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ABSTRACT

Sentiment classification is an emerging research field. Due to the rich opinionated web-

content, people and organizations are interested in knowing others’ opinions, so they need

an automated tool for analyzing and summarizing these opinions. One of the major tasks

of sentiment classification is to classify a document (i.e. a blog, news article or review)

as holding an overall positive or negative sentiment. Machine learning approaches have

succeeded in achieving better results than semantic orientation approaches in document-

level sentiment classification; however, they still need to take linguistic context into account,

by making use of the so-called contextual valence shifters. Early research has tried to add

sentiment features and contextual valence shifters to the machine learning approach to tackle

this problem, but the classifier’s performance was low.

In this study, we would like to improve the performance of document-level sentiment

classification using the machine learning approach by proposing new feature sets that re-

fine the traditional sentiment feature extraction method and take contextual valence shifters

into consideration from a different perspective than the earlier research. These feature sets

include: 1) a feature set consisting of 16 features for counting different categories of contex-

tual valence shifters (intensifiers, negators and polarity shifters) as well as the frequency of

words grouped according to their final (modified) polarity; and 2) another feature set consist-

ing of the frequency of each sentiment word after modifying its prior polarity. We performed

several experiments to: 1) compare our proposed feature sets with the traditional sentiment

features that count the frequency of each sentiment word while disregarding its prior polar-

ity; 2) compare our proposed feature sets after combining them with stylistic features and

n-grams with traditional sentiment features combined with stylistic features and n-grams;

and 3) evaluate the effectiveness of our proposed feature sets against stylistic features and n-
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grams by performing feature selection. The results of all the experiments show a significant

improvement over the baselines, in terms of the accuracy, precision and recall, which indicate

that our proposed feature sets are effective in document-level sentiment classification.
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CHAPTER 1

INTRODUCTION

People are now interested in knowing what other people think. Due to the rich opinion-

ated content on the web, such as blogs, reviews, web forums, social networks and others,

people can now know others’ opinions about different topics without even knowing them.

Such available opinions are significant at the personal, corporate and governmental levels.

At the personal level, most people now do online product research before buying any prod-

ucts to know what is said in the reviews about this product and their buying decisions get

affected by these reviews. People also tend to gather political opinions and sharing them

on the web. At the corporate level, companies always seek their consumers’ feedback about

their products and/or services by conducting surveys and focus groups, since it will be a labo-

rious task to gather and analyze hundreds or thousands of reviews published online. Finally,

at the governmental level, governmental organizations are interested in knowing people’s

reactions towards the new rules and regulations that they set [26].

Therefore, an automated tool is needed to crawl opinions about different topics on the

web, according to one’s interest, and display them in a summarized, meaningful, and less

confusing or overwhelming way such that he/she does not have to manually read or analyze

them. As a result, sentiment classification has been emerging as a new field in computa-

tional linguistics, natural language processing (NLP) and machine learning (ML). It is the

area of research that attempts to identify the sentiment/opinion of a piece of text (whether a

document, sentence or phrase) that is held from the author of the text [20].

In this study, we are interested in document-level sentiment classification, where the goal
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is to classify a whole document (i.e. a review, a blog, a news article ...etc) as holding an

overall positive or negative sentiment. We have studied the early and current research done

in this area, and we would like to improve the performance of the document-level sentiment

classification by proposing new features to use.

This chapter is organized as follows: section 1.1 describes the problem definition for un-

dertaking this specific area of research in our study; section 1.2 explains our motivation and

goal for working in document-level sentiment classification as well as our main contributions

in this study; and finally section 1.3 will list the chapters and sections in this study and what

each one will talk about.

1.1 Problem Definition

Many researchers have focused their work on document-level sentiment classification,

where the task is to identify the overall sentiment of a given document, assuming it holds

the opinion of one author and talks about one object. There are mainly two approaches for

this task: the ML and semantic orientation (SO) approaches, as will be discussed in section

2.2. Some researchers have developed document-level sentiment classification tools using

the current ML algorithms, such as Support Vector Machines (SVM) and/or Naive Bayes

(NB), using different feature sets to represent the documents; whereas others have centered

their attentions on building sentiment dictionaries (lexicons) with all possible polar words

with a corresponding number or score showing their polarity and/or semantic intensity. Both

approaches have their advantages and disadvantages. For instance, the ML approach is typ-

ically supervised and needs a huge annotated training data, but it yields high performance

when testing on data from the same domain. On the other hand, the SO approach is unsuper-

vised, yet it does not generate such good results as the ML. Hence, there have been recently

some attempts to combine both approaches using different techniques, as we will show in

section 2.4. One example of such hybrid approaches is to add the frequency of SO-carrying

words as features in the ML approach. However, counting the frequency of sentiment words

does not yield accurate results due to the contextual polarity of some of these words. Com-

puting the contextual polarity of sentiment words has shown a significant improvement in
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the SO approach [7, 34], but it has only been handled in sentence-level and phrase-level

sentiment classification [39, 22, 8].

1.2 Motivation and Goal

Sentiment classification is different from classic text classification, since the latter de-

pends on a set of keywords and phrases that can be used as features, for topical text classi-

fication for instance. However, sentiment classification cannot depend on a set of keywords

and/or phrases only, since opinions can be expressed in more subtle ways that can be hard

for the computer to learn. Hence, new features were designed and explored specifically for

sentiment classification, such as: a sentiment lexicon. A sentiment lexicon should contain

all words and/or phrases that carry SO. Many researchers have developed different sentiment

lexicons, such as SentiWordNet [13, 5] and the Subjectivity dictionary [39]. Still, using in-

dividual words only to extract sentiment was not efficient, since the word’s polarity can be

affected by its context; e.g. the polarity and semantic intensity of the word “good” is differ-

ent from that of the words “not good” and “very good”, respectively. Also, not all sentiment

words should be regarded as carrying SO in special conditions, such as conditional and con-

trast words as well as modal verbs; e.g. in the sentence “Although he was brilliant, he failed

the exam”, the adjective brilliant should be disregarded as a sentiment word, such that the

overall sentiment of the sentence is negative, from the verb failed. Hence, the authors in [28]

defined different categories for contextual valence shifters that can change the prior polarity

of the SO-carrying words and hence should be considered when extracting sentiment, as we

will explain in section 2.1. The authors in [39] developed a sentence-level classifier that

considers two types of the contextual valence shifters; intensifiers and modifiers. In addi-

tion, the authors in [7, 34] developed a sentiment lexicon (SO-CALculator) and additional

features that take contextual valence shifters into consideration and then used them to extract

all sentiment words and sum up their polarity scores.

The ML approach has outperformed the SO approach in the literature for the sentiment

classification task. Therefore, in this research, we wanted to improve the accuracy of the

document-level sentiment classifier even further by incorporating contextual valence shifters
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in an effective way and refining the sentiment feature extraction method used in [9], where

they extracted all SO-carrying words while disregarding their contextual polarity.

Our main contributions in this study are: 1) To refine the traditional sentiment feature

extraction method that counts the frequency of each sentiment word while disregarding its

contextual polarity; 2) To propose a new technique to extract contextual valence shifters in

the ML approach in a way that the classifier can learn the effect of these shifters; 3) To show

that our proposed feature set to handle the effect of contextual valence shifters is effective

and relevant for the classifier; and 4) To improve the sentiment classification performance at

the document-level by incorporating our proposed feature sets.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows: chapter 2 contains 3 sections. Section 2.1

defines and explains the categories of contextual valence shifters, section 2.2 reviews the dif-

ferent approaches used for document-level sentiment classification, section 2.3 explains the

theoretical foundations of SVM and the dependency parser, and then section 2.4 compares

these approaches and surveys the attempts to combine them together. In chapter 3, we talk

about our proposed model and feature sets for document-level sentiment classification. Sec-

tion 3.1 discusses the classification model and its different phases. Then, section 3.2 will list

the tools that we will use for developing the model and our proposed feature sets and describe

each one of them. Then, we explain how we will extract the proposed features in section 3.3,

section 3.4 analyzes the running time for the algorithms used in terms of big O notation and

section 3.5 explains the evaluation methodology that we will follow to evaluate our proposed

feature sets performance. In chapter 4, we will discuss and analyze the 3 differents sets of

experiments that we have performed to evaluate the performance of our proposed feature sets

against the baseline and discuss the results. Finally, in chapter 5, we will conclude the thesis

and list some directions for future work. There are 4 appendices at the end of the document.

Appendix A shows the feature sets used in our experiments; appendix B includes some of the

lists used to extract our proposed features; appendix C explains different combinations of the

variables used in the proposed algorithm and the result of each one; and appendix D shows
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some sample documents from the datasets we have used in our experiments, their extracted

features from both the baseline and our proposed feature sets and their classification in both

cases.
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CHAPTER 2

LITERATURE SURVEY

Sentiment classification has been recently the interest of many researchers, due to the

enormous opinionated web content, including blogs, reviews and social network applica-

tions. Rather than searching for facts, where most search engines have focused, people are

now also interested in searching for other people’s opinions on the web. For example, when

buying a new product, a person is interested in knowing the opinions of those who have al-

ready bought it, so he is interested in having an automated tool that crawls the reviews on this

product on the web and gives him a summary of the reviews. Thus, given a certain piece of

text, the tasks of sentiment classification are: 1) classify it as holding subjective or objective

information (known as subjectivity analysis); 2) if it is subjective, determine its polarity as

positive or negative; and 3) determine its semantic intensity as strong or weak. Researchers

may focus on one or more of these tasks, and they can also focus on one or more type of

text; whether it is a phrase, sentence or a document. For a more comprehensive review on

sentiment classification, see [26, 20].

In this chapter, I review some of the research that has been done in sentiment classi-

fication, and my focus is at the document-level, where the problem is to classify a whole

document (whether a review, news article, blog . . . etc) as holding an overall positive or neg-

ative sentiment. For this task, an assumption is being made that the document is subjective,

talking about one object only and holding the opinion of one author [20]. There are mainly

two approaches for document-level sentiment classification: the ML and the SO approaches.

There has been recently some work trying to build a hybrid model combining both of them.
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This chapter is organized as follows: section 2.1 defines contextual valence shifters and

its importance in sentiment classification. In section 2.2, I talk more in-depth about the ML

approach and the different feature sets used in the literature and then give a survey about the

SO approach and the recent work done in this direction. Then, in section 2.3, I will explain

in brief the theoretical foundations of SVM and the dependency parser, since they were used

in the literature and will be used in our experiments. Finally, in section 2.4, I will compare

both the ML and SO approaches and review the different techniques for combining them.

2.1 Contextual Valence Shifters

Traditional sentiment classification research tried to extract individual terms that indicate

prior positive or negative polarity and build a dictionary of polar words. However, such indi-

vidual terms are not sufficient to determine the true or contextual polarity of the document.

The valence of a polar term may be modified by one or more words, the so-called “contextual

valence shifters” [28]. These shifters can be categorized into several types, some of them are:

1. Negators:

The polarity of a term may be reversed by a negation term like: “not”, “never”, “no-

body” . . . etc. For example:

He never succeeds his exams.

The word “never” changes the polarity of the adjective “successful” from positive to

negative [28].

2. Intensifiers:

A polar term may be modified by one or more intensifiers. An intensifier is an adjec-

tive or an adverb that increases (called amplifier) or decreases (called down-toner) the

semantic intensity of the word next to it. Adverbs often modify verbs, adverbs and

nouns, whereas adjectives modify nouns only [34]. For example:

I was very excited to attend the party.

There is little truth about that.
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In the first sentence, the adverb “very” increases (or amplifies) the polarity of the

positive adjective “excited”, so if its polarity was +2, it would be +3. In the second

sentence, the adjective “little” decreases (or down-tones) the semantic intensity of the

noun “truth”, from, for example, +2 into +1.

3. Modals and conditional words:

Language can express two types of events: those that truly happened (called realis

events) and those that cannot have happened (called irrealis events). An irrealis event

can be conveyed using a modal operator (such as: might, could or should) or a condi-

tional word (such as: if or unless). Polar words that occur with modals or conditional

words should not be taken into consideration as carrying any SO for they do not convey

any. For example:

This should be a good movie.

If John was nice, he would have more friends.

In the first sentence, “should” neutralizes the positive polarity of the adjective “good”

since it expresses the author’s expectation about the movie. In the second sentence,

the conditional word “if” and the modal “would” also neutralize the words “nice” and

“more”. As we can tell from this sentence that John is not nice at all [28], so it would

be better to reverse the polarity of the lexical items appearing after conditional words

instead of neutralizing them.

4. Presuppositional items:

These are words that can shift the base valence of the SO-carrying words towards the

other polarity, such as barely, as in “barely sufficient”. There are also some nouns and

verbs that shift the polarity of the lexical items, such as failure, neglect, lack, fail, omit

. . . etc. For example:

He failed to succeed the exam.

He lacks wisdom.

In these two sentences, the verbs “failed” and “lacks” shift the polarity of the verb

“succeed” and the noun “wisdom”, respectively, so that the whole expressions “failed

to succeed” and “lacks wisdom” are negative instead of positive [28].

9



5. Connectors:

Connectors that show contrast, such as although, but, on the contrary and in spite of,

affect the polarity of the SO-carrying words in the sentence. For example:

Although he was brilliant, he failed the exam.

In this sentence, the connector “although” neutralizes the polarity of the positive

adjective “brilliant” leaving the negative verb “failed” to determine the final polarity

of the sentence. Without doing this adjustment, the overall polarity would be neutral

[28].

