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Abstract 

Existing concrete buildings lacking seismic details are well known to cause most 

losses during earthquakes so there is no wonder they are nicknamed killer buildings. In every 

new earthquake we see more evidence of their vulnerability. Ordinary building are taking the 

most focus of researchers from all over the world because of the majority of building are 

reinforced concrete. But one of the most widely used structure system contains steel 

reinforced concrete (SRC) composite columns. This type has been used since early of 1950 

and nowadays most high rise or non-prismatic buildings are built using SRC composite 

columns. 

This Experimental study presented addresses the seismic performance of (SRC) 

composite columns experiencing shear and flexural failures using different concrete grades 

and confinement details to mimic both existing buildings with old construction details and 

modern buildings designed and built according to modern codes and construction practices. 

Test specimens represent exterior columns modeled based on a typical seismic design of a 

30-story prototype new core wall-frame tall building and a 20-story prototype gravity existing 

building. Test parameters considered in this study are target failure mode, axial load ratio, 

percentage of longitudinal steel, structural steel section, concrete grade, and the transverse 

reinforcement volumetric ratio. Tests aim to characterize and compare the cyclic response of 

SRC columns with old and modern construction details. In particular, shear capacity, flexural 

capacity, residual axial capacity, deformation capacity and engineering demand parameters 

under different test variables are sought. Backbone curves for numerical simulation of seismic 

performance of SRC columns are presented. There are fourteen tested specimens divided to 

three groups; four specimens were tested as pilot, three specimens were tested representing 

modern building flexure deficient column and seven specimens for old building: five shear 

deficient specimens and two flexure deficient specimens. This work came out with many 

conclusions and recommendations for old and modern buildings to overcome the deficiency 

of SRC composite column.  

Retrofitting shear deficient SRC columns under high axial loads (>40%) and flexure deficient 

columns under high axial loads (higher than the balanced load, i.e. compression controlled 

failure) experiencing moderate to strong ground shaking seems inevitable.  
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Chapter 1                                                                                                          Introduction 

1. Chapter                                                                                

(1) Introduction 

 Modern construction industry is witnessing a substantial increase in the number, 

heights and architectural irregularity of tall buildings. This has naturally led to exceeding 

the building code height or irregularity limitations, which in return has raised the need for 

using non-prescriptive design or performance-based engineering. In addition, the real-

estate developers increasingly demand smaller column and shear wall sections to 

maximize building usable and sellable space, particularly in mega-cities’ business 

districts. Moreover, the existing building stock in many active seismic zones includes 

many seismically deficient buildings that were built before enforcing seismic details in 

the 1980s. Steel-reinforced concrete (SRC) composite columns and/or high strength 

concrete columns are being increasingly utilized in tall buildings to achieve these goals. 

Additionally, many existing buildings utilize SRC columns that are not seismically 

detailed. Practicing engineers face a major problem which is that is performance-based 

earthquake nonlinear modeling and design of SRC columns are poorly informed by 

laboratory tests and nonlinear seismic design guidelines due to test scarcity. Literature 

reveals a serious lack of knowledge of the seismic behavior of SRC composite columns 

subjected to simulated seismic loading conditions. There are a small number of tests 

available to justify deriving seismic backbone curves for macro-modeling purposes. 

Numerical criteria to distinguish the seismic modes of failure of such columns are not 

available.  

Existing building with composite column in seismic areas since 1960s, no seismic 

backbones exist for SRC column, no criteria for seismic failure mode, shear strength 

expressions under higher axial loads are uncertain, no information on axial capacity 

following shear failure, no information on drift capacity under different axial load levels 

and even in newly designed SRC column with seismic details on modern  
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codes there are still no seismic backbone recommendations available, all these reasons 

are the motivation to take the challenge to go through this research. Finally, one of 

the most important point this hard work research is retrofitting such shear and flexure 

deficient columns experiencing moderate to strong ground shaking under high axial 

loads seems inevitable. In addition, the steel section web and shear studs work to over-

strength the column in shear. Thus, the shear failure of columns designed according 

to ACI 318-14 and AISC 341-2008 is not likely 
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2. Chapter (2)                                                       

Background and Literature Review 

 

1. Definition 

  A steel-concrete composite (SRC) column is a compression member, 

compressing either a concrete encased hot-rolled steel section or a concrete filled hollow 

section of hot-rolled steel. It is generally used as a load-bearing member in a composite 

framed structure.(AIJ 1987) 

2. History 

 Early 1900’s – steel beams encased in concrete for fireproofing  

 1931 – Empire State Building’s entire steel frame was encased in concrete 

 1988 – Bank of China “mega truss” of composite columns 

 Late 1990s – Pacific First Cent (AIJ 1987) 

3. Applications of composite column 

• Extra capacity in concrete column for no increase in dimension  

• Large unbraced lengths in tall open spaces –Lower story in high rise buildings –

Airport terminals, convention centers 

• Corrosion, fireproof protection in steel buildings •Composite frame –high rise 

construction  
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• Transition column between steel, concrete systems 

• Toughness, redundancy as for blast, impact                     ( Larry Griffis) 

 

Figure 2.1: Typical cross-sections of fully and partially concrete encased columns 

 

 

 

 

 

Full encased column 

Partial encased column 
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Figure 2.2: Typical cross-sections of concrete filled tubular sections 

Typical cross-sections of composite columns with fully concrete encased steel 

section and two partially concrete encased steel sections are illustrated in Figure 2.1(a), 

Figure 2.1(b, c) and Figure 2.2show three typical cross-sections of concrete filled hollow 

sections. Note that there is no requirement to provide additional steel re-bars for concrete 

filled hollow composite sections, except for requirements for fire resistance where 

appropriate.   

4. Mechanism of Axial Load Resistance: 

 In a composite column both the steel and the concrete sections would resist the 

external loading by bond and friction. Supplementary reinforcement in the concrete 

encasement prevents excessive spalling of concrete, both under normal load and fire 

conditions.   
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5. Construction Advantages: 

 With the use of composite columns along with composite decking and composite 

beams, it is possible to erect high rise structures in an extremely efficient manner. There 

is quite a vertical spread of construction activity carried out simultaneously at any time, 

with numerous trades working simultaneously. For example       

6. Advantages of composite columns: 

• Increased strength for a given cross sectional dimensions.   

• Good fire resistance 

• Corrosion protection in encased columns. 

• Significant economic advantages over either structural steel or reinforced 

concrete alternatives.  

• Identical cross sections with different load and moment resistances can be 

produced by varying steel thickness, the concrete strength or reinforcement. 

This allows the outer dimensions of a column to be held constant over a 

number of floors in a building, thus simplifying the construction and 

architectural detailing. 

• Erection of high rise-building in an extremely efficient manner.   

• Formwork is not required for concrete filled tubular sections. 
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7. Cyclic Test on SRC Composite Columns 

7.1.Rocles and Paboojian. (1992) 

 Rocles and Paboojian studied six composite column specimens to test lateral 

stiffness transverse shear resistance, degree of concrete confinement to achieve good 

ductility, and effectiveness of shear studs in resisting lateral loading. The next figure and 

tableFigure 2.3 and Table 2.1show the specimens’ details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Specimens’ details (Rocles and Paboojian 1992) 
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Table 2.1: Specimens’ details (Rocles and Paboojian 1992) 

 

 

 

 

 

 

 

 

 

dp: longitudinal steel par’s diameter 

As/Ag: longitudinal steel bars’ area / gross column cross section area 

s: hoop spacing 

L: specimen length   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Test setup (Rocles and Paboojian 1992) 
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Figure 2.4 shows the test setup used to test specimens. Based on the test results 

reported, the following conclusions were mentioned: 

• Longitudinal bar buckling must be prevented to preserve the integrity of the 

member. 

• The flexure strengths predicted by the several codes are conservative such as 

ACI-318-14 

• The design of composite columns for shear should be based on the concrete 

being required to resist all shear at service load levels. 

• Shear studs in composite column are neither effective nor required to develop 

lateral stiffness and flexure capacity.  

According to these results, the authors did not mention the seismic behavior of 

composite columns. There is also a commentary on the point of shear studs which are not 

effective because shear studs prevent the steel shape from slipping from the concrete 

section. Next tables show all chen’s specimens; details and results with self-study 

according to the available data and curves from his work. 

7.1.1 Studying Rocles and Paboojian’ specimens 

Table 2.2: Rocles and Paboojian specimens’ strength details 

Fysec 

(Mpa) 

Fyst 

(Mpa) 

Fy 

(Mpa) 

F'c 

(Mpa) 

Fcu 

(Mpa) 

 ID 

372.30 276.00 434.40 34.30 42.88 1A 

372.30 276.00 434.40 30.70 38.38 2B 

372.30 276.00 434.40 35.20 44.00 3A 

372.30 276.00 434.40 34.30 42.88 4B 

372.30 276.00 434.40 30.70 38.38 5C 

(studs) 

372.30 276.00 434.40 35.20 44.00 6D 

(studs) 
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Table 2.3: Rocles and Paboojian specimens’ dimensions details 

H/Em. Em. 

mm 

H 

mm 

t 

mm 

b 

mm 

 ID 

0.00 0.00 812.80 406.40 406.40 1A 

0.00 0.00 812.80 406.40 406.40 2B 

3.20 254.00 812.80 406.40 406.40 3A 

3.20 254.00 812.80 406.40 406.40 4B 

3.20 254.00 812.80 406.40 406.40 5C 

(studs) 

3.20 254.00 812.80 406.40 406.40 6D 

(studs) 

 

Table 2.4: Rocles and Paboojian specimens’ concrete and steel bars details 

#/

m' 

Øst 

mm 

Vs/Vc 

% 

S 

mm 

# 
 

Ø 

mm 

As/

Ag 

As 

(mm2) 

Ac 

(mm2) 

 ID 

8. 8. 0.61 127.0 12 22 0.02 3138.06 165160.96 1A 

16 8 0.68 63.50 4 35 0.02 3798.70 165160.96 2B 

11 8 0.82 95.25 12 22 0.03 4624.51 165160.96 3A 

11 8 0.46 95.25 4 29 0.02 2642.58 165160.96 4B 

11 8. 0.82 95.25 12 22 0.03 4624.51 165160.96 5C 

(studs) 

11 8 0.46 95.25 4 29 0.02 2642.58 165160.96 6D 

(studs) 
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Table 2.5: Rocles and Paboojian specimens’ steel section details 

Asec/Ag% tw 

mm 

Hw 

 mm 

Tf 

 mm 

Bf 

 mm 

Asec 

(mm2) 

 ID 

4.57 9.10 181.20 14.20 206.00 7548.37 1A 

4.57 9.10 181.20 14.20 206.00 7548.37 2B 

4.57 9.10 181.20 14.20 206.00 7548.37 3A 

4.57 9.10 181.20 14.20 206.00 7548.37 4B 

4.57 9.10 181.20 14.20 206.00 7548.37 5C 

(studs) 

4.57 9.10 181.20 14.20 206.00 7548.37 6D 

(studs) 

 

Table 2.6: Rocles and Paboojian specimens’ loading capacity 

Vsteel 

sec. 

VN 

KN 

Vc 

(kn) 

Vs 

(KN) 

VC 

axial 

ALR 

c 

AL

R 

t 

Axial 

Load 

(KN) 

 ID 

368.34 240.64 74.0723 166.57 25.8125 0.26 0.18 1490 1A 

368.34 403.22 70.0774 333.14 24.4204 0.29 0.19 1490 2B 

368.34 297.13 75.0378 222.09 26.1490 0.26 0.17 1490 3A 

368.34 296.17 74.0723 222.09 25.8125 0.26 0.18 1490 4B 

368.34 292.17 70.0774 222.09 24.4204 0.29 0.19 1490 5C 

(studs) 

368.34 297.13 75.0378 222.09 26.1490 0.26 0.17 1490 6D 

(studs) 
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Table 2.7: Rocles and Paboojian specimens’ shear and moment capacity 

Vp H 

KN 

Vp 

KN 

Mp H 

KNM 

Mp 

KNM 

 ID 

558.871 485.97 454.25 395 1A 

584.338 508.12 474.95 413 2B 

568.775 494.59 462.30 402 3A 

548.967 477.36 446.20 388 4B 

548.967 477.36 446.20 388 5C 

(studs) 

547.552 476.13 445.05 387 6D 

(studs) 

Table 2.8: Rocles and Paboojian specimens’ available test output data 

 

 ID Failure 

mood 

Mpeak 

Test KNM 

Vpeak 

Test 

Vy 

KN 

V80% 

KN 

VR 

KN 

1A flexural 

failure 

625.7 56.00 45.00 44.80 35.00 

2B flexural 

failure 

592.79 N/A N/A N/A N/A 

3A flexural 

failure 

784.4 86.00 75.00 80.00 80.00 

4B flexural 

failure 

670.54 N/A N/A N/A N/A 

5C 

(studs) 

flexural  

failure 

776 N/A N/A N/A N/A 

6D 

(studs) 

flexural 

failure 

667.7 N/A N/A N/A N/A 
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Table 2.9: Rocles and Paboojian specimens’ available test output drift data 

 ID ∆p% ∆y% ∆80% ∆R% 

1A 8.44 4.16 2.29 2.55 

2B ------ ------ ------ ------ 

3A 7.8 4.16 1.77 1.77 

4B ------ ------ ------ ------ 

5C 

(studs) 

------ ------ ------ ------ 

6D 

(studs) 

------ ------ ------ ------ 

 

 

Table 2.10: Rocles and Paboojian specimens’ ductility and comparison 

 ID Vy/Vpeak% VR/VP% µ∆ µf 

1A 80.36 63 5.5 3.02 

2B        

3A 87.21 93 4.25 2.27 

4B ------ ------ ------ ------ 

5C 

(studs) 

------ ------ ------ ------ 

6D 

(studs) 

------ ------ ------ ------ 
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7.2.Chen et al (2007) 

 Chen conducted an experimental study of twenty six specimens to study the 

seismic behavior of SRC composite members and their influence parameters. They used 

only three shapes with changing other parameters such as axial load ratio, longitudinal 

steel ratio, steel shape ratio, embedded steel shape length, and transverse steel ratio. Table 

2.11 and Figure 2.5&Figure 2.6 

Table 2.11: Material properties of the test specimens (Chen et al 2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Chen's first section details (Chen et al 2007) 

 

 

(MPa) (MPa) (MPa) 
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Figure2.6: Chen's second Section details (Chen et al 2007) 

After their experiments on 26 specimens under cyclic loading, the author 

concluded that: 

• The steel concrete composite columns display bending failure mode under seismic 

load. 

• The axial compression ratio is an important factor that affects the seismic behavior 

of steel concrete columns. 

• Stirrup ratio is also an important factor to affect the seismic behavior of steel 

concrete composite column. 

• Steel shape also affects the seismic behavior of steel concrete composite column. 

• The minimum value of the stirrups ratio of steel concrete composite column can 

be reduced by 15% over the current limit value. 

• The minimum value of the embedded depth of steel concrete composite column 

can be 2.5inChen et al’s (2007); results; it was not mentioned anything about the 

backbone curve of composite columns under seismic loading in a nonlinear 

building. 
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Next tables show all chen’s specimens; details and results with self-study according to 

the available data and curves from his work. 

