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Abstract 
 

Fresh water is a finite and a vulnerable resource that sustains life, development, and the environment. 

Approximately 80% of the world’s cultivable land depends on rainfall, interestingly rain-fed production 

produces up to 70% of the global food supply yet it’s the same system that has been threatened with 

frequent dry spells and long term droughts. Estimates show that uncertain weather conditions and 

insufficient water for irrigation could lead agricultural productivity in several countries to fall by up to 

50% over the next decade, severely affecting their prospects of greater social and economic 

development.  Rainwater harvesting is the collection and storage of any farm water either runoff or 

creek flow for irrigation use. Rainwater harvesting for supplemental irrigation is currently the best 

practice to mitigate the escalating issue of water shortage caused by concurrent agricultural droughts. 

One form of mitigating the negative effects of such droughts and dry spells is the establishment of small 

scale simple low cost supplemental irrigation schemes in rain-fed agriculture. This is to reduce the 

extent of crop failures and as well increase the water use efficiency WUE of crops. In a developing 

country like Uganda where more than 80% of the population lives in rural areas and their lives depends 

on rain-fed agriculture. Droughts and dry spells have greater consequences to the peoples’ survival and 

development. This study presents a sustainable economic solution for the problem of crop yield 

reduction due to short droughts during the rainy season, more particularly for maize as a staple crop. It 

aims at reducing maize crop failures by supplying supplemental irrigation during the critical growth 

stages of the plant. It employs FAO’s water productivity model (Aquacrop) to estimate and predict the 

potential economic benefits of supplemental irrigation as well as the cost benefit analysis to examine 

the optimization of the supplemental system. Results show that applying supplemental irrigation in case 

of low soil moisture during the critical stages of maize can have greater crop yield increments. 

Optimization of the system is achieved when a farmer sacrifices about 5% of his hectare piece of land 

to establish a runoff lined storage pond of 800 cubic meters by volume along with a diesel pump for 

water lifting using furrow irrigation. Using such volume of PVC lined pond covered with a natural mat of 

growing Azolla plant on the water surface can give optimum yields on a one hectare crop land. Azolla, 

the aquatic floating fern has multi benefits, however, its primary importance in this study is keeping the 

water pond environmentally safety. The proposed supplemental irrigation scheme has a payback period 

of 6 years. 
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Chapter 1. Introduction  
 

Water is an essential element in socio-economic and environmental development (UNWater/FAO, 

2007). Shortage of this finite resource has mega negative consequences to the lives of the people. It 

poses crucial challenges on a global scale. Indeed dealing with water related issues like irrigation, 

hydropower and watershed management is a very influential and sensitive matter in line with 

sustainable development and global stability. It was reported by Rockstrom, et al. (2009) that in the 

middle of the 21
st
 century, more than half of the global population will have limited access to water. 

Different researchers have reported the need to reduce and minimize water usage. Regardless of the 

economic progress made by some countries in the developing world, almost all of the African countries 

still lag behind compared to rest of the world in terms of water accessibility, management, consumption 

and supply.  

On a global scale, water has become an increasingly scarce resource, and in sub-Saharan Africa, it’s a 

potential threat to the regional security and development. Currently the African Continent is facing vast 

challenges and amongst them is extreme poverty, diseases, population explosion and at a greater 

extent the variability in climatic patterns. (Falkenmark & Rockström, 2006), (Pandey, Zaag, & Soupir, 

2013) reported that by 2050, the world will need an additional 5,000km
3
/year of water for sustenance 

and also to meet the increasing food demands brought about by the booming population. So many 

researchers around the globe have suggested on the fact that supplemental irrigation to rain-fed 

agricultural settings could be a potential solution to the increasing food demands (Rockström, Barron, & 

Fox, 2003) (Rockstrom, 1997).  

Food and Agriculture Organization (FAO) reported that almost three quarters of the fresh water 

resources in sub-Saharan Africa are used for agricultural purposes. Estimates show that uncertain 

weather conditions as well as insufficient water for irrigation could lead agricultural productivity in 

several countries to fall by up to 50% over the next decade, severely affecting their prospects of greater 

social and economic development (Freitas, 2013). Without water everything gets stagnant, peoples’ 

lives are constrained, productivity slows down and most importantly water shortage leads to disease 

break-outs, poverty, extreme hunger and vulnerability. In 2006, the Human Development Report 

documented that ‘’1.1 billion people in the developing nations had no access to water…’’ (UNDP, 2006). 

Making matters worse, almost all rural population in developing countries depend on agriculture for their 

food and income; their lives have already been threatened due to the shortage in water for agricultural 

production. 

 

Indications from a study report conducted by the International Food Policy Research Institute (IFPRI) 

showed that by the year 2020, developing nations most especially in Asia and Africa will have an 
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estimated food demand of about 400 million tons of food to be able to feed their entire population. This 

will be the deficit amounts of food required above the total annual food production plus imports to cater 

for the food demands of region’s inhabitants. Poverty plus hunger are so far the biggest challenges 

faced by the two regions, this is so due to the fact that a big proportion of agricultural land is subjected 

to recurrent dry spells and affected with water scarcity. 

 

Statistics have shown that 65% of sub-Saharan population resides in rural areas and these are the 

same people who rely on rain-fed agriculture (Worldbank, 2000). Almost 94% of agricultural land south 

of the Sahara desert depends on rainfall for crop production (Pandey, Zaag, & Soupir, 2013). For 

instance all the 11 Nile Basin countries are considered underdeveloped and poor amongst other African 

countries. Actually half of them are amongst the 10 poorest nations in the whole world (Yohannes & 

Yohannes, 2012). In a bid to rectify the alarming poverty crisis in these regions, rapid industrialization, 

education and investments in irrigation based agriculture should be priorities.  

Agriculture, a main contributor to Uganda’s economy made up almost a quarter of the gross domestic 

product (GDP) in 2013 (NPA, 2015). The sector’s pivotal role is further shown in the fact that it employs 

more than half of the country’s population in addition to providing a foundation for the development of 

other economic spheres such as services provision and manufacturing. In its second series, the 

Ugandan national development plan aims to focus on a total of 12 agricultural initiatives, including 

maize production. Among others, emphasis will be placed on supporting agricultural research, 

adaptation of on-farm technologies and construction of water schemes for irrigation and livestock (NPA, 

2015). 

1.1: Problem Statement 
 

Water shortage for irrigation is one of the main problems hindering agricultural production and 

development in Africa in general and Uganda in particular. Lack of enough water to supplement rain-fed 

agriculture in the region directly affects the region’s food security and can trigger disastrous calamities 

like famine, diseases, drought and massive death. Sub- Saharan Africa for ages has been depending 

on rain-fed agriculture since the past centuries and it proved efficient and dependable until the effects of 

climate change twisted and changed the natural environmental conditions. 

A study conducted by Falkenmark, et al. (2001) reported that an approximate 80% of the world’s 

cultivable land depends on rainfall and this rain-fed production produces up to 70% of the global food 

supply. However it’s the same system that has been threatened with frequent dry spells and long 

droughts. There is a significant change in rainfall patterns, intensities and distribution which is at a 

larger extent due to the effect of climate change in addition to deforestation and the poor farming 

practices (Falkenmark, Fox, Persson, & Rockstrom, 2001). 
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Food and Agricultural Organization (FAO) reported that in Sub-Saharan Africa, there is an approximate 

42 Million hectares of land that require irrigation. However rainfall does not provide the required soil 

moisture to support full production of crops (FAO, Irrigation in Africa in Figures, 1995). Historically there 

has been no substantial irrigation practices south of the Sahara desert over so many years. This has 

been partly because of the high investment costs of irrigation schemes and its related management 

costs and also due to the fact that Sub–Saharan Africa was naturally gifted with abundant resources 

like rainfall, fertile lands and enough human labor to work on farm lands. 

