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Abstract 

Every year Egypt produces enormous amounts of solid waste that reached 89 million 

tons/year in 2012 and still in continuous increase. As most experts agree, waste can be a 

hidden treasure for the nation, if it is fully exploited. Indeed, solid waste can be reused, 

recycled, or even recovered as a source of energy instead of simply being disposed in 

dumpsters and landfills. Given the need for alternative sources of energy, energy crisis, and 

waste management problems in Egypt, waste-to-energy (WTE) seems to be an optimum 

solution for both problems: energy and waste disposal.  

In the first phase of this research, a comparative study was conducted to investigate 

the average calorific value of various waste materials from agricultural, industrial, and 

municipal waste sources including six types of plastics, tires, sawdust, rice straw, rice husk, 

corn husk, bagasse, and onion leaves. Due to the fact that biomass pellets are more uniform, 

and easier to transport and store, the second phase of the study investigated the use of starch, 

water, and Ca(OH)2 as binders for biomass pellets and their impact on the average calorific 

value. The final phase investigated the emissions produced from the most promising waste 

materials.  

The results showed that among the six types of plastics, polypropylene (PP) has given 

the highest average calorific value, while bagasse had a maximum average calorific value 

among the five investigated agricultural wastes. Rice straw can also be one of the promising 

agricultural WTE materials in Egypt because it is abundant in large quantities; same as tires 

which are widely available and have high average calorific value when compared to fossil 

fuels like coal and diesel. From the second phase, the utilization of starch, water, and 

Ca(OH)2 had a minor impact on the average calorific value of the investigated biomass with 

a maximum decrease of 10% of the original calorific value, however, this percentage 
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changed from one material to another. In the third phase, emissions measured were CO, NO, 

NO2, CO2, and SO2 for rice straw, bagasse, tires, and polypropylene, which were selected 

based on the first phase results. Emissions were measured using Testo gas analyzer that only 

provided rough estimation of emissions and only comparative figures. The results showed 

that tires had the highest mass of SO2, CO, and CO2 per unit mass of tires, while bagasse had 

the maximum NO value. NO2 was almost the same for tires and bagasse, and they gave the 

highest value of NO2.  However, the produced emissions could have been impacted with the 

percentage of mass loss in the combustion process, and other pollutants that could not be 

measured in this study. The results obtained can be used for industrial application, especially 

for energy-intensive sectors that can use waste as a source of energy because it includes the 

average calorific values of different materials, which is one of the most important factors 

that should be taken into consideration while evaluating WTE materials, as well as the 

produced emissions from the most promising ones. Determining these emissions would help 

those industries to decide on mitigation and removal technologies that can be used in order 

to reduce those emissions.  
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CHAPTER (1) 

INTRODUCTION 

Introduction 

1.1 Energy Consumption 

As a result of the industrial development and the ever-growing population all over 

the world, the global demand for energy has been increasing enormously. For so long, fossil 

fuels (non-renewable sources), such as coal, natural gas, oil-based fuels, have been the 

primary source of energy everywhere, which led to the fear of the depletion of such resources 

one day. About 80 % of the total energy used worldwide has been derived from fossil fuels, 

while 20 % only is obtained from renewable energy sources since the beginning of the 21st 

century (Selin, 2014). It is expected that the current reserves of petroleum will last during 

the twenty-first century if they are continued to be consumed at the current rates. Moreover, 

the discovery of new reserves has decreased as compared with earlier. Nevertheless, the coal 

reserves are much larger, but it can result in environmental catastrophes to extract it (The 

Gale Encyclopedia of Science, 2008). Furthermore, fossil fuel burning is considered as a 

main contributor to the global warming as it releases carbon dioxide, which is one of the 

main greenhouse gases. It also causes air pollution since large quantities of toxic matters are 

emitted such as sulfur dioxide, particulate matter, nitrogen oxides, and toxic chemicals. The 

exposure to such pollutants can cause several human health problems as well as the negative 

impacts on the environment like the acid rain that even affects the aquatic life and forestry 

(Selin, 2014) 

From here, the urgent need for alternative sources of energy to replace fossil fuels 

has come out, in order to avoid the energy crisis as well as environmental disasters. Also, 
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the wider use of renewable sources of energy is seen as a key for more sustainable and 

affordable economy across the world (The Gale Encyclopedia of Science, 2008). 

1.2 Non-Renewable Energy 

Non-renewable energy sources are fossil fuels (oil, natural gas, and coal) and nuclear 

energy. Fossil fuels need millions of years to form, and they come out in the form of liquid, 

gas, or solids. Such non-renewable energy sources are expected to run out soon since they 

cannot be replenished in our lifetimes.  

1.2.1 Oil 

Oil is considered as hydrocarbons that were formed from animals and plants, which 

lived millions of years ago. Crude oil come out in the form of liquid and it exists in reservoirs 

or underground pools, near the surface in tar sands, or in tiny space within sedimentary rocks. 

Crude oil is then refined into different petroleum products including distillates like diesel 

fuel and heating oil, waxes, lubricating oils, jet fuel, gasoline, petrochemical feedstocks, and 

asphalt (U.S.EIA, 2016). 

1.2.2 Natural gas 

Natural gas is a gas that is composed mainly of methane, which is a gas with four 

hydrogen atoms and one carbon atom, and it also contains small quantities of non-

hydrocarbon gases and hydrocarbon liquids. Natural gas exists deep beneath the earth’s 

surface, and it can be used as a fuel or to produce chemicals and materials (U.S.EIA, 2015).  

1.2.3 Coal 

Coal is a combustible black or brownish black sedimentary rock that contains high 

amount of carbon and hydrocarbons. Coal was formed from dead plants that existed millions 
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of years ago by being subjected to heat and pressure. There are four main types of coal that 

are categorized based on the amount of carbon contained and the amount of heat energy that 

coal produces. The first type is anthracite that contains 86-97% carbon, and has the highest 

heating value among the four types of coal. Bituminous coal contains 45-86% carbon, while 

subbituminous coal typically contains 35-35% carbon and has lower heating value that 

bituminous coal. The fourth type of coal is lignite which contains 25-35% carbon, and has 

the lowest heat content of all coal types (U.S.EIA, 2016).  

1.2.4 Nuclear energy 

Atoms are split apart in nuclear fission, which releases energy. Most nuclear power 

plants use nuclear fission using uranium atoms. During nuclear fission, uranium atom is hit 

by a neutron and split causing release of large amount of energy as heat or radiation. When 

a uranium atom splits, more neutrons are released, and then they hit other uranium atoms 

and the process is repeated over and over, in a process called “nuclear chain reaction”. A 

specific type of uranium called U-235 is the most widely used fuel in nuclear power plants 

because its atoms can split apart easily. However, this kind of uranium “U-235” is relatively 

rare, and thus it is considered non-renewable energy. Moreover, it is still difficult to control 

a fusion reaction (U.S.EIA, 2015).  

1.3 Alternative (Renewable) Energy 

There is a current need to replace or substitute fossil fuels like oil, coal, and natural 

gas, and nuclear materials such as uranium, with alternative energy in order to avoid the 

expected consequences of the increasing usage of such non-renewable sources.  Alternative 

energy is any form of energy that does not come from fossil fuels or nuclear energy. The 

term renewable energy can also be used instead of alternative energy, which is usable energy 
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obtained from renewable sources such as wind (wind power), rivers (hydroelectric power), 

sun (solar energy), hot springs (geothermal energy), tides (tidal power), biomass (biofuels), 

and waste (Selin, 2014). Such alternative sources still represent a small fraction of the total 

energy; however, their usage is rising rapidly (The Gale Encyclopedia of Science, 2008).  

1.3.1 Wind power 

Wind power has been used for thousands of years as it was first used in 5000 BC for 

the navigation of sailors in the Nile River. It was also used by Persians to pump water and 

grind grain through windmills. Nowadays, wind power is considered as “one of the most 

promising new energy sources that can serve as an alternative to fossil fuel- generated 

electricity”. Wind energy has become more available, affordable, and pollution-free; 

however, it has some disadvantages as it is deemed as a diffuse source of energy. It needs 

huge numbers of wind generators, and hence large areas of land in order to be able to produce 

significant quantities of electricity or heat. It is also costly to build and maintain a wind farm 

and not easy to find an appropriate windy place for such a purpose (Alternative Energy, 

2015).  

1.3.2 Hydroelectric power 

Thousands of years ago, the Greeks used the movement of water “hydroelectric 

power” to produce energy; converting the kinetic energy into mechanical energy to pump 

water and grind grains. Moreover, the water wheel was used in the 1800s to power machines 

such as timber-cutting saws. In order to maximize the use of this energy, dams were 

constructed to enclose a part of the river as artificial lake or reservoirs. Afterwards, water 

can pass through tunnels in the dam, and such movement of water turns turbines and thus 

generators move to produce electricity (Hydroelectric energy, 2015). Hydroelectric power is 
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a clean, renewable, and inexpensive source of energy. However, the construction of such 

dams impacts the lives of the people nearby as well as the eco-systems (Hydroelectric power, 

2015).  

1.3.3 Solar energy 

Solar energy comes from the nuclear fusion power from the core of the sun. It is an 

inexhaustible, and pollution and noise free source of energy. Solar energy was first used for 

heating water and cooking food in 1767 by a Swiss scientist. Later, it was found that the 

sunlight could be converted into electricity with an efficiency of 1-2% through photovoltaic 

(PV) cells in the 1880s. However, that conversion could not be understood until Albert 

Einstein explained the photoelectric effect in the early 1900s. Currently, the solar power is 

still used in the same two ways to convert light into heat and electricity through a system 

that is composed of cells. The photovoltaic power is pollution free, needs little maintenance, 

does not include moving parts that may break down, and has inexpensive running costs with 

a lifetime of 20-30 years. On the other hand, there are two disadvantages when using solar 

power, which are the cost of equipment and amount of sunlight. The amount of sunlight 

varies according to the time of day, seasons, clouds, and geographical location. Also, solar 

energy technologies are still more expensive that traditional sources of energy, although 

huge improvements in the technological and cost aspects have been done (Solar Energy, 

2015).  

1.3.4 Geothermal energy 

Geothermal power comes from the heat inside the earth; such heat is very intense as 

it creates molten magma. If hot magma formed near the surface, about 1500 to 10000 meters 

deep, groundwater can be heated directly. When hot water and steam occur naturally, it can 
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be used to generate electricity or for hot water production to be used directly. This can 

happen through energy conversion technology. Even if magma is not near the surface, it 

heats rocks that heat the deep-circulating groundwater as well. For geothermal energy to be 

feasible, its concentration must be high at this location. Geothermal systems are most 

appropriate for locations that are geologically active, where well-developed thermal systems 

can be constructed. In Iceland, geologic plates move constantly in addition to the volcanic 

nature of the island, thus geothermal energy is used there to heat about 95% of homes. Earth 

energy is another type of geothermal energy that can be extracted from the shallow ground 

by heat pumps to directly heat or cool houses. Since the temperature under the ground tends 

to be at the yearly average, this is why the ground in winter is warmer than air and vice versa 

in summer. Therefore, earth energy is used to heat a building in winter and act as air 

conditioner in summer. However, geothermal energy is considered as a non-renewable 

source as it declines with time because steam is extracted faster than it could be produced 

naturally at that location. Geothermal energy has also some environmental impacts since 

some of its applications emit carbon dioxide and hydrogen sulfide (Geothermal Energy, 

2015). 

1.3.5 Tidal energy 

Tidal energy is another source of renewable energy that is produced by the rise and 

fall of tides of ocean waters. Special generators are used to convert tidal energy into 

electricity, where there is a significant difference between high and low tide. However, tidal 

energy is not widely used, as the amount of power produced so far has been small. Also, 

investors are not eager yet about tidal energy because there is no strong guarantee that they 

will benefit from it (Tidal Energy, 2015). 
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1.3.6 Biofuels 

 Biofuels are fuels that are produced in direct or indirect ways from organic materials. 

There are two types of biofuels, which are primary (unprocessed), and secondary 

(processed). Primary fuels are used in their natural form such as firewood, wood chips and 

pellets. Those fuels are burned directly to produce electricity, or to supply cooking and 

heating in small and large scale industrial applications. On the contrary, secondary biofuels 

are used for different applications such as transport and high-temperature industrial 

applications. Secondary biofuels are present in the form of solids (like alternative fuels from 

solid waste), liquids (such as ethanol, biodiesel, and bio-oil), or gases (such as synthesis gas, 

hydrogen and biogas) (FAO, 2008).  

1.3.6.1 Bio-Ethanol  

Ethanol is the leading biofuel used currently. It is an alcohol derivative, and is also 

known as ethyl alcohol. It is obtained by the fermentation of sugars, and usually from the 

corn grains or other agricultural products. The most used form of ethanol in transportation 

is E85, which contains 85% ethanol and 15% gasoline. All flex-fuel light-duty vehicles are 

designed to use E85 (USDTFTA, 2006). 

1.3.6.2 Biodiesel 

Biodiesel is produced from animal fats or vegetable oils. A known type of biodiesel 

is B20 which contains 20% biodiesel blended with petroleum diesel. This mix gives the 

optimum benefits in terms of cost, risk of field problems, and emission benefits. B20 is 

widely used in diesel engines without modifications (USDTFTA, 2006). 
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1.3.6.3 Hydrogen 

Hydrogen is a clean, and renewable energy source that cannot be depleted. Hydrogen 

is present in large amounts in water (H2O), hydrocarbons such as methane (CH4), and other 

organic matters. One of the challenges that faces the use of hydrogen as fuel is to extract 

hydrogen from such compounds efficiently. Hydrogen is a gas that can be obtained by 

electrolysis, which is a process of combining oxygen and water. Also, it can be produced 

from steam reforming, or combining high-temperature steam with natural gas. Most of the 

hydrogen produced in the U.S. is utilized in refining petroleum, producing fertilizers, 

processing foods, and treating metals. The process of hydrogen production may result in 

emissions that affect the air quality based on the source. However, fuel cell vehicles are zero-

emission vehicles as they only produce water vapor as well as warm air as exhaust. Research 

and development efforts are still exerted to use such vehicles widely (Alternative Fuels Data 

Center, 2014).  

