, 10, 15, …) (0, 1, 2, …) 
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The results of our SPICE simulations are shown against those obtained from 

Rakhmatov as well against Dualfoil results in Table 5. 

Table 5: Lifetime Values Obtained from SPICE Simulation 

Profile 

Number 

LT_DualFoil 

(min) 

LT_Rakhmatov 

(min) 

LT_Equation18 

(min) 

C1 36.4 36.2 36.8 

C2 57.2 55.8 56.6 

C3 74.2 71.9 72.7 

C4 128.1 124.9 125.8 

C5 178.5 176.7 177.7 

C6 41.5 41.0 41.6 

C7 30.6 30.8 31.6 

C8 37.0 37.4 38.0 

C9 35.4 35.2 36.0 

C10 135.2 132.6 133.6 

C11 108.8 107.4 108.0 

C12 159.0 155.4 157.6 

C13 133.8 131.7 131.7 

C14 132.9 129.7 129.7 

C15 207.6 209.2 209.7 

C16 202.4 200.7 202.0 

C17 253.8 251.2 252.3 

C18 204.6 204.6 205.3 

C19 209.4 208.7 209.7 

C20 31.7 33.2 33.6 

C21 55.9 55.9 58.6 

C22 97.5 94.5 94.5 

 

We show the maximum and average differences between our simulations and 

Dual foil ones, and those obtained by Rakhmatov and Dual foil. In Table 6, it is shown 

that with our SPICE simulations, since using the general case and not the approximated 

equation as used by Rakhmatov, we have less maximum and average differences from the 

Dual foil results than Rakhmatov’s. 
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Table 6: Simulation Delta From DualFoil 

Profile Number Delta Rakhmatov* (min) Delta Equation18** (min) 

C1 0.20 0.35 

C2 1.40 0.60 

C3 2.30 1.53 

C4 3.20 2.30 

C5 1.80 0.83 

C6 0.50 0.12 

C7 0.20 0.97 

C8 0.40 1.03 

C9 0.20 0.55 

C10 2.60 1.63 

C11 1.40 0.80 

C12 3.60 1.45 

C13 2.10 2.10 

C14 3.20 3.20 

C15 1.60 2.07 

C16 1.70 0.40 

C17 2.60 1.47 

C18 0.00 0.73 

C19 0.70 0.27 

C20 1.50 1.85 

C21 0.00 2.65 

C22 3.00 3.00 

average delta (min) 1.55 1.36 

max delta (min) 3.60 3.20 

*The difference in minutes between Lifetimes obtained from Rakhmatov’s model and 

results from DualFoil. 

**The difference in minutes between Lifetimes obtained from our simulations and results 

from DualFoil. 
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From those simulations, it is observed that: 

• The more the depth of discharge, the less lifetime of the battery.  

• Idle periods allow recovery of the battery charge. 

• The slope of the recovery is not linearly proportional with the idle time. The 

recovery has more weight at the beginning of the rest period as shown in Figure 

20.  

 

Figure 20: Slope of Recovery 

In Table 7, for each of the profiles [C1-C22], we calculated the average current 

for each one and simulated the battery with it as a load. The results are then 

compared against the original variable current profiles. The data are arranged from 

the highest average current to the lowest. It is observed that: 

Faster 

Slower 

Idle Time 
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 The average current load always has better lifetime than the corresponding 

variable current profile. 

 The lifetime increases as the average current load decreases.  

 The more the depth of discharge, the less the battery lifetime. 

 The battery capacity (Ampere-Hour) is not constant for the same battery. It 

depends on the current profile of the load. And it is not linearly proportional with 

the discharge current (Figure 21). 

 The battery capacity (Ampere.Hour) consumed from the battery increases as the 

average current load decreases.  