Moisture stress to crops in Uganda has become the biggest challenge in the agricultural industry. So 

many parts of the country have experienced the wrath of climatic effects. Ronald Kalali (Mugasha, 

2014) an agricultural officer at Mobuku government prison, Western region of the country narrated how 

drought drove their 300 acres of land to zero yields. “We were going to utilize all the rains because we 

planted in time but unfortunately we stopped receiving rains in March immediately after we had planted. 

We are expecting zero yields,” Figure ‎1.1 shows part of the 300 acres of a failed maize plantation due 

to drought at the flowering stage. 

A failed maize plantation due to drought in Uganda 

 

Figure ‎1.1 Dried maize plantation due to drought (Mugasha, 2014) 

Different authors have cited that the effects of climate change are believed to have caused this un-

uniform distribution of rainfall even within the rainy seasons. The maize crop requires an average 

amount of water of about 500-800mm of water per season depending on several factors. In 2007, the 

Intergovernmental Panel on Climate Change (IPCC) projected that in 2020, rain-fed agricultural crop 

yields in Sub-Saharan Africa will reduce by 50% due to the effects of climatic change (Mubiru, 2010).  
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In their report, IPCC emphasized the benefit of supplemental irrigation mostly if applied during the dry 

spell periods that occasionally appear during the planting season (Mubiru, 2010). 

There are quite various techniques that can be applied to avail water for irrigation in rain-fed agricultural 

system depending on the geographical location, soil type, rainfall patterns, crops under cultivation and 

frequency of drought occurrence. Water can be accessed through rainwater harvesting, pumping or 

diversion of water from a near-by stream into irrigation distribution channels, pumping from 

underground wells, etc.  

1.2: Research Goal, Aim and Objective 
 

Goal - The intended goal of this research is to increase the maize productivity through reducing crop 

failures during the moisture-critical growth stages. To a greater extent, these failures are due to low 

moisture content in the soil along the crop growth cycle in Rain-fed agricultural systems. 

Aim – The aim is to reduce the crop failures by supplying supplemental irrigation water to the crops 

during the dry season and critical growth stages i.e. reproduction stage (flowering and grain formation). 

This is achieved by developing a surface runoff harvesting system using a relatively cheap water 

harvesting pond lined with a plastic liner to prevent the seepage losses. The pond is then covered with 

a floating water fern (Azolla-) which is an aquatic crop that grows on the water surface. Azolla 

suppresses mosquitoes by inhibiting ovi-positioning of the female mosquitoes that spread the malaria 

virus and also acting as a physical barrier for mosquitoes to lay their eggs on the water surface.  A 

supplemental irrigation system under study is also tested using a crop water model developed by FAO 

(Aquacrop).  

Objectives - The principle objective of this study is to develop a supplemental irrigation scheme for 

maize production under rain-fed agriculture. Maize is one of the major staple foods in Uganda and East 

Africa as a whole. In Uganda, maize production had increased over the years as people changed their 

consumption trends. It had started evolved from a purely subsistence to a successful commercial crop. 

However this very important move has been greatly altered by the changing climatic conditions. 

Changing rainfall patterns, uneven distribution and concurrent droughts have caused a tremendous 

drawback of this important shift in the farmers’ lifestyle.  

Maize in Uganda is sold mainly for food in schools, relief by World Food Program (WFP) or export to 

neighboring countries such as Kenya, Rwanda and Burundi. The study’s objective is achieved through 

several simulation trials using FOA’s Aquacrop water model and the cost benefit analysis to estimate 

the optimal pond size for surface runoff harvesting and water lifting techniques. The model also 

estimates the additional required amount of irrigation water to seasonal rainfall that should be supplied 

during the critical and water sensitive growth stage of the maize crop to reduce crop failure under water 

shortage. 
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This study is therefore a mitigation strategy for agricultural water shortage in the agricultural sector in 

mostly all the Sub-Saharan African countries with efforts to reduce the increased pressure of food 

security in the region. 

1.3: Research Questions 
 

What is the optimum pond size for surface runoff in supplemental irrigation that can maximize the net 

benefit from the pond, i.e. the increase in crop production minus the cost of water harvesting and 

supplemental irrigation? 

How much additional crop yields (quantity) can be achieved by applying supplemental irrigation during 

the critical maize crop growth stages under the rain-fed agricultural system? 

When is the break-even point for a supplemental irrigation scheme in rain-fed agricultural systems?  

1.4: Research Approach 
 
Due to insufficiency of adequate scientific data regarding the economic feasibility of rainwater 

harvesting for supplemental irrigation mainly in cereal production in Africa, this creates a big knowledge 

gap in the field of agriculture. Yet most of the African population depends on agriculture for their food 

demands. In particular, the rural farmers who are facing the huge effects of climate change such as 

constant droughts, floods and erratic rainfall which leave both their crops and animals destroyed. This 

research attempts to fill that knowledge gap by proposing a potential and feasible solution for the 

problem of water shortage. 

 The study proposes a supplemental irrigation scheme that focuses on harvesting surface runoff during 

the intensive rainfall events and uses the stored water during the periods of water shortage. The 

proposed scheme relies on rainfall due to the fact that the Sub-Saharan Africa has abundant rains 

though with changing patterns and distribution due to the effects of climate change. Another reason for 

relying on rainfall is that supplemental irrigation is basically applied to crops that can do well with rain-

rain-fed agriculture, this means that even if there is a deficit in the irrigation water, the crops can still 

survive to a certain extent.  

The study also uses a water productivity model from Food and Agriculture Organization (FAO) called 

Aquacrop to simulate for the potential benefits of both rain-fed and supplemental irrigation system in 

terms of crop yields. These benefits are used to make a comparison with the costs for the supplemental 

irrigation scheme so as to establish a cost-benefit analysis. The model is simulated using data from a 

study area in one of the Eastern districts of Uganda called Soroti.  

Furthermore the study examines the economic feasibility of the proposed supplemental irrigation 

scheme by comparing costs and benefits for the different water harvesting pond capacities along with 
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different water lifting/application techniques. The system is more economical, easily adopted, and 

requires locally available means to implement either on large or small scale farming. The study also 

gives a detailed account on the collection, storage and application of surface runoff during the wet days 

for supplemental irrigation during the dry periods to increase agricultural production in the region.  

Regarding the content description, the research study is made up of 6 chapters of which they present a 

detailed investigation of the potential of rainwater harvesting for irrigation under rain-fed agricultural 

zones. Chapter one consists of the introductory part about the global water shortage problem, Africa’s 

future water crisis, regional food insecurity and agricultural water shortage, it also includes the 

statement of the problem, research goal, aim and the objectives of the study in addition to the research 

questions under investigation.  

Chapter two is devoted to literature review and a background overview on rainwater harvesting for 

irrigation, important related terminologies, forms and types of rainwater harvesting and their application 

in the agricultural industry. Chapter 3 gives a detailed description of FAO’s water productivity model-

Aquacrop. The model is used to simulate maize crop production under the function of water 

consumption for rain-fed and supplemental irrigation. Due the fact that supplemental irrigation is 

designed without a standard irrigation schedule, irrigation water is only applied if the soil moisture level 

reduces to a certain extent that could have a negative impact on the growth of the crops.  

This level can be different for different crops since there are plants which are water sensitive like rice 

and maize and other plants which can still thrive under low soil moisture for some good time like 

sorghum and millet for the case of cereals. The simulation model is well elaborated under of this study 

giving a detailed account of its performance and input parameters. The chapter also introduces a cost 

benefit analysis framework of the proposed supplemental irrigation scheme, and formulations used in 

the cost benefit analysis. 

Chapter 4 gives an account of the proposed supplemental irrigation strategy. It identifies some 

commonly applied surface runoff harvesting techniques in Uganda, pros and cons of using excavated 

water harvesting ponds and a detailed framework of the proposed water shortage mitigation scheme. 

