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ABSTRACT	  

The Red Sea brine pools are unique environments to assess the biochemical adaptation 
of marine bacteria. The role of nitrogen in marine biogeochemistry is central and 
greatly influences the diverse elements including carbon and phosphorus. 
Anammox communities play a significant role in the total nitrogen loss especially in 
deep sea and deep ocean ecosystems. Despite this, the biodiversity of Anammox 
bacteria have not been previously investigated in any brine pool ecosystems. With the 
advances of the metagenomics based approaches, the exploration of the yet uncultured 
microbial communities including the Anammox bacteria has taken different 
perspectives. Anammox communities are currently analyzed using 16srRNA with 
some unique functional genes e.g. hydrazine oxidase, hydrazine synthase and 
Cytochrome cd1-containing nitrite reductase encoding gene nirS.  

In this study, we examined the biodiversity of Anammox microbial communities 
inhabiting two Red sea brine pools’ Atlantis II and Kebrit deep interface layers. 
Comparative and comprehensive analysis of the unique and specific functional gene, 
hydrazine oxidase was performed. Anammox hydrazine oxidase gene was amplified 
from DNA isolated from the 0.1 µm serial fractionation of the water samples of 
Atlantis II interface layer and Kebrit upper interface layer. hzoA/hzoB libraries were 
constructed and a total of 81 and 44 specific clones were identified in the interface 
layers of Atlantis II deep and Kebrit deep, respectively. The identified sequences 
matched hydrazine oxidases from uncultured Planctomycetes. Alpha and beta diversity 
analyses were performed using statistical analysis tests and multiple regression 
analysis was done to assess the level of uniqueness of the Anammox bacteria 
inhabiting the examined samples using Unifrac. Eight and nine different Anammox 
related phylotypes were identified in Atlantis II and Kebrit upper interface layers, 
respectively. Scalindua species predominated the sampled interface brine layers. 
Moreover, the principle component analysis depicted a unique presence of Anammox 
communities. This study addresses and identifies the unique microbial community in 
the interface of the Red Sea Brine Pools. 
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CHAPTER	  1:	  -‐	  LITERATURE	  REVIEW	  

 

1.1 Atlantis II Deep and Kebrit Deep Red Sea Brine Pools 

1.1.1: - General Description  

The Red Sea was formed 3-5 million years ago upon the divergent movement of 

the Arabian and the African tectonic plates [1], [2]. Recent oceanographic 

measurements indicated that the Red Sea is an ocean basin formed by splitting apart 

continents, a phenomenon known as “ocean in statue nascendi” [3], [4]. This is 

evidenced by the current structure of the Red Sea Axial Rift. This Rift expands toward 

the south and is subdivided into four different regions namely; the Northern Region, 

the Transitional Region, the Multi-deeps Region and the Rift Valley region (fig 1) [2], 

[3], [5].  In the past 50 years, more than 25 Red Sea Brine Pools have been discovered 

and most of them are located in the northern and the central regions of the Red Sea 

Axial Rift [3]. Among those brine filled pools, Atlantis II is located in the Central Rift 

around (21 ° 20’), extending 60 km2 wide and 2200 m deep. It is characterized by the 

presence of thick, metalliferous deposits underlying its deepest layer [1]. Miller et al. 

discovered this pool using the Atlantis II vessel in 1965 [6]. The Atlantis II brine pool 

consists of four physically separated layers; the deepest one is the Lower Convective 

Layer (LCL), which extends from the brine bottom to 2047 m below the sea surface. 

LCL is over-layered by three stratified UCLs (UCL1, UCL2, and UCL3) exhibiting 

remarkable differences in salinity and temperature. Above the two brine layers, there 

is a transitional zone separating that brine pool from the above seawater and extending 

from 1900 to 2000 m below sea surface; this layer is known as the Interface Layer. 

Atlantis II brine is known by its hydrothermal activities and this is emphasized by the 

gradual increases of its temperature over time as reported in the measurements taken 

from 1965 to 2008 [1], [3], [5]. 

The second brine pool addressed in this study is Kebrit Deep. It was discovered 

in 1971 during the Valdivia expedition [5]. It is located in the northern region of the 

Axial Rift at (24 ° 44’N, 36 °17’E) taking an oval shape, which extends for 1 to 2.5 

km2 wide, and ranges from 7m to 1.5 kilometers in depth [4], [5], [7], [8]. The 

thickness of the brine itself is 84 m with slight acidic pH and no dissolved oxygen[7]. 
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1.1.2 Physicochemical Characteristics 

Atlantis II is considered to be the saltiest and the hottest Red Sea brine pool. Its 

temperature reaches up to 70°C at LCL and its salt concentrations are 25.4% (about 

7.5 times higher than the normal seawater) [3], [5]. It is also characterized by the 

presence of metalliferous deposits due to the high concentrations of heavy metals 

(iron, zinc, copper, etc.). It was reported that nitrogen and methane are highly 

abundant in the brine with smaller fractions of carbon dioxide, ethane and hydrogen 

sulfide [3], [8]. On the other hand, the Kebrit Deep Brine Pool, its name being derived 

from the Arabic word for sulfur, shows a sharp increase in its salinity from 4% to 

26%. It also exhibits an increase in temperature from 21.6° C to 23.4° C. Methane and 

Hydrogen Sulfide are significantly detected in the Kebrit brine pool with smaller 

amounts of nitrogen and no dissolved oxygen. The seawater/brine interface is 

characterized by a high-density gradient that acts as a sieve trapping both organic and 

inorganic substances[5], [7]. 

1.1.3 Microbiological Studies: - an Overview 

Microbiological analyses of Atlantis II date back to the late 1960s. Culture 

dependent approaches didn’t support the growth on all media tested, which has driven 

a conclusion that Atlantis II Deep is a very harsh environment that can’t support the 

existence of any forms of life. This conclusion quickly changed after sulfate-reducing 

bacteria had been successfully isolated by Truper et al. 1969 [9]. In 1990, four isolates 

of Flexistipes sinusarabici were isolated, which were characterized later as a new 

phylum known as Deferribacteres [10]. 

Microbiological studies in Kebrit have then been conducted using contemporary 

approaches; phylogenetic analyses using primers specific for both bacterial and 

archaeal 16srRNA have been carried out. Six bacterial and five archaeal unique clones 

have been obtained. The six bacterial sequences are branched between Aquificales and 

Thermotogales. Of the five archaeal clones, three belonged to Euryarchaeota group II 

and III, while the other two clustered in a separate branch [4]. This study has been 

followed by cultivation-based trials; two rod shaped species belonging to the genus 

Halanaerobium were successfully isolated. Phylogenetic analyses of the isolates 
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16srRNA sequences revealed that its sequences have been detected in the previous 

study [4], [7].  

With advances in the metagenomics’ approaches, an initiative to explore the Red 

Sea Brine Pools and the water column overlying it has been taking place. 16srDNA 

profiles of the microbes inhabiting the water column covering the Red Sea Brine Pool, 

Atlantis II, have been examined at depths of 50m, 200m, and 1500m. The obtained 

results of the bacterial pyrotags analyses revealed the dominance of Cyanobacteria in 

the surface layers, whereas Proteobacteria prevails in the deeper layers. The archaeal 

pyrotags analyses showed the prevalence of Euryarchaeota and Crenarchaeota in the 

upper and the lower layers, respectively[2]. Further investigations were done to 

determine the metabolic capacities of microbes present in the Atlantis II Brine Pool. 

The investigations concluded that bacteria inhabiting this brine pool might possess the 

genetic capability to metabolize hydrothermally produced aromatic compounds[11].  

1.2 Nitrogen Cycle: A Marine Perspective 

Nitrogen is the most abundant molecule on earth. It is essential for all forms of 

life as it’s an important constituent of most biochemical molecules (e.g. nucleic acids, 

amino acids, proteins etc.). It exists in different forms ammonium, nitrate, nitrogen 

oxides, azides and hydrazines. It is also involved in many industrial applications such 

as the use of nitrates as fertilizers and hydrazines as rocket fuel.  

1.2.1 Nitrogen Fixation 

Atmospheric nitrogen is the largest reservoir of molecular nitrogen, which is 

commonly fixed to enter the biological nitrogen cycle through the activities of some 

groups of bacteria, archaea and fungi. In terrestrial habitats, these microbes establish 

symbiotic relationships with plants and provide it with the fixed nitrogen forms [12]. 

In marine habitats, biologically available nitrogen is a crucial factor in the productivity 

of the ecosystem. The efficiency of nitrogen fixation process in marine ecosystems is 

controversial [13]. It was perceived that N2 fixation processes are not abundant in the 

marine ecosystems and that the major source of fixed nitrogen is the N2 run-off from 

the non-marine sources. This notion was based on the hypothesis that most of marine 

organisms can utilize inorganic nitrogen sources like ammonium, nitrate and nitrite but 

not fixing N2 [14]. In fact N2 fixation in marine habitats is underestimated even after 
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the discovery of the N2 fixation capabilities of the ubiquitous cyanobacteria 

(Trichodesmium) [14]. However, after the advances of molecular techniques, Zehr et 

al. 2003 established N2 fixers profiling approach using a marker gene nif H, which is 

conserved among N2 fixing bacteria [15], [16]. This approach together with the 15N 

tracing experiments paved the way to the discovery of key players in the N2 fixation 

cycle [17]. It was found that both Trichodesmium and other diazotrophs are the major 

suppliers of fixed nitrogen compounds in different marine ecosystems [14], [17].  

