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Abstract 

 Background: Atherosclerosis is an arterial inflammation that causes ischemic 

heart disease, which is the first leading cause of death worldwide. Macrophages play 

major roles during disease development by having pro-inflammatory and anti-

inflammatory functions. Lack of effective treatment is mainly due to incomplete 

understanding of the molecular mechanisms underlying disease progression and 

regression. 

 Materials and methods: The transcripts of the macrophages from two aortic 

samples from atherosclerotic region during disease progression and regression were 

analyzed using previously published dataset (GEO Accession GSE123587). Pre-

processing, clustering of cells and identification of unique markers for each cluster 

were done using Seurat package implemented in R programming language. Monocle 

package was used to order the cells in pseudotime and to detect the key molecules that 

changed dramatically during comparison between distinct macrophages states (pro-

inflammatory and anti-inflammatory). Ingenuity Pathway Analysis (IPA) software 

was used to analyze the pathways activity across macrophage states along the 

trajectory and to retrieve the transcriptional regulatory network between the genes 

determining the final states. Prediction of the miRNAs that might be involved in the 

disease progression was performed using TargetScan and GSEA (Gene Set 

Enrichment Analysis). Cytoscape application was used to visualize the regulatory 

network between the differentially regulated genes across macrophages states.  

 Results: Clustering analysis of macrophages revealed their presence in 

distinct 11 states. In addition, Two states were found to be dominant in the 

progression group macrophages, and one state was found to be dominant in the 
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regression group macrophages. Moreover, trajectory analysis showed a bifurcation 

point near the end of the trajectory, where macrophages fates were destined to be 

either pro-inflammatory or anti-inflammatory.  Macrophages unique to the disease 

progression branch were found to activate STAT cascade, induce acute inflammatory 

response and upregulate inflammatory cytokines, denoting M1 polarization. In 

contrast, regression-branch specific macrophages were found to activate cholesterol 

efflux pathways and upregulate anti-inflammatory cytokines such as TSLP and 

CCL24. The transcription regulatory network between differentially regulated genes 

in both branches revealed changes in the transcriptional dynamics acquired during 

macrophage states transition. STAT1 (Signal transducer and activator of transcription 

1) and IRF7 (Interferon Regulatory Factor 7) were found to be upregulated in the 

progression branch to maintain an inflammatory module resulting in production of 

distinct inflammatory cytokines. On the other hand, MAFB (MAF BZIP Transcription 

Factor B) and IGF1 (Insulin-like growth factor 1) were found to be upregulated in the 

regression branch to interrupt the inflammatory module at different levels. In addition, 

10 miRNAs were predicted to be unregulated in progression-branch specific 

macrophages such as miR-344, miR-346 and miR-485.   

 Conclusion: Inflammatory sites in atherosclerosis lesions contain both pro-

inflammatory and anti-inflammatory macrophages. Each subset of macrophage 

activates unique transcriptional program. Certain transcription factors and growth 

factors have potential to alter the whole transcriptional regulatory network, thereby 

shifting the macrophages from inflammatory to anti-inflammatory state. 

Understanding how macrophage state transition occurs from inflammatory to anti-

inflammatory state will be a key step to better understanding and treating 

atherosclerosis.  
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CHAPTER 1: Introduction 

1.1 Atherosclerosis 

 1.1.1 Epidemiology and Statistics 

 Atherosclerosis is a chronic inflammation of the arteries, which is initiated by 

low density lipoprotein (LDL) accumulation in defined regions in the arteries where 

the blood flow is disturbed and non-laminar. Atherosclerosis results in stroke, heart 

attacks and peripheral arterial disease (Dichgans M et al., 2019; Mohd Nor NS et al., 

2019; Paul S et al., 2019). It is the major cause of cardiovascular diseases resulting in 

ischemic heart disease and ischemic stroke, which are the first and fifth causes of 

death worldwide; respectively (Ala-Korpela M et al., 2019; Watson M et al., 2019; 

Whelton SP et al., 2019; Carmona FD et al., 2019). 

 1.1.2 Aetiology and Pathophysiology 

 Multiple risk factors are involved in the development of atherosclerosis. The 

most common factors include elevated blood LDL (hypercholesterolaemia), diabetes 

mellitus, hypertension, smoking, sex as a male, old age (more than 45 years for males 

and more than 55 years for females) and family history of the disease (Reiss AB et 

al., 2019; Shafi S et al., 2019; Doodnauth SA et al., 2019). Atherosclerosis 

development started with endothelial cells dysfunction and infiltration of immune 

cells in the lesion micro-environment, resulting from arterial wall injury (figure 1).   
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Figure 1. Atherosclerosis resulting from chronic arterial wall injury. Chronic 

inflammation of endothelial cells resulting from atherosclerotic risk factors induces 

endothelial cells dysfunction and alteres the arterial wall micro-environment. 

Macrophages recruitment to the lesion site results in foam cell formation after 

engulfing the deposited lipids in the arterial wall intima. Reproduced with permission 

(Rafieian-Kopaei et al., 2014). Image Source Reference; Copyright; see appendix. 

 

 

 Atherosclerosis is a continuous process of arterial wall lesions caused by lipid 

retention in the intimal part of the artery, which results in aggravation of the chronic 

inflammation. Following lipid retention, the intima develops fibrous plaques, 

resulting in disease complications such as stenosis or remote vessel occlusion due to 

rupture of the fibrotic plaque. Mechanisms of plaque rupture include shear stress 

injury (Gertz S et al., 1990), transient collapse of the stenotic lesion (Binns R et al., 

1989) mechanical shear injury (Vito R et al., 1990) and vasa vasorum rupture (Barger 

A et al., 1991). 
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1.1.3 Immune Cells in Atherosclerotic Plaques 

 Atherosclerotic plaques contain several immune cells, including dendritic 

cells, macrophages and platelets (Libby et al., 2013). Dendritic cells have been found 

to increase dramatically as the disease progresses in the atherosclerotic plaques 

(Galkina E et al., 2006). They produce distinct chemokines in the lesion area resulting 

in recruiting lymphocytes and monocytes to the inflammation micro-environment 

(Huang DR, et al., 2001). 

 Macrophages in the plaque sites originate either from recruitment of blood 

circulating monocytes or from proliferation of tissue resident macrophages (Ginhoux 

and Jung, 2014). Macrophages have been found to play dual roles in the development 

of atherosclerosis as both of the phenotypes (M1 and M2) were found in 

atherosclerotic plaques (figure 2, 3) (Bouhlel et al., 2007 , De Paoli et al., 2014). 
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Figure 2. Distinct phenotypes of macrophages during atherosclerotic plaque 

development. During early stages of the disease development, activation of 

endothelial cells occur. Following endothelial cells activation, monocytes are 

recruited into the lesion micro-environment and differentiated into macrophages. 

Distinct states of macrophages are found in the lesion site playing either 

inflammatory (M1 phenotype) or anti-inflammatory (M2 phenotype) roles. 

(Reproduced with permission (Sai Yang et al., 2019). Image Source Reference; 

Copyright; see appendix. 
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Figure 3. Macrophages phenotypes M1 and M2 roles during inflammation and 

resolution. M1 phenotype is present during early stages of inflammation having roles 

in inducing inflammatory response. On the other hand, M2 phenotype is present 

during late stages of inflammation inducing resolution of the inflammatory response. 

Reproduced with permission (Amitava Das et al., 2015). Image Source Reference; 

Copyright; see appendix. 