1.3.7 Waste-to-Energy (WTE)  

Another promising source of energy that has been known for a while is waste. Some 

of the abovementioned biofuels can also be considered as waste-to-energy (WTE) sources 

because they are obtained from wastes, such as organic waste. Waste fuels can be defined as 

“…waste that is used entirely or to a relevant extent for the purpose of energy generation…” 

as given in the “Waste Incineration Directive (WID)” (Sarc & Lorber, 2013). However, it is 

very important that recyclables are removed first and then energy can be recovered from the 

remaining part, i.e. residual waste. There are various WTE technologies that can be used, 

which are (Renewable Energy Association (REA), 2011): 

 



 

 

 

 9  

   

 

 

 Combustion, where waste is burned and energy is recovered as heat or electricity 

 Pyrolysis and gasification, in which “syngas” is produced by fuel heated with little 

or no oxygen. This syngas can be used to produce energy or as a feedstock to generate 

methane, biofuels, chemicals, or hydrogen 

 Anaerobic digestion that converts organic waste into methane-rich biogas by using 

microorganisms. Biogas can be combusted to produce electricity and heat or 

converted into bio-methane. This technology suits wet organic wastes or food wastes 

the most, and it can also produce bio-fertilizer.  

1.4 The Need for Waste-to-Energy (WTE) 

The volume of solid waste produced worldwide has significantly increased due to a 

number of factors such as the ever-growing population, the increase in the standard of living 

in some developing countries, urbanization, and industrialization.  As a consequence, solid 

waste management has become a major concern and challenge for communities: the issue is 

how to get rid of these wastes with the minimum impact on the environment. Several 

methods have been used to dispose different types of solid waste; each method has its 

advantages and disadvantages (Dong & Lee, 2009). The most common disposal methods are 

landfilling, recycling, composting, mechanical-biological treatment, and waste to energy 

(WTE) (Psomopoulos, Bourka, & Themelis, 2009). Among the different disposal 

alternatives, landfilling has been the most widespread, but it will be limited in the future 

because of the tremendous spaces needed, leachate problems as well as gas emissions. 

Moreover, bioremediation is only used for biodegradable waste that decomposes, and 

recycling cannot be applied for all types of wastes. On the other hand, thermal treatment 

with heat recovery (WTE) has become an attractive method, not only for waste disposal, but 

also for energy recovery in addition to many other advantages (Stehlik, 2009).  
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Incineration technology has been such a perfect alternative as it reduces the original 

volume by 90% and about 75% of the original weight of solid waste as well as the energy 

recovery (Dong & Lee, 2009). However, the main concern for WTE plants in the past was 

the production of ash, and the hazardous toxic pollutants released in the environment such 

as dioxins and furans. Nevertheless, this has been changed after the U.S. Environmental 

Protection Agency (USEPA) put the maximum available control technology (MACT) 

regulations into effect in the 1990s to lessen the adverse effects of WTE facilities on the 

environment. As a result, the emissions of WTE have been decreased to the extent that even 

led the USEPA to name WTE as one of the cleanest sources of energy in 2003 (Psomopoulos, 

Bourka, & Themelis, 2009).  

Another major advantage for WTE is that it can be an alternate for energy sources in 

those countries that suffer from both fuel shortage and waste disposal issues (Dong & Lee, 

2009). For instance, they used this solution in Korea because they faced problems in finding 

new spaces for landfills since waste resources increased and waste treatment capacities 

became inadequate. Moreover, they also had a lack in the natural sources of fuel or energy. 

One more thing is that WTE can be considered as a renewable source of energy; it can even 

lead to the goal of 20% renewable energy and 20% decrease in CO2 emissions that was 

agreed upon at the European level (Munster & Lund, 2010).  

1.5 Solid Waste in Egypt 

Generally, Waste can be defined as what is left behind from whatever activity and it 

has no use at source anymore, however, it can still be valuable for other activities (Abou-

ElSeoud, 2008). They can be classified based on their nature, their source of generation, or 

their hazardousness. Wastes are divided into several categories based on their source, which 
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are municipal, agricultural, industrial, construction and demolition, and medical wastes 

(SWEEP, 2014). According to waste nature, it can be solid or liquid waste. Our focus in this 

thesis is the municipal, agricultural, and industrial wastes. Municipal solid waste usually 

comes from residential, commercial, educational, and health facilities in addition to wastes 

from gardens, markets, hotels, and small factories and camps. Industrial solid waste contains 

hazardous components including chemicals and heavy metals resulted from medium to large 

industrial facilities. Agricultural waste is a result of farming activities, including crop 

remains that can be used for energy production, animal feed, fertilizers, or to be recycled. 

Furthermore, animal manure, pesticide residue, and agricultural fertilizers are considered as 

agricultural wastes, but they are hazardous and need special handling (Abou-ElSeoud, 2008). 

The total solid waste in Egypt in 2012 is approximately estimated as 89 million 

tons/year (NILE, 2013). Table 1 shows the amount of generated solid waste in Egypt in 2012 

based on the type and source of waste. Solid waste management (SWM) in Egypt is among 

one of the big challenges that the country faces due to the rapid urbanization and high 

population growth rate. However, the waste characteristics and quantities differ from one 

location to another even within the same country. In order to achieve the best waste 

management strategy, the characteristics, quantities, and components of the existing waste 

should be determined (UNEP, 2005). For instance, if the waste is of low-calorific value, then 

it cannot be incinerated without the usage of supplementary fuel.  
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Table 1 - Estimated generated solid waste in Egypt in 2012 (NILE, 2013) 

Waste Type Generated Quantity (Million tonnes) % 

Municipal solid 

waste 

21.0 23.5 

Industrial waste 6.0 6.7 

Agricultural waste 30.0 33.6 

Waterway cleansing 

waste 

25 28.0 

Medical Waste 0.28 0.3 

Demolition and 

construction waste 

4.0 4.5 

Sludge 3 3.4 

Total 89.28 100 

 

1.5.1 Municipal solid waste (MSW)  

Municipal solid waste (MSW) in Egypt was estimated with 21 million tons/year in 

2012 (NILE, 2013). Figure 1 shows the composition of municipal solid waste in 2012. 

MSW is composed mainly from residential solid wastes, and also contains some non-

hazardous commercial, industrial and institutional wastes (Energy Information 

Administration , 2007). The composition of MSW is organic matter as the largest 

percentage, and less percentages of glass, paper, plastics, and minerals. Municipal solid 

wastes may also contain some hazardous substances like chemicals, used dry batteries, 

household insecticides, expired medicines, paints, drug residues, and electrical and 

electronic devices (Abou-ElSeoud, 2008). 
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The disposal of MSW can be problematic because of its large volume (Energy 

Information Administration , 2007). The organic components can be composted for the 

improvement of the soil properties, recycled, or used to produce electricity from methane 

gas. The rest of components like plastics, paper, metals, and glass can be separated, and 

reused for manufacturing of similar or different products (Abou-ElSeoud, 2008).  

There are different treatment methods for MSW based on its properties. The 

properties of MSW in Egypt determines whether it should be composted, recycled, converted 

to energy, or disposed in landfill. The relative density is almost 0.3 ton/cubic meter, humidity 

is about 30-40%, while the heat content is about 6276 kJ/kg (Genena, 2010). In order to 

solve that volume problem of the MSW, it can be combusted to decrease its volume in 

addition to creating energy that can be recovered in the form of heat or steam. However, the 

amount of energy that can be obtained from waste can be determined by the composition of 

the waste stream as some materials have higher heat content than others. For example, some 

Figure 1 - Municipal solid waste composition in 2012 (NILE, 2013) 



 

 

 

 14  

   

 

 

plastics have more heat content than yard trimmings or organic textiles.Error! Reference 

source not found. Table 2 shows the heat content for some materials in MSW (Energy 

Information Administration , 2007).  

Table 2 - Typical heat content of materials in Municipal Solid Waste (MSW) (kJ/kg) (Energy Information 

Administration , 2007) 

Materials kJ/kg 

Plastics 

Polyethylene terephthalate (PET) 

High density polyethylene (HDPE) 

Polyvinyl chloride (PVC) 

Low density polyethylene/ Linear low 

density polyethylene (LDPE/LLDPE) 

Polypropylene (PP) 

Polystyrene (PS) 

Other 

 

23842 

44194 

19190 

28028 

 

44194 

41403 

23842 

Rubber 312845 

Leather 16747 

Textiles 16049 

Wood 11630 

Food  6048 

Yard trimmings 6978 

Newspaper  18608 

Corrugated cardboard 19190 

Mixed paper 7792 
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1.5.2 Industrial solid waste  

Most of the industrial waste in Egypt comes from the following industries: 

petrochemicals, plastics and resin, pulp and paper, food, cement, metallurgical, fertilizer, 

textiles, wood and furniture, chemical and pharmaceutical industries. These industries and 

others are considered as a major contributor to solid waste problem in Egypt. About 24,500 

industrial facilities are distributed all over Egypt, however, approximately 50% are located 

in the Greater Cairo, and about 40% in Alexandria (USAID, EPP, & MSEA, 2009). The 

remaining facilities are in the Delta, Upper Egypt, and new cities like the 10th of Ramadan. 

The industrial solid waste can be classified into hazardous and non-hazardous waste. The 

generation of the industrial non-hazardous solid waste in Egypt is estimated with six million 

tons in 2012. In order to manage the industrial solid waste effectively, its quantity and 

physical characteristics should be determined (SWEEP, 2014).  

1.5.3 Agricultural solid waste 

The agricultural solid waste represents the third environmental issue in Egypt, right 

after the sewerage and garbage problems.  Agricultural solid waste is disposed in channels 

and drains resulting in contaminating the soil, groundwater as well as surface water (El-

Haggar, 2004). In 2012, Egypt produced about 30 million tons of agricultural waste. The 

primary problem that obstructs the agricultural waste management is the lack of machines 

for combining, raking, and baling. Another problem is the shortage in the number of trucks 

needed to transport this waste as well as the unpaved roads. Therefore, farmers find that 

burning crop residues, especially rice straw, is much easier, without considering the 

environmental crisis and the human health risks they cause. On the other hand, such residues 

can be composted, used to generate biogas, or co-fired to generate energy (SWEEP, 2014). 
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In the past, agricultural solid waste did not represent a problem in Egypt, until the 

use of synthesized materials that are not biodegradable (Zayani, 2010). Crop residues was 

re-used before in the farms to feed cattle, as fertilizers, or to be burned as a source of fuel. 

However, the use as a fuel has been decreased after the spread of propane/butane gas ovens 

and stoves. Moreover, the Ministry of Agriculture banned the storage of crop residues in 

order to avoid fires, and to fight diseases and pests. Therefore, farmers start to think of cheap 

disposal methods for their waste such as burning and random dumping, which decreased the 

utilization of agricultural waste from 100% to 40%. Table 3 shows the cultivated areas and 

generation of agricultural solid waste for major crops in Egypt (Zayani, 2010).  

Table 3 - Cultivated areas and agricultural solid waste production for major crops (Zayani, 2010) 

 

1.6 Terminology of Alternative Fuels (AF)   

A wide range of waste materials that have a definite calorific value can be used to 

produce Alternative Fuels (AF) after being processed. Alternative fuels can be defined as 

alternatives to conventional gasoline and diesel fuels. They are also derived from renewable 

sources and mostly have less negative impacts on the environment. As mentioned earlier, 

Crop Cultivated area (feddan) Solid waste generation 

(tons/feddan) 

Total (tons) 

Rice 1,507,634 2.1 3,015,000 

Maize 1,657,799 1.9 3,150,000 

Wheat 2,506,178 2.56 6,415,000 

Cotton 535,090 1.6 856,144 

Sugar cane 327,215 11.9 3,726,978 

Total 6,206,701  - 17,163,122 
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alternative energy or fuels can be in a gaseous, liquid, or solid form, however, the focus of 

this research is solid alternative fuels from municipal, agricultural, and industrial waste that 

can be combusted to generate energy (Alternative Fuels, 2011). 

There are many terms used to describe fuels derived from waste, however, the term 

“alternative fuel” is a generic term. Waste derived fuels contains residues from municipal 

solid waste, industrial waste, trade waste, sewage sludge, biomass waste and industrial 

hazardous waste. Refuse Derived Fuel (RDF), as a term in the English speaking countries, 

means the separated high calorific fraction of processed MSW, but there are also some other 

terms for MSW derived fuels like Processed Engineered Fuel (PEF), Paper and Plastic 

Fraction (PPF), and Packaging Derived Fuel (PDF). PPF and PEF are mainly composed of 

source separated, processed, dry combustible MSW (e.g. plastics and/or paper) that cannot 

be recycled because of the high contamination. However, it has a higher calorific value, 

lower ash content, and lower moisture content than RDF from mixed waste fractions. The 

main difference between PEF and RDF is that PEF is of higher quality and more 

homogeneous fuel than RDF. On the other hand, the term Recovered Fuel (REF) is usually 

used for “the processed residual of separate household collection of specific quality”. Other 

terms such as secondary fuel, substitute fuel, and substitute liquid fuel (SLF) mainly refers 

to industrial waste fractions like waste tires, waste oils, or processed solvents that should 

achieve consistent quality requirements for a particular process (Gendebien, et al., 2003). 

1.7 Problem statement relating to Waste 

Due to the depletion of fossil fuel resources, which has led to a great increase in its 

cost, it has become a necessity to find new alternatives. In addition to the different renewable 

energy resources such as solar, hydro, wind, and biofuels, WTE has been found to be an 

attractive solution for both lack of energy problems as well as the solid waste management 
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problems. In Egypt, a great portion of solid waste is thrown in open dump sites, which are 

unsafe, and do not include any preventive measures. The lack of enforcement of legislation, 

lack of environmental awareness, and poor management of solid wastes led to the 

aggravation of the solid waste problems in Egypt. 

As a consequence for the abovementioned reasons, the utilization of alternative fuels 

that can be produced from non-recyclable wastes, in intensive-energy industries like the 

cement industry, has been deemed as a good solution for both the energy crisis as well as 

solid waste problems. Many incentives have promoted the use of wastes in cement kilns such 

as the huge area of the furnace, the high incineration temperature, the significant length of 

the kiln, and the alkaline environment inside the kiln (Ozkan & Banar, 2010). As a new 

alternative for energy, further research was needed to study the use of AF in different 

industries.  

