
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

2-1-2014

Ant Colony Optimization approaches for the Sequential Ordering Ant Colony Optimization approaches for the Sequential Ordering

Problem Problem

Ahmed Mohamed Alaa El-din Ezzar

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Ezzar, A. (2014).Ant Colony Optimization approaches for the Sequential Ordering Problem [Master's
Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1205

MLA Citation
Ezzar, Ahmed Mohamed Alaa El-din. Ant Colony Optimization approaches for the Sequential Ordering
Problem. 2014. American University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1205

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1205?utm_source=fount.aucegypt.edu%2Fetds%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1205?utm_source=fount.aucegypt.edu%2Fetds%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

THE AMERICAN UNIVERSITY IN CAIRO

School of Sciences and Engineering

Ant Colony Optimization Approaches for the

Sequential Ordering Problem

A thesis submitted to
Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
Master of Science

by Ahmed Ezzat
under the supervision of Dr. Ashraf Abdelbar

July 2013

Abstract

We present two algorithms within the framework of the Ant Colony Optimization
(ACO) metaheuristic. The first algorithm seeks to increase the exploration bias of
Gambardella et al.’s (2012) Enhanced Ant Colony System (EACS) model, a model
which heavily increases the exploitation bias of the already highly exploitative ACS
model in order to gain the benefit of increased speed. Our algorithm aims to strike a
balance between these two models. The second is also an extension of EACS, based
on Jayadeva et al.’s (2013) EigenAnt algorithm. EigenAnt aims to avoid the problem
of stagnation found in ACO algorithms by, among other unique properties, utilizing a
selective rather than global pheromone evaporation model, and by discarding heuris-
tics in the solution construction phase. A performance comparison between our two
models, the legacy ACS model, and the EACS model is presented. The Sequential
Ordering Problem (SOP), one of the main problems used to demonstrate EACS, and
one still actively studied to this day, was utilized to conduct the comparison.

Thesis Supervisor: Ashraf Abdelbar

2

Acknowledgments

I would like to express my gratitude and appreciation to my supervisor Dr. Ashraf

Abdelbar for his outstanding support. I would also like to extend my gratitude to

Dr. Jayadeva, my colleagues, and the department for their cooperation.

3

Contents

1 Overview and Motivation 9

2 Background 11

2.1 Ant Colony Optimization . 11

2.2 Ant System . 14

2.3 Ant Colony System . 16

2.4 Sequential Ordering Problem . 18

3 Literature Review 19

3.1 EigenAnt . 19

3.1.1 Analysis of EigenAnt . 21

3.2 Hybrid Ant System and the SOP–3–exchange local optimization pro-

cedure . 24

3.3 Enhanced Ant Colony System . 31

4 Proposed algorithms 33

4.1 Probabilistic EACS . 33

4.2 EigenAnt-Based Ant System . 34

5 Experimental Results 36

5.1 Experimental Setup . 36

5.1.1 Problem Instances . 36

5.1.2 Algorithm Parameters . 36

5.2 Empirical Data . 37

4

5.2.1 Results . 37

5.2.2 Statistical Significance . 50

5.3 Experiments on the exploitation parameter q0 52

6 Analysis 56

7 Future work 58

5

List of Figures

2-1 Skeleton pseudo–code of the ACO metaheurisitic 13

3-1 EigenAnt algorithm . 20

3-2 Illustration of the 2–exchange operation 26

3-3 Illustration of the path–preserving–3–exchange operation 26

3-4 Local search pseudo-code . 29

3-4 Local search pseudo-code . 30

5-1 Performance Comparison - Cost 100 - Precedence 1 40

5-2 Performance Comparison - Cost 100 - Precedence 15 40

5-3 Performance Comparison - Cost 100 - Precedence 30 41

5-4 Performance Comparison - Cost 100 - Precedence 60 41

5-5 Performance Comparison - Cost 1000 - Precedence 1 41

5-6 Performance Comparison - Cost 1000 - Precedence 15 42

5-7 Performance Comparison - Cost 1000 - Precedence 30 42

5-8 Performance Comparison - Cost 1000 - Precedence 60 42

5-9 Performance over time - Cost 100 - Precedence 1 43

5-10 Performance over time - Cost 100 - Precedence 15 43

5-11 Performance over time - Cost 100 - Precedence 30 44

5-12 Performance over time - Cost 100 - Precedence 60 44

5-13 Performance over time - Cost 1000 - Precedence 1 44

5-14 Performance over time - Cost 1000 - Precedence 15 45

5-15 Performance over time - Cost 1000 - Precedence 30 45

5-16 Performance over time - Cost 1000 - Precedence 60 45

6

5-17 Percentage Improvement Over Time: PEACS vs. EACS 50

5-18 Percentage Improvement Over Time: EAAS vs. EACS 50

7

List of Tables

5.1 Experimental Results . 38

5.2 Percentage improvement of PEACS over EACS 46

5.3 Percentage improvement of EAAS over EACS 48

5.4 Results of Wilcoxon Signed-ranks Tests 53

5.5 Results of q0 experiment . 53

5.6 Results of Wilcoxon Signed-ranks Tests for q0 experiment 55

8

Chapter 1

Overview and Motivation

Ant Colony Optimization (ACO) [17] is a relatively new algorithm family. More

accurately, it is a meta–heuristic, an algorithmic framework that can be adapted to

various problems. The first ACO algorithm, Ant System [16], was proposed by Marco

Dorigo in 1992. The traveling salesman problem (TSP) was used to demonstrate its

performance. While the results did not compare to the state-of-the-art algorithms,

the Ant System would later stimulate further research, and many ACO variants were

devised with the aim of solving difficult problems, specifically combinatorial optimiza-

tion (CO) problems, with the best balance between speed and accuracy possible.

Combinatorial optimization problems are ones that require finding the best solu-

tion to the problem among ones that satisfy a group of pre-defined constraints. A

solution is considered “best” if it is the one with the highest (or lowest, depending

on the problem) fitness value among the group of feasible solutions. Well known

CO problems include TSP, scheduling problems (Job-shop, group-shop, etc...), ve-

hicle routing, assignment problems (quadratic, generalized, etc...), set problems (set

partition, set covering, maximum independent set, etc...).

One problem that has been focused upon for quite some time by various researchers

is the sequential ordering problem (SOP). Formally, it is the problem of finding a

minimum weight Hamiltonian path on a directed graph with weights on the arcs and

the nodes, subject to precedence constraints among nodes. A precedence constraint

defined between two nodes x and y would mean that x has to come before y in the

9

final solution. Another way of describing would be asymmetric TSP (ATSP) with

restrictions on the returned tour enforcing that certain nodes be visited before others.

The problem of ordering jobs according to the cost of performing one before the

other and to restrictions dictating the couple-wise relative order of those jobs (i.e.:

production planning) can be modeled as an instance of SOP. The problem of deter-

mining in what order to visit clients given similar descriptions of costs and restrictions

(i.e.: vehicle routing) can also modeled as an SOP instance.

Research into this problem spans decades, and is still ongoing. Gambardella et.

al’s Enhanced Ant Colony System (EACS) [21] was published as recently as 2010,

and at the time was the state-of-the-art method for solving SOP, if not till now. A

diverse range of methodologies were used to solve it as well, ranging from genetic

algorithms to particle swarm optimization.

Since the original Ant System (AS), many ACO algorithms emerged, including the

MAX-MIN Ant System (MMAS) [35], and the Best-Worst Ant System (BWAS) [13],

among others. A new ACO algorithm was introduced by Jayadeva et. al in 2013

called the EigenAnt algorithm [1]. It has a number of unique properties. First, by

default, it only utilizes a single ant. Second, the ant chooses between entire paths,

rather than edges. Third, the choice is based only the amount of pheromone on the

paths. No heuristic value is associated with the path. Finally, only pheromone on

the selected path is updated. No other pheromone trail is affected.

Given how relevant research on SOP still is today, we attempted to contribute to

this field, and in this thesis we propose two algorithms. The first, probabilistic EACS

(PEACS) [3], is a modified variation of EACS that aims to improve its performance by

increasing its bias towards exploration. The second, EigenAnt Ant System (EAAS)

[2], is a new algorithm based on EACS and the EigenAnt algorithm. We provide

comparisons between our new algorithms, EACS and the legacy ACS.

10

Chapter 2

Background

2.1 Ant Colony Optimization

Combinatorial optimization problems involve the assignment of values to discrete

variables that provide the optimal solution quality with respect to a given objective

function. The search may also be subject to a set of constraints. Examples of this

type of problem include minimum-cost delivery planning, job assignment, network

data packet routing, and the traveling salesman problem, among others.

Ant Colony Optimization [17] is a metaheuristic devised by Marco Dorigo in 1992

[16] to tackle this category of problems. It is based on the behaviour of real-life ants.

When ants leave their nest to search for food, they experiment with the multiple

paths available to be traversed in order to reach it. While doing so, the ants deposit

pheromone. The pheromone helps the ants favor one path over another whenever

multiple directions present themselves. Pheromone deposit, along with its evaporation

over time, helps to identify shorter paths to reach the food source.

For example, assume we have two paths of unequal length, and that two ants

begin to traverse the two paths simultaneously. An ant taking the shorter path will

reach the source first. On deciding which path to take back, it will notice that the

pheromone trail on the path it took is stronger, especially considering that the other

ant still has not reached the source yet. Consequently, it will more likely take the short

path back to the nest, depositing more pheromone on the way. On reaching the nest,

11

it will have made the trail on the short path even stronger. Note also that the other

ant will probably take the short path on the way back as well, further enforcing the

trail on the path. As time progresses, all ants will lean quite heavily towards taking

the short path. What we described is an example of indirect local communication

between agents in the form of pheromone trails left by ants to influence the choices

of the other ants. This type of communication is called Stigmergy.

As aforementioned, ACO is a metaheuristic, a general-purpose heuristic method

encapsulating a problem-specific heuristic to direct it towards promising reasons of the

solution space of a problem instance [17]. In other words, it is a generic algorithmic

framework which can be adapted to various optimization problems with relatively

little effort. Other examples of metaheuristics include simulated annealing, tabu

search, and evolutionary computation.

Metaheuristics can be said to fall under the category of approximate algorithms,

ones that trade optimality for solution calculation efficiency. On the flip side are exact

algorithms, ones that guarantee to reach an optimal solution, but at worst require an

exponential amount of time for the majority of combinatorial optimization problems.

The ACO metaheuristic consists of three main procedures: ConstructAntsSo-

lutions, UpdatePheromones, and DaemonActions. In ConstructAntsSolu-

tions, members of the ant colony concurrently construct solutions in incremental

fashion. Each of them selects the next component of their solution according to the

pheromone trail levels and heuristic information. Solutions are evaluated during or

after construction to calculate the modifications to be made to the pheromone levels

in UpdatePheromones.

UpdatePheromones handles the modification of pheromone trails on edges.

