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ABSTRACT 

 

The American University in Cairo, Egypt 

TID testing 

Name: Mohamed Ayman Ahmed Ibrahim 

Supervisor: Prof. Ahmed Abou-Auf 

 

Radiation sources exist in different kinds of environments where electronic 

devices often operate. Correct device operation is usually affected negatively by 

radiation. The radiation resultant effect manifests in several forms depending on the 

operating environment of the device like total ionizing dose effect (TID), or single event 

effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and 

single event latch up (SEL).  

CMOS circuits and Floating gate MOS circuits suffer from an increase in the 

delay and the leakage current due to TID effect. This may damage the proper operation 

of the integrated circuit. Exhaustive testing is needed for devices operating in harsh 

conditions like space and military applications to ensure correct operations in the worst 

circumstances. The use of worst case test vectors (WCTVs) for testing is strongly 

recommended by MIL-STD-883, method 1019, which is the standard describing the 

procedure for testing electronic devices under radiation. However, the difficulty of 

generating these test vectors hinders their use in radiation testing. 

Testing digital circuits in the industry is usually done nowadays using design 

for testability (DFT) techniques as they are very mature and can be relied on. DFT 

techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed 

D scan, clocked scan and enhanced scan. DFT is usually used with automatic test 

patterns generation (ATPG) software to generate test vectors to test application specific 

integrated circuits (ASICs), especially with sequential circuits, against faults like stuck 

at faults and path delay faults. Despite all these recommendations for DFT, radiation 

testing has not benefited from this reliable technology yet. Also, with the big variation 

in the DFT techniques, choosing the right technique is the bottleneck to achieve the best 

results for TID testing. 

In this thesis, a comprehensive comparison between different DFT techniques 

for TID testing of flash-based FPGAs is made to help designers choose the best suitable 

DFT technique depending on their application. The comparison includes muxed D scan 

technique, clocked scan technique and enhanced scan technique. The comparison is 

done using ISCAS’89 benchmarks circuits. Points of comparisons include FPGA 

resources utilization, difficulty of designs bring-up, added delay by DFT logic and 

robust testable paths in each technique.  
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Chapter 1 

Summary 

Radiation sources exist in different kinds of environments where electronic 

devices often operate. The radiation sources can be found in terrestrial, extra-terrestrial 

and man-made radiation environments. Correct device operation is usually affected 

negatively by radiation. The radiation resultant effect manifests in several forms 

depending on the operating environment of the device like total ionizing dose effect 

(TID), or single event effects (SEEs) such as single event upset (SEU), single event 

gate rupture (SEGR), and single event latch up (SEL).  

CMOS circuits and Floating gate MOS circuits suffer from an increase in the 

delay and the leakage current due to radiation effects. The interest here is focused on 

the TID effect. TID effect may damage the proper operation of the integrated circuit. 

Exhaustive testing is needed for devices operating in harsh conditions like space and 

military applications to ensure correct operations in the worst circumstances. The use 

of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-

883, method 1019, which is the standard describing the procedure for testing electronic 

devices under radiation. However, the difficulty of generating these test vectors hinders 

their use in radiation testing. 

Testing digital circuits in the industry is usually done nowadays using design 

for testability (DFT) techniques as they are very mature and can be relied on. DFT 

techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed 

D scan, clocked scan and enhanced scan. DFT is usually used with automatic test 

patterns generation (ATPG) software to generate test vectors to test application specific 

integrated circuits (ASICs), especially with sequential circuits, against faults like stuck 

at faults and path delay faults. Despite all these recommendations for DFT, radiation 

testing has not benefited from this reliable technology yet. Also, with the big variation 

in the DFT techniques, choosing the right technique is a bottleneck to achieve the best 

results from TID testing. 
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In this thesis, a comprehensive comparison between different DFT techniques 

for TID testing of flash-based FPGAs is made to help designers choose the best suitable 

DFT technique depending on their application. The comparison includes muxed D scan 

technique, clocked scan technique and enhanced scan technique. Methodologies for 

applying the DFT techniques are developed. Points of comparisons include FPGA 

resources utilization, difficulty of designs bring-up, added delay by DFT logic and 

robust testable paths in each technique. 

The comparison is done using ISCAS’89 benchmarks circuits. They are 

described as being suitable for researchers working in the field of scan designs for 

sequential circuits. The comparison is done on designs of different sizes. The designs 

are implemented using Microsemi ProASIC3 flash-based FPGAs. For each design, the 

methodologies for applying the three DFT techniques under investigation are applied. 

Results show that some techniques are more superior to others depending on the point 

of comparison. Recommendations on when to use each technique are presented and 

verified by the results of the comparison. 

The rest of the thesis is organized as follows. Chapter two includes a review on 

different radiation sources and effects. It also focuses on the TID effect on CMOS 

circuits and floating gate MOS transistor which are the switch elements in flash-based 

FPGA. Chapter three introduces a review on different methodologies of design for 

testability like Ad-hoc designs, BIST designs and scan designs with a special focus on 

different scan design techniques. Also, the path delay testing is discussed and how it is 

done using scan designs. Chapter four discusses the previously developed efforts to 

generate WCTVs of ASICs and FPGAs. Chapter five explains the methodology of 

using each DFT technique to generate the WCTVs. Then, the results of the comparison 

between the DFT techniques on the ISCAS’89 benchmark designs are presented. 

Finally, the thesis ends by chapter six which concludes the work done in this thesis and 

possible future work to build upon the results concluded here. 
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Chapter 2 

Radiation effects on CMOS circuits 

Radiation sources surround us everywhere. They are found in terrestrial 

environments, extra-terrestrial environments and in some cases are even artificially 

made by man. Electronic devices operate in all of these environments. Radiation 

sources surely affect them and can cause severe damages to their operation.  

One of the important effects of radiation is the Total Ionizing Dose effect “TID”. 

It has a severe damaging effect on CMOS circuits’ operation. The reason behind this is 

the ionizing–radiation effect on the materials used in the fabrication of CMOS circuits. 

In this chapter, different radiation sources are illustrated and their resultant radiation 

effects. Then, the TID effect on CMOS circuits is discussed along with TID testing 

techniques.  

2.1 Radiation sources 

It is important to understand the characteristics of radiation sources so that 

electronic devices are designed to properly operate in different environments.  

In terrestrial environments, radiation can come from neutrons which are found 

in the atmosphere, or alpha particles which are emitted from defects found inside chips 

materials. While in extra-terrestrial environments like space, radiation comes from 

trapped particles around the Earth’s atmosphere, particles which originated from the 

sun and high energy galactic cosmic rays’ particles. Artificial man-made radiation 

originates from nuclear reactors, biomedical devices and high energy particles physics 

experiments equipment. 

2.1.1 Terrestrial environment 

In the terrestrial environment, there are two sources of radiation that highly 

affect electronic circuits. First one is the neutrons found in Earth’s atmosphere. The 

other is the alpha particles coming from decay inside the integrated circuit (IC) material. 



4 

 

 

2.1.1.1  Atmospheric neutrons 

Aviation equipment has lots of electronics inside it so it is important to know 

the type of radiation it may encounter when flying at an altitude of 15 Km. Atmospheric 

neutrons have the highest radiation effect at this altitude [8]. 

When galactic cosmic rays hit Earth’s atmosphere, atmospheric neutrons are 

generated. These neutrons trigger some nuclear reactions. Their interaction with oxygen 

and nitrogen generate protons, muons, neutrons and pions. These particles are the 

radiation affecting the electronics inside the aviation equipment and they reach their 

maximum level at approximately 15 Km. 

2.1.1.2 IC radioactive decay 

Some elements like Uranium, Thorium and Platinum are used in integrated 

circuits fabrication process. Sometimes they are also found in the chip material as 

unwanted defects. These elements face radioactive decay producing alpha particles. 

These alpha particles are the most responsible source for soft errors happening in 

electronic devices. This type of radiation is gaining more and more importance 

compared to atmospheric neutrons as technology advances and the feature size of IC 

decreases. In Complementary Metal Oxide Semiconductor (CMOS) circuits, some 

particles like muons are becoming more important due to the threats they can cause as 

the device dimensions decreases [9]. 

2.1.2 Space environment 

All nuclei that can occur naturally are found in the space environment. That is 

why the space environment is very harsh to electronic devices. These nuclei particles 

can come from geomagnetically trapped electrons and protons, high-energy cosmic-ray 

particles, particles of solar origin, and possibly particles trapped in the magnetospheres 

of other planets. The near-Earth environment where satellites operate is the one that 

concerns electronic circuit designers. In this region, the electrically charged particles 

trapped in the Earth’s magnetosphere and, high-energy particles of cosmic-ray origin 

are the most dominating radiation sources [30] as depicted in Fig.1. 
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Figure 1: Schematic illustration of three main sources of radiation in space [8]. 

 

Due to the complexity of the space environment, it is very difficult to assess the 

amount of ionizing radiation hitting a system in space, and it is also dependent on the 

cycle of solar activity. Furthermore, the exact amount of radiation that affects a specific 

electronic device depends on its location inside the spacecraft or satellite that is 

operating due to the shielding effect of the materials used. In a context like space, one 

cannot just overdesign the electronic systems because the addition of this weight when 

applied to spacecraft or satellites has a high cost. Furthermore, these devices lack the 

power to support overdesigned electronic systems. This is why the complex simulation 

tools and models are used to predict the dose affecting the devices and design them 

within the appropriate margins [8]. 

2.1.3 Man-made radiation environment 

Some radiation environments are artificially made by man. For example, the 

biomedical devices or high energy particles physics experiment equipment.  

Large Hadron Collider (LHC) at CERN in Switzerland is one practical example. 

It will receive an upgrade, after which, doses may exceed 100 Mrad(Si). These are 

massive doses compared to most missions in space by the National Aeronautics and 

Space Administration (NASA). In these missions, expected doses are around 100 

Krad(Si). For that, dedicated “rad-hard” libraries are used in LHC. These libraries have 

a layout that is made specially to avoid the problems of standard design and ultimately 

to withstand the high levels of radiation found in these environments. 
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Another practical example is the ITER neutral beam test facility. It contains a 

fusion reactor where electronic devices are expected to be hit by large fluxes of neutrons 

of energies up to 14 MeV, the doses expected in the ITER environment can reach a 

value of 50 rad(Si) in one operating hour [10]. 

2.2 Radiation effects 

What is meant by radiation effects is the ability of radiation sources to cause 

damage that can either be reversible or not inside the electronic devices. This effect 

depends on the type of radiation source and the environment in which the device 

operates. Two of the most famous effects are Total Ionization Dose effects and Single 

Event effects. 

2.2.1 Total Ionization Dose effects 

Total Ionization Dose (TID) is the amount of energy resulting from ionization 

radiation at the target material. TID is measured either by rad or gray (Gy). Rad is the 

amount of energy equal to 100 ergs transferred to one gram of the target material. Since 

the amount of the energy transferred is material-dependent, the radiation dose is usually 

followed by the target material. Gray (Gy) is one-hundredth of rad.  

One of the most susceptible materials to TID is the silicon oxide (SiO2) which 

is one of the most essential parts in the Metal Oxide Semiconductor (MOS) structure. 

Two main effects result from TID in electronics devices [8]: 

1. Positive charge (holes) trapping in the insulation layer 

2. Generation of interface states in the insulation layer 

The band diagram for an n-type MOS structure on a p-substrate and biased at positive 

voltage is illustrated in Fig.2. 



7 

 

 

 

Figure 2: Band diagram of an n-type MOS biased at positive voltage [8] 

 

When radiation hits a MOS structure, energy is transferred to the silicon oxide. 

This leads to the generation of electron-hole pairs inside SiO2, as illustrated in Fig.3. 

After that, a process called initial recombination occurs, where some electron-hole pairs 

recombine. This depends on many factors: applied electric field, the transferred energy 

and the type of charged particle i.e. the source of radiation. Some pairs are not 

recombined in this process and they remain uncombined. They are called charge yield. 

After initial recombination process is finished, electrons and holes start to move where 

electrons are quickly attracted to the positively charged gate due to their high mobility, 

while, on the other hands, holes move slowly towards the silicon substrate due to their 

lower mobility. This difference in speed between electrons and holes cause temporary 

negative voltage shift in the characteristics of the MOS device, such as the threshold 

voltage [12]. 

After the holes reach the Silicon/Silicon Oxide (SiO2) interface, some holes go 

to the Silicon substrate, and some others are trapped in defects sites. These defects sites 

have a higher density at the Silicon/ Silicon Oxide (SiO2) interface. These trapped holes 

cause permanent negative voltage shift in the characteristics of the MOS structure 

[8][12]. This can affect the MOS in the following ways: 

1. Can cause a voltage shift in the threshold voltage.  

2. Can cause inversion of the channel leading to flow of leakage current 

in the OFF state. 

3. Can cause an increase in the static power of the integrated circuits. 
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Figure 3: Illustration of generation, recombination, transport, and 

trapping of charges in SiO2 films [31]. 

 

In parallel to holes movement process to the Si/SiO2 interface or when holes are 

trapped, some hydrogen ions (protons) can be released. Interface traps are created by 

the arrival of these hydrogen ions at the interface. These interface traps can exchange 

carriers with the channel, and their occupancy depends on the position of the Fermi 

level at the interface. This is a much slower process than the charge accumulation due 
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to the trapped holes near the interface, but it also depends on the applied electric field 

[8][12]. These traps can affect the MOS in the following ways: 

1. Can cause a positive shift in the threshold voltage of the NMOS 

transistor and a negative voltage shift in the threshold voltage of the 

PMOS transistor.  

2. Can affect the mobility of the transistor. 

3. Can decrease current capability in the transistor. 

4. Can cause timing degradation of the integrated circuits. 

2.2.2 Single-Event effects 

Single-Event Effects (SEE) are caused by the passage of high-energy particles 

(heavy ion) through sensitive regions of an electronic device. They can be classified 

into three categories depending on their effects.  

The first category is “Soft”, in which the damage is temporary e.g. soft errors in 

memory circuits. The second category is “Hard”, in which the damage is irreversible 

e.g. the rupture of the dielectric in the gate. The third category is the case between Soft 

and Hard, in which some other SEE may or may not cause damage depending on the 

operation of the electronic device. Example for the third category is the case of a single-

event latch-up, in which the time to cut the power supply after the occurrence of the 

event decides if the damage happened to the device or not [8]. 

The most famous SEE are [8][13]: 

1. Single-event upset (SEU):  

A soft SEE, in which the value of a single bit in memory is flipped 

because of a single ionizing particle. It is also known as a soft error. 

Rewriting the bit again restores the correct value of the memory bit i.e. the 

damage is just temporary. 

2. Single-event gate rupture (SEGR): 

A hard SEE, in which the gate of a MOSFET is ruptured. This effect 

cannot be reversed i.e. the damage is permanent. 
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3. Single-event latch-up (SEL): 

A type of SEE where its damage depends on what the circuit does after 

being exposed to radiation. It is characterized by the activation of parasitic 

bipolar structures in CMOS circuits. This leads to a sudden increase in 

supply current. There may or may not be permanent damage to the device 

depending on the time taken to cut the power source of the circuit. 