1.8 Objectives 

The objective of this thesis is to investigate the use of solid waste in Egypt as 

alternative fuels, including: determining average calorific values of various municipal, 

agricultural, and industrial solid wastes in Egypt, examining the effect of using different 

binders on the average calorific value of biomass pellets, and conducting a relative 

comparison between the amount of pollutant emissions produced from the most promising 

wastes as mass per unit mass of the burned material. This comparison can be considered as 

an indicator to the real amount of emissions produced in the field, which would help in 

assessing the environmental impact of using those alternative fuels, which material should 

be used in terms of the calorific value and produced emissions, and making decision on 

mitigation measures that should be taken. 
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CHAPTER (2) 

LITERATURE REVIEW 

2 Review  

2.1 Introduction 

Access to energy nowadays has become more expensive and more environmentally 

damaging. In Egypt, energy prices for industry have been increasing in the last few years, 

but this increase has not been drastic because prices remain governmentally regulated. The 

total consumption of energy in the industrial sector has increased from 17.5-million-ton oil 

equivalent (mtoe) in 2000/2001 to 27.2 mtoe in 2011/2012, which means an average annual 

growth rate of 4.1% during that period. Furthermore, the total final energy demand in the 

industrial sector is expected to increase from about 21 mtoe in 2008 to reach about 41-46 

mtoe in 2030 according to the “Mediterranean Energy Perspective (MEP) – Case study of 

Egypt”. The largest energy demand goes to industry and electricity generation. Industry is 

divided into subsectors including iron and steel, fertilizers, and cement industry with the 

remaining industries categorized as “other” and which includes food, textile, etc (Logic 

Energy & Environics, 2014). 

Cement industry constitutes one of the most energy-intensive industries. There are 

two main types of energy used in this industry, which are fuel and electricity. Electricity is 

used for exhaust fans and grinding mills, while fuel is used for firing the kilns, and drying 

and pre-heating raw materials. The main fuel for the cement industry is mainly provided by 

coal, natural gas, and fuel oil. Availability, cost, and environmental constraints are the key 

factors for choosing between those three fuels. Approximately, 3000-6000 MJ of energy is 

required per ton of clinker produced, and since natural gas is the main source of fuel in 
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Egypt’s case. Its specific energy consumption is estimated with 100 m3 per ton of cement, 

which is about 5 kg of fuel oil per ton. Egypt’s Energy Strategy for 2030 expects that demand 

for natural gas in the cement industry will increase from about 2.5 billion cubic meter (bcm) 

in 2008/2009 to be 14 bcm in 2029/2030 (Logic Energy & Environics, 2014).  

Another problem that Egypt currently faces is the enormous amounts of solid waste 

that is clearly visible throughout the country and which cause various environmental and 

health hazards. Most experts agree that this waste can be a hidden treasure for the nation, if 

it is fully exploited. Indeed, solid waste can be reused, recycled, or even recovered as a 

source of energy instead of simply being disposed in dumpsters and landfills. However, 

Egypt suffers from serious problems with respect to its solid waste management (SWM) 

system and the problem worsened following the privatization of the SWM system which was 

taken over by international private sector in 2002. According to the Minister of State for 

Environmental Affairs, in a report issued in 2009, this move ultimately brought about the 

failure of Egypt’s SWM system (Milik, 2010). Furthermore, it is predicted that the quantities 

of MSW will increase from about 21 million ton (MT) of waste in 2010 to more than 30 

(MT) in 2025 (SWEEP, 2010).  Additionally, the agricultural waste, as mentioned in Chapter 

1, was estimated in 2012 at 30 million tons. Given the increasing levels of waste production 

and ongoing problems with waste management, a revolutionary SWM system is desperately 

needed and one which involves the collection, transportation, and disposal of waste. In order 

to minimize waste disposal in dumpsites and landfills, waste can be reused, recycled, or 

converted into energy. Considering the energy crisis, waste-to-energy seems to be the 

optimum solution for both problems: energy and waste disposal. 
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2.2 Utilization of Waste-to-Energy Technologies 

 Among those who have examined the waste-to-energy process, Munster and Lund 

(2010) performed an energy system analysis (ESA) of different waste-to-energy (WTE) 

technologies, while Psomopoulos, Bourka, and Themelis (2009) examined the benefits of 

waste-to-energy in terms of air emissions, energy production, and land saving.  

Munster and Lund (2010) compared WTE technologies (as listed in Table 4), and 

identified a wide range of alternatives including chemical, thermo-chemical, and bio-

chemical conversion processes. Those technologies include new waste incineration which is 

a technology using combined heat and power (CHP) waste incineration, co-combustion 

technology in which residual derived fuel (RDF) is co-combusted with coal in a coal fired 

power plant, and dedicated RDF technology where RDF is combusted in a dedicated CHP 

plant. Other technologies such as biogas CHP, biogas transport, syngas, biodiesel, and 

bioethanol are also included. Biogas CHP is a biogas that is produced by the anaerobic 

digestion of organic household waste that is used for CHP. Biogas transport is similar, but it 

is “upgraded and used for transport in natural gas vehicles”. Another technology is the 

syngas where municipal waste is liquidized and subjected to thermal gasification. Biodiesel 

is animal fat that is converted into biodiesel through a process called trans-esterification, 

while bioethanol is produced from paper, grass and straw which is fermented and used for 

transport, and through anaerobic digestion with biofuel and hydrogen used for CHP. Most 

of the technologies listed are used commercially. The authors stated that the energy system 

analysis was conducted using the EnergyPLAN model, which is a computer model designed 

for energy systems analysis. This model aims to aid in designing national or regional energy 

planning strategies based on technical and economic analyses of the consequences of 

implementing various energy systems and investments. The general inputs for the model are 
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renewable energy sources, demands, energy station capacities, costs, and optional different 

regulation strategies emphasizing import/export and excess electricity production, while the 

outputs are energy balances and resulting annual productions, fuel consumption, CO2 

emissions, import/export of electricity, and total costs including income from the exchange 

of electricity as shown in Figure 2. Three scenarios were analyzed, which are marginal 

change in the current energy system, marginal change in a 100% renewable energy system, 

and the use of full resource potential in the current energy system.  

Table 4 - Summary of WTE technologies (Munster & Lund, 2010) 

Technology Description 

New waste incineration Combined heat and power (CHP) waste incineration with 

efficiencies of a new waste incineration plant. The technology 

is commercial. The waste fraction must be used continuously. 

The plant is placed in a larger city area with CHP 

Co-combustion  Residual derived fuel (RDF) is co-combusted with coal in a 

coal-fired power plant. The technology is at full-scale 

demonstration stage. RDF can be stored. The plant is placed in 

a larger city area with CHP 

Dedicated RDF RDF is burnt in a dedicated CHP plant. The technology is 

commercial. The plant is placed in a large city area with CHP 

Biogas CHP  Biogas from anaerobic digestion of organic household waste is 

used for CHP. The waste fraction must be used continuously. 

The technology is commercial. The plant is placed in a smaller 

town area with CHP 



 

 

 

 23  

   

 

 

Biogas transport Biogas from anaerobic digestion of organic household waste is 

upgraded and used for transport in natural gas vehicles. The 

technology is commercial. The plant is placed in a smaller 

town area with CHP 

Syngas Municipal waste is liquidized and undergoes thermal 

gasification. The resulting syngas can be converted to bio-

petrol or used for CHP. The technology is at developmental 

stage. The waste fraction must be used continuously. The plant 

is placed in a larger city area with CHP 

Biodiesel Animal fat, formerly used for industrial heat production, is 

converted to biodiesel in a trans-esterification process. The 

animal fat can be stored. The technology is commercial. The 

plant is placed in a smaller town area with CHP 

Bioethanol  Straw, grass, and paper waste first undergoes pre-treatment 

and hydrolysis. Secondly, Bioethanol is produced for transport 

through fermentation and thirdly biogas is produced through 

anaerobic digestion along with biofuel and hydrogen and used 

for CHP. The waste fractions can be stored. The technology is 

at developmental stage. The plant is placed in a smaller town 

area with CHP 

 

From this analysis, it was shown that biogas and syngas plants are notable 

alternatives to waste incineration. The use of organic waste in manure-based biogas 

production reduces CO2 cost in the energy system, so it is considered as a cheaper solution 
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than incineration and one that also provides CO2 reduction. The largest CO2 reduction was 

obtained when biogas was used for transport, while the least CO2 reduction cost was 

provided by biogas for combined heat and power (CHP). Moreover, it was found that biogas 

production is a feasible solution that provides the cheapest biomass reduction in a future 

100% renewable energy system. Other studies also concluded that biogas can be as good as 

or an even a better alternative to incineration depending on the design of the system. 

According to Munster & Lund, it was concluded that biogas production does decrease CO2 

emissions in the current energy system but only if an increased anaerobic digestion of 

manure takes place during the process. Syngas plants gives the lowest CO2 reduction cost in 

the current energy system as long as there is no coal; total CO2 emissions increase when co-

gasified with coal. However, during this study, it was found that plants that co-gasify waste 

with other resources were still at the developmental stage, and those which gasify waste 

separately were far from becoming a commercial technology and required a great deal more 

research. Syngas gasified with waste only provides a reduction in the biomass cost, which is 

only slightly higher than that of incineration, but still less than the expected biomass cost. 

However, these values may get higher if several technologies are combined because of the 

usage of different waste fractions. Changes in waste prices, efficiencies and investment costs 

dramatically influence selection, especially in case of the waste resources that do not have a 

well-developed market. Also, the highest uncertainty for investment costs and efficiencies 

were apparent among technologies that were still at the development stage like Syngas and 

Bioethanol. The authors found that it is possible to use waste for producing transport fuels 

from the perspective of an energy system. One of the best solutions is to sort out RDF and 

co-combust it with coal or burn it in a dedicated RDF plant to improve the electric efficiency 

and the flexibility of the energy system. If the investment in new plants is considered, 

dedicated RDF plants gives more CO2 reduction and less CO2 reduction cost than new 
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incineration, but they can handle only 19% of the waste that is currently incinerated. Co-

combustion and RDF alternatives has been proven to be interesting in the short term 

(Munster & Lund, 2010). 
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Figure 2 - Schematic overview of the EnergyPLAN model (Munster & Lund, 2010) 
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In another study, Psomopoulos, Bourka, and Themelis (2009) focused on the current 

status and benefits of waste-to-energy (WTE) regarding dioxin, mercury, and greenhouse 

gases (GHG) emissions, energy production, and land saving based on the experience of 

operating facilities in U.S. About 7.4 % of MSW in U.S. in 2004 was used for combustion 

and the generation of electricity.  The authors found that on average, the combustion of 1 

metric ton of MSW in a modern WTE power plant can avoid the mining of ¼ ton of high 

quality coal or one barrel of imported oil because it generates about 600 kWh electricity. For 

non-recyclable wastes, WTE is considered the only alternative to landfilling, which 

generates carbon dioxide and methane, a greenhouse gas. At least 25% of the methane gas 

emitted from decomposing trash escapes into the atmosphere before a landfill is capped and 

this is even in the modern sanitary landfills. According to the authors, several studies 

concluded that WTE decreases greenhouse gases emissions by approximately 26 million 

tons of carbon dioxide, taking into consideration the generated electricity and the avoided 

methane emissions. Table 5 shows a comparison between air emissions from WTE power 

plants that used MSW as fuel, and fossil fuel power plants. Moreover, WTE plants currently 

represent less than 1% of the U.S. emissions of dioxins and mercury. Table 6 shows a 

comparison between the average emissions of 87 U.S. WTE facilities according to 

Environment Protection Agency (EPA) standard requirements. The recorded average values 

showed that all emissions including dioxins/furan, particulate matter, sulfur dioxide, 

nitrogen oxides, hydrogen chloride, mercury, cadmium, lead, and carbon monoxide were 

within the range of U.S. EPA standards. As for the nitrogen oxides NOx, the total emission 

from WTE is about 0.22% of the total U.S. NOx emissions, which is very small when 

compared with coal-fired power plants that contribute with 19.5% of U.S. NOx emissions. In 

addition, waste as a fuel is deemed as a source of renewable energy, categorized as a type of 

biomass, which includes any plant or animal-derived organic matter that is available on a 
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renewable basis such as trees, agricultural food, animal wastes, agricultural crop wastes and 

residues, municipal wastes and wood wastes and residues. In 2004, the U.S. generated a net 

of 13.5x109 kWh of electricity from WTE facilities, which is greater than all other renewable 

sources of energy, except for geothermal power and hydroelectric power. WTE plants save 

land as they need significantly smaller areas of land than for landfilling for the same amount 

of waste. Also, WTE plants can last for over 30 years if maintained properly and do not 

require more land afterwards, unless they are expanded to process more waste 

(Psomopoulos, Bourka, & Themelis, 2009). 