7.2.1. Studying Chen et al’ specimens 

Table 2.12: Chen et al specimens’ strength details 

 

Fysec 

(Mpa) 

Fyst 

(Mpa) 

Fy 

(Mpa) 

F'c 

(Mpa) 

Fcu 

(Mpa) 

 ID 

423.00 276.00 357.00 30.00 37.50 SRC1-1-1 

423.00 276.00 357.00 30.00 37.50 SRC1-1-2 

423.00 276.00 357.00 30.00 37.50 SRC1-2-1 

423.00 276.00 357.00 30.00 37.50 SRC1-2-2 

423.00 276.00 357.00 30.00 37.50 SRC1-3-1 

423.00 276.00 357.00 30.00 37.50 SRC1-3-2 

423.00 276.00 357.00 30.00 37.50 SRC2-1-1 

423.00 276.00 357.00 30.00 37.50 SRC2-1-2 

423.00 276.00 357.00 30.00 37.50 SRC2-2-1 

423.00 276.00 357.00 30.00 37.50 SRC2-2-2 

423.00 276.00 357.00 30.00 37.50 SRC2-3-1 

423.00 276.00 357.00 30.00 37.50 SRC2-3-2 

423.00 276.00 357.00 30.00 37.50 SRC3-1-1 

423.00 276.00 357.00 30.00 37.50 SRC3-1-2 

423.00 276.00 357.00 30.00 37.50 SRC3-2-1 

423.00 276.00 357.00 30.00 37.50 SRC3-2-2 

423.00 276.00 357.00 30.00 37.50 SRC3-3-1 

423.00 276.00 357.00 30.00 37.50 SRC3-3-2 
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Table 2.13: Chen et al specimens’ dimensions details 

H/Em. Em. 

mm 

H 

mm 

t 

mm 

b 

mm 

 ID 

3.00 366.67 1100.00 260.00 180.00 SRC1-1-1 

2.50 440.00 1100.00 260.00 180.00 SRC1-1-2 

3.00 366.67 1100.00 260.00 180.00 SRC1-2-1 

2.00 550.00 1100.00 260.00 180.00 SRC1-2-2 

3.00 366.67 1100.00 260.00 180.00 SRC1-3-1 

3.00 366.67 1100.00 260.00 180.00 SRC1-3-2 

3.00 366.67 1100.00 260.00 180.00 SRC2-1-1 

3.00 366.67 1100.00 260.00 180.00 SRC2-1-2 

3.00 366.67 1100.00 260.00 180.00 SRC2-2-1 

3.00 366.67 1100.00 260.00 180.00 SRC2-2-2 

3.00 366.67 1100.00 260.00 180.00 SRC2-3-1 

3.00 366.67 1100.00 260.00 180.00 SRC2-3-2 

3.00 366.67 1100.00 260.00 180.00 SRC3-1-1 

3.00 366.67 1100.00 260.00 180.00 SRC3-1-2 

3.00 366.67 1100.00 260.00 180.00 SRC3-2-1 

2.50 440.00 1100.00 260.00 180.00 SRC3-2-2 

3.00 366.67 1100.00 260.00 180.00 SRC3-3-1 

2.00 550.00 1100.00 260.00 180.00 SRC3-3-2 
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Table 2.14: Chen et al specimens’ concrete and steel bars details 

#/m' Øst 

mm 

Vs/Vc 

% 

S 

mm 

# 
 

Ø 

mm 

As/Ag As 

mm2 

Ac 

mm2 

 

 ID 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC1-1-1 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC1-1-2 

15 6.5 0.74 65 10 10 0.02 785.4 46800 SRC1-2-1 

15 6.5 0.74 65 10 10 0.02 785.4 46800 SRC1-2-2 

13 6.5 0.60 80 10 10 0.02 785.4 46800 SRC1-3-1 

13 6.5 0.60 80 10 10 0.02 785.4 46800 SRC1-3-2 

23 6.5 1.15 43 10 10 0.02 785.4 46800 SRC2-1-1 

23 6.5 1.15 43 10 10 0.02 785.4 46800 SRC2-1-2 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC2-2-1 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC2-2-2 

15 6.5 0.74 65 10 10 0.02 785.4 46800 SRC2-3-1 

15 6.5 0.74 65 10 10 0.02 785.4 46800 SRC2-3-2 

27 6.5 1.30 37 10 10 0.02 785.4 46800 SRC3-1-1 

27 6.5 1.30 37 10 10 0.02 785.4 46800 SRC3-1-2 

23 6.5 1.15 43 10 10 0.02 785.4 46800 SRC3-2-1 

23 6.5 1.15 43 10 10 0.02 785.4 46800 SRC3-2-2 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC3-3-1 

19 6.5 0.90 53 10 10 0.02 785.4 46800 SRC3-3-2 
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Table 2.15: Chen et al specimens’ steel section details 

Asec/Ag% tw 

mm 

Hw 

 mm 

Tf 

 mm 

Bf 

 mm 

Asec 

(mm2) 

 ID 

6.15 8 160 10 100 2880 SRC1-1-1 

6.15 8 160 10 100 2880 SRC1-1-2 

6.15 8 160 10 100 2880 SRC1-2-1 

6.15 8 160 10 100 2880 SRC1-2-2 

6.15 8 160 10 100 2880 SRC1-3-1 

6.15 8 160 10 100 2880 SRC1-3-2 

6.15 8 160 10 100 2880 SRC2-1-1 

6.15 8 160 10 100 2880 SRC2-1-2 

6.15 8 160 10 100 2880 SRC2-2-1 

6.15 8 160 10 100 2880 SRC2-2-2 

6.15 8 160 10 100 2880 SRC2-3-1 

6.15 8 160 10 100 2880 SRC2-3-2 

6.15 8 160 10 100 2880 SRC3-1-1 

6.15 8 160 10 100 2880 SRC3-1-2 

6.15 8 160 10 100 2880 SRC3-2-1 

6.15 8 160 10 100 2880 SRC3-2-2 

6.15 8 160 10 100 2880 SRC3-3-1 

6.15 8 160 10 100 2880 SRC3-3-2 
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Table 2.16: Chen et al specimens’ loading capacity 

Vsteel 

sec. 

KN 

VN  

KN 

Vc 

(kn) 

Vs 

(KN) 

VC 

axia

l 

KN 

AL

R 

c 

AL

R 

t 

Axial 

Load 

(KN) 

 ID 

324.86 179.39 17.04 162.35 5.94 0.50 0.27 702. SRC1-1-1 

324.86 179.39 17.04 162.35 5.94 0.50 0.27 702 SRC1-1-2 

324.86 149.42 17.04 132.38 5.94 0.50 0.27 702 SRC1-2-1 

324.86 149.42 17.04 132.38 5.94 0.50 0.27 702 SRC1-2-2 

324.86 124.60 17.04 107.56 5.94 0.50 0.27 702 SRC1-3-1 

324.86 124.60 17.04 107.56 5.94 0.50 0.27 702 SRC1-3-2 

324.86 217.15 17.04 200.11 5.94 0.65 0.35 912.6 SRC2-1-1 

324.86 217.15 17.04 200.11 5.94 0.65 0.35 912.6 SRC2-1-2 

324.86 179.39 17.04 162.35 5.94 0.65 0.35 912.6 SRC2-2-1 

324.86 179.39 17.04 162.35 5.94 0.65 0.35 912.6 SRC2-2-2 

324.86 149.42 17.04 132.38 5.94 0.65 0.35 912.6 SRC2-3-1 

324.86 149.42 17.04 132.38 5.94 0.65 0.35 912.6 SRC2-3-2 

324.86 249.60 17.04 232.56 5.94 0.75 0.40 1053 SRC3-1-1 

324.86 249.60 17.04 232.56 5.94 0.75 0.40 1053 SRC3-1-2 

324.86 217.15 17.04 200.11 5.94 0.75 0.40 1053 SRC3-2-1 

324.86 217.15 17.04 200.11 5.94 0.75 0.40 1053 SRC3-2-2 

324.86 179.39 17.04 162.35 5.94 0.75 0.40 1053 SRC3-3-1 

324.86 179.39 17.04 162.35 5.94 0.75 0.40 1053 SRC3-3-2 
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Table 2.17: Chen et al specimens’ shear and moment capacity 

 

 

Vp H 

KN 

Vp 

KN 

Mp H 

KNM 

Mp 

KNM 

 ID 

64.818 56.36 71.30 62.00 SRC1-1-1 

64.818 56.36 71.30 62.00 SRC1-1-2 

64.818 56.36 71.30 62.00 SRC1-2-1 

64.818 56.36 71.30 62.00 SRC1-2-2 

64.818 56.36 71.30 62.00 SRC1-3-1 

64.818 56.36 71.30 62.00 SRC1-3-2 

57.500 50.00 63.25 55.00 SRC2-1-1 

57.500 50.00 63.25 55.00 SRC2-1-2 

57.500 50.00 63.25 55.00 SRC2-2-1 

57.500 50.00 63.25 55.00 SRC2-2-2 

57.500 50.00 63.25 55.00 SRC2-3-1 

57.500 50.00 63.25 55.00 SRC2-3-2 

48.091 41.82 52.90 46.00 SRC3-1-1 

48.091 41.82 52.90 46.00 SRC3-1-2 

48.091 41.82 52.90 46.00 SRC3-2-1 

48.091 41.82 52.90 46.00 SRC3-2-2 

48.091 41.82 52.90 46.00 SRC3-3-1 

48.091 41.82 52.90 46.00 SRC3-3-2 
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Table 2.18: Chen et al specimens’ available test output data 

VR 

KN 

V80% 

KN 

Vy 

KN 

Vpeak 

KNM 

Mpeak 

KNM 

Failure 

mood 

ID 

----- ----- ----- ----- ----- 

Shear 

failure 

SRC1-1-1 

100.00 

 

118.00  133.75  147.50  
162.25 

Shear 

failure 

SRC1-1-2  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC1-2-1  

83.34 

 

104.80  112.00  
131.00 144.10 

Shear 

failure 

SRC1-2-2  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC1-3-1  

100.00 

 

128.00  138.20  
160.00 176.00 

Shear 

failure 

SRC1-3-2  

100.00 

 

125.87  141.34  
151.25 166.38 

Shear 

failure 

SRC2-1-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC2-1-2  

97.50 

 

112.00  117.50  
140.00 154.00 

Shear 

failure 

SRC2-2-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC2-2-2  

20.00 

 

115.00  114.55  
143.70 158.07 

Shear 

failure 

SRC2-3-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC2-3-2  

90.00 

 

121.52  135.00  
151.90 167.09 

Shear 

failure 

SRC3-1-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC3-1-2  

92.50 

 

118.00  132.50  
147.50 162.25 

Shear 

failure 

SRC3-2-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC3-2-2  

65.46 

 

128.00  136.36  
160.00 176.00 

Shear 

failure 

SRC3-3-1  

----- ----- ----- ----- ----- 

Shear 

failure 

SRC3-3-2  
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Table 2.19: Chen et al specimens’ available test output drift data 

 

 

∆R ∆80% ∆y ∆p  ID 

----- ----- ----- ----- SRC1-1-1 

3.64 2.95 0.82 1.73 SRC1-1-2 

----- ----- ----- ----- SRC1-2-1 

3.27 2.95 0.95 1.36 SRC1-2-2 

----- ----- ----- ----- SRC1-3-1 

3.09 2.55 0.82 1.36 SRC1-3-2 

3.00 2.45 1.18 1.37 SRC2-1-1 

----- ----- ----- ----- SRC2-1-2 

2.27 1.91 0.59 1.37 SRC2-2-1 

----- ----- ----- ----- SRC2-2-2 

2.27 1.91 0.68 1.18 SRC2-3-1 

----- ----- ----- ----- SRC2-3-2 

3.14 2.73 0.68 1.36 SRC3-1-1 

----- ----- ----- ----- SRC3-1-2 

2.73 2.36 0.68 1.36 SRC3-2-1 

----- ----- ----- ----- SRC3-2-2 

2.36 1.95 0.91 1.36 SRC3-3-1 

----- ----- ----- ----- SRC3-3-2 
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Table 2.20: Chen et al specimens’ ductility and comparison 

 

µf µ∆ VR/VP 

% 

Vy/Vpeak 

% 

 ID 

----- ----- ----- ----- SRC1-1-1 

2.67 3.633 67.80 90.68 SRC1-1-2 

----- ----- ----- ----- SRC1-2-1 

2.43 3.1 63.62 85.50 SRC1-2-2 

----- ----- ----- ----- SRC1-3-1 

2.26 3.12 62.50 86.38 SRC1-3-2 

2.19 2.077 66.12 93.45 SRC2-1-1 

----- ----- ----- ----- SRC2-1-2 

1.68 3.22 69.64 83.93 SRC2-2-1 

----- ----- ----- ----- SRC2-2-2 

1.92 2.8 13.92 79.71 SRC2-3-1 

----- ----- ----- ----- SRC2-3-2 

2.30 3.96 59.25 88.87 SRC3-1-1 

----- ----- ----- ----- SRC3-1-2 

2 3.42 62.71 89.83 SRC3-2-1 

----- ----- ----- ----- SRC3-2-2 

1.73 21.15 40.91 85.23 SRC3-3-1 

----- ----- ----- ----- SRC3-3-2 
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According to Rocles and Paboojian and Chen’ specimens’ study, the initial yield 

drift of shear failure mood specimens are a reference source of our study shear specimens 

and the impeded length ratio of steel section will be taken as resulted to be in all 

specimens will be illustrated in this experimental study.  

 

7.2.2. Sezen(17 years ago) 

 Sezen tested four full-scale column specimens to show the response of existing 

columns in old building under seismic loading. Although Sezen tested conventional 

concrete columns under seismic loading, not composite columns, the target of his tests 

was similar to the target of this study: that is to get the actual behavior of the column 

under the seismic loading. This study depends on Sezen’s setup to reach to the same level 

as how he simulated the column as it is in the actual building. What is similar between 

this study and his are the specimens’ setup and the axial load ratio range due to the same 

shape of specimens. Figure 2.7 and Figure 2.8show the test setup which is our reference 

for testing setup due to the similarity of specimens and test target of loading axial and 

horizontally. 
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Figure 2.7:Sezen'stest setup 

 

 

Figure 2.8:Sezen'sloading frame elevation 
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3.  Chapter 3                                                                        

Design of prototype building  

 

 The current series of tests aim to establish more specific cyclic backbone curves 

of SRC sections.  A high-rise building was used as a prototype building to obtain realistic 

demands on an exterior column of a modern tall building. And 20 story prototype building 

mimicking old construction was used to obtain the demands on the existing exterior 

column. The demands on the columns representing existing buildings were estimated 

based on the axial load ratios prevailing in older construction. Concrete strength used for 

modern building was fc
’=35 MPa and, strength of fc’=27MPa for existing building. 

Table 3.1 and Table 3.2show the assumed parameters for the high rise prototype building 

(modern building) and for the existing building. 