In addition to the above contextual valence shifters, there are others, such as: irony, multi-

entity evaluation and genre constraints, but these are beyond our discussion here and can be

found in [28].

2.2 Approaches for Document-level Sentiment Classification

There are two assumptions when performing document-level sentiment classification: 1)

The document expresses the opinion of one author; and 2) The author talks about one object

only. Document-level sentiment classification techniques can be mainly divided into two

approaches: ML and SO. ML algorithms have succeeded in classic text categorization, and

so they were implemented for sentiment classification, but with having the target classes as

“positive” and “negative”. These algorithms are discussed in detail in [31, 40]. Supervised

ML algorithms, such as SVM, have been used extensively in the sentiment analysis research

[20, 26]. In supervised ML, a piece of text is converted into a feature vector so that the

classifier would learn from a set of data labeled with its class (called training data) that a

combination of specific features yields a specific class, and then it can test its accuracy of

learning on another set of data (called testing data). On the other hand, in the SO approach,

a sentiment lexicon is built either manually, semi-automatically or automatically with each

word having its semantic intensity as a number indicating whether it is positive or negative

as well as its intensity. Then, this lexicon is used to extract all sentiment words from the

document and sum up their polarities to determine if the document is holding an overall
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positive or negative sentiment besides its intensity.

2.2.1 The Machine Learning Approach

In the ML approach, each document is represented as a feature vector with representative

features for the target class as well as its correct class. Then, the feature vectors are inserted

into a classifier that uses a ML algorithm for training it. A set of documents are chosen for

training (called training data) to build a model for predicting the class of unseen or new data

(called testing data). Different ML algorithms have been used in the sentiment classification

literature, but SVM have dominated most of the research done. The theoretical foundation of

SVM is explained in brief in section 2.3.1. Various feature sets have been tried specifically

for sentiment classification, as discussed in [26]. Some of the significant features that are

related to our work are:

1. N-grams:

N-grams are common features to use in text classification. They are words that are

frequently repeated in the corpus. They vary from uni-grams (one word only, such as

director), bi-grams (two neighboring words, such as two stars), to tri-grams (such as

science fiction film). N-grams can be useful when capturing the sentiment of the doc-

ument, for example, the director of a movie could have done outstanding work, so its

occurrence in a review most probably indicates a positive sentiment. Many researchers

have used n-grams, especially uni-grams, since they result in a high accuracy and they

added other features as improvements to their systems [27, 38, 23, 1, 2, 9]. Some re-

searchers use uni-grams and bi-grams [9], some use bi-grams only [41], while others

use uni-, bi- and tri-grams [2, 9]. Several ML algorithms have been compared, and

SVM outperformed other algorithms [27], and hence, it has been used as a common

algorithm for sentiment classification, except for a few papers that have used NB or

ME or a combination of two or more of them [41, 42].

2. Part-Of-Speech tag n-grams:

Part-Of-Speech (POS) tag n-grams have been proven to be good indicators of senti-
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ment [16, 14, 2]. For instance, the authors in [14] experimented the effect of a combi-

nation of positive and negative nouns, verbs, adverbs and nouns and have shown that

the appearance of a positive adjective followed by a noun is more frequent in posi-

tive documents than in negative ones, and that the appearance of a negative adjective

followed by a noun is more frequent in negative documents.

3. Stylistic features:

These include lexical and structural attributes as well as punctuation marks and func-

tion words, as explained in [1, 43, 2]. The lexical features include character- or word-

based statistical measures of word variation. Examples of the character-based lexical

features are: 1) Total number of characters; 2) Characters per sentence; 3) Characters

per word; and 4) The usage frequency of individual letters. Some examples of the

word-based lexical features are: 1) Total number of words; 2) Words per sentence; 3)

Word length distribution; and 4) Vocabulary richness measures; such as: the number

of words that occur once (hapax legemona) and twice (hapax dislegemona) as well as

several statistical measures like: Yule’s K, Simposon’s D and Brunet’s W measures

[36]. The structural features include text organization and layout, for example, signa-

tures, number of paragraphs, average paragraph length, total number of sentences per

paragraph and others.

These features were used along with other features in sentiment classification research

[1, 2, 9, 3] and they improved the system’s accuracy when added [2].

4. Negation and modification features:

These are two of the important categories of the contextual valence shifters discussed

in the previous section. Early work in sentiment classification did not investigate the

effect of negation or modifiers [27], as the authors only used Bag-Of-Words (BOW)

and higher-order n-grams. As a result, two sentences like these: “I like this movie”

and “I don’t like this movie” would be similar to each other since both contain the

verb “like”, although the first one holds a positive sentiment while the second holds a

negative sentiment [26]. Modifiers also play a crucial role when classifying sentiment

since they can increase or decrease the semantic intensity of polar terms or even shift

them towards the positive or negative sentiment, as discussed in the previous section.
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Therefore, later research focused on how to detect and extract negation and modifiers

and add them as features [39, 32, 18, 33, 8]. For instance, the authors focusing on

sentence-level sentiment classification in [39] added a binary feature for each word

token to determine whether it was negated or not in addition to other features to in-

dicate whether it was modified by an adjective or adverb intensifier or one or more

contextual valence shifters that they extracted: general, negative and positive polarity

shifters. The general polarity shifter reverses the polarity of the word modified by it,

e.g. little truth. The negative polarity shifter yields an overall negative sentiment for

the overall expression, e.g. lack of wisdom. The positive polarity shifter changes the

overall sentiment of the expression to positive; for example, abate the damage [39]. In

addition, the authors in [18] used a dependency parser to extract typed dependencies

and developed special rules to determine the scope of each negation term. Further-

more, the authors in [8] used typed dependencies and a negation and quantifiers lists

to extract negated, amplified and down-toned sentiment words and build a sentence-

level polarity and intensity sentiment classifier.

5. Dependency relations:

Some researchers have explored the effect of dependency relations in sentiment clas-

sification, since they can hold more information than neighboring words (such as:

higher-order n-grams). Dependency relations are typically extracted using a depen-

dency parser. For example, the authors in [39] used a dependency parser to extract

modifiers and other dependency relations (e.g. words connected by a conjunction, like

and). Also, the authors in [41] extracted bi-grams and all dependency relations as fea-

tures besides uni-grams to improve the system’s performance. However, it was shown

in [23] that adding dependency relations with focus on adjectives preceded by nouns

and nouns that have a dependency relation with polar terms to n-grams did not improve

the performance.

Researchers have tried using different ML algorithms to compare their performance in

the sentiment classification task. It was shown in [27] that SVM outperforms both NB and

ME when using unigrams, bigrams as well as other features; and hence, most research has

used SVM and it became the default algorithm in sentiment classification. However, the au-
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thors in [41] showed that uni-grams perform better on SVM, whereas higher-order n-grams

and dependency relations perform better on NB, due to the nature of the algorithms them-

selves. They explained the difference between the performance of SVM and NB classifiers

as follows: unigrams tend to have more relevant features and less independency than higher

order n-grams. The discriminative model, SVM, can capture the complexity of relevant fea-

tures, whereas a more generative model, NB, performs well on bigrams and dependency

relations since the feature independence assumption holds well [41].

Another problem in ML besides choosing the right features is feature selection. Since

there can be redundant or irrelevant features in the feature vector that makes it unnecessarily

a huge vector, feature selection is performed to reduce the dimensionality of the feature

vector so that only representative features for the target class are remaining. By selecting

the most relevant features for the target concept, the classifier learns better which class label

to give to each vector. In addition, it reduces the running time required for the classifier on

the training data, which is crucial for real-world applications [10]. Several researchers have

implemented different feature selection methods that were used for classic text classification

and applied them to sentiment classification [2, 9]. Other researchers have developed new

algorithms for feature selection specified for sentiment classification [37, 24, 3]. But, most

research uses the Information Gain (IG) heuristic as the feature selection method due to its

reported effectiveness [2, 9, 17].

2.2.2 The Semantic Orientation Approach

In the SO approach, a document’s polarity is calculated as the sum of its polar terms

and/or expressions. Early work in this direction calculated the phrase’s polarity as the dif-

ference between the Point Mutual Information (PMI) between the phrase and the word “ex-

cellent” as representative for the positive class and the PMI between the phrase and the word

“poor” as representative for the negative class, with hit counts from AltaVista search engine

using the NEAR operator. The PMI between two words is calculated as follows [35]:

PMI(word1,word2) = log2(
p(word1&word2)

p(word1)p(word2)
) (2.1)
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where p(word1&word2) denotes the probability that both words occur together. Later, re-

searchers tried to build sentiment lexicons for words and expressions. Some researchers built

a sentiment lexicon manually, such as:

1. The General Inquirer:

The General Inquirer1 (GI) is a content-analysis tool that is used for many purposes

including sentiment classification. It contains several categories, such as Positiv and

Negativ that are mainly used for sentiment classification, as well as other categories

for words of pleasure and pain, overstatement and understatement, and others. Each

category has a list of words and word senses, so it works with Word Sense Disam-

biguation to differentiate between different word senses. Also, it combines different

dictionaries, such as “Harvard IV-4” and “Lasswell” dictionaries. It has been used in

many sentiment classification research to build other lexicons and in the ML approach

as well when using sentiment words as features such as [39, 22].

2. SO-CALculator (SO-CAL):

SO-CAL is another manually-built sentiment lexicon. The authors in [7, 34] developed

a sentiment lexicon manually, incorporating SO of individual words and contextual va-

lence shifters, but did not take into account word sense disambiguation. Their dictio-

nary includes a separate list for sentiment bearing nouns, adjectives, adverbs and verbs

with a numerical score from -5 to +5 that indicates the word’s polarity and strength.

In addition, they developed a list of amplifiers (words that increase the semantic po-

larity of words after them, such as very good) and down-toners (words that decrease

the semantic polarity of words after them, such as less successful). These modifiers

include adjectives, adverbs and multi-word expressions. They also implemented a

new method for negating words, called shift negation, instead of the traditional switch

negation method that only reverses the sign (+ or -) of the word preceded by a negated

term. This method shifts the polarity of the negated words towards the opposite polar-

ity by a fixed number (4), so for example the word “excellent” whose score is +5 when

negated, its polarity changes to +1 (5 - 1). They achieved comparable performance to

other sentiment lexicons [34].

1http://www.wjh.harvard.edu/˜inquirer/
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Other researchers built sentiment lexicons using automatic sources only or a combination of

both manual and automatic sources, such as:

1. The Subjectivity dictionary:

The authors in [39] built the subjectivity dictionary from both manual and automatic

resources, but they used it in a ML approach by developing specific features for

sentence-level sentiment classification. They started with a list of subjective clues

and then expanded them using a dictionary and thesaurus as well as positive and neg-

ative words from the General Inquirer. They obtained a list of about 8,000 words

labeled with their corresponding prior polarity (positive, negative, neutral or both),

type (strong or weak subjective) and part of speech [39].

2. SentiWordNet:

SentiWordNet was built on the English lexical database, WordNet [21], where each

group of words (nouns, adverbs, adjectives and verbs) are grouped together according

to their synsets and the concepts they hold. The annotation of words in SentiWordNet

was done automatically through a 2-step process: a weak-supervision semi-supervised

learning step, and a random-walk step. In the first step, the authors in [5] started with

a small seed list of positive and negative words and searched for words with similar

polarity using binary relations of WordNet. Then, in the second step, an iteration is

run on the words until they converge to decide on their final polarity. Each word in

SentiWordNet is associated with its Part-Of-Speech and 3 polarity types (objective,

positive and negative) and each type having a score describing its intensity (from 0 to

1) [13, 5]. This sentiment lexicon has also been used in the sentiment classification

research, such as [9] by incorporating them as features, as we will see in section 2.4.

The ML approach has dominated over the SO approach in the literature, since there are

many features that can determine the polarity of documents. But, the SO approach has better

generality across domains, as it is not domain-specific. Similar to the concern of the ML

approach, which is choosing the right features, the concern in the SO approach is to build

a comprehensive lexicon with correct prior polarity to the words and methods to handle the

contextual polarity of them. This is what the authors in [34] have concentrated on when
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building their sentiment lexicon and they argued that building a sentiment lexicon manually

is more efficient than building it automatically to produce more accurate lexicons.

2.3 Theoretical Foundations

In this section, I briefly describe the theoretical foundations of both SVM and the de-

pendency parser, since they were used in the literature for sentiment classification and we

will use them in our experiments. Section 2.3.1 explains what the theory behind SVM is and

section 2.3.2 describes what a dependency parser is and how The Stanford parser works.

2.3.1 Theoretical Foundation of SVM:

There are different books and articles that explain the SVM method. Here, we describe

its theory in brief since it was used extensively in the sentiment classification literature. In

a classification problem, you are given a set of labeled and unlabeled data with their target

class and you want to build a model to learn to classify the unlabeled data as well as any

further unseen data. If you have two target classes only, this is called a binary classification

problem, otherwise it is a multi-class problem. So, in order to build this model, you need

first to decide on the features that you believe are relevant when determining the target class.