 

 

 Pro-inflammatory (M1) macrophages have been found during plaque growth 

causing inflammation. They ingest lipid particles and form foam cells where their 

cytoplasm is filled with lipid droplets. Those foam cells secrete various signalling 

molecules and pro-inflammatory cytokines to further recruit monocytes, cause more 

lipid retention and result in extracellular matrix remodelling (Libby, 2002; Orekhov et 

al., 2014). On the other hand, anti-inflammatory macrophages (M2) have been found 

in the lesion area causing plaque regression and inflammation resolution (Nathan and 

Ding, 2010). Furthermore, M2 phenotype cells are more resistant to form foam cells 

and they contain fewer lipid droplets, indicating distinct metabolic activity between 

both phenotypes (Chinetti-Gbaguidi et al., 2011). 
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 1.1.4 Integrin Signalling in Atherosclerotic Plaque Development 

 Distinct subsets of integrins have been found to be expressed by leukocytes 

and white blood cells to mediate their interaction with the endothelial surface markers 

(Hynes RO., 2002). These integrins have roles in the initial targeting leukocytes to 

the inflammation site, facilitating their migration along endothelial cells into the 

neointimal matrix (Ley K, et al., 2007) and regulation of their function upon 

transendothelial migration into the inflammation micro-environment (Libby P et al., 

2015). Initial weak bonds are formed between integrins expressed by leukocytes and 

selectins present on the endothelial cell surface. Notably, Atherosclerotic plaque 

formation reduces dramatically following selectins deletion (Collins RG et al., 2000; 

Dong ZM et al., 2000). Following integrins activation, leukocytes make rolling 

movements resulting in firm cell adhesion and chemokines arrest on the endothelial 

surface (Shamri R et al., 2005). The resulting increase in chemokines induces 

inflammation and aid in further recruiting of more leukocytes (Boring L et al., 1998). 

 1.1.5 Cytokines and Their Role in Atherosclerosis Development 

 Cytokines are low-molecular weight proteins that are clustered into several 

groups as interleukins, tumour necrosis factors, interferons (IFN), transforming 

growth factors, chemokines and colony-stimulating factors. They are expressed in the 

atherosclerotic plaques by almost all the cells in the lesion micro-environment having 

either pro-inflammatory or anti-inflammatory role (Kleemann R et al., 2008; 

McLaren J.E et al., 2011; Ait-Oufella H et al., 2011). Cytokines and chemokines are 

potent signaling molecules mediating intercellular communication (Dinarello, 2007). 

During initial stages of the disease development, cytokines have a role in modulating 

endothelial cells permeability resulting in activating and opening up gaps between 

cells (Pober J.S. et al., 2007). The activated endothelial cells release chemokines 
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(chemoattractant cytokines) causing further recruitment of circulating leukocytes 

especially monocytes and T cells (McLaren J.E. et al., 2011). Chemoattractant 

chemokines modulate diverse intra-signalling pathways upon interaction with cell 

surface receptors involving activation of G proteins (Koenen R et al., 2010; Weber C 

et al., 2011). 

 1.1.5 Treatment and Management 

 Management of atherosclerosis is mainly by treating the risk factors as 

elevated blood LDL, diabetes and others. Patients are advised to eat healthy diet 

containing low saturated fat and less salts. In addition, they are encouraged to 

exercise 90 to 150 minutes per day. Furthermore, drugs such as statins are used to 

lower LDL cholesterol and reduce complications. Statins are a group of cholesterol-

lowering compounds which act by inhibiting Hydroxymethylglutaryl Coenzyme A 

Reductase (HMG-CoA). This inhibition reduces the rate by which the enzyme is able 

to produce mevalonate, which is a major molecule in the cascade that produces 

cholesterol (Endo A, 1992). Although statins can lower blood cholesterol level, they 

have side effects such as muscle pain and abnormal blood levels of liver enzymes 

(Abd TT et al., 2011). In severe stenosis, surgical intervention is recommended such 

as coronary artery bypass grafting (Perez-Martinez P et al., 2019; Spannella F et al., 

2019; Esper RJ et al., 2019; Arnett DK et al., 2019). The complicated roles of 

macrophages in atherosclerotic plaque micro-environment is poorly understood. 

Thus, better understanding of the molecular alterations caused by macrophages in the 

atherosclerotic plaque site is needed for improving the disease treatment. 
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 1.2 Reverse Cholesterol Transport in Macrophages 

 Reverse cholesterol transport (RCT) was first described by Glomset (Glomset 

JA, 1968) as the process of returning the excess circulatory cholesterol to liver.  RCT 

relationship with atherosclerosis development was first hypothesized as an imbalance 

which occurs between arterial cholesterol deposition and removal (Ross R & Glomset 

JA, 1973). In atherosclerotic plaques, macrophages are the primary cell type that are 

overloaded with cholesterol (Tall AR, 2001). Macrophages take up the dead cells that 

contain much cholesterol, lipoproteins and cellular debris (Rader DJ, 2005). The 

unesterified cholesterol has toxicity effect on macrophages leading to apoptosis (abas 

I, 2004). Thus, esterification of cholesterol to cholesteryl ester (CE) is the first line of 

defense against cholesterol toxicity in macrophages by the enzyme ACAT1 

(acyl:coenzyme A cholesterol O-acyltransferase-1) (Chang TY, 2001). Cholesterol 

ester is stored in the cytoplasm and its accumulation results in foam cell formation.  

 The second line of defence against cholesterol toxicity is the cholesterol 

efflux. ABCA1 is an active cholesterol efflux pathway and its knock out in mice 

results in development of accelerated atherosclerosis (Aiello RJ, 2002). However, 

alternative pathways by which macrophages can be able to induce cholesterol efflux 

exist. ABCG1 was identified to promote cholesterol efflux in the form of HDL 

particles and its knock out results in intracellular lipid accumulation (Kennedy MA, 

2005). Both ABCA1 and ABCG1 are regulated by the nuclear receptors liver X 

receptor LXR-α and LXR-β (Tontonoz P, 2003). Excess intracellular cholesterol 

induces formation of oxysterol which are the ligands for liver X receptors (Repa JJ, 

2002). Thus, excess cholesterol upregulates major pathways for cholesterol efflux 

through ABCA1 and ABCG1 to protect the cells from the toxicity. Moreover, mice 

deficient in LXR-α/-β have been found to have lipid accumulation within 
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macrophages and tissues and have advanced atherosclerosis (Tangirala RK, 2002). 

Furthermore, peroxisome proliferator–activated receptor PPAR-α and PPAR-γ 

agonists were found to induce cholesterol efflux from macrophages through 

upregulation of LXRs (Chinetti G, 2001 ; Li AC, 2004; Chawla A, 2001). Following 

unesterified cholesterol efflux from macrophages, it associates with plasma HDL. 

Then, lecithin:cholesterol acyltransferase (LCAT) catalyzes its esterification to 

cholesteryl ester (CE) (Fielding CJ, 1995). As CE is hydrophobic, it moves to the 

lipoprotein particle core allowing mature HDL formation. LCAT-deficient mice were 

found to have very low level of HDL (Rader DJ, 1994) and its overexpression 

resulted in high HDL level and reduction in atherosclerosis (Hoeg JM, 1996). 

 1.3 Macrophages plasticity and polarization 

 Macrophages are plastic cells which can switch their state from one phenotype 

to another (Mantovani et al., 2004; Sica & Mantovani, 2012). Polarization of 

macrophages is a process in which macrophages change their transcriptional program 

in response to stimuli and signals from the surrounding micro-environment (Sica & 

Mantovani, 2012). Several classes of macrophages have been described based on 

their metabolic activity, surface markers expression and their released molecules. The 

two major sub-populations with opposing functions are M1 phenotype 

(inflammatory) and M2 phenotype (anti-inflammatory). The phenomenon of 

macrophages can change their state from M1 to M2 and the opposite is referred to 

term “macrophage polarization” (Cassetta, Cassol & Poli, 2011; Chittezhath et al., 

2012).  

 M1 macrophages are induced by Th1 cytokines (IFN‐γ and TNF‐α) and they 

produce pro-inflammatory cytokines such as TNFα, IL1α, IL1β and IL6 (Biswas et 

al., 2012 ; Bashir et al., 2016). On the other hand, M2 macrophages are induced by 
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Th2 cytokines (Wang et al., 2014) and have anti-inflammatory roles. However, the 

M1/M2 phenotype does not reflect the distinct subsets of macrophages. They can be 

further subdivided into different sub-types (Chistiakov et al., 2015). Recent advances 

in single cell RNA-sequencing enables identification of phenotypes not previously 

identified (Hannah Van Hove et al., 2019; Jian-Da Lin et al., 2019). 