Table 5 - Waste-to-energy and fossil fuel power plants – comparison of air emissions (Psomopoulos, Bourka, & 

Themelis, 2009) 

Fuel Air emissions (kg/MW h) 

Carbon dioxide (CO2) Sulphur dioxide 

(SO2) 

Nitrogen oxides 

MSW 379.66 0.36 2.45 

Coal 1020.13 5.90 2.72 

Oil 758.41 5.44 1.81 

Natural gas 514.83 0.04 0.77 
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Table 6 - Average emissions of 87 U.S. WTE facilities (Psomopoulos, Bourka, & Themelis, 2009) 

Pollutant Average emission U.S. EPA 

standard  

Average 

emission (% 

of U.S. EPA 

standard) 

Unit 

Dioxins/furan, TEQ 

basis 

0.05 0.26 19.2% ng/dscm 

Particulate matter 4 24 16.7% mg/dscm 

Sulfur dioxide 6 30 20% ppmv 

Nitrogen oxides 170 180 94.4% ppmv 

Hydrogen chloride 10 25 40% ppmv 

Mercury 0.01 0.08 12.5% mg/dscm 

Cadmium 0.001 0.020 5% mg/dscm 

Lead 0.02 0.20 10% mg/dscm 

Carbon monoxide 33 100 33.3% ppmv 

dscm: dry standard cubic meter of stack gas 

2.3 Alternative Fuels (AF) from solid waste 

 Several studies have been conducted to investigate the use of potential wastes as a 

renewable energy source to solve both energy and waste problems: 

2.3.1 Refuse derived fuel (RDF) 

Attili (1991) identified three main methods for burning municipal solid waste, which 

are direct combustion, conversion of MSW into liquid or gaseous fuel by means of pyrolysis, 

biodegradation, or hydrogenation, and burning the combustible portion of MSW (RDF) after 

separating the incombustible portion. Attili also stated that one ton of RDF can produce the 
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energy equivalent of one barrel of oil. There are seven types of RDF, which are shown in 

Table 7, including (RDF-1), which is the discarded waste used as it is without undergoing 

any processing,  (RDF-2) is the waste that has been processed into coarse particles and which 

may not include ferrous metal separation, (RDF-3) is processed to remove glass, metals, and 

other inorganic materials, (RDF-4) is processed into a powder form, (RDF-5, or d-RDF) is 

densified into a form of pellets or briquettes, (RDF-6) is processed into liquid form, while 

(RDF-7) is processed into gaseous form. The disadvantages of (RDF-1) are that it is hard to 

handle, usually burned in suspension, and that much of it remains unburned and thus causes 

problems when handling the ash. There are some benefits for using any type of RDF over 

raw refuse, including that it is easier to store RDF when it has been properly processed, 

combustion is possible in existing boilers, gasifiers, fluidized bed combustors, and cement 

and brick kilns, as well as the fact that it is easy to transport from one location to another, 

and can be burned as a supplemental fuel with other fuels such as coal or wood, it is also 

more homogeneous, and can be used as a feedstock for anaerobic digesters to produce 

methane gas (Attili, 1991).  
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Table 7 - Types of Refuse Derived Fuel (RDF) (Attili, 1991) 

 

In another study conducted by Dong and Lee (2009), the authors evaluated the 

energy potential of the RDF obtained from the use of combustible solid waste as a fuel in 

Ulsan, which is the largest industrial city of Korea. Combustible solid wastes including 

wastepaper, rubber, synthetic resins, wood, plastic, and industrial sludge were used as RDF 

resources. The amount of wastes that can be used to produce RDF was about 635,552 

tonnes/yr out of 3.3 million tonnes of solid wastes generated in the city. The produced 

RDF was divided into three types: 116,803 tonnes/yr of RDF-MS (RDF from municipal 

solid waste), 146,621 tonnes/yr of RDF-IMC (RDF from industrial, municipal, and 

construction wastes), and 372, 848 tonnes/yr of RDF-IS (RDF from industrial sludge). The 

total obtained energy value from RDF was more than 9,375,930 x 106 kJ/yr, about 25.6% 

RDF-1 Waste used as fuel in as-discarded form 

RDF-2 Waste processed to coarse particle size with or without ferrous metal 

separation 

RDF-3 Shredded fuel derived from MSW that has been processed to remove 

metals, glass, and other inorganic materials (95 wt% passes 50-mm 

square mesh) 

RDF-4 Combustible waste processed into powder form (95 wt% passes 10 

mesh) 

RDF-5 Combustible waste densified (compressed) into a form of pellets, 

slugs, cubits, or briquettes (d-RDF) 

RDF-6 Combustible waste processed into liquid fuel 

RDF-7 Combustible waste processed into gaseous fuel  
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of RDF-MS, 43.5% of RDF-IMC, and 30.9% of RDF-IS. The energy values obtained were 

4,082,488 x 106 kJ /yr from RDF-IMC, 2,895,772 x 106 kJ /yr from RDF-IS, and 2,397,670 

x 106 kJ /yr from RDF-MS, as shown in Table 8. The greatest total energy values were 

obtained from RDF-IMC followed by RDF-IS, then RDF-MS. According to the economic 

analysis undertaken by the authors, the ratio between the profit of RDF selling to RDF 

production costs varies based on the different types of RDF. The ratios of RDF-MS, RDF-

IMC, and RDF-IS are 1.21, 0.57, and 0.27 respectively. RDF-IS has the lowest ratio and 

lower energy values. The ratio of RDF-MS is >1 that represents greater benefits from RDF 

resources than the expenses for the utilization of RDF (Dong & Lee, 2009).   

Table 8 - Total energy obtained from combustion of the RDF resources in the industrial city (Dong & Lee, 2009) 

RDF 

type 

Waste type Heating 

value (kJ/kg) 

Average 

energy 

value 

(kJ/kg) 

Energy 

(x106 

kJ/yr) 

Energy value (%) 

RDF-

MS 

General MSW 20656 20656 2,397,670 100.0 25.6 

RDF-

IMC 

-Industrial 

MSW 

-Construction 

waste 

-Industrial 

process waste 

-Subtotal 

24920 

 

26539 

 

28091 

27844.5 68,233 

 

468,821 

 

3,545,430 

 

4,082,488 

1.7 

 

11.5 

 

86.8 

 

100.0 

43.5 
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2.3.2 Plastics and tires 

Among those studies, Piasecki, Rainey, and Fletcher (1998) examined the need to 

incinerate plastics because of the increasing demand for using plastics, which then takes 

hundreds of years to degrade after disposal, and it occupies landfills for so long. Therefore, 

plastic waste should be recylced or burned in a WTE plant instead of being buried. However, 

recycling is found to be more costly than landfilling and incineration. Due to the 

abovementioned reasons, burning plastics seemed to be more preferable since plastics are 

considered relatively clean, economical, and reliable source of energy. One of the reasons 

behind making waste combustion more attractive is the need for reducing greenhouse gases 

generated by fossil fuels. The authors explained that if a plastic bottle is buried, it will never 

be recovered. However, if the same bottle is reycled, the materials used in manufacturing 

this bottle will be partially recovered. In the third case, if the same bottle is used as a WTE 

source, it will be recovered as a portion of the initial energy invested in producing this bottle 

in the form of electricity, heat, or steam, which is more significant due to the climate change. 

On the other hand, plastic combustion releases some compounds such as acid gases, 

polyvinyl chloride, carbon dioxide, dioxins, and heavy metals like lead and cadmium. All 

RDF-IS -Wastewater 

treatment 

sludge 

-Process sludge 

Subtotal 

7531 

 

 

12552 

 

 

7766 2,676,317 

 

 

219,455 

2,895,772 

92.4 

 

 

7.6 

100.0 

30.9 

Total   14753 9,375,930  100.0 
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those compounds are harmful to humans, the atmosphere, as well as the environment. 

However, the authors stated that policy makers should examine each of those concerns while 

considering burning plastic waste. They also mentioned that among all wastes, plastics has 

released the highest energy per unit of weight. Therefore, the authors argued that mitigation 

and air-pollution control technologies can be used to reduce emissions to acceptable levels 

and make WTE an acceptable waste management strategy. The authors presented a study 

conducted by Fredrick E. Mark in 1994 in a commerial WTE facility in Wurzburg, Germany, 

for the Association of Plastics Manufacturers in Europe. In this study, Mark studied the 

emission profile of waste, where plastics ranged from 10% of the total weight, 17.5% in the 

medium case, to high composition level of about 25%. The study was designed to examine 

the impacts of burning plastics in a real operating environment. As plastic was added above 

the base percentage of 10%, the total amount of solid waste fed into the incinerator was 

decreased. The tested plastic materials included polystyrene, polyethylene terephthalate, 

polyethylene, and polyvinyl chloride. The level of hydrochloric acid emissions, dioxins, and 

furans did not change in the three cases. The results showed that treating the flue-gases with 

pollution controlling lime and activated carbon, reduced stack-gas concentrations of dioxins. 

Mark noted that the measured dioxin levels in his study were in the acceptable range of the 

European solid waste combustion industry. He also concluded that the furnace was well run 

and designed, and that pollution control equipment as well as controlled combustion easily 

decreased hydrochloric acid and avoided further formation of dioxins, even when plastics 

percentage in the total waste composition increased, as shown in Table 9. He also stated 

advantages of WTE, among which is that WTE plants generally produces electricity and 

selling it to the electric utilities for more competitive prices than those offered by power 

plants that generate energy by fossil fuels or nuclear power plants (Piasecki, Rainey, & 

Fletcher, 1998). 
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Table 9 - Emission profile of burned waste in a modern WTE facility that incorporates pollution-control 

mechanisms (Piasecki, Rainey, & Fletcher, 1998) 

 Base Case (10%) Medium polymer 

(17.5%) 

High polymer (25%) 

Hydrochloric acid 

(mg/m3) 

23.5 22.4 21.4 

Dioxin toxic 

equivalents (mg/m3) 

0.021 0.014 0.013 

Carbon monoxide 

(mg/m3) 

19 18 7 

Sulfur dioxide 

(mg/m3) 

19 9 <5 

Nitrogen oxides 

(mg/m3) 

405 385 410 

Dust (mg/m3) 2.4 <2 2.4 

Furnace temperature 

(˚C) 

890 892 894 

 

Martinez, Puy, Murillo, Garcia, Navarro, and Mastral (2013) stated the potential of 

using tires as an alternative fuel in their review as tires provide higher calorific value than 

coal. Waste tires are considered as bulky and non-biodegradable materials, that causes waste 

management problem due to the fact that approximately 1.4 billion new tires are sold 

annually worldwide and meanwhile similar amount falls under the category of end-of-life 

tires. Also, as estimated, one car tire per person is discarded every year in the developed 

world, therefore about one billion of waste tires are disposed annually all over the world. 
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About 4 billion waste tires are accumulated in stockpiles and landfills leading to an 

environmental and economic problem. The tire lifetime in landfills ranges between 80 and 

100 years approximately. Another concern with inappropriate disposal of tires is that it 

promotes the growth of insects and pests, imposing high risk of fire, and uncontrolled 

emissions of harmful compounds into the environment. Regarding emissions, the global 

warming and harmful pollutants resulted from fossil fuels such as SO2, NOx, and VOCs and 

others, are considered as a main reason behind the need for alternative fuels in general. The 

authors stated that waste tires have been widely used as alternative fuels in many applications 

such as power plants, cement kilns, tire manufacturing facilities, and pulp and paper 

production. However, many studies demonstrated that cement kilns can be the major route 

for using tires as a supplemental fuel due to the longer residence time and higher 

temperatures in cement kilns that helps in the tire transformation, especially carbon black 

combustion. Also, the iron contained in the tire steel beads and belts can be utilized in the 

cement production process without affecting the cement quality. It was also found that tires 

can be used as direct fuel in bubbling fluidized bed reactors (BFBR) as gasifiers and 

combustors and hence it is feasible to use tire derived fuel (TDF) in thermal power plants as 

secondary fuel in order to reduce the use of coal and NOx emissions. One of the benefits for 

using waste tires for energy recovery in cement kilns is that it does not require major 

modifications in the layout and operation of the plant (Martinez, et al., 2013).  

2.3.3 Biomass  

Biomass can also be used as alternative fuels due to its abundance and reasonable 

calorific values. Many studies have been carried out to examine the conversion of biomass 

waste into energy.  
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According to Kilicaslan, Sarac, Ozdemir, and Ermis (1999), bagasse can be used as 

a fuel for boilers instead of fossil fuels. About 255 kg of bagasse is produced from one ton 

of cane, and the gross calorific value of bagasse is 17632 kJ/kg (Kilicaslan, Sarac, 

Ozdemir, & Ermis, 1999). Another research by Dellepiane, Bosio, and Arato (2003) 

recommended the use of bagasse and barbojo for the production of electric energy. This 

study took place in Peru, where large quantities of sugarcane waste are produced, but not 

fully exploited for energy purposes. Bagasse is the fiber of cane produced by milling and 

pressing the cane in sugar mills, while barbojo is the tops and leaves left in the field after 

harvesting. Bagasse is not widely used in the energy sector, however, it is used with fossil 

fuels to produce steam in sugar mills. The generated steam is used partially in the cane 

milling and the rest in the mill’s turbines to provide the electrical energy needed for the 

plant. However, the present technologies used in the sugar mills resulted in low energy 

efficiencies and emissions from the boiler pollutant are released into the atmosphere. 

Therefore, this study investigated the feasibility of generating electrical power using a 

molten carbonate fuel cells (MCFC) system fed by biogas from sugarcane residues. Figure 

3 demonstrates the entire process of converting bagasse and barbojo into electricity. First, 

bagasse and barbojo were preheated, then they enter a fluidized bed gasifier indirectly 

fired, where steam injected to boost biomass gasification. Afterwards, a clean-up process 

took place to prevent impurities disposition that might plug pipes and tubes, and finally the 

gas enters the MCFC section. The results obtained from this research showed that Peru can 

get several benefits from applying this process to bagasse and barbojo. Also, this 

innovative way can generate significantly higher amounts of power than the actual power 

produced by sugar mill boilers using bagasse and fossil fuels. Additionally, boiler 

emissions as well as emissions from barbojo and bagasse burning could be reduced. Thus, 
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such quantitative and qualitative energy improvements can be applied in countries that 

want to invest in sugarcane wastes  (Dellepiane, Bosio, & Arato, 2003).   

 

 

 

 

 

 

 

 

Another study conducted by Oladeji (2010) studied the properties of fuel produced 

from rice husk and corn cobs residues. The author examined the characteristics of briquettes 

made from both rice husk and corn cobs residues to find out which is more efficient to be 

used as fuel. This study was conducted in Nigeria, where cooking gas, and kerosene are 

costly and firewood causes environmental problem. Therefore, alternative sources of energy 

need to be used, and from here the need to improve the use of agro wastes has come out. 

Rice husk and corn cobs are produced annually in large quantities in Nigeria, and they are 

left to decompose or burned like other wastes. However, they have a high potential to 

generate heat for industrial and domestic cottage applications. In this study, the author used 

briquetting technology for densification in order to facilitate transportation, storing, and 

handling of rice husk and corn cobs residues. The investigated characteristics of corn cobs 

and rice husk briquettes were density, moisture content, ash content, volatile matter, and 

Figure 3 - The entire process from sugarcane waste to electricity (Dellepiane, Bosio, & 

Arato, 2003) 
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heating value. The results of this study showed that corn cobs briquettes have better fuel 

characteristics than rice husk with a moisture content of 13.47% and 12.67%, density of 650 

and 524 kg/m3, ash content of 1.40 and 18.60 %, volatile matter of 86.53 and 67.98%, and 

heating value of 20890 and 13389 kJ/kg, respectively, as shown in Table 10. According to 

the author, the values of ash content and volatile matter were acceptable, however, corn cobs 

briquettes were better because they had lower ash content and higher volatile matter 

percentage (Oladeji, 2010).  