Then, you have to extract these features from each document, so that each document will be

represented as a feature vector with each feature having its corresponding value. A classifier

can be represented as a function: f (x) : Rd −→R where a binary classifier assigns a point to the

positive class if its function value is greater than or equal to zero, and assigns it to the negative

class if its function value is less than zero. SVM have been widely used in classification

problems, such as text classification problems, and recently they have been also used in

sentiment classification. They construct a special rule, which is called a linear classifier. A

classifier is said to be linear if its function can be written as: f (x;w,b) =< w,x >+b where

w and b are the function parameters and < and > signs are the inner or dot product of the

two vectors. The data points used for training the classifier can be represented in the form:

D = {(xi,yi)|xi ∈ Rl,yi ∈ {−1,1}}l
i=1 (2.2)
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where x is the feature vector of the data point with length l and y is the class of the point and

is either 1 (for a positive class) or -1 (for a negative class). These data points can be described

in a l-1-dimensional hyperplane, as illustrated in figure 2.1. The goal of the classifier then is

to find a hyperplane that separates the data points with the positive class from those with the

negative class with the maximum margin possible from each set of points to the hyperplane,

as illustrated in figure 2.1, where the data points on the margins are called “support vectors”.

Figure 2.1: How SVM works [15]

An important property of the training data in SVM is to be linearly separable, where:

yi f (xi)> 0,∀i = 1, ..., l (2.3)

which means that the two hyperplanes of both margins can be selected in a way that there

are no data points between them [15].

2.3.2 Theoretical Foundation of the Dependency Parser:

A parser, or syntactic analyzer, is a program that extracts the grammatical relationships

between different phrases of the sentence. A typed dependency parser is a parser that out-

puts the grammatical relations between single words of the sentence, for example, what is

the subject and object of a verb. A typed dependency parser usually uses a phrase structure

parser to output typed dependencies [11]. Parsers were developed probabilistically by train-

ing them on manually-parsed sentences (the Penn Treebank) to try to produce the most likely
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grammatical relations between the words of new (unseen) sentences. Different dependency

parsers use different methods to extract typed dependencies. Here, we explain in brief how

Stanford typed dependencies are extracted. To extract Stanford typed dependencies from

phrase structure trees, there are mainly 2 phases:

1. Dependency Extraction:

In this phase, each sentence is first parsed with a phrase structure parser, usually a

Penn Treebank parser. Then, the semantic head of each constituent in each sentence

is extracted using some head rules, and then the words that depend on each head are

identified.

2. Dependency Typing:

This phase is concerned with identifying the dependencies between each head word

and its different dependent words by defining some patterns and then matching each

one against every tree node and taking the most likely dependency.

Each dependency is represented as follows: dependency name(governor, dependent), where

the governor is the parent of the relation and dependent is its child. The typed dependencies

are represented as a directed acyclic graph with one root only. These are called “basic de-

pendencies”, as illustrated for the sentence “Bills on ports and immigration were submitted

by Senator Brownback, Republican of Kansas.” in figure 2.2. However, there are some sit-

uations where prepositions and conjunctions could be treated as dependencies. So, Stanford

has developed other types of dependencies, such as “collapsed dependencies”, as illustrated

on the same sentence in figure 2.3 [11].

2.4 Comparing the Approaches and Combining them into a Hybrid

Approach

There are some significant differences between the ML and SO approaches. First of

all, the ML approach performs better than the SO approach on a single domain; the high-

est accuracy achieved on the Polarity dataset version 2.0 [25] using a classifier was 91.7%
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Figure 2.2: An example of basic typed dependencies [11]

Figure 2.3: An example of collapsed typed dependencies [11]
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[2] versus an accuracy of 76.37% using SO-CAL [34]. Secondly, the classifier can learn

domain-specific polarity; e.g. “long battery life” (+ve) vs “long time to focus” (-ve), unlike

the lexicon where a prior polarity is known for each word. However, to build a high accu-

racy classifier, we need to have a huge corpus labeled with its class (positive or negative)

whereas a dictionary does not need one. This can be a labor-intensive task; to collect data

from different genres (reviews, news articles, blogs . . . etc) and domains (movies, products,

politics . . . etc) and label them manually. In addition, the authors in [7, 34] argued that a ML

approach does not take linguistic context into account, such as negation and intensification,

since there can be three features “good”, “very good” and “not good” but the classifier does

not know they are related to each other. In this thesis, we are trying to solve this major

drawback in the ML approach, as will be explained in chapter 3.

Since both the ML and SO approaches have some advantages and disadvantages, some

researchers have attempted to combine them together to benefit from the advantages of

each approach [4, 29, 30, 17, 9]. For example, the authors in [9] built a classifier with

unigrams and bigrams with a threshold of 5 and stylistic features and they developed a

feature-calculation strategy to extract sentiment features (verbs, adjectives and adverbs) from

SentiWordNet 3.0. Similarly, the authors in [4] tried to develop a high-accuracy domain-

independent system at the sentence-level by building an ensemble model of two classifiers;

one with unigrams, bigrams and trigrams as features and trained on in-domain data, and the

other one with sentiment words from both WordNet and the General Inquirer as features.

The authors in [29] then improved this system to be self-supervised so that it does not need

labeled data. They developed a two-phase model; the first one is a sentiment lexicon and a

negation list to label the data and they took the high-confidence labeled documents as train-

ing data to a classifier with sentiment words being the feature set. Another technique to solve

the problem of manually labeling the data was shown in [17], where the authors trained an

initial classifier with sentiment features from the Subjectivity lexicon. Then, from the high-

confidence labeled data, they extracted the most indicative features for each class (using the

IG heuristic) as self-learned features to train another classifier instead of training it with self-

labeled data. However, all these models did not take into account contextual valence shifters

described in section 2.1. Therefore, in this thesis, we are trying to fill this gap in the current

literature.
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CHAPTER 3

PROPOSED APPROACH: RECOGNIZING CONTEXTUAL

VALENCE SHIFTERS IN DOCUMENT-LEVEL SENTIMENT

CLASSIFICATION

In this research, we are interested in using a hybrid approach by incorporating contextual

valence shifters as features into an SVM classifier in addition to other important features

whose performance has been tested and proven to be significant in sentiment classification.

By adding contextual valence shifters, such as negation, intensification and connectors, from

a new perspective other than the ones described in chapter 2 into a ML approach, the classifier

will learn how to take linguistic context into consideration. In this way, by developing a self-

supervised model, as described in the literature, it would be a practical technique to use

instead of using a sentiment lexicon for being an unsupervised technique.

This chapter is organized as follows: in section 3.1, I explain the classification model,

its components and the different feature sets that will be used; section 3.2 will describe the

different tools used for building the model; section 3.3 explains the algorithms for extracting

the proposed feature sets; section 3.4 analyzes the running time for these algorithms and fi-

nally section 3.5 will provide the evaluation methodology we will follow in order to evaluate

our proposed feature sets.
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3.1 Document-level Sentiment Classification Phases

After conducting research on the current and past work done in document- and sentence-

level sentiment classification, we decided to develop a document-level sentiment classifica-

tion model that recognizes contextual polarity. The document-level sentiment classification

model consists of several components as illustrated in figure 3.1.

Figure 3.1: The document-level sentiment classification model

The model goes through the following phases:

1. Document preprocessing:

The datasets need to be preprocessed to be ready for feature extraction. Since the

multi-domain dataset is in an XML format, we had to extract only the review body

and its overall sentiment using an XML parser. In addition, the two datasets have to

be tokenized, tagged into their corresponding POS and parsed with their typed depen-

dencies.

2. Feature extraction:

After preprocessing the documents, the feature extractor is used to generate the fol-

lowing feature sets that are listed in appendix A:
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(a) Content-free features (F1):

These include stylistic features: 87 lexical features, 8 punctuation marks and 150

function words. These features are described in detail in [43]. We will denote to

these features as F1.

(b) Content-specific features (F2):

These include n-grams (unigrams, bigrams and/or trigrams) with a pre-defined

frequency threshold. Their number varies from one dataset to another. We will

denote to these features as F2.

(c) Sentiment features (F3):

We will use the Subjectivity dictionary provided by [39] to extract sentiment

features. This feature set includes the frequencies of each sentiment word (found

in the lexicon) in each document. Some preprocessing was performed on the

dictionary to remove all words whose prior polarity was “neutral” or “both”.

The total number of sentiment features varies from one dataset to another. We

will denote to these features as F3. We will also refine F3 so that sentiment

words modified by contextual valence shifters as well as sentiment words after

conditional or contrast words or modal verbs are not counted. Moreover, we will

lemmatize the words before looking them up in the lexicon to get more accurate

results. We will denote to these features as ‘refined F3’.

(d) Contextual Valence Shifters (F4):

All the previous features were used in [9], so in this study, we are adding contex-

tual valence shifters as a new feature set to the ML approach. We believe that this

feature set will improve the baseline’s performance. In the baseline [9], the au-

thors add all sentiment words disregarding any modification to sentiment words,

so for example, if a sentence has the words not good, the frequency of the senti-

ment word good will be incremented by 1, though this is not a valid increment.

Therefore, we will only count the sentiment features that were not modified by

contextual valence shifters. In addition, we will use the list of intensifiers and

contextual valence shifters provided by [39] as well as a list of conditional and

contrast words, listed in Appendix B. We will denote to these features as F4.
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3. Feature selection:

Having generated the features, we should select the most significant features that are

good predictors of the class label. Since the IG heuristic was used extensively in the

sentiment classification literature, as explained in section 2.2, we will use it as the

feature selection method for our feature sets.

4. Classification:

In this step, the feature vectors are generated and inserted into a sparse ARFF file

that is the input file for the classifier. We choose the Weka suite software to run the

classifier.

3.2 Tools

We will use a set of tools and English lists in order to implement our proposed feature

sets and test it against the baseline, as follows:

1. The Subjectivity dictionary, intensifiers and contextual valence shifters:

These lists are provided by [39]. The Subjectivity dictionary contains 8,221 entries

(sentiment words). Each sentiment word is described using some tags, as follows:

type=<type> len=1 word1=<word> pos1=<POS> stemmed1=<stemmed>

priorpolarity=<polarity>

where type is either strongsubj or weaksubj representing the semantic intensity of the

word in most context as either strong or weak, len1 represents the length of the senti-

ment expression (all entries have a length of 1), word1 is the word token, pos1 indicates

the word’s part of speech (maybe anypos – any part of speech), stemmed1 indicates

whether the sentiment word should match all its unstemmed variants with the corre-

sponding POS, and priorpolarity indicates the prior polarity of the sentiment word that

is out of any context.

The intensifiers list consists of 121 adjectives and 123 adverbs that are used as inten-

sifiers; e.g. absolute, most, and highly. Adjectives may modify nouns only, e.g. total
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failure, whereas adverbs may modify verbs, adverbs and adjectives, e.g. it greatly

affected his performance.

The contextual valence shifters list contains: 15 negation terms (single and multi-

word expressions), 5 positive polarity shifters, and 72 negative polarity shifters. The

negation terms typically reverse the polarity of the words after them, e.g. he never

succeeds. The positive polarity shifter changes the overall sentiment of the expression

to positive; for example, abate the damage. The negative polarity shifter yields an

overall negative sentiment for the overall expression, e.g. lack of wisdom. It also

contains 5 multi-word expressions labeled as nonshifter. These expressions are used

along with the negation terms to check if the negation term should be counted as such.

For instance, the expression “not only” is a nonshifter so that “not” is not counted as a

negation term [39].

2. The Stanford tagger, tokenizer and parser:

To perform the POS tagging, tokenizing and parsing, we will use the Stanford tag-

ger version 3.0.11 and parser version 1.6.62. The POS tagger is a piece of software

written in Java that takes raw text as an input and outputs each work token with its

corresponding part of speech. It uses the Penn Treebank tag set. We use the tagger

when extracting sentiment features (F3) since each sentiment word has its correspond-

ing POS. The dependency parser is a program that extracts the grammatical relations

(known as typed dependencies) between different words of each sentence. It also uses

the Penn Treebank tag set. We use the dependency parser when extracting contextual

valence shifters and intensifiers (F4).

3. Weka Suite Software:

We will use the Weka Suite Software version 3.6.43 as the environment for classifica-

tion. Weka is a piece of software written in Java that provides a set of ML algorithms,

such as SVM, NB and others as well as feature selection methods such as IG. It also

provides a number of test options, such as cross validation and percentage split. It can

1http://nlp.stanford.edu/software/tagger.shtml
2http://nlp.stanford.edu/software/lex-parser.shtml
3http://www.cs.waikato.ac.nz/ml/weka/
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be run directly by inserting the dataset into the program or from the command line

(when the dataset size is large).

4. MontyLingua Lemmatizer:

Instead of stemming word tokens to search for them in the Subjectivity dictionary, we

prefer to lemmatize them, since the lemmatizer takes the POS into consideration unlike

the stemmer. We use the MontyLingua lemmatizer version 2.14 written in Python.

A lemmatizer is a natural language program that takes a word in its inflected form and

POS and then outputs its base form. For instance, consider the word “meeting”. If

it is a noun, as in “our meeting yesterday was successful”, then its lemmatized form

will still be “meeting”. But, if it is a verb, as in “we are meeting tomorrow”, then the

lemmatizer will output the word “meet”.

3.3 Extracting Refined Sentiment Features and Contextual Valence Shifters

In this section, we describe in detail the algorithms we have developed to extract the

refined sentiment features (refined F3) and contextual valence shifters (F4). F4 contains

a set of 16 features that counts the number of intensifiers, negation, and polarity shifters

grouped together according to the polarity and type of sentiment words modified by them,

in addition to the frequency of sentiment words grouped together with their final (modified)

polarity and type. These features are described as follows:

1. Intensifier pos strongsubj: frequency of words with positive prior polarity and strong

subjectivity type preceded by an intensifier.

2. Intensifier pos weaksubj: frequency of words with positive prior polarity and weak

subjectivity type preceded by an intensifier.