2.3 TID effect in MOS transistor 

As explained in the previous sections, when ionization radiation hits MOS 

transistors, the high-energy particles interact with the atoms of the dielectric SiO2 

leading to the generation of electron-hole pairs. The density of the generated electron-

hole pairs is determined by the amount of the energy transferred to the dielectric 

material along the track of the high-energy particles. Equation (1) describes the relation 

between the radiation energy that enters the plane of the target material (∆EE) and the 

radiation energy that leaves the material plane (∆EL). This is called Linear Energy 

Transfer (LET) or stopping power which expresses the loss of energy per unit length 

(dE/dx) [14]. 

∆𝐸𝐿(𝛾) = ∆𝐸𝐸(𝛾) 𝑒𝑥𝑝 (−
𝜇𝑒𝑛

𝜌
𝜌∆𝑥) ,                                  (1) 

where, 𝜇𝑒𝑛/ 𝜌 is the mass attenuation coefficient of the target material, 𝜌 is the target 

material density, and ∆𝑥 is the thickness of the target material.  

Figure 4 describes the LET for protons and electrons as a function of the particle 

energy. For protons, LET decreases monotonically, while in the case of electrons, the 

LET decreases as a function of particle energy for energies below 1 Mev, while it 

increases for higher energies [15]. 

The generation of the electron-hole pairs due to the ionization radiation causes 

what are called oxide traps and interface traps. Oxide traps result from the movement 

of the holes towards the oxide-Silicon (SiO2/Si) interface. Some of the holes get trapped 

at the interface due to defects which results in the formation of positive oxide-trap 

charges [16]. Interface traps are also generated at the SiO2/Si interface. They are the 

result of the interaction between the hydrogen ions that can drift to the interface. The 
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interface traps generation process occurs in a long time compared to the oxide charges 

generation process. They act as energy levels within the silicon band-gap. Interface 

traps can be negative or positive, depending on the location of the Fermi level at the 

interface, if the Fermi level at the interface is below the trap energy, it acts as a donor 

and the interface trap is positively charged, and if the Fermi level at the interface is 

above the trap energy, it acts as an acceptor and the interface trap is negatively charged. 

Positive interface traps cause negative threshold voltage shifts for p-channel transistors, 

while negative interface traps cause positive threshold voltage shifts for n-channel 

transistors [12]. 

 

 

Figure 4: Linear energy transfer for protons and electrons as a function of particle energy [15] 

 

With the mentioned oxide traps and interface traps, degradation of the MOS 

transistors characteristics occurs. These degradation can be seen in threshold voltage 

shifts, mobility degradation and induced leakage current. 
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2.3.1 Threshold voltage shifts 

Threshold voltage shifts in MOS transistors can be caused by both oxide traps 

and interface traps. Equation (2) describes the total threshold voltage shifts.  

∆𝑉𝑡ℎ = ∆𝑉𝑜𝑡 + ∆𝑉𝑖𝑡,                                                                (2) 

where ∆𝑉𝑜𝑡 is the threshold voltage shift due to oxide charge traps, and ∆𝑉𝑖𝑡 is the 

threshold voltage shift due to interface traps. Equation (3) describes how to determine 

them. 

∆𝑉𝑜𝑡,𝑖𝑡 =
−1

𝐶𝑜𝑥 𝑡𝑜𝑥
 ∫ 𝜌𝑜𝑡,𝑖𝑡(𝑥)𝑥𝑑𝑥,                                             (3)

𝑡𝑜𝑥

0

 

where 𝜌𝑜𝑡,𝑖𝑡(𝑥) is the charge distribution of radiation-induced oxide charge traps or 

interface traps. Threshold voltage shift is negative for positive charges, while for 

negative charges, the threshold voltage shift is positive [12]. 

 Figure 5 illustrates the effect of oxide charge traps. Their effect is always in the 

negative direction for both n-channel MOSFET and p-channel MOSFET. For n-channel 

MOSFET, the oxide charge traps shift the Vgs bias point by a negative value. This leads 

to a reduction in the threshold voltage and an increase of the drive current and the off-

state current. For p-channel MOSFET, the oxide charge traps also shift its bias point by 

a negative value. This leads to an increase in the threshold voltage and a reduction of 

the drive and off-state currents [15]. 

 

Figure 5: Illustration of the oxide charge traps on n and p channel MOSFETs [15]. 
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Figure 6 illustrates the effect of interface traps. The threshold voltage is also 

impacted where an increase in the subthreshold swing of both n and p channel 

MOSFETs are caused by the interface traps. For n channel MOSFET, interface traps 

cause a shift in the threshold voltage by a positive value, while for a p channel 

MOSFET, interface traps cause a shift in the threshold voltage by a negative value [15]. 

 

Figure 6: Illustration of the effect of the interface traps on n and p channel MOSFETs [15] 

At high dose rate of radiation for a short time, Oxide charge traps can have a 

neutralization effect on the threshold voltage shift, while the effect of interface traps 

won’t have enough time to build up. So, the effect of oxide charge traps will dominate 

leading to a negative and large shift in threshold voltage for both n and p channel 

MOSFETs. This will affect the n-channel MOSFET badly as it will lead to an increase 

in the leakage static power of the integrated circuit, which can lead eventually to a 

failure in the integrated circuit [12]. 

At moderate dose rates, both oxide charge traps and interface traps can happen 

to lead to large threshold voltage shifts. For n-channel MOSFET, oxide charge traps 

lead to a negative threshold voltage shift, while interface traps lead to positive threshold 

voltage shift, so, they compensate each other, and the failure level of the integrated 

circuit due to radiation can be relatively high. For p-channel MOSFET, both oxide 

charge traps and interface traps have a negative threshold voltage shift, so, they add to 

each other unlike the n-channel MOSFET case [12]. 
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2.3.1.1 Oxide thickness 

Oxide thickness affects the radiation induced charge buildup. As oxide 

thickness decreases, the radiation induced charge buildup decreases rapidly [15]. So, 

the threshold voltage shift is directly proportional to the oxide thickness by equation 

(4). 

∆𝑉𝑜𝑡 ∝ 𝑡𝑜𝑥
2                                                                     (4) 

As CMOS technology advances, the oxide thickness decreases so the threshold voltage 

shift is reduced, as shown in Fig.7. In shallow trench isolation (STI) dielectrics, the 

thickness is much larger which make STI dielectrics more dangerous in modern CMOS 

technologies. As a result, interface traps and oxide charge traps in the thin gate oxides 

are not a concern, and the total dose effects are dominated by oxide charge traps in the 

field oxides even at a low dose of radiation [12][15].  

 

Figure 7: The effect of scaling down of the gate oxide on the threshold voltage shift [17] 



15 

 

 

2.3.1.2 Transistor dimensions 

Transistor dimensions are another factor that can affect the value of the 

threshold voltage shift. For the transistor width (W), the threshold voltage shift 

increases with the decrease of the width. This is valid in both n-type and p-type 

transistors. When the width (W) value is greater than 1 µm, the threshold voltage shift 

should not be critical. The same is said for the transistor length. The shorter the length 

(L) of the transistor, the larger is the magnitude of the threshold voltage shift. Also as 

the length (L) increases, the threshold voltage shift becomes very small. So, as the 

device size increases, there is no important dependency on the transistor size [18]. 

2.3.2 Carriers mobility degradation 

In addition to threshold voltage shift, Interface traps and oxide charge traps have 

other effects that can affect MOS transistors. Carriers mobility is one of these effects. 

Degradation of carrier mobility can cause degradation in the drive capabilities of the 

MOS transistor. This leads to degrading the timing parameters of an integrated circuit, 

which may cause timing failure in the electronic circuit operation. 

 

Figure 8: Mobility of carriers normalized to the pre-irradiation values as a function of interface traps 

density for devices with high and low interface traps and oxide charge traps densities [17] 
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Although both oxide charge traps and interface affects the mobility of carriers 

in a MOS transistor, interface traps have a first order effect on the effective mobility of 

carriers of a MOS transistor as shown in Fig. 8, while oxide charge traps have a much 

weaker effect. Interface traps are much more efficient when it comes to the scattering 

of carriers causing mobility degradation of carriers in a MOS transistor. This is because 

oxide charge traps are more distant from the oxide silicon interface [17]. 

2.3.3 Induced leakage current 

Radiation Induced Leakage Current (RILC) is another form of damage to the 

CMOS devices resulting from TID. RILC is caused by two mechanisms. The first 

mechanism is the threshold voltage due to the silicon dioxide charge traps, and the 

second mechanism is the built-up charges in the field oxide p-substrate. Figure 9 shows 

the leakage gate current against the gate voltage before radiation and after being 

radiated to 5.3 Mrad(Si) with Co-60 gamma rays at a gate bias of 0.3 V[12]. 

 

Figure 9: Gate oxide leakage current versus gate voltage for a non-irradiated capacitor and an 

irradiated capacitor to 5.3 Mrad(Si) [12] 



17 

 

 

As mentioned in the previous sections, as technology advances, gate oxide 

becomes thinner so it is less susceptible to radiation damage. However, the field oxides 

of advanced commercial technologies are still much thicker than the gate oxides. 

According to equation (4), radiation response increases proportionally with the oxide 

thickness. Therefore, the effect of field oxides is the most dominant effect of TID and 

its effect is the main radiation problem of these modern technologies [12]. 

Induced leakage current in shallow-trench isolation (STI) oxide can cause an 

increase in the standby current in modern CMOS integrated circuits. Figure 10 shows 

the increase of the standby current of CMOS shift registers using the technology of 

commercial 130 nm process [15]. 

 

Figure 10: Normalized increased standby current in CMOS shift registers manufactured in 130 nm 

process as a function of the TID dose in krad [15] 

In STI oxide, the built-up charges by the TID effect create leakage paths. This 

leads to an increase in the standby current in integrated circuits. The most known 

leakage paths are:  
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1. In a single n-channel MOSFET, drain to source leakage path. 

2. Drain to source leakage between two n-channel transistors 

3. Source to a well leakage between different devices.  

In all cases, the mechanism is the same. Positively charged oxide traps invert an 

adjacent p-type silicon layer. This enables the flow of current from one isolation region 

to another [15]. 

2.3.3.1 Drain to source leakage 

Drain to source leakage happens due to built-up charges in the isolation 

dielectric at the interface along the sidewalls of the STI oxide. This leakage is the main 

source for standby current in n-channel MOSFET. Figure 11 shows an illustration of 

the leakage path.  

 

Figure 11: a) Illustration of drain source leakage path in a n-channel MOSFET and b) its cause; built-

up charges in the isolation oxide [15] 

 

Figure 12 shows the current-voltage characteristics of an n-channel MOSFET 

manufactured by a 180 nm process by the Taiwan Semiconductor Manufacturing 

Company (TSMC). Different radiation doses are shown in the graph. It is noted that 

above 200 Krad, the drain current increases a lot at the cut off region. At 500 Krad, the 

drain current becomes 0.1 μA [15]. This is a significant amount of current in the cutoff 

region. 
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Figure 12: Impact of STI radiation damage on the current-voltage characteristics of n-channel 

MOSFET fabricated in TSMC 180 nm CMOS process [15] 

2.3.3.2 Inter device drain to source leakage  

The leakage paths in the case of inter device drain to source leakage are paths 

between two adjacent n-channel transistors unlike the case of the drain to source 

leakage in the same device[15]. Figure 13 describes the path of the leaked current. 

 

Figure 13: Leakage path between two adjacent n-channel transistors [15] 
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2.3.3.3 Inter device source to well leakage 

Same as inter device drain to source leakage, the leakage paths in the case of 

inter device source to a well leakage are paths between two different devices. However, 

the devices here are an n-channel device and a p-channel device. The path is between 

the n+ drain/source of one n-channel transistor and the n-well of an adjacent p-channel 

transistor[15]. Figure 14 describes the path of the leaked current. 

  

Figure 14: Leakage path between the source of n-channel MOSFET and the n-well of p-channel 

MOSFET [15] 

2.4 TID effect in floating gate MOS 

Field programmable gate arrays, usually known as FPGAs, are one of the most 

important devices in the electronics industry. They are characterized by: 

1- high logic density 

2- Fast deployment 

3- Reprogram ability 

 If the project is limited in budget and resources or if it is on a tight schedule, 

then FPGA is the best choice. The switches in an FPGA consists of floating gate MOS. 

It happens to be that radiation effect on flash-based FPGAs is dominated by floating 

gate MOS. That is why it is important to study the effects of TID on floating gate MOS 

[19]. 
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2.4.1 Flash-based FPGA switch 

Floating gate MOS transistors are the building elements of flash-based FPGA 

switch. As shown in Fig.15, the floating gate MOS transistor has two poly-silicon gates. 

First, there is a tunnel oxide composed of SiO2, then comes the floating gate, then 

another layer of inter-poly oxide-nitride-oxide (ONO) composite dielectric and at last 

the control gate [19]. 

 

Figure 15: Schematic of the floating gate transistor in flash-based FPGA [20] 

Figure 16 shows that the flash-based FPGA switch consists of two floating gate 

NMOS transistors: the switch transistor and the program/sense transistor. Both 

transistors have the same control gate and the same floating gate. The program/sense 

transistor is responsible for programming the floating gate voltage and sensing the 

current during threshold voltage measurement, while the switch transistor is responsible 

for turning on or off the data path.  

For setting the threshold voltage, a mechanism called Fowler-Nordheim 

tunneling is used where charge tunneling occurs through the thin gate oxide leading to 

storage of charge in the floating gate. This tunneling process is used during 

programming and erasing of the FPGA. Depending on the threshold voltage, the switch 

transistor can be turned on or off. To turn the switch transistor on, a low threshold 
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voltage must be programmed in the floating gate, and to turn the switch transistor off, 

a high threshold voltage must be “erased” in the floating gate [19]. 

 

Figure 16: a) Layout of the switch element for the flash-based FPGA. b) Schematic showing the cross 

section X-X’ [20] 

The relation between the threshold voltage of the floating gate MOS transistor 

and the electronic charge stored on the floating gate can be determined as follows: 

𝑉𝑡ℎ =  𝑉𝑠𝑖 +  
𝑄𝑓𝑔𝑑𝑜𝑛𝑜

𝜖𝑜𝑥
 ,                                                   (5) 

where Vsi is the threshold voltage determined by processing and it is a function of many 

variables including the dielectric thickness; Qfg is the net electronic charge per unit area 

stored on the floating gate; dono is the effective oxide-nitride-oxide (ONO) thickness; 

𝜖𝑜𝑥 is the oxide permittivity [19]. 

2.4.2 Threshold voltage shift 

Radiation induces three mechanisms that affect the threshold voltage shift in the 

floating gate MOS transistor. These mechanisms are:  

1- Injection of holes into the floating gate  

2- Trapped holes into the oxide 
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3- Electrons emission over the poly-silicon/oxide barriers.  

The first two mechanisms are caused by the generated electron-hole pairs 

generated from the radiation. The third mechanism, the electron emission, occurs when 

radiation energy is greater than the potential barrier. Threshold voltage shift is affected 

by these mechanisms. Equation (6) shows the dependency of the threshold voltage in 

the floating gate MOS transistor on the radiation induced mechanisms. 