Naturally, this is a critical part of ACO, as pheromone deposits try to ensure that

edges that were part of good solutions will be reused, while pheromone evaporation

helps in letting the colony forget unused edges. The act of forgetting unused edges

helps to direct the algorithm away from unpromising regions of the search space.

The last procedure, DaemonActions, deals with centralized, problem specific

actions. These include applying a local optimization method to some or all the ants’

12

solutions, and selecting a subset of the ants to deposit additional pheromone. The

following demonstrates ACO in pseudo-code form:

Set parameters & initialize pheromone trails

while (end–condition = false) do

ConstructAntSolutions

LocalSearch

UpdatePheromone

end while

Figure 2-1: Skeleton pseudo–code of the ACO metaheurisitic

It is important to note that the three procedures are not necessarily executed in

sequential order. An implementation of ACO may opt to interleave operation between

them while utilizing synchronization mechanisms to coordinate their actions. In the

Ant Colony System, for example, pheromone trails are updated during solution con-

struction rather than after their completion. A combinatorial optimization problem

(S, f , Ω) can be formulated as follows:

1. S is the set of candidate solutions

2. f is the objective function used to calculate the quality of a solution s ∈ S

3. Ω is the set of constraints. For a dynamic problem, one where constraints may

change over time, Ω(t) would be the set of constraints at time t

4. A finite set C = c1, c2, ..., cn of components is given, where n is the number of

components

5. A set of all possible states X where x ∈ X = 〈ci, cj, ck, ...〉 is a sequence of finite

length defined over the elements of C

6. The set of feasible states X∗. A state is considered feasible if it is not impossible

to reach a feasible solution from this state as dictated by Ω. The feasibility check

here is weak as it does not fully guarantee that the state will lead to a feasible

solution

13

7. The set of S∗ of optimal solutions

8. The cost g(s, t) of a solution s at time t. Usually, g(s, t) = f(s, t)

9. If needed, J(x, t) is the cost of a state x at time t.

Using this formulation, a set of artificial ants can construct solutions by perform-

ing randomized traversals of a completely connected graph G(C,L), with the set of

components C being the nodes, and L being the set of connections fully connecting

the components. Constraints may be enforced during the tour construction or after

reaching a candidate solution.

2.2 Ant System

Perhaps the most well-known example of a CO problem is the travelling salesman

problem. Indeed, it was the problem utilized by Dorigo to demonstrate Ant System,

the first ACO algorithm [16]. We now show how to apply ACO to TSP.

In TSP, we attempt to find the smallest tour that starts from a city, visits every

other city exactly once, and returns to the first city. By default, the distances between

cities are direction independent, whereas in asymmetric TSP they are not.

The construction graph that will be used by the ant colony will be similar to the

TSP graph, with cities being the components, and the connections being the arcs.

For constraints, we only have one, that being that each city has to be visited once.

As such, at each construction step, an ant will only be able to select from the list of

cities that have not been visited yet. On selecting a city to visit, an ant will utilize

the pheromone trails and the heuristic information, which in the case of TSP edges

is the inverse of the length of the edge connecting the current city to the city being

evaluated.

With the problem now represented in a format solvable by an ACO algorithm, we

now proceed to elaborate on the details of the Ant System. At first, all pheromone

trails are set to an initial value = m/Cnn, where m is the number of ants in the colony,

and Cnn is the cost of an arbitrary solution found by a tour construction procedure.

14

In Dorigo’s case, a nearest-neighbour heuristic is used. The value of the initial trail is

quite important as setting it too low would bias the system towards the first tours it

finds, while setting it too high would force the system to go through a lot of iterations

so that enough of the trails evaporate to allow the system converge towards a solution

space.

During solution construction, all ants build their tours concurrently. At each

construction step, they pick the next city to visit according to a probabilistic choice

rule. Formally, an ant k standing at city i at time t will select the city j from its

neighbourhood of unvisited cities Nk
i with the following probability:

pkij(t) =
[τij(t)]

α[ηij]
β∑

l∈Nk
i

[τij(t)]α[ηij]β
(2.1)

τij(t) represents the amount of pheromone on the edge (i, j), while ηij represents

the edge’s heuristic value. In TSP, ηij = 1/dij , where dij is the edge length. The

parameters α and β represent the relative importance of the pheromone trails and

heuristic information in guiding the ant’s choice. While there is no restriction on the

choices for values for α aside from ranging from zero to one, assigning a value greater

than one to β has been found to quickly lead to stagnation, a situation where ants

repeatedly give the same solutions.

When all ants finish constructing their solutions, the pheromone trails on the

edges are updated. First, all edges are reduced by a constant factor according to the

following rule:

τij(t) = (1− ρ)τij(t) (2.2)

ρ is the pheromone evaporation rate, and it takes on positive values from 0 to 1.

This controls how quickly AS forgets previous decisions, especially bad ones. After

evaporation, each ant will deposit pheromone on the edges present in its solution as

follows:

15

τij(t) = τij(t) +
m∑
k=1

∆τij(t)
k (2.3)

∆τij(t)
k is the amount of pheromone to be deposited by ant k on the edge (i, j), and

it is equal to 1/Ck, where Ck is the length of the tour generated by ant k. The better

the solution, the more pheromone is deposited on the edge, giving it a higher chance

of selection in the next iteration, in the hope that it would lead to an even better

solution.

Other ACO algorithms such as Elitist Ant System, Rank Based Ant System and

the MAX-MIN Ant System [35] differ in the way pheromone trails are updated. The

differences include allowing only a subgroup of the ants to update the trails as well as

changes in the actual update rule itself. ACO algorithms such as the Ant Colony Sys-

tem [15], Approximate Non-deterministic Tree Search, and the Hyper-Cube Frame-

work for ACO on the other hand include new ideas not present in AS.

2.3 Ant Colony System

In ACS, ants choose the next node to visit using a pseudo-random rule, rather than

a fully random one. With a probability of q0, an ant will select the most attractive as

dictated by the pheromone trails and heuristic information. Otherwise, an ant will

utilize the same probabilistic choice rule defined above. The selection rule is defined

as follows:

j =

arg max{Q(i, l)} q ≤ q0

J q > q0

(2.4)

J is a random variable whose value is calculated according to the probabilistic

choice rule defined above, while q is random variable uniformly distributed from [0,1].

Q is an edge quality function defined as follows:

Q(i, j)← [τij(t)]
α[ηij]

β (2.5)

16

The value of q0 affects how exploitative the ACS algorithm is. Increasing it will

force ants to depend more on previous history, while a lower value helps in letting

the system be more explorative. A more explorative system however runs the risk

of generating worse solutions and perhaps becoming unable to find better solutions.

Another difference in ACS from AS is how pheromone trails are updated. There are

two main differences. First, pheromone trails are updated during tour construction

using the following rule:

τij(t) = (1− η)τij(t) + t0 (2.6)

τ0 is the initial of the pheromone trails. The actual value is problem specific. Against

TSP and the Sequential Ordering Problem, a value of 1/(n∗Cnn) was used by Dorigo

and Gambardella, respectively [16, 20]. Applying the rule allows the remaining ants

to consider other options for the node choice in their solutions, thereby increasing

exploration and avoiding stagnation. Second, at the end of the construction phase,

only the best solution found so far by the algorithm is used to update the pheromone

trails. This is done using the following rule:

τij(t) = (1− ρ)τij(t) + ρ∆τ bsij (2.7)

Here, τ bsij = 1/Cbs, where Cbs is the cost of the best solution found so far. Only the

edges that are part of the best solution are updated. Their corresponding trails, as

a result of the evaporation parameter ρ, becomes a weight average between their old

value and the amount of pheromone deposited.

An interesting result of applying the two rules together is that an implicit range

is enforced on the pheromone trails. Their values can only fall between t0 and 1/Cbs.

Such a limitation is present in another ACO algorithm, MMAS, although in that

algorithm the limitation is more explicit. After pheromone update, all trails are

checked to make sure they are still in range, and are modified to the nearest limit if

they are not.

17

2.4 Sequential Ordering Problem

The Sequential Ordering Problem is a generalization of the Asymmetric Travelling

Salesman Problem. It can be used to represent real–world problems such as produc-

tion planning, vehicle routing and transportation problems in flexible manufacturing

systems [9, 19, 31–33]. Various methodologies have been investigated for this prob-

lem, including genetic algorithms [12, 33], a parallelized roll–out algorithm [22], and

the hybrid ant system, an ACS algorithm coupled with a special local search proce-

dure [20]. Montemanni et al. built upon the hybrid ant system by incorporating a

heuristic manipulation technique [27–29], and later Anghinolfi et al. investigated a

discrete particle swarm optimization method [7,8].

An instance of the SOP consists of a set of nodes V , a start node vs ∈ V , a finish

node vf ∈ V , a set of weighted directed edges E where vs is not allowed to have

incoming edges and vf is not allowed to have outgoing edges, and a set of precedence

constraints. A precedence constraint is set between two nodes v1 and v2 if it is

required that v1 be visited before v2. The objective is to construct a minimum–cost

path that starts from vs, passes through all nodes, and ends at vf without violating

any constraint.

In applying ACO to SOP, τ would be a two–dimensional |V | × |V | array; the

entry τij represents the extent to which the collective wisdom of the colony is inclined

towards the edge eij. A common choice for the ηij for the TSP is the reciprocal of the

distance d associated with the edge eij, ηij = 1/d(eij). Since SOP can be considered to

be a generalization of the ATSP, we can use this measure as the heuristic desirability

of edges in SOP [20,21].

18

Chapter 3

Literature Review

3.1 EigenAnt

A recently proposed ACO algorithm is the EigenAnt algorithm [1]. It attempts to

solve the problem of stagnation in ACO in general, or, in its authors words, ACO’s

lack of plasticity. Over time, should an ACO algorithm fail to improve on a solution

quickly enough, it becomes increasingly difficult and eventually almost impossible to

for ants to construct better solutions. Even if an ant does find a better solution, a lot

of pheromone will have built up by then on the edges of the previous solution, and

as such ants will tend to use its edges a lot more.

In EigenAnt, a single ant is charged with the task finding the shortest of paths

available to take from a source to a destination. During every iteration, it randomly

chooses a path and accordingly the pheromone trail on that path is updated. The

following equation is used to update the pheromone on a path i that has been chosen

by the ant at iteration t:

τ t+1
i ← (1− α)τ ti + βdip

t
i (3.1)

where α is the evaporation rate, β is a weighting parameter, and di = 1/f(Li), where

f is a monotonically decreasing function of Li, the length of path i. In addition, pti

is the probability of taking a path i in iteration t, and is equal to Ct
i/

∑n
i=1C

t
i , the

19

amount of pheromone on path i at iteration t divided by the total sum of all trails on

all paths at iteration t. After an ant constructs a path, the pheromone trail on that

path is updated.