3. Intensifier neg strongsubj: frequency of words with negative prior polarity and strong

subjectivity type preceded by an intensifier.

4http://web.media.mit.edu/˜hugo/montylingua/
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4. Intensifier neg weaksubj: frequency of words with negative prior polarity and weak

subjectivity type preceded by an intensifier.

5. Negation pos strongsubj: frequency of words with positive polarity and strong subjec-

tivity type preceded by a negation term.

6. Negation pos weaksubj: frequency of words with positive polarity and weak subjec-

tivity type preceded by a negation term.

7. Negation neg strongsubj: frequency of words with negative polarity and strong sub-

jectivity type preceded by a negation term.

8. Negation neg weaksubj: frequency of words with negative polarity and weak subjec-

tivity type preceded by a negation term.

9. Shiftneg strongsubj: frequency of words with positive polarity and strong subjectivity

type preceded by a negative polarity shifter.

10. Shiftneg weaksubj: frequency of words with positive polarity and weak subjectivity

type preceded by a negative polarity shifter.

11. Shiftpos strongsubj: frequency of words with negative polarity and strong subjectivity

type preceded by a positive polarity shifter.

12. Shiftpos weaksubj: frequency of words with negative polarity and weak subjectivity

type preceded by a positive polarity shifter.

13. Pos strongsubj: frequency of words with positive polarity and strong subjectivity type

after modifying their polarity and type if they were preceded by any of the intensifiers

or contextual valence shifters.

14. Pos weaksubj: frequency of words with positive polarity and weak subjectivity type

after modifying their polarity and type if they were preceded by any of the intensifiers

or contextual valence shifters.

15. Neg strongsubj: frequency of words with negative polarity and strong subjectivity type

after modifying their polarity and type if they were preceded by any of the intensifiers

or contextual valence shifters.
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16. Neg weaksubj: frequency of words with negative polarity and weak subjectivity type

after modifying their polarity and type if they were preceded by any of the intensifiers

or contextual valence shifters.

In order to extract these features, we have used the Stanford parser to get typed dependen-

cies that show the grammatical relationships between words in each sentence and developed

some algorithms. Algorithms 1 and 2 show the general steps taken to extract refined F3

and F4 in each document. Appendix C shows how F4 is computed when there are different

combinations of the contextual valence shifters and intensifiers that modify the sentiment

word using these algorithms. To illustrate how these algorithms work correctly with some

combinations, consider the following sentences:

1. “This is a problem”:

According to the Subjectivity lexicon, the prior polarity of the noun problem is nega-

tive and its type is weak (weaksubj). Since it is not preceded by a modal or conditional

or contrast word or by an intensifier or a polarity shifter, its final polarity will remain

the same (it will not go through any modifications). Therefore, we only want to incre-

ment both the sentiment feature problem noun and the frequency of its final polarity

neg weaksubj by 1. Thus, in algorithm 1 the sentiment word problem will only go

through lines 4 and 13 - 15. In algorithm 2, it will only go through line 15, where

word count will be 1, since the variables negated, intensified and shifted are all false.

After that, the sentiment feature corresponding to the noun problem noun in refined

F3 will be incremented by 1 as well as the feature neg weaksubj in F4 (lines 14 and 15

in algorithm 1). Hence, the values of the 16 features of F4 for this sentence before and

after modification are shown in table 3.1.

2. “This is not a problem”:

In this sentence, the noun problem is negated, so we want to increment the feature

negation neg weaksubj by 1 and decrement the sentiment feature problem noun by 1.

The algorithm will find the “neg” dependency between the negation term not and the

word problem and no other modifiers. Therefore, the variable negated will be set to

TRUE (lines 7 - 19). Then, it will go to algorithm 2, where it will go through lines
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Feature Before Modification After Modification

intensifier pos strongsubj 0 0

intensifier pos weaksubj 0 0

intensifier neg strongsubj 0 0

intensifier neg weaksubj 0 0

negation pos strongsubj 0 0

negation pos weaksubj 0 0

negation neg strongsubj 0 0

negation neg weaksubj 0 0

shiftneg strongsubj 0 0

shiftneg weaksubj 0 0

shiftpos strongsubj 0 0

shiftpos weaksubj 0 0

pos strongsubj 0 0

pos weaksubj 0 0

neg strongsubj 0 0

neg weaksubj 0 1

Table 3.1: F4 values for sentence #: 1
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9, 11 and 12, where word count will be -1 (since the word is negated), the negation

feature with the word’s polarity, negation neg weaksubj, will be incremented by 1 and

the final polarity of problem will be negated (from neg weaksubj to pos weaksubj)

according to algorithm 4. Then, it will go back to algorithm 1 and in line 14 the

sentiment feature of the word, problem noun will be decremented by 1 and the feature

pos weaksubj will be incremented by 1 in line 15. Hence, the values of the 16 features

of F4 for this sentence before and after modification are shown in table 3.2.

Feature Before Modification After Modification

intensifier pos strongsubj 0 0

intensifier pos weaksubj 0 0

intensifier neg strongsubj 0 0

intensifier neg weaksubj 0 0

negation pos strongsubj 0 0

negation pos weaksubj 0 0

negation neg strongsubj 0 0

negation neg weaksubj 0 1

shiftneg strongsubj 0 0

shiftneg weaksubj 0 0

shiftpos strongsubj 0 0

shiftpos weaksubj 0 0

pos strongsubj 0 0

pos weaksubj 0 1

neg strongsubj 0 0

neg weaksubj 0 0

Table 3.2: F4 values for sentence #: 2

3. “This is a huge problem”:

In this sentence, the noun problem is intensified by the adjective huge. Thus, we want

to increment the feature intensifier neg weaksubj as well as the sentiment feature prob-

lem noun by 1. In algorithm 1, it will find an “amod” dependency between problem

32



Algorithm 1 Extract Refined F3 and F4
1: F3,F4⇐ 0
2: for each sentence in the document do
3: for each sentiment word w found in the sentence do
4: f inal polarity⇐ prior polarity
5: if w is not preceded by a modal, conditional or contrast word then
6: f inal polarity⇐ check polarity shi f ters(w,final polarity)
7: if w is preceded by a negation term then
8: negated⇐ T RUE
9: end if

10: if w is preceded by an intensifier then
11: intensi f ied⇐ T RUE
12: end if
13: f inal polarity⇐ modi f y polarity(negated,intensified,shifted)
14: word POS⇐ word POS+word count
15: polarity type⇐ polarity type+1
16: end if{end of search for negation and intensification}
17: end for{end for each sentiment word}
18: end for{end for each sentence}

and huge in line 10 which calls algorithm 6. So, it will go through line 11 where the

variable intensified will be set to TRUE. Then, it will go to algorithm 2, where the

variable word count will be set to 1 (line 15) and the feature intensifier neg weaksubj

will be incremented by 1 (since intensifier count will be 1 as there is only 1 intensifier,

according to algorithm 6) (line 18). And then, the final polarity will be intensified,

according to algorithm 5 to neg strongsubj (line 20). Then, back to algorithm 1, both

features problem noun and neg strongsubj will be incremented by 1 (lines 14 and 15).

Hence, the values of the 16 features of F4 for this sentence are shown in table 3.3.

4. “This is not a huge problem”:

Here, the sentiment word problem is intensified with the adjective huge and huge is

negated by the negation term not. Hence, we want to first intensify the polarity of

problem and then negate the expression huge problem by incrementing the feature

negation neg strongsubj and the sentiment feature problem noun by 1, since there is

a problem that is not huge. So, in algorithm 1, the variable negated will be set to

TRUE (lines 7 - 9). Then, intensified will be also set to TRUE since there is an “amod”

dependency between huge and problem (lines 10 - 12). It will then go to algorithm

2. Since both negated and intensified are TRUE, it will go through lines 6, 7, 11
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Algorithm 2 Modify polarity(negated, intensi f ied, shi f ted)
1: if negated = T RUE then
2: if shi f ted = T RUE then
3: word count⇐ 1
4: else {shi f ted = false}
5: if intensi f ied = T RUE then
6: f inal polarity⇐ intensi f y polarity( f inal polarity)
7: word count⇐ 1
8: else
9: word count⇐−1

10: end if
11: negation f inal polarity⇐ negation f inal polarity+1
12: f inal polarity⇐ negate polarity( f inal polarity)
13: end if{end if shi f ted = TRUE}
14: else {the word is not negated}
15: word count⇐ 1
16: if intensi f ied = T RUE then
17: if shi f ted! = T RUE then
18: intensi f ier f inal polarity⇐ intensi f ier f inal polarity+ intensi f ier count
19: end if
20: f inal polarity⇐ intensi f y polarity( f inal polarity)
21: end if
22: if shi f ted = T RUE then
23: word count⇐−1
24: shi f t f inal polarity⇐ shi f t f inal polarity+1
25: end if
26: end if{end if the word is negated} return f inal polarity

Algorithm 3 Check polarity shifters(w, f inal polarity)
if w is positive, not negated and preceded by a shiftneg then

shi f ted⇐ T RUE
f inal polarity⇐ neg weaksub j

else if w is negative, not negated and preceded by a shiftpos then
shi f ted⇐ T RUE
f inal polarity⇐ pos weaksub j

end if
return f inal polarity
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Feature Before Modification After Modification

intensifier pos strongsubj 0 0

intensifier pos weaksubj 0 0

intensifier neg strongsubj 0 0

intensifier neg weaksubj 0 1

negation pos strongsubj 0 0

negation pos weaksubj 0 0

negation neg strongsubj 0 0

negation neg weaksubj 0 1

shiftneg strongsubj 0 0

shiftneg weaksubj 0 0

shiftpos strongsubj 0 0

shiftpos weaksubj 0 0

pos strongsubj 0 0

pos weaksubj 0 0

neg strongsubj 0 1

neg weaksubj 0 0

Table 3.3: F4 values for sentence #: 3
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and 12. Thus, the final polarity will be intensified, according to algorithm 5 to be

neg strongsubj and word count will be set to 1. Then, the negation feature of the

final polarity will be incremented by 1 and then the final polarity will be negated

according to algorithm 4 to neg weaksubj. It will then go back to algorithm 2, where

the sentiment feature of the word problem noun will be incremented by 1 (line 14) and

the frequency of the final polarity (neg weaksubj) will be also incremented by 1 (line

15). Hence, the values of the 16 features of F4 for this sentence are shown in table 3.4.

Feature Before Modification After Modification

intensifier pos strongsubj 0 0

intensifier pos weaksubj 0 0

intensifier neg strongsubj 0 0

intensifier neg weaksubj 0 0

negation pos strongsubj 0 0

negation pos weaksubj 0 0

negation neg strongsubj 0 1

negation neg weaksubj 0 0

shiftneg strongsubj 0 0

shiftneg weaksubj 0 0

shiftpos strongsubj 0 0

shiftpos weaksubj 0 0

pos strongsubj 0 0

pos weaksubj 0 0

neg strongsubj 0 0

neg weaksubj 0 1

Table 3.4: F4 values for sentence #: 4

5. “He lacks wisdom”:

In this sentence, the noun wisdom, whose prior polarity is positive and type is strong-

subj is preceded by a negative polarity shifter lacks. Thus, the polarity of wisdom

(pos strongsubj) should be shifted toward the negative polarity (neg weaksubj). Al-
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gorithm 1 will go through line 6 where it will go to algorithm 3 and change the final

polarity to neg weaksubj since the noun wisdom is positive, not preceded by a negation

term and preceded by a negative polarity shifter lacks and the variable shifted will be

set to TRUE. Then, it will go to algorithm 2, where word count will be first set to 1 (line

15) and then changed to -1 (line 23) and the feature shiftneg strongsubj will be incre-

mented by 1 (line 24). Then, back to algorithm 1, the sentiment feature wisdom noun

will be decremented by 1 (since word count is -1) and the feature neg weaksubj will

be incremented by 1 (lines 14 and 15). Hence, the values of the initial 16 features of

F4 for this sentence are as follows: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0. After

modification, their values are as follows: 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1.

Feature Before Modification After Modification

intensifier pos strongsubj 0 0

intensifier pos weaksubj 0 0

intensifier neg strongsubj 0 0

intensifier neg weaksubj 0 0

negation pos strongsubj 0 0

negation pos weaksubj 0 0

negation neg strongsubj 0 0

negation neg weaksubj 0 0

shiftneg strongsubj 0 1

shiftneg weaksubj 0 0

shiftpos strongsubj 0 0

shiftpos weaksubj 0 0

pos strongsubj 0 0

pos weaksubj 0 0

neg strongsubj 0 0

neg weaksubj 0 1

Table 3.5: F4 values for sentence #: 5
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Algorithm 4 Negate Polarity(pol type)
if pol type = pos strongsub j then

pol type⇐ pos weaksub j
else if pol type = pos weaksub j then

pol type⇐ neg weaksub j
else if pol type = neg strongsub j then

pol type⇐ neg weaksub j
else if pol type = neg weaksub j then

pol type⇐ pos weaksub j
end if
return pol type

Algorithm 5 Intensify Polarity(pol type)
if pol type = pos weaksub j then

pol type⇐ pos strongsub j
else if pol type = neg weaksub j then

pol type⇐ neg strongsub j
end if
return pol type

To extract adjectival and adverbial intensifiers that modify sentiment words, algorithm 6

was implemented. This algorithm first searches for dependencies “amod” and “advmod” in

the dependency tree with the sentiment word being the governor (or parent). The first depen-

dency, “amod”, represents an adjectival modifier, where an adjective modifies a noun. The

second dependency, “advmod”, represents an adverbial modifier, where an adverb modifies

a verb, adverb, or adjective [12]. If the sentiment word has any of these two dependencies

and the dependent (or child) is in the intensifiers list, then we increment the intensifier count

of the word by 1. Most researchers have implemented this method to extract intensifiers.