𝑉𝑡ℎ(𝛾) =  𝐶0 + 𝐵𝑉𝑏𝑖𝑎𝑠 + [𝐶1 − 𝐵𝑉𝑏𝑖𝑎𝑠] exp(−𝐴𝛾)                      (6) 

where 𝛾 is the total ionizing dose, 𝑉𝑏𝑖𝑎𝑠 is the control gate bias, and 𝐶0, 𝐶1, B and A are 

physical constants [20]. 

Figure 17 illustrates the Id versus Vg curves for the high threshold or “erased” 

state flash cell before and after irradiation. Figure 18 shows the same curves but for the 

“programmed” state or the low threshold voltage state.  

 

Figure 17: TID effect on the high threshold voltage flash cell [20] 
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Figure 18: TID effect on the low threshold voltage flash cell [20] 

Figure 19 shows the experimental data for threshold voltage with different 

radiation doses of both “erased” and “programmed” state flash cell compared to data 

from the model determined by equation (6) [20]. 

 

Figure 19: Experiment threshold voltage versus total dose for both low threshold and high threshold 

voltage flash cells and model prediction (dashed line) [20] 
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2.4.3 Propagation delay degradation 

The degradation in the propagation delay is one of the most important side 

effects of the threshold voltage shift in the floating gate MOS transistor of flash-based 

FPGA. An experiment for the TID effect on propagation delay was conducted on a 

1000-stage inverter string on a second-generation flash-based FPGA, named 

ProASICPLUS APA family. Figure 20 shows the experimental data for the propagation 

delay for both biased and unbiased cases. The total dose threshold for the unbiased case 

is higher than that of the unbiased case [19]. 

 

Figure 20: Experimental propagation delay versus total dose for 1000 inverter string [19] 

Figure 21 shows the comparison between the spice simulation and the 

experimental data of the propagation delay for the unbiased case, while Fig.22 shows a 

comparison between the spice simulation and the experimental data of the propagation 

delay for the biased case. In the unbiased case, the simulation data is not in a perfect fit 

with the experimental data unlike the biased case [19]. 
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Figure 21: Propagation delay experimental data compared to SPICE simulation predictions for the 

unbiased case [19] 

 

Figure 22: Propagation delay experimental data compared to SPICE simulation predictions for the 

biased case [19] 

The placement and routing of the VersaTiles in the FPGA fabric also affects the 

degradation in the propagation delay. The study in [21] shows that for TID over 20 

krad(Si), the placement and routing of VersaTiles in the critical path plays a significant 

role in determining the percentage of the propagation delay degradation. 
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2.5 TID testing  

Understanding the nature of testing equipment and the environment is crucial to 

successfully simulate the real radiation effect. That is why the determination of the 

nature and specifications of radiation sources is an important issue. Also, the testing 

techniques should be standardized by a testing procedure to ensure the reliability of the 

applied test. For total ionizing dose (TID) effect testing, the MIL-STD-883, method 

1019 is the standard test that should be followed in TID testing, also Gamma sources 

(especially cobalt-60 Co60) are commonly used in TID testing. 

The MIL-STD-883, method 1019, used in TID testing, emphasizes to use test 

vectors which should cause the worst radiation effect in the tested devices (worst case 

test vectors “WCTV”). However, it is very difficult to generate these worst-case test 

vectors due to the complexity of the designs. Actually, most TID testing don’t use 

WCTVs due to the difficulty of generating these vectors [7]. 
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Chapter 3 

Design for testability 

Design for testability is a design methodology where the design phase and the 

testing phase of a digital circuit are both taken into account during design 

implementation. This is done to make the testing easier and more meaningful by 

increasing the observability and the controllability of the circuit. In this chapter, 

Different methodologies of design for testability are discussed like Ad-hoc designs, 

BIST designs and scan designs with a special focus on different scan design techniques. 

Also Path delay testing is discussed and how it is done using scan designs. 

3.1 History of design for testability 

Although design for testability is a known methodology in design nowadays, 

however, this was not the case in the early stages in the history of IC implementation. 

Usually, there were two groups of engineers, one for design and the other for testing. 

They worked independently, where the design group focused only on getting the design 

implemented and working correctly from the functionality point of view without any 

consideration of how it will be tested. The testing group had the job of finding effective 

ways to test the circuit within a reasonable time. 

This approach was sufficient in the era of small scale integrated circuits (SSI). 

In this time, the circuits were simple combinational circuits or simple finite state 

machines. As the era of very large integrated circuits (VLSI) approached, the circuits 

became much more complicated and larger in size with lots of internal states. The 

previous testing approach was not suitable anymore.  

In the early 1980s, a new approach was introduced. Fault coverage of the 

supplied functional patterns was measured through fault simulation. Designs has long 

sequential depth so functional patterns were provided to stimulate the internal states.  

This approach could not reach fault coverage higher than 80%. This means that testing 

was limited and some issues were not able to be detected. Although designs were good 

to go from a functionality point of view but performance-wise there was no way to be 
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100% sure due to the low quality of testing. At this point, Design For Testability (DFT) 

was introduced [24]. 

DFT is based on increasing the controllability and the observability of the 

circuits. Controllability is defined as the difficulty in setting a certain signal to a certain 

value. Observability is defined as the difficulty in observing the state of a certain signal. 

So, the goal of DFT is to be able to stimulate and access the internal states of a design 

in a simple way. The first trials to do this was through ad hoc testability enhancement. 

However, this method was not effective for large designs. Fault coverage could not 

exceed 90%. This is because generating test patterns in sequential circuits was much 

harder than the combinational circuits even after using ad hoc testing enhancements. A 

large number of internal states made the mission difficult. The solution was to get the 

sequential circuits to be as close as possible to combinational circuits during the testing 

phase. This led to the adoption of structured DFT techniques. 

The concept behind structured DFT techniques is to be able to control and 

observe all internal states by providing direct external access to memory elements. 

These reconfigured memory elements are called “scan cells”. Since every memory 

element could be accessed and altered, the testing problem for sequential circuits 

became a simple combinational circuit problem. Many innovative algorithms were 

already developed to address this problem [24]. Scan designs became the most popular 

structured DFT technique. To from a scan cell, additional input is added to each 

memory element called “scan input” and an additional output called “scan output”. By 

connecting the scan output of a memory element to the scan input of the next memory 

element, a scan chain is formed. Many architectures for scan designs were introduced 

based on this idea. 

Although scan designs improved quality, diagnostics ability, and testability of 

designs, the increased cost of traditional testing through automatic test pattern 

generation (ATPG) makes it inefficient to test deep submicron on nanometer VLSI 

designs. To solve this, a logic built-in self-test (BIST) is used alongside scan designs. 

This makes the circuits that generate the test patterns embedded in the chip with the 

circuit under test. Logic BIST is crucial for safety critical and mission critical 



30 

 

 

applications which can be found in defense/aerospace, automotive, and banking 

industries [22][24]. 

3.2 Ad-hoc DFT technique 

Ad-hoc DFT technique is not a systematic technique. A lot of ad hoc techniques 

were used to enhance the testability. Each design has its own local adjustments when 

using this technique. This means that ad hoc cannot be generalized. Ad hoc increases 

the testability of the designs but they need to be repeated for each design in a different 

way[24]. In general, ad hoc technique follows some guidelines that were learned by 

experience [23]. Some of these guidelines are: 

1- Avoid combinational cycles: 

Asynchronous logic feedback causes combinational cycles which leads to 

having race conditions in the circuits. The automatic test pattern generation 

programs do not work in the presence of the combinational cycles. This is 

because test generation algorithms are only known to work with acyclic 

combinational circuits. 

2- Avoid the large number of fan-in: 

Observability and controllability decrease significantly as the number of 

inputs of the gates increase. It becomes harder to control the output of the 

gates. 

3- Initialization of  flip flops: 

To be able to control the values of the internal states in the design, it is very 

useful to add set and reset input pins to flip flops to be able to initialize their 

values. 

Test point insertion (TPI) is one of the most famous ad hoc DFT techniques. 

Testability analysis determines the points in the design that needs to be observed and 

controlled. TPI logic is inserted at these points. Example of how observation point 

insertion is done is shown in Fig.23. In this example, the design has three low 

observability points that need TPI. The signal from each of these points is connected to 

a multiplexer input 0 and the multiplexer output is connected to a register as shown at 

point OP2. The registers of all the observation points are connected serially through the 
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other multiplexer input 1 to for a shift register. The multiplexer selection signal is called 

scan enable (SE). The observation operation is done through two steps. At the first clock 

cycle, the SE signal is 0 to select the value of the observation point and load it into the 

register. In the second clock cycle, the SE signal is 1 to select the input from the 

previous register and the registers together operate as a shift register where the output 

of the last register is connected to an output port from the design (OP_output) [24]. 

 

Figure 23: Example of an observation point insertion [24] 

Example of how to control point insertion is done is shown in Fig.24. In this 

example, the design has three low controllability points that need TPI. The nodes that 

need to be controlled are cut and reconnected through a multiplexer on input 0. The 

other input of the multiplexer 1 is connected to a register as shown at point CP2. The 

registers of all the control points are connected to each other to form a shift register. 

The multiplexer selection signal is called test mode (TM). The control operation is done 

through two steps. At the first, the test mode signal is selected to be 1 to connect the 

registers as shift registers. The inputs are loaded to the shift registers accordingly where 

there is a primary input signal connected to the first register called CP_input. The 

second step is to set the test mode signal to 0. In this case, the control nodes take their 

inputs from the registers and not from the original circuit. The drawback of this 

architecture is the increase in the delay of the circuit. That is why care must be taken in 

choosing the placement of controlling points, especially in the critical path. Also, it is 
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recommended to insert a “scan point” which is a combination of control and observation 

point to be able to observe the source end as well [24]. 

 

Figure 24: Example of a control point insertion [24] 

3.3 Scan design 

Ad-hoc DFT techniques have the problem of being local to each design and 

non-systematic. That is why structured DFT techniques are needed. Structured DFT 

techniques follow a systematic and methodical process. This allows for the testing 

process to be easily incorporated and budgeted for as part of the design flow, yielding 

the desired results. Another important aspect is the automation. Structured DFT 

techniques can be automated. Electronic Design Automation (EDA) companies provide 

tools to automate DFT tasks. One of the most popular and effective structured DFT 

technique is the scan design, which can achieve the targeted high fault coverage [24]. 

The most known and widely used structured DFT technique is the scan design. 

In scan design, all the registers are replaced with what is known as scan cells. These 

scan cells are just memory elements with additional input called “scan input” and 
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additional output called “scan output”. When the scan output is of one cell is connected 

to the scan input of another cell, a scan chain is formed. In scan designs, there can be 

multiple scan chains. During operation, scan designs have three modes: normal mode, 

shift mode, and capture mode. Normal mode is the mode in which the circuit behaves 

normally without considering any testing logic. In shift mode and capture mode, all 

testing-related logic is turned on [22]. Many scan architectures have been proposed, 

some of which are described in the following subsections. 

3.3.1 Muxed D scan design 

 Muxed D scan design architecture is the most famous scan design architecture. 

In this architecture, registers in the design are replaced with muxed D scan cells. Figure 

25 shows the implementation of the muxed D scan cell. It consists of a multiplexer and 

a D flip flop. The multiplexer inputs are data input (DI), and scan input (SI). The scan 

enable (SE) is the control signal for the multiplexer [22]. 

 

Figure 25: Illustration of a muxed D scan cell [22] 

An example on how muxed D scan is implemented is shown in Fig.26 and 

Fig.27. In Figure 26, the original circuit has three registers FF1, FF2, and FF3. Their 

inputs and outputs are connected to the combinational logic. In Figure 27, these 

registers are replaced with the scan cells SFF1, SFF2, and SFF3 respectively. The DI 

ports of the scan cells and the output ports are connected to the combinational logic like 

the original circuit. The SI port of each scan cell is connected to the output of the 

previous scan cell. For the first scan cell in the scan chain, input SI is connected to a 

port. Also for the last scan cell in the scan chain, the output is connected to scan out 

port SO.  
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For normal operation mode, scan enable signal (SE) is 0 to select the data input 

to the mux. For testing, signal SE is connected to 1 so that the scan chain is connected 

as a shift register. This is called a shift mode. Inputs are fed through the scan input port 

and shifted till the scan chain is fully loaded. After that, the scan enable signal is set to 

0 and capture mode is on. With the next clock cycle, the scan registers content is loaded 

into the design and the test response in captured from the combinational logic [22]. 

 

Figure 26: An example of a sequential circuit [22] 

 

Figure 27: Corresponding muxed D full scan circuit of the sequential circuit in Fig.26 [22] 
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As shown in Fig.27, the inputs of the registers from the combinational logic are 

called pseudo primary output (PPO) while the output from the registers into the 

combinational logic is called pseudo primary input (PPI) [22]. 

The main issue with the muxed D scan design architecture is the addition of 

delay in the path of the normal operation of the circuit due to the added multiplexers in 

the scan cells. 

3.3.2 Clocked scan design 

Another scan design architecture is the clocked scan design. In this architecture, 

the registers in the design are replaced by clocked scan cells. Figure 28 shows the block 

diagram of the clocked scan cell. It is like a normal D flip flop but with two inputs: data 

input DI and scan input SI. Also, instead of a single clock, two clock sources are needed. 

The purpose of using two clocks is to select between the two inputs where data clock 

(DCK) is used to select the data input and the scan clock (SCK) is used to select the 

scan input [22]. 

 

Figure 28: Illustration of clocked scan cell [22] 

Figure 29 shows an example of the waveforms of the clocked scan cell. At the 

positive edge of the data clock DCK, the data input is transferred to the output pin. This 

is how normal mode works. In the case of testing, shift mode is applied by selecting the 

scan input at the positive edge of the scan clock SCK. Afterward, the capture mode is 

applied by capturing the combinational circuit outputs at the positive edge of the data 

clock DCK [24]. 
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Figure 29: Example of the waveform of the operation of the clocked scan cell [24] 

The same circuit example in Fig.26 is used to show how clocked scan design 

technique is implemented in Fig.30. The three registers in Fig,26 are replaced by the 

clocked scan cells in Fig.30. Figure 30 shows the corresponding clocked scan design of 

the sequential circuit in Fig.26. The difference between the two architecture is that in 

muxed D scan design, a scan enable (SE) signal is used to distinguish between the test 

and normal operations, while in the clocked scan design, two independent clock 

sources, data clock (DCK) and shift clock (SCK), are used to distinguish between these 

two operations [22]. 

The advantage of the clocked scan design technique over the muxed D scan 

design technique is that no added delay is needed in the path of the data in the normal 

operation due to eliminating the usage of the multiplexer. However, clocked scan cell 

requires additional clock routing for the shift clock source [24]. 



37 

 

 

 

Figure 30: Clocked scan full design of the sequential circuit in Fig.26 [22] 

3.3.3 Enhanced scan design 

This scan design technique is built on either muxed D scan design technique or 

clocked scan design technique. The simple idea is to add another level of latches after 

the normal scan cell which leads to increase the capacity of a normal scan cell. The goal 

behind this is to be able to store two data vectors and apply them to the circuit in an at-

speed manner [22]. 

The enhanced scan design technique is very useful when testing the path delay 

fault. It is possible to apply two completely independent and arbitrary vectors to the 

circuit under test. This will increase the detection capability of the delay fault. Other 

scan design techniques do not have this flexibility. They can only use two functionally 

dependent vectors, which are generated from the combinational logic in testing path 

delay fault. 