Chapter 5 focuses on the details of the study area in the Eastern part of Uganda called Soroti, data 

collection and analysis. This chapter gives the scope of the study area’s physical environment, climate, 

field study, soil sampling and laboratory analysis. It further presents the results from the model 

simulation, cost benefit analysis and discussion of the results. Lastly but not the least, Chapter 6 

presents the conclusion and the recommendations from the study. 
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Chapter 2. Background and Literature Review 

2.1: Terminologies  
 
Since the study deals with irrigation practices, it’s of a greater importance to first familiarize with the 

most commonly used terminologies related to irrigation. 

Evapotranspiration  

This is total amount of water lost into the atmospheres through two combined processes i.e. 

evaporation which is water lost from both the soil and water surfaces and transpiration which is the 

amount of water lost from the plant canopy more especially the leaves (Dusabimana, 2012). 

 

Crop water requirements (CWR) 

This is defined as the amount of water required to compensate the evapotranspiration loss from the 

cropped field (Dusabimana, 2012) 

 

Crop Water Need (ET crop)  

This is the amount of water that is availed to the crop to fully compensate for the crop’s 

evapotranspiration needs to reach an optimal growth and result into the crop’s potential production. It’s 

always referred to as a crop growing in a stress free zone i.e. no water stress, no heat stress, no 

disease infection, active growth and favorable soil conditions (Brouwer & Heibloem, 1986). 

 

Irrigation Water Requirements (IRW) 

This is the extra amount of water supplied through irrigation required to fulfill the crop water 

requirements for a particular crop supplementing the natural rainfall in a rain-fed agricultural system. 

FAO describes IRW as the water difference between the CWR and the effective precipitation.IWR is 

equal to zero when there is enough rainfall and the amount of rainfall is enough to satisfy the crop water 

requirements resulting in optimum growth of the crop. IWR can also be equal to the crop water 

requirements if there is no rainfall at all, meaning all the water needed by the crop should be supplied 

by irrigation (Brouwer & Heibloem, 1986). 

 

Reference Evapotranspiration (ETo)  

 This is the generic term referring to the potential of the atmosphere for evapotranspiration. It refers to 

the evapotranspiration of a short green grass, and the grass should completely cover and shade the 

ground surface. It should have a uniform height and the level of soil moisture in the root zone should be 
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enough to supply all the crop water needs. There are different methods to estimate the ETo, the 

following are the main methods to calculate it (Brouwer & Heibloem, 1986).  

 

 FAO Penman-Monteith equation – In 1990 FAO took its stance in deciding the most standard 

and recommended method to calculate ETo from any area around the world and this is the 

Penman-Monteith Equation that was originally developed by Penman in 1948. The equation 

has been so far revised by different researchers for an easier application to different localities. 

Penman-Monteith method requires different climatic parameters for the meteorological centers 

to compute into the equation; among the parameters required are the sunshine or radiation 

data, air humidity, air temperature, vapor pressure and the wind speed data. The equation can 

be expressed as (Allen, Pereira, Raes, & Smith, 1998); 

Penman- Monteith Equation 

                        (1) 

Where 

ETo = reference evapotranspiration [mm day
-1

], 

Rn = net radiation at the crop surface [MJ m
-2

 day
-1

], 

G = soil heat flux density [MJ m
-2

 day
-1

], 

T = air temperature at 2 m height [°C], 

u2 = wind speed at 2 m height [m s
-1

], 

es = saturation vapor pressure [kPa], 

ea = actual vapor pressure [kPa], 

es = ea - saturation vapor pressure deficit [kPa], 

∆ = slope vapour pressure curve [kPa °C
-1

], 

γ = psychrometric constant [kPa °C
-1

]. 

 

 The Blaney – Criddle Method – this is also a theoretical method that only uses the 

temperature data to estimate ETo. It’s a simple method that is more recommended to be used 

in areas with high relative humidity, non windy and cloudy conditions. In most cases, the Blaney 

- Criddle method is not recommended to be applied in desert conditions. 
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The Blaney – Criddel equation is expressed as; 

   ETo = p (0.46 T mean +8)                                              (2) 

Where 

ETo = Reference Evapotranspiration 

p = Mean daily percentage of annual daytime hours 

T mean = mean daily temperature (°C) 

 

The value of p varies according to the latitude of the area (south or north of the Equator). 

Different p values are given by FAO in their training manual number no. 3 (Brouwer & 

Heibloem, 1986). This is the method which is used to calculate the ETo values in this research 

due to the unavailability of the climatic parameters from the meteorological center which are 

required by the more accurate method of Penman.  

 

 Pan Evaporation method – This method uses an evaporative pan filled with water in open 

surfaces to measure the rate of evaporation in that particular area. Pan evaporation is not 

recommended to be used with ETo calculations on an hourly basis rather from 10 days and 

more. The amount of water lost from pan corresponds to the evaporative water demands of the 

area. The evaporation method integrates almost all the climatic parameters like wind, radiation, 

air humidity and air temperature (Allen, Pereira, Raes, & Smith, 1998).   

                                     Pan Evaporation Equation                         

   ETo = Kp Epan                                                                       (3)  

   Where 

   ETo = reference evapotranspiration [mm/day], 

   Kp = pan coefficient [-], 

   Epan = pan evaporation [mm/day] 

 

Pan coefficients (Kp) vary according to the type, size, color, shape and the positioning of the 

pan. FAO provides different Kp for different grass surfaces and varying climatic conditions 

(Allen, Pereira, Raes, & Smith, 1998). 

The method has a few constraints. For example the pans can store heat during the day that 

may lead to loss of water during the night at a certain extent. This contradicts with the fact that 

crops only transpires during day however still the method is considered valid for ETo 
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calculations. Also there is a possibility of water reflection on the sides of the pan during the hot 

days and this may alter the accuracy of the results (Allen, Pereira, Raes, & Smith, 1998).  

 

Crop evapotranspiration under Standard conditions (ETc)  

Crop evapotranspiration is defined as the evapotranspiration from disease free, viable, well fertilized 

crops, grown on a large scale with optimum soil water conditions which enables full production potential 

of the crop under the given climatic conditions. ETc can be expressed as; 

 

 ETc = Kc ETo                                                                                                 (4) 

 Where 

 ETc = crop evapotranspiration [mm d
-1

], 

 Kc = crop coefficient [dimensionless], 

 ETo = reference crop evapotranspiration [mm d
-1

]. 

 

Crop Coefficient (Kc) 

The Crop coefficient Kc is basically the ratio between crop evapotranspiration (ETc) to the reference 

evapotranspiration (ETo). Kc varies from crop to crop and it also varies at different stages of every crop. 

It represents an integration of the effects of four main factors that distinguish a crop from a reference 

crop. These are crop height, canopy resistance to vapor transfer, evaporation from the soil and the 

reflectance of the crop soil surface (Albedo) (Allen, Pereira, Raes, & Smith, 1998). 

2.2: Rainwater harvesting (RWH) 
 

The idea of water harvesting which is generally referred to as rainwater harvesting has been under 

existence for thousands of years back.  (Helmreich & Horn, 2009) (AbdelKhaleq & Ahmed, 2007). RWH 

is believed to have been first practiced in some areas of Iraq 5000years ago in the so called ‘’Fertile 

Crescent’’ (Falkenmark, Fox, Persson, & Rockstrom, 2001).For so many years ago, water harvesting 

was used more frequently than rainwater harvesting, however, to so many authors, it has been defined 

interchangeably with rainwater harvesting  (Critchley & Siegert, 1991) (Siegert, 1993) (Boers & Ben-

Asher, 1982) (Falkenmark, Fox, Persson, & Rockstrom, 2001).  

The term water harvesting was first defined by Geddes in the University of Sydney back in 1963 as ‘’the 

collection and storage of any farm water either runoff or creek flow for irrigation use’’. It was also 

defined by Currier in 1973 as ‘’the process of collecting natural precipitation from prepared watersheds 

for beneficial use’’. The same term water harvesting was defined by Frazier (1983) in his handbook as 

‘’the collection and storage of water from an area that has been treated to increase precipitation runoff’’ 

(Ramamohan Reddy, Venkateswara , & Sarala, 2014). FAO defines water harvesting in its broad sense 

as the collection of runoff for its productive use. Whereas rainwater harvesting is a type of water 
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harvesting in the form of rainwater and its runoff that is collected and concentrated for both domestic 

and agricultural use. Runoff may come from either roofs or ground surfaces (Critchley & Siegert, 1991).  