Table 10 - Characteristics of rice husk and corn cobs briquettes (Oladeji, 2010) 

Parameter  Briquettes 

Rice Husk  Corn Cobs 

Moisture content (%) 12.67 13.47 

Heating value (kJ/kg) 13389 20890 

Density (kg/m3) 524 650 

Ash content (%) 18.60 1.40 

Volatile matter (%) 67.98 86.53 

 

2.4 Pellets - Characteristics 

Biomass bales are both difficult to transport over long distances and difficult to store 

because they are so bulky. Thus, it is easier to densify biomass by pelletizing in order to 

increase the bulk density. Furthermore, the uniform shape and size of the pellets make it 

easier to handle, and so reduce transportation costs, and improve storability. The physical 

properties of pellets include particle density, bulk density, durability, moisture content and 

other properties (Theerarattananoon, et al., 2011).  
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Theerarattananoon (2011) studied the physical properties of sorghum stalk, corn 

stover, big bluestem, and wheat straw, putting into consideration the effect of moisture 

content on bulk density and the durability of pellets, as well as the effect of grain size on the 

same properties. It was shown that biomass pelletizing did improve the bulk density 

significantly. The results showed that the bulk density of pelletized big bluestem, corn 

stover, wheat straw, and sorghum stalk was within range of 536-708 kg/m3, which means 6-

10 times higher than the bulk density before pelletizing.  The bulk density of the wheat straw 

pellets was the highest, while the bulk density of the sorghum stalk pellets was the lowest. 

Increasing the moisture level decreased the bulk density of the pellets as stated in this study 

and previous studies from the literature because the volume of pellets increased when they 

absorbed more moisture. The author also found that the effect of moisture content on the 

pellets’ durability made from wheat straw, corn stover, and big bluestem was similar to its 

effect on the bulk density. As reported in many studies, densification of biomass with the 

increase in moisture content increased its durability and strength until reaching an optimum. 

The defined optimum moisture content for biomass ranges within 8-12%.  The maximum 

durability of corn stover, and wheat straw pellets were about 96.8% and it did not change 

within range of 9-14% moisture content (dry basis). However, durability decreased when the 

moisture content increased beyond 14% (dry basis). The same trend was applied for big 

bluestem pellets, but with maximum durability 96.8% at 9-11% moisture content (dry basis), 

and it tended to decrease beyond 11% (dry basis). The author explained that the binding 

forces of the water molecules were probably the reason behind the initial increase in 

durability with an increase in moisture because they strengthened the bonds between 

individual particles in the pellets. However, further increases in moisture caused 

disintegration and swelling of pellets due to the absence of the capillary force that maintains 

the pellet structure. Thus, the pellets racked and got more susceptible to breakage.  On the 
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other hand, the use of a larger grain size was found to increase the bulk density and durability 

of biomass pellets, but not in significant levels. The use of larger size of 6.5 mm instead of 

3.2 mm increased the durability of wheat straw, big bluestem, and sorghum stalk pellets to 

98.3, 97.6, and 93.5% instead of 97.4, 96.9, and 92.2%, respectively. Using the same screen 

size of 3.2 mm and 6.5 mm, the bulk density did not change significantly to reach 649.2, 

618.0, 624.6, and 478.6 kg/m3 instead of 554.1, 601.9, 597.9, and 434.0 kg/m3 for wheat 

straw, big bluestem, corn stover, and sorghum stalk, respectively (Theerarattananoon, et al., 

2011).  

Attili (1991) evaluated the use of 150 binders. His preliminary evaluation eliminated 

about half of the binders for different reasons, such as the cost, effectiveness as a binder, and 

environmental acceptability. The binder candidates included oil, kiln dust, glue, and wax. 

The candidates were evaluated based on laboratory and environmental studies. The 

laboratory studies included binder British thermal units (BTU) content, ash content, pellet’s 

water absorbability, pellet’s durability, and pellet’s weatherability. As for the environmental 

aspect, the author evaluated the toxicity as well as the potential of harmful emissions of the 

binder. The author stated that calcium hydroxide Ca(OH)2 was the best binder to be added 

for densification among all the investigated binders. The pellets were produced by two 

suppliers, one with a bulk density of 400.5 - 432.5 kg/m3, and the other with a density of 

640.7 - 720.8 kg/m3.  It was found that as the pellets’ bulk density increases, the mechanical 

durability increases. This binder can delay the biological and chemical degradation for long 

time. The focus of this study is to solve the environmental problems toxic trace metals 

emissions. The most concerned toxic heavy metals are Ba, Cd, Cr, Hg, Cu, Be, As, Ni, Pb, 

Se, Sb, Tl, and Zn. It was found that adding binder to RDF pellets reduces some trace metal 

emissions as well as other harmful emissions like dioxins, furans, polychlorinated biphenyl 
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(PCBs), and polycyclic aromatic hydrocarbons (PAHs), when the binder densified RDF 

(bdRDF) is co-fired with sulfur-rich coal with 10%, 20%, 30% RDF. The increase of the 

binder content caused a reduction in the trace elements (Attili, 1991). 

Said, Abdel daiem, Maraver, and Zamorano (2015) carried out a study that 

investigated densification parameters that could affect the properties of rice straw pellets. 

Rice straw is considered as one of the most important agricultural residues that can be used 

as a renewable form of energy because it has a great energy potential and it is a major by-

product in many countries. The authors stated that the annual production of rice straw is 

approximately 731 million tons with 20.9, 667.6, 3.9, 37.2, ad 1.7 million tons in Africa, 

Asia, Europe, America, and Oceania respectively.  Mainly, open burning in the field is used 

widely for rice straw disposal, however, rice straw can be used as a source of energy instead. 

The use of rice straw as an alternative fuel would help in substituting fossil fuels, reducing 

greenhouse gas emissions, and lessening pollution problems resulted from open burning. 

There are many techniques to convert rice straw into energy such as direct combustion, 

pyrolysis, gasification, and anaerobic digestion. However, direct combustion provides 

relatively high energy conversion efficiency, but it involves operating problems like 

sintering formation and high ash content. Yet, those problems can be eliminated by chemical 

and biological pretreatment and rinsing rice straw. Another problem with utilization of rice 

straw for as a source of energy is the cost, collection, transportation, and handling due to its 

low density. Nevertheless, pelletizing can increase the biomass bulk density from 40-200 

kg/m3 to 600-800 kg/m3 as well as facilitating storage and handling. In order to densify 

biomass, a binding agent is needed to form a bridge and chemical reaction to strengthen 

inter-particle bonding. Generally, the selection of a binder depends on its cost and 

environmental impacts. According to Ewida et al. (Ewida, El-Salmawy, Atta, & Mahmoud, 
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2006) as mentioned in this study, starch was the best binder among five binding agents, 

which are sodium silicates, starch, latex, molasses, and phenol-formaldehyde, in terms of 

strength and combustion characteristics. In this study, the authors examined the influence of 

changing starch percentage as a binder (0, 1, and 2%), moisture content of the feeding 

material (Mf) (12, 15, and 17%), and the operating temperature (below and over 50˚C) on 

the pellet properties including hardness, single pellet and bulk density, durability, and 

moisture content of pellets (Mp). The obtained results were evaluated according to the 

European Standard for non-woody biomass pellets as shown in Table 11. Based on the 

analysis of results from this study, it was found that hardness, bulk density and durability are 

the most affected properties by Mf and starch ratio, while Mf had a significant impact on Mp. 

However, Mp did not comply with the standard ranges. Regarding hardness and pellet 

density, they were not addressed by the norm, but the obtained results were close to the ones 

recommended by earlier studies. The maximum pellet quality was obtained at 17% Mf, 2% 

starch, and temperature less than 50˚C, providing hardness of 21 kgf, durability of 99.31%, 

pellet density of 1260 kg/m3, bulk density of 740 kg/m3, and Mp of 14.80% (Said, Abdel 

daiem, Maraver, & Zamorano, 2015). 

Table 11 - Parameters and guidelines in UNE-EN ISO17225-6, including specifications for non-woody pellets 

(Said, Abdel daiem, Maraver, & Zamorano, 2015) 

Parameter  Guideline 

Moisture content (%) ≤10.00 

Durability (%) ≥97.50 

Bulk density (kg/m3) ≥600 

Additive (%) Declare type and quantity 
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Telmo and Lousada (2011) investigated the heating values of wood pellets from 

different species. Due to the great areas of forest in Portugal, where this study was conducted, 

large amounts of residues are produced from forests including wood waste. Biomass can 

provide a sustainable and cost effective supply of energy in addition to aiding in reducing 

GHG emissions. According to the authors, the most important property to categorize a 

material as combustible is the calorific value. A bomb calorimeter was used to measure the 

calorific values of twelve wood species in Portugal and five wood tropical residues from 

industry. The results obtained from this study showed that the calorific values of pellets from 

different wood species differ. Softwoods had calorific values range between 19660 and 

20360 kJ/kg, while calorific values of hardwoods were ranging between 17632 and 20809 

kJ/kg (Telmo & Lousada, 2011). 

2.5 Pellets - Limits and Standards 

There are also several studies that discussed limits and standards for manufacturing 

biomass pellets. Karkania et al. (2012) stated that some countries, which have well-

developed pellet industries, such as Austria, Germany, and Sweden,  have developed their 

own standards for pellets, while other countries that are major producing regions, like 

Denmark and Finland, have chosen to follow a common European Standard (CEN/TS 

14961) for solid biofuels. A technical committee 335 from the European Committee for 

Standardization (CEN) is responsible for developing this common pellet standard. This 

European Standard identifies which parameters must be tested, and which are optional. Also, 

it detemines the limit values and ranges for each characteristic such as unit density, bulk 

density, water content, calorific value, ash content, sulfur, chlorine, and nitrogen (Karkania, 

Fanara, & Zabaniotou, 2012).   
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In Germany, there are pellet fuel standards called DIN-52731/DINplus, while in 

Austria there are Ö-Norms M-7135. Table 12 shows the specified limits for DINplus, 

DIN51731, and Ö-Norm M-7135 (Verma, Bram, & De Ruyck, 2009). 

Table 12 - Quality requirements of pellet fuel as per the respective regulation/quality standard (Verma, Bram, & 

De Ruyck, 2009) 

Parameter DINplus DIN-51731 Ö-Norm M-7135 

Diameter (mm) 4-10 4-10 4-10 

Length (mm) 5xDa ≤ 50 5xD 

Density (kg/m3) ≥1.12 ≥1-1.4 ≥1.12 

Humidity (%wt) ≤ 10 ≤ 12 ≤ 10 

Ash (%wt) ≤ 0.5 ≤ 1.5 ≤ 0.5 

Heating value (MJ/kg) ≤ 18 15.5-19.5 ≥18 

Sulphur content (%wt) ≤ 0.04 ≤ 0.08 ≤ 0.04 

Nitrogen content (%wt) ≤ 0.30 ≤0.30 ≤ 0.30 

Chlorine content (%wt) ≤ 0.02 ≤ 0.03 ≤ 0.02 

Abrasian/fine content 

(%wt) 

≤ 2.3 - ≤ 2 

Mechanical durability 

(%wt) 

≥ 97.5 - ≥ 97.5 

Binding agent/additives 

(%wt) 

< 2 - < 2 

a  No more than 20%of the pellet may be longer than 7.5 x diameter 

Another standard is the PFI pellet fuel standards. PFI is the acronym for the Pellet 

Fuels Institute, which is a non-profit trade association that serves the North American 

densified fuels Industry. These standards originally started in 1995, and were redeveloped 
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in 2005. The most recent updated standards were released in 2008, as shown in Table 13 

(Hedrick, 2011).    

Table 13 - PFI pellet fuel standards (Hedrick, 2011) 

Fuel Properties PFI Premium PFI Standard PFI Utility 

Normative Information – Mandatory 

Diameter (inches) 

Diameter (mm) 

0.230-0.285 

5.84-7.25 

0.230-0.285 

5.84-7.25 

0.230-0.285 

5.84-7.25 

Bulk Density (lb/ft3) 40.0-46.0 38.0-46.0 38.0-46.0 

Pellet Durability Index  ≥ 96.5 ≥ 95.0 ≥ 95.0 

Fines % (at the mill 

gate) 

≤ 0.5 ≤ 1.0 ≤ 1.0 

Inorganic Ash % ≤ 1.0 ≤ 2.0 ≤ 6.0 

Moisture % ≤ 8.0 ≤ 10.0 ≤ 10.0 

Chloride ppm ≤ 300 ≤ 300 ≤ 300 

Heating Value NA NA NA 

Informative Only – Not Mandatory  

Ash fusion NA NA NA 

2.6 Combustion of Alternative Fuels (AF) 

 There are many studies conducted to examine combustion and emissions of 

alternative fuels. Among those studies, Okasha (2007) examined the staged combustion of 

rice straw in a fluidized bed. Agricultural wastes are still considered as a huge environmental 

problem due to the fact that many of them are subjected to open burning without energy 

recovery, especially rice straw as explained in previous sections. Rice straw causes the most 
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serious problem because it is available in large quantities and cannot be handled or 

transported easily, so it is easier to be disposed of by direct open burning in fields. However, 

utilization of biomass in energy generation is a promising solution to substitute fossil fuels, 

and solve the waste disposal problem. Fluidized bed combustion (FBC) is commonly used 

for combustion of different biomass fuels. FBC has advantages over other combustion 

technologies due to the easy and efficient control of SOx and NOx emissions as well as the 

possibility of using various fuels. FBC is also an economically effective technology because 

of the emissions reduction in the FBC furnace without the need for supplementary flue gas 

cleaning devices. In this study, an atmospheric bubbling FBC was used with secondary air 

introduced in the freeboard. Rice straw was fed in cylindrical pellets form. It was found that 

staged combustion is an efficient technique to decrease NOx emissions, especially at higher 

temperatures, as it was reduced by 50% at 850˚C when 30% of fed air is introduced as 

secondary air. Combustion efficiency improved when increasing the ratio of secondary air 

until a maximum ratio because of the reduction in fixed carbon loss. However, further 

increase in the secondary air ratio reduced combustion efficiency due to the increase in 

entrained fixed carbon and exhausted carbon monoxide. Higher operating temperatures 

resulted in expanding the range of secondary air ratio, over which combustion efficiency 

increased. Furthermore, air staging had a slight effect on SO2 as SO2 reduced in the lower 

range of the secondary air ratio, and slightly increased when increasing bed temperature 

behind 800˚C (Okasha, 2007). 