Table 3.1: The high rise building parameters (Modern construction) 

Number of floors 30 floors 

Ground floor height 3 m 

Total height 90 m 

Building area 1765 m2 

Live load 3 KN/m2 

Flooring cover 1.5 KN/m2 

Slab thickness 0.20 m 

Load factors 1.4D.L+0.5L.L+EQ 

Location San Francisco  

Earthquake combination 100%Y direction + 30%X direction 

Shear wall core dimensions 6*0.3 m 
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Table 3.2: The existing building parameters (Old construction) 

Number of floors 20 floors 

Ground floor height 3 m 

Total height 60 m 

Building area 1765 m2 

Live load 3 KN/m2 

Flooring cover 1.5 KN/m2 

Slab thickness 0.20 m 

Load factors 1.4D.L+0.5L.L+EQ 

Location San Francisco  

Earthquake combination 100%Y direction + 30%X direction 

Shear wall core dimensions 6*0.3 m 

 

 

Figure 3.1: The high rise building modeling 

According to these parameters and by using SAP2000 for modeling and the 

response spectra for the San Francisco Figure 3.2 to model seismic loading, the maximum 

load of the exterior column for modern building is 25,000 KN. under gravity and 

earthquake load. The next step was to use the equation for designing the composite 

column axially section: 



44 

 

Chapter 3                                                                               Design of prototype building 

 

Pu = Aa Fya + As Fys + Ac Fc’ (Eq1: ACI 318—14) 

 

Pu = Maximum axial load Aa = Cross section area of steel shape = 1-3%Ac 

Fya = steel shape yield strength 

As = Total cross section area of longitudinal steel bars = 2-3%Ac 

Fys= longitudinal steel bars strength Ac = Area cross section of the column 

fc’ = Cylinder concrete strength = 80% cubic concrete strength 

With this equation the primary design of the column was established which is listed in 

Table 3.3. 

 

Figure 3.2: Design response spectra for the San Francisco 
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Table 3.3: Primary modern building column design parameters 

Column section 0.75x0.75m 

Steel shape WF 18x86 = 0.0163225 m2 

steel sec. ratio2.9%Ac 

Longitudinal steel bars 20 dia. 25mm = 0.01568m2 

 

 

As for the existing prototype building based on the modeling, the maximum 

exterior column axial gravity load was 9500 KN. Using Eq.1,the column design is 

obtained. However, according to ACI 318—63 which is used to design the existing 

building columns for gravity load only, there are some differences from the modern ACI 

318-14 code. 

First, Aa = Area cross section of steel shape = 5-9%Ac which is much higher than the 

current practice 

As = Total area cross sections of longitudinal steel bars = 2-3%Ac 

With the same parts of equation only the differences are for steel section and longitudinal 

bars ratio 

 

Table 3.4: Primary existing column’s parameters (old building) 

Column section 0.45x0.45 m 

Steel shape 

 

WF 10x54 = 0.010125 m2 

Steel sec. ratio 5%Ac 

Longitudinal steel bars 

 

12 dia. 25mm =0.00 588 m2 

2.9%Ac 
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4.  Chapter (4)                                                                      

Experimental Program 

 

The actual column section can be constructed in a real building but still unknown 

in its behavior under seismic loading. To deal with section and test it, it had to be scaled 

to fit within the lab capacity. A scaling factor of 0.5 of ground floor height is a very 

suitable scale to be easy built and tested within the available lab constrains. for column 

section dimensions it was scaled in first to 0.5 of the original prototype column but after 

the pilots ‘ test the column dimension reduced from 0.30m x0.30m to be 0.25m x 0.25m. 

For testing a high-rise building modern column, it was decided to build three specimens 

with fc’=35 MPa and with height 1.5m as a half scale height of the ground floor of the 

prototype building. As shown in Figure 4.2 the column bas dimensions were taken 1.70m 

in length to be enough for two bolts spacing 1m axis between and extra concrete length 

0.35 from two sides. The width was taken 0.6m to be enough for column dimensions 

which is 0.25 x 0.25 m with 0.175m from two sides to avoid column punching. Finally, 

the bas depth was taken 0.8 m to be enough for embedment steel section.  Table 4.1 

summarizes the specimens’ parameters. According to, Chen et al (2007) and Rocles & 

Paboojian (1992), the embedment length of the steel shape inside the base is:      

H/Em = 2.5 

Where Em: the embedment length of steel shape 

H: the clear height of the column 

So, 1.5/Em=2.5                         Em=0.6m in the base. 
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1. Shear Studs (Shear Connectors) 

According to AISC 360-05, to calculate required shear studs for column, the next 

equations were used to find length, diameter, and spacing of shear studs as shown in 

Figure 4.1. It was used bolts instead of the studs with same calculated parameters. 

• L< 4 ds 

• 16mm < ds < 25mm 

• ds> 2 tf 

• dh< 1.5 ds 

• S= 6 ds 

Where:  

L: is the length of shear stud: is the shear stud diameter 

dh: is shear stud’s head diameter S: is the spacing between shear studs: web flange 

thickness  

 

Figure 4.1: Shear studs details 
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Figure 4.2: Modern building test specimen details 

 

Table 4.1: Modern building test specimens’ details 

 

 

 

Test target 

Number of 

specimens 

fc
’ 

MPa 

 

Column 

dimensions 

(m) 

Reinforced 

Steel bars 

Steel 

shape 

 

Conventional 

concrete 
3 35 0.25x0.25x1.5 

 

12 dia. 10 mm 

Flexure failure 

 

 

HEB 

100 
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Based on the maximum load, which lab load cell can take (2000 KN), the axial 

load ratio were calculated. The axial load ratio (ALR) is defined as:  

ALR = (Pu) / (Ac*fc
’) 

Where Pu is maximum axial load and Ac is the gross section area    

 

Table 4.2: Experimental Modern building specimens’ test matrix 

 

 

 

 

 

 

Specimen

s ID 

fc’  

MP

a 

Failur

e 

Mode 

AL

R 

Stirrups 

Spacing 

S 

Fyst 

Mpa 

Steel 

Shape 

Ratio 

Fysec 

Mpa 

R. 

Steel   

ρ 

Fybar 

Mpa 

 

CSF-10N 
35 

Flexur

e Ten. 
0.1 0.16m 

 

516 
4.16% 

(H100) 

 

435 

2% 

(12Φ10

) 

 

428 

 

CSF-10N 
35 

Flexur

e Ten. 
0.1 0.075m 

 

516 
4.16% 

(H100) 

 

435 

2% 

(12Φ10

) 

 

428 

CSF-0N 35 
Flexur

e Ten. 
0 0.075m 

 

516 
4.16% 

(H100) 

 

435 

2% 

(12Φ10

) 

 

428 
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1. Specimen instruction 

 

Figure 4.3: Modern building test specimen external instrumentation 
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Figure 4.4: Modern building test specimen external instrumentation numbers 

There were seven linear variable displacement transducers (LVDTs) to measure 

each displacement which occur during the test both intension and compression area of the 

column arranged and numbering as Table 4.3:    

 Table 4.3: Arrangement and numbering of displacement potentiometers of  

modern building specimens 

# 

 

Distance from 

Base 

LVDT  Length Measured 

length 

purpose 

 

1 

 

0.04 m 

 

0.05 m 

 

0.055 m 

 

Slip rotation 

 

2 

 

0.05 m 

 

0.1 m 

 

0.115 m 

Tension/ compression 

displacement 

 

3 

 

0.175 m 

 

0.1 m 

 

0.25 m 

Tension/ compression 

displacement 

4 0.04 m 0.05 m 0.055 m Slip rotation 

 

5 

 

0.05 m 

 

0.1 m 

 

0.12 m 

Tension/ compression 

displacement 

 

6 

 

0.17 m 

 

0.1 m 

 

0.24 m 

Tension/ compression 

displacement 

 

7 

 

0.22 m 

 

0.1 m 

 

0.17 m 

Tension/ compression 

displacement 
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About 14 strain gages were used to measure strain in stirrups, longitudinal bars, 

and steel section flanges and web at different distances from base surface to provide 

sufficient data to give an idea about the behavior of specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Modern building test specimen arrangement hoop strain gages 
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Table 4.4: Hoop strain gages of modern building specimens 

Num. Distance from base face 

1 0.025 m 

5 0.19 m 

6 0.19 m 

11 0.3 m 

13 0.87 m 

 

 

Figure 4.6: Modern building test specimen arrangement of longitudinal bars strain 

gages 
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Table 4.5: Longitudinal bars strain gages of modern building specimens 

Num. Distance from base face 

2 0.125 m 

3 0.125 m 

7 0.17 m  

8 0.17 m 

12 0.30 m 

 

 

 

Figure 4.7: Modern building test specimen arrangement of steel section flanges 

strain gages 
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Table 4.6: Steel section flanges’ strain gages of modern building specimens 

Num. Distance from base face 

4 0.125 m 

9 0.17 m 

10 0.17 m  

14 0.87 m 

 

 

 

Figure 4.8: Modern building test specimen arrangement of LVDT 4-7 
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Figure 4.9: Modern building test specimen arrangement of LVDT 

For testing column representing existing buildings, seven specimens were built 

with fc’=27MPa and five of them with height 1m as one third scale of the 3m of the 

ground floor of the prototype building, using scale 1/3 for shear deficient existing building 

was necessary to enforce shear failure to reducing the moment values during testing. The 

other two specimens which are with height 1.5m as same as the modern building's 

specimens to enlarge the moment values during the test. With the same sequence, to 

calculate embedment length of steel shape the following equation was used. 

H/Em = 2.5 

 

So, 1/Em=2.5                         Em= 0.4m in the base. 
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Figure 4.10: Existing building test specimen details 

Table 4.7: Existing building test specimens 

Number 

of 

specimens 

fc
’ 

(MPa) 

Base 

dimension 

Column 

dimension 

Reinforced Steel 

bars 

 

Steel 

shape 

 

5 27 
0.8x0.6x1.7 

m 

0.25x0.25x1 

m 

(12dia 22 + 4 dia.25) 

Shear failure 

HEB 

120 

 

2 

 

27 
0.8x0.6x1.7 

m 

0.25x0.25x1.5 

m 

(8 dia10) 

Flexure failure 

HEB 

120 
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Table 4.8: Existing specimens test matrix 

 

# Specimens 

ID 

fc’ 

MPa 

Target 

Failure 

Mode 

ALR 
Hoop 

Spacing 

Steel 

Section 

Ratio 

 

Reinforcement 

Steel 

Ratio 

1 CSS15-E 

 
27 Shear 0.15 S=0.30m 

5.4% 

(H120) 

7% 

(12Φ22+ 4Φ25) 

2 CSS20-E 

 
27 Shear 0.20 S=0.30m 

5.4% 

(H120) 

7% 

(12Φ22+ 4Φ25) 

3 CSS40-E 

 
27 Shear 0.40 S=0.3m 

5.4% 

(H120) 

7% 

(12Φ22+ 4Φ25) 

4 CSS60-E 

 
27 Shear 0.60 S=0.3m 

5.4% 

(H120) 

7% 

(12Φ22+ 4Φ25) 

5 CSS80-E 

 
27 Shear 0.80 S=0.3m 

5.4% 

(H120) 

7% 

(12Φ22+ 4Φ25) 

6 CSF15-E 

 
27 

Flexure 

Ten 
0.15 S=0.075m 

5.4% 

(H120) 

1% 

(8Φ10) 

7 
CSF80-E 

 
27 

Flexure 

Comp 
0.8 

S=0.075m 

 

 

5.4% 

(H120) 

1% 

(8Φ10) 
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Figure 4.11: Existing building test specimen external instruments 

 

Figure4.12: Existing building test specimen external instrumentation numbers 
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 There were 7 LVDTs to measure each displacement which occur during the test 

in both tension and compression area of the column arranged and numbering as Table4.9. 

Table 4.9: Arrangement and numbering of displacement potentiometers of existing 

building specimens 

 

# 

 

Distance from 

Base 

 

LVDTs Length 

Measured 

length 

 

purpose 

 

1 

 

 

0.17 m 

 

0.1 m 

 

0.24 m 

 

tension/compression 

displacement 

 

2 

 

 

0.12 m 

 

0.1 m 

 

0.17 m 

 

tension/compression 

displacement 

 

3 

 

 

0.11 m 

 

0.1 m 

 

0.15 m 

 

tension/compression 

displacement 

 

4 

 

 

0.36 m 

 

0.1 m 

 

0.17 m 

 

tension/compression 

displacement 

 

5 

 

 

0.05 m 

 

0.05 m 

 

0.125 m 

 

tension/compression 

displacement 

 

6 

 

 

0.65 m 

 

0.1 m 

 

0.115 m 

 

tension/compression 

displacement 

 

7 

 

0.05 m 

 

0.05 m 

 

0.125 m 

tension/compression 

displacement 
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1. Test Setup and Loading Protocol 

The test setup comprises a horizontal 220k.N. dynamic actuator with a 120 mm 

tension and compression stroke capacity supported to a strong wall and applying lateral 

load at the top of the specimen. The lateral loading rate was 0.5 mm per second. A 2000kN 

vertical load cell connected to a vertical jack that is attached to a loading frame and braced 

laterally to the reaction wall was used to apply the vertical load. A rolling mechanism was 

introduced to allow for sliding of the column top under the vertical load. The test setup is 

shown in Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17.  

1.1.Yield displacement Protocol 

The specified displacement history used in the experimental investigation of this 

study was a function of yield displacement. Therefore, it was necessary to predict the 

yield displacement of the specimens before the tests.  

In this study, yield displacement is calculated as the summation of three 

components: elastic yielding, longitudinal bar slip, and moment curvature displacements. 

Since the test specimens were tested in single curvature. Figure 4.13 show displacement 

protocol example. Two displacement cycles were used prior to reaching theoretical yield 

displacement followed by three cycles per amplitude after reaching the theoretical yield 

displacement.  

∆y,flex = ∆ye + ∆y,slip +∆M-Ø 

∆ye = ØyL2/ 3        +       ∆y,slip=   Øydpfy/ 8Ub+∆M-Ø = fa3/3EI 

Where: 

L: is the length of column db: is the bar diameter Ub : is a uniform bond stress Øy : yield 

curvature 

fy: is the steel bar’s yield strength                                   f: is the conclude horizontal load 

I:  is the summation of inertia of steel section, steel bars, and concrete  
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Figure 4.13: Displacement protocol 

 

However, the theoretical yield displacement in shear controlled specimens was 

much harder to predict, thus it was predicted based on the results of previous literature 

tests with similar parameters. Seven strain gages and seven LVDTs were used to 

instrument each test specimen at critical strain locations. A data controller and acquisition 

systems were used to apply and monitor loading conditions and collect the test data results 

(Farag, M., and Hassan, W. 2015).Figure 4.18: Figure 4.32  show all steps in preparing 

specimens starting with steel work, wooden form work, checking dimensions and 

verticality, fixing strain gages, pouring concrete process and finally curing specimens. 

 

 

 

 

2 cycles  3 cycles  2 cycles  3 cycles  
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FIGURE 4.14: TEST SETUP 
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Figure 4.15: Test setup 
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Figure 4.16: Column head fixation setup 

 

 

Figure 4.17: Base fixation setup 
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Figure 4.18: High strength steel rods with lubricate 

 

Figure 4.19: High strength upper steel plate with lubricate 

 

 

Figure 4.20: Head mechanism of load transfer 
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4.1. Test specimens' preparation 

 

Figure 4.21: Plywood fair face form work 

 

Figure 4.22: Leveling of specimen column 
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Figure 4.23: Fixing the specimen frame 

 

Figure 4.24: Making the groves for the tubes of the fixation bolts 

 

Figure 4.25: Checking the stirrups spacing 
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Figure 4.26: Checking the accuracy of concrete cover 

 

Figure 4.27: The column head 

 

Figure 4.28: Fixing the strain gages as designed 
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Figure 4.29: Pouring with ready mix concrete 

 

Figure4.30: Checking the leveling during pouring concrete 

 

Figure4.31: Ensuring the strain gages places 
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Figure 4.32: Finishing the pouring face of concrete 

 

Figure 4.33: Pouring all specimens 

 

Figure 4.34: Final check after pouring 
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Figure 4.35: Curing stage of specimens and their sample cylinder and cub samples 
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5.  Chapter 5                                                                            

Test Results and Observation 

 

 

This chapter provides a summary of the test results including damage description 

and test data measured during each test. This chapter also includes a brief description of 

the data reduction procedures, including calibrations and corrections of offsets, 

modification for second-order effects, and description of engineering quantities such as 

moment and average curvature.  