Another relatively similar term is flood water harvesting which is the collection of discharges from 

watercourses like streams, rivers etc. for dam storages. Although in the past the practice of water 

harvesting was tailored and primarily designed for domestic purposes, scientists in Sub-Saharan Africa, 

MENA region and South East Asia have made efforts to transform and modify the practice to suit 

agricultural applications. So many techniques have been developed with a basis of the indigenous 

knowledge to collect and store rainwater for supplemental irrigation during the dry spells (Oweis, 

Hachum, & Bruggeman, 2004) (Humphreys & Bayot, 2009) (Biazin , Sterk, & Temes, 2012). 

Rainwater harvesting is currently the best practice to mitigate the escalating issue of water scarcity in 

the tropical developing nations, for both domestic water use and agricultural production during the dry 

spell ( Baguma & Loiskandl, 2010). During the previous centuries, it was merely thought of as just a 

strategy to complement domestic water usage during the dry spells. However, it’s now re-thought as a 

strategy to increase water supply for both domestic and agricultural uses in drought prone countries 

(Boers & Asher, 1982).  

In an attempt to increase water supply for domestic use at household level, governments and other 

international organizations strongly suggest that poverty reduction measures should be conducted or 

implemented alongside with water shortage mitigation plans. Far beyond the household level, water 

harvesting helps to sustain the ecological system that in the long run brings about production in all 

aspects of humanity (UNDP, 2006).  

This practice has previously been applied in the arid and semi-arid regions to mitigate drought 

problems. However it has also been adopted in humid and semi-humid regions (Sivanappan, 2006). 

Very simple technology has been put into use for both catchment and storage processes. Catchments 

processes may include rooftops, compounds, artificially prepared land surfaces, natural rock surfaces 

or hill slopes and lined pits. Whereas Natural or artificial ponds, reservoirs and dams for the latter 

process (Helmreich & Horn, 2009). 

 

Figure ‎2.1 illustrates the different components of rainfall event (R) after falling on the earth’s surface. 

Soil evaporation (Es) ranges between thirty to fifty percent of the total rainfall (R). Es can even be more 

than 50% in semiarid regions in case crops are planted in a sparse pattern (Rockstrom, 1997). Sparsely 

plated crops experience a high solar radiation, very high temperatures and stronger winds which may 

all bring about a greater turbulence and low production. (Falkenmark, Fox, Persson, & Rockstrom, 

2001). 
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Rainfall Partitioning 

 

Figure ‎2.1 Rainfall Partitioning into flow components in Rain fed Agricultural Areas  

The different partitioning illustrates Rainfall as it falls on the soil surface R represents Rainfall, Ec 

represents Plant transpiration, Es for Soil Evaporation, Roff for Surface runoff and D represents Deep 

percolation. Surface runoff is estimated to be 10 – 25 % and Deep percolation 10 – 30 % of the total 

rainfall (Casenave & Valentin, 1992). 

2.2:1: Major forms of Rainwater Harvesting (RWH) 

 
1. Agricultural Rainwater Harvesting 

Agricultural water harvesting is a practice where water is collected and stored mainly for agricultural 

purposes including livestock and irrigation. It may be divided into; 

 In situ RWH: this is the practice of collecting rainwater immediately in that particular area where 

waterfalls and it infiltrates in the sub-surface soil layers (root zone) so as to be available for 

plant roots.  

 External water harvesting: this system has two particular components i.e.  a collection area and 

a storage facility. Where runoff from a faraway area flows to near-by low lying areas where it 

can be tapped and stored for future use. 

 

2. Domestic RWH (DRHW) is a system where water is collected for home use. It can be collected 

from rooftops using gutters, courtyards, and other flat surfaces around home enclosures.  
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2.3: Concept for Runoff Harvesting 
 

Runoff Harvesting aims at mitigating the effects of dry spells in mostly rain-fed agricultural zones to 

increase production as well as the water use efficiency (WUE) of the plants. However from the farmers’ 

point of view, water harvesting is just a potential tool to stabilize the availability of water to the crops for 

a certain period of time. As illustrated from Figure ‎2.2, runoff harvesting is composed of 3 components 

i.e. the catchment area, storage and the cultivable area (Falkenmark, Fox, Persson, & Rockstrom, 

2001). 

Basic Concept of Runoff Harvesting 

 

Figure ‎2.2 The Basic Principle of Rainwater harvesting for Agriculture  

The runoff scale from the catchment area could be of different types. For example, the sheet flow or the 

fields flow where excess runoff flows over an area in a form of a small sheet covering the land surface. 

It’s mainly caused by heavy downpour or storms. The most common storage medium for sheet flow is 

the surface storage medium e.g. hedge rows, contours or stone bunds. These allow for instant or 

maximized infiltration of water into the soil however they are not suitable for mitigating drought effects 

since water can only be collected for a shorter period like minutes or hours and then it infiltrates into the 

soil.  
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The rill flow on the other hand does not cover the whole land surface, its only limited to some parts of 

the catchment. Rill flow can be of smaller sized channels over the land’s surface (micro rills) or of 

enlarged channels (gullies). These rills guide runoff into low lying areas or to water storage medium if 

artificially established. Rills and gullies mostly guide water into sub-surface storage or low lying areas of 

the cultivable land such as dam reservoirs, surface ponds etc.. They help in mitigation of drought and 

dry spells since water can be collected for longer periods (Falkenmark, Fox, Persson, & Rockstrom, 

2001) 

2.4: Water harvesting systems and techniques 
 

Due to variability in rainfall patterns and distribution in rain-fed agricultural zones, different water 

harvesting techniques have been developed to help cope up with the changing growing seasons of 

crops. Figure  2.3 gives an account of the water harvesting systems and techniques used in relation to 

their water sources and storage time span. 

2.4:1: Water collection systems 
 Within field RWH – This is the immediate collection of rain as it falls on that particular surface. 

Through various formations such as pits, contour bands, barriers and others. Water stagnates, 

infiltrates and percolates to the sub-surface soil layers where it becomes accessible to be taken 

up by the plant roots. 

 Flood/Gully WH – This system comprises of different shapes of gullies that are used to collect 

or divert floods and runoff flow directly into a near-by field through bunds and terraces for a 

shorter storage period. It can also be stored in a storage facility and used in the near future 

during periods of water scarcity for long term usage.  

 Rill/Sheet flow WH – In this system, the runoff collected from a smaller slope compared to the 

gully flooding. The difference between Flood/Gully and Rill/Sheet flow WH is that the Rill/Sheet 

flow slope is gentler and the catchment area is smaller.  

 Ground WH – Pumping water from underground and at the same time storing it in 

underground reservoirs eliminates the possible losses of water through evaporation and it 

contributes to its quality most especially if the aquifers are not located in contaminated zones.  

Roof RWH – Roof Rainwater Harvesting is the most common system of rainwater harvesting all 

over the continent. Its easily applied and requires no special skills to be installed. This system is 

feasible in areas with physical structures like households and farm buildings where the harvested 

water is just enough to cater for the basic water needs at home or for backyard gardening. Gutters 

are installed around the roof of the house and connected to drain pipes that eventually drain water 

to a constructed tank besides or near the house (Falkenmark, Fox, Persson, & Rockstrom, 2001) 
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Water harvesting techniques in Sub-Saharan Africa 

 

Figure ‎2.3 Different water Harvsting techniques classified according to their water source and the 

storage time span. (Fox, 2001) 

2.4:2: Water Storage systems 
 Micro-dams, earth dams, farm ponds. These facilities are commonly used to store water on a 

small-scale. The structures are not very sophisticated ranging from micro concrete-dams to 

simple earthen dams. 