Another study by Villeneuve, Palacios, Savoie, and Godbout (2012) included a 

review of regulations and standards for emissions from biomass combustion. Biomass is 

composed mainly of Carbon (C), Nitrogen (N), Hydrogen (H), Sulphur (S), Chlorine (Cl), 

and Oxygen (O). In addition, other elements are present in less proportion like Sodium (Na), 
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Potassium (K), Calcium (Ca), Magnesium (Mg), Phosphorous (P), and heavy metals such as 

Chromium (Cr), Copper (Cu), Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), 

Nickel (Ni), and Zinc (Zn). The authors explained ideal combustion as the full oxidation of 

all fuel components. In case of ideal combustion, it is assumed that the basic elements in 

biomass, which are (C, H, N, S, and O), would be available in the form of (CO2, H2O, N2, 

SO2, and O2) in the flue gas. Emissions from biomass combustion are affected by factors 

other than the chemical composition of biomass such as the type of combustion equipment, 

emission reduction measures, biomass physical properties including moisture content, 

porosity, density, size, and active surface area. There are two general categories for 

emissions according to the reaction type, which are emissions from complete combustion 

such as CO2, NOx, SOx, HCl, particulate matters (PM), and heavy metals, and emissions from 

incomplete combustion resulted from lack of available O2, low combustion temperature, 

short residence time, or an insufficient mixing of air and fuel in the combustion chamber. 

Incomplete combustion emits CO, polycyclic aromatic hydrocarbons (PAHs), volatile 

organic compounds (VOCs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/F), 

PM, and little amounts of ammonia (NH3). In order to decrease the incomplete combustion 

emissions, excess air ratio above one (usually above 1.5) is needed in the combustion 

chamber to make sure of the inlet air mixing with fuel (Villeneuve, Palacois, Savoie, & 

Godbout, 2012). Table 14 shows the Egyptian ambient air quality standards including some 

critical pollutants that are often connected with biomass combustion such as PM2.5, PM10, 

CO, NO2, and SO2. For instance, Egypt has set an annual limit of 70 µg/m3 and a daily limit 

of 150 µg/m3 of PM10 (Egyptian Environmental Laws and Regulations, 2011). General air 

quality guidelines help in limiting adverse health effects caused by combustion of biomass. 

The World Health Organization (WHO) has recommended limits for such pollutants. Table 

15 compares Egyptian, European, and North American ambient air quality with WHO 
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recommendations. Some pollutants’ limits are the same for different standards like CO, 

which is 10 µg/m3 in the four standards, while others differ such as PM2.5 that is 25, 80, 50, 

and 35 in WHO, Egypt, Europe, and USA standards, respectively. The authors stated that 

the replacement of fossil fuel with solid biomass needs other costs like ash removal 

procedures, fire insurance, meeting, air quality standards, general security, usage of proper 

biomass with the proper combustion technology, and finally air quality control equipment 

such as cyclones (Villeneuve, Palacois, Savoie, & Godbout, 2012). 

Table 14  – Egyptian ambient air quality standards (Egyptian Environmental Laws and Regulations, 2011) 

Pollutant Maximum concentration 

(Egyptian Standards) 

Averaging period 

Fine particles (PM2.5) 80 µg/m3 

50 µg/m3 

24h 

1 year 

Sulphur dioxide (SO2)  350 µg/m3 

150 µg/m3 

60 µg/m3 

1h 

24h 

1 year 

Nitrogen dioxide (NO2)  300 µg/m3 

150 µg/m3 

60 µg/m3 

1h 

24h 

1 year 

PM10 150 µg/m3 

70 µg/m3 

24h 

1 year 

Lead (Pb) 0.5 µg/m3 1 year 

Carbon monoxide (CO) 30 mg/m3 

10 mg/m3 

1h 

Maximum daily 8 h 
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Ozone (O3) 180 µg/m3 

120 µg/m3 

1h 

Maximum daily 8 h 

 

Table 15 - Egyptian, European, and North American ambient air quality standards compared with WHO 

recommendations (Villeneuve, Palacois, Savoie, & Godbout, 2012) 

Pollutant  Maximum allowable level (µg/m3) 

WHO Egypt Europe USA 

Ozone (O3) (8h 

mean) 

100 120 120 160 

Fine particulate 

(PM2.5) (24h 

mean) 

25 80 50 35 

Fine particulate 

(PM10) (24h 

mean) 

50 150 50 150 

Sulphur dioxide 

(SO2) (24h 

mean) 

21 125 126 367 

Nitrogen oxides 

(NOx) (Annual 

mean) 

 

39 60 39 100 
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Carbon 

monoxide (CO) 

(8h mean) 

10  10 10  10  

Lead (Pb) (24 h 

mean) 

(-) (-) 0.5 1.5  

2.7 Combustion of RDF in Cement Kilns 

Many researches have been conducted to evaluate the application of alternative fuels 

from waste in energy-intensive industries. Some of those studies are presented in this section 

to evaluate the use of RDF, which is a WTE source, in cement kilns that consumes enormous 

amounts of fuels.  

A study conducted by Genon and Brizio (2008) discussed the use of RDF in cement 

kilns to obtain energy recovery. The use of RDF as a waste-to-energy solution was assessed 

from several aspects: the effects of RDF used in cement kilns on the emission of greenhouse 

gases, technological features and clinker characteristics, local atmospheric pollution, the 

economics of conventional solid fuels substitution and, finally, planning perspectives. 

Cement manufacturing plants are a suitable destination for RDF as a substitutive fuel 

material because of their capacity to sustain high temperatures making them an appropriate 

environment for thermal destruction of residuals without resulting in adverse environmental 

impacts. Cement plants have significant energy requirements of 3000-5000 kJ/kg of 

produced clinker. About 1.8 million t/y of secondary fuels were co-incinerated in more than 

100 kilns across Europe in 1997 (Genon & Brizio, 2008). The related strategy for the cement 

industry is to depend on substitutive fuels for the sustainable development and to decrease 

the high energy bill incurred since energy costs represent approximately 30-40% of 



 

 

 

 52  

   

 

 

manufacturing costs of Portland cement. According to Genon and Brizio (2008) RDF can be 

considered as a real technological solution for both the RDF producers and cement plant 

operators who seek optimal energy allocation, limiting environmental impacts and the 

economics of production. However, the authors acknowledge that there are some limitations 

such as the low calorific value and the chemical presence of atmospheric pollutants. 

Furthermore, the RDF substitution rate can be limited, and they suggest that some 

technological modifications as well as process parameter adjustments may be needed due to 

issues related to the kiln thermal and mass balances. Different conclusions have been drawn 

from the environmental point of view. Using RDF as an alternative fuel for coal or coke 

decrease greenhouse gas emissions, which complies with Kyoto parameters and emissions 

trading (Genon & Brizio, 2008). The conventional gaseous pollutants like Sulphur and 

chlorine are not critical since they are well retained by the alkaline micro-environment. 

Moreover, the presence of suspended fine dust, which is common in cement kilns, can be 

eliminated, and the generation of nitrogen oxides can be reduced due to lower flame 

temperatures or lower excess air. RDF may present some danger because of the heavy 

metals, especially the more volatile ones.  RDF usually contains higher amounts of Sb, Hg, 

Cd, As, Pb, Cu, Cr, and Zn than those present in pet coke, but compared to coal, it also 

contains large amounts of Hg, Co, Cd, and Tl (Genon & Brizio, 2008).  

Another study carried out by Kara et al (2009) investigated the process of producing 

RDF from non-recyclable wastes and the possibility of using it as an alternative fuel in the 

cement industry (Kara, Gunay, Tabak, & Yildiz, 2009). In this paper, the effects of using 

RDF on cement production were examined. In this study, RDF produced was mixed with 

liquefied petroleum gas (LPG) in different ratios (0, 5, 10, 15, and 20%). Afterwards, the 

produced cement clinker was analyzed chemically and mineralogically. The results obtained 
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from the chemical analysis of the cement produced using RDF as an alternative fuel showed 

that all values are within the allowable Portland cement values.  It was also found that RDF 

is an economically feasible alternative for fossil fuels in cement production. Moreover, the 

study revealed that RDF produces a more homogeneous fuel that can be burnt more evenly 

at higher temperatures making the combustion process easier (Kara, Gunay, Tabak, & 

Yildiz, 2009).  

A study conducted by Ozkan and Banar (2010) focused on the evaluation of RDF 

usage in the cement industry in terms of technical, economical, and social assessments. The 

authors used one of the Multi Criteria Decision Making (MCDM) tools called Analytic 

Network Process (ANP). Several scenarios were investigated and then the results were 

compared. The scenarios were: using coal as a fuel, using alternative fuels such as tires 

waste, oil waste, etc, the utilization of 10% RDF and 90% coal, using 40% RDF and 60% 

coal, and finally using 100% RDF as a fuel. Each of those scenarios was evaluated based on 

its advantages, costs, and risks. The criteria used in the benefits aspect was the use of fuel 

with high heating value that decreases the fuel quantity, saving fossil fuel, and environmental 

benefits. Moving to the cost, there are three types of costs, which are: the preprocessing costs 

to prepare fuel, fuel costs, and analysis costs for controlling emissions. Meanwhile, the 

following criteria were used to evaluate risks: standard emissions like SO2, NOx, and CO2, 

and toxic gas emissions (Volatile Organic Compounds VOC, Polychlorinated 

dibenzodioxins and dibenzofurans PCDD/PCDF, Polychlorinated Biphenyls PCB). 

According to the abovementioned criteria, it was found that the 100% RDF scenario was the 

best scenario (Ozkan & Banar, 2010).    

In 2010, Rovira et al. studied the influence of partial substitution of fossil fuel by 

RDF in a cement plant in Alcanar (Catalonia, Spain). Some surveys were performed for the 
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environmental monitoring before and after using RDF by a maximum replacement of 20% 

of the required energy, however, this percentage currently reached 30%. In order to carry 

out the investigation, samples from air, soil, and herbage around the facility were collected 

to analyze metals and PCDD/Fs levels. It was found that there was significant reduction in 

the levels of PCDD/PCDF and some metal concentrations.  Also, the concentration of 

particulate matter (PM10) was constant with a value of 16 µg/m3. For the population living 

nearby, both the carcinogenic and non-carcinogenic risks caused by the exposure to 

PCDD/PCDF and metals were found to be within the acceptable ranges according to national 

and international standards. Therefore, RDF can be considered as a successful alternative for 

fossil fuels (Rovira, Mari, Nadal, Schuhmacher, & Domingo, 2010).  

In another study conducted by Askar, Jago, Mourad, and Huisingh (2010), the 

authors demonstrated that alternative fuels from waste has been used for more than 20 years 

in Europe and the USA. Several reasons have boosted the use of waste derived fuels (WDF) 

in cement kilns such as the high temperatures, long residence time, the alkaline environment 

in the cement kiln, and ash becomes part of the product which reduce left residues. The 

author stated that the government in Egypt has doubled the price of heavy fuel for energy-

intensive sectors, and they also applied new tariffs for electricity in August 2010 on high 

electricity consumers like cement industry. This has led to increase in price that reached 50% 

on the peak energy consumption periods (7.30-11.00 pm in summer, and 5-9 pm in inter). 

This increase in prices has been the main driver to use alternative fuels in cement 

manufacturing such as RDF and agricultural wastes. However, other benefits can be obtained 

from using those alternative fuels, which make it a Cleaner Production option, such as 

reduction of waste disposed in landfills, energy recovery from combustible wastes, net 

reduction in emissions, conservation of fossil fuels, and reduction in cement production cost. 
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Cemex cement in Assiut was approximately substituting 15.2% of their fuel with agricultural 

wastes when this study was conducted, however, they were planning to increase this 

percentage. Also, Lafarge has already studied and started to apply the use of RDF. Table 16 

shows some fuel substitution initiatives that took place in different cement facilities in Egypt 

when this study was carried out in 2010. For instance, the substitution percentage among 

those presented in this table was Cemex Cement in Assiut that substituted 21% of the used 

fuel with agricultural waste, while in Suez Cement in Helwan plant substituted conventional 

fuels with 15% agricultural waste, 10% RDF, and 5% other alternative fuels. Also, 

substitution of 10% RDF and 20% agricultural waste was used in Suez Cement, Katameya 

plant in Cairo. However, the rate of substitution in Egypt mainly depends on availability of 

alternative fuels and financial drivers, and it is anticipated to that the maximum substitution 

percentage would reach 30%, which has already implemented in some facilities by this time 

(2016) (Askar, Jago, Mourad, & Huisingh, 2010). 
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Table 16 - Fuel substitution initiatives in Egypt (Askar, Jago, Mourad, & Huisingh, 2010) 

Initiatives of the 

companies 

Fuel 

substitution 

Agricultural 

waste 

RDF Other 

Tons x 103 per year 

Suez Cement 

Helwan plant, 

Cairo 

(Italcementi 

group) 

10-30% 166 

15% 

93 

10% 

54 

5% 

Suez Cement 

Katameya plant, 

Cairo 

(Italcementi 

group) 

10-30% 89 

20% 

37 

10% 

 

Amreya 

Cement, 

Alexandria 

(Cimpor) 

Approximately 

10% 

   

Lafarge 

Cement, Suez 

Kiln 2  72  

Kiln 1 120   

Kiln 4   23 

Cemex Cement, 

Assiut 

 15-21% 275 

21% 
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CHAPTER (3)  

METHODOLOGY 

3 Methodology 

3.1 Introduction 

This research was divided into three phases. The first phase was conducted to get the 

calorific value of various solid waste materials from agricultural, municipal, and industrial 

sources. The selected materials of waste were chosen based on the literature. The agricultural 

wastes are categorized into two groups: agricultural crop residues (straw, stalks), and agro-

industrial crop residues (leaves, kernels, shell, husk). The agricultural related wastes used 

here were: rice straw, rice husk, bagasse, corn husk, and onion leaves. From literature, corn 

cobs were examined earlier as an alternative fuel, however, corn husk was chosen in this 

study because it is a waste of no appreciable value to industries. The other wastes from 

municipal and industrial activities were: tires, various types of plastics, laminated plastics 

(chips and chocolate packaging bags) and wood residues from industrial activities (sawdust). 