 1.4 miRNA in Atherosclerosis 

 miRNAs are small non-coding RNAs, ~22 nucleotides in length. Biogenesis 

of miRNAs starts with processing of RNA polymerase II/III transcripts mostly from 

introns and few from exons and intergenic regions (Ha M et al., 2014; de Rie D et al., 

2017). miRNAs biogenesis is classified into canonical and non-canonical pathways. 

The canonical biogenesis pathway is the dominant pathway in which the pri-miRNAs 

are transcribed and processed into pre-miRNAs. Processing of pre-miRNAs are 

performed by the microprocessor complex (DGCR8 , RNA binding protein DiGeorge 

Syndrome Critical Region 8 and Dorsha, a ribonuclease III enzyme) (Denli AM et al., 

2004).  DGCR8 recognizes motifs within the pre-miRNA (Alarcón CR et al. 2015)  

and Drosha cleaves the pri-miRNA resulting in formation of a 2 nt 3′ overhang on 

pre-miRNA (Han J et al., 2004).  Then, the pre-miRNA is exported to the cytoplasm 

by exportin 5 (XPO5)/RanGTP complex and further processed by the RNase III 

endonuclease Dicer resulting in formation of the mature miRNA (Okada C et al., 

2009). In addition, multiple non-canonical miRNA biogenesis pathways have been 

discovered. They can be classified into Drosha/DGCR8-independent and Dicer-

independent pathways.  

 miRNAs recognize and bind  to the 3′ UTR of the target mRNAs inducing 

translational repression and mRNA deadenylation and decapping (Huntzinger E et al., 

2011). They have roles in both production and clearance of lipoproteins. miR-122 is 



 

11 
 

the first identified miRNA to have a role in lipoprotein metabolism (Esau C et al., 

2006). Furthermore, overexpression of miR-30 in mice resulted in hyperlipidaemia 

and atherosclerosis development (Soh J et al., 2013). Other miRNAs have been 

identified to alter cholesterol efflux by targeting ABCA1 including miR-33 (Gerin I et 

al., 2010), miR-758 (Ramirez CM et al., 2011), miR-144 (De Aguiar Vallim TQ et 

al., 2013). Thus, miRNAs have potential roles in atherosclerosis progression and 

regression. 

 1.5 Single Cell RNA Sequencing 

 Cells express different transcriptional programs while being in different states 

even in similar cell types (Huang S et al., 2009; Li L et al., 2010; Shalek A K et al., 

2014). The transient states in-between stable states are difficult to be detected using 

traditional experimental methods such as bulk RNA sequencing. Fortunately, single 

cell RNA Sequencing allows detection of cells in those transition states without the 

needs of their purification. It enables studying the heterogeneity among similar 

cellular populations (Montoro DT et al., 2018; Plasschaert LW et al., 2018). 

 Multiple steps are required to generate single-cell data from a biological 

sample and different protocols can be used. Generally, the steps incorporate 

dissociation of single cells, library constructions and sequencing (Vieth B et al., 2017; 

Macosko EZ et al., 2015; Rostom R et al., 2017). Droplet-based methods such as 10x 

Genomics (which was used in the original study) start with isolating each cell from 

the sample and capturing it in a microfluidic droplet. Although multiple cells or 

cellular debris can be captured within the same droplet, computational methods can 

be applied to overcome this issue by detecting and excluding those cells. Each droplet 

contains the necessary enzymes and chemicals to digest the cell membrane and 

perform library construction by reverse transcription of mRNAs generated from the 
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single cell. Additionally, each droplet contains a barcode of 16 nucleotide long which 

labels all the mRNAs from this single cell. After library construction, all the cDNAs 

from each single cell are labelled with a unique barcode and the libraries are pooled 

together for sequencing.  

 1.6 Pseudotime 

 Pseudotime is an abstract unit of measurement as it measures how much 

progress for each individual cell has been made through the process of state transition 

between cells. For the macrophages in atherosclerotic plaque, they were found to be 

in different states (Bouhlel et al., 2007; De Paoli et al., 2014). Monocle package in R 

uses reversed graph embedding algorithm to learn the sequence of change in gene 

expression each cell must go through across dynamic biological processes in single 

cells experiments (Qi Mao et al., 2016; Xiaojie Qiu et al., 2017). Thus, it enables 

constructing a pseudo-temporal path to order the cells based on the gradual 

continuous change of their transcriptomes (Trapnell C et al., 2014; Haghverdi L et al., 

2016). 
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CHAPTER 2: Hypothesis and Objectives 

2.1 Hypothesis 

 Macrophages play a vital role in atherosclerosis during progression and 

regression phases of the disease. They are able to dramatically change their states 

between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. This results 

in secretion of distinct set of cytokines and activation of different metabolic 

programs, which affect their ability to digest the lipid particles in the inflammatory 

micro-environment. 

 Therefore, it is hypothesized that using single cell RNA sequencing help in 

identifying the molecular signature of the macrophages during disease progression 

and regression, the change in pathways activity during macrophages transition across 

different states and the key molecules which drive the transition decision for the 

macrophages to be either in an inflammatory (M1) or an anti-inflammatory (M2)  

state. 

2.2 Objectives 

1. To cluster macrophages from each sample into distinct states (11 states). 

2. To detect the macrophages states unique to disease progression (2 states) or 

regression (1 state). 

3. To order the cells in pseudotime to detect the bifurcation points where 

macrophages go through different fates. 

4. To calculate the pathways activity in different fates across the pseudotime. 

5. To identify the key genes that drive the macrophages to either state. 

6. To predict the miRNAs that may be involved in states transition. 
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CHAPTER 3: Materials and Methods 

3.1 Data source 

 The data was obtained from the GEO (http://www.ncbi.nlm.nih.gov/geo) 

under the accession number GSE123587. The data was produced by Jian-Da Lin et al, 

a research group in USA in 2019 (Jian-Da Lin et al., 2019). Their paper is entitled 

“Single-cell analysis of fatted-mapped macrophages reveals heterogeneity, including 

stem-like properties, during atherosclerosis progression and regression”. The paper 

was published in JCI Insight Journal, Volume 8, Issue 8, 2019. The original study 

aimed to address the differentiation of CX3CR1+ CCR2+ cells into macrophages in 

atherosclerotic plaques during progression and regression of the disease.  

 The authors generated a chimeras of LDLr-/- (LDL receptor) mice and placed 

all the eight weeks old mice onto a Western diet (contains high fat content) for 18 

weeks. Then, the mice were divided into two groups: a progression group which 

continued on Western diet and a regression group which was switched to a chow diet 

(less fat) and injected with apolipoprotein B (ApoB) anti-sense oligonucleotide 

intraperitoneal (50mg/kg) twice per week to lower the atherogenic lipoproteins. After 

2 weeks, they sorted the macrophages from the aortic arches of progression and 

regression groups. This enabled excluding cells from lymphoid lineage such as T 

cells, B cells, eosinophils, neutrophils and natural killer cells.  

 Then, the sorted cells were processed to single-cell RNA sequencing. Finally, 

by combining four samples from each group with total number of 10,000 to 12,000 

cells for each group, cells were loaded on 10x Genomics instrument and libraries 

were prepared as described (GX et al., 2017). Then, the authors used CellRanger 

Single Cell Software Suite (version 1.3) for processing the raw reads and generating 

http://www.ncbi.nlm.nih.gov/geo
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the count matrix (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger). 