  Macro-dams, Sub-surface dams, sand dams or check dams. These are a bit more 

improved facilities where water is collected and stored underground. Water is trapped with a 

strong concrete or clay walls and then stored for longer periods to be used in periods of 

scarcity. 

 Tanks. These can be made of different materials like cement, plastics and clay. They can be 

fixed below the soil surface or raised above the ground depending on the available space.  
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2.5: Rainwater harvesting and management (RWHM)  
 

This phenomenon encompasses the whole package of the water harvesting system including 

collection, storage and utilization (Ngigi, Savenije, Rockstrom, & Gachene , 2005). The practices 

which are applied in Sub-Saharan Africa include traditional practices for maximizing water 

penetration into the plant root zones hence enhancing water availability for the crops. Water 

conservation within the soil can be achieved through micro-systems however long-term water 

storage for dry spell mitigation is mainly achieved using the macro-system and also other 

techniques for improving water use efficiency for the crops on the farm. 

2.5:1: Micro-catchment systems  
Rainwater harvesting using the micro-catchment systems are designed and tailored to collect surface 

runoff for a short-term period.  Most of the micro catchment systems cannot cope with the dry spells 

that would last for several days, however such practices tend to minimize crop losses in case of short 

droughts. This is true because micro techniques are in most cases are designed to collect and store 

water for a very short period of time. They are mostly used to reduce soil erosion and maximize water 

infiltration. The water is collected from a relatively small catchment area of not more than 500m
2 

on the 

farm enclosures. The runoff from the catchment area is guided by structural enhancements which 

increases the rate of infiltration of water into the root zone as illustrated in Figure  2.4. (Biazin , Sterk, & 

Temes, 2012).  

Micro Harvesting system 

 

 

Figure ‎2.4  Typical designation of the micro-catchment rainwater harvesting systems. 
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The micro-catchment systems are often the most adopted systems due to the fact that they are easily 

controlled and can be easily replicated. The ratio of the catchment area to the irrigated target area can 

vary between 2:1 to 10:1 (FAO, 1991). The commonly applied techniques for micro-catchments in Sub-

Saharan Africa are summarized in Table  2.1. 

Most of the applied techniques in the different parts of Sub-Saharan Africa may have different local 

names but actually have minor differences with respect to their design and purpose. For instance the 

Pitting system which has been commonly practiced in West Africa for the last decades in particular 

Burkina Faso, Mali and also in the Ethiopian highlands in East Africa. They have been called different 

names like the zai or tassa pits in West Africa, ngoro pits in East Africa, however they all serve the 

same purpose. 

 Table ‎2.1 Micro-catchment rainwater harvesting in sub-Saharan Africa (Biazin , Sterk, & Temes, 
2012) 

Type of the Micro-

catchment systems 

Description Regions where 

applied 

Pitting  

(Zai pits, Ngoro pits, 

trenches, tassa pits, 

etc.) 

 

Zai pits: Commonly found in agricultural 

areas with rocky surfaces and sometimes the 

pits are supplemented with manure before 

planting.  

Ngoro pits: These are more like shallow 

traditional pits where crops are grown on the 

ridges of the pits. 

Trenches: These are mainly applied on hilly 

areas or slopes in mostly an alternate pattern 

to facilitate water infiltration and reduce 

surface run-off.  

West African countries 

mainly Burkina 

Faso, Mali, Niger. 

 

East Africa mostly 

Tanzania, 

Kenya, Somalia, 

Uganda, Ethiopia. 

South Africa 

 

Contours Stone and soil bunds: Piles of stones or soil 

can be stack at different points in an 

agricultural plot just to interfere with the 

surface run-off from the up hills. The piles or 

bunds can be associated with perennial 

grasses or herbs for ensuring a strong 

fixation in that particular place. 

Hedge rows: Grasses, shrubs or herbs are 

used as natural barriers on contours to 

counteract surface runoff and aid infiltration of 

water into the soil.  

Common in East Africa 

i.e. Kenya, 

Ethiopia, Tanzania and 

South Africa 
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Terracing  

 

Terraces can be formed of different shapes 

and sizes; they can be semi-circular or 

continuous and can also be established along 

flat plains or hilly slopes. However what 

makes the Fanya Juu terraces different from 

other terraces, is that their embankments are 

put in the upslope position 

 

Typical of East Africa in 

Kenya and Tanzania in 

addition to 

Ethiopia 

Micro-basins  Micro-basins are short-term water storage 

systems aimed at improving water infiltration 

to the root zones of plants, they are 

commonly practiced on relatively flat plains. 

They are constructed in varying shapes like 

diamond shapes, Halfmoons and eye brows.  

Typical in East Africa 

i.e. Ethiopia, 

Kenya, Tanzania and 

Uganda. 

 

West Africa mostly in 

Burkina 

Faso, Mali and Niger. 

 

 These pits are more likely the same but with different names For example the Zai pits in Burkina Faso 

which are dug 60 by 60 cm apart and a maximum of 4 seeds of sorghum sown on each pit (Slingerland 

& Stork, 2000). Another similar system called the Tassa pitting is more practiced in the dry deserts of 

Niger where holes are made with an average size of 25cm by 25cm in depth and diameter. They are 

dug with 100cm between holes just to act as pockets for rainwater for an improved infiltration (Kaboré & 

Reij, 2004).  The Ngoro pitting system is applied more in the steep areas of Tanzania to trap more 

water and increase soil moisture in the root zone (Malley, Kayombo, Willcocks, & Mtakwa, 2004). 

Contours and Terraces made of stones and soil bunds are widely spread in East Africa in countries like 

Tanzania, Uganda and Kenya in addition to the small micro-basins of different shapes and sizes 

(Abdulkadir & Schultz, 2005) (Spaan, 2003).  

2.5:2: Macro-catchment systems  
In this kind of system, water is mainly collected from external areas which can extend to 2 ha or in 

some cases catchment areas as large as 50km
2
. Macro-catchment systems are composed of 4 

essential parts i.e. the water catchment area, water storage structure, a target irrigation area and a 

supplemental irrigation system as shown in Figure  2.5. The harvested water may either be used for 

supplemental irrigation in crop lands or for domestic consumption (Biazin , Sterk, & Temes, 2012).  

Variations in system designs are often most especially with respect to size ratio of the catchment area 

and the cultivated target area. Runoff is collected on natural slopes or sometimes on paved surfaces 
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that facilitate and guide the running water to the storage facility. The system of upslope runoff has 

proved to be successful in so many parts of Botswana (Carter & Miller, 1991).  

Among the mostly applied macro-catchment techniques in Sub-Saharan Africa (SSA) include micro-

dams, sand dams, open pond reservoirs, cisterns etc. All these techniques are not completely new 

inventions but they are either traditional practices or modified indigenous practices.  

Macro harvesting system 

 

 

Figure ‎2.5 A typical designation of the macro-catchment rainwater harvesting systems. 

Localized techniques with a somehow similar design but with few modifications and different names in 

different parts of the continent serving different purposes have been developed as shown in Table  2.2. 

For example the birkas (runoff-underground tanks) and the hafir (low earth dams) which are used in 

Eastern Ethiopia and the ellas (deep wells) in the Borena area of Ethiopia which are primarily used for 

domestic purposes and livestock. The caag system practiced in the Hiraan region of Somalia has 

proved to be efficient in areas with overland flow (Biazin , Sterk, & Temes, 2012). 

Traditional open water ponds are commonly used in Sub-Saharan Africa due to their low cost of 

establishment and their ease of implementation. However the system does not last for too long most 

especially after the rainy seasons due to the impact of seepage and evaporation. Seepage is the most 

serious problem commonly experienced in the earthen reservoirs where water losses can reach up to 

69% of the harvested water (Fox & Rockstrom, 2003). 
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Another serious challenge related to open water ponds is the breeding of mosquitoes since the 

exposed water surface acts as a breeding place for the deadly malaria spreading mosquitoes. In 

contrast to the traditional open water ponds and their related challenges, there has been a new 

development in the region which has overcome all these challenges to a greater extent, the cistern 

system. Cisterns are artificial water reservoirs; especially underground water tanks which are covered 

to reduce evaporation and mosquito ovi-positioning.  