However, we also found that intensifiers are not necessarily followed by the sentiment word.

For example, in the sentences, This problem is huge and This problem has become huge,

we can see that the adjective huge modifies the noun problem but it occurred after it. The

dependency tree for these two sentences are as follows:

1. Sentence 1 - “This problem is huge”:

• det(problem, this)

• nsubj(huge, problem)

• cop(huge, is)
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2. Sentence 2 - “This problem has become huge”:

• det(problem, this)

• nsubj(become, problem)

• aux(become, has)

• acomp(become, huge)

Algorithm 6 Extract Intensifiers
for each child/dependent c of the sentiment word s in the dependency tree do

if the dependency is “amod” and c is an adjectival intensifier then
intensi f ier count⇐ intensi f ier count +1+ check other intensi f iers(c)

else if the dependency is “advmod” and c is an adverbial intensifier then
intensi f ier count⇐ intensi f ier count +1

end if
end for
for each governor/parent g of the sentiment word s in the dependency tree do

if the dependency is “nsubj” then
if g is an adjectival intensifier then

intensi f ier count⇐ intensi f ier count +1+ check other intensi f iers(g)
else

for each child c of g in the dependency tree do
if the dependency is “acomp” and c is an adjectival intensifier then

intensi f ier count⇐ intensi f ier count +1+ check other intensi f iers(c)
end if

end for
end if

end if
end for

Therefore, in addition to the traditional search method for intensifiers, the algorithm also

searches for intensifiers that do not necessarily appear before the word that they modify. To

do so, we check the governors (or parents) of the sentiment word in the dependency tree.

If a dependency is “nsubj” (which represents a nominal subject, where the dependent is the

subject and the governor is the verb or the complement of a copular verb (adjective or noun)),

we check if the governor is an adjectival intensifier. If so, like the first sentence, we incre-

ment the intensifier count for this word. Otherwise, we check the dependents of the governor

of the “nsubj” relationship. If a dependency is “acomp” (which represents the adjectival

complement of the verb; that is, the adjective which acts as the object of the verb [12]) and

the dependent is an adjectival intensifier, like the second sentence, then we increment the
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intensifier count. In addition, if the intensifier found is an adjective in any of the above

cases, we look for other intensifiers that could be modifying the same sentiment word, as in

algorithm 7. For example, in the sentence, This problem is very huge and puzzling, we see

that very intensifies huge and both huge and puzzling intensify problem. Thus, in algorithm

7, we check the dependents of the adjectival intensifier to see if there is an “advmod” or

“conj and” dependencies with an adverbial or adjectival intensifier, respectively (the depen-

dency “conj and” represents a conjunction between two words with and or its synonyms). If

so, we increment the intensifier count as well. Also, we used algorithm 5 to intensify the po-

larity of sentiment words preceded by an intensifier. As illustrated in the algorithm, we only

change the type of sentiment words whose type is weak. For example, good has a positive

polarity and weaksubj type. When intensified, e.g. very good, its final polarity and type are

positive and strongsubj, respectively. Often, sentiment words with strongsubj type are not

intensified, so we do not often say very excellent. Hence, we only intensify the sentiment

words with weaksubj type.

To extract negation terms and whether or not they negate the sentiment words, we fol-

lowed the method proposed by [8], in which the authors search for the negation term that

appear in a “neg” dependency or in a negation term list, then they get the First Common

Ancestor (FCA) between the negation term and the word immediately after it. They then

assume that all descendant leaf nodes are to be negated. In our implementation though, we

keep the descendant leaf nodes that appear after the negation term and within a window of

size 6 to be affected by the negation term, since a negation term does not often affect the

words before it or the words that follow it with a large distance. Also, we omit the negation

terms that appear in expressions that do not represent negation, e.g. not only and not just. To

negate the polarity of sentiment words, we used algorithm 4. As proposed by [34], where

the authors shift the polarity of the negated sentiment words towards the opposite polarity

by a fixed number (in their implementation, they use a numerical score to show the polarity

and strength of sentiment words - from -5 to +5). For example, not excellent changes from

5 to 1 (5 - 4), not terrible changes from -5 to -1 (-5 + 4) and not good changes from 3 to -1

(3 - 4). Thus, this shift negation method is equivalent to algorithm 4, where pos strongsubj

is converted to pos weaksubj, pos weaksubj is converted to neg weaksubj, neg strongsubj is

converted to neg weaksubj, and neg weaksubj is converted to pos weaksubj.
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Algorithm 7 Check Other Intensifiers(ad j intensi f ier)
intensi f ier count⇐ 0
for each child c of the adjectival intensifier in the dependency tree do

if the dependency is “advmod” and c is an adverbial intensifier then
intensi f ier count⇐ intensi f ier count +1

else if the dependency is “conj and” and c is an adjectival intensifier then
intensi f ier count⇐ intensi f ier count +1

end if
end for
return intensi f ier count

3.4 Analysis of Algorithms Running Time

In section 3.3, we have explained the different algorithms we have developed in order

to extract the refined sentiment features and features for contextual valence shifters. In this

section, we will compute the running time of each of these algorithms in terms of big O

notation. Since algorithm 1 uses all the other algorithms we will start with the basic ones

and then compute the running time of the whole algorithm used. Starting with algorithm

2, its running time is equal to O(1). Similarly, algorithms 3, 4 and 5 have all O(1). For

algorithm 7, if we say n is the number of children for the sentiment word, then the algorithm’s

running time will be O(n). For algorithm 6, if we say m is the number of parents for the

sentiment word, then the first for loop will be O(n2) whereas the second for loop, since it

contains another nested loop, will be O(mn2). Finally, for algorithm 1 which uses all the

other algorithms, if we say that l is the number of sentences for each document and q is the

number of sentiment words in the sentence, then the algorithm will take O(lqmn2), which is

the total running time for each document. To approximate this time, we will assume that l

= m = n = q, so it will be O(q5). It is important to note that in our experiments, we ran the

algorithm on all the documents of each dataset in parallel on a supercomputer.

3.5 Evaluation Methodology

The first three sets of features (F1, F2 and F3) construct the baseline for our proposed

features, whereas refined F3 and F4 are the new feature sets that we added. In order to

evaluate the performance of our proposed feature sets against the baseline, we used two of
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the most used datasets in the sentiment classification literature:

• The Polarity dataset v 2.0:

This is the most used dataset used in sentiment classification. It contains 1,000 positive

and 1,000 negative movie reviews collected from the IMDb archive [25].

• The multi-domain dataset:

This dataset contains 1,000 positive and 1,000 negative reviews from four different

review genres (books, DVDs, electronics and kitchen appliances), for a total of 8,000

reviews [6].

We will perform several experiments to evaluate the performance of the new features

that we have proposed. First, we will evaluate the effectiveness of refining sentiment feature

extraction against the traditional sentiment feature extraction. The experiments to perform

this comparison between the baseline and the proposed method are adding: 1) negation fea-

tures; 2) intensifier features; 3) negation and intensifier features; 4) negation, intensifier and

polarity shifter features without ignoring sentiment words appearing after modals, or condi-

tional or contrast words; and 5) all features with ignored sentiment words against adding the

frequency of all sentiment words without their contextual polarity (baseline). Also, we will

evaluate the effectiveness of adding refined F3 and F4 to F1 and F2 as well as refined F3 and

F4 (with ignored sentiment words) to F1 and F2 against the baseline (F1, F2 and F3). Then,

we will perform feature selection using the IG with a threshold of 0.0025 (as proposed by

[9]) on the baseline (F1 to F3), all features (F1 to F4) and all features with ignored senti-

ment words (F1 to F4 with ignored words) to see whether there are any improvements in the

performance.

Like any other text classification problem, sentiment classification research has mainly

used three measures of classification effectiveness; namely, the accuracy, precision and re-

call, which are explained in detail in [31]. In addition, the two-tailed t-test is used to show the

statistical significance of the new feature sets proposed. We used the same measures in our

work to compare our proposed feature sets with the baseline in addition to feature selection:

1. Accuracy:
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The accuracy of a classifier is defined as the percent of correctly classified objects. It

is calculated as:

A =
T P+T N

T P+T N +FP+FN

where:

T P denotes the number of positively-labeled test documents that were correctly clas-

sified as positive;

T N denotes the number of negatively-labeled test documents that were correctly clas-

sified as negative;

FP denotes the number of negatively-labeled test documents that were incorrectly clas-

sified as positive; and

FN denotes the number of positively-labeled test documents that were incorrectly clas-

sified as negative.

2. Precision:

The precision for a class is defined as the probability that if a random document should

be classified with this class, then this is the correct decision. Precision for the positive

class for instance is calculated as follows:

P =
T P

T P+FP

3. Recall:

The recall for a class is defined as the probability that if a random document should be

classified with this class, then this is the taken decision. Recall for the positive class

for instance is calculated as follows:

R =
T P

T P+FN

4. The two-tailed t-test:

To test the statistical significance of our proposed feature sets, we performed the two-

tailed t-test on the baseline against the proposed feature sets. This was done by ran-

domizing each dataset 40 times to get different training and testing sets in each time,
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running the classifier on the 40 randomized orders on each dataset, and computing the

t-ratio, the p value and the mean accuracy difference.

The t-ratio is calculated with the following equation:

t =
X1− X2√
SD1

2

N1
+ SD2

2

N2

where X̄1 and X̄2 are the mean accuracies of groups 1 (baseline) and 2 (proposed feature

sets), SD1 and SD2 are the standard deviations of the accuracies of the 2 groups, and

N1 and N2 are the number of samples in each group, which is 40 in our case.

The larger the t-ratio, the smaller the probability that the mean accuracies of the 2

groups are the same and hence the higher the statistical significance of one group over

the other. This probability is denoted to as the p value.

5. Feature Selection:

To test whether the proposed features are relevant in sentiment classification, we have

performed feature selection when adding all the feature sets to check whether the pro-

posed features of F4 are selected or not.
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CHAPTER 4

EXPERIMENTAL RESULTS AND EVALUATION

We have performed several experiments to evaluate the performance of our proposed

feature sets against the baseline. The first set of experiments (E1) shows the performance of

adding different kinds of features in F4 (intensifiers, negation, and polarity shifters) while

counting the sentiment words in the documents and changing their final polarity against

counting the sentiment words while disregarding its contextual polarity that we will explain

in section 4.1. The second set of experiments (E2) shows the performance of adding refined

F3 and F4 (with and without ignored sentiment words) to F1 and F2 (all and all+ign) against

adding F3 to F1 and F2 (F1 + F2 + F3), as we will discuss in section 4.2. Then, the last set of

experiments (E3) shows the performance of the same features in E2 after performing feature

selection on each one, which we will explain in section 4.3. Finally, we discuss the results

of all experiments in section 4.4.

Instead of using SentiWordNet 3.0 as a sentiment lexicon, that was used in [9], we used

the Subjectivity dictionary, since its effectiveness was reported when using it with contextual

valence shifters in the SO approach [34]. To extract content-specific features (F2), different

n-grams were extracted from the two used datasets:

1. The Polarity dataset: all unigrams, bigrams and trigrams with a frequency threshold of

10 were extracted, as in [2].

2. The multi-domain dataset: all unigrams and bigrams with a frequency threshold of 5

were extracted, as in [9].

45



We tried different combinations of n-grams for each dataset, and the ones listed above yielded

the highest accuracy.

We used the term frequency instead of the term presence when extracting features, since

we did a pilot experiment to compare their performance and the former outperformed the

latter. For classification, we used SVM as the classification algorithm with default kernel

settings due to being widely used in the literature, as discussed in chapter 2, and ran the

classifier on the two datasets with 10-fold cross validation in each experiment. For feature

selection, we used the IG heuristic to extract features whose IG is greater than 0.0025 using

the whole dataset as the training set.

4.1 Comparing Sentiment Words with their Prior Polarity Against Con-

textual Polarity

In this section, we describe the first set of experiments that were performed to evaluate the

performance of refining the traditional sentiment feature extraction method to take contextual

polarity into consideration. We refer to this set of experiments as E1. This set includes the

following experiments:

1. Constructing the baseline for sentiment feature extraction:

This experiment is performed to construct the baseline for our proposed feature sets. It

consists of sentiment features, which are the frequency of each sentiment word found

in the document without taking its contextual polarity into consideration. We refer to

this feature set as F3. The number of sentiment features for both datasets is shown in

table 4.1, and the results of running the classifier on these datasets using F3 only are

shown in tables 4.2, 4.3 and 4.4.