3.2 Single Cell RNA-Seq Counts Matrix Pre-processing 

 The generated count matrix from the two samples was used to perform quality 

check and further downstream analysis. Seurat package in R (v3.1.0) was used to 

process the counts matrix, barcodes and genes for each sample (Stuart T et al., 2018; 

Butler et al., 2018). 

 3.2.1 Data Integration 

 The data from the two samples was integrated to enable the identification of 

common cellular states and to allow comparative analysis between them as described 

in Butler et al., 2018. Briefly, integration of the two samples required multiple steps 

starting from data normalization to identification and integration of anchors between 

cells from the two samples. For normalization, log 10-transformation of expression 

values for each gene was performed, using 10,000 molecules for each cell as a size 

factor. Then, standardization of expression value of each gene across all the cells was 

performed (linear transformation) to shift the expression of each gene, so that the 

mean is 0 and the variance is 1 across all the cells. This gives equal weight, so that no 

domination for the highly expressed genes in the downstream analysis.  

 The top 2000 highly variable genes in both samples were chosen to perform 

canonical correlational analysis (CCA) and dimensionality reduction to detect cells 

from the 2 samples with common biological states. K-nearest neighbours (KNNs) 

were identified and each pair of cells from the two samples represent an anchor 

(mutual nearest neighbours). Further filtering of anchors was performed by giving a 

score to each anchor using shared nearest neighbour (SNNs) graphs between the two 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
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samples. Finally, small number of anchors surrounding each cell were considered for 

identifying the integration anchors. The identified anchors and the weights matrix was 

used to integrate the two samples as described in Haghverdi L et al., 2018. 

 3.2.2 Filtering low quality cells 

 As suggested before, there is a positive correlation between expression level 

of mitochondrial encoded genes and cell death (Detmer SA et al., 2007; Galluzzi L et 

al., 2012, Silvia Márquez-Jurado et al., 2018). Thus, cells that exhibit mitochondrial 

contamination (more than 5% of the reads are mitochondrial encoded genes) were 

filtered. Also, cells with very high or very low total number of gene counts (more 

than 7000 or less than 2500) were filtered as high counts may represent cell doublets 

or multiplets and low counts may represent empty droplets or represent premature cell 

rupture leading to mRNA leakage.  

 Moreover, cells identified as non-macrophages were excluded from the 

analysis. Identification of each cell type was performed using SingleR package 

implemented in R (Aran D et al., 2019). The algorithm computes the similarity 

between the dataset and a reference dataset for unbiased recognition of cell types. The 

reference dataset chosen was ImmGen (Immunological Genome Project), which 

includes 830 microarrays classified into 20 main cell types and 253 subtypes. Briefly, 

Spearman coefficient was calculated for each cell expression with each of the 

reference datasets samples. Then, correlation analysis was performed followed by 

aggregation of multiple correlation coefficients per cell types using 80% percentile of 

the correlation values. Next, the correlation analysis was rerun using only the top cell 

lines resulted from the previous step and the variable genes between those cell types, 

while removing the lowest cell type. Finally, the previous step was repeated until two 

cell types remained and the top one was assigned to the cell. 
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 3.2.3 Dimensionality Reduction 

 Principal component analysis (PCA) was performed using the previously 

identified 2000 highly variable genes in both samples. Each principal component 

represents information about a correlated gene set. To further determine how many 

principal components to be used for dimensionality reduction, Jackstraw procedure 

was used (Chung NC et al., 2015). Jackstraw procedure is a resampling test, in which 

a subset of the data is randomly permuted and PCA is rerun, allowing for construction 

of a “null distribution” of genes scores. This method allows identification of the 

significant PCs that have low p-values. In addition, a heuristic method based on the 

percentage of variance represented by each gene was used to generate elbow plot. 

Consequently, the first 24 principal components were chosen to reduce the data 

dimensions for downstream analysis to enable using the highly variable genes instead 

of using all the genes as features. 

3.3 Clustering of Single Cells 

 A graph-based clustering approach was used for clustering the cells. Cells 

were embedded in a graph structure (KNN graph) based on Euclidean distance in 

PCA space. Then, edge weights were refined between any pair of cells based on 

Jaccard similarity (the shared overlap between the cells local neighbourhoods). Edge 

refinement was performed using the first 24 PCs as previously determined to be the 

dimensionality of the data. After refinement edge weights, edges were drawn between 

cells having similar gene expression patterns. Louvain algorithm was applied as a 

modularity optimization technique to group cells together. Finally, Uniform Manifold 

Approximation and Projection (UMAP) was used to visualize the cells using the 

reduced dimensions (Becht et al., 2018; McInnes et al., 2018). 
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3.4 Identification of Unique Markers for Each Cluster 

 To identify unique markers for each cluster, Seurat was used to perform 

differential expression analysis by comparing each cluster with the rest of other 

clusters using Wilcoxon Rank-Sum Test. Log2 fold change cut off value of ± 0.5 and 

an adjusted p value less than 0.05 were used to detect the differentially expressed 

genes within each cluster. 

3.5 Constructing Single Cell Trajectories 

 Monocle package in R (v2.10.1) uses reversed graph embedding algorithms to 

order the cells in pseudotime and construct the trajectory (Trapnell C et al., 2014). 

The significant markers from all the clusters with log2 fold change ± 0.5 were used to 

order the cells (437 genes). Briefly, the ordering algorithm reduces the data 

dimensionality, learns the smooth manifold that generates the data and finally places 

every cell at the proper position in the trajectory through unsupervised method. In 

addition, if there are multiple outcomes, it reconstructs a branched tree representing 

different cellular fates (Qi Mao et al., 2015). 

3.6 Differential Expression Analysis of the Terminal Branches 

 Furthermore, Monocle enables detection of branch points along the trajectory. 

The significant branch-dependent genes are the genes that explicit different 

expression dynamics along each branch. Branched expression analysis modelling 

(BEAM) algorithm implemented in Monocle, was used to find all the genes that 

differ between the two terminal branches after the bifurcation point. Then, 

hierarchical clustering of the resulting top 457 genes with (q value less than 1e10-4) 

was performed for further downstream analysis. Finally, EnrichR 
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(https://amp.pharm.mssm.edu/Enrichr/) was used to enrich the identified clusters with 

the significant gene ontology biological processes (Maxim V et al., 2016). 

3.7 Pathway Activity Analysis 

 Pathway activity analysis was performed using Ingenuity Pathway Analysis 

software (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). The 

algorithm considers the role of each gene within the pathway, so that each pathway 

has a pattern to be considered fully activated. If the gene is consistent with its pattern 

specific to pathway i, score of 1 is assigned to the gene in pathway i, and if it is 

inconsistent, a score of -1 is assigned for this gene in pathway i. Finally, for 

determining the activity of pathway i, Z score was calculated for each pathway in 

each pseudotime point using the following equation,  where z is the activation score: 

 

 Xi is the score of a gene in the pathway. N+ and N- are the number of the 

consistent and inconsistent genes with the pathway pattern; respectively. N is the total 

number of genes in pathway i. Then, the 457 genes differentially expressed between 

the 2 branches were used with 20 pseudotime points representing the whole 

pseudotime. The gene was considered upregulated or downregulated using cut off ± 

0.5. 
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3.8 Transcription Regulatory Network Analysis 

 The genes that were identified to be differentially expressed between the two 

different fates of macrophages using BEAM algorithm (457 genes) were used to 

construct the transcriptional regulatory network. First, IPA was used to retrieve the 

experimentally validated relationships between the genes. Then, causal analysis was 

performed using IPA software to detect the subnetworks consistent with the results as 

previously described (Andreas et al., 2014). Finally, Cytoscape application was 

applied to visualize the resulting network using the values of the last pseudotime 

points from both branches (Shannon P et al., 2003). 

3.9 miRNAs Prediction 

 TargetScan (http://www.targetscan.org/) was used to predict the miRNAs 

that may play a role in regulating the expression level of the differentially regulated 

genes in progression versus regression branch. The Predicted targets of all known 

mouse miRNAs were downloaded based on their alignment with the 3’ untranslated 

regions of each transcript (Rosenbloom KR et al., 2013; Agarwal V et al., 2015). 