The most essential requirements/materials for the establishment of cisterns is cement which does not 

seem to be financially feasible for the local poor farmers in Sub-Saharan Africa. Therefore, they’re not 

easily adopted and not widely spread across the continent. However these costs can be reduced to a 

greater extent by using the locally available materials in the construction of cisterns. For example in 

Ethiopia, termite-mound earth has been utilized to develop cisterns at a low cost (Mills, 2004).  

Additionally through its initiatives, the Ethiopian government has gone an extra mile to construct more 

than 340,000 cisterns in the main four administrative regions of Amhara, Oromia, Southern Region and 

Tigray in just a single year between 2003 and 2004 (Bekele, Kebede, Taddese, & Peden, 2006). 

In Tanzania, rural farmers make use of dugout ponds created as a result of soil excavation along road 

sides which are under construction where rainwater is collected, stored and they are used for domestic 

use, vegetable production or livestock. 

Table ‎2.2 Macro-catchment rainwater harvesting (Biazin , Sterk, & Temes, 2012) 

 Macro-catchment 

Systems 

Description Storage capacity 

(m
3
) 

Countries of 

wider application 

Traditional open 

ponds 

 

 

Surface runoff from 

hilly areas, road ways, 

pathways, or even 

cattle tracks is 

collected into earthen 

open ponds; however, 

the system 

experiences high 

levels of evaporation 

and seepage losses.   

30–50 East African region -  

Kenya, Ethiopia, 

Tanzania, Somalia 

Cisterns  

 

Surface runoff from 

any external area 

either cultivated or 

30–200 East African Nations: 

Kenya, 

Ethiopia, Tanzania, 
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non-cultivated sloppy 

area is directed to 

underground storage 

facilities which have 

cemented walls and 

closed surfaces. Prior 

to the entry point of 

the water to the tank 

is a settling basin for 

sedimentation 

Uganda. 

 

South Africa 

(Zimbabwe, 

Botswana) 

Earthen dams 

(micro-dams) 

 

Earthen dams are 

similar to open 

traditional ponds 

because they are 

neither cemented nor 

covered but the 

difference is that most 

of these dams are 

communally 

established and are 

quite bigger in size. 

The system is more 

commonly applied in 

Tanzania and 

Ethiopia.  

30 – 100 East Africa – 

Tanzania and 

Ethiopia.  

 

Southern Africa -  

Botswana 

 

West Africa -  Burkina 

Faso 

Sand dams Stronger dams with 

strong concrete walls 

are constructed to 

store naturally flowing 

water from streams 

and seasonal rivers. 

Sand settles a few 

meters away from the 

water storage facility. 

>200 East Africa  - Kenya 

and 

Ethiopia 

Ephemeral stream 

diversions and 

spate irrigation 

These diversions are 

aimed at securing 

water for irrigation of 

 East Africa – 

Tanzania 

, Eritrea and Ethiopia, 
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the near-by farms 

using the flooding 

system prior the 

planting time. 

 

 

Another common technique is applied in Sub-Saharan Africa is known as the spate irrigation. Heavy 

floods flowing for a short duration can be diverted and spread all over the crop field. It’s an indigenous 

practice which has gained a lot of recognition in so many countries most especially in Sudan, Kenya, 

Eritrea, Ethiopia, and Somalia (Tesfai & Stroosnijder, 2001)  

All of the macro-systems mentioned in Table  2.2 can be used to store water for a longer period than the 

micro catchment systems. These techniques can store water long enough to be used for mitigation of 

dry spells and droughts. Traditional open ponds and earthen dams are capable of storing enough water 

for supplemental irrigation if managed and designed in a sustainable manner. They could be of different 

sizes and shapes, established at the lowest point of the farm for maximizing runoff collection. Such 

structures are easily implemented through community efforts and family labor mostly because of their 

low costs of production compared to the other systems.  

However the biggest challenge posed by these structures is the great deal of water losses through 

seepage and evaporation which reduces their efficiency. The cisterns and sand dams are quite bigger 

and expensive structures which can collect any amount of runoff depending on the size and location of 

the facility. They consist of strong cement walls which prevent water from seepage and evaporation to a 

certain extent if covered on the top surface. They are commonly developed by local or governmental 

authorities but not on individual basis.  
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Chapter 3. Water shortage Mitigation Scheme 
 

3.1: Common Water Harvesting Techniques in Uganda 
 

Ambiguous weather patterns brought about by the impacts of climate change have been 

responsible for the untimely planting patterns of crops due to the fact that rains are becoming 

erratic and unpredictable in so many agricultural areas in Uganda. For this reason, Ugandan 

farmers who are completely depending on rainfall for agriculture are finding it very difficult to 

produce their crops in the absence of rains during the periods when it is expected.  Rains are 

torrential and making matters worse, they are unevenly distributed around the agricultural zones. 

For this matter therefore farmers have resorted to rainwater harvesting systems using ponds to 

store water and use it in dry spell periods. 

In Figure  3.1, there are 3 different water harvesting technologies. Tank 1 represents the mostly 

practiced water harvesting system for home consumption or domestic usage.  This system uses 

plastic tanks of different sizes raised off the ground and connected to the gutter system which is 

established all around the house roof to collect water and store it in the tank. Such tanks have a 

volume between 1 – 3 m
3 

of water storage. This practice is relatively cheaper compared to other 

systems however it requires a bigger roof surface area and can only be used at home not in the 

agricultural field.  

Tank 2 is an underground concrete tank which is mostly used for collecting surface runoff for 

irrigation of crops and watering of animals. It can be constructed with different capacities and 

shapes but it requires a higher capital investment to construct the tank which might not be 

afforded by most of the Ugandan farmers. The volume ranges from 3 – 5 m
3
. Farmers can only 

opt for such a system if they have access to agricultural bank loans or if the government has put 

up programs to develop such establishments but at a lower or subsidized cost.  

For the case of Tank 3, it’s a round concrete underground tank which could be used for two 

purposes i.e. collecting water for domestic or home consumption in addition to water for 

horticultural crops and livestock. This system is characterized with a bigger pond volume of more 

than 5,000 m
3
 of water since it’s a multipurpose system. It’s also very expensive to construct by 

an average farmer in Uganda. Unless farmers can borrow money from the banks or community 

financial groups to develop the system with hopes to increase their agricultural production in 

terms of yields to pay back the loans in the negotiated period. Even though it’s quite an expensive 

system, its economic value is greater since it’s a multi-purpose system with a higher durability.   
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3.1:1: Plastic and concrete water storage medium  
 

 

Figure ‎3.1 Different water harvesting technologies (FAO T. , 2012) 

3.1:2: Earthen Pond water storage 
Since this study proposes a supplemental irrigation scheme using an excavated water pond, it’s 

of a greater significance to familiarize with the different pond storage medium.  Water ponds or 

sometimes called pans are simple excavations for storing surface runoff dug out in open areas. 

These ponds have an average depth of about 2 - 3m while their area are dictated by the size of 

the catchment area and the required amount of water to be collected for a certain period of time. 

These two terms (pond and pan) are most times used interchangeably. Ponds are in most cases 

established in areas where there is a high water table to assist in refilling of water in periods of 

low rainfall where as pans refer to reservoirs that can only be filled with surface runoff.   

Ponds are developed in a way that they can receive water from different surfaces such as 

cultivated areas, sidewalks, hillsides, open grasslands, roads and any other water guiding 

surface.  The storage capacity of ponds varies from 500 – 5,000m
3
 of water. Ponds or pans are 

usually constructed on gentle slopes of less than 2% or 1:50. At such a slow slope, erosion 

effects are very minimal and the construction process is easier because water will have to run 

from a steeper area to the lowest point making site selection to be easily determined (Mati, 2015).  