The same circuit example in Fig.26 is used to show how the enhanced design 

technique provides an additional degree of freedom, as shown in Fig.31. Figure 31 

shows the normal muxed D scan cells followed by another level of latches. The control 

signal for all the latches is the same and is called UPDATE. To apply a pair of test 



38 

 

 

vectors <V1, V2>, the first vector V1 is shifted in the muxed D scan cells of the design 

by setting  SE signal to 1. Then it is stored in the D type latches, by making the update 

signal set to a value of 1. After that, the update signal is set to a value of 0 to keep the 

values of the first vectors in the latches. The second vector is then shifted into the scan 

cells of the design the same as the first vector. Then, the update signal is set again to a 

value of 1 to change the stored value in the D type latches from V1 to V2. This is done 

while applying the clock source after exactly one clock cycle to capture the output 

response of the test vector in an at speed manner [22]. 

 

Figure 31: An example of an enahnced scan design [22] 

Increase of path delay fault coverage is the main advantage of enhanced scan 

design. This is done by adding the degree of freedom of applying two independent pair 

of vectors to test delay fault possible. However, the drawbacks for this technique are 

not to be neglected. The addition of a D Type latch means more delay in the path of 

data in normal operation. Also, it may be difficult to maintain the timing between the 

update signal and the clock source in the testing operation. Another issue is the problem 

of over-testing that may result from activation of many false paths during the test 

operation, instead of functional data paths. To better handle these issues, there are lots 

of other delay fault techniques that avoid using additional latches like launch-on-shift 

(also called skewed load) and launch-on-capture (also called broadside) [22]. It is worth 
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mentioning that Intel Pentium 4 processor used the enhanced scan design technique in 

its testing. 

3.4 Logic Built-in self-test (BIST) 

The idea behind logic built-in self-test (BIST) is to have all the needed circuits 

for testing and verifying the circuit under test on the same chip or at least on the same 

board. Figure 32 illustrates the system level design of a logic BIST system.  

 

Figure 32: Common logic BIST system [22]. 

The system consists of four main modules. The first module is the Test Pattern 

Generator (TPG) which is responsible for automatic generation of test patterns to the 

circuit. The second module is the Circuit Under Test (CUT). The third module is the 

Output Response Analyzer (ORA). This module is responsible for putting the output 

responses of CUT in a compact form. The fourth module is Logic BIST Controller 

which is responsible for generating BIST timing control signals like scan enable signals 

and clocks to coordinate the operation of the other units TPG, CUT, and ORA [22]. 

Automatic test pattern generators usually use Linear Feedback Shift Registers 

(LFSRs) for this mission, whatever the type of testing is. It can be used for pseudo 

random testing, pseudo exhaustive testing, and exhaustive testing. Exhaustive testing is 
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the type of testing where all possible combinations should be examined. In the case of 

a CUT having n inputs, it is required to apply all 2n test patterns possible to do 

exhaustive testing. This guarantees single stuck fault coverage of 100%. The drawback 

is the large testing time required if a circuit has a large number of inputs. That is why 

pseudo random testing can be used instead. In this type of testing, a subset of random 

2n test patterns is generated. The fault coverage in this type is not 100% and should be 

measured for each design to know the exact fault coverage. A solution in the middle is 

to test using pseudo exhaustive testing. In this type, the TPG generates 2w test patterns, 

where w< n and each output of the CUT depends at most on w inputs. By this way, it 

is possible to maintain 100% fault coverage [22]. 

Compaction of outputs from the CUT in the ORA is usually done by Multiple 

Input Signature Registers (MISRs). It is similar to LFSRs but with their inputs are 

connected to an XOR gate. This is done to reduce the hardware overhead in the ORA 

[22]. 

3.5 Path delay testing 

As technology advances, the device dimensions scale down. This leads to 

defects related to timing.  This type of defects is newly introduced and poses new 

challenges for test engineers. In the earlier days, the stuck-at fault model was enough 

for testing. This model checked if the designated signal has been set to the value of 1 

or 0 and cannot be changed or takes a very long time to change its value from 0 to 1 or 

vice versa. However, this check is not enough in new technologies. In new designs, 

very small delay defects can happen due to process variation. Therefore, there is a need 

for a new fault model that should address these small defects. It should be characterized 

by the ability to be applied in an at-speed manner to ensure proper operation of the 

device under the test. 

 Path delay fault model is the new model that is introduced to detect 

accumulated delay defects in critical paths of the design. The scaling down of 

dimensions causes more delay variations so normal static timing analysis (STA) tools 

cannot fully address the effect of the defects. So the need for the path delay fault model 

is inevitable to ensure the proper operation of a circuit within the range of the operating 
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frequency. This will result in the end in an increase in the quality of the manufactured 

devices [23][25]. 

3.5.1 Path delay classification  

Unlike stuck-at faults, the detection of path delay faults is dependent on the test 

vector applied. This means that not all test vectors can detect the path delay fault. Some 

test vectors are independent and can guarantee the fault detection without being affected 

by the surrounding conditions. Other test vectors can detect the faults depending on the 

conditions of the surroundings. Path delay faults are classified to four main categories 

according to the sensitization criteria [26]: 

1- Robust 

2- Non-robust 

3- Validatable non-robust 

4- Functional sensitizable. 

Before diving into the details of each category of the path delay faults, some 

important terminologies should be defined. “Controlling value” of the gate is the gate 

input value that determines the output value of the gate regardless of the values of other 

gate inputs. “Non-controlling value” is the complement of the “controlling value” for a 

designated gate. By taking the AND gate as an example, the controlling value for the 

gate is “0” because the value of the other input will not matter as in all cases the output 

value is “0”. The non-controlling value is “1”, the complement for the controlling value. 

Another example is the OR gate. It has a controlling value of “1” and the non-

controlling value is “0”. Another terminology is “on-input” signal, it is a signal 

affecting path P that exists on the path P, while an “off-input” signal for a path P is a 

signal which resides in an input to a gate in path P but not an “on-input” signal. 

3.5.1.1 Robust path delay faults 

Robust paths are the paths on which you can detect the fault independently of 

the delays of “off-input” signals. Some conditions must be met to ensure robust 

sensitization of path delay fault. Consider a sequence of test vectors V1 and V2 applied 

to the circuit. If the on-inputs to gates on the path are transitioning from the controlling 
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value to the non-controlling value, then the off-inputs can have either controlling or 

non-controlling values while applying the first vector V1 but must have non-controlling 

values while applying vector V2. If the on-inputs to gates on the path are transitioning 

from non-controlling values to controlling values, then the off-inputs must have non-

controlling values during applying both vectors V1 and V2.  

 

Figure 33: Robust sensitization criterion for an AND gate [26] 

By taking the AND gate shown in Fig.33 as an example, input “a” is the on-

input while input “b” is the off-input. In the first case, the signal on input “a” is 

transitioning from “0” to “1”, in other words, from a controlling value to a non-

controlling value. In this case, off-input “b” can have either “0” or “1” before the 

transition but must have a value of “1” as the non-controlling value during the 

transition. That is why “X1” is the value of the “b” input. “X” indicates either “0” or 

“1” before the transition during first test vector V1 and “1” is the must-have value during 

the transition when applying vector V2. In the second case, the on-input “a” is 

transitioning from a non-controlling value to a controlling value, so input “b” must be 

a stable non-controlling value which is “1” in this case. “S1” on the “b” input indicates 

a stable value of “1” before and during the transition while applying both vectors V1 

and V2.  

 

Figure 34: An example of a robust testable path delay fault [26] 

Robust testable path delay faults are characterized by the existence of a sequence 

of test vectors that activates the required transition on the target path to be tested, also 
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satisfying the early mentioned conditions for the off-inputs for every gate in the targeted 

path. Figure 34 shows an example of a robust testable path delay fault. Path (a, d, e, g) 

is the one under test. There are 3 off-inputs in the circuit “b”, “f” and “c”. For “b” and 

“f”, they are both inputs to AND gates, where the on-inputs in both cases are 

transitioning from a controlling value to non-controlling value. Accordingly, the off-

inputs “b” and “f” can have any value during applying the first test vector while they 

should have a non-controlling value during applying the second test vector. For off-

input “c”, it is an input to an OR gate where the on-input is transitioning from non-

controlling value to controlling value. That is why the value for “c” should be a stable 

“0” during applying first and second test vectors. [26]. 

3.5.1.2 Non-robust path delay faults 

Non-robust paths are the paths on which you can detect the path delay fault 

depending on the delays of the off-input signals. The conditions for non-robust 

sensitization are less strict than robust sensitization.  

 

Figure 35: An example of non-robust sensitization of an AND gate [26] 

Figure 35 shows an example of non-robust sensitization of an AND gate. “a” is 

the on-input, while “b” is the off-input. The transition on “a” is from non-controlling 

value to the controlling value. However, the value of the off-input “b” is not a steady 

non-controlling value like the case of robust sensitization. It is a transition from 

controlling value to non-controlling value. This means that the fault is observable 

depending on when exactly the transition of the off-input occurs. If the transition of the 

input “b” arrives before the transition of input “a”, then the off-input will mask the on-

input transition to the output and the fault will go undetected. On the other hand, if the 

off-input transition arrives after the transition of the on-input, the fault will be detected 

at the output [26]. 
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Figure 36: An example of a non-robust testable path delay fault [26] 

Non-robust testable path delay faults are characterized by the existence of both 

a sequence of test vectors that activates the required transition on the target path to be 

tested and at least one off-input signal satisfies the early mentioned condition in the 

targeted path. Figure 36 shows an example of a non-robust testable path delay fault. 

The path is (a, c, e) and the off-input “d” shows the kind of the transition causing the 

path to be non-robust. If the transition at “d” arrives before the transition at “c”, then 

the transition at “c” will be masked at the output “e”. If the transition at “d” arrives after 

the transition at “c”, then the fault will be observable at output “e” [26]. 

3.5.1.3 Validatable non-robust path delay faults 

This type of path delay faults is the same as non-robust path delay fault except 

for a small difference. To explain this type, consider the example at Fig.36, transition 

at signal “d” is the one causing the path to be non-robust as it can mask the fault 

propagation of path (a, c, e). If the path of signal “d”, which is a robust path, is tested 

and found to be faulty, then the circuit is faulty and no need for the testing path (a, c, 

e). However, if the path of signal “d” is not faulty, then the transition at “d” arrives 

before the transition at “c”. This makes the non-robust path validatable as the fault is 

observable at “e” [26]. 

3.5.1.4 Functional sensitizable path delay faults 

Functional sensitizable path delay fault is similar to non-robust path delay fault 

in the fact that it depends on the delays of the off-input signals of the path to be tested.  

However, in this type, there must be at least one gate along the path where both the on-
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inputs and the off-inputs are transitioning from non-controlling value to controlling 

value. 

 

Figure 37: An example of functional sensitization of an AND gate [26]. 

Figure 37 shows an example of functional sensitization of an AND gate. “a” is 

the on-input while “b” is the off-input. Both “a” and “b” have transitions from non-

controlling value to controlling value. This results in an observable fault at the output 

of the gate depending on the transition arrival times of both the on-input and the off-

input [26]. 

 

Figure 38: An example of a functional sensitizable path delay fault [26] 

Functional sensitizable path delay faults are characterized by the existence of a 

sequence of test vectors that activates the required transition on the target path to be 

tested, and at least one gate in the target path has a transition from non-controlling value 

to controlling value in both its on-input and off-input. Figure 38 shows an example of 

a functional sensitizable path delay fault. The path is (b, c, e) where a rising transition 

is tested at the output. Any sequence of test vectors will lead to this path being 

functional sensitizable as off-input “d” will always have a rising transition which is a 

transition from non-controlling value of the OR gate the controlling value same as 

signal “c”. The observation of the fault propagation will depend on the arrival times of 

transitions of both “c” and “d” [26]. 
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3.5.2 Path delay test methodologies  

In path delay fault testing, the applied test is decided by the type of the circuit 

under test and the DFT. In this section, several path delay test methodologies are 

introduced. 

3.5.2.1 Slow-clock combinational test 

This methodology can be used for combinational circuits. Also, it can be used 

for sequential circuits, only if, the flip-flops are present at the primary inputs and 

primary outputs. 

 

Figure 39: Slow-clock combinational test methodology [26]. 

Figure 39 illustrates how this methodology is applied. At first, latches are added 

at the inputs and outputs of the circuit. In normal circuit operation, only one clock 

source which is the system clock is used to control both latches. In the testing mode, 

two clock sources are needed. One source for the input latches and another for the 

output latches. There must be a phase difference between them or a skew equal to the 

period of the system clock Tc. After that, two test vectors are applied. The first test 

vector is applied at time t0 at the clock edge of the input latches. After that, a time span 

Ts is given that should be more than the system clock period to ensure stabilization of 

the circuit. Then the positive second test vector is applied and the output latch will 
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capture the output after exactly one system clock cycle Tc. That is why the phase 

difference between the two source clocks is equal to exactly Tc. If the captured output 

at the latch is the expected output of the second test vector then the circuit passes the 

test successfully. If the captured output is the expected one for the first vector then this 

is a faulty path as the output of the second test vector exceeded the delay of the circuit 

[23][26]. 

3.5.2.2 Normal-scan sequential test 

This methodology only applies to the sequential circuits. As mentioned before, 

path delay testing required the application of a sequence of two vectors. In scan circuits, 

the first vector controls both the primary input and the internal states of the design while 

the second input determines the primary inputs only and the value of the internal states 

depend on the previous values from the first vector. This means that the second vector 

should be a function of the first vector. This is done by one of two methods:  

1- Launch-on-shift method  

2- Launch-on-capture method. 

 

 

Figure 40: Normal-scan sequential test methodology [23] 

Figure 40 shows the two methods. In the launch-on-shift method, the second 

vector is generated by applying a one-bit shift to the scan register, so the internal states 

of the second states will be one bit shifted than the internal states of the first vector. In 
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the launch-on-capture test, the second vector is generated by propagating the 

combinational output due to the first vector into the scan registers [22][23][26]. 

In the launch-on-shift test, the first vector V1 is scanned into the scan registers 

using a slow clock source. After that, one more period of this slow clock is applied to 

shift the bits in the scan register, and the internal states of V2 is applied to the scan 

register. As soon as the primary inputs of the second vector are applied to the circuit 

under test, the normal operation is on for exactly one rated clock period, and the outputs 

are latched. Primary outputs are observed and the internal bits of the scan register are 

scanned out to compare them with the expected outputs to check whether a fault 

occurred or not [23]. 

In the launch-on-capture test, the first vector V1 is also scanned into the scan 

registers using a slow clock source, and then the normal mode is on by making the 

signal test control TC equal to 1. This operation should be also controlled by the slow 

clock source. As a result, the combinational output due to the first vector is latched 

inside the scan register which are the internal states of the second vector V2. While the 

normal operation is on, one rated clock period should be applied to have the transition 

of V1V2. At the end of this rated clock period, the outputs are latched, and the scan 

registers can be scanned out and compared with the expected outputs to check whether 

there is a fault or not [23]. 

3.5.2.3 Enhanced-scan test 

The enhanced-scan methodology is also applied to sequential circuits only. It is 

the same as the normal-scan methodology but it differs in that any arbitrary two vectors 

can be chosen to test a certain path. Unlike the normal-scan methodology, the second 

vector is not dependent on the first vector. This is achieved by the additional latches 

added to the normal-scan design, and the hold signal, which allows the storing of the 

internal states of the first vector until the application of the second vector [23].  