Then gene set enrichment analysis (GSEA) was performed using the gene 

expression data at the end of the progression branch 

(http://software.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2005).  
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CHAPTER 4: RESULTS 

 The authors in the original study performed scRNA-seq using 10x Genomics 

technology and performed the alignment using CellRanger software (Jian-Da Lin et 

al., 2019). The goal of the current study is to start from performing the quality control 

and clustering of the cells to trajectory inference, pathway activity analysis and 

miRNA prediction (Figure 4). 

 

Figure 4. The analysis workflow. Sequencing of single cells were performed using 

10x Genomics technology. CellRanger was used for mapping of reads to the mouse 

genome. Seurat package in R was used for pre-processing of the resulting count 

matrix, clustering and identification of unique markers for each cluster. Then, 

Monocle in R was used for trajectory inference and analysis of the bifurcation point. 

The resulting differentially expressed genes were used for different downstream 

analysis applications. EnrichR was used for GO biological processed enrichment of 

the resulting clusters. Ingenuity Pathway Analysis (IPA) software was used to 

analyse pathway activity over pseudotime and for retrieving the transcriptional 

regulatory network. TargetScan was used along with Gene Set Enrichment 

Analysis (GSEA) for miRNA prediction. Cytoscape was used for network 

visualization. 
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4.1 Pre-processing of Single Cell RNA Sequencing Counts Matrix 

 Data from a total number of 3157 cells for progression group and 2198 cells 

for regression group were analysed. Using SingleR package, most of the cells were 

identified as macrophages, while few number of cells were assigned to dendritic cells, 

B cells, monocytes, stem cells and stromal cells. 1565 cells during atherosclerosis 

progression and 1421 cells during atherosclerosis regression remained after excluding 

cells with mitochondrial contamination, very high or low total counts and non-

macrophages cells (figure 5; figure 7-A & B; section 3.2.2 in methods). 



 

23 
 

 
Figure 5. Quality check for single cells before and after filtering. (A) Violin plots 

showing abundance of cells in each sample regarding the number of detected genes 

(features), total number of gene counts per cell and the percentage of mitochondrial 

genes expression (left: before filtering and right: after filtering). Each dot represents 

one cell. (B & C) Scatter plots before and after filtering; respectively showing number 

of gene counts against percentage of mitochondrial genes (left) and against total 

number of detected genes per cell (right) 
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 Following log10-normalization and scaling of the gene counts, PCA was 

performed using the top 2000 variable genes from both samples. Jackstraw procedure 

was utilized to assign p value for each principal component as shown in figure 6-A. 

Moreover, elbow plot was generated using a heuristic method based on the 

percentage of variance represented by each gene as in figure 6-B. Analysis of the 

principal components suggest that the majority of the signal was captured in PCs 

from 1 to 24. 

Figure 6. Principal component analysis of single cells. (A) Jackstraw plot 

showing the first 50 principal components from the PCA analysis with their 
corresponding p-values. (B) Elbow plot showing the standard deviation of the first 50 
PCs. 
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4.2 Clustering and Visualization 

 A graph-based clustering approach was performed to cluster the cells using 

the first 24 principal components. Then, UMAP algorithm was used as a non-linear 

dimensionality reduction technique to visualize the data as shown in figure 7-C. 

Figure 7-D represents the percentage of the cells assigned to each cluster in respect to 

each condition (progression and regression groups). Clusters with more than 100 cells 

and represent more than 70% of their cells from either group were considered to be 

condition-specific clusters. Cluster four consists of 71% of its cells from the 

regression group, while 82% and 83% of clusters six and seven; respectively arose 

from the progression group (Figure 7-D, table 1). 
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Figure 7. Clustering of single cells and compositional analysis of the clusters. (A) 

t-distributed stochastic neighbor embedding (t-SNE) projection of the raw data before 

filtering (5355 cells) color-coded using a scale of gray to violet to plot the percentage 

of mitochondrial genes (right), total number of gene counts per cell (left) and number 

of unique genes per cell (middle) . Each cell is represented as a dot. (B) t-SNE plot of 

all cells showing the cells which passed the quality control (green) and the excluded 

cells (black) from the downstream analysis. (C) Uniform manifold approximation and 

projection (UMAP) projection of the filtered cells showing 11 clusters in each 

sample. (D) Compositional analysis of each cluster showing the percentage of the 

cells from each group per cluster. 
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Table 1. Number of cells assigned to each cluster in both samples 

Cluster 

number 

Number of cells Percentage 

Progression Regression Total Progression Regression 

Cluster 0 264 417 681 38.77 61.23 

Cluster 1 321 278 599 53.59 46.41 

Cluster 2 271 185 456 59.43 40.57 

Cluster 3 191 133 324 58.95 41.05 

Cluster 4 70 177 247 28.34 71.66 

Cluster 5 72 120 192 37.50 62.50 

Cluster 6 157 34 191 82.20 17.80 

Cluster 7 122 25 147 82.99 17.01 

Cluster 8 56 38 94 59.57 40.43 

Cluster 9 32 6 38 84.21 15.79 

Cluster 10 3 13 16 18.75 81.25 

 

4.3 Identification of Clusters Markers 

 Seurat was used to compare each cluster with the rest of other clusters using 

Wilcoxon Rank-Sum Test. Log2 fold change cut off value of ± 0.5 and adjusted p 

value less than 0.05 were chosen to detect unique markers for each cluster, resulting 

in a total number 437 genes for all the 11 clusters. Figure 8 represents the identified 

markers from clusters four, six and seven.  
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Figure 8. Heatmaps of the identified markers for clusters four, six and seven. (A) 

Comparison of average expression of selected markers between cluster four 

(regression-specific) and clusters six and seven (progression-specific). Markers are 

classified into cytokines, transcription factors, enzymes, peptidases, transmembrane 

proteins, transporters, phosphatases and kinases. High expression is represented by 

red color, while low expression is represented by green color. 
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4.4 Constructing and Analysis of Single Cell Trajectories 

 Monocle was used to order the cells in pseudotime and to construct the 

trajectory using the previously identified markers (figure 9-A). Branched expression 

analysis modelling (BEAM) algorithm was performed to find all the genes that differ 

between the two branches after the bifurcation point. Then, hierarchical clustering of 

the top differentially expressed genes resulted in nine clusters with distinct patterns 

across the pseudotime (Figure 9-B). Figure 9-C represents the gene ontology 

biological processes enrichment for the nine identified groups. 
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Figure 9. Single-cell trajectory analysis and dynamic changes in gene expression 

of branches-specific macrophages. (A) Cells along the trajectory are divided into 

distinct stable states and ordered according to the pseudotime development along the 

trajectory. At the branching point (highlighted with a black dot), cells divide to go 

through two fates. Cells are colored based on their position across the pseudotime 

(above) or based on the sample (below). (B) Heatmap of the top 457 differentially 

expressed genes between the two branches represents the transcriptional dynamics  

across the two branches. Genes (rows) are clustered and cells (columns) are ordered 

according to the pseudotime development. The middle part of the heatmap shows the 

pre-branch points and the outermost left and right parts show the regression and the 

progression groups; respectively. (C) The patterns of each cluster from the heatmap 

along with enrichment of the GO biological processes. All the enrichment terms have 

p-value < 0.05 and the star denotes corrected p-value < 0.25. 
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4.5 Pathway Activity Analysis 

 IPA software was used to compute pathway activity analysis for both 

branches. Figure 10-A represents a heatmap of the z scores for each pathway across 

the pseudotime in both branches. 
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Figure 10. Pathways and predicted miRNAs in macrophages across the 

pseudotime (A) Heatmap showing each pathway activity across the pseudotime for 

both the progression and regression branch-specific macrophages. The middle points 

of the heatmap represent the pre-branching pseudotime points, while the left and right 

outermost points represent the progression and regression-specific macrophages; 

respectively. (B) Gene set enrichment analysis plots for the top significant enriched 

miRNAs in the progression group. (C) The predicted upregulated miRNAs and their 

target genes. Colors represent the upregulated (red) and downregulated (green) genes 

along the trajectory in the progression branch-specific macrophages. 
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4.6 Transcriptional Regulatory Network Analysis 

 The transcriptional regulatory network was retrieved from the IPA database 

considering only the experimentally approved relationships between the differentially 

expressed genes in both branches. Causal analysis were performed using the software 

to detect the consistent subnetworks. Figure 11 B and C represent the identified 

network with gene values from the last pseudotime point from the progression and 

regression branches; respectively. 