Determining the spatio-temporal role of marine microbes in the nitrogen fixation 

process in marine habitats has been a challenging task. N2 fixation processes is also 

found in close association with nitrogen loss through the activities of denitrifiers and 

Anammox bacteria [13]. 

1.2.2 Nitrification 

Nitrification is the oxidation of ammonia to nitrite and then to nitrate under 

aerobic conditions. These reactions are mainly carried out by the activities of two 

distinct groups of chemolithotrophic bacteria including Nitrosomonas (oxidizing 

ammonia to nitrite) and Nitrobacter (oxidizing nitrite to nitrate) [12]. Nitrification 

reactions are controlled by a set of nitrite oxidoreductases and nitrate monooxygenases 

that is regulated by the levels of ammonia and oxygen present [13]. Nitrosomonas and 

Nitrobacter species belong to Beta and Gamma subclasses of the phylum 

Proteobacteria, respectively [12].  These bacteria exploit the energy produced through 

the nitrification process as their sole energy source [15]. Furthermore, this process 

fuels both Anammox bacteria and denitrifiers with the required oxidized nitrogen 

substrates that act as electron acceptors [18]. Recently, it was discovered that a marine 

archaeon affiliated with the phylum Crenarchaeota could grow chemolithotrophically 

by converting ammonia to nitrite under aerobic conditions. This archaeon belongs to a 

group known as Ammonium Oxidizing Archaea (AOA) [19]. Moreover, recent 

synopsis on the kinetics of the AOA revealed that it might outnumber the Ammonia 

Oxidizing Bacteria (AOB) at nutrient deprived ecosystems. In photic zones AOA is 

more light tolerant than AOB [20]. In addition to the autotrophic nitrifiers, a group of 

heterotrophic nitrifying bacteria and fungi has been also detected[21].  
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1.2.3 Denitrification 

Denitrification is a crucial process in the nitrogen biogeochemical cyclethat was 

believed – until recently – to be the only way for N2 production [22]. This concept has 

been completely upended after the discovery of Anammox and its roles in the nitrogen 

cycle [23]. The pathway is carried out under limited oxygen conditions and consists of 

four consecutive steps. In the first step, nitrate is reduced to nitrite and this is mainly 

attained by the action of nitrate reductases. At this step, this process is split into two 

distinct pathways, the canonical denitrification and dissimilatory nitrate reduction to 

ammonia (DNRA). In the former, nitrite is further reduced to nitrite oxide, then to 

nitric oxide and finally the nitrogen is released back to the atmosphere. Where in the 

later, nitrate is reduced into ammonia [22], [24]. It is worth noting that Thioploca and 

Thiomargarita are the only genera known to carry out DNRA [25]. The microbial key 

players in the canonical denitrification process belong to heterotrophic bacteria e.g. 

Paracoccus denitrificans, however it was reported that some autotrophic bacteria are 

capable of denitrification e.g. Thiobacillus denitrificans. Generally, taxonomy doesn’t 

strictly determine denitrification. However, most of these bacteria are ranked within 

the subdivisions of the phylum Proteobacteria [26]. Beyond the bacterial groups, it 

was also discovered that some autotrophic and heterotrophic archaea possess the 

necessary machineries to undergo denitrification [25], [26].  

1.2.4 Anammox (ANaerobic AMMonium OXidizers) 

About two decades ago, Anammox has been determined to be one of the leading 

causes of nitrogen loss [23]. The anaerobic ammonium oxidation was carried out by a 

group of uncultured Planctomycetes through coupling ammonium - as electron donor - 

to nitrite - as electrons acceptor - in an energetically favorable reaction to generate di-

nitrogen [22], [27]. This reaction takes place in special intracellular compartments 

called Anammoxosome[28]. It is believed that Anammox communities contribute by 

more than 50% in eliminating the fixed nitrogen forms from marine water bodies. This 

reaction releases the required energy to support the chemolithotrophic nature of 

Anammox bacteria [22]. Genome analyses and metabolic reconstruction experiments 

on Kuenenia Sttutgartiensis revealed the presence of some peculiar intermediates in 

this pathway such as hydrazine. It also reported that over 200 genes were employed to 

carry out the catabolic and respiratory functions in the Anammox process [29]. Out of 
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the 200 genes, nine genes belong to octahaeme cytochrome c 

hydroxylamine/hydrazine oxidoreductases [29], [30]. These genes encode for 

functional enzymes that mediate the Anammox pathway. 

The presence of Anammox activities in environmental samples was first 

reported by analyzing marine sediments obtained from the Danish coast using the 

labeled nitrogen technique [31]. The existence of Anammox bacteria in the suboxic 

zones of the Black sea was revealed by 16srRNA analyses [32], [33]. 

So far, five genera belong to Anammox bacteria (the uncultured group of 

Planctomycetes phyla) have been discovered. These genera are Kuenenia, 

Anammoxoglobus, Scalindua, Jettenia and Brocadia. It is also worth mentioning that 

these genera have been isolated from both Anammox enrichment cultures and 

different environmental samples [34].  

1.3 ANAMMOX  

1.3.1 Discovery 

In 1965, a profound decrease in ammonia levels has been detected in anoxic 

basins [22]. This observation has pointed out that a possible anaerobic oxidation 

process may be taking place. However, almost for the rest of the century, heterotrophic 

denitrifiers were considered to be the only fate of fixed nitrogen loss in marine 

environments [22]. These previous notions came from the ability of these denitrifiers 

to respire nitrate or nitrite producing nitric or nitrous oxides, which are further 

processed to form N2 gas [26]. 

In the beginning of 1990s, the missing part of the nitrogen biogeochemical cycle 

puzzle was solved. In a wastewater treatment plant (Delft, Netherlands), Mulder et al. 

1995 observed that increasing levels of nitrate and ammonium consumption are 

accompanied by increasing levels of nitrogen gas [35]. The study also concluded that 

ammonium is anaerobically oxidized using nitrate or nitrite - as electron acceptor - 

releasing di-nitrogen gas as a final product. This biological process was given the term 

“Anammox”. A year later, two publications done by Astrid et al discussed the 

microbiological aspect of the Anammox pathway and formulated the first medium to 

isolate bacterial species harbouring such unique capabilities [23], [36]. This culture 
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medium was designed to support the autotrophic machineries of Anammox bacteria by 

providing it with ammonium and nitrite as the sole electron donor and acceptor, 

respectively. Carbonate was supplied as the sole carbon source. Furthermore, they 

found that this process is not only restricted to water treatment plants but also found in 

marine sediments, water columns close to suboxic regions and in oxygen minimum 

zones (OMZ) [13], [37]. This paved the way for deeper analyses to explore the unique 

physiology of the Anammox bacteria. 

Using 15N labeled compounds, the Anammox pathway was assembled.  It was 

postulated that hydroxylamine, derived from nitrite, mediates the ammonium 

oxidation process by acting as an electron acceptor. This results in the formation of 

hydrazine as an intermediate that is further processed to di nitrogen and a small 

fraction of nitrite is oxidized into nitrate[38]. (Figure 3) 

1.3.2 Anammox Molecular and Cellular Physiology 

Genomic data available on Anammox bacteria have been deciphered through the 

analysis of the 4.2 Mbps genome draft of Kuenenia Sttutgartiensis published in 2006. 

This genome has been assembled from metagenomics sequences retrieved from a 

complex bioreactor continuously supplemented by artificial wastewater enriched with 

nitrite, ammonia and bicarbonate [29]. Interestingly, it was found that more than 200 

genes were involved in the catabolic and respiratory activities of this Anammox 

species. Among which, nine hydroxylamine oxidase like genes were reported. 

Additionally, only two genes commonly involved in denitrification were detected. 

These versatile catabolic capabilities provided Anammox species with the required 

energy needed for their growth. Furthermore, the Kuenenia genome showed that 

Anammox bacteria are strictly autotrophic and carbon fixation is accomplished via 

acetyl-CoA pathway, while the other carbon fixation pathways were absent. Also, it 

was proved that hydrazine is the source of electrons passing through ferrodoxin to 

activate both acetyl CoA synthase and CO dehydrogenase. On the other hand, 

additional enzymes weren’t needed to compensate the utilized hydrazines but only to 

revert electron transport [29]. 

Apart from Anammox genomic characteristics, Anammox are slow growing 

bacteria that exhibit long doubling time normally exceeding 10 days. So far, 
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Anammox species couldn’t be obtained in pure cultures. However, it was isolated by 

enrichment cultures technique. Generally, Anammox bacterial cell is coccoid in shape, 

lacking peptidoglycan and has a protein-like cell wall [39], [40]. Anammox reactions 

show activity at wide range of temperatures but only exhibit maximum activity at 

mesophlic temperature range. Nonetheless, it was also observed to be both 

psychrophilic (Arctic ice and sediments) and thermophilic (hydrothermal vents and hot 

springs) [41-44]. Anammox bacteria show maximum activity at pH 8 and tolerate 

oxygen levels up to 0.5% air saturation; they also demonstrate relatively high affinity 

toward ammonium and nitrite with affinity constant ≥ 5μM [45], [46].  