 

 

Figure 21: Capacity vs. Average Current 
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Table 7: Lifetime of Iaverage vs. Lifetime of Ivariable 

Profile 

Number 

Iave   

(mA) 

LT_Ivar 

(min) 

LT_Iave 

(min) %LT inc 

Capacity 

(A.H) = 

Iave*LT_Iave 

C7 574.99 31.57 32.33 2.43 0.31 

C20 559.74 33.55 33.98 1.29 0.32 

C8 518.86 38.03 39.07 2.72 0.34 

C1 515.24 36.75 39.57 7.66 0.34 

C9 512.03 35.95 40.00 11.27 0.34 

C6 468.70 41.62 46.82 12.49 0.37 

C2 403.38 56.60 60.30 6.54 0.41 

C3 345.10 72.67 77.00 5.96 0.44 

C21 399.02 58.55 79.08 35.07 0.53 

C22 238.76 94.50 128.97 36.47 0.51 

C4 234.03 125.80 132.38 5.23 0.52 

C10 226.91 133.57 137.78 3.16 0.52 

C13 225.03 131.70 139.27 5.75 0.52 

C14 224.62 129.70 139.58 7.62 0.52 

C11 205.04 108.00 156.72 45.11 0.54 

C12 188.36 157.55 174.17 10.55 0.55 

C5 178.34 177.67 186.17 4.78 0.55 

C15 157.93 209.67 215.33 2.70 0.57 

C18 156.47 205.33 217.67 6.01 0.57 

C19 152.46 209.67 224.50 7.07 0.57 

C16 130.90 202.00 268.00 32.67 0.58 

C17 124.43 252.33 284.00 12.55 0.59 

 

Figure 22 below shows the simulation results for variable current loads in form of 

pulses but with different frequencies and with the same average current. The results are 

plotted against the results of the average current profile. Tp on the figure denotes the 

period of the current pulses. From these results, it is observed that: 

• The highest frequency current profile (Tp = 1 sec) lies on the same curve of the 

average current profile. 
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• As the frequency increases, the variable current profile results in a very close 

lifetime as that of the average current profile (i.e. the savings are not significant). 

• If we want to get benefit of the savings in the lifetime using average current 

profile, the savings will be more significant if the average current method is used 

on a macro scale level than on micro level of a processor for example, since on 

the micro scale, the frequency is very high and thus no significant savings can be 

achieved if an average current profile is used. 

 

Figure 22: Simulated loads with Same Average Current but Different Frequencies 

We studied further the savings that can be gained when using the average current 

profile. Different variable current profiles that have the same average current were 

simulated. We vary the variable profiles in two parameters: the period and the duty cycle 

while maintaining the same average current. For each set of loads that have the same 

average current: the ratio between the lifetime of the variable current load to the lifetime 

of the average current load are plotted in Figure 23 on the y-axis against the different 

duty cycles on the x-axis. It is found that the savings in lifetime increases when using an 

average current profile vs. a variable current profile as  

• The duty cycle of the variable current profile decreases. 

• The frequency of the variable current profile decreases. 

• The average current of the variable profile increases. 
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 Also, from the graph, it is clear that the average current profile is always giving 

better lifetime than the variable profile. 15%-60% savings in lifetime can be reached by 

using the average current profile. 
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(c) 

Figure 23: on the x-axis: ratio between Lifetime of the Variable Current Profile to 
Lifetime of the Average current, and on the y-axis: the duty cycle of the variable 
current profile. (a) Average current of the variable profiles = 100mA. (b)Average 
current of the variable profiles = 200mA. (c) Average current of the variable profiles = 
300mA. 
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V. MULTI-CELL STUDY 

 In this section we will study the behavior of using multi cells of lithium ion 

battery. We will study the different cell configurations and how to optimize and manage 

the battery system. Table 8 shows the lifetime of using one cell, two cells in parallel and 

three cells in parallel. From the simulation results, it is shown that using two cells in 

parallel increases the lifetime by more than two times of using one cell. Same for the 

three cells, the lifetime of them is better by more than three times of using one cell. 

Figure 24 shows that the gain in the lifetime increases as the duty cycle increases and as 

the number of cells increases. 