2. Evaluating the effectiveness of refining the sentiment feature extraction method

and adding other features for contextual valence shifters:

In this experiment, we wanted to evaluate the impact of refining the sentiment feature

extraction method against the features used in experiment 1. So, instead of adding the

frequency of each sentiment word with its prior polarity, its contextual polarity was
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calculated first using the algorithms explained in section 3.3 and the new proposed

features (intensification, negation, polarity shifters and frequency of sentiment words

grouped with their polarity and type) were added. Also, lemmatization was performed

on the words before searching for them in the sentiment lexicon. We refer to the

refined sentiment features and features for these valence shifters as F3 + F4. The

number of these features is listed for each dataset in table 4.1. As we can see from

the table, the number of refined sentiment features is greater than sentiment features

(baseline) because of lemmatization. The accuracy of the classifier using F3 + F4 on

both datasets is shown in table 4.2 while the precision and recall are shown in table

4.3 and the overall precision and recall for the positive and negative classes on all

datasets are illustrated in table 4.4. The results showed a clear improvement in the

accuracy of the classifier when refining the sentiment feature extraction method and

adding new features for contextual valence shifters (F3 + F4) against the traditional

extraction method (F3), as there is an increase in the accuracy from 0.8-5% with an

overall increase by more than 2% among all the datasets. In addition, tables 4.3 and 4.4

show an overall increase in both the precision and recall for the two classes (positive

and negative) with a greater improvement in the average precision for the negative class

and the average recall for the positive class. In addition, the results of the two-tailed

t-test of F3 + F4 against F3 are shown in table 4.5. As we can see from the results, the

t-ratio is large in each of the books, electronics and kitchen appliances datasets with

a very small p value, which shows the statistical significance of our proposed feature

sets against the baseline in these 3 datasets. Also, the mean accuracies in both the

Polarity and multi-domain datasets using F3 + F4 are higher than the mean accuracies

using F3 only.

3. Evaluating the effectiveness of ignoring some sentiment words while refining the

sentiment feature extraction method:

In this experiment, we wanted to measure the effectiveness of ignoring sentiment

words appearing after modal verbs or conditional or contrast words while refining

the sentiment feature extraction method and adding the features for contextual valence

shifters against the features used in experiment 2. We refer to these features as F3 +

F4 + ign. The number of features for this experiment is illustrated in table 4.1 for each
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dataset. As we can see from the second and third rows of the table that show F3 +

F4 and F3 + F4 + ign, respectively, the number of ignored sentiment words ranged

between 60 and 80 for each dataset. The results of this experiment are shown in tables

4.2, 4.3 and 4.4. As illustrated in table 4.2, ignoring sentiment words appearing after

modals or conditional or contrast words were only effective in the DVDs and elec-

tronics datasets with a little improvement in the accuracy. In table 4.3, some of the

precision and recall results increased in the DVDs, electronics and kitchen appliances

datasets from F3 + F4 to F3 + F4 + ign. But, on the average, we noticed that ignoring

sentiment words degraded the performance of the classifier in terms of the accuracy,

precision and recall.

Feature Set

Number of Features

Polarity Dataset
Multi-domain Dataset

Books DVDs Electronics Kitchen

Appliances

F3(baseline) 4420 3030 2920 1345 1247

F3+F4 4868 3262 3158 1448 1362

F3+F4(ign) 4804 3176 3088 1376 1293

F3+int 4860 3254 3150 1440 1354

F3+neg 4860 3254 3150 1440 1354

F3+int+neg 4864 3258 3154 1444 1358

Table 4.1: Number of features in each feature set in E1

4. Evaluating the effectiveness of adding intensification only while refining the sen-

timent feature extraction method:

In this experiment, we wanted to measure the performance of the classifier when re-

fining the sentiment feature extraction method with intensification only against the

features used in experiment 1. Thus, only the first 4 features of F4 that count the inten-

sified words according to their polarity and type and the last 4 features of F4 that count

the frequency of sentiment words grouped with their final polarity and type (shown

in section 3.3) are used along with the refined sentiment features. We refer to these

features as F3 + int. The number of these features for each dataset is shown in table
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Measure Feature Set Polarity Multi-domain Dataset Average

Dataset Books DVDs Electronics Kitchen

Appliances

Accuracy F3(baseline) 79% 72.95% 77.10% 76.05% 75.55% 76.13%

F3+F4 79.85% 77.90% 77.35% 78.70% 79.55% 78.67%

F3+F4(ign) 78.80% 75.45% 77.70% 78.90% 79.15% 78%

F3+int 78.9% 75.15% 77.25% 77.95% 77.85% 77.42%

F3+neg 79.4% 77.15% 76.85% 78.3% 79% 78.14%

F3+int+neg 79.25% 77.45% 77.55% 78.4% 79.5% 78.43%

Table 4.2: Accuracy of different feature sets in E1

4.1 and the classifier’s performance is shown in tables 4.2, 4.3 and 4.4. As we can see

from table 4.2, the overall accuracy of F3 + int is 77.42% compared with that of F3,

which is 76.13%. Also, both the overall precision and recall have improved from F3 to

F3 + int. Thus, we concluded that intensification has a significant effect when refining

the traditional sentiment feature extraction method.

5. Evaluating the effectiveness of adding negation only while refining the sentiment

feature extraction method:

This experiment was performed to measure the impact of adding negation features

only while refining the sentiment feature extraction method against the features used in

experiments 1 and 4. This is done by negating the polarity and type of sentiment words

preceded by negation terms and adding the 4 negation features from F4 described in

section 3.3 as well as the last 4 features of F4 that count the frequency of sentiment

words grouped with their final polarity and type. We refer to these features as F3 + neg.

The number of these features is illustrated in table 4.1 and the results of performing this

experiment are illustrated in tables 4.2, 4.3 and 4.4. As we expected before performing

this experiment, the accuracy of the classifier improved much better than its accuracy

when running it with F3 + int, which shows that adding negation is more effective than

adding intensification. Moreover, there is a significant increase in the overall precision

and recall from F3 + int to F3 + neg, which also indicates that negation features are
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Dataset Measure Polarity F3 F3+F4 F3+F4+ign F3+int F3+neg F3+int+neg

Movies Precision pos 0.795 0.798 0.791 0.79 0.792 0.793

neg 0.785 0.799 0.785 0.788 0.796 0.792

Recall pos 0.782 0.800 0.783 0.787 0.798 0.792

neg 0.798 0.797 0.793 0.791 0.79 0.793

Books Precision pos 0.713 0.762 0.736 0.734 0.754 0.756

neg 0.748 0.798 0.776 0.771 0.792 0.795

Recall pos 0.767 0.811 0.793 0.788 0.807 0.81

neg 0.692 0.747 0.716 0.715 0.736 0.739

DVDs Precision pos 0.752 0.760 0.763 0.755 0.76 0.767

neg 0.793 0.788 0.793 0.793 0.778 0.785

Recall pos 0.808 0.799 0.804 0.807 0.785 0.792

neg 0.734 0.768 0.75 0.738 0.752 0.759

Electronics Precision pos 0.768 0.786 0.793 0.781 0.787 0.785

neg 0.753 0.788 0.785 0.778 0.779 0.783

Recall pos 0.746 0.788 0.782 0.777 0.776 0.782

neg 0.775 0.786 0.796 0.782 0.79 0.786

Kitchen Precision pos 0.786 0.798 0.802 0.795 0.793 0.797

neg 0.731 0.793 0.782 0.763 0.787 0.793

Recall pos 0.702 0.792 0.774 0.75 0.785 0.791

neg 0.809 0.799 0.809 0.807 0.795 0.799

Table 4.3: Precision and recall of different feature sets in E1

Measure F3 F3+F4 F3+F4+ign F3+int F3+neg F3+int+neg

Pos. Precision 0.763 0.781 0.777 0.771 0.777 0.780

Neg. Precision 0.762 0.793 0.784 0.779 0.786 0.790

Pos. Recall 0.761 0.798 0.787 0.782 0.790 0.793

Neg. Recall 0.762 0.779 0.773 0.767 0.773 0.775

Table 4.4: Average positive and negative precision and recall of E1 experiments
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Measure Polarity Dataset
Multi-domain Dataset

Books DVDs Electronics Kitchen Appliances

t-ratio 0.78 7.01 0.54 2.22 1.94

P value 0.44 2.1E-8 0.59 0.03 0.06

Mean accuracy Diff. 0.8 5.45 0.6 2.3 1.5

Table 4.5: The two-tailed t-test results for F3+F4 against F3

more beneficial than intensification features.

6. Evaluating the effectiveness of adding both intensification and negation while re-

fining the sentiment feature extraction method:

Finally, we performed the last experiment in E1 to assess the performance of the classi-

fier when adding both intensification and negation features while refining the sentiment

feature extraction method and compare it with adding all features of the contextual va-

lence shifters (that include: intensification, negation and polarity shifters - the features

used in experiment 2). We refer to these features as F3 + int + neg. This feature set

includes all sentiment words after modifying their polarity if they are preceded by in-

tensifiers and/or negation terms as well as the counts of these intensifiers and negation

terms and the frequency of the words according to their final polarity and type. The

number of these features is shown in table 4.1 for each dataset and the results of the

classifier are shown in tables 4.2, 4.3 and 4.4. As we can see from the tables, there

is only a slight increase in the accuracy, precision and recall from F3 + int + neg to

F3 + F4. This show that adding the polarity shifters is not very effective, which was

anticipated since the list of polarity shifters is not comprehensive and not long enough

and so they were not found as much as negation terms and intensifiers. In appendix

D, we show some sample documents from the datasets we used in our experiments

that were misclassified when using the baseline and correctly classified when using

our proposed feature sets and we show their sentiment features (F3) and their refined

sentiment features and features for contextual valence shifters (F3 + F4).
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4.2 Comparing All Features with Sentiment Words with their Prior Po-

larity Against Contextual Polarity

In this section, we show the results of the second set of experiments (E2), that compares

the performance of adding F1, F2 and F3 (F1 + F2 + F3) against the performance of all 4 fea-

ture sets without ignored sentiment words (all) and with ignored sentiment words (all+ign).

These experiments are explained as follows:

1. Constructing the baseline for adding all features:

In this experiment, we added stylistic features (F1), ngrams (F2) and sentiment features

(F3) together to construct our second baseline. We refer to these features as F1 + F2 +

F3. The number of these features for each dataset is shown in table 4.6 and the results

of this experiment are shown in tables 4.8, 4.9 and 4.10.

2. Evaluating the effectiveness of refining the sentiment feature extraction method

when adding all features:

We performed this experiment to measure the impact of refining the sentiment feature

extraction method when adding them to F1 and F2 against the baseline. We refer to

these features as: all. The number of features for each dataset is shown in table 4.7 and

the results of the classifier are shown in tables 4.8, 4.9 and 4.10. As we can see from

table 4.8, the accuracy of the classifier improved in all datasets with an overall increase

of about 1.3%, except the polarity dataset where the performance degraded with 0.2%.

In addition, we observed a significant improvement in the overall precision and recall

from experiment 1, which also indicates that refining the sentiment feature extraction

method and adding new features for contextual valence shifters are effective when

adding them to F1 and F2 compared with the traditional sentiment feature extraction

method.

3. Evaluating the effectiveness of ignoring some sentiment words while refining the

sentiment feature extraction method when adding all features:

In this experiment, we wanted to assess the effect of ignoring sentiment words appear-

ing after modals or conditional or contrast words when adding all features (F1, F2, F3
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and F4) against experiment 2. We refer to these features as: all-ign. The number of

these features for each dataset is illustrated in table 4.7 whereas the accuracy, preci-

sion and recall are illustrated in tables 4.8, 4.9 and 4.10. From the results, we observed

that ignoring sentiment words degraded the accuracy in all datasets, with an overall

decrease of 0.3% while some of the precision and recall results increased slightly in

the books, DVDs and electronics datasets. So, it may not be practical to ignore such

words in the review domain, as was proposed by [28].

Feature Set

Number of Features

Polarity Dataset
Multi-domain Dataset

Books DVDs Electronics Kitchen

Appliances

F1 245 245 245 245 245

F2 10008 4180 4592 2482 2160

F3 4420 3030 2920 1345 1247

F1+F2+F3 14673 7455 7757 4072 3652

Table 4.6: Number of features in each feature set in E2 (baseline)

Feature Set

Number of Features

Polarity Dataset
Multi-domain Dataset

Books DVDs Electronics Kitchen

Appliances

F4 16 16 16 16 16

ref-F3 4852 3246 3142 1432 1346

all 15121 7687 7995 4175 3767

ref-F3+ign 4788 3160 3072 1360 1277

all+ign 15057 7601 7925 4103 3698

Table 4.7: Number of features in each feature set in E2 (proposed feature sets)
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Measure Feature Set Polarity Multi-domain Dataset Average

Dataset Books DVDs Electronics Kitchen

Appliances

Accuracy F1+F2+F3 84.85% 77.20% 79.50% 79.20% 81.25% 80.4%

all 84.65% 78.65% 80.60% 81.45% 83.00% 81.67%

all+ign 84.45% 78.35% 80.50% 81.10% 82.45% 81.37%

Table 4.8: Accuracy of different feature sets in E2

Dataset Measure Polarity F1+F2+F3 all all+ign

Movies Precision pos 0.857 0.850 0.848

neg 0.840 0.843 0.841

Recall pos 0.836 0.841 0.84

neg 0.861 0.852 0.849

Books Precision pos 0.762 0.781 0.774

neg 0.783 0.793 0.793

Recall pos 0.791 0.797 0.800

neg 0.753 0.776 0.767

DVDs Precision pos 0.787 0.799 0.8

neg 0.803 0.814 0.81

Recall pos 0.809 0.818 0.813

neg 0.781 0.794 0.797

Electronics Precision pos 0.789 0.807 0.819

neg 0.796 0.823 0.822

Recall pos 0.798 0.827 0.824

neg 0.786 0.802 0.798

Kitchen Precision pos 0.809 0.827 0.822

neg 0.816 0.833 0.827

Recall pos 0.818 0.835 0.829

neg 0.807 0.825 0.820

Table 4.9: Precision and recall of different feature sets in E2
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Measure F1+F2+F3 all all+ign

Pos. Precision 0.801 0.813 0.813

Neg. Precision 0.808 0.821 0.819

Pos. Recall 0.810 0.824 0.821

Neg. Recall 0.798 0.810 0.806

Table 4.10: Average positive and negative precision and recall of E2 experiments

4.3 Comparing Selected Features with Sentiment Words with their Prior

Polarity Against Contextual Polarity

In this section, we perform feature selection on the feature sets used in the previous sec-

tion to evaluate the effectiveness of our proposed feature sets and test if they were significant

and relevant among all other features or not. We selected features whose IG are greater than

0.0025 using the whole dataset as the training set. We refer to this set of experiments as E3.