As we can see, two main characteristics differentiate EigenAnt from most if not all

ACO algorithms. First, path selection does not take path length into account at all.

Only pheromone trail information plays any part in this decision. Second, only the

pheromone trail on the selected path is updated. No other trail is affected. So rather

than employing an evaporative pheromone update model, EigenAnt utilizes selective

removal.

In pseudo-code, the EigenAnt algorithm is as follows:

procedure EigenAnt(L)

Initialize trip counter vector J = (Ji) = 0.

Initialize total ant trip counter t = 1. Choose Jmax ∈ N, the total number of ant trips

Initialize path i with pheromone concentration: Ct
i = (1/n), i = 1, ..., n

Initialize probability of choosing the ith path: pit = (1/n), i = 1, ..., n

Initialize the weights di as 1/Li, where Li is the length of the ith path

Choose the pheromone removal parameter α and the pheromone deposition parameter β

while (
∑

i Ji ≤ Jmax) do

Choose a path randomly in accordance with the distribution of probabilities ptj , j = 1, ..., n

if the ith path is chosen then

Update the trip counter of the ith path: Ji ← Ji + 1

Update pheromone only on path i : Ct+1
i ← (1− α)Ct

i + βdip
t
i

No changes in pheromone on paths j 6= i : Ct+1
j ← Ct

j

end if

Update path choice probabilities: pt+1
i ← Ct+1

i /
∑n

j=1 C
t+1
j , i = 1, ..., n

Update total ant trip counter: t← t+ 1

end while

Return normalized pheromone concentrations matrix (pi versus trip t) and final trip counter

vector J

end procedure

Figure 3-1: EigenAnt algorithm

20

At the end of the algorithm execution, two entities are returned. The first

is a pheromone concentration matrix indicating at each iteration the amount of

pheromone present on each path. The second is a counter array indicating how

many each path has been taken.

Jayadeva et. al have shown that given all path lengths prior to running the

algorithm, the ant will over time tend to use the shortest path a lot more often, and

pheromone trails on the shortest path will be much more than the rest. This will

occur even if the pheromone trails are initialized to favour longer paths. Also, should

the length of the paths change during the algorithm’s execution, it will counteract

this and shift its focus towards the shortest path. Moreover, the algorithm quite

handsomely handles the case of new paths being discovered. The ant will shift focus

to a new path only if it is shorter. In summary, the EigenAnt algorithm keeps its

focus on the shortest path, and manages to sustain that focus regardless of false initial

information or dynamically changing graph conditions.

3.1.1 Analysis of EigenAnt

In this section, we present an analysis of the equilibrium state of the EigenAnt

algorithm. When a path i is chosen in iteration t, the amount of pheremone on it is

updated as follows:

∆Ct
i = −αCt

i + βdip
t
i (3.2)

As such, the expected change on path i at iteration t would be

∆Ct
i = pti(−αCt

i + βdip
t
i) (3.3)

Letting pti = Ct
i/V

t, where V t is the sum of the concentrations at time t, we get

〈∆Ct
i 〉 =

Ct
i

V t
(−αCt

i + βdi
Ct
i

V t
) (3.4)

and hence

〈∆Ct〉 =
1

V t
diag(Ct)(−αCt + βDCt) (3.5)

21

〈∆Ct〉 ∈ R is a vector representing the expected change in pheromone concentration

in iteration t, diag(Ct) is a diagonal matrix having entries Ct
1, ..., C

t
n on its principal

diagonal, and D is a diagonal matrix having entries d1, ..., dn on its principal diagonal.

In a stable state, the expected change in the total pheromone concentration is

zero. In other words, 〈∆Ct
i 〉 = 0 for i = 1, 2, 3, ..., n. In compact form, this would be

〈∆Ct〉 = 0. (3.6)

A pheromone concentration vector that satisfies (3.6) is an equilibrium point. To find

such points, let us first assume that

L1 < L2 < L3 < ... < Ln (3.7)

and consequently

d1 > d2 > d3 > ... > dn (3.8)

The above equation can be written as

αC =
β

V
DC (3.9)

Writing V = 1TC, where 1 ∈ R is the vector with all n components equal to 1 we

get

αC =
β

1TC
DC (3.10)

and consequently

DC =
α

β
(1TC)C. (3.11)

Furthermore, we let λ = α
β
(1TC) to get

DC = λC, (3.12)

which is reminiscent of an eigenvalue-eigenvector equation, with λ being the eigenvalue

and C the eigenvector. Note though that λ is a function of C.

22

Since D is a diagonal matrix, its eigenvectors are the canonical vectors ei, cor-

responding to the eigenvalues di. Hence, all solutions of (3.12) will be of the form

C = µiei. In other words, for some i ∈ {1, 2, 3, ..., n}, Ci = µi, Cj = 0,∀j 6= i. By

substituting 1tµiei = µi into (3.11), we get

Dµiei =
α

β
(µi)µiei, (3.13)

and finally

µi =
β

α
di. (3.14)

Given that i ∈ {1, 2, 3, ..., n}, we have n solutions of the form β
α
diei. Now that we

have the equilibrium points, we proceed to show through perturbation analysis that

only the point µ1e1 representing the shortest path is stable.

By multiplying (3.1.1) by V 2, we get

〈V 2∆C〉 = diagC(−αV C + βDC) (3.15)

Starting from the equilibrium point C = µiei, the pheromone concentration vector

after perturbation would be

C + ε = µiei + ε = (ε1, ε2, ..., µi + εi, εi+1, ..., εn)T . (3.16)

Pheromone on any path is always non-negative, so

εj ≥ 0,∀j 6= i; εi ≥ µi,1
T ε > −µi. (3.17)

As a result, we have

V = 1T (C + ε) =
β

α
di + 1T ε. (3.18)

By substituting (3.16) and (3.18) in (3.15) and dropping higher-order terms (O(ε3)),

23

the value of the component of 〈V 2∆C〉T in the direction of ej can be calculated as

〈V 2∆C〉Tej =

ε
2
jβ(di − di,) j 6= i

−(µi + εi)
2(1T ε), j = i.

(3.19)

Consider the equilibria µiei, i 6= 1. For all j < i, (dj−di) > 0 and hence 〈V 2∆C〉Tej >

0, leading to a movement away from equilibrium. The converse is true for cases where

j > i. Overall however, this means that these equilibria are unstable.

As for µ1e1, we see that (dj − di) < 0 for all j, and as such all perturbations in

the directions ej are negative. For perturbations in the direction ei, we find that

〈V 2∆C〉Tej > 0 if 1T ε < 0 and vice-versa, indicating that the equilibrium µ1e1 is

stable. Since 1T ε represents the perturbation in the total pheromone concentration,

this also indicates that the system as a whole acts to preserve the total amount of

pheromone. Given that L1 is the shortest length, we conclude that the pheromone

trails remain concentrated on the shortest path, and that the total pheromone remains

conserved. Since path choice is probabilistic, adding a new shortest path will cause

the system to converge to it over time as well [1].

Note here how µ1e1 = (β
α
d1)e1, an eigenvector, is associated with the the dom-

inant eigenvalue, which is the largest element of β
α
D. That, and it being the only

asymptotically stable equilibrium point of (3.12), inspired the authors with the name

EigenAnt.

3.2 Hybrid Ant System and the SOP–3–exchange

local optimization procedure

The hybrid ant system (HAS–SOP) [20] is an ACS system that uses the SOP–3–

exchange as its local search procedure. SOP–3–exchange is an edge–exchange proce-

dure. In such a procedure, a given tour is iteratively improved by continually replacing

a set of k edges with another, provided that the swap improves the tour quality, rep-

resented in SOP’s case by its length. This operation is called a k–exchange. The

24

procedure repeats this operation till no improving k–exchange can be found. At this

point the final solution is said to be k–optimal. Verifying that a solution is k–optimal

requires O(nk) time, assuming no more than a constant amount of time is exerted to

check the feasibility and improvement of an exchange.

Increasing the value of k leads to better quality solutions, but due to computational

constraints k is generally restricted to a maximum value of 3. 2–opt, 3–opt and the

Lin–Kernighan–heuristic are examples of edge–exchange procedures [24, 25]. 2–opt

uses 2-exchanges, 3–opt uses 3–exchanges, and the Lin–Kernighan method allows the

cardinality of the swapped edge sets to vary.

When a 2–exchange is performed on a tour, part of the tour must be inverted. In

TSP, this is not a problem because all edges have the same cost in both directions.

This is not the case in ATSP, and as such whenever we perform a 2–exchange we

will not be able to calculate the effect of the exchange in constant time, as we would

need to perform a linear cost calculation of the cost of the inverted part of the tour.

By using 3–exchanges instead, we will always be able to find a new set of edges to

replace the old ones that preserves the directions of the tour segments affected in the

swap, allowing us to calculate the improvement in constant time.

As an example, suppose we have a tour 〈x0, x1, ..., xn〉. If we remove the edges

(xk, xk+1) and (xl, xl+1), our only option would be to reverse the tour section from

xk+1 to xl, and then add the edges (xk, xl) and (xk+1, xl+1), as illustrated in Figure

(3-2). We would now need to calculate the cost of the tour section after reversal,

as well as to check that no precedence constraints were violated in the case of SOP.

If we instead opt to remove an extra third edge (xm, xm+1), we will have two tour

sections 〈xk+1, ..., xl〉 and 〈xl+1, ..., xm〉. By adding the edges (xk, xl+1), (xm, xk+1) and

(xl, xm+1), we will effectively swap their positions without altering the order of their

elements, as illustrated in Figure (3-3). This is called a path–preserving–3–exchange

(pp–3–exchange). An O(1) check of the edges’ costs is all that is needed to calculate

the improvement gained by the exchange.

After performing a 3–exchange on a tour, we would still need to check that no

precedence constraints have been violated. This requires a computational effort of

25

Figure 3-2: Illustration of the 2–exchange operation

Figure 3-3: Illustration of the path–preserving–3–exchange operation

O(n2), as for each node we would need to check that none of its successor nodes

have already been visited. To overcome this, a lexicographic search strategy [23] is

employed, allowing the exploration of only feasible solutions.

Suppose we have a tour and three indices h, i and j, where h < i < j. The three

indices indicate the three edges to be swapped out in an exchange, (h, h+ 1), (i, i+ 1)

and (j, j + 1). Removing the three edges gives rise to two isolated sections of the

tour, path–left = 〈h+ 1, ..., i〉 and path–right = 〈i+ 1, ..., j〉. The exchange is feasible

if all elements in path–right can appear in the tour before all elements in path–left.

Assuming it is feasible, we can create a new exchange by adding an extra element to

path–right. Since the original exchange was already feasible, we only need to check

the new element against the current members of path–left to verify the feasibility

of the new exchange. If we hit an element that causes a violation, i is incremented

and j is set to i + 1, expanding path–left by one element and resetting path–right

to 〈j〉, and still only needing to check the now single element in path–right against

those in path–left. When all possible combinations of path–left and path–right where

path–left starts with h have been explored, we repeat the process with a new value

for h. At this point, we have minimized the feasibility verification effort to O(n).