Figure 41 shows how this methodology operates. The first vector’s internal 

states are first scanned into the scan registers via the SCANIN input while setting the 

test control TC signal to 0. This operation is usually done with a slow clock source to 

decrease power dissipation and to ensure that no delay fault in the scan paths interferes 



49 

 

 

with the test process. Then, the hold signal is set to 1 to transfer these internal states to 

the hold latches. The internal states of the second vector are then scanned into the scan 

registers while the signals due to the first vector stabilize. After that, the primary inputs 

of the second vector are applied while setting the hold signal to 1 and the test control to 

1 to have a normal operation for exactly one rated clock period. This will result in the 

required transition V1 V2 in the hold latches and the inputs of the combinational 

circuit. At the end of this rated clock period, the outputs are latched, and the internal 

states are scanned out to be compared with the expected outputs to check if there is a 

fault or not [23]. 

 

Figure 41: Enhanced-scan test methodology [23] 
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Chapter 4 

WCTV generation 

Worst case test vectors (WCTV) are preferred to be used to test the electronic 

circuits. This is recommended by MIL-STD-883, method 1019, which is the standard 

that should be followed to test electronic circuit under TID effect. However, due to the 

difficulty of the generation of the worst case test vectors for electronic circuits, they are 

not usually used in testing especially in FPGAs. For application specific integrated 

circuits (ASICs) exposed to TID effect, lots of methodologies were proposed but for 

FPGAs, a very limited effort was done. In this chapter, an overview of WCTV 

generation for ASIC designs is presented followed by an overview of the effort done 

for WCTV generation so far in FPGA-based designs. 

4.1 WCTV for ASIC designs 

Since most of the WCTV generation methodologies available in the literature is 

based on ASIC designs, it is important to highlight the effort done here as it represents 

the basis for WCTV generation for FPGA designs as well. The major difference, 

however, is that these methodologies depended on the transistor level circuit 

information, which can be easily extracted in case of a design using standard cell based 

ASIC. In FPGAs, this information is proprietary and cannot be shared with normal 

users. 

In all methodologies for WCTV generation in ASIC designs, Verilog/VHDL 

functions implementing the fault models for each cell is developed at first. This step is 

mandatory and cannot be replaced. The steps for developing these functions are as 

follows. First, the failure in each cell in the library used is analyzed, and a fault model 

for every cell is developed. Then, a SPICE simulation is used to validate these fault 

models using the target process transistor parameters and parametric degradation from 

total dose experiments. At the end, a package of VHDL/Verilog functions is developed 
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implementing the fault models mentioned before. Methodologies for WCTV generation 

differ in the type of the detected faults, type of logic for which they are used 

(combinational or sequential) and the algorithms used to find these vectors. 

4.1.1 WCTV for leakage current faults 

The methodology in [1] generates worst case test vectors for leakage current 

failure induced by TID in ASIC cells for both combinational and sequential circuits. 

Figure 42 shows the test bench setup where two identical instances of netlist of the 

circuit under test, generated from normal synthesis tools, are added to the testbench, 

allowing simultaneous simulation of the circuit under test under both irradiation input 

vectors (I), and post irradiation input vectors (P). By using normal simulation tools, all 

possible combinations of irradiation input vectors and post irradiation input vectors are 

applied to the circuit under test, to find the vectors that will make the circuit exhibits 

maximum leakage current (max_IL).  

 

Figure 42: Testbench setup to identify worst case test vectors for leakage current failure in ASICs [1]. 

A new methodology is proposed in [3] that makes use of the genetic algorithm 

in the identification of WCTV for leakage current failure in ASICs exposed to TID 

effect. A smart search algorithm based on genetic algorithm principles is then used 

instead of the exhaustive search method which can take a very long time in designs with 

a large number of inputs for the identification of the WCTV. This search algorithm is 
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written in System Verilog simulating the design under test using normal simulation 

tools. The authors compare the exhaustive search algorithm and the search algorithm 

based on genetic algorithms for an example design of an 8x8 multiplier. The search 

algorithm based on genetic algorithm significantly reduced the time for the 

identification of WCTV to an order of a few seconds compared to a whole two days 

that the exhaustive search requires to generate WCTV for a simple design like an 8x8 

multiplier. 

4.1.2 WCTV for logic faults 

A methodology proposed in [2] generates worst cast test vectors for logic failure 

in combinational circuits of ASIC exposed to TID effect. Depending on the type of the 

cell, the developed fault model can be stuck at 0 or stuck at 1. A ranking system is 

developed to order the cells per their sensitivity to TID effect induced by radiation. The 

methodology then targets the cells with the highest sensitivity, and automatic test 

pattern generation (ATPG) tools like Mentor Graphics FastScan is used to insert a stuck 

at 0 or stuck at 1, depending on the targeted cell and its fault model, at the output of the 

cell. The ATPG tool will generate input test patterns, which will be the WCTV of the 

design under test, and the fault will manifest at the primary output of the circuit. 

The advantage of this methodology is that it decreases significantly the time 

needed if an exhaustive search is used for the identification of WCTVs, especially large 

design with high number of inputs and a large number of transistor count. However, the 

disadvantage of this methodology is that it only applies to combinational circuits of 

ASIC, but most ASIC designs are composed of sequential circuits. 

In [4] another methodology is proposed for the identification of WCTV for logic 

faults in ASIC exposed to TID effect. This methodology is identical to the one in [2] as 

it also applies to the combinational logic only. However, the difference is in the 

consideration of field oxide (FOX) edge leakage during the development of fault 

models by using process technologies that exhibit this type of leakage. Including the 

FOX leakage in the fault model of the cells will increase the accuracy of the failure 

analysis of cells, because as the technology advances, the FOX leakage becomes the 

dominant contributor to the device failure. 
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A new methodology designed especially for ASIC composed of sequential 

circuits is proposed in [5]. The difference between combinational circuits and 

sequential circuits is that the later are characterized by the presence of memory 

elements. So, in order to test sequential circuits for a single fault, a sequence of test 

vectors is required to be applied to the circuit to initialize the memory elements to a 

known state, as opposed to the case of combinational circuits where a single test vector 

can be applied to the circuit to test it for a single fault. In this methodology, an 

equivalent combinational circuit is constructed from the original sequential circuit by 

removing its memory elements. Then, an ATPG tool is used to generate input test 

vectors to exhibit stuck at 0 or stuck at 1 fault at the outputs of the most sensitive cells 

in the design depending on the developed fault models. These input test vectors are the 

WCTV for the designated failure of the original sequential circuit. These vectors must 

be applied for a number of clock cycles equal to the number of the flip-flops in the 

design under test to fill the memory elements with the required states.   

The disadvantage of this methodology is that it cannot be applied to large 

designs with large number of memory elements, because it will be harder and even 

impossible to generate input vectors sequence that will initialize memory elements to 

known states. 

4.1.3 WCTV for delay faults 

Another effort is presented in [6] to generate WCTV for delay failure in ASIC 

exposed to TID effect. The methodology starts first by introducing a novel fault model 

for delay failure in sequential circuits. The methodology explains that the maximum 

frequency that a sequential circuit can operate depends on the maximum delay in the 

combinational logic between any two flip-flops or what is called a critical path. In order 

to have a delay failure induced by TID effect, the delay in the combinational logic in a 

chosen critical path must exceed the slack made by the operating frequency. The 

methodology generates WCTV using two steps. The first step is to identify the number 

of critical paths that can be candidates for the testing, these paths should have the 

longest delay between primary inputs and primary outputs, and by using the directed 

graph and the developed fault models, the candidates for testing can be identified. The 
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second step is to identify a set of irradiation and post irradiation input vectors that will 

exhibit a maximum delay in the paths generated from the first step. For this step, an 

algorithm based on a genetic algorithm is developed to identify the test vectors 

maximizing the delay of the candidates' critical paths generated from the first step using 

the developed fault model.  

The advantage of this methodology is that it didn’t rely on an exhaustive search 

for the generation of WCTV, which in large design with high number of inputs and 

sequential circuits with large number of states can take a very long time to implement 

or it can be even impossible to simulate such huge number of possibilities. Instead, the 

methodology used genetic algorithm basics to develop a search algorithm to generate 

WCTV, which in this case will take much less time to complete compared to the 

exhaustive search method. Giving this, the methodology can be applied to large designs 

which are characterized by large number of inputs and internal states. 

4.2 WCTV for FPGA 

All the mentioned methodologies for the WCTV generation in ASIC designs 

depend on the transistor level circuit information, which can be easily extracted in case 

of a design using standard cell based ASIC, however, this information is proprietary 

and cannot be shared with normal users in case of FPGAs. That is why, it has been hard 

to identify WCTV for FPGA exposed to TID effect. Only two methodologies are 

available for WCTV generation for FPGA exposed to TID effect. The first methodology 

in [7] is applicable only for combinational logic circuits while the second methodology 

in [32] is applicable for sequential logic circuits. 

4.2.1 WCTV for combinational logic 

The methodology in [7] proposes a way to identify WCTV for delay failure in 

flash-based FPGA. The authors built their methodology on the fact that the floating gate 

transistor, which is the switch element in flash-based FPGA, is the dominant factor in 

the degradation of flash-based FPGA induced by TID effect. Since the transistor level 

circuit of each cell in the FPGA cannot be shared with normal user, the state of each 

floating gate transistor (whether it is used or not) in each cell cannot be known, that is 
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why the methodology depends on probability analysis to estimate the number of 

floating gate transistors used in every cell in the FPGA. The authors then explain that 

in order for a delay failure to manifest in the operation of the FPGA, the delay of the 

combinational logic between two flip-flops must exceed the slack value for the 

operating frequency of the FPGA. The identification of WCTV is done through three 

steps. First, by using the static timing analysis (STA) tool of the FPGA vendor, some 

candidate critical paths with the highest delay are identified. Second, from these critical 

paths, the path with the highest estimated number of floating gate transistors and the 

highest estimated probability to occur is chosen. Third, ATPG tool like Mentor 

Graphics FastScan is used to identify input test vectors that will allow a signal to toggle 

its value from 0 to 1 without being masked by other signals in the chosen path. The 

toggling must manifest its value at the primary output of the circuit under test to be able 

to observe the fault. These input test vectors are the WCTV for the design implemented 

in the FPGA. 

Although this methodology was one of its kind, because it was the first effort to 

identify WCTV for FPGA design, and it only depends on the information that the FPGA 

vendor give to normal users, however, this methodology only applies to combinational 

circuit of sequential circuits characterized by a flip-flop at the input and a flip-flop at 

the output of the circuit, and that is very rare to find in today’s design, as most of the 

designs consist of complex sequential circuits with many flip-flops and internal states. 

4.2.2 WCTV for sequential logic 

The methodology in [32] is based on the delay failure analysis and fault model 

developed in [7]. This means that this methodology is also built on the fact that the 

floating gate transistor, which is the switch element in flash-based FPGA, is the 

dominant factor in the degradation of flash-based FPGA induced by TID effect. 

However, the methodology in [7] is only limited to combinational circuits, unlike this 

one. 

Generating test patterns for sequential circuits is harder than generating test 

patterns for combinational circuits. This is because in sequential circuits, in order to 

test a certain fault e.g. path delay fault, not only a pair of vectors must be applied to the 



56 

 

 

primary inputs of the circuit under test, but also the internal states of registers in the 

sequential circuit must be controlled and initialized to a determinant value. Controlling 

these internal registers is difficult and maybe impossible for complex designs with high 

number of registers [24].  

To overcome this issue, the DFT technique is used in this methodology to 

increase the controllability and observability of these internal registers. The increase in 

the controllability and observability is done by replacing normal registers with scan 

cells. DFT techniques were usually used in testing ASIC devices, however, DFT is 

never meant for FPGA designs. That is why scan cells are not included in the FPGA 

macro libraries.  

Muxed D scan architecture is the DFT architecture used in this methodology. 

Every register in the design is replaced with a scan cell having extra input called “scan 

input” and a control signal “scan enable” to choose between the two inputs. Figure 43 

shows how scan cells replace registers and how the scan chains are formed. 

 

Figure 43: An example of a sequential circuit and its corresponding muxed D scan design [32] 

The new netlist generated from the DFT tool containing scan cells is delivered 

to the ATPG tool to generate test patterns for path delay fault of the target path. In this 

methodology, a number of critical paths of the design under test are chosen based on 

the maximum estimated number of FG switches along the path. ATPG tools such as 

Mentor Graphics FastScan are used to generate the test vectors [32]. 
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Chapter 5 

Comparison of DFT techniques 

The success of using muxed-D scan DFT technique in the methodology 

mentioned in [32] for the generation of worst case test vectors in sequential circuits 

targeting flash-based FPGAs paves the road to trying other DFT techniques. Although 

muxed-D scan technique is doing what is required to generate the WCTVs, it is still 

interesting to try other DFT techniques and compare them together to find out which 

suits the design under test in the best way.  

Some of the interesting points of comparison to be considered for each 

technique are FPGA resources utilization, the added delay in data path due to the added 

DFT logic, the difficulty of bring-up of the testing environment and defining the robust 

testable paths in the design. In this work, the comparison is done between the three most 

famous techniques, muxed-D scan, clocked scan and enhanced scan. The comparison 

is done on designs from ISCAS’89 benchmarks. Also, the comparison is done under 

the assumption that all DFT techniques will yield the same amount of TID for the 

circuits to fail functionally. 

In this chapter, the methodology of using each DFT technique to generate the 

WCTVs is explained. Then, the results of comparison between the DFT techniques on 

the benchmarks designs are presented. 

5.1 Muxed-D Scan 

Muxed-D scan DFT technique is the one used in [32]. This technique represents 

the most basic idea for DFT designs where the D flip-flops in the design are replaced 

with the scan cells having added input ports which are a scan input instead of only a 

data input and a scan enable input to select between the scan input and the data input. 

Section 3.3.1 talks in details about this technique. 
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This section is concerned about the methodology of using muxed-D scan DFT 

technique to generate a testing environment of a design from its original RTL. At first, 

the original RTL is synthesized using the Synplify synthesis tool embedded within 

Microsemi Libero. The output netlist from the Synplify is exported. This netlist consists 

of Microsemi primitives used in ProASIC3 flash-based FPGAs. Some of these 

primitives are the memory elements representing the flip-flops in the design. These 

memory elements should be replaced by the corresponding scan cells to form the scan 

chains. 

In the next step, the exported synthesized netlist from the Synplify is used as an 

input to the DFT tool called “DFTAdvisor”. This is a Mentor Graphics tool used to add 

the DFT logic to design netlist to form scan chains to increase the controllability and 

observability of all internal states of the design under test. To be able to replace the 

memory elements in the netlist with the scan cells, an “adk” library is provided 

describing the primitives used in the input netlist and the model of the scan cells used 

to replace them. Figure 44 shows the scan model of one of the D-flip flops primitives 

“DFN1” as described in the “adk” library. The scan model is called “dfscr”. This will 

replace all DFN1 primitive cells in the design. It is worth mentioning that adk libraries 

do not contain the scan models for FPGAs primitives as they are usually used for ASIC 

designs. Therefore, these models had to be developed to be able to use DFTAdvisor 

with FPGA netlists. 