Table 8: Multi Cells in Parallel Configuration vs. Single Cell 

Tp = 300s, Duty Cycle = 0.5 

I(mA) LT_1_Cell(s) LT_2_Cells(s) LT_3_Cells(s) ratio(2:1) ratio(3:1) 

200 21120 45383 69402 2.149 3.286 

300 13020 29206 45395 2.243 3.487 

600 4930 13016 20850 2.640 4.229 

Tp = 300s, Duty Cycle = 0.8 

200 12500 27524 42760 2.202 3.421 

300 7425 17566 27718 2.366 3.733 

600 2544 7422 12489 2.917 4.909 

 

 

Figure 24: Multi Cells in Parallel Configuration vs. Single Cell 
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 We had also simulated multi-cells system from two to nine cells in different 

configurations. Besides the parallel and serial configuration, we have added a new 

configuration to the comparison. The new configuration will be alternating between the 

different cells in the system, such that only once cell is on at a time, and the switching 

between the cells is done with a fixed period. We have used a constant current profile (I = 

500mA) and we have varied the period by which the cells are on/off. Table 9 shows the 

comparison between the three configurations. From the table, we can observe that: 

 As the number of cells increases, both the alternating and parallel configurations 

have better gains in lifetime over the serial configuration. The parallel 

configuration makes use of the rate capacity effect, i.e. the depth of discharge is 

decreased per cell when we add more cells to the configuration. The alternating 

configuration makes use of the recovery effect. The more we add cells, the more 

recovery time will be allowed per one cell. 

 For the parallel configuration, the gain in lifetime saturates as we approach the 

seven cells system. As we increase the number of cells, depth of discharge will 

decrease per one cell, but as the current decreases beyond certain point, the slope 

of depth of discharge of the current profile becomes constant with respect to the 

battery capacity (Figure 25). 

 For the alternating configuration, the gain in lifetime saturates as we approach the 

seven cells system as well. As we increase the number of cells, the recovery time 

(idle time) available for each cell increases. However, as shown before (Figure 

20), the recovery is significant at the beginning of the idle period and then the 

gain from it becomes slower. Therefore, the recovery gained by adding more cells 

does not become as significant after seven cells (Figure 25) 

 As we increase the period by which we switch the cells with (i.e. decreasing the 

frequency), the gain in the lifetime of the alternating approach decreases (but not 

with a significant value). This is due to the rate capacity effect: as the depth of 

discharge increases, the lifetime decreases. 
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Table 9: Comparison between Three Multi-Cell Configurations 

Period = 60s 

Number of 
Cells 

Serial 
Configuration 

LT 

Alternating 
Configuration 

LT 

Alternating 
Configuration 

LT : Serial 
Configuration 

LT 

Parallel 
Configuration 

LT 

Parallel 
Configuration 

LT : Serial 
Configuration 

LT 

1 2500 
  

2500 
 2 5000 7046 1.409 7271 1.454 

3 7500 11718 1.562 12117 1.616 

4 10000 16454 1.645 16951 1.695 

5 12500 21192 1.695 21792 1.743 

6 15000 25989 1.733 26631 1.775 

7 17500 30780 1.759 31455 1.797 

8 20000 35647 1.782 36300 1.815 

9 22500 40280 1.790 41135 1.828 

Period = 120s 

1 2500 2500 
 

2500 
 2 5000 6891 1.378 7271 1.454 

3 7500 11438 1.525 12117 1.616 

4 10000 16109 1.611 16951 1.695 

5 12500 20784 1.663 21792 1.743 

6 15000 25579 1.705 26631 1.775 

7 17500 30325 1.733 31455 1.797 

8 20000 35055 1.753 36300 1.815 

9 22500 39760 1.767 41135 1.828 

Period = 180s 

1 2500 2500 
 

2500 
 2 5000 6742 1.348 7271 1.454 

3 7500 11216 1.495 12117 1.616 

4 10000 15880 1.588 16951 1.695 

5 12500 20552 1.644 21792 1.743 

6 15000 25228 1.682 26631 1.775 

7 17500 29904 1.709 31455 1.797 

8 20000 34582 1.729 36300 1.815 

9 22500 39320 1.748 41135 1.828 
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Figure 25: Lifetime Improvements over Using Serial Configuration  
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VI. CONCLUSION 
 

 The work presented here gives a good understanding of the nonlinear battery 

properties and how it affects its lifetime. It was shown that 15-60% of savings in the 

lifetime can be achieved if we used the average current profile instead of the variable 

current profile. It was also shown that the lifetime savings by using the average current 

are more significant on the macro scale level of the system and not on the micro scale. 