In a forward–lexicographic–path–preserving–3–exchange (f–lpp–3–exchange) pro-

cedure, we start with the indices h, i, and j set to 0, 1 and 2 respectively. As such,

the two paths are set to 〈1〉 and 〈2〉. If this exchange is feasible and beneficial, we

can perform it immediately or postpone it to be compared against other potential

exchanges, depending on parameters passed to the procedure. After that, path–right

26

is expanded by one element, which is checked against the elements of path–right for

feasibility. When a violation is found, path–left is expanded by one element, and

path–right is reset to include the element immediately after. In essence, we loop

over all possible values of h, i and j, where h < i < j and swapping the two paths

〈h+ 1, ..., i〉 and 〈i+ 1, ..., j〉 is feasible. More importantly we explore these solutions

with only a linear cost required for feasibility checking as noted above.

A backward–lpp–3–exchange is the mirror image of the forward version where

j < i < h, path–left = 〈j, ..., i〉 and path–right = 〈i+ 1, ..., h〉. In this case, path–left

is iteratively expanded by decrementing j, and when it can be expanded no further

due to a constraint violation, path–right is expanded by one element and path–left

is reset. In the SOP–3–exchange procedure, both directions are performed for each

node h.

To reduce the cost of the feasibility check down to a constant level, a labelling

mechanism is utilized. For each node v in the tour, we keep track of the value mark(v).

Whenever an element is added to path–left, we set mark(v) where v ∈ successors(i)

to the value of a global variable count h, which is initially set to zero. By doing so,

when a new node is considered for path–right, we immediately know if it is feasible

to add by checking whether the mark value is equal to count h, hence performing

the check in constant time. When a new value of h is used, the value of count h is

incremented, immediately invalidating the mark values of all nodes, and relieving us

from us from the effort of resetting the marks.

At this point, the cost of finding one profitable exchange using the lexicographic

search and the labelling techniques is O(n3). To allow the local search to repeatedly

improve the tour, rather than just return a one–time improvement, this would need to

be reduced as new solutions are found. Two ways of achieving this are the heuristic

selection of nodes to explore and the premature halting of a search when certain

conditions have been met.

By default, SOP–3–exchange explores all possible values of i and j for a selected

value of h. An alternative to this is the OR–exchange [30]. It dictates that given an

h, we should only explore the three closest values of h. This means the value of i will

27

be restricted to h+ 1, h+ 2, h+ 3 for the forward direction and h− 1, h− 2, h− 3

for the backward direction. A parameter in the SOP–3–exchange procedure called

WalkingCriterion dictates whether the OR–exchange or 3–exchange walking criterion

is used.

The don’t–look bit [10] and the don’t–push stack [20] are two data structures that

can be used to minimize the number of nodes explored (i.e. the possible values of

h). The don’t–look bit data structure associates each node with a bit indicating if it

should not be explored. Initially all bits are set to zero. When a node is explored,

its bit is set to one. If a profitable exchange is found, the bits of the six pivot nodes

(h, h + 1, i, i + 1, j, and j + 1) are reset to zero after performing the exchange. The

search then attempts to use the first available h that has an unmarked bit. This is

repeated until all bits are set to one.

The don’t–push stack is a stack with a special push operation. In the beginning

of the search it contains all nodes. The topmost element in the stack represents the

next value of h to explore. When a profitable exchange is found the six pivot nodes

that are not already present in the stack are pushed onto it in reverse order, so that h

is retained as the topmost node. The exchange is performed after the push operation.

We then proceed to attempt to improve the newly found solution given the remaining

values of h in the stack. This allows the search to remain in the neighbourhood of

the last improvement, rather than re–attempting all possible values of h again. The

structure also gives us the added characteristic of a non–sequential search, which is

aided by the fact that the labelling procedure works independently of the value of h.

The search continues until the stack becomes empty.

During the exploration of a node h, we essentially have three loops, one for each

of h, i and j. Stopping a loop after finding an improvement rather than waiting for

all three to finish helps decrease the exploration effort. The SOP–3 procedure has

a parameter ExchangeFirstCriterion which dictates at which of these loops a search

should stop if an improvement was found. For example, setting ExchangeFirstCrite-

rion to j will stop the search as soon as an improvement is found, setting it to i will

test all values of j before checking if we have found a solution, and setting it to h will

28

force the search to try all values of i and j for a given h. Not stopping at any of the

loops, and as such essentially exploring all possible 3–exchanges applicable to a tour,

has been found to consume too much computation time.

In our experimental results in this paper, we set ExchangeFirstCriterion = i, and

WalkingCriterion = 3–exchange. A pseudo–code of our implementation is presented

in Figure (3-4).

procedure SOP3Exchange(A valid sequence (0...n), G)

count h ← 0

solutionfound ← true

while solutionfound do

solutionfound ← false

h ← PopStack()

i ← h + 1

count h ← count h + 1

while i < n and not solutionfound do

j ← i+1

feasible ← true

bestGain ← 0

for k ∈ succcessors[i] do

mark[k] ← count h

end for

while j < n and feasible do

feasible ← mark[j] 6= count h

gain ← ComputeGain(h, i, j, G)

if feasible and gain > bestgain then

solutionfound ← true

bh ← h

bi ← i

bj ← j

bestgain ← gain

end if

j ← j + 1

end while

i ← i + 1

end while

Figure 3-4: Local search pseudo-code

29

if solutionfound then

PerformExchange(bh, bi, bj, G)

PushToStack(bh, bi, bj)

Restart–While–Loop

end if

i ← h–1

count h ← count h + 1

while i > 0 and not solutionfound do

j ← i – 1

for k ∈ predecessors[i] do

mark[k] ← count h

end for

while j > 0 and feasible do

feasible ← mark[j] 6= count h

gain ← ComputeGain(h, i, j, G)

bestGain ← 0

if feasible and gain > bestgain then

solutionfound ← true

bh ← h

bi ← i

bj ← j

bestgain ← gain

end if

j ← j – 1

end while

i ← i – 1

end while

if solutionfound then

PerformExchange(bj, bi, bh, G)

PushToStack(bh, bi, bj)

end if

end while

end procedure

Figure 3-4: Local search pseudo-code

30

3.3 Enhanced Ant Colony System

Gambardella et al.’s Enhanced Ant Colony System [21] differs from conventional

ACS in two ways. In the ConstructAntSolutions step, when an ant k is choosing

a node j ∈ D(Sk) to add to its current partial tour Sk, it performs the following. Let

i = λ(Sk) denote the last node visited in the partial tour Sk, let S∗ denote the global

best–so–far tour, and let j be the node that follows i in S∗.

1. With probability q0:

(a) If the node j has not yet been visited in Sk and the edge (i, j) does not

violate the precedence constraints, then the partial tour Sk is extended

with node j. Call this Case 1.

(b) Otherwise, the deterministic selection approach described in Section II is

applied according to Equation (3). Call this Case 2.

2. With probability (1 – q0), the stochastic selection approach described in Section

II is applied according to Equation (2). Call this Case 3.

In other words, with probability q0, EACS first attempts to take the next edge

in the best–so–far tour S∗ if that edge is feasible. This makes EACS much more

exploitative than ACS because the best–so–far tour has a much greater influence on

tour construction than in ACS. Also, due to the usually high value of q0, it greatly

increases the speed of solution construction. The rest of the behaviour of EACS

is similar to ACS. If the next edge in S∗ is not feasible, then EACS applies the

deterministic approach as in conventional ACS. Finally, with probability (1 – q0),

EACS applies the stochastic selection approach, as in conventional ACS and as in

most other ACO models [17]. The other difference between EACS and ACS, in the

context of the SOP problem, is in the LocalSearch step:

1. EACS applies local search to a constructed tour only if its cost is within 20%

of the cost of S∗.

31

2. The don’t–push stack (see Section 2.2) is initialized to contain only the nodes

that are out of sequence with the best solution.

3. For reference purposes, we shall call this Enhanced SOP–3 (ESOP–3) local

search.

32

Chapter 4

Proposed algorithms

4.1 Probabilistic EACS

Our first approach is a modified version of EACS that aims to be less exploitative.

For future reference we shall call it probabilistic EACS (PEACS) [3]. In EACS, an

ant would select the next to visit in one of the following manners:

1. With probability q0:

(a) The ant tries to select the node j which follows i in S∗, if that node j has

not been visited yet and does not violate precedence constraints. (Case

1)

(b) If that node j is not feasible, then most attractive node is chosen. (Case

2)

2. With probability (1−q0), the stochastic choice is applied according to Equation

(2). (Case 3)

In our variation, we alter Case 2 by letting the ant select j according to the

stochastic choice as in Case 3. This is different from decreasing the value of q0, which

while at first glance might achieve the same effect of giving ants a larger freedom of

choice, would cause the global–best–suggestion to be ignored even when it is available

more frequently, potentially causing a decrease in the quality of generated solutions.

33

Our variation allows the global–best suggestions to be used as much as possible while

giving ants a freedom of choice only when those suggestions are infeasible.

There were some assumptions that we had to take in our implementation. The

don’t–push stack is initialized such that the topmost node is the rightmost node in

the group of nodes selected to be in it. Additionally, when an exchange is performed

we push the participating nodes such that the leftmost node is at the top and the

rightmost is at the bottom. This means that in the forward case, h will be at the top

of the stack after the exchange, while in the backward case it will be j. Furthermore,

we assumed that “initializing the don’t–push–stack with out–of–sequence elements”

means the following: if element i in the current tour being improved and the best–

so–far tour are different, then i would be considered out of sequence and added to

the don’t–push–stack. Finally, in our implementation, when an ant is deciding which

node to choose, all feasible nodes are considered viable regardless of their distance

from the current node, rather than using a candidate list.

4.2 EigenAnt-Based Ant System

Our second approach is based on the EigenAnt algorithm, the EigenAnt Ant

System (EAAS) [2]. It is characterized by the following:

1. Pheromone levels are initially set to the distance of the corresponding edges.

2. During solution construction, ants choose the next node to visit using the ap-

proach used in EACS , with one important difference. Only the pheromone trail

information is taken into consideration. No heuristic information is stored or

calculated for edges. This in particular is quite a departure from most, if not

all, ACO algorithms.