Based on visual observations and recorded test data, the performance of each test 

specimen is addressed. For each specimen, the measured lateral load-displacement 

relations and plots of other important test parameters are presented. The damage 

description of specimens and their implications are discussed, and the measured response 

is compared mainly in terms of applied displacement and load configurations described 

in the previous chapter. The following sections address the response of each specimen 

and observations made during each test.  
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1. Pilot specimens 

Four pilot specimens were cast and tested before reaching to the final shape and 

features of the rest of the specimens in the experimental program. Three specimens 

showed that the lab capacity is limited to enable specimens to fail because of the scale of 

the specimens and the over-strength provided by the steel section. 

 

1.1.P1: CSF-10-NP 

 Figure 5.1shows the shear force-drift ratio hysteresis response of specimen 

CSF10-NP. The flexural nature of the response is clear through the cycles’ shape which 

also shows a strain hardening trend, reaching a significant drift of about 6.5% without 

any strength degradation. (Farag and Hassan, 2015) 

 
Figure 5.1: Shear force-drift hysteresis response of specimen CSF10-NP 
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Figure 5.2shows the failure mode of specimen CSF10-NP under the effect of the 

applied displacement protocol. The specimen was failing in a flexural tension failure 

mode as predicted in the theoretical analysis. (Farag and Hassan, 2015) 

 

          

 

Figure 5.2: Failure mode of specimen CSF10-NP 
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1.2.P2: CSS-15-NP 

 Figure 5.3shows the failure mode of specimen CSS15-NP under the effect of the 

applied displacement protocol. The target failure mode of the specimen was flexural 

tension failure. According to ACI 318-08, the minimum hoop spacing used was 250 mm. 

The effect of hoop spacing on the backbone curve will be studied through this study. 

(Farag and Hassan, 2015) 

 

Figure 5.4shows the shear-drift hysteresis response of specimen CSS15-NP until 

the test termination drift ratio of about 6.5% due to actuator stroke capacity. A strain 

hardening trend reached the significant drift of 6.5% without any strength degradation 

evident. This drift ratio is believed to exceed any practical drift ratio corresponding to 

collapse prevention limit state. The peak shear value was 490 KN which excessively 

exceeded the predicted value of 190 KN that was originally expected to correspond to the 

flexural capacity of the section. (Farag and Hassan, 2015) 

 

 

 

 

 

 

 

 

Figure 5.3: Failure mode of specimen CSS15-NP 
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Figure 5.4: Shear force-drift hysteresis response of specimen CSS15-NP 

1.3.P3: CSS10-E 

Figure 5.5shows the failure mode of specimen CSS10-EP under the effect of the 

applied displacement protocol. The target failure mode of the specimen was shear failure. 

The specimen was designed according to ACI 318-63. The hoop spacing was 300 mm. 

Some shear flexural cracks have appeared during the test. However, the specimen appears 

to have failed in flexure due to shear over-strength of the embedded steel section.  (Farag 

and Hassan, 2015) 
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Figure 5.6 shows the shear-drift hysteresis response of specimen CSS10-EP. The 

specimen initially yielded in flexure; however, large deformation resulting from strain 

hardening at 90 degree has left hooks of the hoops opened and left the concrete in 

compression poorly confined. This has resulted in crushing the concrete in 

compression.(Farag and Hassan, 2015) 

                         
 

Figure 5.5: Failure mode of specimen CSS10-EP 

Figure 5.6: Shear force-drift hysteresis response of specimen CSS10-EP 
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According these three specimens, the section of the column was reduced to be 250 

x 250 mm instead of 300x 300 mm with 1.5m height for flexural controlled specimens 

and 1m height for shear specimens to reduce the failure moment and allow for shear 

controlled behavior. The fourth specimen was tested to check the new parameters under 

the lab capacity with 25 cm spacing between hoops for a specimen referring to an existing 

building according to ACI 318-63. 

1.4.P4: CSS-15-E-25 

        

Figure 5.7: Failure mode of specimen CSS15-E-25 

Figure 5.7 shows the failure mood of specimen CSS15-E-25.During the testing 

of specimen CSS15-EP-25, the horizontal load cell reached the maximum load limit of 

220 KN. According to Figure 5.8 shows, it was decided to remove the concrete cover for 

the column height to check the response of transverse steel (stirrups) and longitudinal 

bars. No deformation was found. For that, concrete was removed from the entire section 

to check the steel section; the steel section was not totally affected. Some deformation 

was found in the longitudinal section due to the side loading for the specimen 
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 As a result, the spacing between stirrups was increased to be 300 mm instead of 250 

mm. Figure 5.10 shows the shear force-drift hysteresis response of specimen. 

      

 

Figure 5.8: Entire section of CSS15-EP-25 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Damage pattern of specimen CSS15-E-25 
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Figure 5.10: Shear force-drift hysteresis response of specimen CSS15-E-25 
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2. Modern building 

2.1.CSF -10-16-N 

CSF-10-16-N was subjected to a constant compressive axial load of 262 KN 

(0.1f’c Ag, where f’c = cylinder compressive concrete strength,                                          and 

Ag = gross cross sectional area) and cyclic increments of lateral displacements as 

described in Figure 4.13.  The theoretical nominal yield displacement was calculated to 

be equal to 28.1mm. It was noticed that there was inclination of the horizontal actuator 

load cell with an angel ɵ=0.0156. This was taken into consideration in the force drift post 

processing. 

During the first two groups of displacement protocol (0.25 ∆y and 0.5∆y) there was no 

cracking. Starting the following displacement cycles of 0.75 of the nominal yield 

displacement, horizontal hairline cracks (width of less than 1mm.) developed near the 

bottom of the column.  

At these displacement levels, no new cracks were observed around the mid height 

area of the column. The number of inclined cracks and the crack width on the faces 

parallel to the lateral loading direction increased as the number and magnitude of the 

displacement cycles increased. Small horizontal cracks on the faces perpendicular to the 

lateral loading direction (i.e., on the east and west faces), started to span the width of the 

column. These relatively straight continuous horizontal cracks opened and closed during 

each cycle. During displacement cycles at 1.3 of the nominal yield displacement, 

relatively large crack openings were observed suggesting slip of the longitudinal 

reinforcing bars from the base.  

Figure 5.14 shows 1.5mm wide crack opened between the flexural tension side 

of the column base and the column at peak lateral displacement.  
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During displacement cycles at the nominal yield displacement (∆ y = 47.5 mm.), 

crack opening was wider was wider with no new cracks .the vertical load cell tilted with 

ɵ=0.058 at the peak of displacement, which was accounted for during post processing 

The width of the existing horizontal cracks in faces perpendicular to the loading direction 

increased. 

At the beginning of cycle at the displacement level of 136mm (4.87 ∆ y), when 

the specimen was loaded the first time (push or eastward direction, Figure 5.19, the cover 

concrete was luxated at the bottom corner.  

In the flexural compression zones, at the bottom of the column, flaking and spalling of 

concrete were observed. 

 As the number of cycles increased, the concrete cover crashed and the steel bars 

appeared. The reinforcing steel bars started to buckle between stirrups spacing near the 

base at tension and compression sides as shows in Figures 5.22. 

 

 

 

Figure 5.11: Specimen CSF-10-16-N at initial displacement (Hair cracking) 
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Figure 5.12: CSF-10-16-NSlipping from base of column at 1.3∆y 

 

 

 

Figure 5.13: Specimen CSF-10-16-N at the compression direction of 2.2∆y 
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Figure 5.14: Specimen CSF-10-16-N at the tension direction of 2.2∆y 

 

 

Figure 5.15: Perpendicular side of Specimen CSF-10-16-N at 2.2∆y 
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Figure 5.16: CSF-10-16-NCrushing concrete cover at 2.85∆y 

 

 

 

 

 

 

 

 

Figure 5.17: CSF-10-16-NCrushing concrete cover of 2.85∆y 
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Figure 5.18: CSF-10-16-NCompression and tension of loading of 3.72∆y 

 

 

Figure 5.19: CSF-10-16-NCompression side 3.72∆y 
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Figure 5.20: Perpendicular side after failure 

 

 

 

 

 

 

Figure 5.21: Compression side steel bars buckling 

 

 

 

 

Figure 5.22: Compression and tension sides’ steel bars buckling 
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Figure 5.23: Shear force-drift hysteresis response of specimen CSF 10-16-N 
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Figure 5.24: Peak to peak stiffness of specimen CSF 10-16-N 

 

Figure 5.25: Peak to peak Energy of specimen CSF 10-16-N 
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Figure 5.26:  Compression shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Tension side)

 

Figure 5.27:  Tension shear strain (rad) Vs Drift groups (Vertical LVDTs 5-12) 

(Tension side) 
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Figure 

5.28:  Compression shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Compression side) 

 

Figure 5.29:  Tension shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Compression side) 
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Figure 5.30:   Compression flange steel strain Vs Drift groups (125mm) 

 

Figure 5.31:   Tension flange steel strain Vs Drift groups (12.5mm) 
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Figure 5.32:   Compression steel bar strain Vs Drift groups (125mm)  

(Compression side) 

 

Figure 5.33: Tension steel bar strain Vs Drift groups (125mm) (Compression side) 
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Figure 5.34:   Compression steel bar strain Vs Drift groups (125mm) 

(Tension side)

 Figure 5.35:   Tension steel bar strain Vs Drift groups (125mm) (Tension 

side) 
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Figure 5.36:   Compression steel hoop strain Vs Drift groups (25mm) 

 

 

Figure 5.37:   Tension steel hoop strain Vs Drift groups (25mm) 
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2.2.CSF -10-7.5-N 

CSF-10-75-N was subjected to a constant compressive axial load of 340 KN 

(0.1f’c Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross 

sectional area) and cyclic increments of lateral displacements as described in  

Figure 4.13.  The theoretical nominal yield displacement was calculated to be equal to 

28.6 mm  Same inclination of the horizontal actuator load cell was noticed with an angel 

ɵ=0.0156 due to similar specimen height and test setup conditions. This was taken into 

consideration in the force and drift post processing.  

During the first groups of displacement protocol which (0.25 ∆y) there was no 

cracking. Starting the following displacement cycles of 0.5of the nominal yield 

displacement, horizontal hairline cracks (width of less than 1mm.) developed near the 

bottom of the column.  

At these displacement levels, no new cracks were observed around the mid height 

area of the column. The number of inclined cracks and the crack width on the faces 

parallel to the lateral loading direction increased as the number and magnitude of the 

displacement cycles increased. Small horizontal and inclined cracks on the faces 

perpendicular to the lateral loading direction (i.e., on the east and west faces), started to 

span the width of the column. These relatively straight continuous horizontal cracks 

opened and closed during each cycle. During displacement cycles equal to theoretical ∆y 

displacement cracks opening increased, relatively large crack openings were observed 

suggesting slip of the longitudinal reinforcing bars from the base at 

 ∆ =1.3∆y.  

Figure5.41shows 2.5mm wide crack opened between the flexural tension side of the 

column base and the column at peak lateral displacement. During displacement cycles to 

the nominal yield displacement (∆ = 5.6 mm.), crack opening was wider was observed 

without any new cracks. 
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The width of the existing horizontal cracks in faces perpendicular to the loading direction 

increased from two sides. 

At the beginning of cycling at the displacement level of 62.9mm (2.2 ∆ y), when 

the specimen was loaded the first time (push or eastward direction, Figure 5.45, spilling 

of the cover concrete was observed in the bottom northeast corner and the horizontal load 

started to decrease after reaching the peak previous. In the flexural compression zones, at 

the bottom of the column, flaking and spalling of concrete were observed. 

 As the number of cycles increased, after the concrete cover crashed and the steel 

bars appeared, there was not any buckling of steel bars but the lower cracks were deep in 

the column around the cross section as shown in Figure 5.47. 

 

 

Figure 5.38: Specimen CSF-10-75-N at initial cracking (0.5 ∆y) 
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Figure 5.39: CSF-10-75Tension side at ∆y 

 

Figure 5.40: CSF-10-75 Perpendicular side at ∆y 
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Figure 5.41: CSF-10-75 opening cracks near to base 1.96 ∆y 

 

Figure 5.42: CSF-10-75 Boundary crack before failure 
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Figure 5.43: CSF-10-75 Crack opining width 2.5mm at first cycle of 2.197 ∆y 

 

Figure 5.44: CSF-10-75 Crushing concrete cover mid cycle of (2.197∆y) 

 

 

 

 

 

 



102 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.45: CSF-10-75 Compression side at (2.85∆y) 

 

 

 

 

 

 

Figure 5.46: CSF-10-75 Deep flexure cracks 

 

Figure 5.47: CSF-10-75Perpendicular side after failure 
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Figure 5.48: Shear force-drift hysteresis response of specimen CSF 10-7.5-N 
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Figure 5.49: Peak to Peak stiffness of specimen CSF 10-7.5-E 

 

Figure 5.50: Peak to peak Energy of specimen CSF 10-7.5-N 
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Figure 5.51:  CSF-10-75Compression shear strain (rad) Vs Drift groups       

(Vertical LVDTs 5-12) (Tension side)

 

Figure 5.52: CSF-10-75 Tension shear strain (rad) Vs Drift groups                  

(vertical LVDTs 5-12) (tension side) 
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 Figure 5.53: CSF-10-75 Compression shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Compression side)

 

Figure 5.54:  CSF-10-75Tension shear strain (rad) Vs Drift groups                  

(vertical LVDTs 5-12) (compression side) 
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Figure 5.55:  CSF-10-75 Compression flange steel strain Vs Drift groups (125mm) 

 

Figure 5.56: CSF-10-75 Tension flange steel strain Vs Drift groups (125mm) 
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Figure 

5.57:  CSF-10-75 Compression steel bar strain Vs Drift groups (125mm)   

(Compression side)

 

Figure 5.58: CSF-10-75 Tension steel bar strain Vs Drift groups (125mm) 

(Compression side) 
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Figure 5.59: CSF-10-75Compression steel bar strain Vs Drift groups 

(125mm) (Tension side)

         

Figure 5.60: CSF-10-75 Tension steel bar strain Vs Drift groups (125mm) 

(Tension side) 
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Figure 5.61: CSF-10-75Compression steel hoop strain Vs Drift groups (25 mm) 

 

Figure 5.62: CSF-10-75Tension steel hoop strain Vs Drift groups (25mm) 
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2.3.CSF -0-7.5-N 

CSF-0-7.5-N was subjected to no axial load and cyclic increments of lateral 

displacements as described in Figure 4.13.  The theoretical nominal yield displacement 

was calculated to be equal to 29.1 mm. Some inclination of the horizontal actuator load 

cell was noticed with an angel ɵ=0.0156. This was taken into consideration in the force 

and drift post processing. 

During the first groups of displacement protocol (0.25 and 0.5 ∆y) there was no 

cracking. Starting the following displacement cycles of 0.75of the nominal yield 

displacement, horizontal hairline cracks (width of less than 1mm.) developed near the 

bottom of the column.  

At these displacement levels, no new cracks were observed around the mid height 

area of the column. The number of inclined cracks and the crack width on the faces 

parallel to the lateral loading direction increased as the number and magnitude of the 

displacement cycles increased. Small horizontal and inclined cracks on the faces 

perpendicular to the lateral loading direction (i.e., on the east and west faces), started to 

span the width of the column. These relatively straight continuous horizontal cracks 

opened and closed during each cycle. During displacement cycles equal to theoretical ∆y 

displacement cracks opening increased, relatively large crack openings were observed 

suggesting slip of the longitudinal reinforcing bars from the base at the end of  

 ∆ =∆y.  