Anammox reactions take place in a special compartment known as 

Anammoxosome. A dense staircase like membrane surrounds the anammoxosome. 

This membrane is formed of a special type of lipid known as ladderane that acts as a 

barrier to reduce the toxic effects of the Anammox pathway intermediates such as 

hydrazine and hydroxylamine. The chemical structure of ladderane displays unique 

arrangements by linking five cyclobutane moieties attached to a glycerol backbone by 

ester or ether bonds. The second proposed function of this membrane is to provide the 

Anammox enzymes with larger space to boost its activity and generate ATP by the 

proton motive force machineries located on its surface [28], [39], [47].  

1.3.3 Anammox Phylogeny 

Anammox bacteria belong to the uncultured group of the phylum 

Planctomycetes. The position of this phylum on the tree of life has been controversial. 

Previously, rRNA-based analysis showed that Planctomycetes were found at the base 

of the bacterial phylogenetic tree suggesting that it could be one of the first emerged 

bacteria [48]. Moreover, The compartmentalized structure as well as the presence of 

single or double membranes around Planctomycetes’ genetic materials had driven a 

conclusion that Planctomycetes might be the link between the eukaryal and bacterial 

domains of life [48]. Recently, Planctomycetes phylum has been placed together with 

the phyla, Verrucomicrobia, Chlamydiae, Lentisphaerae, Poribacteria and OP3 in one 

large superphylum called PVC [49]. 

 

However, The genera affiliated to Planctomycetes could be divided into two 

major groups. The first group comprises the heterotrophic cultured representatives and 
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it includes the genera (Planctomyces, Pirellula, Blastopirellula, Rhodopirellula, 

Isosphaera, and Gemmata). The second class is known as the extensively diverse 

autotrophic uncultured group of Planctomycetes. This group belongs to the order 

Brocadiales and has been detected in various ecosystems. So far, five Anammox 

related genera have been identified and these genera are called Kuenenia, 

Anammoxoglobus, Scalindua, Jettenia, and Brocadia [34]. 

 

1.3.4 Anammox Habitats and Ecosystems 

Anammox bacteria are believed to be more widespread than was originally 

assumed. Generally Anammox bacteria exist in the anaerobic niches at the oxic-

suboxic areas located in water column and sediments. However, following its 

discovery in the wastewater treatment facility in Delft, Anammox could be located in 

wide arrays of ecosystems [40]. Although, environmental Anammox activities were 

first reported in the Danish coast but its real existence was verified through the 

16srRNA analysis done on the largest anoxic reservoir the Black Sea [31], [32], [33]. 

Afterwards, it was found in different marine coasts, water column, sea surface, 

subsurface sediments and estuary ecosystems [50], [51]. It was also detected in fresh 

water lakes such as Lake Tanganyika in East Africa [52]. Anammox existence is not 

limited to mesophilic habitats. It was also found in 5-deep sea hydrothermal vents 

located in Mid-Atlantic ridge and in a hydrothermal vent located in Guayamas basin 

[43], [50]. Its presence was also observed in California and Nevada hot springs, Arctic 

ice and Arctic sea sediments [41], [42], [44].  

To explore the Anammox-associated communities, a labeled nitrogen analysis 

based study was performed on Black sea water samples. This revealed that Anammox 

bacterial communities are more likely to exist in direct or indirect association with 

aerobic ammonium oxidizers (nitrifying bacteria) in order to supply it with the 

required nitrate [53].  

The Anammox environmental studies done so far showed that Anammox related 

genera exhibit habitat preferences. This was emphasized by the usual presence of the 

genera Kuenenia, Anammoxoglobus, Jettenia, and Brocadia in fresh water ecosystems. 

While Scalindua family is generally found in marine habitats, its presence in fresh 

water ecosystems was also detected [34].  
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1.3.5. Advances in Anammox Molecular Detection Approaches 

The first approach used to estimate the contribution of Anammox pathways in 

the total nitrogen loss was isotope-labeling technique. In this approach, the tested 

samples were incubated with a mixture of 15NH4 and 14NO2
-;then the Anammox 

activities were measured using isotope mass spectrometer [54]. The second approach 

is based on the quantification of the Anammox biomass by measuring the levels of 

ladderane lipids that specifically present in Anammoxosome membrane [55]. 

Since Anammox bacteria couldn’t be successfully isolated in pure cultures, the 

molecular detection approaches have been used to explore its presence in different 

habitats. Several studies have based their observations on the analyses done using 

primers specifically targeting Anammox 16srRNA. So far, 16srRNA analyses were 

able to assess the existence and the diversity of the Anammox communities in 

different ecosystems [56].  

With the increased knowledge about Anammox-related enzymes and its roles in 

the Anammox pathway, studying Anammox communities using functional gene 

approaches was implemented. Accordingly, Koltz and Stein recommended hydrazine 

oxidase (hzo), a member of octaheme cytochrome C hydroxylamine oxidoreductase 

protein family, to be used as a phylomarker. The phylomarker hzo would help explore 

the functional Anammox communities since hydrazine oxidases are only detected and 

identified in Anammox related species [50], [57]. Additionally, two different recent 

studies done by Ford et al. and Harhangi et al. in 2011 based their analyses on two 

different functional phylogenetic markers. These phylomarkers are the Cytochrome 

cd1-containing nitrite reductase encoding-gene “nirS” and hydrazine synthase “hzsA” 

[58], [59]. The only limitation considered when applying these functional 

phylomarkers based approaches is that the number of sequences available from 

Anammox enrichment cultures is so scarce. 

Hydrazine oxidases (hzo) have been employed in different studies to analyze the 

Anammox communities dwelling different habitats. The first two studies addressed the 

Anammox diversity using hzo in combination with 16srRNA gene were conducted by 

(Quan and his colleagues in 2008 and 2009); they addressed the diversity of 

Anammox bacteria present in Anammox bioreactor plants[60], [61]. In 2010, the 
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presence of Anammox bacteria in high temperature petroleum reservoirs has been 

detected using both hzo and 16srRNA molecular phylomarkers. The phylomarker hzo 

was also used to detect the Anammox profiles in different marine ecosystems such as 

Jiaozhou bay sediments, deep-sea hydrothermal vents in Guayamas basin, Montserrat 

deep sea tephra deposits, Surface sediments from equatorial pacific, subsurface 

sediment of South China sea and Arabian sea [50], [62-65]. It was also applied as a 

functional marker to explore Anammox bacteria inhabiting estuary sediments of Mai 

Po Nature Reserve and Cape Fear River[50], [51]. Furthermore, samples from 

wastewater bioreactor and North Carolina ground water, were investigated for its 

Anammox profiles using hzo[50]. 

1.4 Metagenomics and Microbial Diversity 

Marine habitats are considered to be the largest ecosystem on earth; it covers 

approximately 70% of the earth surface area. Marine environments are very diverse in 

nature ranging from surface sunlit areas that support the growth of photosynthetic 

microbes to 11,000 m deep ocean areas where microbes with extremophilic 

characteristics prevail. It also varies greatly in its temperature ranges, pressure, oxygen 

levels, salt and heavy metal concentrations [66].  

Based on the fact that only 0.1% of the microbes are culturable, microbial 

populations inhabiting any ecosystem including the marine ones were largely 

underestimated. Recently, with the advances of molecular approaches, sequencing 

technologies (e.g. Illumnia-Solexa, Roche 454, ABI 3730 XL, etc.) and the emergence 

of metagenomics field, the microbial populations estimates have been amended and 

increased noticeably by at least three orders of magnitude[67]. Handelsman and 

colleagues have first described the term metagenomics in 1998; it defines a 

cultivation-independent approach to extract all DNA present in a certain niche 

collectively[68]. This enables the reconstruction of metabolic pathways present in the 

examined niche through assembling large genomics data and extrapolating its 

metabolic functions[69]. Additionally, the diversity of the microbial communities 

dwelling the examined ecosystem is commonly investigated using metagenomics’ 

approaches. These are mainly testing the variations of the 16srRNA as well as other 

unique functional genes e.g. hydrazine oxidase as a phylomarker of Anammox 

bacteria[66].  
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In addition to analyzing the structure of microbial communities, metagenomics 

can be widely used to screen for novel sequences that encode for enzymes with unique 

functions. Two strategies are commonly utilized for such purpose; sequence-based and 

function-based approaches [66]. In the sequence-based approach, the function of the 

generated sequencing data can be inferred through comparing it to sequences located 

in different databases. While functional approach is based on the phenotypes or 

expressed gene products that can be assayed through specific substrates[70]. Different 

enzymes from marine habitats have been discovered using function-based approaches 

such as lipases, esterases, chitinases, and cellulases [66]. 
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CHAPTER	  2:	  -‐	  MATERIALS	  AND	  METHODS	  

	  

2.1 Sample Collection and DNA Isolation 

During the R/V Aegaeo cruise in spring 2010, water samples were taken from 

two Red sea brine pools Atlantis II deep and Kebrit deep.  Atlantis II brine pool water 

samples were extracted from Interface, UCL and LCL samples. Samples collected 

from Kebrit deep were classified into Kebrit upper interface layer, Kebrit lower 

interface layer, and Kebrit brine samples. Microbial cells were fractionated in all 

samples collected according to its size by subjecting it to series of Millipore Mixed 

Cellulose Ester filters with pore sizes 3µm, 0.8µm and 0.1µm. Filters were preserved 

in sucrose buffer at -20 oC during the expedition and till being transported to AUC 

genomics labs. Upon reaching the lab, the filters were immediately stored at -80 oC.  