Plastics included in this research were high-density polyethylene (HDPE), polypropylene 

(PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS). The 

second phase of the study was concerned with the effect of different binders and their 

percentage on the average calorific value of biomass pellets, while the third phase was 

carried out to trace emissions produced from the most promising waste materials to 

determine the proper mitigation technologies that should be used. The three phases of this 

research were conducted on lab scale.  
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3.2 Preparation of Waste Materials 

In this research, various crop residues, plastics, and tires were selected to represent a 

portion of the agricultural, industrial, and municipal solid waste in Egypt. Agricultural 

wastes used in this study were firstly dried to reduce the moisture content before grinding. 

Since this study was conducted at a lab scale, the grain size of materials ranged between 

63µm - 1.18mm. Materials were prepared as following: 

 Rice straw was received in bales of tall straws, then it was dried under sunlight. A 

cutting machine (Figure 4) was used first to cut it into smaller straws. The output of the 

cutting machine is shown in Figure 5. Afterwards, the shorter rice straws were ground 

into finer particles using a chopping machine, shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 - Feeding large rice straws into the cutting machine to be cut 

into smaller straws 
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 Similar procedure was repeated for bagasse, corn husk, and onion leaves that got dried 

first under the sunlight, then ground with the same machine in Figure 6. The output 

material is illustrated in Figure 7. 

 

Figure 5 - Rice straw output of the cutting machine 

Figure 6 - Grinding rice straw into fine particles in a chopping machine 
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 Wood (sawdust) was obtained as waste from furniture industry, so it was already 

received in small particles.  

 Laminated plastics from chips and chocolate packaging were firstly washed, then left to 

dry under the sunlight. Afterwards, they were manually cut with scissors, and then they 

were cut into smaller particles with the crushing machine in Figure 8. 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Ground onion leaves 

Figure 8 - Output of laminated plastics from the cutting machine 
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 In order to prepare PET, water bottles were cut into smaller pieces using cutter and 

scissors, then those small pieces were fed into the same machine in Figure 8 that has 

sieves with 1mm, 2mm, and 3mm diameter openings to obtain finer particles. The same 

procedure was carried out to cut foam plates into smaller particles to obtain polystyrene 

using the sieve with 2 mm diameter openings for both PET and PS.  

 HDPE, PVC, and PP were received as they were, thus no further preparation was needed.  

 Tires were also cut into small pieces manually with scissors, then crushed into finer 

particles with the cheese machine shown in Figure 9.  

 

 

 

 

 

 

 

 

 Sieve analysis test was performed to determine the grain size of the used waste materials 

within the given samples. It was anticipated that grain size does not influence the 

material’s calorific value. However, rice straw, corn husk, and tires were grouped into 

two size ranges to make sure that grain size does not affect the average calorific value of 

waste material. Table 17 shows the grain size of each material: 

Figure 9 - Cutting tires into finer grains using cheese machine 
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  Table 17 - Grain size of the investigated waste materials 

Material  Grain size 

Rice straw 63µm - 425µm, 850µm - 1.18mm 

Rice husk 106 µm – 1.7mm 

Corn husk 63µm - 425µm, 850µm - 1.18mm 

Bagasse 63µm - 425µm  

Onion leaves < 710µm 

Sawdust <1.18mm 

Tires 63µm - 425µm, 850µm - 1.18mm 

Laminated plastics 106µm – 1.7mm 

PET <2.00mm 

PP 425µm – 2.00mm 

HDPE 106µm – 850µm 

PVC  106 µm – 2.00mm 

PS 106µm – 1.18mm 

 

 In order to get the moisture content of biomass materials, a sample of each of the six 

tested biomass materials: rice straw, rice husk, corn husk, onion leaves, bagasse, and 

sawdust was weighed and then dried in an oven at 105 ˚C until the sample achieved a 

constant weight (ASTM, 2010). Afterwards, the sample was cooled in a desiccator and 

then weighed again. The moisture content was calculated on a wet basis by Equation 1: 

             Moisture content (%) = 
𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑔)−𝑑𝑟𝑦 𝑚𝑎𝑠𝑠(𝑔)

𝑤𝑒𝑡 𝑚𝑎𝑠𝑠 (𝑔)
 𝑥 100                                       (1) 
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3.3 Phase I – Investigation of the Average Calorific Value 

In order to measure the average calorific value of the selected waste materials, an 

oxygen bomb calorimeter (XRY-1A) (Figure 10) was used. The used bomb calorimeter was 

made and designed as per the National Standard of People’s Republic of China GB/T213-

2008. A sample of 0.53 g of each material was tested five times and then the average calorific 

value was calculated. The calorific value of sample is the heat produced when burning a unit 

mass in the oxygen bomb that contains excessive oxygen (J/g or kJ/kg). 

 

 

 

 

  

 

 

3.3.1  Materials 

1. Benzoic acid of grade two or higher standard heat measurement substance was used 

to calibrate the equipment.  

2. Ignition wire made of nickel chrome wire with a diameter of 0.1 mm.  

3. Oxygen that should be industrial oxygen with purity of 99.5%, and it should not 

contain hydrogen or any other combustible substance. 

Figure 10 - XRY – 1A Oxygen bomb calorimeter 
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3.3.2 Methods  

The following procedure was carried out to measure the calorific value of waste 

materials by the oxygen bomb calorimeter:  

1. The outer bucket in the bomb calorimeter was filled with water and stirred until the 

water’s temperature is even.  

2. The inner bucket was also filled with about 3000 g of water and the water’s 

temperature in the inner bucket should be 0.2~0.5 ˚C less than the outer bucket. 

3. The first measured sample was standard benzoic acid to calibrate the equipment. The 

benzoic acid’s sample was weighed and placed in the crucible. 

4. The crucible was then fixed to the crucible holder and ignition wire was fixed on the 

two conductive poles of the oxygen bomb. The ignition wire should just touch the 

sample surface, and a 10 ml of distilled water was added into the oxygen bomb.  

5. The cover of the oxygen bomb was tightly screwed, and then oxygen was filled until 

the pressure in the oxygen bomb was 2.8~3.0 MPa.  

6. The oxygen bomb was then placed on the oxygen bomb seat in the inner bucket that 

was filled of water. The water’s surface in the inner bucket should be at about 2/3 of 

the screw cap of oxygen inlet valve of the oxygen bomb.  

7. The ignition connection wire and all other wires were connected on the controlling 

case. The instrument cover was closed, and the temperature sensor was inserted into 

the inner bucket.  

8. The instrument was turned on, the Stir button was pressed, and temperature of the 

inner bucket was shown every half minute. After the temperature reached a constant 

value, Ignite button was pressed at the same time, and the measurement time got 
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zeroed automatically. Again, the instrument recorded temperature data every half 

minute until it got 31 readings, and the End button was pressed to end the test.  

9. Finally, stirring was stopped, the sensor was taken out, the instrument cover was 

opened, and the oxygen bomb was taken out. The oxygen in the oxygen bomb was 

discharged using a discharge valve to check if the sample has completely burned, 

then the test data is valid. 

10. From the obtained data, calorific value of the sample was calculated using the 

following equations (Equation 2, 3): 

E = 
𝑄1 𝑀1+40

∆ 𝑇
                                                                                                 (2) 

Where, 

E = Heat capacity (J/˚C) 

Q1 = Heat value of standard benzoic acid (26456 J/g) 

M1 = Mass of benzoic acid (g) 

∆T = Temperature increase (Tf – Ti) in the calorimeter system (˚C) 

Q = 
𝐸 .  ∆ 𝑇− 40

𝐺
                                                                                                 (3) 

Where,  

Q = Heat value of sample (J/g) 

E = Heat capacity of the instrument (J/˚C) 

∆T = Temperature increase (Tf – Ti) in the calorimeter system (˚C) 

G = mass of sample (g) 
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11. The average calorific value of five samples of each material was calculated, and the 

above steps were repeated to measure other samples. 

3.4 Phase II – Pellets 

In the second phase of this study, the impact of different binders on the calorific value 

of biomass pellets was investigated. Based on international standards, the moisture content 

of pellets should be < 10%, and binders’ percentage should be ≤ 2%. The moisture content 

of biomass materials used in this study ranged between 7.0 – 7.3 wt% (wet basis). Mass of 

0.53 g for each biomass sample (rice straw, rice husk, corn husk, bagasse, onion leaves, 

sawdust) was pelletized using the compressing machine, shown in Figure 11, and all samples 

were pelletized under the same compression force. Each binder was added in 0, 2, and 4%, 

and five samples of each material was tested. The same steps stated in the previous section 

(phase I) were repeated to measure the calorific value.  

 

 

 

 

 

 

 

 

 Figure 11 - Compressing machine for pellets 
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3.5 Phase III – Emissions from Different Waste Materials 

In the third phase of this study, the most promising materials determined from 

phase I were combusted to inspect the approximate emissions produced from those 

materials relative to each other. For industries that can use those alternative fuels, this 

would facilitate the process of determining what mitigation and air control technologies 

should be used to minimize air pollutants and comply with standards. Emissions were 

detected with a Testo-350 gas flue analyzer (Figure 12). The Testo-350 gas analyzer 

measured CO, NO, NO2, and SO2 in ppm, while CO2 was given in percentage. The 

following steps were taken to measure emissions: 

1. A muffle furnace was heated to 850 ˚C (Figure 13).  

2. The gas analyzer was turned on, while the probe was placed in fresh air. The 

instrument takes about 60 seconds carrying out a self-test and rinsing the measuring 

cells with fresh air. It also detects the temperature of fresh air at that time. Once the 

self-test ended, O2 percentage was shown as 21.0%, and if not, it must be set at 

21.0%.  

3. A Parameters button was pressed and then jumped to the measurement menu. At this 

stage, the instrument was ready to start measuring.  

4. The flue gas probe was placed in the center of the flow through an opening in the 

furnace’s ceil. Then, the pump was started and readings were taken every one minute 

until the combustion process ended, and this was observed from the instrument’s 

readings that got very low or zeroed. The remained mass after combustion was 

weighed.  
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Figure 12 - Testo-350 flue gas analyzer 

Figure 13 - An insulated oven heated at 850 ˚C 
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CHAPTER (4)  

RESULTS AND DISCUSSION 

4 Results and Discussion 

4.1 Phase I - Calorific Values 

The calorific values of different waste materials (municipal, industrial, and 

agricultural) were investigated to determine which materials are the most promising to be 

used as a source of energy. The calorific value (CV) of each material was measured five 

times to ensure accuracy, and then the average of the five values was taken.     

4.1.1 Average calorific values of agricultural waste  

The results show that the highest average calorific values of the selected agricultural 

waste were obtained from bagasse, then corn husk, which were 17309 kJ/kg, and 16911 

kJ/kg with standard deviation of 2.96%, and 2.38 %, respectively. Comparing both rice straw 

and rice husk, there was no large difference between the two, however, rice husk gave greater 

average calorific value of 15178 kJ/kg and standard deviation of 2.47%, while rice straw’s 

average calorific value was 14435 kJ/kg with standard deviation of 1.59%. Onion leaves’ 

average calorific value was very close to that of rice straw, which was 14340 kJ/kg with a 

standard deviation of 3.32 %. Figure 14 shows the selected five agricultural wastes and their 

average calorific values.  
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4.1.2   Average calorific values of industrial and municipal solid waste 

As presented in Figure 15Error! Reference source not found., PP achieved the 

highest average calorific value among all the measured plastics with an average calorific 

value of 47390 kJ/kg, while PVC gives the least value of 15245 kJ/kg, with standard 

deviation of 0.33%, and 2.09%, respectively. The average calorific value of HDPE is 

relatively close to PP with average calorific values of 46609 and 47390 and kJ/kg, 

respectively. The standard deviation of HDPE’s average calorific value was 0.68%. Another 

material is laminated plastics that is used widely to manufacture chips and chocolate 

packaging, and it has an average calorific value of 38373 kJ/kg with standard deviation of 

2.91%, which is even greater than PET and PVC’s calorific values of 23483 and 15245 

kJ/kg, and standard deviation of 2.87 and 2.09%, respectively. The average calorific value 

of tires was 31731 kJ/kg with standard deviation of 0.87%, while the sawdust produced by 

different industries gives average calorific value of 18177 kJ/kg with 2.06% standard 

deviation. From the results obtained in this phase, it could be highlighted that laminated 
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Figure 14 - The average calorific values of the selected agricultural wastes 
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plastics can be considered as a potential source of energy that could not be found in the 

literature. It has a relatively high calorific value that is even higher than the calorific value 

of tires and other types of plastics like PET and PVC.  

 

4.1.3 Validation of the average calorific values  

The average calorific values obtained using the bomb calorimeter in this study were 

validated by comparing them with values from literature. As shown in Table 18, the 

comparison demonstrates that both values were very close, with minor differences. The 

maximum difference reached about 19.8 % for PVC, while for the rest of the materials it 

ranged between 0.5-11.9 %. Those errors could be resulted due to many factors such as the 

source of materials that might accordingly change its physical properties like moisture 

content of the waste. 
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Table 18 - Comparison between average calorific values obtained from bomb calorimeter and the literature 

 Material CV (kJ/kg) – 

Bomb 

calorimeter 

CV (kJ/kg) – 

Literature 

Error % Reference 

PP 47390 44000 7.7 (Themelis, 

Castaldi, Bhatti, 

& Arsova, 2011) 

HDPE 46609 44000 5.9 

PS 40784 41000 0.5 

PET 23483 24000 2.2 

PVC 15245 19000 19.8 

Tires 31731 29000-36000 9.4 - 11.9 (Singh, Nimmo, 

Gibbs, & 

Williams, 2009) 

Sawdust 18177 20000 9.1 (Capareda, 

2011) 

Rice Straw 14435 15200 5.0 (Capareda, 

2011) Rice Husk 15178 15400  1.4 

 

4.1.4 Effect of Grain size on the calorific value  

Two grain sizes of three materials: rice straw, corn husk, and tires were tested in 

order to be used as indicator to ensure that grain size does not have impact on the calorific 

value of materials. The results in Figure 16 shows that the grain size was unlikely to affect 

the calorific value of materials. As for rice straw and tires, the difference between both values 

was less than 1%, while for corn husk it was 1.2%. However, it is speculated that the grain 
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size will more likely to have impact on the combustion behavior, which could not be 

examined in this study due to some limitations. 