3. Pheromone trails are modified after solution construction.

4. After solution construction, solutions that are within 20% of the best solution

found so far pass though the local optimization procedure (note that in our

34

experiments, we only used one ant, but it is possible to use more). The best

solution in the current iteration is used to update the pheromone trails

In EigenAnt, a path i selected by the ant has its pheromone trail updated in the

following manner:

τi(t+ 1) = (1− α)τi(t) + βdip
t
i (4.1)

In our variation, we update the pheromone trail on an edge (i, j) on the selected

path as follows:

τij(t+ 1) = (1− α)τij(t) + βdip
t
ij (4.2)

The main factor here is ptij, the probability to visit node j when the ant is standing

on node i. As aforementioned, when paths are considered, it is calculated as the ratio

of the pheromone on the path to the sum of all trails on all paths. We decided to use

the same calculation for edges, with one change. We take into the consideration the

fact that during solution construction, edges become infeasible, either due to nodes

being visited or to precedence constraints not yet being satisfied. As a result, edge

number k in a tour will be compared against n − k other edges to calculate its of

probability of selection.

35

Chapter 5

Experimental Results

5.1 Experimental Setup

5.1.1 Problem Instances

We evaluated our systems relative to Gambardella et al.’s EACS, and relative to

standard ACS, using the SOP instances at the SOPLIB2006 library [22]. This is the

same set of instances used in the experimental results of Gambardella et al. [17].

The SOPLIB naming convention is as follows: the name of each instance takes

the format R.n.c.r where n is the number of nodes, c is the maximum cost of a valid

edge, and r is the probability that an edge will be an invalid edge, representing a

precedence constraint. The SOPLIB consists of 48 instances based on the following

set of values of these parameters: n ∈ {200, 300, 400, 500, 600, 700}, c ∈ {100, 1000}

and r ∈ {1, 15, 30, 60}.

5.1.2 Algorithm Parameters

Based on [20] and [21], we implemented four systems on top of Stützle’s public–

domain ACOTSP implementation [34]:

1. A standard ACS system, with only one modification: local search is only applied

to a solution if its cost is within 20% of the best–so–far solution

36

2. Our implementation of Gambardella et al.’s EACS, as Gambardella et al.’s own

implementation is not publicly available

3. Our implementation of our modified less-exploitative EACS, PEACS

4. Our implementation based on the EigenAnt algorithm, EAAS

All of the implementations are publicly available at https://eacssop.codeplex.

com/.

We followed the parameter settings used by Gambardella et al. [21]: ρ = η =

0.1, m (Number of ants) = 10, ExchangeFirstCriterion = i, WalkingCriterion = 3–

exchange, and q0 = 1 − (s/|V |), where s = 5 and |V | is the number of nodes (s was

previously set to 10 in [20]). For ACS, we set α = β = 1; for EACS and our modified

EACS, we set α = β = 0.5. The parameter τ0 is set to 1/(n · c(Sinit)), where c(Sinit)

is the cost of the tour found by the algorithm using only heuristic information.

For EAAS, we set m = 1, α = 0.5, and β = 1. We set the pheromone trail on an

edge (i, j) to be equal to zero if it is infeasible (i.e.: it is a precedence constraint), a

small constant if the edge length is zero, and to its length otherwise. The parameters

for SOP-3-exchange and q0 are the same as in PEACS. All experiments were carried

out on a computer with an Intel Core 2 Duo P7450 2.13 GHz CPU and 4 GB’s of

RAM.

5.2 Empirical Data

5.2.1 Results

We ran each configuration 30 times for 10 minutes of CPU time. We recorded

the mean and standard deviation of the solution cost for each configuration, for each

problem instance. These results are shown in Table (5.1). We note that PEACS

tied with standard EACS in 7 out of the 48 instances (3 of these 7 ties were “easy”

instances for which EACS also tied ACS), and had a lower average solution cost than

EACS in 33 out of the remaining 41 problem instances.

37

With EAAS, the results were quite divisive. For problems with precedence prob-

abilities 1 and 60 (i.e.: Either almost no or a lot of precedence constraints), EAAS

performed poorly. For the other two categories, it was better across the board, achiev-

ing a better average on all problem instances.

Table 5.1: Experimental Results

Instance ACS EACS PEACS EAAS

mean stdev mean stdev mean stdev mean stdev

R.200.100.1 76 3.3 73 3 74 2.5 108.67 7.02

R.200.100.15 1957 29.1 1890 33.4 1836 25.7 1899.57 37.74

R.200.100.30 4236 13.3 4229 3.2 4223 6.6 4225.97 5.59

R.200.100.60 71749 0 71749 0 71749 0 72332.1 502.68

R.200.1000.1 1529 34.7 1459 19.2 1460 20.1 1705.97 57.69

R.200.1000.15 22255 397.2 21503 356.9 20865 179.2 21024.87 282.5

R.200.1000.30 41456 87.4 41223 39.3 41196 0 41210.37 29.97

R.200.1000.60 71556 0 71556 0 71556 0 71718.3 210.04

R.300.100.1 54 3.3 44 3.4 44 4.8 104.53 9

R.300.100.15 3589 127.5 3317 37.6 3231 30.3 3240.9 27.74

R.300.100.30 6192 33.9 6132 10.8 6120 0 6126.1 10.95

R.300.100.60 9726 0 9726 0 9726 0 9754.37 23.04

R.300.1000.1 1505 41.1 1450 27.4 1446 30.5 1847.93 73.21

R.300.1000.15 33353 835.2 31108 731.3 30062 343.6 30131.7 539.7

R.300.1000.30 54734 400.6 54397 113.2 54183 32.3 54270.43 282.07

R.300.1000.60 109633 0 109590 0 109549 58.5 110247.7 547.66

R.400.100.1 48 6.3 34 4 34 3.8 102.63 12.39

R.400.100.15 4622 103.7 4324 76.9 4031 36 4046.57 39.16

R.400.100.30 8420 60.4 8230 36.7 8184 23.1 8189.87 14.39

R.400.100.60 15235 14 15228 0 15228 0 15337.23 64.55

R.400.1000.1 1695 146.8 1533 34.6 1518 36.4 2016.1 66.05

R.400.1000.15 44962 1010.4 42671 629.5 40228 413.8 40413.87 519.5

R.400.1000.30 86149 341.5 85739 262.9 85324 119.1 85561.07 231.17

R.400.1000.60 140852 65.5 140932 117.5 140878 103.9 141367.3 405.14

38

R.500.100.1 45 7.3 23 4.7 25 4 100.27 15.57

R.500.100.15 6485 208.9 5892 97.5 5509 48.9 5527.8 55.65

R.500.100.30 10161 90.2 9765 27.4 9674 10.2 9702.07 19.19

R.500.100.60 18295 6.7 18267 1.9 18264 3.4 18367.7 76.04

R.500.1000.1 1669 41.9 1547 29.4 1560 35.8 2117.37 90.44

R.500.1000.15 59860 2140.7 54705 835.5 51541 373.5 51724.97 386.71

R.500.1000.30 102288 1154.2 99692 254.6 99142 90.2 99259.33 170.28

R.500.1000.60 178424 240.3 178212 0 178212 0 179226.8 683.7

R.600.100.1 47 7.1 16 4.7 18 3.8 101.87 13.14

R.600.100.15 7144 141.7 6442 101.2 5840 63.7 5848.53 61.73

R.600.100.30 13005 127.7 12569 34.3 12474 10.4 12517.8 23.9

R.600.100.60 23381 38.7 23326 0 23317 14.8 23460.6 69.48

R.600.1000.1 1761 41.4 1647 32.4 1611 31.7 2309.33 105.65

R.600.1000.15 67048 1920.6 62188 895.6 57881 488.1 58559.2 649.06

R.600.1000.30 133417 2967.7 128613 356.3 127154 261.8 127266.6 318.42

R.600.1000.60 216018 451.4 214701 80.8 214748 108.3 215980.3 603.91

R.700.100.1 43 8.7 12 3.1 15 3.8 87.3 14

R.700.100.15 8693 185.6 8021 111.5 7411 48.2 7494.3 68.23

R.700.100.30 15352 183.2 14613 31.5 14530 8.1 14583.03 21.73

R.700.100.60 24229 16.3 24124 22.4 24144 21.2 24301.1 94.64

R.700.1000.1 1744 55.2 1614 46.4 1587 41.7 2366.6 128.56

R.700.1000.15 82659 3264.5 74680 1240.8 68490 622.3 69421.73 751.84

R.700.1000.30 141764 1586.5 135869 442.1 134711 137.5 134862.7 308.84

R.700.1000.60 248852 649 245781 131.8 245655 119.4 247587 759.9

39

The following charts illustrate the relative performance of the configurations. For

each instance, the average solution quality over 30 runs is plotted against the cor-

responding configuration. Each chart represents a subset of the problems with a

particular cost and precedence probability.

0

20

40

60

80

100

120

R.200.100.1 R.300.100.1 R.400.100.1 R.500.100.1 R.600.100.1 R.700.100.1

ACS

EACS

PEACS

EAAS

Figure 5-1: Performance Comparison - Cost 100 - Precedence 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R.200.100.15 R.300.100.15 R.400.100.15 R.500.100.15 R.600.100.15 R.700.100.15

ACS

EACS

PEACS

EAAS

Figure 5-2: Performance Comparison - Cost 100 - Precedence 15

40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R.200.100.30 R.300.100.30 R.400.100.30 R.500.100.30 R.600.100.30 R.700.100.30

ACS

EACS

PEACS

EAAS

Figure 5-3: Performance Comparison - Cost 100 - Precedence 30

0

10000

20000

30000

40000

50000

60000

70000

80000

R.200.100.60 R.300.100.60 R.400.100.60 R.500.100.60 R.600.100.60 R.700.100.60

ACS

EACS

PEACS

EAAS

Figure 5-4: Performance Comparison - Cost 100 - Precedence 60

0

500

1000

1500

2000

2500

R.200.1000.1 R.300.1000.1 R.400.1000.1 R.500.1000.1 R.600.1000.1 R.700.1000.1

ACS

EACS

PEACS

EAAS

Figure 5-5: Performance Comparison - Cost 1000 - Precedence 1

41

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

R.200.1000.15 R.300.1000.15 R.400.1000.15 R.500.1000.15 R.600.1000.15 R.700.1000.15

ACS

EACS

PEACS

EAAS

Figure 5-6: Performance Comparison - Cost 1000 - Precedence 15

0

20000

40000

60000

80000

100000

120000

140000

160000

R.200.1000.30 R.300.1000.30 R.400.1000.30 R.500.1000.30 R.600.1000.30 R.700.1000.30

ACS

EACS

PEACS

EAAS

Figure 5-7: Performance Comparison - Cost 1000 - Precedence 30

0

50000

100000

150000

200000

250000

300000

R.200.1000.60 R.300.1000.60 R.400.1000.60 R.500.1000.60 R.600.1000.60 R.700.1000.60

ACS

EACS

PEACS

EAAS

Figure 5-8: Performance Comparison - Cost 1000 - Precedence 60

42

The following charts illustrate the performance of the configurations over time for

a selection of the instances. Again, each chart represents a subset of the problems

with a particular cost and precedence probability. The average percentage difference

against the best average solution quality is plotted for each algorithm at 1 minute

intervals.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-9: Performance over time - Cost 100 - Precedence 1

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-10: Performance over time - Cost 100 - Precedence 15

43

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-11: Performance over time - Cost 100 - Precedence 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-12: Performance over time - Cost 100 - Precedence 60

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-13: Performance over time - Cost 1000 - Precedence 1

44

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-14: Performance over time - Cost 1000 - Precedence 15

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-15: Performance over time - Cost 1000 - Precedence 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

ACS

EACS

PEACS

EAAS

Figure 5-16: Performance over time - Cost 1000 - Precedence 60

45

We see that problems with a precedence probability of 15 and 30 are where our

new configurations provide the best improvement. PEACS and EAAS consistently

outperform EACS (and consequently ACS) throughout their operation. While the

margin is considerably smaller, PEACS consistently outperforms EAAS as well.