This was followed by DNA isolation from 0.1 µm filters of Atlantis II interface 

layer and Kebrit upper interface layer by Mr. Amged Ouf following Rusch et al. 2007 

protocol [71]. The concentration of the isolated DNA was measured using Picogreen 

assay using Nanodrop™3300 Fluorospectrometer. 

 

2.2 Metagenomic Libraries Construction and Protein Based Phylogeny 

Approximately 500ng of extracted DNA from each sample was used to construct 

454 metagenomics library following GS FLX titanium library protocol. DNA was 

sheared by nebulization and DNA fragments with size ranges from 400-900 bps were 

selected by double SPRI method. Subsequently, DNA fragments were amplified using 

emulsion PCR then underwent through pyrosequencing using (454 life sciences, 

Branford CT) in the genomic lab, American University in Cairo (AUC). The Red sea 

metagenomics team at AUC carried out the entire DNA pyrosequencing process. 

454 Sequences datasets were analyzed using Metagenome Rapid Annotation 

using Subsystem Technology (MG-RAST) server cloud. Protein based phylogeny was 

done for Atlantis II interface and Kebrit upper interface datasets that were analyzed 

using sequence similarity search tool Blast implemented in the MG-RAST package 
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against Genebank non-redundant (nr) database considering a minimum E-value cut off 

score 10-5 and minimum identity cut off score 70% [72]. Planctomycetes-related hits 

were assigned to its related species and results from both samples were compared. 

2.3 hzo Amplification, Library construction and Sequencing 

A part of hydrazine oxidase gene (hzo) (approximately 600 bp in length) was 

amplified using a pair of hzo specific primers hzoAB4F 5’-

TTGARTGTGCATGGTCTAWTGAAAG-3’ and hzoAB4R 5’ 

GCTGACCTGACCARTCAGG-3’ in a direct PCR approach. PCR reactions were 

performed following the conditions described by Hirsch et al. 2010 [50]. PCR results 

were examined on 1% agarose gel by electrophoresis, extracted out of the gel and 

purified using QIA quick gel extraction kit (QIAGEN, Valencia, CA). 

The purified PCR products were ligated to pGEM- T EASY vector following the 

manufacturer procedure (Promega). Then transformed to Top10 E.coli 

electrocompetent cells using Micropulser electroporation device (Bio-Rad, Hercules, 

CA) according to manufacturer procedure. A total of 96 clones from each sample were 

grown on LB media to be further subjected to DNA extraction using R.E.A.L prep 96 

plasmid extraction kit  (QIAGEN, Valencia, CA). 

A total 96 clones from each library were sequenced using 96-capillary ABI 

3730XL DNA analyzer. Cycle sequencing was performed using M13F primer and Big 

Dye Terminator Kit. Sequences generated were truncated to remove any vector related 

sequences and further subjected to quality control assessments by “Codoncode 

Aligner” (Codoncode Corporation, Dedham, MA) to filter sequences with lengths 

shorter than 300 bps and/or containing ambiguous nucleotides “N” more than 1%. 

2.4 Red Sea Atlantis II and Kebrit Interface hzo Sequence Analyses 

2.4.1Alpha and Beta Diversity Analyses 

The filtered DNA sequences were aligned together using Clustalw, a multiple 

sequence alignment (MSA) algorithm[73]. The MSA results obtained were used to 

generate a distance matrix using dnadist in the PHYLIP package maintaining distance 

cut-off score 0.03 [50], [74]. The generated matrix was used later to estimate the level 

of coverage, richness and the evenness of the Anammox communities in the tested 
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samples. This was achieved by plotting rarefaction curves and calculating alpha 

diversity non-parametric indices Chao1, Simpson, and Shannon using mothur v.1.18.1 

pipeline [75].  

To interrogate the distinctions between the structure of Anammox communities 

inhabiting both Atlantis II and Kebrit interface layers, beta diversity analyses were 

conducted to estimate the evolutionary distance between both communities using ∫-

LIBSHUFF and the number of shared OTUs softwares, which are adopted by mothur 

v.1.18.1 pipeline [75].  

2.4.2 Phylogenetic Tree Based on the Deduced Amino Acid Sequences of hzoA / 

hzoB 

 BlastX(s) of the sequences generated from hydrazine oxidase (hzo) libraries of 

both Atlantis II and Kebrit interface layers were conducted against non-redundant (nr) 

database using Blastx software installed in our local server maintaining a minimum E-

value score 10-5. The best 100 hits were compiled from all sequences matched 

hydrazine oxidases and the redundant accession numbers were removed.  

The isolation source of each accession number present in the hits was detected, 

and the accessions belong to the same isolation source were clustered using cd-hit 

server with minimum identity threshold 97%. The deduced amino acid sequences of 

those clustered hits compiled to construct an hzo A/ hzo B dataset. The sequences of the 

hydrazine oxidase libraries were translated using transeq server supported by European 

Bioinformatics institute (EBI) website. All protein sequences were aligned together 

using Muscle and then edited using Jalview. The refined alignment was used to 

construct a maximum likelihood tree using Phyml [76]. The tree was viewed and edited 

using Interactive Tree Of Life v2 server (iTOL) [77]. 

2.4.3 Comparative Studies between Anammox Communities Using UniFrac 

 A comparative analysis study between Anammox communities inhabiting both 

Atlantis II, and Kebrit interface layers was conducted using phylogenetic based 

analyses tests adopted by UniFrac web application package [78]. Moreover, The 

environments representing the isolation sources of the blastx best hits were 

implemented in this analysis. 
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In this study, two different statistical values, Unifrac significance test and P-

test, were calculated to describe the relation between the examined Anammox 

communities. Additionally, a multivariate test, principle component analysis (PCoA), 

was carried out to reveal the effect of the geographical distribution on the structure of 

Anammox communities under investigation. 
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CHAPTER	  3:	  -‐	  RESULTS	  

3.1	  Metagenomic	  Analysis	   of	  Red	   Sea	  Atlantis	   II	   and	  Kebrit	  

interface	  for	  Anammox	  Bacteria	  

3.1.1 Dataset of Atlantis II Deep and Kebrit Deep Metagenome  

The general information describing the 454 metagenomics libraries under study 

showed that Kebrit upper interface library has a larger dataset (more than 1.5 million 

reads). These reads include approximately 400000 proteins, which are clustered to 

365000 different functional categories. Atlantis II deep interface dataset contains 

approximately 800,000 reads. Of which, only 50000 encode for identified proteins and 

further grouped into 47000 different functional groups. The data is summarized in 

(table 1), as provided by MG-RAST Server Cloud [72]. 

3.1.2 Bacterial Phyla Abundance in the Interface Layers of Atlantis II Deep and 
Kebrit Deep  

A quantitative analysis of bacterial phyla inhabiting Atlantis II deep and Kebrit 

deep was done using annotated proteins based phylogeny executed by MG-RAST 

server.  The 454-metagenomics libraries sequencing data of the interface layers were 

matched to Genebank database using Blast tools implemented in MG-RAST server. 

The generated best hits results were curated using E-value cut off score 10-5, and 

minimum identity cut off value 50%. Accordingly, 295 and 4743 hits were assigned to 

the phylum planctomycetes representing 0.26% and 0.92% of the total bacterial 

communities inhabiting the interface layers of Atlantis II deep and Kebrit deep 

respectively (Supplementary table 1). Further analyses were done to explore the 

distribution of planctomycetes related hits. Most of the identified planctomycetes reads 

belonged to the known cultured group and few hits matched uncultured species 

including Anammox. In Atlantis II Interface, Planctomycetes community is largely 

predominated by the cultured species Pirellula staleyi, representing 41.5% of all 

Planctomycetes related species. The uncultured Planctomycetes group identified was 

insignificant, since only one read was detected. In Kebrit Upper interface layer, the 

cultured Planctomycetes related hits were approximately equally distributed among 

five different species and more than 90 reads (~2%) were assigned to species belong to 
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the uncultured group of Planctomycetes. The data is shown in (Supplementary table 

2), and was annotated using MG-RAST Server Cloud 

3.2 Identification of hzoA/hzoB Gene from both Atlantis II Deep and Kebrit Deep 
Interfaces 

The	  diversity	  of	  Anammox	  bacterial	   communities	   inhabiting	   the	   interface 

layers of Atlantis	   II deep and Kebrit deep were tested using primers targeting the 

functional gene hydrazine oxidase (hzoA/hzoB). Positive amplifications in both 

Atlantis II and Kebrit deep samples were detected. Consequently, amplified fragments 

with sizes (~	   600bp)	   were	   extracted	   and	   used	   to	   construct	   a	   library	   for	   each	  

hydrazine	  oxidase	  positive	  samples	  and	  sequenced	  using	  ABI	  3730XL	  DNA	  analyzer.	  