4.7 miRNA Prediction 

 Gene set enrichment analysis (GSEA) was performed for differentially 

altered genes in both branches. The gene expression values from the last pseudotime 

point in the progression branch was used to perform the enrichment. Ten miRNAs 

were enriched with p value less than 0.05 and bonferroni corrected p value less than 

0.1 as shown in figure 10-B. 
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Figure 11. Transcriptional regulatory network showing inflammatory module in 

progression-specific macrophages (A) UMAP plotting color-coded using a scale of 

green to red to black to represent the gene expression level within each cluster (left). 

The relationship between some genes of interest (right). The transcription regulatory 

network in the last pseudotime point of progression group (B) and regression group 

(C). High expression is represented by larger node size and red color, while lower 

expression is represented by smaller size and blue color. 
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Figure 12. Expression of genes responsible for the inflammatory and anti-

inflammatory response (A) Trajectory analysis of cells within clusters four, six and 

seven. (B) Violin plots showing expression level of genes involved in maintaining the 

inflammatory module in the main network. (C) Violin plots showing expression level 

of genes involved in interrupting the inflammatory module. 
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Figure 13. Expression level of downstream targets of STAT1 and IRF7 (A) 

Violin plots showing expression level of downstream targets of IRF7 and STAT1 in 

progression-specific clusters six and seven and in regression-specific cluster four. (B) 

Subnetwork from the main transcriptional regulatory network in progression-branch 

specific macrophages (left) and in regression-specific branch macrophages (right). 

High expression is represented by larger node size and red color, while lower 

expression is represented by smaller size and blue color. 
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Figure 14. Altered downstream targets of MAFB gene MAFB and its downstream 

targets in regression-specific macrophages (A) and progession-specific macrophages 

(B). High expression is represented by larger node size and red color, while lower 

expression is represented by smaller size and blue color. 
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CHAPTER 5: DISCUSSION 

5.1 Distinct States of Macrophages During Disease Progression and Regression  

 Previous studies to evaluate the macrophage population in atherosclerosis 

demonstrated that symptomatic plaques contain macrophages of M1 inflammatory 

phenotype (Cho KY et al., 2013). In contrast, M2 anti-inflammatory phenotype was 

found to be enriched in asymptomatic lesions indicating the opposing role of 

macrophages in disease progression and resolution (Monica de Gaetano et al., 2016). 

Each phenotype stimulates distinct transcriptional program and differs regarding its 

metabolic activities. For instance, inflammatory phenotype expresses surface markers 

and secretes specific pro-inflammatory cytokines transmitting the inflammatory 

signals to neighbour cells in the plaque micro-environment. Also, their transcriptional 

state results in inefficient lipid metabolism enabling aggravating the inflammation 

and foam cell formation, while the M2 phenotype expresses certain genes enabling 

dampening the inflammation and prevention of intracellular lipid retention. 

 Clustering of macrophages from both samples resulted in identification of 11 

clusters. Although, macrophages during disease progression and regression shared 

common states, condition-specific clusters were identified. Cluster four was found to 

be more abundant in the regression group (71%), while clusters six and seven were 

abundant in the progression group, 82% and 83%; respectively, (figure 7-C, table 1). 

The two clusters (six and seven) arose mainly during atherosclerosis progression 

indicating their role in the inflammatory process. Moreover, trajectory inference 

revealed two distinct fates of macrophages, where cluster four acquired a path differs 

from that of clusters six and seven (figure 12-A). Furthermore, analysis of the 

differentially regulated genes and pathways from those unique clusters revealed new 

insights into the regulatory mechanisms underlying macrophages states during 
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disease progression and regression. For instance, the upregulated genes along the 

trajectory towards the progression branch-specific macrophages were enriched for 

biological processes that enhance the disease progress (figure 9-C). They are enriched 

for cholesterol storage, foam cell differentiation, STAT cascade, INF signalling and 

positive regulation of acute inflammatory response. On the contrary, regression 

branch-specific upregulated genes were enriched for bleb assembly and cholesterol 

efflux indicating the existence of distinct transcriptional program and metabolic 

activity for each group of macrophages. 

5.2 Extracellular Matrix Remodelling 

 Pathways activity analysis revealed increase in integrin and actin cytoskeletal 

signalling activity in the progression branch-specific macrophages while decrease in 

their activity in the regression branch-specific macrophages as shown in figure 10-A. 

Integrins are involved in the disease initiation and progression by mediating the 

interaction with endothelial cell surface receptors (Hynes RO, 2002). Although, the 

plaque extracellular matrix contains lipids and fibronectins (FN), the source of the 

fibronectins which are one of the earliest proteins deposited in the plaque site is not 

clear. Notably, deletion of FN alleles from mice significantly reduced the plaque size 

and prevent formation of the fibrous cap which results in the disease complications. 

(Ina Rohwedder et al., 2012).  

 Interestingly, there is inter-cluster communication as shown in the two unique 

clusters for the progression group (cluster six and seven). progression-specific 

clusters produce distinct kinds of inflammatory cytokines (figure 8) indicating their 

cooperation to boost the inflammatory process. For instance, cluster six produces the 

cytokine CCL2 and cluster seven expresses the G-protein coupled receptor CCR2, the 

binding partner for CCL2 (figure 11-A). CCL2-CCR2 interaction stimulates signal 
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transduction through CCR2 receptor resulting in overexpression of FN1 in cluster 

seven and fibronectin deposition, which is one of the earliest signs during 

atherosclerosis development. This finding indicates that a small subset of 

macrophages is a source of the deposited fibronectin in the plaque micro-

environment. On the other hand, the regression-specific macrophages (cluster four) 

downregulates CCR2, so that no signal transduction can be stimulated even in the 

presence of CCL2 in the lesion site. Consequently, identification of the possible 

mechanisms of modulating ECM components by macrophages could help in better 

understanding the disease progression. 

5.3 Dendritic Cell Maturation in the Progression Branch 

 Dendritic cells (DCs) during initial stages of atherosclerosis have been found 

to be accumulated dramatically in the plaques (Galkina E et al., 2006). Pathways 

activity analysis reveals that dendritic cell maturation signaling is upregulated in the 

progression branch and not in the regression branch (figure 10-A). In fact, DCs have 

been found to be able to accumulate lipids resulting in disease progression (Paulson 

KE et al., 2010) and produce distinct pro-inflammatory cytokines such as CCL2 and 

CCL4 to further recruit monocytes in the lesion area. (Huang DR et al., 2001; 

Braunersreuther V et al., 2007). Furthermore, CCR2, was found to be positively 

correlated with DCs level in atherosclerotic plaque (Combadiere C et al., 2003; 

Combadiere C et al., 2008; Liu P, 2008) which is higher in progression branch as 

previously mentioned. However, the regression branch has low expression of the 

transmembrane receptor CD74, resulting in inhibiting DCs motility in mice (Faure-

Andre G et al., 2008). Besides, mice lacking CD74 have marked reduction of the 

atherosclerotic plaque development (Sun J et al., 2010). This investigation offers 
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insight into a potential role of macrophages on activating and suppressing of dendritic 

cells during atherosclerosis development. 