Another measure we conducted is to calculate the percentage improvement of

PEACS and EAAS against EACS per instance at one minute intervals. The results

are shown in table (5.2) and (5.3). They confirm the results obtained from the

temporal analysis.

Table 5.2: Percentage improvement of PEACS over EACS

Instance 1 min. 2 min. 3 min. 4 min. 5 min. 6 min. 7 min. 8 min. 9 min. 10 min.

R.200.100.1 -0.43 -0.83 -1.36 -2.16 -2.09 -1.74 -1.75 -1.26 -1.22 -1.26

R.200.100.15 4.07 3.55 3.25 3.19 3.14 3.02 2.89 2.89 2.96 2.93

R.200.100.30 0.09 0.04 0.08 0.09 0.09 0.10 0.14 0.13 0.14 0.15

R.200.100.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.200.1000.1 -0.70 -0.24 -0.27 -0.23 0.10 0.20 0.08 0.06 0.07 -0.06

R.200.1000.15 4.01 3.66 3.49 3.41 3.40 3.39 3.24 3.17 3.09 3.06

R.200.1000.30 0.19 0.16 0.13 0.10 0.08 0.08 0.07 0.07 0.07 0.07

R.200.1000.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.300.100.1 -4.75 -5.41 -4.62 -3.79 -2.48 -2.74 -2.24 -2.17 -1.21 -0.15

R.300.100.15 3.65 3.12 2.99 3.03 2.89 2.77 2.66 2.61 2.61 2.63

R.300.100.30 0.85 0.57 0.49 0.41 0.37 0.29 0.26 0.23 0.22 0.20

R.300.100.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.300.1000.1 -1.16 -0.87 -0.57 -0.68 -0.34 -0.27 -0.05 0.12 0.01 0.25

R.300.1000.15 3.88 4.08 3.83 3.83 3.68 3.66 3.39 3.52 3.47 3.48

R.300.1000.30 0.79 0.65 0.58 0.51 0.50 0.49 0.46 0.45 0.43 0.39

R.300.1000.60 0.01 0.02 0.03 0.02 0.03 0.03 0.04 0.04 0.04 0.04

R.400.100.1 -7.43 -7.36 -5.89 -4.72 -4.31 -2.89 -4.09 -2.70 -0.57 -0.39

R.400.100.15 7.78 8.18 7.96 7.96 7.78 7.57 7.47 7.18 7.19 7.27

R.400.100.30 0.78 0.63 0.62 0.61 0.60 0.61 0.59 0.59 0.53 0.57

R.400.100.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.400.1000.1 -0.06 1.02 1.03 0.61 0.78 0.40 0.33 0.66 0.76 1.03

R.400.1000.15 7.36 7.02 7.00 6.95 6.76 6.59 6.42 6.27 6.16 6.07

R.400.1000.30 0.68 0.58 0.57 0.58 0.53 0.53 0.52 0.52 0.50 0.49

46

R.400.1000.60 0.02 0.05 0.06 0.06 0.07 0.08 0.10 0.03 0.04 0.04

R.500.100.1 -17.02 -10.75 -10.18 -13.17 -11.18 -9.86 -9.23 -7.73 -7.78 -7.28

R.500.100.15 7.89 7.67 7.49 7.31 7.31 7.33 7.24 7.05 7.01 6.96

R.500.100.30 1.53 1.24 1.07 1.05 1.03 1.03 0.98 0.96 0.94 0.95

R.500.100.60 0.06 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02

R.500.1000.1 -1.19 -0.51 -0.99 -1.09 -1.45 -1.33 -0.75 -0.71 -0.83 -0.87

R.500.1000.15 6.90 6.91 6.64 6.58 6.56 6.53 6.44 6.26 6.13 6.14

R.500.1000.30 1.02 0.89 0.73 0.70 0.65 0.61 0.60 0.55 0.56 0.55

R.500.1000.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.600.100.1 -13.40 -12.66 -11.21 -7.63 -3.79 -3.61 -4.97 -10.16 -11.55 -11.66

R.600.100.15 9.93 9.88 9.95 10.08 10.23 10.33 10.26 10.37 10.30 10.32

R.600.100.30 1.10 1.10 1.03 0.93 0.88 0.86 0.83 0.80 0.78 0.76

R.600.100.60 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.03 0.04 0.04

R.600.1000.1 0.65 0.09 1.09 1.29 1.38 1.68 1.81 1.90 2.17 2.21

R.600.1000.15 8.34 8.06 8.16 8.27 8.01 7.99 7.94 7.80 7.61 7.44

R.600.1000.30 1.48 1.45 1.33 1.27 1.25 1.25 1.19 1.17 1.15 1.15

R.600.1000.60 -0.01 0.00 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02

R.700.100.1 -5.77 -15.27 -19.21 -19.94 -21.79 -21.60 -18.07 -19.87 -19.87 -19.36

R.700.100.15 7.46 7.99 8.23 8.31 8.29 8.33 8.36 8.27 8.20 8.24

R.700.100.30 1.14 1.06 0.90 0.81 0.74 0.67 0.65 0.63 0.62 0.57

R.700.100.60 0.06 0.06 0.05 0.04 0.01 -0.03 -0.05 -0.08 -0.08 -0.08

R.700.1000.1 0.31 0.44 0.92 0.81 1.11 1.93 1.75 1.54 1.50 1.67

R.700.1000.15 9.81 9.91 9.74 9.44 9.47 9.51 9.22 9.19 9.14 9.04

R.700.1000.30 1.09 1.06 0.98 0.95 0.94 0.91 0.90 0.91 0.89 0.86

R.700.1000.60 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05

47

Table 5.3: Percentage improvement of EAAS over EACS

Instance 1 min. 2 min. 3 min. 4 min. 5 min. 6 min. 7 min. 8 min. 9 min. 10 min.