The	  PCR	  amplification	  results	  are	  shown	  in	  (figure	  8). 

3.3 Computational and Statistical Analyses of Atlantis II and Kebrit Interfaces’ 
Anammox Bacterial Communities  

 3.3.1 Alpha diversity Analysis of Anammox Bacteria Exist in Atlantis II 
Interface and Kebrit Upper Interface Ecosystems 

Alpha diversity has been analyzed for the interface layers under study using 

mothur pipeline’s α diversity analyses package. Alpha diversity is basically performed 

to estimate the coverage, the richness and the diversity of the microbial species 

dwelling the examined samples. In this study, rarefaction curves have been plotted for 

81 hydrazine oxidase sequences obtained from Atlantis II interface sequenced clones 

(figure 9) and 44-hydrazine oxidase sequences recovered from Kebrit upper interface 

sequenced clones (figure 10).  Eight and nine different Anammox phylotypes have 

been identified within Atlantis and Kebrit analyzed clones, respectively. Both curves 

have reached asymptote phase and this denotes sufficient coverage of Anammox 

phylotypes present in both libraries. 

Additionally, we applied three non-parametric indices, Chao1, Simpson and 

Shannon, to conclude Anammox phylotypes richness and diversity. Chao1 used mainly 

to extrapolate the number of species present in the sample by applying a correction 

factor to already identified species. Chao1 scores indicated that the estimated number 

of phylotypes in Atlantis II is almost equal to the number of phylotypes detected by the 

functional phylomarker approach. For Kebrit Upper Interface, Chao1 score showed that 
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three Anammox phylotypes were left undetected in the Kebrit sample. Both Simpson 

and Shannon indices estimate the richness of the sample. The obtained results of both 

tests implied that the Anammox community in the Kebrit Interface layer is more 

diverse than the one present in the Atlantis II Interface layer. The overall results of 

alpha diversity statistical analyses were presented in (table 4). 

3.3.2 Beta Diversity Analysis of Anammox Bacteria Inhabit the Examined Layers 

by Using  ∫-LIBSHUFF                                                                                                 

   ∫-LIBSHUFF analysis was performed to gauge the beta diversity among the 

Anammox communities present in both Atlantis II deep and Kebrit deep interfaces. 

The results indicated that Anammox community of Atlantis sample is different from 

those inhabiting the Kebrit sample; dCXY= 0.1401 with P value = <0.0001. Whereas 

the Anammox species inhabiting Kebrit sample is different from those inhabiting the 

Atlantis one dCXY= 0.0627 with P value = <0.001. The longest evolutionary distance 

between both communities is 0.00473.                                                                	                                	  

3.3.3 Phylogenetic Analysis of (hzoA/hzoB) Sequences Retrieved from Atlantis II 
Deep Interface and Kebrit Deep Upper Interface Libraries 

To examine the phylogenetic relationships exhibited between true functional 

Anammox bacterial communities including ours, an hzoA/hzoB sequences based 

phylogenetic tree was constructed.  A total 81 hzo positive clones (eight phylotypes) 

from Atlantis II deep and 44 hzo positive clones (nine phylotypes) from Kebrit deep 

were evolutionarily compared to other Anammox phylotypes originated from diverse 

ecosystems using its deduced protein sequences, which show high similarity to 

previously identified hzo	 (≥ 90% similarity). The obtained sequences were aligned to 

entries from Genebank nr database using blastx and the first 100 hits for each 

sequence were retrieved maintaining a 90% minimum identity cut off. Non-redundant 

blastx matches were clustered according to its isolation sources and the unique OTUs 

(0.03) within each cluster were identified. All unique OTUs were compiled to construct 

our hzoA/hzoB phylogeny dataset.  Accordingly, Our sequences were compared to the 

phylogeny dataset and the relations were displayed in one phylogenetic tree.  

The overall results imply that (~60%) of our sequences are closely related to 

hydrazine oxidases isolated from different marine sources (e.g. deep sea hydrothermal 
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vent, deep sea tephra deposits, and sea subsurface sediments). Nevertheless, 20% of 

our sequences are significantly unique and haven’t been previously identified in any 

similar ecosystems. 

The resulting tree shows that all hzo sequences analyzed including our 

sequences are grouped into five different clusters (figure 12). Cluster A includes 27 

Kebrit hzo sequences, these sequences show a close relation to an Anammox 

phylotype retrieved from deep-sea hydrothermal vent ecosystem. Cluster B contains 

24 Atlantis II hzo sequences exhibiting close affiliation to a hydrazine oxidase 

sequence isolated from Candidatus Kuenenia Stuttgartiensis. Cluster C includes three 

Atlantis II hzo sequences, closely related to Anammox phylotypes, isolated from sea 

surface sediments, hydrothermal vent, ground water and coastal estuary sediment 

ecosystems.  Cluster D comprises distinct phylotypes recovered from both Atlantis II 

and Kebrit interface layers with no close affiliation to any previously recognized hzo 

sequences, to be a putative unique hzo cluster.  Finally, cluster E includes 51 and two 

hzo sequences retrieved from the interface regions of Atlantis II and Kebrit, 

respectively. Those sequences are grouped together with previously recognized 

Anammox phylotypes obtained from various ecosystems including KSU-1 

planctomycetes enrichment cultures, Anammox bioreactors, ground water, river 

sediments, coastal estuary sediments and sea surface sediments.    	  

3.3.4 Sequencing Data Analysis Using Blastx 

After quality assessment analysis, a total of 81 sequences from Atlantis II deep 

interface library and 44 sequences from Kebrit deep upper interface library had good 

(30 Phred-Phrap) qualities. High quality sequences where aligned to entries in 

Genebank nr database using Blastx similarity search tool keeping E-value cut off score 

10-5. Blastx results retrieved were summarized in the following tables (2 and 3). 	  

The overall Blastx results of the tested sequences obtained from both libraries 

revealed that all the sequences were matching hydrazine oxidases from uncultured 

Planctomycetes.  The Atlantis II Interface sequences showed similarity with hydrazine 

oxidases isolated from marine sources except one short read matched a hydrazine 

oxidase isolated from Cape Fear River sediment. Out of these 80 sequences, 52 reads 

matched two hydrazine oxidases retrieved from Jiaozhou Bay sediment and 26 reads 
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showed similarity to two hydrazine oxidases isolated from Montserrat deep-sea tephra 

deposits. Only two reads obtained from Atlantis II interface library are similar to 

hydrazine oxidases isolated from enriched cultures dominated by Planctomycete KSU-

1. All the Kebrit sequences were matching hydrazine oxidases isolated from marine 

ecosystems. 34 sequences showed similarity to a hydrazine oxidase isolated from 

Montserrat deep-sea tephra deposit. Additionally, five sequences were similar to two 

hydrazine oxidases isolated from Guayamas deep-sea hydrothermal vent and other five 

reads were similar to two hzo sequences isolated from Jiaozhou Bay sediment.    	  

3.4 Comparative Analysis of Anammox Communities  

To	   understand	   the	   diversity	   and	   the	   uniqueness	   of	   the	   Anammox	  

communities	   in	  Atlantis	   and	  Kebrit	   interface	   layers,	  we	   compared	  hzo	  deduced	  

amino	   acid	   sequences	   using	   Unifrac	   (comparing	   microbial	   communities	   using	  

phylogenetic	   data)	   from	   different	   environments	   including	   Atlantis	   and	   Kebrit	  

interfaces	  [78].	  The	  environments	   included	  in	  the	  analysis	  are	  Atlantis	   interface	  

layer,	   Kebrit	   upper	   interface	   layer,	   Jiaozhou	   bay	   sediment,	   deep-‐sea	  

hydrothermal	   vent,	   deep-‐sea	   tephra	   deposits	   and	   upper	   Cape	   Fear	   River	  

sediment.	   Table	   5	   discusses	   the	   environments	   examined,	   abbreviations	   used	   in	  

the	  analysis	  and	  the	  number	  of	  hzo	  sequences	  analyzed	  from	  each	  environment.	  

The	   phylogenetic	   information	   (phylogenetic	   tree	   in	   Newick	   format)	   of	   all	  

hzo	   sequences	   under	   study	   was	   processed	   using	   Unifrac	   and	   the	   phylogenetic	  

relations	  were	  presented	  in	  figure	  13.	  The	  phylogenetic	  tree	  depicts	  the	  presence	  

of	   a	  putative	  unique	   cluster	   composed	  of	  14	  Kebrit	   and	   six	  Atlantis	   II	   Interface	  

sequences.	  This	   cluster	  doesn’t	   show	  close	   relation	   to	   any	  previously	   identified	  

hydrazine	  oxidases.	  	  The	  rest	  of	  the	  examined	  hzo	  Kebrit	  and	  Atlantis	  II interface 

sequences showed close association to hydrazine oxidases isolated from Jiaozhou Bay 

sediment, deep-sea tephra deposit, hydrothermal vent sediment and Upper Cape Fear 

river sediment. 