 

Figure 44: scan model of DFN1 primitive as described in the adk library 

After preparing the input netlist and the scan models in the “adk” library, a do 

file script is used to run DFTAdvisor tool to produce the netlist after scan chain 

insertion.  The goal behind using scripts to run different tools along the flow is to 
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automate the flow for faster usage, ensure consistency between different runs for 

different designs and to avoid human errors as much as possible. Figure 45 shows an 

example of the do-file for DFTAdvisor. 

 

 

Figure 45: A do-file example representing the automation of the flow in DFTAdvisor 

Other than the output netlist provided by DFTAdvisor, it also produces a 

procedure file for automatic test pattern generation (ATPG) tools. This file describes 

how to deal with the scan chains inserted by DFTAdvisor. Figure 46 shows an example 

of how shifting, load and unload operations of a scan chain occur. Shifting operation is 

done by pulsing the clock while the scan enable signal is high. 

 

Figure 46: A test procedure file example from DFTAdvisor 
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After completing the DFTAdvisor step, it comes the step of automatic test 

pattern generation. A tool called “FastScan”, which is a Mentor Graphics tool, is used 

for this purpose. The inputs to this tool to be able to provide the test patterns are the 

design netlist after inserting the scan chains, the test procedure file explaining how to 

deal with the scan chains in the design, the adk library and files in asci format describing 

the data paths to be tested. The first three inputs are already provided from DFTAdvisor. 

The fourth input, which is the file describing the data paths to be tested, should be 

written in what is called asci format. This file can describe the path in details by 

showing how each pin in a cell is connected to the next. The path should only consist 

of combinational cells (i.e. it should start from the output of a memory element till the 

input of another memory element). Figure 47 shows an example of a data path written 

in asci format. 

 

Figure 47: An example of a data path written in asci format 

To get the Worst Case Test Vectors (WCTVs) for path delay testing, we should 

run FastScan on the paths with the lowest time slack. The paths of the lowest time slack 

can be extracted from the Timing Analyzer tool in Libero. To do this, the placement 

phase in Libero is done at first before running Timing Analyzer to know the detailed 

path of the lowest time slack. However, two usability problems are faced in this phase. 
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First, writing the asci file manually is a lot of effort and can lead to many man-errors 

and worst slack paths are usually long so writing the asci file is highly error-prone. 

Second problem is that the chosen path may not be a robust testable path and the process 

of writing the asci file for another path will be repeated for several times. In some large 

designs, the first robust testable path can be close to the hundredth path. This is a lot of 

manual effort and countless number of trials. In this work, to avoid the previously 

mentioned problems, an automation code is written (available at Appendix A) that uses 

the timing report generated from Libero to write files for all paths in the design in asci 

format and also produces a one file containing all the paths in the asci format. In this 

way, from a single run on the FastScan, a detailed report is generated for all the robust 

paths in the design and their test vectors. By choosing the test vectors of the first robust 

path with minimum slack, we ensure that the chosen test vectors are the WCTVs for 

the design that can be applied for path delay testing. 

Figure 48 shows an example of the FastScan report. Path delay testing can be 

applied for two paths “WP_4” and “WP_16” using the same test vectors. The testing 

procedure is described where first the scan chain “chain1” should be loaded with the 

provided vector then two primary inputs “PI” should be applied. A gold primary output 

“PO” is provided for the expected primary output at this stage. Then, by unloading the 

scan chain, a gold chain output is provided as the expected scan chain output at that 

stage. 

 

Figure 48: An example of FastScan report for muxed-D scan design 
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After getting the WCTVs for path delay testing and the procedure to apply the 

test from FastScan, it comes the step of preparing the test bench. The test bench is just 

a mapping of the test procedure produced by FastScan to Verilog code. It is made sure 

that the test bench is synthesizable so that the whole testing environment is available 

on the FPGA. The test bench instantiates the netlist that DFTAdvisor produced, where 

DFT logic is added and the scan chain is inserted. In this netlist, the D-flip flop primitive 

“DFN1” is replaced by the scan model cell defined in the adk library called “dfscr”. 

The scan cell is not defined in Libero so an implementation of it is developed as shown 

in Fig.49. It is just a D-flip flop preceded by a multiplexer to choose between the data 

input and the scan input. 

 

Figure 49: muxed D scan cell model implementation 

After the test bench is ready, the whole libero flow is run starting from synthesis 

ending to the placement and routing on the FPGA. The simulation is done on various 

steps in the flow to make sure of correct functionality. Simulation is done on original 

RTL, post-synthesis and post layout. 
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5.2 Clocked Scan 

Clocked scan DFT technique is the second technique used in this comparison. 

The difference between this technique and the Muxed-D scan technique is that instead 

of a scan enable signal to choose between the scan input and data input, another clock 

called scan clock is used to enable the scan input. The main advantage of clocked scan 

technique is to avoid the additional multiplexer in the data path of the original design 

and avoid its additional delay. Section 3.3.2 talks in details about this technique. 

This section is concerned about the methodology of using clocked scan DFT 

technique to generate a testing environment of a design from its original RTL. The steps 

are similar to the muxed-D scan technique. At first, the synthesized netlist is exported 

from Synplify synthesis tool embedded in Microsemi Libero. The memory elements in 

the netlist will be replaced by the corresponding clocked scan cells in DFTAdvisor to 

form the scan chains. In DFTAdvisor step, the adk library did not have the clocked scan 

model to replace the memory element “DFN1” in the synthesized netlist. However, 

DFTAdvisor supports the clocked scan technique so the scan model had to only be 

defined manually. Figure 50 shows the developed clocked scan model. 

 

Figure 50: clocked scan model of DFN1 primitive as described in the adk library 

The scan model is called “dfscr_cs”. It has two clock inputs, two data inputs, 

and one output. After preparing the input netlist and the clocked scan model. A do file 

is prepared to run DFTAdvisor automatically. This is similar to the one used in muxed-

D scan technique except that it determines the DFT type to be clocked scan instead of 

the default muxed D. Figure 51 shows the do file where the scan type is set to clocked 

scan. 
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Figure 51: A do file example representing the automation of the flow in DFTAdvisor for clocked scan 

Similar to muxed-D scan, DFTAdvisor produces the output netlist and a 

procedure file for automatic test pattern generation (ATPG) tools. Of course the 

shifting, load and unload operations are different in this technique. Figure 52 shows an 

example of that where shifting is done by pulsing “scan_clk” while normal design clock 

is forced to zero value. 

 

Figure 52: A test procedure file example from DFTAdvisor for clocked scan 
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Next is the step of automatic test pattern generation (ATPG) using “FastScan”. 

First, the asci files for the paths in the design are generated from using the automation 

script mentioned in “Appendix A” on Timing Analyzer report, the same as muxed-D 

scan technique. In this way, from a single run on FastScan, a detailed report is generated 

for all the robust paths in the design and their test vectors. By choosing the test vectors 

of the first robust path with minimum slack, we ensure that the chosen test vectors are 

the WCTVs for the design that can be applied for path delay testing. 

After getting the WCTVs for path delay testing and the procedure to apply the 

test from FastScan, it comes the step of preparing the test bench. Similar to Muxed-D 

scan, the test bench is just a mapping of the test procedure produced by FastScan to 

Verilog code. The test bench instantiates the netlist that DFTAdvisor produced, where 

DFT logic is added and the scan chain is inserted. The scan cell is not defined in Libero 

so an implementation of it is developed. However, the implementation here is not as 

simple as in muxed-D scan. The microsemi ProAsic library does not contain a flip flop 

with two data inputs and two clock inputs. Figure 53 shows the proposed 

implementation for the clocked scan model “dfscr_cs”.  

 

Figure 53: clocked scan cell model implementation 

The cell has an additional input clock port that is not there in the scan model. 

This input clock is the result of an OR operation between the data clock and the scan 

clock. The input data is also an OR operation between the data input and the scan input 

when their corresponding clocks are enabled. Unfortunately, this means that there is an 

added logic in the data path of the original design. Clocked scan technique goal was to 
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avoid any added logic in this path but due to a limitation in the hardware, this cannot 

be avoided. The added port in the “dfscr_cs” cell led to changes in the netlist provided 

by DFTAdvisor to add this port to all instantiations of this cell. 

Similar to muxed-D scan, simulation is done on various steps in the flow to 

make sure of correct functionality. The simulation is done on original RTL, post-

synthesis and post layout. 

5.3 Enhanced Scan 

Enhanced scan DFT technique is built on either muxed D scan design technique 

or clocked scan design technique. In this work, it is built on the muxed D scan. The 

simple idea is to add another level of latches after the muxed D scan cell which leads 

to increasing the capacity of a normal muxed D scan cell. The goal behind this is to be 

able to store two data vectors and apply them to the circuit in an at-speed manner. The 

true advantage behind this technique is to be able to apply two completely independent 

and arbitrary vectors to the circuit under test. This will increase the detection capability 

of the delay fault. Section 3.3.3 talks in details about this technique. 

This section is concerned about the methodology of using enhanced scan DFT 

technique to generate a testing environment of a design from its original RTL. The 

difficulties in applying this methodology are due to the fact that this scan technique is 

not supported by the used DFT tool “DFTAdvisor” so the scan logic cannot be inserted 

automatically. Also, the ATPG tool “FastScan” does not support this scan technique so 

the test vectors are not automatically generated. This means that the whole methodology 

should be done manually. This is a big drawback from other scan techniques from the 

point of view of the ease of bring-up of the test environment.  

The approach followed in this work to apply the enhanced scan based on muxed-

D scan is as follows. At first, the complete methodology of muxed D scan needs to be 

applied as the outputs will be used to help apply the enhanced scan technique. This 

means that DFTAdvisor and FastScan are run targeting the muxed D scan technique. 

The output netlist from DFTAdvisor is then altered such that an additional latch is 

added after each scan register. Figure 54 shows the added muxed D scan cells in the 

green box and the latches that need to be added after each register in the red box to have 
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the enhanced technique DFT logic ready. This process cannot be done manually for 

designs having hundreds or thousands of registers. To ease up this process, automation 

scripts (mentioned in Appendix B) are developed to be able to insert the latches 

whatever the size of the design is without exposing the process to human errors.  

 

Figure 54: Enhanced scan DFT logic insertion 

After the enhanced scan netlist is ready, it comes the step of the process of 

generation of the test vectors for the enhanced scan technique from the test vectors 

generated by FastScan for the muxed D scan technique. Figure 55 shows an example 

of test vectors generated by FastScan for the muxed-D scan technique. Since the idea 

in enhanced scan technique is to apply two test vectors to the scan chain in an at-speed 

manner, so the goal is to extract the two scan chain test vectors to apply from the test 

vectors generated for muxed-D scan. The first scan chain test vector is already provided 

by default in Figure 55. The second scan chain test vector is the value of the scan chain 

after applying the first primary input “PI”. Therefore, to get this vector, muxed-D scan 

test bench is prepared using the DFTAdvisor netlist (before modification) and 

simulation is run in the same way as done for standalone muxed-D scan technique. 

From the simulation, the value of the second scan chain test vector is extracted.  
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Figure 55: an example of test vectors generated by FastScan for the muxed-D scan technique 

The procedure for applying the test vectors for the enhanced scan technique is 

to first fill the scan chain by the first scan chain test vector while the enable signal of 

the latches is low. After the scan chain is fully populated, the enable signal for the 

latches is high for one clock cycle to move the first vector into the latches. Afterward, 

the second scan chain test vector is applied to fill the scan chain. After the scan chain 

is fully populated, the second primary input from the FastScan report is applied in the 

same clock cycle as the enable signal for latches becomes high to enable the second 

scan chain vector to be applied at an at-speed manner. The scan chain in the next clock 

cycle is shifted to be read from the scan output port. The output is compared to the gold 

scan chain provided by the FastScan report. 

The above procedure is written in a synthesizable Verilog code as the testbench 

of the design. After the test bench is ready, the whole libero flow is run starting from 

synthesis ending to the placement and routing on the FPGA. Simulation is done on 

various steps in the flow to make sure of correct functionality. The simulation is done 

on original RTL, post-synthesis and post layout. 

5.4 Benchmark designs 

The benchmark designs used in the comparison between different DFT 

techniques are all from ISCAS’89 benchmarks [29]. They are described as being 

suitable for researchers working in the field of scan designs for sequential circuits. The 
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three chosen benchmark designs are different in size where “S1238” is the smallest, 

“S5378” is middle sized and “S38417” is the largest. This is to make sure that the results 

of the comparison are consistent and not design-dependent. For each design, the 

methodologies for the three DFT techniques described earlier are applied. 

5.4.1 S1238  

S1238 is the smallest benchmark used in this comparison with the lowest 

number of flip flops among other benchmarks used in this comparison. It is described 

in [29] as a  combinational circuit with randomly inserted flip flops. Table I shows the 

design specifications. 

Table I: Design specifications of S1238 benchmark 

Number of inputs 14 

Number of outputs 14 

Number of flip flops 18 

Number of gates  508 

 

The used FPGA for experimentation with this design is Microsemi ProASIC 

A3P125-PQ208 flash-based FPGA. It is the same used for all DFT techniques for a fair 

comparison. Also, the path for producing WCTV shown in Figure 56 is the same used 

for all the techniques. 

 

Figure 56: Worst-case path for S1238 benchmark design 
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The WCTVs reported by FastScan for the three techniques targeting the path 

mentioned in Figure 56 is summarized in Table II. 

Table II: Summary of the test vectors of S1423 circuit with different DFT techniques 

DFT Technique Test Vectors 

Muxed D scan  

Scan chain = 100101110001110000 

PI1 = 00110010011100 

PI2 = 10110011010100 

Gold scan chain = 001010101100010001 

Clocked scan 

Scan chain = 100001010000100011 

PI1 = 01110010011100 

PI2 = 01110010010100 

Gold scan chain = 001010111100111001 

Enhanced scan 

Scan chain1 = 100101110001110000 

Scan chain2 = 011010111110000001 

PI = 10110011010100 

Gold scan chain = 001010101100010001 

 

For logic utilization in each case, Table III shows a summary of the 

versatile/core utilization in the three scan techniques used. Clearly, Clocked scan 

technique yields the least utilization among the three techniques. It is worth mentioning 

that a unit core can be configured as a three-input logic function or a D-flip-flop or latch 

(with or without enable) by programming the appropriate Flash switch 

interconnections. 

Table III: Summary of the core utilization for S1423 circuit with different DFT techniques 

DFT Technique Core utilization 

Muxed D scan Used: 264 , Total: 3072   (8.59%) 

Clocked scan Used: 199 , Total: 3072   (6.48%) 

Enhanced scan Used: 238 , Total: 3072   (7.75%) 

 

Another point of comparison is the maximum frequency at which each 

technique can be functionally correct. The considered paths are the register to register 

paths. This gives an indication on which DFT technique has the worse effect on the 
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design frequency. Timing Analyzer tool embedded in Libero is the one used for this 

purpose. Table IV shows a summary of the minimum clock period for each technique. 

Clearly, enhanced scan technique has the upper hand when it comes to the maximum 

frequency. 