Figure 5.67shows 3.5 mm wide crack opened between the flexural tension side 

of the column base and the column at peak lateral displacement. During displacement 

cycles to the nominal yield displacement (∆ = 5.6 mm.), crack opening was wider was 

observed without any new cracks. The width of the existing horizontal cracks in faces 

perpendicular to the loading direction increased from two sides. 
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At the beginning of cycling at the displacement level of 62.9mm (2.2 ∆ y), when 

the specimen was loaded the first time (push or eastward direction, Figure5.68, spilling 

of the cover concrete was observed in the bottom northeast corner and the horizontal load 

started to decrease after reaching the peak previous. In the flexural compression zones, at 

the bottom of the column, flaking and spalling of concrete were observed. 

 As the number of cycles increased, after the concrete cover crashed and the steel 

bars appeared, there was not any buckling of steel bars but the lower cracks were deep in 

the column around the cross section as shown in Figure 5.70. 

 

 

Figure 5.63: SpecimenCSF-0-7.5-N at initial cracking (0.75 ∆y) 

 



113 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.64: CSF-0-7.5-NTension side at ∆y 

 

Figure 5.65: CSF-0-7.5-NPerpendicular side at ∆y 

 

Figure 5.66: CSF-0-7.5-NOpening cracks near to base 1.96 ∆y 
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Figure 5.67: CSF-0-7.5-NCrack opining width 3mm at 2.197 ∆y 

 

Figure 5.68: CSF-0-7.5-NCrushing concrete cover at (2.197∆y) 

 

 

 

Figure 5.69: CSF-0-7.5-N Compression side at the end of loading (2.85∆y) 
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Figure 5.70: End of the test 

 

Figure 5.71: Shear force-drift hysteresis response of specimen CSF-0-7.5-N 
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Figure 5.72: Peak to peak stiffness of specimen CSF-0-7.5-N 

 

Figure 5.73: Peak to peak Energy of specimen CSF-0-7.5-N 
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Figure 5.74:  CSF-0-7.5-NCompression shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Tension side) 

 

Figure 5.75: CSF-0-7.5-N Tension shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Tension side) 
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Figure 5.76: CSF-0-7.5-N Compression shear strain (rad) Vs Drift groups    

(Vertical LVDTs 5-12) (Compression side) 

 

Figure 5.77:  CSF-0-7.5-NTension shear strain (rad) Vs Drift groups (vertical 

LVDTs 5-12) (compression side) 
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 Figure 5.78:   CSF-0-7.5-NCompression steel hoop strain Vs Drift groups 

(25mm) 

 

 

 Figure 5.79:  CSF-0-7.5-NTension steel hoop strain Vs Drift groups (25mm) 
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Figure 5.80: CSF-0-7.5-NCompression flange steel strain Vs Drift groups (125mm) 

 

 Figure 5.81:  CSF-0-7.5-NTension flange steel strain Vs Drift groups 

(125mm) 
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Figure 5.82:  CSF-0-7.5-N Compression steel bar strain Vs Drift groups (125mm)   

(Compression side) 

 

Figure 5.83:CSF-0-7.5-N Tension steel bar strain Vs Drift groups (125mm)  

(Compression side) 
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Figure 5.84: CSF-0-7.5-N Compression steel bar strain Vs Drift groups (125mm) 

(Tension side) 

 Figure 5.85: CSF-0-7.5-NTension steel bar strain Vs Drift groups (125mm) 

 (Tension side) 
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Table 5.1 shows the damage sequence for each specimen for each group cycles 

in displacement protocol. Figures 5.86, 5.87 and 5.88 show the envelope curve for shear 

force-drift hysteresis response for specimens to extract values from the curve. Table 5.2 

shows the horizontal load and drift for specimens for the yield, peak, and rapture which 

are extracted from backbone curves. Figures 5.89, 5.90 and 5.91 show the comparison 

of column load capacity from extract program with the actual load from test. To show the 

damage deference between specimens, Figure 5.92:97 show the crack pattern for 

specimens in many levels of loading during the test.  
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 Table 5.1: Qualitative damage description 

 

 

Cycle 

Specimen 1 

CSF 10-16cm-N 

Specimen 2 

CSF 10-7.5cm –N 

Specimen3 

CSF -0-7.5cm –N 

0.25 ∆y No cracks No cracks No cracks 

0.5 ∆y No cracks Hair cracks near bottom  No cracks 

0.75 ∆y Haircracks  Cracking Hair cracks  

∆y Cracking New cracks and widening   Cracking & Slipy 

 

1.3 ∆y 

Slippy crack and the 

base and widening   

Opening previous cracks 

and no new cracks 

New cracks and 

widening   

 

1.96 ∆y 

Opening previous 

cracks and no new 

cracks 

widening  cracks Yielding 

 

2.2 ∆y 

Yielding of specimen 

and opening previous 

cracks  

Horizontal load starting to 

decrease, 

Failing  

widening  cracks 

 

2.85 ∆y 

Crushing concrete 

cover near the base 

Crushing concrete cover 

near the base 

Crushing concrete 

cover near the base 

 

3.72∆y 

Crushing concrete 

cover and opening 

cracks 

Losing vertical load and 

failure  

end of test 

Losing vertical load 

and failure  

end of test 

 

4.87∆y 

Crushing concrete 

cover and buckling 

steel bars  

 

------------------- 

 

------------------- 

 

5.79∆y 

Losing vertical load 

and failure 

end of test  

 

------------------- 

 

------------------- 
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Figure 5.86: Specimen CSF 10-160mm - N backbone curve 
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Figure 5.87: Specimen CSF 10-75 mm - N backbone curve 
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Figure 5.88: Specimen CSF -0-75 mm - N backbone curve 
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Table 5.2: comparison of Modern building data curve outputs 

 

# Out put CSF 10-160mm- 

N 

CSF 10- 75mm -N CSF 0- 75mm -N 

1 VpeakTest 137 KN 122 KN  50KN 

2 Mpeak 

Test 205.5 KN M 

183 KN M 75KN M 

3 ∆Vp% 2.5% 2.3 % 5% 

4 VyTest 85 KN 104 KN 45 KN 

5 Vy/Vpeak 

% 

 

62.04 % 

 

85.26 % 

 

90 % 

6 ∆Vy% 1.3 % 1.15 % 3.8 % 

7 V80% 109.6 KN 97.6 KN 40 KN 

8 ∆V80% 4.8 % 4.3 % 6% 

9 VR 92 KN 96 KN 40KN 

10 VR/VP 

% 

 

67.15 % 

 

78.68 % 

 

80% 

11 ∆ VR 5.35 % 4.4 % 6% 

12 µ∆=  3.69 % 3.739 % 1.31% 

13 µf=  2.14 % 1.91 % 1.2% 
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Figure 5.89: Predicted capacity Vs actual capacity of CSF 10-160mm – N 

 

 

 

 

 

Figure 5.90: Predicted capacity Vs actual capacity of CSF 10- 75mm –N 

 

 

 

 

 

 

Figure 5.91: Predicted capacity Vs actual capacity of CSF 0- 75mm –N 
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Figure 5.92: Crack pattern at (∆ y) lateral displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.93: Crack pattern at (1.3 ∆ y) lateral displacement 
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Figure 5.94: Crack pattern at (2.2 ∆ y) lateral displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.95: Crack pattern at (3.73 ∆ y) lateral displacement 
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Figure 5.96: Crack pattern at (4.87 ∆ y) lateral displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.97: Crack pattern at (End of the test) lateral displacement 
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5.3. Existing building: 

3.1.Shear deficient Specimens 

1. Specimen CSS-15-E 

CSS -15-Ewas subjected to a constant compressive axial load of 255 KN 

(0.15f’c Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross 

sectional area) and cyclic increments of lateral displacements as described in Figure 

4.13. The theoretical nominal yield displacement was taken from the previous similar 

condition test to equal 15.2 mm. Some inclination of the horizontal actuator load cell 

was noticed with an angel ɵ=0’59’16’. This was taken into consideration in the force 

and drift post processing.  

 During the first two groups of displacement protocol (0.25 ∆y and 0.5∆y), there 

was no cracking. Starting the following displacement cycles of 0.75 of the nominal yield 

displacement, horizontal hairline cracks (width of less than 1mm.) developed near the 

bottom of the column. At these displacement levels, no new cracks were observed around 

the mid height region of the column. The number of inclined cracks and the crack width 

on the faces parallel to the lateral loading direction increased as the number and 

magnitude of the displacement cycles increased. Small diagonal shear cracks on the faces 

perpendicular to the lateral loading direction (i.e., on the east and west faces) were 

noticed. These relatively straight continuous diagonal cracks opened and closed during 

each cycle. During displacement cycles of 1.3 of the nominal yield displacement, 

relatively large crack openings were observed, suggesting a slip of the longitudinal 

reinforcing bars from the base. Figure 5.99 shows 1.5mmwide crack opened between 

tension side of the column base and the column at peak lateral displacement.  
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During displacement cycles to the nominal yield displacement (∆ y = 33.44 mm.), 

wider crack opening was observed with no new cracks. The width of the existing 

horizontal cracks in the faces perpendicular to the loading direction increased especially 

in the side of pouring concrete. This was normal because the concrete in this side is less 

compacted than the other side and may have lost some of the gravel aggregate during 

concrete vibration. 

At the beginning of cycle of the displacement level of 43.32mm (2.85 ∆ y), the 

horizontal actuator load cell reached maximum loading capacity (220 KN). The luxation 

of the concrete cover was observed from middle to top corner of the column. Then the 

test was stopped and restarted from 2.85 ∆y without axial loading force to reduce the 

horizontal resistance components coming from the axial loading. 

In the compression zones, at the bottom of the column, flaking and spalling of 

concrete were observed at the end of group 3.72 ∆y (56.55mm) Figure 5.102. As the 

number of cycles increased, the concrete cover crashed and the steel bars appeared from 

different areas, as shows in Figures 5.103 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.98: Specimen CSS-15-E at initial displacement (hair cracking) 
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Figure 5.99: starting slipping from base of column at 1.3∆y 

 

Figure 5.100: Specimen CSS-15-E at the tension direction of 2.2∆y 

 

Figure 5.101: CSS-15-ECrushing concrete cover at the compression side at 

displacement of 2.85∆y 
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Figure 5.102: CSS-15-E Crushing concrete cover of 3.72∆y 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.103: CSS-15-ECompression and tension of loading of 3.72∆y 
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Figure 5.104: Shear force-drift hysteresis response of specimen CSS 15-E 

 

 

Figure 5.104 shows the shear force-drift ratio hysteresis response of CSS15-E. 

The peak shear capacity of the specimen was 230 KN. This significantly exceeded the 
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based on first shear cracking capacity. The peak shear capacity was reached at 3.1% drift 

ratio. Thus, the specimen loss in lateral force capacity was reached at 5.8% drift ratio. 

This drift ratio is considered relatively so high for the typical reinforced concrete existing 

buildings (with no SRC columns) which generally can tolerate less than 2% drift before 

collapse. However, this peak drift ratio is considered low if compared to the modern 

building collapse prevention drift limit state of 4.5% for a single ground motion and 3% 

for the mean of several ground motions, as per recommended by Tall Building Initiative 

(2011). The specimen exhibited brittle shear failure with immediate strength degradation 

following the peak shear strength. 

 

 

Figure 

5.105: Peak to Peak stiffness of specimen CSS-15-E 
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Figure 5.106: Peak to peak Energy of specimen CSS-15-E 

 

Figure 5.107:   CSS-15-ECompression Web steel strain Vs Drift groups (320mm) 
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Figure 5.108:   CSS-15-ETension Web steel strain Vs Drift groups (320mm) 

 

Figure 5.109:   CSS-15-ECompression steel hoop strain Vs Drift groups (325mm) 
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 Figure 

5.110:   CSS-15-ECompression steel hoop strain Vs Drift groups (325mm) 

 

Figure 5.111: CSS-15-E  Compression shear strain (rad) Vs Drift groups                     

(Diagonal LVDTs4-27) 

 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

0
.0

0

Drift  Groups

st
ra

in
 (

ra
d

) 

-3E-05

-2E-05

-1E-05

9E-19

1E-05

2E-05

3E-05

4E-05

5E-05

Drift  Groups

sh
ea

r 
st

ra
in

  (
ra

d
)



142 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.112:  CSS-15-ECompression shear strain (rad) Vs Drift groups 

 (Diagonal LVDTs 4-27)  
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2. Specimen CSS -20-E: 

CSS -20-E was subjected to a constant compressive axial load of 465 KN (0.2f’c 

Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross sectional 

area) and cyclic increments of lateral displacements as described in Figure 4.13.  The 

theoretical nominal yield displacement was calculated to equal 14.85 mm. Some 

inclination of the horizontal actuator load cell was noticed with an angel ɵ= 1’17’52.This 

was taken into consideration in the force and drift post processing. . 

During the first groups of displacement protocol (0.25, 0.5, 0.75 ∆y) there was no 

cracking. Starting the following displacement cycles of ∆y of the nominal yield 

displacement, flexure hairline cracks (width of less than 1mm.) and developed near the 

bottom of the column. The number of inclined cracks and the crack width on the faces 

parallel to the lateral loading direction increased as the number and magnitude of the 

displacement cycles increased. Small horizontal and inclined cracks on the faces 

perpendicular to the lateral loading direction (i.e., on the east and west faces) started to 

span the width of the column. These relatively straight continuous horizontal cracks 

opened and closed during each cycle. During displacement cycles equal to theoretical ∆y 

displacement cracks increased opening. Relatively, large crack openings were observed 

suggesting slip of the longitudinal reinforcing bars from the base at∆ =2.2∆y.  

During displacement cycles following the nominal yield displacement (∆ = 2.85 

∆y.), more in wide crack opening without any new cracks. Faces perpendicular to the 

loading direction, the width of the existing diagonal cracks increased from two sides. 

At the beginning of cycling at the displacement level of (2.2 ∆ y), when the specimen 

were loaded the first time (push or eastward direction, Figure 5.115 ), luxation of the 

cover concrete was observed in the bottom northeast corner and the horizontal load started 

to decrease after reaching the previous peak. 

In the flexural compression zones, at the bottom of the column, flaking and 

spalling of concrete were observed. As the number of cycles increased, after the concrete 

cover  
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crushed and the steel bars appeared, there was no buckling of steel bars; however, the 

lower cracks were deep in the column around the cross section as shown in  

Figure 5.119.At the 4.87 ∆ y, it stopped loading horizontally and the specimen loaded 

only with axial load 1850KN to check the axial capacity after seismic loading. The steel 

section could carry the axial load without failing what was rested from concrete. 