The similarities and differences between the compositions of Anammox 

communities inhabiting samples under study were analyzed using two different 

statistical tests, P-test and Unifrac significance test. The result of these statistical 

analyses indicated possible similarity between the structure of the Anammox 
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community inhabiting Kebrit Upper Interface with Anammox communities present in 

Atlantis II Interface and Deep-Sea hydrothermal vent. Moreover, Atlantis II Anammox 

bacteria showed insignificant differences with the Anammox present in Deep-Sea 

Hydrothermal vent. The results were presented in tables 6 and 7. The Principal 

Component Analysis (PCoA) was employed to further separate the environments 

according to the nature of its Anammox communities and to detect the actual diversity 

as well as the uniqueness of our samples. The results generated, upon analyzing the 

samples using two principal coordinates P1 and P2, were illustrated in figure.14. To 

further support our differential analysis, lineage specific test was done to explore 

which sequences have the major contribution in distinguishing the investigated 

samples. The results obtained where presented in table.8. 
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CHAPTER	  4:	  -‐	  DISCUSSION	  
 

Marine Anammox bacteria are an underrepresented group in comparison to other 

phylogroups such as SAR11 (They represent approximately ≤ 1% of the total 

microbial population in most of the studied habitats and never exceeded 4%) [13], 

[79]. Based on this fact, studying marine Anammox bacteria may shed the light on the 

potential diversity of the Red sea brine pools’ rare biospheres.   

To our knowledge, this is the first study to explore the composition and the 

phylogenetic diversity of Anammox bacterial communities in the interface layers of 

Red sea brine pools. This analysis was carried out using a functional biomarker 

(hydrazine oxidase) gene approach. This gene encodes for an enzyme that belongs to 

the octaheme cytochrome C hydroxylamine oxidoreductase protein family [30]. This 

critical enzyme converts hydrazine intermediate in the Anammox pathway to di-

nitrogen [50]. To date, hydrazine oxidases were only successfully detected and 

isolated from different Anammox bacteria e.g. Candidatus “Scalindua” and 

Candidatus “Kuenenia”[40]. Accordingly, Koltz and Stein suggested hydrazine 

oxidases could be used as a functional phylomarker for the Anammox group [57]. 

Different studies have used this approach to assess the diversity of Anammox 

communities in surface and subsurface marine sediments [62-64], estuary sediments 

[50], [51], oil reservoirs [54], river sediments [50], hydrothermal vents [43]and deep-

sea tephra deposits [50]. 

The first glimpse on the results shows that Anammox bacteria are present in both 

Atlantis II and Kebrit interface layers. Higher levels of diversity and richness were 

observed in Anammox inhabiting Kebrit upper interface layer than those inhabiting 

Atlantis II interface layer. This might be due to the presence of oxygen in Atlantis II 

interface (43 μ moles /L equivalent to 0.5% air saturation) [46] . This exerts oxygen 

stress over the Anammox communities present suggesting the ability of these 

Anammox bacteria to tolerate mild aerobic conditions. Furthermore, these findings are 

supported through the work done by Strous et al. 1997 that proved Anammox bacteria 

could tolerate dissolved oxygen concentrations up to 0.5% [46].  
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Preliminary protein-based phylogeny analysis was conducted using the MG-

RAST server cloud[72]. The analysis showed that 4743 reads representing 0.92% of 

the total bacterial reads of the Kebrit upper interface metagenomics library were 

assigned to Planctomycetes. Most of the reads belong to the cultured group specially 

the genera Blastospirellula, Isosphaera, Pirellula and others that we could not detect 

by our functional biomarker approach since they lack the unique hydrazine oxidase 

gene. Only 92 reads were assigned to uncultured Planctomycetes that may include our 

target; the Anammox group. On the other hand, 295 of the Atlantis II metagenomics 

library representing 0.26% of the total bacterial communities were assigned to 

Planctomycetes. Only one read matched with uncultured Planctomycetes group.  

The observed discrepancies in the abundance of Anammox bacteria present in 

both samples could be a result of high sulfur contents and anaerobic conditions that 

characterize Kebrit upper interface ecosystem. These characteristics stimulate the 

sulfur reduction metabolic capabilities that are widespread among the cultured 

Planctomycetes group as reported by Elshahed et al. 2007 [80]. In addition, the high 

concentrations of hydrogen sulfide create anaerobic niches favored by the Anammox 

bacteria. Despite the significant existence of Planctomycetes phyla in Kebrit upper 

interface layer, the presence or absence of Anammox group in either Kebrit or Atlantis 

II interface layers couldn’t be confidently substantiated out of the results obtained 

from protein based phylogeny analysis. Therefore, a functional biomarker gene 

approach was employed to gain insight on the Anammox bacterial communities 

inhabiting both layers. 

DNA from both samples was amplified using hzoAB4F and hzoAB4R primers 

in a direct PCR approach targeting Anammox hydrazine oxidases. The amplified 

fragments were further processed to construct hzo clone libraries from the layers under 

investigation. A total of 81 clones from Atlantis II deep and 44 clones from Kebrit 

deep were sequenced. BlastX results showed that 100% of the sequences match 

hydrazine oxidases of uncultured Planctomycetes. In Atlantis II, 80 sequences were 

found to be similar to hydrazine oxidases isolated from marine sources. Only one short 

sequence (336bp), which matched a hydrazine oxidase from Upper Cape Fear river 

sediment, was found. Out of the 80 hydrazine oxidases in Atlantis, 47 sequences are 

binning to the accession number (ADD16762) isolated from Jiaozhou bay sediment 
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with identity scores ranging from (94-98%) except a single read shows identity score 

87%. Also, five sequences show matches with the accession number (ADD16849) 

retrieved from Jiaozhou bay sediment with identity values > 98%. Moreover, 26 

sequences are binning to the accession numbers (ADO21164) and (ADO21144) 

recovered from Montserrat deep-sea tephra deposits with identity results >97%. Out of 

the 81 sequences only two reads matched hydrazine oxidases from Anammox strain 

Planctomycete KSU-1 with identity values 90%.  At this point, the structure of 

Anammox community in Atlantis interface couldn’t be fully described due to the 

diverse nature of Anammox bacteria inhabiting the Jiaozhou bay sediment ecosystem 

[62]. 

Kebrit sequences show only similarity with hydrazine oxidases isolated from 

marine ecosystems with identity scores ≥ 93%. The best hits of more than 75% of the 

Kebrit match sequences isolated from Montserrat deep-sea Tephra deposits [50]. Five 

sequences match two different accession numbers retrieved from Guayamas deep-sea 

hydrothermal vent. Another five sequences match two different accession numbers 

obtained from Jiaozhou bay sediment ecosystem [50], [62]. Previous studies showed 

that sequences analyzed from both Montserrat deep-sea tephra deposits and Guayamas 

deep-sea hydrothermal vents showed intimate relations to hzo isolated from Scalindua 

enrichment cultures. Therefore, it is speculated that the majority of Anammox species 

inhabiting Kebrit upper interface layer are most probably dominated “Scalindua sp.”  

To assess the diversity of Anammox phylotypes that exist in Atlantis II interface 

layer and Kebrit upper interface layer, alpha diversity analyses were performed using 

mothur pipeline. Rarefaction curves were plotted for both samples and indicated good 

coverage of Anammox phylotypes by attaining the plateau phase in both curves. 

Reaching this phase means that even if more sequences were added, the number of the 

phylotypes will remain the same. Additionally, three α-diversity indices were 

performed; Chao1, Simpson and Shannon. Chao1 is a non-parametric index estimating 

the approximate number of phylotypes that might be present in the examined samples. 

For Atlantis II, Chao1 value is 8.3 approximately equal to the actual number of 

phylotypes that was retrieved from the sample. For Kebrit, the Chao1 value is 12 

suggesting that only three phylotypes are missing from our Kebrit dataset. Both 

Simpson and Shannon indices reflect the diversity and the richness of the tested 
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sample. Shannon values range between 1 designating low diversity to 5 designating 

high diversity while Simpson values range between 0 representing high diversity to 1 

representing low diversity. The overall alpha diversity indices results imply that 

Anammox bacteria in Kebrit upper interface ecosystem are richer and more diverse 

than the one inhabiting the Atlantis II interface.   

To estimate the diversity and the evolutionary distances among Anammox 

communities inhabiting both analyzed samples, beta diversity analyses were done 

using ∫-LIBSHUFF and shared OTUs test implemented in mothur software. The 

results showed that Anammox bacteria in Kebrit are significantly different than 

Atlantis II Anammox bacteria (dCXY= 0.0627). It also indicated that there are no 

shared OTUs between both examined Anammox groups and the evolutionary 

distances between the tested phylotypes are  > 0.03 (more than 3 amino acids per 100).  

It could also be inferred that both communities nearly share the same Anammox 

genera as concluded from the evolutionary distances (< 0.05).  