 

4.2 Phase II - Pellets 

As mentioned in Chapter 2, pellets can make transportation, storage, and handling 

easier to manage biomass. Pellets should satisfy certain standards based on the following 

characteristics: bulk density, mechanical durability, dimensions, ash content, calorific value, 

moisture content, binding agent/additives percentage and others. However, the focus of this 

research is to investigate the average calorific value of pellets with different percentages and 

types of binders. The used binders were water, starch, and calcium hydroxide Ca(OH)2, 

which were selected based on literature. Each binder was tested at 0, 2, and 4 wt% of 

biomass.  

The results obtained using starch, Ca(OH)2, and water as binders (Table 19) does 

not significantly affect the average calorific value of the tested biomass: bagasse, rice 

straw, rice husk, corn husk, onion leaves, and sawdust. For example, Figure 17 illustrates 

63µm-425µm 850µm-1.18mm
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Corn Husk 17663 17444

Tires 31803 32003
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Figure 16 - Effect of Grain size on the calorific value 
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that starch had a minor effect, when used as a binder, on the average calorific value of 

bagasse, rice straw, corn husk, rice husk, onion leaves, and wood, and similarly for 

Ca(OH)2, and water.  

 For rice straw, corn husk, and wood (sawdust), it was found that as the percentage 

of water increased, the average calorific value decreased. However, the reduction was minor 

within range of 3.3 – 6.3% of the pellet’s average calorific value with 0% binder. The 

minimum decrease of 3.3% took place at 2% water for corn husk, while the maximum 

decrease of 6.3% occurred at 4% water rice straw. The other biomasses: bagasse, rice husk, 

and onion leaves did not show an exact trend, however, the changes were also minor and 

ranged between 0.3 – 6.0%.  

For starch, the results obtained acted in a similar trend to bagasse, rice husk, and 

onion leaves with water as a binder. The differences happened in the average calorific value 

of the six biomasses were in range of 0.6 – 5.4%, with the maximum at wood with 4% starch, 

and the minimum at corn husk with 2% starch.   

For Ca(OH)2, the average calorific value of rice straw, corn husk and wood pellets 

decreased with increasing the percentage of Ca(OH)2, same as in water. However, the 

changes ranged between 1.2 – 13.3%, with the minimum change of 1.2% occurred at rice 

straw with 2% Ca(OH)2, while the maximum was at wood with 4% Ca(OH)2. The results of 

remaining wastes: bagasse, rice husk, and onion leaves were also similar to pellets of the 

same materials with water as a binder. Change in the average calorific value of those 

materials ranged between 0.6% - 9.6%. The highest change took place in onion leaves pellets 

with 2% Ca(OH)2 binder, while the lowest difference in calorific value was at 4% Ca(OH)2 

bagasse.  
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The obtained results might have been influenced with some factors that could have 

resulted in minor errors accordingly. Although it was ensured that the binder had been mixed 

very well with the biomass sample, there might have been some discrepancies in the 

sample’s homogeneity. Also, the room temperature could also affect the sample’s 

temperature, which could consequently cause those minor changes. However, the results 

showed that the three binders: starch, water, and Ca(OH)2 did not affect the average calorific 

value of biomass dramatically, but more research is still needed in this area to examine other 

properties such as density, mechanical durability, ash content, emissions and others in order 

to be able to determine the optimum binder to be used.   
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Figure 17 - Effect of starch as a binder on average calorific value of the selected biomass materials 
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4.3 Phase III –Emissions from Different Waste Materials 

4.3.1 Selection of the most promising waste materials 

From both literature and the abovementioned results obtained from phase I, it was 

found that bagasse is the most promising material among the tested agricultural wastes in 

terms of the average calorific value, which is 17309 kJ/kg for bagasse. Furthermore, rice 

straw can also be used as a potential WTE source instead of open-field burning that causes 

serious environmental problems due to its availability in large quantities and its average 

calorific value of 14435 kJ/kg. On the other hand, polypropylene and tires were selected as 

the most promising WTE materials from the tested municipal and industrial wastes. 

Polypropylene was found to have the highest average calorific value among the five 

investigated plastics with an average calorific value of 47390 kJ/kg, while tires can also be 

considered as a promising source of energy because of its abundancy in enormous amounts 

in addition to the relatively high average calorific value of 31731 kJ/kg. All selected 

materials have a satisfying calorific value when compared with some other common fossil 

fuels like coal, which have a heating value within range of 15003 – 25772 kJ/kg. Also, diesel, 

which is commonly used as a source of energy, has a calorific value of 44799 kJ/kg that is 

close to the calorific value of polypropylene as well as other types of plastics (Sadaka & 

Johnson, 2014). 
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4.3.2 Emissions from different waste materials 

As mentioned in Chapter 3, the obtained concentrations from Testo gas analyzer for 

CO, NO, NO2, and SO2 were in ppm, while CO2 was given in vol%. The following figures 

(Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22) show concentrations obtained 

from the gas analyzer for each type of emission over time:  
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Figure 18 - Concentration of CO in ppm with time for the four tested materials 
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Figure 20 - Concentration of NO2 in ppm with time for the four tested materials 
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Results were normalized to express the amount of each pollutant as mass per unit 

mass of the burned material to be compared to each other. In order to be able to get the mass 

of each pollutant, concentrations were firstly converted from ppm into mg/m3. The 

percentage of CO2 was converted into ppm, as 1% is equivalent to 10,000 ppm. The 

following equation (Equation 4) was used to convert from ppm to mg/m3: 

mg/m3 = 
𝑝𝑝𝑚 𝑥 𝑀

0.08205 𝑥 𝑇
                                                                                     (4) 

where, 

M: molecular weight of gas 

T: temperature of combustion in Kelvin (˚C+273) 

0.08205: universal gas constant 

Then, the resulted concentration in mg/m3 was multiplied by the furnace volume, 

which was 0.0188 m3. Afterwards, the area under each curve was calculated by taking stripes 

with width of one minute and height of the average value of the concentrations of each 

pollutant, and then all areas were summed to get the total mass of each pollutant. The resulted 
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Figure 22 - Concentration of SO2 in ppm with time for the four tested materials 
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mass was then divided by the total burned mass of each material. All pollutants of each 

material were added up together to get the total output mass in grams (g), and the remained 

mass was weighed to get percent of losses.  

The area under the curve, which is presented as mass of CO per unit mass of rice 

straw, bagasse, tires, and polypropylene in a minute were 12.56, 19.15, 56.56, and 38.16 

g.min/kg, respectively, as shown in 23, which means that tires had the highest value of CO 

emission, then polypropylene. Also, bagasse emitted CO more than rice straw.  

 

The mass of NO per unit mass of rice straw, bagasse, tires and polypropylene were 

0.39, 0.59, 0.35, and 0.18 g.min/kg, respectively (Figure 24), meaning that polypropylene 

had the lowest value of NO, while bagasse produced the highest value, then rice straw.  
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Figure 23 - CO pollutant emission factors from burning rice straw, bagasse, tires, and polypropylene 
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As illustrated in Figure 25, the mass of NO2 per unit mass of rice straw, bagasse, 

tires, and polypropylene was 0, 0.012, 0.012, and 0.0016 g.min/kg, respectively. The amount 

of NO2 produced from bagasse and tires were almost the same and they gave the maximum 

value, while rice straw did not emit NO2 at all.  
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Figure 24 - NO pollutant emission factors from burning rice straw, bagasse, tires, and polypropylene 

Figure 25 – NO2 pollutant emission factors from burning rice straw, bagasse, tires, and polypropylene 



 

 

 

 83  

   

 

 

The mass of SO2 per unit mass of rice straw, bagasse, tires and polypropylene were 

0, 0, 2.73, and 0g.min/kg, respectively as demonstrated in Figure 26. From these values, it 

was observed that tires were the only material that produced SO2 emissions. 

 

The mass per unit mass of CO2 for rice straw, bagasse, tires and polypropylene was 

552.56, 685.68, 745.6, and 662.64 g.min/kg, respectively as shown in Figure 27. The 

maximum value of CO2 was produced from tires, then bagasse. The minimum value was 

obtained from rice straw.  
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Figure 27 - CO2 pollutant emission factors from burning rice straw, bagasse, tires, and polypropylene 
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Mass loss in tires mass, which is the total burned mass minus remaining mass and 

mass of produced emissions, was the minimum with value of 3% loss, while the maximum 

mass loss was 28% in polypropylene. For rice straw and bagasse, the mass loss was 16%, 

and 25%, respectively. Those mass losses may have affected the obtained results. According 

to Irfan et al. (2014), it was reported that rice straw reached a mass loss of 19% in a previous 

study, although other materials normally have mass losses of 10%. The authors also stated 

that variations in combustion conditions and fuel properties could result in high degree of 

uncertainty and rough estimates (Irfan, et al., 2014). 

Many different factors could have impacted the combustion process, which may have 

resulted in discrepancies in values of emissions, such as the mass loss, and the inability to 

measure all emissions with the Testo gas analyzer. Also, those values can differ from one 

test to another even for the same material due to differences in the combustion conditions, 

and in chemical composition of C, S, and N of the burned material, in addition to the moisture 

content (Irfan, et al., 2014). Another issue that should be taken into consideration is that the 

Testo gas analyzer gives rough estimation for emissions that enabled conducting a 

comparative study between different wastes, and not accurate values.  
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CHAPTER (5) 

CONCLUSION AND 

RECOMMENDATIONS 

5 Conclusion 

5.1 Conclusion 

Alternative fuels can be a clean source of energy and an optimum solution for energy 

crisis and depletion of fossil fuels. Furthermore, waste-to-energy can contribute in solving 

the waste management problem in Egypt. The main objective of this research was to provide 

the energy-intensive industries with a database of the calorific value of various solid waste 

materials and the anticipated pollutant emissions of the most promising ones. Also, it 

compared between the effect of different binders that can be used to enhance the palletization 

process of biomass. The main findings of this study are summarized in the following points: 

 From the first phase, it was found that all used wastes have a reasonable calorific value 

when compared to coal’s calorific value, which is 15003-25772 kJ/kg. The minimum 

calorific value of 14340 kJ/kg ± 3.32% was provided by rice straw, and the maximum 

calorific value among agricultural wastes was bagasse with a calorific value of 17309 

kJ/kg ± 2.96%. The highest calorific value among all measured wastes was given by 

polypropylene with a value of 47390 kJ/kg ± 0.33%, while tires had a calorific value 

of 31731 kJ/kg ± 0.87%,. However, the most promising waste materials were selected 

based on their calorific value and abundance. Therefore, bagasse, rice straw, 

polypropylene, and tires were chosen to investigate their emissions in phase three.  
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 Laminated plastics, which have not been investigated earlier in the literature, could 

be a potential waste-to-energy material that has a relatively high calorific value of 

38273 kJ/kg ± 2.91%.  

 In the second phase of this study, it was demonstrated that the three binders: starch, 

water, and Ca(OH)2, did not have a significant effect on the calorific value of the tested 

biomasses: rice straw, rice husk, corn husk, bagasse, onion leaves, and wood (sawdust), 

when added in 0, 2, and 4%. However, the maximum change of 13.3% of the average 

calorific value took place in wood with 4% Ca(OH)2, while the lowest change occurred 

in bagasse with 4% Ca(OH)2.  

 The third phase of the study compared between the released emissions of CO, NO, 

NO2, SO2, and CO2 from rice straw, bagasse, tires, and polypropylene in terms of mass 

of pollutant per unit mass of the burned material. The mass of CO and CO2 per unit 

mass of tires were 56.56 g.min/kg, and 745.6 g.min/kg, respectively, which was the 

maximum among the four combusted materials. The lowest values of CO, and CO2 

were 12.56 g.min/kg, and 552.56 g.min/kg, respectively, and were produced by rice 

straw. Bagasse had the highest mass of NO per unit mass of bagasse, which was 0.59 

g.min/kg, and polypropylene was the minimum with a value of 0.18 g.min/kg. The 

mass of NO2 per unit mass of bagasse and tires were almost the same with a value of 

0.012 g.min/kg. SO2 mass per unit mass of tires was 2.73 g.min/kg, which is the highest 

value among the four selected materials, while rice straw, bagasse, and polypropylene 

did not produce SO2. However, those values could have been impacted by some factors 

such as mass loss, which reached its maximum in polypropylene with a value of 28%, 

and those pollutants that could not be measured by the Testo gas analyzer. Also, the 

combustion conditions, moisture content, and chemical composition of C, S, and N of 



 

 

 

 87  

   

 

 

the burned material should be considered as they are likely to have impact on the 

produced emissions if the test is repeated.  

5.2 Recommendations 

In order to maximize the benefits of this study, further extensive research should be 

conducted to enhance its findings. The following points are recommended to be examined 

in the future: 

 Further research should be done to investigate the use of laminated plastics as an 

alternative fuel that includes emissions produced from laminated plastics combustion, 

and estimation of the amounts of laminated plastics in Egypt. 

 Investigation of the effect of starch, water, and Ca(OH)2 on other properties of pellets 

such as particle density, bulk density, dimensions, and fuel stability. 

 Studying the effect of temperature and compressive force on density and durability of 

pellets. 

 Studying the effect of grain size on the combustion behavior. 

 More research is required in the area of combustion to decide on the proper 

combustion technology and proper temperature that should be used to burn each 

waste material. 

 A field study should be conducted to evaluate emissions in the field, since those 

measured in the laboratory may differ from those obtained in the field. 

 Estimate the total amount of waste produced from each material and estimate the 

total gaseous pollutant emissions of CO, CO2, NO, NO2, and SO2 from each material 

in a year, in order to be able to compare them with standards, and choose mitigation 

measures and air control technologies that should be applied based on that.  
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 Application of those alternative fuels and mix more than one material if needed, in a 

real-world energy-intensive industry like cement industry and studying the 

environmental and economic impacts of using those materials compared with fossil 

fuels.  
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