 

Figure 5.113: Specimen CSS-20-E at initial cracking (1 ∆y) 

 

Figure 5.114: CSS-20-E Start slipping at 2.2∆y 
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Figure 5.115: CSS-20-EPerpendicular side at 2.2∆y 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.116: CSS-20-EOpening cracks near to base 2.85 ∆y 
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Figure 5.117: CSS-20-ECrushing concrete cover mid cycle of (2.85 ∆y) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.118: CSS-20-ECrushing concrete cover (2.85 ∆y) 
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Figure 5.119: Final failure of column CSS-20-Econcrete cover (3.71∆y) 

 

Figure 5.120: End of the test 

 

Figure 5.121: Testing was under supervision of Prof. Dr. Wael Hassan 
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Figure 5.122: Shear force-drift hysteresis response of specimen CSS 20-E 
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Figure 5.123: Peak to Peak stiffness of specimen CSS 20-E 

 

Figure 5.124: Peak to peak Energy of specimen CSS 20-E 
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Figure 5.125:  CSS-20-E Compression Web steel strain Vs Drift groups (320mm) 

 

Figure 5.126: CSS-20-E Tension Web steel strain Vs Drift groups (320mm) 
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Figure 5.127:   CSS-20-ECompression steel hoop strain Vs Drift groups (325mm) 

 

Figure 5.128:  CSS-20-E Compression steel hoop strain Vs Drift groups (325mm) 
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Figure 5.129:  CSS-20-ECompression shear strain (rad) Vs Drift groups  

(Diagonal LVDTs 4-27) 

 Figure 5.130:  CSS-20-ECompression shear strain (rad) Vs Drift groups 

(Diagonal LVDTs 4-27) 
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3. Specimen CSS -40-E: 

 

CSS -40-E was subjected to a constant compressive axial load of 670 KN (0.4f’c 

Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross sectional 

area) and cyclic increments of lateral displacements as described in Figure 4.13.  The 

theoretical nominal yield displacement was calculated to be equal 13.85 mm. it was 

noticed the same inclination of the horizontal actuator load cell with an angel  

ɵ = 1’17’52. This was taken into consideration in the force and drift post processing. 

During the first groups of displacement protocol which (0.25, 0.5 ∆y) there were 

not any cracking. Starting the next displacement cycles of 0.75 ∆y of the nominal yield 

displacement, flexure hairline cracks (width of less than 1mm.) developed near the bottom 

of the column. 

The number of inclined cracks and the crack width on the faces parallel to the 

lateral loading direction increased as the number and magnitude of the displacement 

cycles increased. Small horizontal and inclined cracks on the faces perpendicular to the 

lateral loading direction (i.e., on the east and west faces), started to span the width of the 

column. These relatively straight continuous horizontal and diagonal cracks opened and 

closed during each cycle. 

 During displacement cycles equal to theoretical ∆y displacement cracks increased 

opening, relatively large crack openings were observed suggesting slip of the longitudinal 

reinforcing bars from the base at ∆y. 

Figure 5.13 4shows 1.5 mm wide crack opened between the flexural tension side of the 

column base and the column at peak lateral displacement.  
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During displacement cycles to the nominal yield displacement (∆ = 1.7 ∆y.), more 

in wide crack opening without any new cracks. Faces perpendicular to the loading 

direction, the width of the existing diagonal cracks increased from two sides. 

At the beginning of cycle at the displacement level of (2.2 ∆ y), luxation of the 

cover concrete was observed in the bottom corner and the horizontal load started to 

decrease after reaching the peak previous. In the flexural compression zones, at the 

bottom of the column, flaking and spalling of concrete were observed. 

 As the number of cycles increased, after the concrete cover crashed and the steel 

bars appeared, there was not no buckling of steel bars; however the lower cracks were 

deep in the column around the cross section as shown in Figure 5.135. After ending all 

cycles, the specimen was loaded for 80% of its capacity with 1370 KN without any axial 

failure. 

 

 

 

 

Figure 5.131: Specimen CSS 40-E at initial cracking (1 ∆y) 
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Figure 5.132: CSS 40-E start slipping at ∆y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.133: CSS 40-Eperpendicular side at 1.3 ∆y 
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Figure 5.134: CSS 40-ECrushing concrete cover (1.69 ∆y) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.135: CSS 40-E Opening cracks2.856 ∆y 
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Figure 5.136: CSS 40-ECrushing concrete cover (3.71 ∆y) 

 

Figure 5.137: CSS 40-ECrushing column concrete cover (4.8∆y) 
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Figure 5.138: CSS 40-E failure at the end of the test 
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Figure 5.139: Shear force-drift hysteresis response of specimen CSS 40-E 
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Figure 5.140: Peak to Peak stiffness of specimen CSS 40-E 

 

Figure 5.141: Peak to peak Energy of specimen CSS 40-E 
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Figure 5.142:   CSS 40-ECompression Web steel strain Vs Drift groups (320mm) 

 

Figure 5.143:   CSS 40-ETension Web steel strain Vs Drift groups (320mm) 
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Figure 5.144:   CSS 40-ECompression steel hoop strain Vs Drift groups (325mm) 

 

Figure 5.145:  CSS 40-E Compression steel hoop strain Vs Drift groups (325mm) 
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Figure 

5.146:  CSS 40-ECompression shear strain (rad) Vs Drift groups   

(Diagonal LVDTs 4-27) 

 

Figure 5.147: CSS 40-E Compression shear strain (rad) Vs Drift groups     

(Diagonal LVDTs 4-27) 
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4. Specimen CSS -60-E 

CSS -60-E was subjected to a constant compressive axial load of 1400 KN (0.6 

f’c Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross sectional 

area) and cyclic increments of lateral displacements as described in Figure4.13.  The 

theoretical nominal yield displacement was calculated to be equal 13.22 mm. it was 

noticed the same inclination of the horizontal actuator load cell with an angel ɵ = 

1’17’52.This was taken into consideration in the force and drift post processing. 

During the first groups of displacement protocol (0.25 ∆y) there was no cracking. 

Starting the following displacement cycles of 0.5 ∆y of the nominal yield displacement, 

flexure hairline cracks (width of less than 1mm.) developed near the bottom of the 

column.  

The number of inclined cracks and the crack width on the faces parallel to the 

lateral loading direction increased as the number and magnitude of the displacement 

cycles increased. Small horizontal and inclined cracks on the faces perpendicular to the 

lateral loading direction (i.e., on the east and west faces), started to span the width of the 

column. These relatively straight continuous horizontal cracks opened and closed during 

each cycle. During displacement cycles equal to theoretical 1.3 ∆y displacement cracks 

increased opening, relatively large crack openings were observed suggesting slip of the 

longitudinal reinforcing bars from the base at  ∆ = 2.2 ∆y. Figure5.152 shows 2.5 mm 

wide crack opened between the flexural tension side of the column base and the column 

at peak lateral displacement.  

During displacement cycles to the nominal yield displacement (∆ = ∆y.), more in 

wide crack opening without any new cracks. Faces perpendicular to the loading direction, 

the width of the existing diagonal cracks increased from two sides. 
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At the beginning of cycling at the displacement level of (2.2 ∆ y), when the 

specimen was loaded the first time (push or eastward direction), Figure5.152, luxation of 

the cover concrete was observed in the bottom northeast corner and the horizontal load 

started to decrease after reaching the previous peak. 

Specimen CSS-60-E was tested by two conditions. The first loading condition was 

with axial load ratio 60 % until reaching the peak drift, then second part was loading 

without axial load to get the degradation curve of the specimen, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.148: Specimen CSS-60-E at initial cracking (0.5 ∆y) 
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Figure 5.149: CSS 60EStart slipping at2.2∆y 

 

 

Figure 5.150: CSS-60-EPerpendicular side 1.3∆y 
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Figure 5.151: CSS-60-ECrushing concrete cover (1.3 ∆y) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.152: CSS-60-E Cracks began to be deeper at (2.2∆y) 
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Figure 5.153: CSS-60-E failure at the end of the test 
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Figure 5.154: Shear force-drift hysteresis response of specimen CSS 60-E 
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Figure 5.144 shows two shear force drift hysteresis response of specimen CSS60-

E. During the test, it was noted a high inclination of axial load cell affected unaccepted 

eccentricity. It was decided to complete the test with the same loading protocol but 

without axial load to get the curve slope degradation. The red hysteresis show drift with 

the response under axial load of 60%, but the blue hysteresis show the drift without axial 

load, only horizontal load. 

 

 

 

Figure 5.155: Peak to Peak stiffness of specimen CSS-60-E 
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Figure 5.156: Peak to peak Energy of specimen CSS 60-E 

 

Figure 5.157:   CSS-60-ECompression Web steel strain Vs Drift groups (320mm) 
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Figure 5.158:   CSS-60-ETension Web steel strain Vs Drift groups (320mm) 

 

Figure 5.159:   CSS-60-ECompression steel hoop strain Vs Drift groups (325mm) 

-0.3

-0.3

-0.2

-0.2

-0.1

-0.1

0.0

0.1

0.1

-0.25-0.25-0.50-0.50-0.75-0.08-1.00-1.00-1.00-1.30-1.30-1.30-1.69

Drift  Groups

st
ra

in
 (

ra
d

)

-0.5

0

0.5

1

1.5

2

2.5

3

0.25 0.25 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.30 1.30 1.30 1.69

Drift  Groups

st
ra

in
 (

ra
d

)



173 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.160:   CSS-60-ECompression steel hoop strain Vs Drift groups (325mm) 

 Figure 5.161:  CSS-60-ECompression shear strain (rad) Vs Drift groups 

  (Diagonal LVDTs 4-27) 
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Figure 5.162:  CSS-60-ECompression shear strain (rad) Vs Drift groups     

(Diagonal LVDTs 4-27) 
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5. Specimen CSS -80-E 

 

CSS -80-Ewas subjected to a constant compressive axial load of 1300 KN (0.8 f’c 

Ag, where f’c = cylinder compressive concrete strength,                                          and Ag 

= gross cross sectional area) and cyclic increments of lateral displacements as described 

in Figure 4.13.  The theoretical nominal yield displacement was calculated to be equal 

13.12 mm. it was noticed the same inclination of the horizontal actuator load cell with an 

angel ɵ = 1’17’52.This was taken into consideration in the force and drift post processing.  

During the first groups of displacement protocol which (0.25∆y) there were not 

any cracking. Starting end of the next displacement cycles of 0.5 ∆y of the nominal yield 

displacement, flexure hairline cracks (width of less than 1mm.) developed near the bottom 

of the column.  

The number of inclined cracks and the crack width on the faces parallel to the 

lateral loading direction increased as the number and magnitude of the displacement 

cycles increased. Small horizontal and inclined cracks on the faces perpendicular to the 

lateral loading direction (i.e., on the east and west faces), started to span the width of the 

column. These relatively straight continuous shear cracks opened and closed during each 

cycle.  

During displacement cycles equal to theoretical ∆y displacement cracks increased 

opening, relatively large crack openings were observed suggesting slip of the longitudinal 

reinforcing bars from the base at  ∆ = ∆y.  

Figure5.167 shows 2 mm wide crack opened between the flexural tension side of the 

column base and the column at peak lateral displacement.  
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During displacement cycles to the nominal yield displacement (∆ = 1.3 ∆y.), more 

in wide crack opening without any new cracks. Faces perpendicular to the loading 

direction, the width of the existing diagonal cracks increased from two sides especially 

the pouring side due to non-compacted concrete cover well. 

At the beginning of cycling at the displacement level of (2.2 ∆ y), when the 

specimen was loaded the first time (push or eastward direction, Figure 5.167 ), luxation 

of the cover concrete was observed in the bottom northeast corner and the horizontal load 

started to decrease after reaching the peak previous. In the flexural compression zones, at 

the bottom of the column, flaking and spalling of concrete were observed. 

Specimen started to twist around its vertical axis due to losing the concrete 

capacity to carry load in the beginning of 3.71 ∆ y.  As the number of cycles increased, 

the concrete cover crashed and the steel bars appeared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.163: Specimen CSS-80-E at initial cracking (0.5 ∆y) 

 



177 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.164: CSS-80-EStart slipping at ∆y 

 

Figure 5.165: CSS-80-EPerpendicular side of 1.7 ∆y 

                                                          

 Figure 5.166: CSS-80-EOpening cracks near to base 5 ∆y 



178 

 

Chapter 5                                                                         Test Results and observations 

 

Figure 5.167: CSS-80-ECrushing concrete cover mid cycle of (2.2 ∆y)

 

Figure 5.168: CSS-80-ECrushing concrete cover (2.85 ∆y) 

 

Figure 5.169: CSS-80-ECrushing column concrete cover at (2.85∆y) 
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Figure 5.170: CSS-80-E failure end of the test 

 

Figure 5.171: Shear force-drift hysteresis response of specimen CSS-80-E 
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 Figure 5.172: Peak to Peak stiffness of specimen CSS 80-E  

 

Figure 5.173: Peak to peak Energy of specimen CSS 80-E 
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Figure 5.174:   CSS-80-ECompression Web steel strain Vs Drift groups (320mm) 

 

 Figure 5.175:   CSS-80-ETension Web steel strain Vs Drift groups (320mm)
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Figure 5.176:   CSS-80-ECompression steel hoop strain Vs Drift groups (325mm) 

 

 Figure 5.177:   CSS-80-ECompression steel hoop strain Vs Drift groups (325mm) 
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Figure 5.178:  CSS-80-ECompression shear strain (rad) Vs Drift groups                               

(Diagonal LVDTs 4-27) 

Figure 

5.179:  CSS-80-ECompression shear strain (rad) Vs Drift groups (Diagonal LVDTs 

4-27) 
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Table 5.3: Qualitative damage description 

 

Cycle 

Specimen 1 

CSS 15-E 

Specimen2 

CSS 20-E 

Specimen 3 

CSS 40-E 

Specimen 4 

CSS 60-E 

Specimen 5 

CSS 80-E 

0.25 ∆y No cracks No cracks No cracks No cracks No cracks 

0.5 ∆y No cracks No cracks No cracks Hair cracks Hair cracks 

0.75 ∆y Hair cracks Hair cracks Hair cracks Cracking Cracking 

 

∆y 

Yielding and 

cracking 

Yielding and 

cracking 

Slipy and 

cracking 

Slipy and 

cracking 

Slipy and 

cracking 

 

1.3 ∆y 

Slipy and 

cracking 

Slipy and 

cracking 

Yielding and 

cracking 

Cracking 

 

Yielding and 

cracking 

 

1.96 ∆y 

Opening 

cracks and 

no new 

cracks 

Opening 

cracks & 

stopping 

create new 

cracks 

Deeper 

cracking 

 Shear cracks  

Opening 

cracks and no 

new cracks 

Opening 

cracks and no 

new cracks 

 

2.2 ∆y 

Deeper 

cracking 

Deeper 

cracking 

Deeper 

cracking 

Crushing 

concrete 

Deeper 

cracking 

 

2.85 ∆y 

Crushing 

concrete  

Crushing 

concrete  

Crushing 

concrete 

Failing 

Loading 

without axial 

load 

Failing 

 

3.72∆y 

End of the 

test 

Stopped 

horizontal 

loading 

End of the test The specimen 

twisted 

The specimen 

twisted and 

the test ended 

 

4.87∆y 

--- Axial load 

1850KN 

TEST End 

------------ End of the 

test 

------------ 
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Figure 5.180: Specimen CSS 15 – E backbone curve 

 

Figure 5.181: Specimen CSS 20-E backbone curve 
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Figure 5.182: Specimen CSS 40-E backbone curve 

 

 

 

Figure 5.183: Specimen CSS 60-E backbone curve 
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Figure 5.184: Specimen CSS 80-E backbone curve 

 

Figure 5.185:  Shear deficient old building specimens Backbone curves 
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Table 5.4: Comparison of modern building data curve outputs 

# Out put CSS 15-E CSS 20-

E 

CSS 40-E CSS 60-E CSS 80-E 

1  

V peak 

Test 

 

230 KN 

 

195 KN 

 

190 KN 

 

192 KN 

 

220 KN 

2  

M peak 

Test 

230 KN 

M 

 

195 KN 

M 

 

190 KN M 

 