The nonlinear relation between the battery capacity (A.H.) and the average current was 

also defined. For multi-cell systems, it was shown that using the parallel configuration is 

better than serial or alternating configurations. We also introduced a modification to 

Rakhmatov’s diffusion model. Our modification allows the simulation of any discharge 

current profile and not only pulsed discharge profiles. We had also introduced a new 

hybrid battery model that combines both the electric circuit characteristics of the 

comprehensive electric circuit model and the nonlinear battery properties of Rakhmatov 

Diffusion  Model. 
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1. “New Hybrid Battery Model that take into both electric circuit characteristics and 

non linear properties”. In preparation. 

2. “Battery lifetime optimization techniques”. In preparation 
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APPENDIX A 
 
Expression Used in Cadence to Evaluate Equation 18: 

 

Equation 18: SOC = 100 - 100 * 
      

 
                     

 
            

      

 
 

Cadence Expression: 

100 - 100 * (iinteg(IT("/V0/MINUS")) + 2*( 

exp(VAR(“CF”)*0.01 - 0.001296 * xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 * 

xval(IT("/V0/MINUS")) - VAR(“CF”)*0.01)) 

+exp(VAR(“CF”)*0.04 - 0.001296 *4* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 *4* 

xval(IT("/V0/MINUS")) - VAR(“CF”)*0.04)) 

+exp(VAR(“CF”)*0.09 - 0.001296 *9* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 *9* 

xval(IT("/V0/MINUS")) - VAR(“CF”)*0.09)) 

+exp(VAR(“CF”)*0.16 - 0.001296 *16* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*16* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.16)) 

+exp(VAR(“CF”)*0.25 - 0.001296 *25* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*25* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.25)) 

+exp(VAR(“CF”)*0.36 - 0.001296 *36* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*36* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.36)) 

+exp(VAR(“CF”)*0.49 - 0.001296 *49* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*49* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.49)) 

+exp(VAR(“CF”)*0.64 - 0.001296 *64* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*64* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.64)) 

+exp(VAR(“CF”)*0.81 - 0.001296 *81* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*81* xval(IT("/V0/MINUS")) - VAR(“CF”)*0.81)) 

+exp(VAR(“CF”)*1.00 - 0.001296 *100* xval(IT("/V0/MINUS")))*iinteg(IT("/V0/MINUS")*exp(0.001296 

*100* xval(IT("/V0/MINUS"))- VAR(“CF”)*1.00)) 

))/2418.5 
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LMS Algorithm for determining α & β 

 

T11 through T22 are constant work loads that were simulated in [3]. We used those data 

in order to get α and β.  The below table shows the measured life times and their 

corresponding average currents. Then we calculated the term β
2
 L in equation 12. 

 

  T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 

L (min) 26.6 41.4 53.9 96.7 110.6 118.6 131.0 251.3 313.0 659.5 1201.0 93.2 

L (sec) 1596 2484 3234 5802 6636 7116 7860 15078 18780 39570 72060 5592 

I(A) 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.0 0.3 

β
2
 L 2.1 3.2 4.2 7.5 8.6 9.2 10.2 19.5 24.3 51.3 93.4 7.2 

  

            
         

     

 
        Equation 34 

In the table below, we are calculating the first 20 terms of the summation then at the end 

of the table we are obtaining the α for each profile. 
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Summation 
Term # 

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 

1 0.42236 0.29821 0.23498 0.13292 0.11625 0.10842 0.09816 0.05117 0.04109 0.0195 0.01071 0.13789 