Like E2, this set of experiments includes 3 experiments, as follows:

1. Constructing the baseline for feature selection when adding sentiment features to

stylistic features and ngrams:

This experiment was performed to construct the baseline for E3. The features used

are the same as those in the previous section in experiment 1; that is, F1 + F2 + F3,

after performing feature selection on them. The number of reduced features for this

experiment is illustrated in table 4.11 and the results of the classifier are shown in

tables 4.12, 4.13 and 4.14.

2. Evaluating the effectiveness of feature selection when refining the sentiment fea-

ture extraction method and adding all features:

In this experiment, we wanted to evaluate the effectiveness and relevance of our pro-

posed features against the other features (F1 + F2 + F3). So, we added all the features

(F1 + F2 + F3 + F4) together and then performed feature selection on them. The num-

ber of selected features for each dataset is shown in table 4.11. It is important to note

that most of the 16 features in our proposed feature set F4 were selected among the
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whole features, with some of them having the highest IG. This indicates the impor-

tance and relevance of our proposed feature set among the other features in classifying

the documents. The results of this experiment are shown in tables 4.12, 4.13 and 4.14.

The results showed a clear improvement in the accuracy, except for the DVDs dataset

which remained the same, with an overall increase of about 1%. Also, the precision

and recall increased in most cases in the datasets.

3. Evaluating the effectiveness of ignoring some sentiment words while performing

feature selection on all features:

We performed this experiment to evaluate the impact of ignoring sentiment words

that appear after modals or conditional or contrast words after adding all features and

performing feature selection on them. The number of these features for each dataset

is shown in table 4.11 and the results are shown in tables 4.12, 4.13 and 4.14. As

we can see from the tables, the accuracy has only increased slighty from using “all”

features in the DVDs dataset by 0.2%, it remained the same in the kitchen appliances

dataset and decreased in the remaining datasets, making an overall decrease of 0.24%.

In addition, some of the precision and recall results have increased marginally in the

polarity, DVDs and kitchen appliances datasets, but on the average, all the precision

and recall results have decreased.

Feature Set

Number of Features

Polarity Dataset
Multi-domain Dataset

Books DVDs Electronics Kitchen

Appliances

F1+F2+F3 1471 482 503 401 408

all 1490 493 549 423 430

all+ign 1491 495 543 420 428

Table 4.11: Number of selected features in each feature set in E3
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Measure Feature Set Polarity Multi-domain Dataset Average

Dataset Books DVDs Electronics Kitchen

Appliances

Accuracy F1+F2+F3 87.05% 84.20% 84.60% 83.55% 84.85% 84.85%

all 87.15% 85.50% 84.60% 84.85% 86.55% 85.73%

all+ign 86.9% 84.6% 84.8% 84.6% 86.55% 85.49%

Table 4.12: Accuracy of different selected feature sets in E3

Dataset Measure Polarity F1+F2+F3 all all+ign

Movies Precision pos 0.874 0.874 0.868

neg 0.867 0.869 0.87

Recall pos 0.866 0.868 0.87

neg 0.875 0.875 0.868

Books Precision pos 0.823 0.837 0.829

neg 0.864 0.874 0.865

Recall pos 0.872 0.881 0.872

neg 0.812 0.829 0.82

DVDs Precision pos 0.820 0.828 0.83

neg 0.876 0.867 0.869

Recall pos 0.886 0.874 0.876

neg 0.806 0.818 0.82

Electronics Precision pos 0.819 0.840 0.837

neg 0.854 0.857 0.855

Recall pos 0.862 0.861 0.859

neg 0.809 0.836 0.833

Kitchen Precision pos 0.859 0.870 0.875

neg 0.839 0.861 0.857

Recall pos 0.834 0.859 0.853

neg 0.863 0.872 0.878

Table 4.13: Precision and recall of different selected feature sets in E3
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Measure F1+F2+F3 all all+ign

Pos. Precision 0.839 0.850 0.848

Neg. Precision 0.860 0.866 0.863

Pos. Recall 0.864 0.869 0.866

Neg. Recall 0.833 0.846 0.844

Table 4.14: Average positive and negative precision and recall of E3 experiments

4.4 Discussion of the Results

In this chapter, we have carried out some experiments to evaluate the performance of our

proposed feature sets. First, in section 4.1, we evaluated the performance of the refined sen-

timent features (F3) after calculating their contextual polarity and adding features that count

the number of intensifiers, negation terms, and polarity shifters grouped according to the

polarity and type of the words modified by them as well as the frequency of sentiment words

grouped with their final polarity and type (F3+F4) against counting all sentiment words while

disregarding their contextual polarity (F3). The results we got showed that refining the sen-

timent feature extraction method by taking their contextual polarity into consideration and

adding features to count the contextual valence shifters have clearly improved the classifier’s

performance in terms of the accuracy, precision and recall. Furthermore, the two-tailed t-test

showed statistical significance of our proposed feature sets against the baseline in 3 out of the

5 datasets used. In addition, we showed that ignoring sentiment words appearing after con-

ditional or contrast words or modal verbs improved the classifier’s accuracy in some cases

(3 datasets) and decreased its performance in other cases (2 datasets), but on the average, it

degraded the accuracy of the classifier by 1%. Furthermore, we have shown that the effect

of adding negation features is better than adding intensifier features, and that adding both

negation and intensifier features has a significant improvement on the classifier.

The second set of experiments, described in section 4.2, was performed to evaluate the

performance of adding the refined sentiment features and features for contextual valence

shifters (F3 and F4) to content-free and content-specific features (F1 and F2). We also got

promising results that were better than the baseline, that adds all sentiment features with their
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prior polarity (F3) to F1 and F2, except for the Polarity dataset, where the accuracy decreased

by 0.2% and the precision of the positive class as well as the recall of the negative class

decreased slightly. Furthermore, we proved that ignoring sentiment words that appear after

conditional or contrast words or modal verbs with these feature sets reduced the classifier’s

accuracy in all datasets (with an average of 1%), but slightly improved its precision and recall

in some datasets.

Finally, we performed the last set of experiments that we explained in section 4.3 to

evaluate the performance of feature selection on the feature sets described in section 4.2.

Feature selection has shown that our proposed feature set that counts the different contextual

valence shifters (F4) is effective among all the feature sets, since most of them were selected

and some of them were among the features with the highest IG. Also, the results we got after

feature selection on the classifier showed an improved accuracy in all datasets in addition to

an overall increase in the precision and recall among all of them.

As a result, refining the sentiment feature extraction method and adding our proposed

feature set to handle contextual valence shifters were more effective in product reviews than

in movie reviews, due to the nature of movie reviews, which can contain a lot of objective

sentences about the plot or characters or the movie that contain sentiment words. These

sentiment words should not be counted when determining the overall sentiment of the author

[19]. But overall, we have shown that refining the sentiment feature extraction method and

adding our proposed feature set are effective for document-level sentiment classification.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Document-level sentiment classification is an emerging research field in NLP and ML.

Researchers’ interests have been mainly divided into two main approaches: ML and SO.

In the ML approach, researchers have been attempting different feature sets to improve the

classifier’s performance. They have tried the same features used in classic text classification,

such as n-grams and they have yielded good results. Some have also tried extracting words

with SO, for example, the authors in [9] have implemented a sentiment feature extraction

method from SentiWordNet 3.0. However, the method proposed in that paper is not efficient

to grasp the true polarity of the sentiment words, as the authors in [28] have noted that

there are different categories of the so-called contextual valence shifters that can change or

neutralize the polarity and/or intensity of sentiment words.

Therefore, in this study, we have proposed a document-level sentiment classifier with

a new feature set to include contextual valence shifters in a non-trivial way as well as a

refinement for the sentiment feature extraction method that is proposed in [9]. The results

we have obtained from our system showed a much better performance than other systems

who have tried incorporating sentiment features and contextual valence shifters in the ML

approach.

There are different directions for extending this system. One direction could be merg-

ing features of contextual valence shifters (F4) that have equivalent polarity and/or type

together into one feature; for example, we can merge pos strongsubj with pos weaksubj into

one pos feature representing the total number of positive words, and neg strongsubj with
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neg weaksubj into a neg feature representing the total number of negative words. Also, we

can try merging shiftpos strongsubj and shiftpos weaksubj with pos and the same for shift-

neg strongsubj and shiftneg weaksubj. Another direction for future work would be to modify

the quantifiers list provided by [7], which contains single- and multi-word expressions that

intensify or diminish the polarity of the words after them, e.g. it is less expensive, since each

quantifier has a numerical score (from -5 to +5) showing its polarity and intensity. So, we

could modify these scores to indicate their polarity and type (pos strongsubj, pos weaksubj,

neg strongsubj, and neg weaksubj). And then we can add another 4 features to F4 to repre-

sent diminished words grouped together according to the polarity and type of the sentiment

words modified by them, e.g. diminisher pos strongsubj. Furthermore, we can try to build

an Arabic sentiment lexicon and a list of intensifiers and other contextual valence shifters to

build an Arabic document-level classifier with our proposed feature sets. Finally, as we stated

earlier in the thesis, two assumptions are being made in document-level sentiment classifica-

tion: 1) The document expresses the opinion of one author only; and 2) The document talks

about one object. Therefore, two important directions for future work are to: 1) Extract the

sentences that express the opinion of the author; and 2) Perform Named Entity Recognition

(NER) and topic extraction to extract topic sentences and sentences talking about different

objects and separate them so that we can classify the sentiment of each object being talked

about in the document.
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Appendix A: Feature Sets

This appendix shows the list of feature sets that were used in our experiments.

1. Stylistic Features:

These features were provided by [43]:

1. Total number of characters(C)

2. Total number of alphabetic characters/C

3. Total number of upper-case characters/C

4. Total number of digit characters/C

5. Total number of white-space characters/C

6. Total number of tab spaces/C

7-32. Frequency of letters (26 features)

33-53. Frequency of special characters (21 features)

54. Total number of words (M)

55. Total number of short words (less than four characters)/M

56. Total number of characters in words/C

57. Average word length

58. Average sentence length in terms of character

59. Average sentence length in terms of word

60. Total different words/M

61. Hapax legomena*

62. Hapax dislegomena*

63. Yules K measure*

64. Simpsons D measure*

65. Sichels S measure*

66. Brunets Wmeasure*

67. Honores R measure*

68-87. Word length frequency distribution /M (20 features)

88-95 Frequency of punctuations (8 features)

96-245 Frequency of function words (150 features)
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Note: The definitions of measures with “*” can be found in [36].

2. Content-specific Features:

These features vary from one dataset to another. For the Polarity dataset, we extracted

all unigrams, bigrams, and trigrams whose frequency is greater than 9, and for the

multi-domain dataset, we extracted all unigrams and bigrams with a frequency thresh-

old of 5. The number of features and some examples of them for each dataset are as

follows:

• The Polarity dataset:

This dataset included 10,008 n-grams. Some examples are: director, hangs,

archer, correctly, quinlan, real estate, police force, good script, rocky horror pic-

ture, star wars trilogy, and hong kong action.

• The books dataset:

This dataset included 4,180 n-grams. Some examples are: steinbeck, capitalism,

practically, designed, initial, character development, global warming, book reads,

white people, and worst book.

• The DVDs dataset:

This dataset included 4,592 n-grams. Some examples are: adopted, purchase,

awards, menacing, reviews, blues, high quality, viewing experience, original film,

dvd collection, commander geordi, and world war.

• The electronics dataset:

This dataset included 2,482 n-grams. Some examples are: glasses, charge, pro-

grammed, procedure, packaged, decent, flash drives, firmware update, worked

perfectly, wireless network, and radio reception.

• The kitchen appliances dataset:

This dataset included 2,160 n-grams. Some examples are: lids, shelves, re-

turned, toasting, amount, good coffee, product arrived, fitted sheet, long time,

and stopped working.

3. Sentiment Features:

These features vary from one dataset to another. Also, as we explained in chapter 3,
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there are sentiment features from the baseline (F3) and from our proposed feature sets

(refined F3). The number of these features and some examples of them for each dataset

are as follows:

• The Polarity dataset:

In this dataset, F3 included 4,420 features, whereas refined F3 included 4,852

features. Some examples are: admission noun, adeptly adverb, apathy noun,

amicable adj, affirm verb, ambitiously anypos, admirable adj, abuse noun, ac-

tive adj, and advantage noun.

• The books dataset:

In this dataset, F3 included 3,030 features, whereas refined F3 included 3,246

features. Some examples are: amazingly anypos, abide anypos, allowable adj,

afraid adj, abdicate verb, astonishing adj, accidental adj, applaud verb, anger noun,

awful adj, and awesome adj.

• The DVDs dataset:

In this dataset, F3 included 2,920 features, whereas refined F3 included 3,142

features. Some examples are: assure verb, accomplish verb, ambiguous adj,

asinine adj, archaic adj, astonishing adj, acclaim noun, ache verb, agony noun,

and abhor verb.