192 KN M 

 

220 KN M 

3 ∆ Vp% 3.1% 4.2 % 5.1 % 3 % 2 % 

4 Vy Test 180KN 110 KN 126 KN 180KN 155 KN 

5 Vy/Vpeak 

% 

 

78.26 % 

 

56.4 % 

 

66.3 % 

 

93.75 % 

 

70.45 % 

6 ∆Vy% 2.2 % 1.8 % 1.3 % 1.8 % 1.1 % 

7 V80% 184 KN 156 KN 165 KN 170 KN 176 KN 

8 ∆V80% 4.6 % 5.6 % 5.5% 4.3 % 3.5 % 

9 VR 120 KN 153 KN 165 KN 140 KN 162 KN 

10 VR/VP 

% 

 

52.17 % 

 

78.46 % 

 

84.6 % 

 

88.54 % 

 

87.56 % 

11  

∆ VR 

 

5.8 % 

 

5.85 % 

 

5.5 % 

 

4.3 % 

 

3.9 % 

12 µ∆= 

∆V80/∆Vy 

 

2 % 

 

3.25 % 

 

4.23 % 

 

2.39 % 

 

3.18 % 

13 µf= 

∆VR/∆Vp 

 

1.87 % 

 

1.39 % 

 

1.39 % 

 

1.43 % 

 

1.95 % 
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Figure 5.186: Predicted capacity Vs actual capacity of CSS 15-E 

 

 

 

 

 

Figure 5.187: Predicted capacity Vs actual capacity of CSS 20-E 

 

 

 

 

 

Figure 5.188: Predicted capacity Vs actual capacity of CSS 40-E 
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Figure 5.189: Predicted capacity Vs actual capacity of CSS 60-E 

 

 

 

 

 

 

Figure 5.190: Predicted capacity Vs actual capacity of CSS 80-E 
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Figure 5.191:  Crack pattern at (∆ y) lateral displacement 
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Figure 5.192:  Crack pattern at (1.3 ∆ y) lateral displacement 
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Figure 5.193:  Crack pattern at (2.2 ∆ y) lateral displacement 
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Figure 5.194:  Crack pattern at (3.73 ∆ y) lateral displacement 
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Figure 5.195:  Crack pattern at (4.87 ∆ y) lateral displacement 

 

 

 

Figure 5.196:  Crack pattern at (end of the test) lateral displacement 
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3.2.Flexure deficient Specimens 

 

 

1. Specimen CSF -15-E 

 

CSF-15-Ewas subjected to a constant compressive axial load of 270 KN (0.15f’c 

Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross sectional 

area) and cyclic increments of lateral displacements as described in Figure4.13.  The 

theoretical nominal yield displacement was calculated to be equal 16.25 mm. It was 

noticed that there was inclination of the horizontal actuator load cell with an angel 

ɵ=0’59’16’. This was taken into consideration in the force and drift post processing.  

 At the end of the first group of displacement protocol (0.25 ∆y) there were some 

flexure cracks. Starting the next displacement cycles, horizontal hairline cracks (width of 

less than 1mm.) developed near the bottom of the column.  

The number of flexure cracks and the crack width on the faces parallel to the lateral 

loading direction increased as the number and magnitude of the displacement cycles 

increased. Small diagonal cracks on the faces perpendicular to the lateral loading direction 

(i.e., on the east and west faces). These relatively straight continuous cracks opened and 

closed during each cycle.  

During displacement cycles to 0.5 of the nominal yield displacement, relatively 

crack openings were observed suggesting slip of the longitudinal reinforcing bars from 

the base. Figure5.199 shows about 2mm wide crack opened between tension side of the 

column base and the column at peak lateral displacement.  
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During displacement cycles to the nominal yield displacement (∆ y = 27.378mm.), 

more in wide crack opening without any new cracks. Faces perpendicular to the loading 

direction, the width of the existing horizontal cracks increased especially in the side of 

pouring concrete. It was normal because of concrete in this side is less compacted than 

the other side and may loss some of the gravel aggregate during vibrating within pouring 

concrete. Luxation of the concrete cover was observed at the column bottom corner at ∆= 

1.69 ∆y. In the compression zones, at the bottom of the column, flaking and spalling of 

concrete were observed at the end of group 2.856 ∆y (46.41mm) Figure 5.201. 

 As the number of cycles increased, after the concrete cover crashed and the steel 

bars appeared from different areas, as shows in Figures5.201 at middle of 4.8∆y it was 

found a clear tension flexure failure with cutting in some of buckled longitudinal steel 

bars without opening in stirrups as shown in Figure 5.201. 

 

 

Figure 5.197: Specimen CSF-15-E at initial displacement (Hair cracking) 
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Figure 5.198: CSF-15-E starting slipping from base of column at 0.5∆y 

 

 

 

Figure 5.199: CSF-15-ECrushing concrete cover at 1.69∆y 
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Figure 5.200: Specimen CSF-15-E at the compression direction of 2.856∆y 

 

 

Figure 5.201: CSF-15-ECrushing concrete cover at 2.856∆y 
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Figure 5.202: Classical tension failure 4.8∆y 
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Figure 5.203: Shear force-drift hysteresis response of specimen CSF 15-E 
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Figure 5.204: Peak to Peak stiffness of specimen CSF 15-E 

 

Figure 5.205: Peak to peak Energy of specimen CSF 15-E 
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Figure 5.206:   CSF-15-ECompression flange steel strain Vs Drift groups (300mm) 

 

Figure 5.207:  CSF-15-E Compression flange steel strain Vs Drift groups (300mm) 
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Figure 5.208:  CSF-15-E Compression steel bar strain Vs Drift groups 

(50mm)(Compression side)

 Figure 5.209: CSF-15-E Tension steel bar strain Vs Drift groups (50mm) 

(Compression side) 
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Figure 5.210: CSF-15-ECompression steel bar strain Vs Drift groups (50mm) 

(Compression side)

 Figure 5.211:   CSF-15-ETension steel bar strain Vs Drift groups (50mm) 

(Compression side) 
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Figure 5.212:   CSF-15-ECompression steel hoop strain Vs Drift groups (100mm) 

 

Figure 5.213:   CSF-15-ECompression steel hoop strain Vs Drift groups (100mm) 
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Figure 5.214:  CSF-15-ECompression shear strain (rad) Vs Drift group                          

(vertical LVDTs 5-12) (Compression side) 

 Figure 5.215:  CSF-15-ETension shear strain (rad) Vs Drift groups                

(vertical LVDTs 5-12) (compression side) 
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Figure 5.216:  CSF-15-ECompression shear strain (rad) Vs Drift groups

 (Vertical LVDTs 5-12) (Tension side) 

 Figure 5.217:  CSF-15-ETension shear strain (rad) Vs Drift groups  

 (vertical LVDTs 5-12) (tension side) 
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2. Specimen CSF-80-E: 

CSF -80-Ewas subjected to a constant compressive axial load of 18000 KN (0.8f’c 

Ag, where f’c = cylinder compressive concrete strength, and Ag = gross cross sectional 

area) and cyclic increments of lateral displacements as described in Figure4.13.  The 

theoretical nominal yield displacement was calculated to be equal 12.2 mm. it was noticed 

the same inclination of the horizontal actuator load cell with an angel ɵ = 1’17’52. This 

was taken into consideration in the force and drift post processing.  

During the first groups of displacement protocol (0.25∆y) there were not any 

cracking. Starting the next displacement cycles of 0.5∆y of the nominal yield 

displacement, flexure hairline cracks (width of less than 1mm.) developed near the bottom 

of the column.  

The number of inclined cracks and the crack width on the faces parallel to the 

lateral loading direction increased as the number and magnitude of the displacement 

cycles increased. Small horizontal and inclined cracks on the faces perpendicular to the 

lateral loading direction (i.e., on the east and west faces), started to span the width of the 

column. These relatively straight continuous horizontal cracks opened and closed during 

each cycle. During displacement cycles equal to theoretical ∆y displacement cracks 

increased opening, relatively large crack openings were observed suggesting slip of the 

longitudinal reinforcing bars from the base at  ∆ = ∆y. Figure5.221 shows 2 mm wide 

crack opened between the flexural tension side of the column base and the column at peak 

lateral displacement.  

During displacement cycles to the nominal yield displacement (∆ = 1.3 ∆y.), more 

in wide crack opening without any new cracks. Faces perpendicular to the loading 

direction, the width of the existing diagonal cracks increased from two sides. At the 

beginning of cycling at the displacement level of (1.69 ∆ y), when the specimen was 

loaded the first time (push or eastward direction, Figure 5.222, luxation of the cover  
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concrete was observed in the bottom northeast corner and the horizontal load started to 

decrease after reaching the peak previous. In the flexural compression zones, at the 

bottom of the column, flaking and spalling of concrete were observed. 

 As the number of cycles increased, after the concrete cover crashed and the steel 

bars appeared, steel bars was buckled, stirrups hoops opened, local buckling in lower two 

flanges and the lower cracks were deeply in the column around the cross section as shown 

in Figure5.223  at the 4.87 ∆ y. 

 

 

Figure 5.218: Specimen CSF-80-E at initial cracking (0.5 ∆y) 
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Figure 5.219: CSF-80-E Start slipping at ∆y 

 

  

Figure 5.220: CSF-80-E Perpendicular side after tension loading of 1.69 ∆y 
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Figure 5.221: CSF-80-E Crushing concrete cover mid cycle of (1.69 ∆y) 

 

 

 

Figure 5.222: CSF-80-E Crushing concrete cover (2.85 ∆y) 
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Figure 5.223: End of the test 
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Figure 5.224: Shear force-drift hysteresis response of specimen CSF 80-E 
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Figure 5.225: Peak to Peak stiffness of specimen CSF 80-E 

 Figure 5.226: Peak to peak Energy of specimen CSF 80-E 
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Figure 5.227:   CSF-80-E Compression flange steel strain Vs Drift groups (300mm) 

 

Figure 5.228:  CSF-80-E Tension flange steel strain Vs Drift groups (300mm) 
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Figure 5.229:  CSF-80-E Compression steel bar strain Vs Drift groups (50mm) 

(Compression side)

 Figure 5.230:   CSF-80-E Tension steel bar strain Vs Drift groups (50mm) 

(Compression side) 
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 Figure 5.231:   CSF-80-E Compression steel bar strain Vs Drift groups 

(50mm)(Compression side)

 

Figure 5.232: CSF-80-E Tension steel bar strain Vs Drift groups (50mm) 

(Compression side) 
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Figure 5.233:   CSF-80-E Compression steel hoop strain Vs Drift groups (100mm) 

 

Figure 5.234:  CSF-80-E Compression steel hoop strain Vs Drift groups (100mm) 

-1

1

3

5

7

9

11

13

15
0
.2

5

0
.2

5

0
.5

0

0
.5

0

0
.7

5

0
.7

5

1
.0

0

1
.0

0

1
.0

0

1
.3

0

1
.3

0

1
.3

0

1
.6

9

1
.6

9

1
.6

9

2
.2

0

2
.2

0

2
.2

0

2
.8

5

2
.8

5

2
.8

5

3
.7

1

Drift  Groups

st
ra

in
 (

ra
d

)

-1.0

1.0

3.0

5.0

7.0

9.0

11.0

13.0

15.0
-0

.2
5

-0
.2

5

-0
.5

0

-0
.5

0

-0
.7

5

-0
.0

8

-1
.0

0

-1
.0

0

-1
.0

0

-1
.3

0

-1
.3

0

-1
.3

0

-1
.6

9

-1
.6

9

-1
.6

9

-2
.2

0

-2
.2

0

-2
.2

0

-2
.8

5

-2
.8

5

-2
.8

5

Drift  Groups

st
ra

in
 (

ra
d

)



220 

 

Chapter 5                                                                         Test Results and observations 

 Figure 5.235:  CSF-80-E Compression shear strain (rad) Vs Drift groups 

(vertical LVDTs 5-12) (Compression side) 

 Figure 5.236: CSF-80-E Tension shear strain (rad) Vs Drift groups 

  (vertical LVDTs 5-12) (compression side) 
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 Figure 5.237:  CSF-80-E Compression shear strain (rad) Vs Drift groups

  (Vertical LVDTs 5-12) (Tension side) 

 Figure 5.238:  CSF-80-E Tension shear strain (rad) Vs Drift groups  

 (vertical LVDTs 5-12) (tension side) 
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Table 5.5 shows the damage sequence for each specimen for each group cycles in 

displacement protocol. Figures5.239. 5.240 and 5.241 show the backbone curve for shear 

force-drift hysteresis response for the both specimens to extract values from the curve. 

Table 5.6 shows the horizontal load and drift for both specimens for the yield, peak, and 

fracture which are extracted from previous curves. To show the damage deference 

between the two specimens Figure 5.242:5.249show the crack pattern for both in many 

levels of loading during the test.  

Table 5.5: Qualitative damage description 

 

Cycle 

Specimen 1 

CSF 15-E 

Specimen2 

CSF 80-E 

0.25 ∆y No cracks No cracks 

0.5 ∆y Hairflexure cracking &Slipy Haircracks 

0.75 ∆y Cracking  Cracking 

 

∆y 

Yielding &cracking Yielding &Cracking 

 

1.3 ∆y 

Cracking &  Start crushing 

concrete 

Slipy& Stopping create new cracks 

 

1.96 ∆y 

opening cracks & stopping create 

new cracks 

opening cracks & Crushing concrete  

 

2.2 ∆y 

Deeper cracking Deeper cracking 

 

2.85 ∆y 

Crushing concrete  Crushing concrete 

 

3.72∆y 

Two longitudinal bars was cut Stirrups hoops opened & 

longitudinal bars and flanges buckled  

 

4.87∆y 

End of the test End of the test 
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Figure 5.239: Specimen CSF 15 – E output curve data 

 

 

Figure 5.240: Specimen CSF 80-E output curve data 
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Figure 5.241: Envelope curves 
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Table 5.6: Comparison of flexure deficient specimens data curve outputs 

 

# Out put CSF 15-E CSF 80-E 

1  

V peak 

Test 

 

150 KN 

 

175 KN 

2  

M peak 

Test 225 KN M 

 

262..5KN M 

3 ∆ Vp% 4.2% 2 % 

4 Vy Test 120KN 140 KN 

5 Vy/Vpeak 

% 

 

80 % 

 

80 % 

6 ∆Vy% 1.8 % 1.2 % 

7 V80% 120 KN 140 KN 

8 ∆V80% 4.6% 5.6 % 

 VR 130 KN 95 KN 

10 VR/VP 

% 

 

86.67 % 

 

54.28 % 

11  

∆ VR 

 

6 % 

 

6 % 

12 µ∆= 

∆V80/∆Vy 

 

6.5 % 

 

3.8 % 

13 µf= 

∆VR/∆Vp 

 

1.43 % 

 

3 % 
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Figure 5.242:  Crack pattern at (∆ y) lateral displacement

 

Figure 5.243:  Crack pattern at (1.3 ∆ y) lateral displacement 

 

Figure 5.244:  Crack pattern at (2.2 ∆ y) lateral displacement 
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Figure 5.245:  Crack pattern at (3.73 ∆ y) lateral displacement 

 

 

Figure 5.246:  Crack pattern at (4.87 ∆ y) lateral displacement 
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6. Chapter (6)                                                               

Discussion of Test Results  

1. Modern building 

1. Effect of axial load ratio 

 

Figure 6.1: Peak to Peak stiffness of flexure modern building specimens  

 (pull direction) (axial load effect) 