The catchment area should be gently sloping to allow for a mild flow of surface runoff till it 

reaches the pond site. Also the catchment area should be of a relative size to the excavated pond 

in that it should not be that big to have excessive runoff or over storage leading to flooding. It 

should also not be of a plain rocky surface i.e. it should be of considerable grassland or 

composed of bushes enough to trap most of the silt and other unwanted trash.  
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3.1:3: Pros and Cons of an excavated water pond 
Excavated water ponds have been used for quite a long time in different agricultural regions. 

However they have some advantages and disadvantages. Amongst the greatest benefits of water 

ponds over other water storage facilities is that it can store relatively large quantities of water. 

Ponds can collect water for multi uses such as crop irrigation, drinking water for animals and also 

some domestic uses if constructed near the homestead. Their structure very simple and precise 

and can be fitted anywhere on the farm provided it can collect the required amount of surface 

runoff. They can also be easily maintained due to the fact it requires only periodical removal of silt 

which requires no skilled labor (Mati, 2015).  

On the other hand, huge excavated ponds have some disadvantages and among them are: 

Ponds can have a negative impact on the environment and the soil physical structure which may 

lead to catastrophic effects like landslides and earthquakes. Large ponds can be a sole cause of 

malaria outbreak in the surrounding areas as they can be breeding areas for mosquitoes. 

Collected runoff may be contaminated and polluted from wide catchment areas. Their durability is 

smaller compared to other structures like concrete sub-surface dams. These structures also 

register greater losses through seepage and evaporation if not taken care of. Deposition of silt in 

the pond and Low capacity compared to valley dams (Mati, 2015). 

3.1:4: Different types of Earthen water ponds 
1. Water Pans  

These are small water reservoirs which are mainly excavated in open grounds for both crops and 

livestock watering. Pans can be made of different shapes such as square shape, rectangular 

shape or moon shaped (hemispherical), as shown in Figure  3.2. Pans are most preferred in 

catchments where there is no farm cultivation in that the ground areas are just open grass lands, 

hill slopes, pathways or main roads. These facilitate undisrupted flow of surface run off into the 

reservoir.  

The main draw backs for pans are their high rates of siltation, low storage capacity, evaporation 

losses and seepage losses. They are mostly established in semi to arid areas where animals 

have few or no water streams to drink from.   
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Figure ‎3.2 Excavated water Pans 

2. Water Ponds 

Just like pans, ponds are also excavated water reservoirs of a considerable size in comparison to 

the catchment area and the required water to be collected. The maximum depth of ponds is 3m 

although most of the excavated ponds for water harvesting are of 2m depth. The storage capacity 

of a water harvesting pond can range from 100 – 5,000m
3
 of collected water. The water storage 

facilities with capacity less than 500 m
3 
of water are referred to as tanks where as the ones with a 

capacity of more than 5,000m
3
 are referred to as dams (Mati, 2015).  

Water ponds are mainly used for supplemental irrigation of crops, some few for animal watering 

in addition to other domestic uses. They are in most cases established in areas with a high water 

table to facilitate pond recharge in cases of low rainfall amounts. However this does not work well 

in arid areas because the water table is very low, meaning pond recharge by the underground 

water table is minimal; water is only harvested from surface runoff too just like the water pans. 

Figure  3.3 shows typical water harvesting ponds. 9(a) and 9(b) represent the earthen ponds while 

9(c) and 9(d) are lined ponds with plastic pond covers. 
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. 

Figure ‎3.3 Different Water harvesting ponds 

3.2: Supplemental Irrigation (SI) 
 

In many of the rain-fed agricultural zones, low crop yields are attributed due to low soil moisture, 

inappropriate management of soil and other field practices.  Shortage of soil moisture due to short 

droughts and dry spells especially during the critical crop growth stages (flowering and grain filling 

or formation) can lead to severe losses of crop harvests. Such challenges can be mitigated 

through the application of supplemental Irrigation as a strategy to minimize or reduce crop 

failures. Supplemental irrigation is the application of limited amounts of water during critical crop 

growth stages to essentially rain-fed crops to improve and stabilize yields by maintaining a 

minimum amount of soil moisture in the root zone. (Oweis & Hachum, 2012). 

Contrary to a full irrigation system, a supplemental irrigation system cannot be easily planned in 

advance since it relies on the variability in rainfall events. There are three fundamental aspects 

that are considered to design a supplemental irrigation system: 
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 Rainfall being the main source of water for rain-fed agriculture, supplemental irrigation is 

meant to be applied only when there is a shortage in soil moisture that can induce a 

negative effect on crop production leading to an unstable production.   

 Supplemental irrigation is supplied to crops that are normally produced with rain-fed 

system and they can do without any irrigation to produce significant yields. 

 The planning of a supplemental irrigation system is not essentially based on provision of 

a moisture stress-free condition into the soil. But rather, it is planned in a way that, the 

timing and amount of irrigation water is optimally scheduled to provide the minimum soil 

moisture required to give an optimal yield (Oweis & Hachum, 2012). 

3.2:1: Schedule of supplemental irrigation 
Time-plan of application: Supplemental irrigation does not require a fixed schedule or standard 

fixed plan as it is with a full irrigation system. It is very difficult to accurately plan the timing and 

amount of water to be applied in advance for this system since it is dependent on rainfall. The fact 

being that rainfall is becoming more erratic and unevenly distributed. This variability in rainfall 

patterns due to the effects of climate change creates a greater challenge to a local, uneducated 

farmer to figure out when is the right time to apply irrigation. Rural farmers lack technical 

knowledge of how to estimate low soil moisture in the root zone unless they rely on their 

experience. Of course there exits standard equipment and tools to measure soil moisture levels 

such as the tensiometers, however such tools are quite expensive to purchase and require skilled 

personnel to operate or conduct the tests. 

Other instruments which could be used are either very advanced or so complex for a farmer to 

use. This leaves no choice for a farmer to measure soil moisture except relying on his/her 

experience for example observing a change in the crop vegetation like drying of the leaves, 

feeling of the soil dryness in the palm and /or observing a longer period without rainfall. Such 

practices may lead to excessive application of irrigation water and also poor management of the 

water during its critical need and plant stress. 

Depth of water application: Depending on the available amount of water for irrigation, it may not 

be possible to have a full supplemental irrigation. The farmer can decide to irrigate back to field 

capacity which is unlikely because of the shortage of the irrigation water. Or else irrigation can be 

applied to some few millimeters below the field capacity. Unlike supplemental irrigation, most 

farmers prefer always a fixed net application of 30mm per ha of irrigation water if it’s a full 

irrigation system. However in this case for supplemental irrigation which is not on a fixed 

schedule but only applied during water shortage in soil root zone, it needs a good planning and 

weather prediction to have an estimate of how many irrigation events would be supplied. If not, 

then the farmer still has to depend on his experience to choose the right amount of water to apply 

while saving for the next expected irrigation events in case of a dry spell. 
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Optimization of Supplemental Irrigation (SI) 

Although SI can be used as a mitigation strategy to reduce crop failure in rain-fed agricultural 

systems, it cannot guarantee the highest performance in production. Other additional 

management practices should be put in place to ensure additional increment in yields such as soil 

amendment practices, adding organic fertilizers, using improved crop varieties etc. Improving soil 

fertility directly enhances the yield and water use efficiency of crops under cultivation. Most 

especially with the macro-nutrients i.e. nitrogen, potassium and phosphorous which are of a 

greater significance to improve the soil physical and chemical characteristics.  

 Additionally replacing local seed breeds with the improved varieties which are more tolerant to 

harsh weather conditions like drought and resistant to common crop diseases such as the 

bacterial and fungal infections. 