5.4 Cytokines in Progression and Regression 

 Cytokines in atherosclerotic plaques have both pro-inflammatory and anti-

inflammatory roles (McLaren J E, 2011; Ait-Oufella H, 2011). The results revealed 

upregulation of distinct set of cytokines in each branch. The progression branch 

shows upregulation of CXCL1, CXCL2, CXCL10, CCL3 CCL4, CCL5, CCL7, 

CCL9, CCL12, IL1B, IL6, IL1RN and IFNB1, while the regression branch shows 

upregulation of TSLP, PF4 and CCL24 and downregulation of the progression-

specific cytokines (figure 8). 

 During initial stage of the disease where capturing and rolling of  monocytes 

occurs, CCL5 and CXCL1 interact with proteoglycans and P-selectins on endothelial 

cells causing immobilization (Ley K et al., 2007; Moore K J et al., 2013; Soehnlein O 

et al., 2013). Both genes (CCL5 and CXCL1) have higher RNA expression level in 

the progression branch. Additionally, CCL5 deposition in the plaques promotes 

monocyte arrest (Von Hundelshausen P et al., 2001) and knockout of Y-box binding-

protein 1 which regulates CCL5 expression level results in reduction of neointimal 

formation in ApoE -/- mice models (Krohn R et al., 2007). CXCL10, CCL3, CCL7, 

IFNB1 and IL1-Beta, which are higher in the progression branch, have been found to 

be involved in atherosclerosis progression and their downregulation reduces the pro-

inflammatory genes and atherosclerosis plaque burden (Kirii H et al., 2003; Heller E 

A, 2006; Kennedy A et al., 2012; de Jager S C et al., 2013; Alexander M R et al., 

2012, Denes A et al., 2012; Ting-Ting Chang et al., 2016). Moreover, IL-6 injection 

in ApoE -/- mice increases plaque size and pro-inflammatory cytokines, while its 

inhibition enhances atherosclerosis via reducing plaque size, decreasing activation of 
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endothelial cells and reducing monocytes recruitment (Huber S A et al., 1999, Madan 

M et al., 2008). 

 Furthermore, CCL2 was found to be higher in the progression branch. In 

addition to its role in recruiting leukocytes to the inflammation site, it represses the 

expression of the molecules responsible for cholesterol efflux from the cells resulting 

in impairment of reverse cholesterol transport mechanism (Weber C et al., 2011; 

Huang C X et al., 2013). Additionally, Pro-inflammatory cytokines cause inhibition 

of LXR (Liver X receptors) signaling disrupting cholesterol efflux and resulting in 

foam cell formation. (Pascual-García M et al., 2013). LXR signalling was found to 

have less activity in progression branch and more activity in regression branch from 

the pathway activity analysis (figure 10-A). 

 On the other hand, among the three cytokines found to be upregulated in the 

regression branch, thymic stromal lymphopoietin (TSLP) was found to attenuate 

atherosclerosis development (Kunwu Tu et al., 2013) and to promote macrophages 

polarization towards M2 phenotype (Debin et al., 2019). Additionally, it further 

upregulates CD63 tetraspanin (Wang B et al., 2013) which was also found to be 

secreted in M2 macrophages exosomes (Peiming Zheneg et al., 2018). The second 

cytokine, CCL24, also has been shown to be expressed in M2 phenotypes (Martinez 

FO et al., 2006). The functionality of the third cytokine (PF4) found in the regression 

group awaits further investigation. Taken together, the results indicate the production 

of  anti-inflammatory cytokines from the macrophages in the regression branch 

driving the process of atherosclerosis resolution. 
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5.5 Analysis of the Transcription Regulatory Network 

 5.5.1 Role of STAT1 and IRF7 in Maintaining the Inflammatory Module 

 The progression branch-specific macrophages activate a transcriptional 

program resulted in producing distinct kinds of cytokines and other molecules 

aggravating the inflammatory response in the atherosclerotic plaque lesion site as 

shown in figure 11-B. Together, STAT1 and IRF7 transcription factors upregulate 

multiple pro-inflammatory cytokines such as CXCL10 and CCL12 (Vogel SN et al., 

2003; Miyagawa F et al., 2016) and downregulate the cytokine TSLP which is 

upregulated in the regression-specific macrophages. Moreover, they upregulate the 

expression of three peptidases (PSMB8, PSMB9 and USP18), which play a part in the 

immunoproteasome machinery system in immune cells (figure 13-A, B)  (Barton LF 

et al., 2002; Goubau D et al., 2009). Notably, immunoproteasome is required for 

protein processing to present antigenic peptides on MHC class I molecules (Kloetzel 

PM, 2004) and it was found to be involved in autoimmune diseases pathogenesis 

(Gutcher I et al., 2007). In fact, peptidases upregulation in the progression branch-

specific macrophages sheds light towards their involvement in the continuous 

inflammatory process during atherosclerosis development. 

 Interestingly, STAT1 and IRF7 also upregulates interferon induced proteins 

and IFIT family proteins (Interferon Induced Protein with Tetratricopeptide Repeats) 

as shown in figure 11 and 13-A. IFIT family members were found to be expressed 

during viral infection and following IFN treatment (Diamond et al., 2012). They have 

unique structure as they lack any enzymatic domains or activity. Rather, they have 

multiple copies of TPR motif (tetratricopeptide), whose presence in proteins indicates 

their role in cell cycle regulation, protein folding and protein transport. (D’Andrea LD 

et al., 2003). IFIT proteins role in inflammation has contradicting results. Some 



 

47 
 

studies reported their role in reducing the inflammation (Berchtold S et al., 2008; Li 

Y et al., 2009), while others reported their role in augmenting the inflammatory 

response. (McDermott JE et al., 2012). Recently, IFIT1, IFIT2 and IFIT3 were found 

to be severely upregulated in M1 phenotype macrophages (Huang C et al., 2018), 

indicating their role in inflammatory response. Accordingly, this investigation suggest 

that IFIT family proteins might have a role in atherosclerosis development. In 

addition, IFI35 has been previously identified to have a role in neointimal formation 

and to serve in endothelial cell migration and proliferation (Jian D et al., 2018). 

Moreover, interferon-stimulated exonucleases (ISG15 and ISG20) and IFI44 

upregulation by IRF7 (Lazear HM et al., 2013) in atherosclerosis needs further 

investigation as they show high expression level in progression-specific macrophages 

(figure 13-A). 

 Surprisingly, once the inflammatory module is initiated, distinct feed-forward 

loops and trans-activation patterns between STAT1 and IRF7 have been developed to 

maintain the inflammatory process (Figure 11-B), while inhibiting the expression of 

other cytokines such as TSLP that was found to be upregulated in the regression 

branch-specific macrophages. 

 5.5.2 Interrupting the Inflammatory Module 

 On the contrary, regression branch-specific macrophages interrupt the 

inflammatory network at multiple levels as seen in figure 11-C. Macrophages in the 

regression branch show early downregulation of the transcription factor ID2 

(Inhibitor of DNA binding 2), which has been reported to upregulate IRF5 (Li J et al., 

2017), preventing its downstream upregulation of IRF7, IFNB1 and STAT1 (Lazear 

HM et al., 2013; Steinhagen F et al., 2015). Additionally, upon upregulation of IGF1 

by S1PR1 stimulation (Straub AC et al., 2009), signal transduction through IGF1 
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interrupts the inflammatory network in multiple ways. For instance, IGF1 

downregulates a number of pro-inflammatory cytokines CCL3, IL6 and IL1B as 

shown on figure 11-C (Santini MP et al., 2007; Chand HS et al., 2012). Furthermore, 

IGF1 can downregulate STAT1 downstream targets such as PSMB8 and PSMB9 (the 

immunoproteasome subunits) (Pan Y et al., 2013) indicating their involvement in the 

disease progression (figure 13-B).  