It has been reported in previous studies that the Anammox bacteria Candidatus 

Scalindua species mainly dominate marine water columns, surface and subsurface 

sediments of the sea. In addition to the presence of Candidatus “Scalindua sp.”, other 

Anammox bacteria were detected in hydrothermal vents located in the Mid-Atlantic 

ridge area including Candidatus “Kuenenia sp.”, Candidatus “Brocadia sp.” and 

Candidatus “Jettenia sp.” It was also concluded that the lower abundance of Scalindua 

species in ecosystems with thermal activities is because Scalindua sp. adapts better to 

ecosystems with lower temperatures [43]. 

Based on these observations, our interpretations of the phylogenetic analysis 

data revealed the presence of five different Anammox bacteria clusters in both Atlantis 

and Kebrit interfaces (figure 12). Cluster A comprises 28 sequences. Of which, more 

than 60% were recovered from Kebrit. These sequences are phylogenetically related to 

a single phylotype retrieved from a deep-sea hydrothermal vent located in Guayamas 

basin. Considering that all the hzo sequences isolated from Guayamas basin 

hydrothermal vents belong to Candidatus “Scalindua.” Therefore, cluster A sequences 

are more or less related to Scalindua species [50].  This is further supported by the fact 

that Scalindua dominate marine habitats with low to moderate temperatures, similar to 

Kebrit upper interface conditions [40]. The second cluster comprised 24 sequences 
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representing 30% of Anammox bacteria present in Atlantis II are affiliated to 

Candidatus “Kuenenia Sttutgartiensis.” This finding is in agreement with the results 

found in Mid- Atlantic deep-sea hydrothermal vent [43], as Atlantis II brine pool is 

characterized by its hydrothermal activity (temperature ≈ 70°C). Cluster C represents 

three Atlantis II hzo sequences clustered with phylotypes isolated from surface 

sediments of equatorial pacific, Jiaozhou bay sediment, subsurface sea sediments, 

Montserrat deep-sea tephra deposits and Guayamas basin deep-sea hydrothermal 

vents. hzo sequences recovered from surface sediment of equatorial Pacific [63], deep-

sea hydrothermal vents and deep-sea tephra deposits were affiliated to Candidatus 

“Scalindua species” as showed by both 16srRNA and hzo based functional analyses 

[50]. It can be concluded that hzo sequences in cluster C most probably belong to 

Candidatus “Scalindua species”. Interestingly, cluster D - being composed of 14 

Kebrit hzo sequences and six Atlantis II hzo sequences - didn’t show any connection to 

a previously identified hzo sequences. This settles it as a unique hzo cluster and 

hypothesizes that it is a possible signature for Anammox bacteria in brine pools’ 

interface layer ecosystems. It can be also concluded that brine pool ecosystems may 

exhibit evolutionary forces that might influence the unique diversity of Anammox 

species.  Finally, cluster E seems to be more ubiquitous than formerly mentioned hzo 

clusters. It groups 48 hzo sequences isolated from Atlantis II interface layer and two 

hzo sequences from Kebrit upper interface layer with large subset of hydrazine 

oxidases isolated from different sources including surface sediments from black river, 

Jiaozhou bay sediment, coastal estuary sediments, Upper Cape Fear river estuary 

sediment, North Carolina ground water, high temperature oil reservoirs and even from 

Anammox bioreactors. Different Anammox genera including Scalindua, Jettenia, 

Brocadia and Kuenenia have been identified in ecosystems that grouped in cluster E. 

This is due to either the nature of the ecosystems themselves that support the presence 

of these species or the anthropogenic interventions reported at some of these habitats 

[54], [62]. This coincides with the limited number of hzo sequences available in the 

Genebank database. For instance, there are only two hydrazine oxidase sequences 

available from Scalindua enrichment cultures. Thus, the exact Anammox genus 

representing this cluster couldn’t be accurately identified [63], [64].  

To estimate the diversity levels and the degree of uniqueness of the targeted 

samples, a comparative study between our samples and other ecosystems chosen based 
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on the isolation sources of the blastx best hits results that retrieved from Genebank nr 

database was conducted. This study was executed using Unifrac software. Unifrac 

phylogenetic tree indicates the presence of two hzo clades - belonging to Kebrit and 

Atlantis II - that don’t match any other previously isolated hzo sequences. This 

coincides with the results presented by the previously discussed aLRT phylogenetic 

tree and the lineage specific test as well. Furthermore, the results obtained from 

another two statistical analysis tests, P-test and Unifrac significance test, indicate that 

Anammox community inhabiting Kebrit upper interface layer is suggestively close in 

its structure to those inhabiting both Guayamas basin deep-sea hydrothermal vent and 

Atlantis II interface ecosystems than other Anammox communities tested. This 

observation is in agreement with the phylogenetic analysis done, as more than 60% of 

Kebrit hzo sequences matched an Anammox phylotype isolated from Guayamas deep-

sea hydrothermal vent and the rest cluster at different positions on the aLRT tree with 

Atlantis hzo sequences. Whereas, Anammox community in Atlantis II interface layer 

is not significantly different than Guayamas basin deep-sea hydrothermal vent, Kebrit 

upper interface layer and, at a lower extent, not different than Montserrat deep-sea 

tephra deposits. These relations are depicted in a Unifrac cluster model of the 

examined ecosystems and supported by Jacknife confidence values (supplementary 

figure 1). Finally, the PCoA analysis drew a conclusion that Anammox communities 

inhabiting either Atlantis II interface layer or Kebrit upper interface layer exhibit a 

unique geographical distribution pattern. This supports the assumption that the 

multiple extremophilic nature of these ecosystems might influence the evolution of 

various Anammox related species differently than other marine habitats.  

It is also worth noting that there are three pitfalls that should be highlighted in 

our study. First, the results of this functional approach should be correlated to the 

16srRNA analyses results of both tested samples. This will broaden our perception of 

the level of the Anammox species diversity present in the examined samples and 

improve our interpretations of Anammox profiles detected by hydrazine oxidase based 

approach. In addition, the shortage in the ammonium and nitrogen levels data available 

on Atlantis II and Kebrit interfaces limited our scope in linking the Anammox 

diversity based on the fluctuations of nitrogen and ammonia levels. Also, the limited 

number of hydrazine oxidase sequences available from Anammox enrichment cultures 

significantly restricts our analyses. This is owing to the presence of only two 
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hydrazine oxidase sequences from Candidatus “Scalindua sp.”, one from “Brocadia 

sp.”, one from “Jettenia sp.”, two from Candidatus “Kuenenia sp.” and one isolated 

from Candidatus “Anammoxoglobus” [64].  

In conclusion, the study of the diversity profiles of Anammox communities 

inhabiting Atlantis II and Kebrit brine pools’ interface layers shed the light on the 

presence of some unique Anammox phylotypes and phylogenetic patterns. These 

newly discovered phylotypes and phylogenetic patterns differ considerably from 

Anammox profiles previously described in other marine ecosystems.  
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FIGURES	  

 

	  
Figure 1 The Location of Red Sea Brine Pools 

This figure modified from Schmidt et al., 2003; demonstrating the location of two Red sea brine 

pools, Kebrit Deep and Atlantis II Deep [3].  
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Figure 2 Physicochemical Characteristics of Atlantis II Deep and Kebrit Deep 

These graphs show the variations in the oxygen and temperature across different layers of 

Atlantis II Deep and Kebrit Deep Brine Pools. These graphs were adapted from Schmidt et al. 2003 [3]  
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Figure 3 The Anammox Pathway 

 

This illustration depicts the Anammox pathway machinery. Hydrazine hydrolase (HH) produces 

hydrazine from ammonia and nitric oxide (the product of nitrite reduction via nitrite reductase (NR)). 

Hydrazine oxidase (HZO) generates di-nitrogen through hydrazine oxidation reaction. This figure is 

modified from (Strous et al. 2006) [29]. 
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Figure 4 The Major Pathways in the Marine Nitrogen Biogeochemical Cycle 

 

This figure depicts the four major pathways comprising the marine nitrogen biogeochemical 

cycle. Under oxic conditions nitrogen gas is fixed to particulate organic nitrogen compounds (PON) 

through nitrogen fixation and ammonia is nitrified in two sequential steps: a) ammonia is oxidized to 

nitrite through the action of nitrate oxidase possessed by Nitrosomonas Sp. b) nitrite is oxidized to 

nitrate through the action of nitrate monooxygenase possessed by Nitrobacter Sp. Accordingly, nitrate 

seeps from oxic regions to suboxic ones and is reduced to nitrite to be modified either to ammonia by 

DNRA pathway or to N2 by denitrification, which is released back to the atmosphere. Ammonia is 

available in the suboxic niches either through mineralization of organic compounds or DNRA pathway 

is further processed via Anammox bacteria to generate N2 gas.  This figure is adapted from Francis et al. 