Table IV: Summary of the minimum clock period for S1423 circuit with different DFT techniques 

DFT Technique Minimum clock period 

Muxed D scan 6.981 ns 

Clocked scan 7.292 ns 

Enhanced scan 4.269 ns 

 

Another aspect to consider in the comparison is the number of robust paths for 

path delay testing that the automatic test pattern generation (ATPG) tools can detect 

while using different DFT techniques. In this comparison, FastScan is the used ATPG 

tool. Table V shows a summary of the number of robust paths in each technique. In 

clocked scan technique, the number of robust paths is greater than that of muxed D 

scan. Since the enhanced scan technique is built upon muxed D scan technique, the 

number of robust paths is the same as muxed D scan. 

Table V: Number of robust paths for S1423 circuit with different DFT techniques 

DFT Technique Number of robust paths 

Muxed D scan 26 

Clocked scan 32 

Enhanced scan 26 

 

The simulation was done for each DFT technique on original RTL, post-

synthesis and post layout. Figure 57 shows an example of the waveform from the 

simulation of muxed D scan technique. Signal “out_reg” contains the output from 

unloading the scan chain while signal “gold_out_reg” is the expected value from 

FastScan after unloading the scan chain. Figure 57 shows that they are equal and 

another signal called “op_check” goes high if the test was successful. 
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Figure 57: an example of the waveform from simulation of muxed D scan technique 

5.4.2 S5378 

S5378 is a middle-sized benchmark used in this comparison. Table VI shows 

the design specifications. 

Table VI: Design specifications of S5378 benchmark 

Number of inputs 35 

Number of outputs 49 

Number of flip flops 179 

Number of gates  2779 

 

The used FPGA for experimentation with this design is Microsemi ProASIC 

A3P125-PQ208 flash-based FPGA. It is the same used for all DFT techniques for a fair 

comparison. Also, the path for producing WCTV shown in Fig.58 is the same used for 

all the techniques. 

 

Figure 58: Worst-case path for S5378 benchmark design 
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The WCTVs reported by FastScan for the three techniques targeting the path 

mentioned in Fig.58 is summarized in Table VII. 

 

Table VII: Summary of the test vectors of S5378 circuit with different DFT techniques 

DFT Technique Test Vectors 

Muxed D scan  

Scan chain = 

1F01C73C70A7D081DCCCD810B607F8022950BDBDC79CF 

PI1 = 00111011100110100000010001000010101 

PI2 = 11100010111001001000011100000010101 

Gold scan chain = 

19244204E18C10A03114091A1E452786ED7AEAE346D46 

Clocked scan 

Scan chain = 

5E5BECC4D85389FB9943C593AA5272F7D07755D3C03E6 

PI1 = 00101011111100111100101111001010101 

PI2 = 10100110111001011001000010000011001 

Gold scan chain = 

5ADCD0940C8093D08776A8482A48742B08D8A4155802D 

Enhanced scan 

Scan chain1 = 

1F01C73C70A7D081DCCCD810A0619E644F36110EF4FA9 

Scan chain2 = 

10B7D54A4819BA40F3F10130BB6CD72730D3DDC2940ED 

PI = 11100010111001001000011100000010101 

Gold scan chain = 

19244204E18C10A03114091A1E452786ED7AEAE346D46 

 

For logic utilization in each case, Table VIII shows a summary of the 

versatile/core utilization in the three scan techniques used. Clearly, Clocked scan 

technique yields the least utilization among the three techniques which is the same 

result as benchmark design S1238. 
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Table VIII: Summary of the core utilization for S5378 circuit with different DFT techniques 

DFT Technique Core utilization 

Muxed D scan Used: 2193 , Total: 3072   (71.39%) 

Clocked scan Used: 2130 , Total: 3072   (69.34%) 

Enhanced scan Used: 2256 , Total: 3072   (73.44%) 

 

Another point of comparison is the maximum frequency at which each 

technique can be functionally correct. The considered paths are the register to register 

paths. This gives an indication on which DFT technique has the worse effect on the 

design frequency. Table IX shows a summary of the minimum clock period for each 

technique. Enhanced scan technique has a slightly larger maximum frequency. 

 

Table IX: Summary of the minimum clock period for S5378 circuit with different DFT techniques 

DFT Technique Minimum clock period 

Muxed D scan 21.094 ns 

Clocked scan 21.056 ns 

Enhanced scan 20.655 ns 

 

Another aspect to consider in the comparison is the number of robust paths for 

path delay testing that the automatic test pattern generation (ATPG) tools can detect 

while using different DFT techniques. Table X shows a summary of the number of 

robust paths in each technique. They are nearly equal in all techniques. 

 

Table X: Number of robust paths for S5378 circuit with different DFT techniques 

DFT Technique Number of robust paths 

Muxed D scan 184 

Clocked scan 185 

Enhanced scan 184 

 

Similar to S1238 benchmark, the simulation was done for each DFT technique 

on original RTL, post-synthesis and post layout to ensure correct functionality in all 

cases. 
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5.4.3 S38417 

S38417 is one of the largest benchmark designs in ISCAS’89 and is used in this 

comparison. It is described in [29] as a  real chip-based design that relies in its operation 

on the partial scan. Table XI shows the design specifications. 

Table XI: Design specifications of S38417 benchmark 

Number of inputs 28 

Number of outputs 106 

Number of flip flops 1636 

Number of gates  22179 

 

The used FPGA for experimentation with this design is Microsemi ProASIC 

A3P1000-PQ208 flash-based FPGA which is much larger than the one used for the 

other two benchmark designs. It is the same used for all DFT techniques for a fair 

comparison. Also, the path for producing WCTV shown in Fig.59 is the same used for 

all the techniques. 

 

Figure 59: Worst-case path for S38417 benchmark design 

The WCTVs reported by FastScan for the three techniques targeting the path 

mentioned in Fig.59 is summarized in Table XII. 
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Table XII: Summary of the test vectors of S38417 circuit with different DFT techniques 

DFT Technique Test Vectors 

Muxed D scan  

Scan chain = 

99305DBB35D0429B82F5F1DE4EF9C33B3A39285188E7CF8

A25E43D6B9B75E4C98EC174ED759CB3684315D84BC469B

0E8218C3E0905D46D4AF5E6C61FAA0E9C1FE207EEBC994

6B2B492E6208A6AACCDC3FD78FE63D464E93165B936334

5EC745562E8561E8E920CDD8467F72085F47530F857C82865

E7B66921B8C6B5AD9D2CB5CB31FE9DD5E7AC416033BB7

A9C87D5A9EB87AA7D75ABDE228EA03693FC26E10A71EE

5C22188BCF90295FFD380F03BA828E3426A35FBBA8579EF

71E22E6926557C1AA86C 

PI1 = 1000011000010011001000001101 

PI2 = 1110101100001110001111001111 

Gold scan chain = 

D132DCBB05E4C2B3B6F6F11E4EE4487B323DECD90A474F

EA64643D75AB6DE8C79E1006AE279CBF7843B7C88EE469

82F8318C9679D4512D4AE3E6E79FBB0DDA3E16AEAFBD9

866FEBC14E620880AE938C3DD6ABCB79616EA596538725

B046E344963E8465A0F02443D96C7E2078276753CD1C76A7

83CEFB2EE72BAC69D2C952CB5CE41FE3B87FB80000043C

FE232474C83FE9F89F147C3FBE78F00FA07FC8BE421E39FF

00F403F1288E75BE8F0BF0F720E08F48E8F17EFB81FEAEE3

E2D9842F75F3B8E970 

Clocked scan 

Scan chain = 

B2D8475BC1007D6F9AFC45D75042BC5B9D20902E8B567E

5BF9D7B280A57F349D4739DB9A3365DC23AD38DD005A4

C86DD0190E6565748DB5491C750902A881807DEE7C6F63F

DF8303303ECAA80C480CF8EDA935EB24D055DEC86E8DF

0B5B9CC4EC1ADEBEAD5C081FE1B3BF9713BC75DCC0E8

FB809FE1DD8514BBD599B3DA69B30F8D92A4436956BCD



77 

 

 

2637F661EB6B871A79288FA7A05A0DDAE83E8479A27FFE

73B45ACD6880D647AED1C3863984E5403DAC07E260595F4

AF461007B13EA66C010F3BF29D 

PI1 = 1111011101011010110111100110 

PI2 = 1000001111101001000110010100 

Gold scan chain = 

83D9575DCB82DEEF8DFE249569463C5B0F8CAD0EF18637

4B3E1DB396A75E393953AC162AB141F1B77DC9ED0D30E9

EEC42129AEC8951E93449E8944853A434F85F6A28BFAFF5

E43255416CBA80CE00DD063A733FBA5F85D53B865EAF8F

3B1021CB5ACEBBC4DE199FC085BE6503E6D61C90E06BD

856845609F48B41D9B2CA2A490D0684546A79553EC5435D

E686B02F5CE7A998FBF88081C8882241C2181FFDE23C6531

42C30F6361ED13BB29D85E45039AA53BF4EC8936E40B149

E7F3ED049000D336790 

Enhanced scan 

Scan chain1 = 

99305DBB35D0429B82F5F1DE4EF9C33B3A39285188E7CF8

A25E43D6B9B75E4C98EC174ED759CB3684315D84BC469B

0E8218C3E0905D46D4AF5E6C61FAA0E9C1FE207EEBC994

6B2B492E6208A6AACCDC3FD78FE63D464E93165B936334

5EC745562E8561E8E920CDD8467F72085F47530F857C82865

E7B66921B8C6B5AD9D2CB5CB31E69DD5E7AA415FFC448

57D04E5A86BB7AA828A5427DD715F096C03E91EC40E11B

BC5877431EFDAA03207F0FC457DB10BD99AA04857A8669

7DE222A926957C1AA9EA 

Scan chain2 = 

81325CB335FEC08B36F5F1DE56F1423B321DEED88A774F4

A34640D738B75E0C5DC4116AA379CB7384337C80FC469B2

E8318C9619C5C12D6AE166C61DAA49DE3E0EBFAEFD9A6

6BAB494E6208A43A92D43F57ADEF3BE16EA1B253866734

1E8345D6AEB551F8F920CD996C7F78600F67520C147C8382
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4E7328921B8C6B52D1F6CB5CA61E739E3EFCE827FAC190

AD88492527F3FC4075C8C449E703F42D8038A1DDE9C311F

E2BEE0651F80403F4FA0F80EF83347B07E6084A770459EDE

170021E7AF97C751E 

PI = 1110101100001110001111001111 

Gold scan chain = 

D132DCBB05E4C2B3B6F6F11E4EE4487B323DECD90A474F

EA64643D75AB6DE8C79E1006AE279CBF7843B7C88EE469

82F8318C9679D4512D4AE3E6E79FBB0DDA3E16AEAFBD9

866FEBC14E620880AE938C3DD6ABCB79616EA596538725

B046E344963E8465A0F02443D96C7E2078276753CD1C76A7

83CEFB2EE72BAC69D2C952CB5CE41FE3B87FB80000043C

FE232474C83FE9F89F147C3FBE78F00FA07FC8BE421E39FF

00F403F1288E75BE8F0BF0F720E08F48E8F17EFB81FEAEE3

E2D9842F75F3B8E970 

 

For logic utilization in each case, Table XIII shows a summary of the 

versatile/core utilization in the three scan techniques used. Clearly, Clocked scan 

technique yields the least utilization among the three techniques which is the same 

result as benchmark designs S1238 and S5378. 

Table XIII: Summary of the core utilization for S38417 circuit with different DFT techniques 

DFT Technique Core utilization 

Muxed D scan Used: 18362 , Total: 24576   (74.72%) 

Clocked scan Used: 15429 , Total: 24576   (62.78%) 

Enhanced scan Used: 19611 , Total: 24576   (79.80%) 

 

Another point of comparison is the maximum frequency at which each 

technique can be functionally correct. The considered paths are the register to register 

paths. This gives an indication on which DFT technique has the worse effect on the 

design frequency. Table XIV shows a summary of the minimum clock period for each 
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technique. Unlike other benchmark designs, enhanced scan technique has the lowest 

maximum frequency. 

Table XIV: Summary of the minimum clock period for S38417 circuit with different DFT techniques 

DFT Technique Minimum clock period 

Muxed D scan 33.975 ns 

Clocked scan 33.518 ns 

Enhanced scan 39.430 ns 

 

Another aspect to consider in the comparison is the number of robust paths for 

path delay testing that the automatic test pattern generation (ATPG) tools can detect 

while using different DFT techniques. Table XV shows a summary of the number of 

robust paths in each technique. They are nearly equal in all techniques. 

Table XV: Number of robust paths for S38417 circuit with different DFT techniques 

DFT Technique Number of robust paths 

Muxed D scan 13 

Clocked scan 38 

Enhanced scan 13 

 

Similar to S1238 and S5378 benchmark designs, the simulation was done for 

each DFT technique on original RTL, post-synthesis and post layout to ensure correct 

functionality in all cases.  

5.4.4 Results summary 

The first point of comparison is the difficulty of the bring-up of the testing 

environment for the design. Muxed-D scan DFT technique is the simplest and easiest 

in this point. It is fully supported by DFT tools and ATPG tools. Also, its scan cell 

model is easy to implement. Clocked scan DFT technique is also supported by DFT 

tools and ATPG tools. However, its scan cell model is difficult to implement as it 

requires alterations in the design DFT exported netlist. Enhanced scan DFT technique 

is the hardest in bring-up. Although it is built on muxed-D scan technique, it is not 
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supported by DFT tools or ATPG tools. It requires severe alterations in the design DFT 

exported netlist to add its logic correctly. 

The second point of comparison is the FPGA resources utilization. It is clear 

from the three benchmark designs that clocked scan DFT technique consumes fewer 

resources compared to Muxed-D scan technique and enhanced scan technique that are 

close to each other in this point. 

The third point of comparison is the maximum frequency at which each 

technique can be functionally correct. This is an important indication of the amount of 

added delay by each technique. The results were not very conclusive at this point. 

Enhanced scan DFT technique was far better in the small benchmark design s1238, but 

in the middle-sized design s5378, it was nearly the same as the two other techniques, 

while it was much worse in the largest benchmark design s38417. This means that most 

probably this point will be design dependent. 

The fourth and last point of comparison is the number of robust testable paths 

as detected by ATPG tools. Results recorded in the benchmark designs show that 

clocked scan DFT technique is friendlier to ATPG tools and yields larger number of 

robust testable paths. 

Table XVI shows the summary of the comparison between the DFT techniques. 

The recommendation for fast design bring-up is to use muxed-D scan technique. If the 

FPGA resources is an issue or if the ATPG tools are struggling to find robust paths with 

muxed-D scan technique then clocked scan technique will be more suitable. It was 

expected from enhanced scan technique to shine when it comes to testing with higher 

frequencies but the last experiment with the large benchmark design showed that it may 

not always be better to use the enhanced scan technique for this purpose. 

Table XVI: summary of the comparison between the DFT techniques 

 Muxed-D scan Clocked scan Enhanced scan 

Easiest Bring-up 1st 2nd 3rd  

Resources utilization 2nd 1st 3rd 

Maximum frequency Design-dependent 

Number of robust paths 2nd 1st 2nd 
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Chapter 6 

Conclusion and future work 

6.1 Conclusion 

In this thesis, a comprehensive comparison between different DFT techniques 

for TID testing of flash-based FPGAs was made to help designers choose the best 

suitable DFT technique depending on their application. The comparison included the 

most famous and used DFT techniques, muxed D scan technique, clocked scan 

technique and enhanced scan technique. Methodologies for applying the DFT 

techniques were developed. Points of comparisons included FPGA resources 

utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable 

paths in each technique. 