2 0.12083 0.07766 0.05965 0.03325 0.02907 0.02711 0.02454 0.01279 0.01027 0.00487 0.00268 0.0345 

3 0.05372 0.03451 0.02651 0.01478 0.01292 0.01205 0.01091 0.00569 0.00457 0.00217 0.00119 0.01533 

4 0.03022 0.01941 0.01491 0.00831 0.00727 0.00678 0.00614 0.0032 0.00257 0.00122 0.00067 0.00862 

5 0.01934 0.01243 0.00954 0.00532 0.00465 0.00434 0.00393 0.00205 0.00164 0.00078 0.00043 0.00552 

6 0.01343 0.00863 0.00663 0.00369 0.00323 0.00301 0.00273 0.00142 0.00114 0.00054 0.0003 0.00383 

7 0.00987 0.00634 0.00487 0.00271 0.00237 0.00221 0.002 0.00104 0.00084 0.0004 0.00022 0.00282 

8 0.00755 0.00485 0.00373 0.00208 0.00182 0.00169 0.00153 0.0008 0.00064 0.0003 0.00017 0.00216 

9 0.00597 0.00383 0.00295 0.00164 0.00144 0.00134 0.00121 0.00063 0.00051 0.00024 0.00013 0.0017 

10 0.00483 0.00311 0.00239 0.00133 0.00116 0.00108 0.00098 0.00051 0.00041 0.00019 0.00011 0.00138 

11 0.004 0.00257 0.00197 0.0011 0.00096 0.0009 0.00081 0.00042 0.00034 0.00016 0.00009 0.00114 

12 0.00336 0.00216 0.00166 0.00092 0.00081 0.00075 0.00068 0.00036 0.00029 0.00014 0.00007 0.00096 

13 0.00286 0.00184 0.00141 0.00079 0.00069 0.00064 0.00058 0.0003 0.00024 0.00012 0.00006 0.00082 

14 0.00247 0.00158 0.00122 0.00068 0.00059 0.00055 0.0005 0.00026 0.00021 0.0001 0.00005 0.0007 

15 0.00215 0.00138 0.00106 0.00059 0.00052 0.00048 0.00044 0.00023 0.00018 0.00009 0.00005 0.00061 

16 0.00189 0.00121 0.00093 0.00052 0.00045 0.00042 0.00038 0.0002 0.00016 0.00008 0.00004 0.00054 

17 0.00167 0.00107 0.00083 0.00046 0.0004 0.00038 0.00034 0.00018 0.00014 0.00007 0.00004 0.00048 

18 0.00149 0.00096 0.00074 0.00041 0.00036 0.00033 0.0003 0.00016 0.00013 0.00006 0.00003 0.00043 

19 0.00134 0.00086 0.00066 0.00037 0.00032 0.0003 0.00027 0.00014 0.00011 0.00005 0.00003 0.00038 

20 0.00121 0.00078 0.0006 0.00033 0.00029 0.00027 0.00025 0.00013 0.0001 0.00005 0.00003 0.00034 

∑ 2.4211 1.96679 1.75444 1.4244 1.37115 1.34613 1.31338 1.16336 1.13116 1.06225 1.03418 1.44029 

α 2426.64 2416.86 2414.8 2415.68 2416.68 2416.8 2416.65 2418.93 2419.6 2421.11 2422 2416.23 

We varied the value of the β used in the equation till we could get the least possible standard deviation σ for α among the all 

workloads. 

  µ σ 

α 2418.4993 3.383053 

β 0.036   
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APPENDIX B 

Below are the schematics that were used to implement the hybrid battery model in Cadence. 

 

Figure 26: Hybrid Battery Model 



 
64 

 

Figure 27: Voc(SOC) of the Hybrid Model 
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Figure 28: Rseries of the Hybrid Model 
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Figure 29: Rtransient_S of the Hybrid Battery Model 
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Figure 30: Rtransient_L of the Hybrid Battery Model 
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Figure 31:Ctransient_S of the Hybrid Battery Model 
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Figure 32: Ctransient_L of the Hybrid Battery Model 
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