R.200.100.1 -40.72 -38.75 -37.31 -36.69 -35.62 -33.32 -34.25 -33.85 -33.39 -32.94

R.200.100.15 -0.52 -0.20 -0.30 -0.40 -0.30 -3.31 -0.43 -0.55 -0.56 -0.53

R.200.100.30 0.12 0.09 0.10 0.10 0.10 0.00 0.10 0.08 0.08 0.07

R.200.100.60 -0.86 -0.84 -0.84 -0.84 -0.84 -0.84 -0.83 -0.83 -0.81 -0.81

R.200.1000.1 -21.97 -19.73 -18.55 -17.78 -16.92 -16.55 -15.95 -15.25 -14.73 -14.48

R.200.1000.15 2.79 2.61 2.60 2.50 2.52 -0.72 2.55 2.44 2.32 2.28

R.200.1000.30 0.12 0.08 0.08 0.06 0.04 -0.04 0.04 0.03 0.03 0.03

R.200.1000.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

R.300.100.1 -62.08 -61.69 -60.84 -60.34 -59.66 -58.60 -59.56 -59.00 -58.69 -58.29

R.300.100.15 1.81 1.98 2.11 2.27 2.38 -0.49 2.16 2.23 2.30 2.33

R.300.100.30 0.51 0.40 0.35 0.28 0.24 -0.12 0.14 0.12 0.12 0.10

R.300.100.60 -0.35 -0.35 -0.35 -0.34 -0.31 -0.29 -0.29 -0.29 -0.29 -0.29

R.300.1000.1 -28.95 -26.42 -24.55 -23.94 -23.20 -22.99 -22.49 -22.07 -21.95 -21.54

R.300.1000.15 3.01 3.22 3.54 3.61 3.52 -0.35 3.04 3.15 3.14 3.24

R.300.1000.30 0.58 0.44 0.38 0.32 0.32 -0.17 0.30 0.29 0.27 0.23

R.300.1000.60 -0.61 -0.58 -0.58 -0.58 -0.58 -0.61 -0.58 -0.59 -0.60 -0.60

R.400.100.1 -68.18 -68.62 -67.83 -67.73 -67.14 -65.57 -66.66 -66.50 -66.51 -66.58

R.400.100.15 5.91 7.02 7.04 7.39 7.22 -0.43 7.05 6.86 6.81 6.85

R.400.100.30 0.88 0.80 0.75 0.71 0.63 0.01 0.59 0.56 0.50 0.49

R.400.100.60 -0.78 -0.75 -0.75 -0.75 -0.75 -0.74 -0.73 -0.72 -0.72 -0.71

R.400.1000.1 -31.92 -30.64 -28.61 -27.31 -26.56 -26.29 -25.44 -24.46 -24.18 -23.95

R.400.1000.15 4.97 5.89 5.95 6.01 6.00 -0.70 5.78 5.67 5.62 5.58

R.400.1000.30 0.23 0.17 0.15 0.18 0.20 -0.35 0.17 0.20 0.20 0.21

R.400.1000.60 -0.31 -0.28 -0.27 -0.26 -0.26 -0.35 -0.25 -0.31 -0.31 -0.31

R.500.100.1 -69.56 -72.82 -75.02 -76.92 -77.25 -74.65 -77.39 -76.86 -76.73 -76.70

R.500.100.15 5.28 6.06 6.18 6.21 6.38 -0.86 6.60 6.57 6.51 6.59

R.500.100.30 0.86 0.77 0.67 0.72 0.73 -0.29 0.70 0.69 0.67 0.65

R.500.100.60 -0.62 -0.59 -0.58 -0.58 -0.58 -0.57 -0.56 -0.56 -0.55 -0.55

R.500.1000.1 -32.50 -32.55 -33.11 -31.52 -30.94 -29.13 -29.53 -28.36 -27.27 -26.94

R.500.1000.15 2.88 4.69 5.06 5.42 5.68 -0.72 5.89 5.76 5.69 5.76

R.500.1000.30 0.63 0.61 0.54 0.52 0.51 -0.13 0.46 0.42 0.42 0.44

R.500.1000.60 -0.64 -0.61 -0.59 -0.58 -0.58 -0.58 -0.57 -0.57 -0.57 -0.57

R.600.100.1 -69.97 -76.11 -78.96 -80.05 -80.94 -80.84 -82.32 -83.50 -83.86 -84.13

48

R.600.100.15 4.18 7.10 8.38 9.05 9.68 -0.31 9.96 10.07 10.12 10.16

R.600.100.30 0.41 0.53 0.55 0.50 0.48 -0.39 0.44 0.42 0.41 0.41

R.600.100.60 -0.75 -0.68 -0.66 -0.63 -0.62 -0.62 -0.59 -0.58 -0.58 -0.57

R.600.1000.1 -29.10 -31.13 -30.67 -31.12 -31.35 -31.79 -29.84 -29.47 -29.12 -28.70

R.600.1000.15 0.17 2.92 4.39 5.48 5.96 -1.68 6.36 6.30 6.19 6.20

R.600.1000.30 0.93 1.21 1.20 1.16 1.18 -0.07 1.12 1.12 1.10 1.06

R.600.1000.60 -0.76 -0.68 -0.67 -0.61 -0.61 -0.59 -0.60 -0.60 -0.59 -0.59

R.700.100.1 -66.38 -75.69 -79.66 -81.80 -83.59 -80.06 -84.71 -85.50 -86.10 -86.48

R.700.100.15 0.52 3.15 4.54 5.26 5.84 -2.01 6.50 6.77 6.86 7.03

R.700.100.30 -0.08 0.32 0.33 0.30 0.31 -0.41 0.25 0.24 0.23 0.21

R.700.100.60 -0.87 -0.73 -0.67 -0.64 -0.66 -0.66 -0.73 -0.74 -0.74 -0.73

R.700.1000.1 -28.41 -30.84 -31.83 -31.89 -32.00 -32.88 -31.70 -31.87 -32.03 -31.78

R.700.1000.15 0.93 3.67 5.51 6.21 6.81 -2.08 7.35 7.44 7.48 7.57

R.700.1000.30 0.20 0.53 0.65 0.70 0.75 -0.13 0.78 0.78 0.76 0.75

R.700.1000.60 -0.87 -0.83 -0.80 -0.78 -0.77 -0.80 -0.75 -0.74 -0.74 -0.73

49

In the following chart, we illustrate the percentage improvement provided by

PEACS vs EACS at each one minute interval.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Percentage Improvement

Figure 5-17: Percentage Improvement Over Time: PEACS vs. EACS

In the following chart, we illustrate the percentage improvement provided by

EAAS vs EACS at each one minute interval for problems with precedence proba-

bility 15 & 30.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Percentage Improvement

Figure 5-18: Percentage Improvement Over Time: EAAS vs. EACS

5.2.2 Statistical Significance

To assess the performance difference between each pair of methods, we needed

to utilize a statistical measure. One way to do this is to take each problem and

determine if one algorithm was better than the other “with a statistically significant

difference”, and if so, count it as a significant win for the winner. Counting the

number of significant wins would give us an idea of what the better algorithm is,

especially if one of them obtains either a significant win, or at worst a statistically

insignificant loss. Tests of this manner include the two–sample Student t–test and

the Wilcoxon rank–sum test.

Alternatively, we can take the average result returned for each problem instance by

an algorithm, and match each result against its counterpart from another algorithm.

50

These pairs are then passed to a statistical test to asses whether one algorithm is

better “with a statistically significant difference”. Such tests include the one–sample

Student t–test and the Wilcoxon signed–ranks test.

We opted to use the Wilcoxon signed–ranks test. One reason for this is that

it is not dependent on the distribution of the differences between pair, unlike the

Student t–test which favours normal distributions. The other is based on the following

argument by Demšar [10]:

Some authors prefer to count only the significant wins and losses, where

the significance is determined using a statistical test on each data set.... The

reasoning behind this practice is that “some wins and losses are random and

these should not count.” This would be a valid argument if statistical tests

could distinguish between the random and non–random differences. However,

statistical test only measure the improbability of the obtained experimental

result if the null hypothesis was correct, which is not even the (im)probability

of the null–hypothesis.

For the sake of argument, suppose that we compared two algorithms on one

thousand different data sets. In each and every case, algorithm A was better

than algorithm B, but the difference was never significant. It is true that for

each single case the difference between the two algorithms can be attributed to

a random chance, but how likely is it that one algorithm was just lucky in all

1000 out of 1000 independent experiments?

Contrary to the popular belief, counting only significant wins and losses

therefore does not make the tests more but rather less reliable, since it draws

an arbitrary threshold of p < 0.05 between what counts and what does not.

Two algorithms are compared in the Wilcoxon signed–ranks test as follows:

1. For each problem instance, calculate the difference between the average solution

cost returned by the algorithms.

2. Discard differences with a value of zero.

51

3. Denote the number of remaining difference as N .

4. Rank the differences according to their absolute values in ascending order. As-

sign differences with same value the average of their ranks.

5. Denote the summation of the ranks representing positive differences as W+.

6. Denote the summation of the ranks representing negative differences as W−.

7. Denote W = min(W+,W−).

8. Calculate the following:

z =
W − 1

4
N(N + 1)√

1
24
N(N + 1)(N + 2)

(5.1)

9. Calculate the probability value p corresponding to the value of z in a standard

normal distribution (We can do this since N is large enough; for values of

N < 15, we need to resort to critical value tables). A value of p < 0.05 indicates

that the difference in performance between the two algorithms is statistically

significant (the value 0.05 is a bit arbitrary; sometimes 0.1 is used).

The results of the Wilcoxon signed–ranks tests are shown in Table (5.4). In all

but one case, p is several orders of magnitude less than 0.05 and we can conclude that

there is a statistically significant difference for them. EACS performs significantly

better than ACS. EAAS performs better than EACS if we take only the instances

with precedence probability 15 & 30 into consideration. PEACS is the best algorithm,

performing significantly than all other configurations, regardless of whether we take

all instances or only precedence probability 15 & 30 into consideration.

5.3 Experiments on the exploitation parameter q0

The parameter q0 controls how often ACS opts to choose the next node determin-

istically, rather than a make a probabilistic choice biased by the knowledge gathered

52

Table 5.4: Results of Wilcoxon Signed-ranks Tests

Hypothesis W+ W− N z p-value

EACS vs. ACS 16 1019 45 -5.66 2.00E-08

PEACS vs. ACS 7 1028 45 -5.76 8.00E-09

PEACS vs. EACS 58.5 802.5 41 -4.82 1.00E-06

EAAS vs. ACS 376 800 48 -2.17 3.01E-02

EAAS vs. EACS 581 595 48 -0.07 9.47E-01

EAAS vs. EACS (1 & 60) 300 0 24 -4.28 1.94E-05

EAAS vs. EACS (15 & 30) 3 297 24 -4.2 2.84E-05

EAAS vs. PEACS 1176 0 48 -6.03 1.69E-09

EAAS vs. PEACS (1 & 60) 300 0 24 -4.28 1.94E-05

EAAS vs. PEACS (15 & 30) 300 0 24 -4.28 1.94E-05

by the system so far. Our modification in PEACS aimed to make ACS less exploita-

tive. Another way to achieve the same goal is to decrease the value of q0. Note that

we ran all configurations for only 5 times per instance with the exception of the base

EACS implementation, which ran for 30 times per instance. The results are presented

in table (5.5).

Table 5.5: Results of q0 experiment

Instance EACS PEACS EACS w/ s = 4 EACS w/ s = 10 EACS w/ q0 = 5/6

R.200.100.1 72.87 73.8 71.4 76.4 73.6

R.200.100.15 1889.53 1835.7 1923.6 1919.8 1842

R.200.100.30 4229.03 4222.5 4223.8 4229 4229

R.200.100.60 71749 71749 71749 71749 71749

R.200.1000.1 1458.9 1459.8 1470.2 1480.2 1459.4

R.200.1000.15 21503.37 20864.9 21500.4 21347.8 21113.6

R.200.1000.30 41223.33 41196 41196 41196 41196

R.200.1000.60 71556 71556 71556 71556 71556

53

R.300.100.1 43.6 43.67 43.4 44.4 46.8

R.300.100.15 3316.5 3231.43 3334.2 3306.2 3257.8

R.300.100.30 6132.17 6120 6133 6128.4 6120

R.300.100.60 9726 9726 9726 9726 9726

R.300.1000.1 1449.93 1446.27 1463.6 1477.2 1495.4

R.300.1000.15 31108.43 30062 31040.6 31262 30070

R.300.1000.30 54396.73 54183.27 54340.4 54247.8 54269.8

R.300.1000.60 109590 109549.23 109590 109566.2 109590

R.400.100.1 34.3 34.43 31 34.6 34.2

R.400.100.15 4323.67 4030.5 4247.6 4224.8 4070.8

R.400.100.30 8230.27 8183.7 8207.6 8191 8181

R.400.100.60 15228 15228 15228 15228 15228

R.400.1000.1 1533.2 1517.63 1518.6 1547.6 1670.8

R.400.1000.15 42670.97 40228.4 42145.4 41859.8 40644.2

R.400.1000.30 85738.77 85323.67 85426.6 85589.4 85340.6

R.400.1000.60 140931.5 140877.6 140816 140816 140908.4

R.500.100.1 23.37 25.2 22.2 19.4 29.2

R.500.100.15 5892.1 5508.67 5840.6 5862.6 5555.2

R.500.100.30 9765.43 9673.8 9770.8 9751.6 9710.8

R.500.100.60 18267.2 18263.8 18264.6 18251.8 18261.6

R.500.1000.1 1546.87 1560.47 1554.2 1548.6 1884

R.500.1000.15 54705.2 51541.13 55205.4 55104.2 52148.8

R.500.1000.30 99692.3 99142.17 99499.6 99495.4 99209.6

R.500.1000.60 178212 178212 178212 178212 178212

R.600.100.1 16.07 18.3 12.8 13.6 77.6

R.600.100.15 6442.47 5839.7 6437.2 6387.2 5975.8

R.600.100.30 12569.37 12474.43 12553 12524.6 12493.6

R.600.100.60 23326 23317.2 23299.6 23293 23299.6

R.600.1000.1 1646.57 1611 1629.8 1633 2193.8

R.600.1000.15 62188.23 57880.77 63181.6 62993.6 59006.6

R.600.1000.30 128613.23 127153.73 128206 127788 127346.6

R.600.1000.60 214700.93 214747.97 214652.2 214608 214652.2

R.700.100.1 11.77 14.63 8.6 11.4 72

54

R.700.100.15 8021.33 7410.5 8087.6 7956 7594.4

R.700.100.30 14613.23 14530.4 14627 14615.6 14559.4

R.700.100.60 24124 24143.6 24136 24104.8 24122.8

R.700.1000.1 1614.23 1587.27 1619.2 1639 2421

R.700.1000.15 74680.07 68490.43 74602 74874.2 70176.4

R.700.1000.30 135868.53 134710.87 135680.8 135236.2 134877.2

R.700.1000.60 245780.63 245655.33 245665.8 245634 245634

The results show that changing the value of s from the original value of 5 to either

4 or 10 seems to improve the results considerably for a subset of the instances. The

improvement in those problems was just enough to show up in our statisical test as

significant, but keep in mind that the modified EACS configurations were only run for

5 times per instance, so we cannot claim this to be conclusive. An interesting outcome

came from fixing q0 at the considerably lower value of 5/6 (approximately 83%). This

improved the average solution quality of EACS against most of the instances, but

caused a massive decrease of quality against others. Even at its best, though, it was

still considerably outdone by PEACS. This is verified by the Wilcoxon test results in

table (5.6).