2007[22]. 
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Figure 5 Schematic Representation of the Structure of the Anammox Unique Compartment 
(Anammoxosome) 

 

The figure depicts the organization of the compartmentalized Anammox cell, modified from 

Kuenen 2008 [40]. 
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Figure 6 Phylogenetic Representation of the Phylum Planctomycetes 

 

Schematic representation of Planctomycetes phylogenetic tree based on 16srRNA-deduced 

amino acids depicts the phylogenetic relations between Planctomycetes related species. This tree 

modified from Kuenen et al. 2006 [40] 
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Figure 7 The Overall Distribution of Both Planctomycetes Cultured and Uncultured Species as 
Identified by MG-RAST Server Cloud 

 

The graph represents the total reads assigned to both cultured and uncultured planctomycetes in 

Atlantis II (blue) and Kebrit upper (red) interface libraries according to MG-RAST Cloud sequence 

similarity search against GenBank database with a cutoff E-value of 1-5.  
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Figure 8 PCR Amplification Results of hzoA/hzoB from Both Kebrit Upper Interface and Atlantis 

II Interface Layers	  

The figure shows PCR amplification results generated using hydrazine oxidase specific primers 

set hzoAB4F, and hzoAB4R. The products sizes were measured using 1kb ladder (New England 

Biolabs, Ipswich, MA). Amplifications were observed in Atlantis II deep and Kebrit deep samples, all 

the amplicons had a length (~ 600bp) as expected. 
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Figure 9 Rarefaction Curve Plotted to Indicate the Coverage Level of Anammox Phylotypes 

Inhabiting Atlantis II Interface Layer 

 

This graph is plotted to explain the relation between the eight Anammox phylotypes identified 

from 81 hydrazine oxidase sequences recovered from Atlantis II deep interface library. It also 

demonstrates a good coverage of Anammox phylotypes present in the layer, which is indicated by the 

plateau phase reached by the curve. 
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Figure 10 Rarefaction Curve Plotted to Indicate the Coverage Level of Anammox Phylotype 
Inhabting Kebrit Upper Interface Layer 

 

This graph is plotted to depict the relation between the nine Anammox phylotypes identified 

based on 44 hydrazine oxidase sequences recovered from Kebrit deep upper interface library. It also 

demonstrates a good coverage of Anammox phylotypes present in the layer, which is indicated by the 

plateau phase reached by the curve. 
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Figure 11 The Evolutionary Distance Between Hzo Sequences Recovered from the Samples Under 
Study 

 

This graph illustrates the evolutionary distance between the Anammox phylotypes present in the 

tested samples based on LIBSHUFF analysis of hzo sequences. The relation was displayed by plotting 

the evolutionary distance (D) on the x-axis and the percentage of hzo sequences covered (% coverage) 

on the y-axis.  
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Figure 12 Approximate Likelihood Phylogenetic Tree Based on hzo Sequences Deduced Amino 
Acids Alignments. 

A maximum likelihood tree based on hzo deduced amino acids sequences recovered from the 

examined layers. Those sequences were evolutionary compared to other hzo-based Anammox OTUs 

obtained from different marine and non-marine ecosystems. The color codes are (purple= Anammox 

bioreactors, green= ground water, yellow= estuary coastal sediment ecosystem, orange= sea surface 

sediment, off-white= Anammox enrichment cultures, gray= wall biomat sample, fuchsia= river 

ecosystem, light green= hydrothermal vents, brown= sea subsurface sediment, blue= Kebrit upper 

interface layer, white= high temperature oil reservoirs and red= Atlantis interface layer). The tree 



	  

	  52	  

52	  

confidence values were calculated using approximate Likelihood-Ratio Test (aLRT) and only branches 

with bootstrap supporting values > 0.5 were presented. 
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Figure. 13 The Phylogenetic Relations between all hzo Sequences Under Study 

Unifrac phylogenetic tree illustrates the relations between all the hzo sequences analyzed. hzo  

sequences from each ecosystem were clustered together using identity cut off score 97%, equivalent to 

the cut off normally used to distinguish between different phylotypes. The frequency of the occurrence 

of each phylotype was provided in parentheses.  The codes provided with Atlantis II and Kebrit 

sequences e.g. KebritE11, represent the location of these sequences in the library plates. Meanwhile, the 

numbers given with the other environments’ sequences denote the cluster number. The scale bar used 

(0.029) estimates the divergence distance between the tested phylotypes (three different amino acids per 

100).  

  

Figure 14 Weighted Unifrac Principal Component Analysis (PCoA) of hzo Sequences	  

Weighted Unifrac PCoA analysis using the deduced hydrazine oxidase amino acid sequences of 

the six examined ecosystems. The red circles represent both deep-sea hydrothermal vent and deep-sea 

tephra deposits samples. The green triangle represents Jiaozhou bay sediment. The purple triangle 

represents Upper Cape Fear river sediment. The blue square represent Atlantis II interface layer and the 

yellow triangle represent the Kebrit upper interface layer.  
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TABLES	  

Table 1 The Main features of the Metagenomics Libraries Constructed from the Interface Layers 
of Atlantis II Deep and Kebrit deep 

	  
The table presents features of the metagenomics libraries under study. These features include the 

number of 454 runs, the number of sequences generated, the total number of nucleotides per each 

library, the mean of sequence length, the number of proteins identified and finally the number of 

functional groups. 
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Table 2 BlastX Results of the 81 Sequences Retrieved from Atlantis II Interface Library 

	  
This Table discusses the number of Atlantis II deep interface library sequences aligned to entries 

in Genebank nr database using blastx similarity search tool with E value cut off score 10-5. The best first 

matches’ accession numbers, with their abundances among the examined sequences, were presented. 

The table also included the isolation sources where the hits have been recovered and its analysis 

description as retrieved from the Genebank database. 
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Table 3 BlastX Results of the 44 Sequences Retrieved from Kebrit Upper Interface Layer 

	  

	  

This Table discusses the number of Kebrit deep upper interface library sequences aligned to entries 

in Genebank nr database using blastx similarity search tool considering E value cut off score 10 -5. The 

best first matches accession numbers with their abundances among the examined sequences were 

presented. The table also included the isolation sources where the hits have been isolated and its 

analysis description as retrieved from the Genebank database. 
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Table 4 The Number of Sequences, Observed Hzo Based OTUs (0.03), and Alpha Diversity 
Indices of the Samples Under Study 

 

The table was created using mothur software and presents α diversity results of the examined samples at 

a cut-off score of 0.03. It shows the number of clones examined in addition to the number of OTUs 

detected using similarity cut off score 97%. Chao1 was applied to indicate the level of coverage of the 

phylotypes in each layer. Shannon and Simpson indices were calculated to reflect the richness and the 

diversity of the samples examined.	  
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Table 5 The Ecosystems Involved in the Comparative Study and Number of Hzo Recovered from 
Each Environment 

Environment	  Name	   Hzo	  Sequences	  Count	  

Upper	  cape	  fear	  river	  sediment	  (UCFR)	   101	  

Jiaozhou	  Bay	  Sediments	  (JBS)	   403	  

Atlantis	  II	  brine	  deep	  interface	  layer	  (AT)	   81	  

Deep	  Sea	  Hydrothermal	  vent	  sediment	  (DSHV)	   20	  

Kebrit	  brine	  deep	  upper	  interface	  layer	  (Kebrit)	   44	  

Deep	  sea	  tephra	  deposits	  (DSHV)	   24	  

Total	  Count	   671	  

 

The table was generated by Unifrac software, which represents all the ecosystems included in 

the study, its abbreviations as provided in the parentheses, and the total number of hzo sequences 

analyzed from each sample.  
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Table 6 The Differences Between the Anammox Communities Existing in the Ecosystems Under 
Study Using P-test 

	  
 

Table 7 The Differences Between the Anammox Communities Existing in the Ecosystems Under 
Study Using Unifrac Significance test 
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Table 8 Lineage Specific Test 

	  

	  

	  

	  

The table demonstrates the most unique hzo sequences that contribute in the differentiation 

between Anammox communities analyzed. The output locates the sequences’ nodes on the Unifrac 

generated tree, the P-value of the test, the corresponding environments where the sequences retrieved, 

the number of sequences observed and the expected number if the samples are uniform in its size. 
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APPENDIX	  

 

 

Supplementary Figure 1  Unifrac Cluster Model of the Two Red Sea Brine Pools and Other 

Similar Ecosystems. 

The Unifrac cluster model depicts the relations between the Anammox bacterial communities 

dwelling the brine pool interface layers under study and other ecosystems. The obtained results are 

supported by Jacknife confidence value  
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Supplementary table 1 The Number of Atlantis II Interface and Kebrit Upper Interface Layers 

Related Hits and its Corresponding Percentages, which are Assigned to Different Bacterial Phyla 
as Identified using MG-RAST Server Cloud. 

 
 

This table describes the number of hits detected in both Atlantis II interface and Kebrit upper 

interface layers and its corresponding percentages as annotated using BlastX non-redundant database 

adopted by MG-RAST server cloud and maintaining at least 50% identity and minimum E-value cut off 

score 10-5. 
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Supplementary table 2 The Distribution of Planctomycetes Related Hits Recovered from Atlantis 
II Interface and Kebrit Upper Interface Layers Among its Different Species.  

 

 

This table demonstrates the number of hits and its corresponding percentages that are allocated 

for each Planctomycetes related species. These assignments were annotated using BlastX non-

redundant database adopted by MG-RAST server cloud. Minimum identity cut off score 10-5 and 

identity cut off score 50% were applied.  
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