• Increasing axial load ratio from 0% to 10% increased the column stiffness 

peak about 200% in tension direction. Increasing loading, increase column 

resistance to horizontal loading  
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Figure 6.2: Peak to Peak stiffness of flexure modern building specimens                                  

(push direction) (axial load effect) 

• Increasing axial load ratio from 0% to 10% increased the column stiffness 

peak to about 500 % in compression direction. 
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Figure 6.3: Peak to peak Energy of flexure modern building specimens                

(axial load effect) 

• Increasing axial load ratio from 0% to 10% decreased the column energy 

dissipation. As a predicted result the specimen of the higher axial load ratio, 

is less energetic than the low axial load specimen which has a higher drift 

capacity. Free specimen which only horizontally loaded without axial load 

can reach to higher drift values compared with the specimen that was axially 

loaded. 
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Figure 6.4:  Compression and tension shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Tension side) (Axial load effect) 

• Increasing axial load ratio from 0% to 10% increase crack wide in CSF10-

7.5N in compression loading direction than CSF-0-7.5N. Otherwise, CSF-0-

7.5N had a wider crack in tension loading direction than CSF-10-7.5N.  
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Figure 6.5: Compression and tension flange steel strain Vs Drift groups (125mm) 

(axial load effect) 

 

 

• Increasing axial load ratio from 0% to 10% appeared with more deformation 

of the steel section flange of CSF-10-75-N in both direction more than the 

deformation occurred in CSF-0-75-N 
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Figure 6.6: Compression and tension steel bar strain Vs Drift groups (125mm)                 

(Compression side) (axial load effect) 

 

• Increasing axial load ratio from 0% to 10% affected on more tension force 

in steel bar in CSF-0-75-N axially loaded specimen was under a compression 

force that reduce tension force in longitudinal steel bars. 
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2. Effect of confinement 

 

Figure 6.7: Peak to Peak stiffness of flexure modern building specimens             

(Pull direction) (confinement effect) 

• Increasing confinement by decreasing hoop spacing from 160 mm to 75 mm 

decreasing the stiffness peak from 0.48 to 0.33 in tension direction which was 

not predicted. Because of increasing confinement, increase the specimen load 

capacity which means stiffness increase. 
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Figure 6.8: Peak to Peak stiffness of flexure modern building specimens                

(Push direction) (confinement effect) 

• Stiffness peak increased in compression with a few value less than 10% by 

increasing column confinement. Normally finding stiffness peak resulted 

from push direction higher than the stiffness value from pull direction. CSF-

10-75N’s stiffness value was higher but the slope curve was dramatically due 

the small spacing between stirrups increase the specimen brittleness. CSF-

10-16N’s stiffness value was lower but the blue curve show that increasing 

stirrups spacing lead to more ductility.  
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Figure 6.9: Peak to peak Energy of flexure modern building specimens 

(confinement effect) 

 

• More confinement, less energy specimen. Specimen with larger hoop spacing 

is higher drift capacity than the well confined specimen   
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Figure 6.10: Compression and tension shear strain (rad) Vs Drift groups 

(Vertical LVDTs 5-12) (Tension side) (Confinement effect) 

 

• Concrete and steel web carry some of hoop strain in less confinement column. 
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Figure 6.11: Compression and tension flange steel strain Vs Drift groups (125mm) 

(Confinement effect) 

 

• Steel section flanges reached to higher deformation in the more confinement 

column rather than the other one. Low stirrups space decreases the concrete 

ductility, so steel flanges resist the flexure deformation.   
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2. Existing building 

1. Effect of axial load ratio 

1.1. Shear controlled specimens 

 

S80. The peak shear strength reached was 220 KN which is significantly higher 

than the 158 KN theoretically predicted shear strength of AISC 341. On the contrary, the 

increase in the axial load ratio from 15% in specimen S15 to 80% in specimen S80 did 

not result in an increase in peak shear strength. However, the loading stiffness of 

specimen S80 is obviously higher than that of specimen S40 as can be clearly observed, 

which shows the backbone curves of all specimens in the positive (initial) loading 

direction. Higher axial load ratio resulted in increasing axial stiffness. The peak shear 

strength was reached at 2% drift ratio, which is about 32.2% less than that of specimen 

S15, 52.3% less than that of specimen S20, 52.3% less than that of specimen S40, 

emphasizing the effect of higher axial load in limiting the deformability and energy 

dissipation of the test specimen. This can be also observed by comparing the fatness of 

the hysteresis loops in specimen S15, S20 and S40 compared to those in specimen S80. 

Moreover, the axial failure drift capacity of specimen S80 was 3.9% which is about 32.7% 

less than the 5.8% drift capacity of specimen S15, 33.33% less than the 5.85% drift 

capacity of specimen S20, and 29% less than the 5.5% drift capacity of specimen S40. 

This further indicates the limited seismic deformation capacity imposed by the higher 

axial load in specimen S80. The post peak shear strength degradation in specimen S80 is 

better than that of specimen S15, S20, and S40 confirming the same observation. The 

axial failure corresponded to a 47.83 % drop in the lateral load capacity in specimen S15, 

21.54 % drop in the lateral load capacity in specimen S20,  
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and 15.4% drop in the lateral load capacity in specimen S40, while it corresponded 

to 12.44% drop in lateral load capacity in specimen S80. The drift ratio corresponding to 

reaching 20% shear strength degradation in specimen S80 was 3.5%, which is 23% less 

than its counterpart in specimen S40. This 3.5% reduced drift capacity is deemed 

relatively high compared to its counterpart in existing reinforced concrete buildings 

undergoing strong shaking and experiencing column shear failure; however, it is 

considered insufficient if compared to the modern building seismic drift capacity 

requirements under collapse prevention limit state as recommended by Tall Building 

Initiative (2011). Thus, retrofitting such shear deficient columns experiencing moderate 

to strong ground shaking under high axial loads seems inevitable. 

 

As it mentioned before that specimen 1 (CSS-15-E) was loaded with axial load 

15% of the concrete section strength with 255 KN, the specimen (CSS-20-E) was loaded 

with axial load 20% of the concrete section strength with 465 KN, the specimen (CSS-

40-E) was loaded with axial load 40% of the concrete section strength with 670 KN, the 

specimen (CSS-60-E) was loaded with axial load 60% of the concrete section strength 

with 1400 KN, and the specimen (CSS-80-E) was loaded with axial load 80% of the 

concrete section strength with 1300 KN. The comparison between specimens show there 

are some effects of the axial load variables ratios of the column behavior under the seismic 

loading for the existing building.  
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Figure 6.12:   Shear deficient old building specimens Backbone curves 

 

• Increasing axial load ratio from 15% to 80% Decreased the drift Capacity 

gradually from Specimen CSS-15-E to CSS-80-E 
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Figure 6.13: Peak to Peak stiffness of shear old building specimens                    

(push direction) 

• Increasing axial load ratio from 15 % to 80% doubled the peak stiffness in 

compression direction. In CSS-15-E reach to about 1 Kn/ mm and with 

increasing load to 80% ratio CSS-80-E reach to 2.1 Kn/mm stiffness. 
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Figure 6.14: Peak to Peak stiffness of shear old building specimens                      

(pull direction) 

• Increasing axial load ratio from 15 % to 80% has not a big effect on stiffness 

peak in tension direction. This result came from that concrete in tension 

direction already started cracking during loading compression direction to 

make a decreasing of tension direction stiffness.  
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Figure 6.15:   Compression and tension Web steel strain Vs Drift groups (320mm) 

 

• As predicted according to increasing axial load ratio from 15% to 80%, 

increased the deformation of steel web due to resisting more shear force. 
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Figure 6.16: Compression and tension steel hoop strain Vs Drift groups (325 mm) 

 

 

• CSS-80-E‘s tension curve show a larger deformation in stirrup in level 

325mm from bas surface. Under higher axial load ratio lower concrete area 

failed under compression which affected on stirrups in this part. 
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2.2. Flexure controlled specimen 

 F80. The peak strength reached was 175 kN which is higher than the 128 kN 

theoretically predicted strength using XTRACT. The loading stiffness of specimen F80  

is obviously higher than that of specimen F15 as can be clearly observed from, which 

shows the backbone curves of the two specimens in the positive (initial) loading direction. 

This is attributed to the higher axial load ratio effect in increasing axial stiffness. The 

peak strength was reached at 2% drift ratio, which is about 52.4% less than that of 

specimen F15, emphasizing the effect of higher axial load in limiting the deformability 

and energy dissipation of the test specimen. This can be also observed by comparing the 

characteristic fatness of the pre-peak hysteresis loops in specimen F15 indicating flexural 

tension yielding compared to the narrow ones in specimen F80 suggested more axially 

driven behavior. Moreover, the axial failure drift capacity of specimen F80 was 95KN at 

the same drift of F15 6% which is about 27% less than the 130 KN axial failure capacity 

of specimen F15. This further indicates the limited seismic deformation capacity imposed 

by the higher axial load in F80 specimen. The post-peak strength degradation in specimen 

F80 is much more pronounced than that of specimen F15 confirming the same 

observation. The highly flattened hysteretic loops in specimen F80 following the axial 

failure characterize that the specimen response is driven by the steel section residual 

capacity following out-of-plane deformations. Comparing the drift ratio at the onset of 

lateral strength loss (2%) to the MCE acceptance criteria of TBI 2011 (3% for the mean 

of a ground motion suite) indicates the limited deformability and the proneness to collapse 

of SRC columns in existing buildings with a strong seismic event. This suggests the need 

to retrofit existing SRC columns with high axial ratios. The unsymmetrical hysteresis 

loops following loss of lateral strength is resulted from the unsymmetrical loss of concrete 

compression zone and the out-of-plane buckling deformation of the steel section which 

is inherently unsymmetrical.    
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Figure 6.17:   Shear deficient old building specimens Backbone curves 

 

• Increasing axial load ratio from 15 % in CSF-15-E to 80% in specimen CSF-

80-E lead to 57% peak strength drift capacity reduction, 26% axial failure 

drift capacity reduction, higher loading stiffness, and accelerated post-peak 

stiffness & strength degradation. 
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Figure 6.18: Peak to peak Energy of flexure old building specimens 

• The tension flexure failure specimen  was more energetic than the flexure 

compression failure specimen due to the ductility of steel bars   
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Figure 6.19: Peak to Peak stiffness of flexure old building specimens                      

(pull direction) 

• Increasing axial load ratio from 15 % to 80% increased peak stiffness with 

150% in tension direction 
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Figure 6.20: Peak to Peak stiffness of flexure old building specimens                      

(push direction) 

• Increasing axial load ratio from 15 % to 80% increased peak stiffness with 

more than double in compression direction. 
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• Blue line curve show a dramatic deformation for the higher axial loaded 

specimen CSF-80-E compared with CSF-15-E. The test show that stirrups 

opened under the high axial load and failed under compression flexure 

failure mood.  

 

 

 

 

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
CSF80-St

CSF-15-Str

st
ra

in
 (

ra
d

) 

Drift  Groups

-2

0

2

4

6

8

10

12

14

16

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.0

0

1
.3

0

1
.6

9

1
.6

9

2
.2

0

2
.8

5

2
.8

5

CSF80-str

CSF-15-STr

Drift  Groups



252 

 

Chapter 6                                                                                Discussion of Test Results 

 

 

Figure 6.21:  Compression and tension flange steel strain Vs Drift groups (300mm) 

 

• Under 80% axial load ratio the steel flange deformed higher comparing with 

15% loading on specimen CSF-15-E 
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Figure 6.22: Compression and tension steel bar strain Vs Drift groups (50mm) 

(Compression side) 

 

 

• According to test figures and figure 6.22 last curve, steel bar buckled with 

big deformation larger than steel bar in CSF-15-E. 

 

 

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

-0.25-0.50-0.75-1.00-1.00-1.30-1.69-1.69

CSF-80-bar1

CSF-15-bar1

Drift  Groups

st
ra

in
 (

ra
d

) 

-20

-15

-10

-5

0

5

10 CSF-80-bar1

CSF-15-bar1

Drift  Groups



254 

 

Chapter 7                                                                  Conclusion and recommendations 

7. Chapter (7)                                                       

Conclusion and recommendations 

 

Based on the observation of failure modes and test results this chapter concludes 

all results from testing specimens for each group and how they fit with code’s 

recommendations. And also, there are some recommendations based on conclusions for 

each group.   

7.1 . Modern buildings 

1.1. Conclusion 

• Specimens show very satisfactory flexural performance without significant strength 

degradation until large drift ratio of 5.35 % which exceeds any practical drift ratio for 

collapse prevention.   

• The steel section web and shear studs work to over-strength the column in shear. Thus, 

the shear failure of columns designed according to ACI 318-14 and AISC 341-2008 

is not likely 

• Modern building SRC column under flexural controlled in tension failure low axial 

load ratio with the maximum allowed hoop spacing showed slightly higher capacity 

in resisting lateral load with larger drift than column with smaller hoop spacing. That 

is not likely recommended by the code as it is counter-intuitive and could be attributed 

to test conditions. Thus, it could be concluded that since no apparent degradation of 

the more confined column was noticed until very large drift, using the maximum 

allowed hoop spacing recommended by ACI 318-14 seems suitable for good 

confinement with little strength loss at high drift. 
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1.2. Recommendations 

• It is sufficient to use the maximum allowed ACI 318-14 hoop spacing in low axial 

load SRC column<15% experiencing flexural tension failure. 

• More research needed to find the optimum hoop spacing which maximizes lateral and 

drift capacity for columns. 

• More research needed with higher axial load ratio to further test the feasibility of code 

recommendation of hoop spacing 

2. Existing buildings: 

2.1. Conclusion: 

2.1.1. Shear deficient  

• The shear deficient SRC columns experienced early shear failure under cyclic load 

reversals and high axial load ratios. 

• The tested specimens exhibited early shear failure at relatively low drift ratios of 

2.28%-2.88%, which implies that SRC existing buildings are not fully conformant 

with modern building collapse prevention drift requirements under strong shaking. 

This could present losses of stability during strong seismic excitations. Thus, 

retrofitting such columns is needed. 

• Increasing the axial load ratio from 15% to 80% has negatively affected deformation 

capacity of test specimens. It reduced peak shear drift by 32.2% and resulted in faster 

post peak shear strength degradation. 
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2.1.2. Flexure deficient  

• The flexural compression controlled existing SRC columns with high axial load ratios 

(80%) are drift-critical since they can lose their lateral strength dramatically as early 

as 2% drift ratio and can reach axial failure at 6% drift ratio. Accordingly, these 

columns are considered seismically deficient if compared to the modern buildings 

deformation requirements. 

• Increasing the axial load ratio from 15% to 80% shows a significantly different failure 

mode as the high axial load ratio led to the compression zone failure, buckling of 

longitudinal bars and steel section flanges, and opening the transverse hoops. 

• Increasing the axial load ratio from 15% to 80% was detrimental to deformation 

capacity of test specimens. It reduced peak shear drift by 52.3%, axial failure load by 

27% and resulted in faster post peak strength degradation. 

• According to shear force hysteresis, after failure of concrete section, and losing a 

significant portion of lateral load capacity at relatively large drift, the steel section 

started increasing column energy and increased again the horizontal load capacity; 

however, this was at an unpractical large drift.  

2.2. Recommendations 

2.2.1. Shear and Flexure deficient  

• Retrofitting shear deficient SRC columns under high axial loads (>40%) and flexure 

deficient columns under high axial loads (higher than the balanced load, i.e. 

compression controlled failure) experiencing moderate to strong ground shaking 

seems inevitable.  
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