Table 5.6: Results of Wilcoxon Signed-ranks Tests for q0 experiment

Hypothesis W+ W− N z p-value

EACS vs. EACS w/ s = 4 638 265 42 -2.33 2.00E-02

EACS vs. EACS w/ s = 10 676 270 43 -2.45 1.45E-02

EACS vs. EACS w/ q0 = 5/6 707 196 42 -3.19 1.43E-03

PEACS vs. EACS w/ q0 = 5/6 84 777 41 -4.49 7.34E-06

55

Chapter 6

Analysis

We have shown in the previous chapter how both of our contributions show a

significant improvement over the current state of the art method of solving the se-

quential ordering problem, EACS, in a considerable number of instances. We provide

a little discussion as to why.

With regards to PEACS, we hypothesized that this could be a result of affecting

one or more of the following:

1. Increased diversity, or more formally an increase in the average edge distance

between solutions generated in a single iteration

2. An increase of the rate of “good” solutions generated. A solution is considered

if it falls under the 20% difference threshold

These two factors can be affected by manipulating the value of q0. In general, q0 was

found in our experiments to be proportional to diversity, and inversely proportional

to the generation rate of good solutions.

We were unable to find a pattern that is consistent across all instances. Exhibiting

a greater solution diversity and good solution rate did not guarantee better solution

quality for the same time interval. Exhibiting a higher value in only one of them did

not result in consistently better or worse solution quality either. At this point, we

can only speculate that under certain edge desirability matrix conditions, PEACS,

56

with its lower exploitation bias, has a much easier time at finding improvements than

standard EACS.

As for EAAS, we can say in short is that its philosophy is that the desirabil-

ity of an edge should depend entirely on the quality of end solutions it was a part

of. This technique so far seems to help it against certain conditions more than oth-

ers. Of course, our implementation is merely a quick attempt at incorporating the

EigenAnt idea against a full-fledged problem, rather than a simple abstract shortest

path problem. Due to this, our implementation suffers from the fact that updating

the pheromone trail on an edge is actually equivalent to updating the pheromone

trails on multiple paths, rather than just one. This is probably the reason why it

performs poorly against some of the instances, and to why it still loses to PEACS in

all of them.

57

Chapter 7

Future work

Future work on the algorithms we presented would include further analysis into

the reasons they give such positive results. In particular, we will try to investigate

into why problems with precedence 15 & 30 greatly benefit from our configurations

and not the rest. Possible metrics to analyze would be the pheromone distribution

and the edge distance between solutions.

Another thing to look into with regards to PEACS is how much does evapora-

tion affect solution quality. Specifically, we can try to eliminate local evaporation

completely and measure the performance. Of course, in this case it would proba-

bly stagnate quickly, but some small experiments we conducted have shown that the

system generates some very good solutions before that. Experimenting with q0 is

another track we can undertake.

EAAS provides room for exploration as well. Our configuration was one made

very quickly using our EACS implementation. It currently suffers from the fact that

the actual paths intersect, and hence do not have entirely independent pheromone

levels. Finding a way to separate them should lead to an interesting effect on solution

quality. Merging PEACS and EAAS together is of course another track we can take.

58

Bibliography

[1] A. Bhaya, Jayadeva, R. Kothari, S. Chandra, S. Shah, “Ants find the shortest

path: a mathematical proof”, Swarm Intelligence: 1-20

[2] A. Ezzat, A.M. Abdelbar, “A Bare-Bones ACO Algorithm that Performs Com-

petitively on the Sequential Order Problem”, IEEE Transactions on Evolutionary

Computation, under review

[3] A. Ezzat, A.M. Abdelbar, “A Less Exploitative Variation of the Enhanced Ant

Colony System Applied to SOP”, IEEE Congress on Evolutionary Computation,

to appear, 2013

[4] A.M. Abdelbar, “Stubborn ants,” Proceedings IEEE Swarm Intelligence Sympo-

sium (SIS-08), pp. 1-5, 2008.

[5] A.M. Abdelbar, “Is there a computational advantage to representing evaporation

rate in ant colony optimization as a gaussian random variable?,” Proceedings

Fourteenth International Conference on Genetic and Evolutionary Computation

Conference (GECCO-12), pp. 1-8. 2012.

[6] A.M. Abdelbar, and D.C. Wunsch, “Improving the performance of MAX-MIN

ant system on the TSP using stubborn ants,” Proceedings Fourteenth Interna-

tional Conference on Genetic and Evolutionary Computation (GECCO-12) Con-

ference Companion, pp. 1395-1396, 2012.

59

[7] D. Anghinolfi, R. Montemanni, M. Paolucci, and L.M. Gambardella, “A particle

swarm optimization approach for the sequential ordering problem,” Proceedings

VIII Metaheuristic International Conference (MIC 2009), 2009.

[8] D. Anghinolfi, R. Montemanni, M. Paolucci, and L.M. Gambardella, “A hy-

brid particle swarm optimization approach for the sequential ordering problem,”

Computers and Operations Research, Vol. 38, No. 7, pp. 1076–1085, 2011.

[9] N. Ascheuer, “Hamiltonian path problems in the on-line optimization of flexible

manufacturing systems,” PhD Thesis, Technische Universitat Berlin, 1995.

[10] J. J. Bentley, “Fast algorithms for geometric traveling salesman problems,”

ORSA Journal on computing 4.4 (1992): 387-411.

[11] B. Bullnheimer, R.F. Hartl, and C. Strauss, “An improved ant system algorithm

for the vehicle routing problem,” Annals of Operations Research, Vol. 89, pp.

25–38, 1999.

[12] S. Chen, and S. Smith, “Commonality and genetic algorithms,” Technical Report

CMURI-TR-96-27, The Robotic Institute, Carnagie Mellon University, 1996

[13] O. Cordón, I. F. de Viana, and F. Herrera, “Analysis of the best-worst ant system

and its variants on the TSP,” Mathware and Soft Computing, Vol. 9, No. 2-3,

pp. 177-192, 2002.

[14] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Ma-

chine Learning Research, Vol. 7, pp. 1-30, 2006.

[15] M. Dorigo, and L.M. Gambardella, “Ant colony system: a cooperative learning

approach to the traveling salesman problem,” IEEE Transactions on Evolution-

ary Computation, Vol. 1, No. 1, pp. 35–66, 1997

[16] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony

of cooperative agents,” IEEE Transactions on Systems, Man and Cybernetics,

Vol. 26, No. 1, pp. 29-41, 1996.

60

[17] M. Dorigo, and T. Stützle, Ant Colony Optimization, MIT Press, Cambridge,

2004.

[18] M. Dorigo, and T. Stützle, “Ant colony optimization: overview and recent ad-

vances,” In: M. Gendreau, and Y. Potvin, eds., Handbook of Metaheuristics, 2nd

edition, Springer-Verlag, New York, pp. 227–263, 2010.

[19] L.F. Escudero, “An inexact algorithm for the sequential ordering problem,” Eu-

ropean Journal of Operational Research, Vol. 37, pp. 232–253, 1988.

[20] L.M. Gambardella, and M. Dorigo, “An ant colony system hybridized with a

new local search for the sequential ordering problem,” INFORMS Journal on

Computing, Vol.12, No. 3, pp. 237–255, 2000.

[21] L.M. Gambardella, R. Montemanni, and D. Weyland, “Coupling ant colony sys-

tems with strong local searches,” European Journal of Operational Research, Vol.

220, No. 3, pp. 831–843, 2012.

[22] F. Guerriero, and M. Mancini, “A cooperative parallel rollout algorithm for the

sequential ordering problem,” Parallel Computing, Vol. 29, No. 5, pp. 663–677,

2003.

[23] G. Kindervater, and M. Savelsbergh, “Vehicle routing: handling edge exchanges,”

In: E.H.L. Aarts, and J.K. Lenstra, eds., Local Search in Combinatorial Opti-

mization, Wiley, Chichester, pp. 337–360, 1997.

[24] S. Lin, “Computer solutions of the traveling salesman problem,” Bell Systems

Technical Journal, Vol. 44, pp. 2245–2269, 1965.

[25] S. Lin, and B.W. Kernighan, “An effective heuristic algorithm for the traveling–

salesman problem,” Operations Research, Vol. 21, pp. 498–516, 1973.

[26] R. Montemanni, SOPLIB2006 Problem Instance Library. URL http://www.

idsia.ch/~roberto/SOPLIB06.zip

61

[27] R. Montemanni, D.H. Smith, and L.M. Gambardella, “Ant colony systems for

large sequential ordering problems,” Proceedings IEEE Swarm Intelligence Sym-

posium (SIS-07), pp. 60-67, 2007

[28] R. Montemanni, D.H. Smith, and L.M. Gambardella, “A heuristic manipula-

tion technique for the sequential ordering problem,” Computers and Operations

Research, Vol. 35, No. 12, pp. 3931–3944, 2008.

[29] R. Montemanni, D.H. Smith, A.E. Rizzoli, and L.M. Gambardella, “Sequential

ordering problems for crane scheduling in port terminals,” International Journal

of Simulation and Process Modelling, Vol. 5, No. 4, pp. 348–361, 2009.

[30] I. Or, “Traveling salesman–type combinatorial problems and their relation to the

logistics of regional blood banking,” PhD Thesis, Northwestern University, 1976.

[31] W. Pullyblank, and M. Timlin, “Precedence constrained routing and helicopter

scheduling: heuristic design,” Technical Report RC17154 (#76032), IBM T.J.

Watson Research Center, 1991

[32] M.W.P. Savelsbergh, “An efficient implementation of local search algorithms for

constrained routing problems,” European Journal of Operational Research, Vol.

47, pp. 75–85, 1990.

[33] D.I. Seo, and B.R. Moon, “A hybrid genetic algorithm based on complete graph

representation for the sequential ordering problem,” Proceedings International

Conference on Genetic and Evolutionary Computation (GECCO-03), pp. 69–

680, 2003.

[34] T. Stützle, ACOTSP: a software package for various ant colony optimization

algorithms applied to the symmetric traveling salesman problem, URL http:

//www.aco-metaheuristic.org/aco-code/

[35] T. Stützle, and H. Hoos, “MAX–MIN ant system,” Future Generation Computer

Systems, Vol. 16, No. 8, pp. 889–914, 2000.

62

	Ant Colony Optimization approaches for the Sequential Ordering Problem
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592580242.pdf.089dB