• The electronics dataset:

In this dataset, F3 included 1,345 features, whereas refined F3 included 1,432 fea-

tures. Some examples are: argumentative anypos, advice noun, attractively anypos,

accomplish verb, admire verb, admittedly anypos, avoidance noun, amusing adj,

attractive adj, and annoyance noun.

• The kitchen appliances dataset:

In this dataset, F3 included 1,247 features, whereas refined F3 included 1,346 fea-

tures. Some examples are: afford verb, alas anypos, ashamed adj, avoid verb,

appealing adj, agree verb, admittedly anypos, accurate adj, absence noun, and

allow verb.

4. Contextual Valence Shifters:
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These features are the 16 features that handle contextual valence shifters. They are

explained in detail in section 3.3 and are listed below:

(a) Intensifier pos strongsubj

(b) Intensifier pos weaksubj

(c) Intensifier neg strongsubj

(d) Intensifier neg weaksubj

(e) Negation pos strongsubj

(f) Negation pos weaksubj

(g) Negation neg strongsubj

(h) Negation neg weaksubj

(i) Shiftneg strongsubj

(j) Shiftneg weaksubj

(k) Shiftpos strongsubj

(l) Shiftpos weaksubj

(m) Pos strongsubj

(n) Pos weaksubj

(o) Neg strongsubj

(p) Neg weaksubj
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Appendix B: Modal Verbs and Conditional and Contrast Words

Modal Verbs

can could had better have to has to may

might must need to need not needn’t ought

ought to shall should will would

Conditional Words

if unless whether provided that

Contrast Words

though although nonetheless nevertheless even so despite

in spite of notwithstanding instead of regardless of irrespective of disregardless of

even though rather than
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Appendix C: Combinations of Valence Shifters and Intensifiers

In section 3.3 in algorithms 1 and 2, there are 3 boolean variables that show if the word

is intensified, negated or preceded by a polarity shifter; namely, intensified, negated, and

shifted, respectively. In this appendix, we show how the final polarity of the sentiment word

as well as the contextual features (F4) are affected by the different combinations of the values

of these 3 variables, as follows:

1. negated = FALSE, intensified = FALSE and shifted = FALSE:

Since all 3 variables are set to FALSE, this means there are no changes that happened

to the sentiment word. Thus, algorithm 1 will go to algorithm 2 in line 13 where only

line 15 in the algorithm will be executed by setting word count to 1. Then, back to

algorithm 1, lines 14 and 15 will be executed. So, the final polarity will be the same as

the prior polarity, and both the sentiment feature of the word and the frequency of the

words with the same polarity and type will be incremented by 1.

2. negated = FALSE, intensified = FALSE and shifted = TRUE:

Here, the sentiment word is preceded by a polarity shifter only. So, its polarity will

be shifted towards the opposite polarity. So, algorithm 1 will go to algorithm 3 where

either one of the two conditions will be true (based on the prior polarity of the word and

whether it is preceded by a positive or negative polarity shifter) and the final polarity

will be shifted. After that, it will go back to algorithm 1 which will go to algorithm

2. Line 15 will be executed by setting word count to 1. Then, lines 23 and 24 will

be executed by changing the word count of the sentiment word to -1 and the shifter

feature of the word will be incremented by 1 (if the word’s polarity is positive the

shifter feature will be shiftneg and if it is negative, then the feature will be shiftpos;

and the feature’s type will be the same as the word’s type - strongsubj or weaksubj).

Then, back to algorithm 1, the word’s sentiment feature will be decremented by 1

and the frequency of the words with the same polarity and type as the final (shifted)

polarity will be incremented by 1 (lines 14 and 15).

3. negated = FALSE, intensified = TRUE and shifted = FALSE:
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Here, only intensified is set to TRUE, so the word is intensified but not negated or

preceded by a polarity shifter. So, we only want here to increment the intensifier

feature with the word’s polarity and type by 1 and increment the sentiment feature

of the word. Also, we need to intensify the polarity of the word and increment the

frequency of the words with the intensified polarity and type by 1. Thus, lines 15, 18

and 20 in algorithm 2 and lines 14 and 15 in algorithm 1 will be executed and these

changes will be saved to the corresponding features.

4. negated = FALSE, intensified = TRUE and shifted = TRUE:

When the sentiment word is preceded by both an intensifier and a polarity shifter,

the shifter will shift the intensified word (e.g. he lacks numerous abilities). So, the

final polarity of the word will be shifted towards the opposite polarity (algorithm 3)

and then in algorithm 2, the prior polarity of the word will be intensified (line 20),

the word count of the word will be -1 and the shifter feature of the final (intensified)

polarity will be incremented by 1 (lines 23 - 24). Finally, in algorithm 1, the sentiment

feature of the word will be decremented by 1 and the frequency of the words with the

shifted polarity will be incremented by 1 (lines 14 and 15).

5. negated = TRUE, intensified = FALSE and shifted = FALSE:

When a sentiment word is negated, all the needed changes are to negate its polarity

and decrement its count. Algorithm 2 in this state will go through lines 9, 11 and

12. So, word count will be set to -1, the negation feature of the word’s polarity will be

incremented by 1, and the final polarity of the word will be negated. Then, in algorithm

1, the sentiment feature of the word will be decremented, and finally the the frequency

of the words with the negated polarity and type will be incremented by 1 (lines 14 adn

15).

6. negated = TRUE, intensified = FALSE and shifted = TRUE:

When both negated and shifted are TRUE, it is as if the word is negated twice (e.g. he

does not lack wisdom). Thus, the contextual polarity is the same as the prior polarity

of the sentiment word. In algorithm 2, word count will be set to 1 (line 3), and then in

algorithm 1, the word’s sentiment feature will be incremented by 1 and the frequency

of the words with the same polarity and type will be also incremented by 1 (lines 14
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and 15).

7. negated = TRUE, intensified = TRUE and shifted = FALSE:

When the sentiment word is negated and intensified, the negation affects the intensified

word, not just the word (e.g. he is not very good). Here, the sentence negates the

expression very good and not just good. So, we first want to intensify the word’s

polarity and then negate it. Algorithm 2 will go through lines 6 and 7 to first intensify

the word’s polarity and set the word’s count to 1. Then, in line 11, the negation feature

of the final (intensified) polarity will be incremented by 1 and in line 12, the final

polarity will be negated. Then, back to algorithm 1, the sentiment feature of the word

will be incremented by 1 in line 14, since the negation does not totally remove the

effect of the word (in the sentence, it means that he is good but not very good (or not

excellent)). And in line 15 the frequency of the words with the same polarity and type

as the final negated polarity will be incremented by 1.

8. negated = TRUE, intensified = TRUE and shifted = TRUE:

This state is somehow similar to the state where both negated and shifted are TRUE

and intensified is FALSE. Consider, for example, the sentence he does not lack great

abilities. In this sentence, the negation not and the polarity shifter lack will remove the

effect of each other, but the presence of the intensifier does not mean that he has great

abilities. So, we do not intensify the polarity of the word and we treat it like the case

when intensified is set to FALSE (case number 6).
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Appendix D: Classification of Document Samples with Different Features

In chapter 4, we have demonstrated the significance of our proposed feature sets com-

pared with traditional sentiment features. In this appendix, we will show real examples of

some sample documents that were used in our experiments, and how their predicted classi-

fication was changed from the wrong class (with using the baseline features) to the correct

class (with using our proposed features). To do this, we selected 900 documents from each

class in the books dataset to build the classifier model with 10-fold cross validation, and then

used the remaining 100 documents from each class as the new testing set. We then ran the

classifier with sentiment features alone with their prior polarity (F3) and then with refined

sentiment features and features for contextual valence shifters (F3 + F4).

1. Change of classification from negative to positive:

The actual classification of the following sample documents is positive. They were

classified as negative when running the classifier with F3 (baseline), and as positive

when running it with refined F3 and F4.

(a) Sample document #1:

“Some of Patterson’s conclusions were a bit of a reach. Some of his segways

weren’t all that smooth. But this book is just plain entertaining. It is chopped full

of stories on rockstars making deals with the Devil,lingering around after death,

and backed up with just enough innuendo-ish research for it to almost be believ-

able. Well, some of it actually believable. Patterson scribes on about various

rockstar-occult alliances (in particular the Rolling Stones and Led Zeppelin) and

uses quotes from the musicians themselves.”

The feature set F3 for this document included the following features:

• believable adj: 2 - a positive strongsubj word.

• death noun: 1 - a negative weaksubj word.

• devil noun: 1 - a negative strongsubj word.

• entertaining adj: 1 - a positive strongsubj word.

• just anypos: 2 - a positive weaksubj word.
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• well adverb: 1 - a positive weaksubj word.

• smooth adj: 1 - a positive weaksubj word.

When classified with refined F3 and F4, refined F3 contained the same features

as F3 with smooth adj getting the value -1 (since it was negated), in addition

to the feature: {back verb: 1 - a pos weaksubj word} since lemmatization was

performed in refined F3. F4 contained the following features (with values greater

than 0):

• intensifier pos strongsubj: 1 - for the expression (plain entertaining)

• negation pos weaksubj: 1 - for the expression (n’t .. smooth)

• pos strongsubj: 3 - for the words (entertaining - believable (twice))

• pos weaksubj: 3 - for the words (back - just - well)

• neg strongsubj: 1 - for the word (devil)

• neg weaksubj: 2 - for the words (n’t .. smooth - death)

(b) Sample document #2:

“This is the first of a great series of books. Knights & squires, quests & fairies,

action & discovery —- old stories re-told in an easy-to-read style with a dose of

dry humor. Geared towards older children (my daughter LOVES them all), they

don’t insult the intelligence of the reader (I enjoyed them more than much of the

“grown-up” fiction I read). The series is best when you read them in order, as you

meet the characters again in future books. The books were such a hit, I actully

purchased them in hardback so that the rest of my kids can read & re-read them

as they get older. We’re eagerly waiting for the 7th book (and the 8th...) to come

out in print!”

The feature set F3 for this document included the following features:

• best anypos: 1 - a positive strongsubj word.

• eagerly anypos: 1 - a positive strongsubj word.

• fiction noun: 1 - a negative weaksubj word.

• great adj: 1 - a positive strongsubj word.

• insult verb: 1 - a negative strongsubj word.
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• intelligence noun: 1 - a positive weaksubj word.

When classified with refined F3 and F4, refined F3 contained the same features as

F3, but both insult verb and intelligence noun got the value -1 (since they were

negated). In addition, the features: {enjoy verb: 1 - a positive weaksubj word}

and {love verb: 1 - a positive strongsubj word} were added in refined F3 due to

lemmatization in extracting refined F3. F4 contained the following features (with

values greater than 0):

• negation neg strongsubj: 1 - for the expression (n’t insult)

• negation pos weaksubj: 1 - for the expression (n’t .. intelligence)

• pos strongsubj: 4 - for the words (best - eagerly - great - love)

• pos weaksubj: 1 - for the word (enjoy)

• neg weaksubj: 3 - for the expressions (fiction - n’t insult - n’t .. intelligence)

2. Change of classification from positive to negative:

The actual classification of the following sample documents is negative. They were

classified as positive when running the classifier with F3 (baseline), and as negative

when running it with refined F3 and F4.

(a) Sample document #1:

“This book doesn’t make any sense. It is so, so, so b-o-r-i-n-g. The book is not

well written, and the sentences are way too short. I woudn’t recommand this

book to anyone”

The feature set F3 for this document included the following features:

• sense noun: 1 - a positive weaksubj word.

• too anypos: 1 - a negative weaksubj word.

• well adverb: 1 - a positive weaksubj word.

When classified with refined F3 and F4, refined F3 contained the same features

as F3, but both sense noun and well adverb got the value -1 (since they were

negated). F4 contained the following features (with values greater than 0):

• negation pos weaksubj: 2 - for the expressions (n’t .. sense - not well)

• neg weaksubj: 3 - for the expressions (n’t .. sense - not well - too)
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(b) Sample document #2:

“While the author does go into detail about numerous topics and informs the

reader about what is necessary to survive. What I think the books lacks is the de-

tail necessary on all of the major topics. An example would be that he describes

how to build a leanto for shelter, but doesn’t go into detail on how to tie the

structural members together. He just tells you that you need to tie them together.

What if you don’t have a shoelace to use? What other alternates are there? This

book would be great for a teenager who goes camping and may need to build a

fire, but it’s not enough for the serious camper”

The feature set F3 for this document included the following features:

• great adj: 1 - a positive strongsubj word.

• just anypos: 1 - a positive weaksubj word.

• necessary adj: 2 - a positive weaksubj word.

• serious anypos: 1 - a negative strongsubj word.

• shelter noun: 1 - a positive weaksubj word.

• survive verb: 1 - a positive weaksubj word.

When classified with refined F3 and F4, refined F3 contained the same features

as F3, but without necessary adj since it occurred twice (and the second one was

negated by a polarity shifter lacks, so 1 - 1 = 0). Also, serious anypos got the

value -1 (since it was negated). F4 contained the following features (with values

greater than 0):

• negation neg strongsubj: 1 - for the expression (n’t .. serious)

• shiftneg weaksubj: - 1 for the expression (lacks .. necessary)

• pos strongsubj: 1 - for the word (great)

• pos weaksubj: 4 - for the expressions (just - necessary - shelter - survive)

• neg weaksubj: 2 - for the expressions (lacks .. necessary - n’t .. serious)
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