 Likewise, upregulation of IGF1 further results in breaking the inflammatory 

module by decreasing activation of STAT1 and by inhibiting expression of IL6 

(Bernabei P et al., 2003). IL6 inhibition resulted in upregulation of the anti-

inflammatory cytokine TSLP through downregulation of its inhibitor CCR2 (Bromley 

SK et al., 2013). Consequently, TSLP upregulates the expression of the M2 

macrophage surface marker CD63 denoting polarization towards M2 anti-

inflammatory phenotype (Wang B et al., 2013). 

 The analysis of the transcriptional regulatory network offers new insights into 

potential roles of different transcription factors, growth factors and signal 

transduction through G-protein coupled receptors in controlling expression of a wide 

range of genes differentially expressed in macrophages in both branches. 

 5.5.3 Role of MAFB in Atherosclerosis 

 MAFB is a basic leucine zipper transcription factor involved in development 

and lineage-specific hematopoiesis. (Kelly et al., 2000). It has been reported that 

MAFB drives macrophages to M2 anti-inflammatory phenotype by altering various 

number of inflammatory related genes (Víctor D et al., 2017) as shown in figure 14-

A. MAFB upregulates the solute carrier SLC40a1 (Ferroportin-1) which has a role in 

iron efflux from the cells. Indeed, deposition of iron in atherosclerotic lesion occurs 
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following intra-plaque haemorrhage (Kolodgie, F D et al., 2003). SLC40a1 was found 

to be downregulated in the macrophages from the progression branch indicating loss 

of their ability to export iron outside the cell. Consequently, overloading with iron 

catalyses reactive oxygen species generation and lipid oxidation in the foam cells, 

which in turn aids in further progression of the disease (Ramakrishna G et al., 2003). 

Additionally, macrophages enriched with CD163 in atherosclerotic plaques were 

found to have less lipid contents and less oxidative damage (Finn et al., 2012). 

 5.6 Role of the predicted miRNAs 

 Ten miRNAs were predicted to be upregulated to cause such alteration in the 

gene expression in the progression branch-specific macrophages as shown in figure 

10-B. Some of them were previously identified to play a role in atherosclerosis 

progression. The role of miRNA-155 in atherosclerosis remains controversial as some 

studies reported that its overexpression in ApoE-/- mice reduces the atherosclerosis 

(Zhu et al., 2012) and others reported that its deficiency reduces the lesion size in 

ApoE-/- mice (Nazari-Jahantigh et al., 2012). Recently, it has been reported that mice 

with ApoE-/- / miR-155-/- double knockout have less atherosclerotic lesion (Anthony 

Virtue et al., 2017). The exact role of miR-155 in atherosclerosis is not clear. The 

results indicate that miR-155 can bind to the 3’ untranslated region of multiple 

mRNAs suppressing the expression of a variety of genes such as LRP1, TGFBR2, 

NRP1 and MAFB (figure 10-C). Mutation of LRP1 (Low-Density Lipoprotein 

Receptor-Related Protein 6) was found to cause a number of metabolic diseases such 

as hyperlipedemia, type 2 diabetes (Mani A. et al 2007). Particularly, LRP6 mutation 

is associated with increase plasma LDL level (Tomaszewski M et al., 2009) which is 

one of the major risk factor of atherosclerosis development. NRP1 (Neuropilin 1) 

deficiency shifts the energy metabolism of macrophages towards glycolysis (Ariel 
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Molly Wilson et al., 2018) as in the M1 phenotype resulting in more lactate and 

reactive-oxygen species production and consequently more inflammation and 

inefficient fatty acids burning (West AP et al., 2011). 

 ABCA1 (ATP Binding Cassette Subfamily A. Member 1) was predicted to be 

targeted with miR-148, miR-140 and miR-758. ABCA1 was previously identified to 

stimulate cholesterol efflux (Wang N et al., 2000, Oram JF et al., 2000). Mutations of 

ABCA1 resulted in increasing cholesterol deposition in cells and tissues, especially in 

macrophages (Assmann et al., 1995) and a significant reduction in plasma HDL level 

(Marcil M et al., 1999). Anti-miR-148a shows reduction in the atherosclerotic plaque 

formation (Rotllan N et al., 2018). MiR-410 inhibition was found to rescue 

endothelial cells apoptosis by regulating oxidized-LDL levels (Ming-Yan Hu et al., 

2018). MiR-758 was identified before to target ABCA1 resulting in suppressing 

cholesterol efflux from the cell (Ramirez CM et al., 2011) 

 IGF1, MAF and MAFB have been identified to be targeted with the predicted 

miRNAs, resulting in suppressing their role in resolving the inflammation in the 

progression-specific macrophages. 

 MiR-129-5p upregulation was suggested to have a protective role in 

atherosclerosis through suppression of endothelial cell autophagy (Zhaohua Geng et 

al., 2016), which was predicted in the results to be upregulated in the progression-

specific macrophages. This contradicting finding needs further validation. 

 The miRNAs prediction results confirmed the previously identified findings 

from the literatures and revealed additional roles of those miRNAs. In addition, the 

results offer new insights on other miRNAs involvement in the disease progression 

such as miR-344-3p, miR-346 and miR-485-5p.  
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CHAPTER 6: CONCLUSION AND FUTURE PERSPECTIVES 

 6.1 Conclusion 

 Atherosclerosis inflammatory sites contain both pro-inflammatory and anti-

inflammatory macrophages. Each subset of macrophage activates unique 

transcriptional program with distinct pathways and metabolic activities. Activating 

integrin signalling and maturation of dendritic cells by the inflammatory macrophages 

aggravates the inflammation by ECM remodelling. Inflammatory macrophages 

express distinct set of genes to activate an inflammatory module aggravating the 

atherosclerosis inflammation and disrupting cholesterol metabolism resulting in 

intracellular cholesterol retention and foam cell differentiation. By upregulating 

certain genes such as STAT1 and IRF7, macrophages can activate various pathways 

to produce inflammatory cytokines which have positive regulatory effects on those 

genes to maintain the inflammatory process. In contrary, upregulation of genes 

responsible for cholesterol efflux and prevention of foam cell formation were found 

in the anti-inflammatory macrophages. In addition, interrupting the inflammatory 

module in M2 macrophages can be achieved by altering expression level of certain 

transcription factors and key genes that act systematically to dampen the 

inflammatory network by interrupting it at various levels. Anti-inflammatory 

macrophages upregulates IGF1 and MAFB and downregulate ID2 transcription 

factor, which in turn interrupt the inflammatory network through downregulating 

STAT1, IRF7, IL6, IL1B and their targets as well. Understanding how anti-

inflammatory macrophages suppress inflammation is a key step to better understand 

atherosclerosis resolution and offers new insights on how to force the transition of 

macrophages from inflammatory phenotype to anti-inflammatory phenotype. 
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 6.2 Future Perspectives 

 This study has some limitations regarding the validation of the detected 

candidates and the techniques used. It is limited to the computational analysis of 

distinct macrophage states during atherosclerosis progression and regression. Future 

work to experimentally validate the candidates is required. Additionally, although 

single cell RNA sequencing allows detection of the heterogeneity among the total 

population, the technique has shallow coverage and not like deep bulk RNA 

sequencing. For instance, the average number of genes detected per cell is ranging 

from 1000 to 2000 genes per cell in this dataset. Also, alternative splicing events are 

difficult to be detected among the clusters because of the low number of reads per 

gene in each cell. It is recommended for future studies to take into consideration 

performing bulk RNA sequencing on cluster-basis. For instance, a combination of 

unique surface markers can be identified for progression-specific clusters (cluster six 

and seven) and the regression-specific one (cluster four) for sorting them and 

performing deep RNA sequencing. This will extend the network analysis to include 

more candidates and pathways that may be identified as therapeutic targets. 

Furthermore, understanding how macrophages gradually change their states from 

inflammatory to anti-inflammatory phenotypes can be used to force them to enter 

anti-inflammatory state.  Future research and experimental validations are required 

using atherosclerotic mice models to confirm the findings.  
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