The comparison was done using ISCAS’89 benchmarks circuits. Designs of 

different sized were chosen for the comparison. The designs were implemented using 

Microsemi ProASIC3 flash-based FPGAs. For each design, the methodologies for 

applying the three DFT techniques under investigation were applied. Results showed 

that some techniques were more superior to others depending on the point of 

comparison.  

Recommendations that were reached from the results of the comparison were 

as follow. For fast design bring-up, it is recommended to use muxed-D scan technique. 

If the FPGA resources is an issue or if the ATPG tools are struggling to find robust 

paths with muxed-D scan technique then clocked scan technique will be more suitable. 

Enhanced scan technique may not always be the best choice when testing with higher 

frequencies. 

6.2 Future work 

Although the comparison in this work assumes that all of the DFT techniques 

will yield the same results under TID effect, it is still important to perform the total 

ionization dose experiments on the designs and add their results as another field in the 
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comparison. Also, a similar comparison should be made between DFT techniques to 

generate worst-case test vectors for other types of faults other than delay faults like 

leakage current faults. 
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Appendix A 

Automatic generation of FastScan asci files 

Python script: 

import os 

import re 

 

if os.path.exists("register_to_register_timing.txt"): 

  os.remove("register_to_register_timing.txt") 

 

f1 = open("register_to_register_timing.txt","w+") 

 

input_file = open("Timing.rpt", "r") 

for line in input_file: 

  endline = re.match( r'END SET Register to Register', line, re.M) 

  f1.write(line) 

  if endline: 

    break 

 

input_file.close() 

f1.close() 

 

f2 = open("register_to_register_timing.txt", "r") 

 

flag_main = 1 

flag1 = 0 

count1 = 0 

flag2 = 0 

count2 = 0 

no_of_paths = 0 

 

for line in f2: 

    match = re.match( r'^Expanded Path (\d*)', line, re.M) 

    if(match):       

        if os.path.exists("WP_%s.asci" %match.group(1)): 

            os.remove("WP_%s.asci" %match.group(1)) 

        path_name = "WP_%s" %match.group(1) 
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        file_handler = "WP_%s" %match.group(1) 

        file_handler = open("WP_%s.asci" %match.group(1), "w+") 

        flag_main = 1 

        flag1 = 1 

        count1 = 0 

        no_of_paths = no_of_paths + 1 

    elif(flag_main): 

        if(flag1): 

            count1 = count1 + 1 

        if(count1 == 14): 

            flag1 = 0 

            count1 = 0 

            match2 = re.match( r'^\s*\d*.\d*\s*(\S*) \((\w)\)', line, 

re.M) 

            first_edge = match2.group(2) 

            file_handler.write("PATH \"%s\" =\n" %path_name) 

            file_handler.write("PIN %s +;\n" %match2.group(1)) 

            flag2 = 1 

            count2 = -1 

        if(flag2 and count2 != 2): 

            count2 = count2 + 1 

            if(re.match( r'^\s*$', line, re.M)): 

                flag_main = 0 

                flag2 = 0 

                count2 = 0 

                file_handler.write("END ;\n") 

                file_handler.close() 

        if(count2 == 2): 

            count2 = 0 

            match3 = re.match( r'^\s*\d*.\d*\s*(\S*) \((\w)\)', line, 

re.M) 

            if(match3.group(2) == first_edge): 

                edge = "+" 

            else: 

                edge = "-" 

            file_handler.write("PIN %s %s;\n" 

%(match3.group(1),edge)) 
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f2.close() 

 

if os.path.exists("worst_path.asci"): 

  os.remove("worst_path.asci") 

f3 = open("worst_path.asci", "w+") 

for path_number in range(1, no_of_paths+1): 

  f4 = open("WP_%s.asci" %path_number, "r") 

  count = 0 

  for line in f4: 

    if(count == 0 or count == 1): 

      f3.write(line) 

    elif(re.match( r'^END ;$', line, re.M)): 

      f3.write(previous_line) 

      f3.write(line) 

      f4.close() 

      break 

    else: 

      previous_line = line 

    count = count + 1 

f3.close() 
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Appendix B 

Automatic DFT netlist alteration for Enhanced 

scan technique 

The below codes are run in the same order as written for correct generation of the netlist 

after adding the latches. These are perl codes run using a unix environment. 

Code 1: 

#!/usr/bin/perl 

if ($ARGV[0]) { 

`grep "scan_cell =" $ARGV[0] | sed 's/^.*"\\(\\/.*u\\)".*\$/\\1/' > 

dff_cells`; 

} else { 

`grep "scan_cell =" patterns_detailed.txt | sed 

's/^.*"\\(\\/.*u\\)".*\$/\\1/' > dff_cells`; 

} 

`sed -i 's/\\//\\\\/' dff_cells`; 

my $fh; 

open($fh, "<./dff_cells") or die "Couldn't open file dff_cells, $!"; 

my $assign = "assign scan_reg = {"; 

while ( my $line = <$fh> )  {    

    chomp $line; 

    $assign = $assign."unit.$line .Q, ";     

} 

close $fh; 

$assign = substr $assign, 0, -2; 

$assign = $assign."};"; 

print $assign."\n"; 

open($fh, ">./assign.txt"); 

print $fh $assign; 

close $fh; 

 

Code 2: 

#!/usr/bin/perl  

 

my $fh1; 
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my $fh2; 

open($fh1, "<./s38417.v") or die "Couldn't open file s1238.v, $!"; 

open($fh2, ">./s38417_modified.v"); 

my $ins_name; 

my $flag1 = 0; 

my $flag2 = 0; 

my $flag3 = 0; 

my $flag4 = 0; 

my $flag5 = 0; 

my $flag6 = 0; 

my $add_line; 

my $input_line; 

my $scan_in; 

while ( my $line = <$fh1> ) {    

    if ($flag1 eq 1) { 

      $line =~ m/.Q\s*\(\s*(\S*)\s*\)/; 

      print $1."\n"; 

      if ($1) { 

         $out = $1; 

         $add_line = "  DLN1 ${ins_name}_latch ( .D( ${out}_latch ) , 

.G( update ) , .Q( $out ) );\n  MX2 ${ins_name}_mux ( .S( scan_en ) , 

.A( $out ) , .B( ${out}_latch ) , .Y( ${out}_mux ) );\n"; 

         $flag3 = 1; 

         $out = substr $out, 1; 

         $line =~ s/$out/${out}_latch/; 

      } else { 

         $flag2 = 1; 

      } 

      if ($flag6 eq 1) { 

        $line =~ m/\s*\(\s*(\S*)\s*\)/; 

        $scan_in = $1; 

        unless ($scan_in eq "scan_in1") { 

          $scan_in = substr $scan_in, 1; 

          $line =~ s/$scan_in/${scan_in}_latch/; 

        } 

        $flag6 = 0; 

        print "SI issue fixed in $line \n"; 

      } 
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    } elsif ($flag2 eq 1) { 

      $line =~ m/\s*\(\s*(\S*)\s*\)/; 

      print $1."\n"; 

      $out = $1; 

      $add_line = "  DLN1 ${ins_name}_latch ( .D( ${out}_latch ) , .G( 

update ) , .Q( $out ) );\n  MX2 ${ins_name}_mux ( .S( scan_en ) , .A( 

$out ) , .B( ${out}_latch ) , .Y( ${out}_mux ) );\n"; 

      $flag3 = 1; 

      $out = substr $out, 1; 

      $line =~ s/$out/${out}_latch/; 

      $flag2 = 0; 

    } 

    if ($line =~ m/dfscr\s*(\S*)\s*/) { 

      print $line."\n"; 

      print $1."\n"; 

      $ins_name = $1; 

      $flag1 = 1; 

      if ($line =~ m/.SI\s*\(\s*(\S*)\s*\)/) { 

        $scan_in = $1; 

        unless ($scan_in eq "scan_in1") { 

          $scan_in = substr $scan_in, 1; 

          $line =~ s/$scan_in/${scan_in}_latch/; 

        } 

      } else { 

        $flag6 = 1; 

        print "Couldn't find SI in $line \n"; 

      } 

    } else { 

      $flag1 = 0; 

    } 

    if (($line =~ m/module\s*\S*\s*\(/) and ($flag5 eq 0)) { 

      $line =~ s/\(/\( update, /; 

      $flag5 = 1; 

    } elsif (($line =~ m/input /) and ($flag4 eq 0)) { 

      $input_line = "input   update;\n"; 

      print $fh2 $input_line; 

      $flag4 = 1; 

    } 



92 

 

 

    print $fh2 $line; 

    if ($flag3 eq 1) { 

       print $fh2 $add_line; 

       $flag3 = 0; 

    } 

} 

close $fh1; 

close $fh2; 

 

Code 3: 

#!/usr/bin/perl  

my $fh1; 

my $fh2; 

open($fh1, "<./s38417_modified.v") or die "Couldn't open file s1238.v, 

$!"; 

open($fh2, ">./s38417_modified2.v"); 

my $ins_name; 

my $flag1 = 0; 

my $flag2 = 0; 

my $flag3 = 0; 

my $flag4 = 0; 

my $flag5 = 0; 

my $flag6 = 0; 

my $add_line; 

my $input_line; 

my $scan_in; 

while ( my $line = <$fh1> ) {    

    if ($flag2 eq 1) {  

      $line =~ m/\s*\(\s*(\S*)\s*\)/; 

      print $1."\n"; 

      $out = $1; 

      $add_line = "  DLN1 ${ins_name}_latch ( .D( ${out}_latch ) , .G( 

update ) , .Q( $out ) );\n  MX2 ${ins_name}_mux ( .S( scan_en ) , .A( 

$out ) , .B( ${out}_latch ) , .Y( ${out}_mux ) );\n"; 

      $flag3 = 1; 

      $out = substr $out, 1; 

      $line =~ s/$out/${out}_latch/; 

      $flag2 = 0; 
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    } 

    if ($line =~ m/DFN1\s*(\S*)\s*/) { 

      print $line."\n"; 

      print $1."\n"; 

      $ins_name = $1; 

      if ($line =~ m/.Q\s*\(\s*(\S*)\s*\)/) { 

        print $1."##########################\n"; 

           $out = $1; 

           $add_line = "  DLN1 ${ins_name}_latch ( .D( ${out}_latch ) 

, .G( update ) , .Q( $out ) );\n  MX2 ${ins_name}_mux ( .S( scan_en ) 

, .A( $out ) , .B( ${out}_latch ) , .Y( ${out}_mux ) );\n"; 

           $flag3 = 1; 

           $out = substr $out, 1; 

           $line =~ s/$out/${out}_latch/; 

      } else { 

         $flag2 = 1; 

      } 

    } 

    print $fh2 $line; 

    if ($flag3 eq 1) { 

       print $fh2 $add_line; 

       $flag3 = 0; 

    } 

} 

close $fh1; 

close $fh2; 

 

Code 4: 

#!/usr/bin/perl  

my $fh1; 

my $fh2; 

open($fh1, "<./s38417_modified2.v") or die "Couldn't open file 

s1238.v, $!"; 

`cp s38417_modified2.v s38417_modified2_tmp.v`; 

my $ins_name; 

my $flag1 = 0; 

my $flag2 = 0; 

my $flag3 = 0; 
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my $flag4 = 0; 

my $flag5 = 0; 

my $flag6 = 0; 

my $add_line; 

my $input_line; 

my $scan_in; 

my $mux_out; 

while ( my $line = <$fh1> ) {    

    if ($line =~ m/MX2\s*\S*\s*\( .S\( scan_en \).*.Y\( (\S*)_mux/) { 

      print $line."\n"; 

      print $1."\n"; 

      $mux_out = $1; 

      $mux_out = substr $mux_out, 1; 

      open($fh2, "<./s38417_modified2_tmp.v"); 

      open($fh3, ">./s38417_modified3.v"); 

        while ( my $line2 = <$fh2> ) { 

          if ($line2 =~ m/\(\s*\\*$mux_out\s*\)/) { 

            print "##### match $mux_out\n"; 

            unless(($line2 =~ m/\s*DLN1/) or ($line2 =~ m/\s*MX2/)) { 

              $line2 =~ s/$mux_out/${mux_out}_mux/; 

            } 

          } 

          print $fh3 $line2; 

        } 

      close $fh3; 

      close $fh2; 

      `mv s38417_modified3.v s38417_modified2_tmp.v`; 

    } 

} 

close $fh1; 

`mv s38417_modified2_tmp.v s38417_modified3.v`; 

 

Code 5: 

#!/usr/bin/perl  

my $fh1; 

my $fh2; 
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open($fh1, "<./s38417_modified3.v") or die "Couldn't open file 

s1238.v, $!"; 

`cp s38417_modified3.v s38417_modified3_tmp.v`; 

my $ins_name; 

my $flag1 = 0; 

my $flag2 = 0; 

my $flag3 = 0; 

my $flag4 = 0; 

my $flag5 = 0; 

my $flag6 = 0; 

my $add_line; 

my $input_line; 

my $scan_in; 

my $ins_name; 

my $DFN1_in; 

my $mux_in1; 

open($fh3, ">./s38417_modified4.v"); 

while ( my $line = <$fh1> ) {    

    if ($line =~ m/DFN1\s*(\S*)\s*\(.D\s*\(\s*(\S*)\s*\)/) { 

      print $line."\n"; 

      print $1."\n".$2."\n"; 

      $ins_name = $1; 

      $DFN1_in = $2; 

      open($fh4, "<assign.txt"); 

      while ( my $line3 = <$fh4> ) { 

        if ($line3 =~ m/unit.\\$ins_name .Q, unit.(\S*) .Q/) { 

          $ins_prev = $1; 

          print $1."#######################\n"; 

        } 

      } 

      close $fh4; 

      open($fh2, "<./s38417_modified3_tmp.v"); 

        while ( my $line2 = <$fh2> ) { 

          if ($line2 =~ 

m/DLN1\s*\\${ins_prev}_latch\s*\(\s*.D\(\s*(\S*)\s*\)/) { 

            $mux_in1 = $1; 

            print $1."#\n"; 

          } 
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        } 

      close $fh2; 

      $second_mux = "  MX2 ${ins_name}_secondmux ( .S( load ) , .A( 

$DFN1_in ) , .B( $mux_in1 ) , .Y( ${DFN1_in}_secondmux ) );\n"; 

      print $fh3 $second_mux; 

      $DFN1_in = substr $DFN1_in, 1; 

      $line =~ s/$DFN1_in/${DFN1_in}_secondmux/; 

    } 

    if (($line =~ m/module\s*\S*\s*\(/) and ($flag5 eq 0)) { 

      $line =~ s/\(/\( load, /; 

      $flag5 = 1; 

    } elsif (($line =~ m/input /) and ($flag4 eq 0)) { 

      $input_line = "input   load;\n"; 

      print $fh3 $input_line; 

      $flag4 = 1; 

    } 

  print $fh3 $line; 

} 

close $fh3; 

close $fh1; 

`rm s38417_modified3_tmp.v`; 
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