3.3: Feasibility of Supplemental runoff irrigation in macro-systems 
 

There has not been enough published data concerning the economic feasibility of rainwater 

harvesting in Sub- Saharan Africa and more specifically the financial feasibility of surface runoff in 

particular. However with more attention and development on supplemental irrigation, it is believed 

that there is a potential to reach more than 30 million poor people by just applying the practice to 

15.2 million ha of agricultural lands out of the 42 million ha of irrigable land in the region 

(Chartres, 2009).   

Some researchers have reported the increase in yields for cereal crops including maize after 

supplying supplemental irrigation water to the crops during the critical need (Pandey, Zaag, & 

Soupir, 2013) (Panigrahi, Panda, & Mull, 2001). In their studies, they made it clear that the 

seasons which experience more rainfall or the ones that didn’t experience frequent dry spells had 

relatively similar yields with the rain-fed system without irrigation. 

 This was also presented in the previous studies by Pandey, et al. (2013) that supplemental 

irrigation during the wet years or during the seasons with high rainfall could not produce different 

yields from the rain-fed system alone. Sometimes actually the yields are the same. This means 

that supplemental irrigation using ponds could only be profitable during the dry years or seasons 

that frequently experience dry spells 

Other studies have showed that water storage ponds of about 100mm of supplemented water 

during the crucial dry spells, can double rain-fed cereal yields from about 1 to 2 tons per hectare, 

increasing water productivity to 0.5 kg/m
3 

of water consumed (Biazin , Sterk, & Temes, 2012). 

This means that a rainwater tank of 50m
3 

could be used to supply irrigation water to an 

agricultural plot of 500m
2 
land which can double the yields in just one season.   
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3.4: Overview of Cost Benefit Analysis 
  

The cost benefit analysis is a technical tool used by researchers to compare the financial benefits 

of a project in comparison to the baseline scenario where the project has not been put under 

consideration. Generally there are two kinds of cost-benefit analysis i.e. Financial cost benefit and 

social cost benefit analysis.  

The financial cost benefit analysis mostly applies to individual costs and benefits for a given 

project. The economic benefits are only related to personal interests, profits and decisions made 

by that particular person. While the social cost benefit analysis puts into consideration the costs 

and benefits on communal basis. The whole analysis is based on the decisions and interests of 

the society where the project will be implemented or conducted from. (Benicke, 2001).  

There is no huge difference between these two types of cost benefit analysis except the view or 

point of adoption. Like in real life situations, personal benefits may not that be similar to society 

benefits. Additionally personal benefits may be more of short term targets and society benefits 

are mostly long term goals. Also for social cost- benefit analysis, there are might be incidences 

where some other benefits might be of great significance or consideration than the financial 

benefits for example the environmental and health benefits (Benicke, 2001).  

As shown in Figure  3.4 this study considers the financial cost benefit analysis since the study 

focuses on individual establishments of an irrigation strategy by implementing a surface runoff 

harvesting pond on privately owned land. The catchment area in this case may or may not be 

owned by the farmer himself but since surface runoff isn’t that easily controlled, it can be 

collected from any part of the huge vast nearby uncultivated catchment areas, be it roads, 

pathways, farm boundaries, established furrows, bushes and so on. 

The general rule for the calculation of the cost benefit analysis is the analysis of the total inputs 

and the total output benefits for the study project and transforms them into a monetary form for 

better comparison of the results. If the total inputs are more than the total outputs, it simply 

means that the project will not be feasible and it will be rejected. On the other hand if the total 

benefits are greater than the total inputs, the project proves to be feasible and it gets accepted by 

the stakeholders (Griffin, 1998).  
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The Cost Benefit Analysis Framework 

 

Figure ‎3.4 Cost Benefit Framework 

Figure  3.4 depicts a simple framework that is used in this study to develop the cost benefit 

analysis for the proposed supplemental irrigation system. The total costs include the capital costs 

for the construction of the pond, the materials used to establish the pond (e.g. the pond liner), 

maintenance of the pond, the costs for the irrigation tools and the operation cost for the irrigation 

system. The system benefits include the increase in quality and quantity of crop yields and the 

benefits related to the cultivation of azolla both economic and environmental benefits. More 

details about the cost-benefit analysis are presented in Chapter 4. 

Formulations  

The pond volume and dimensions are estimated using an equation from (Masser & Jensen, 

1991). Pond Volume = surface area x average depth.  

Average depth in meters is only used when the pond has no uniform depth. This applies mostly to 

ponds which are inclined towards the drainage side or overflow side.  

The pond liner dimensions are estimated using the pond liner calculator (WaterGardeningDirect, 

2017) which uses the formulae in meters.  

Pond liner size = (maximum length + (2* depth) +1) x (maximum width + (2* depth) +1).  
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However in this study, there is an assumption for excessive overflow of the pond to be somewhat 

higher since the catchment area experiences some erosion. For this matter therefore, the overlap 

liner is extended 2 m from all edges of the pond. The overlap part of the liner is prevented from 

sunlight exposure by covering it with a heap of soil creating a band of soil around the water pond. 

In the development of the cost benefit analysis which is discussed later on in details in Chapter 4, 

there is a need to calculate the annual depreciation of the water lifting techniques. The following 

equations are used to calculate the annual depreciation.  

Annual Depreciation = Working of a machine in a year (hours) X hourly depreciation rate   (5) 

Hourly Depreciation = Original cost of machine – Salvage value                                          (6) 

                                       Estimated life of machine in hours  

 

Average Annual growth 

Agriculture in Uganda has an average growth rate of close to 3%, it’s among the sectors which 

the Ugandan government accords primary concern through its national development plan that 

aims to move the country to a middle income status by the year 2020 (G. o. U. Office of the Prime 

Minister). Also in the cost benefit analysis, there is need to calculate average annual growth 

specifically for the study area for predicting the value benefits of the proposed scheme. It reflects 

the decrease or increase from year after year yields. The Annual yield is calculated with the 

following equation: 

 

Annual Yield Growth = Yield in Present year – Yield in Previous year   X 100      (7) 

      Yield in Previous Year 

Other details related to the formulations of both the pond and the cost benefit analysis is 

presented in the later chapters.  
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Chapter 4. Study Area – Soroti 

4.1: The physical environment of the study Area 
 

The study area is located in Eastern Uganda and bordered by Amuria district in North-North East 

and Katakwi to East, then Kaberaimaido to the Western border. On the Southern part, it is 

bordered by Serere and Ngora districts. Formerly all these  districts  that surrounds  Soroti  

district  were part of  Soroti  and were  recently  split  by the  current  government. Soroti district is 

located between geographical coordinates of 1.541° to 2.029° North and 33.39° to 38.82° East 

and at an on average elevation of 1125 m above MSL. The Nearby major town is Kaberaimaido 

town, Amuria, Serere, and Ngora towns which are approachable by roads. 

The map of Uganda showing the study area 

 

Figure ‎4.1 Map showing Soroti - the study area in Eastern Uganda 
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The following reasons attributed to choosing Soroti as a study area: 

 Soroti is located in the Eastern region of the country in the famous low lying cattle 

corridor of Uganda. The cattle corridor Figure  4.2 is the most drought vulnerable region of 

the country. This region swathes across the country from the southwest to the northeast 

with 97 districts inclusive. With the effects of the current climate change, agricultural 

production of these districts more particularly Soroti will highly be affected.  

 The Uganda Bureau of Statistics in collaboration with the government’s ministry of 

Agriculture (UBOS/MAAIF, 2010) Reported that maize production has been profoundly 

highest in the Eastern region of the country. 

 Soroti was the third district across the nation with the highest maize production with over 

15,000 ha of cultivable land of maize. And maize being the staple food across the nation 

and East Africa as a region, this makes Soroti  

 The area is also a semi-arid climate with a generally flat or gently sloping landscape with 

intermittent rains causing occasional floods and heavy droughts. This means that with 

small scale affordable surface runoff irrigation schemes, farmers in the area can be able 

to sustain their production and reduce the chances of crop failures. 

Uganda’s‎Cattle‎Corridor‎– A dry agricultural zone 

.  

Figure  4.2 Uganda Cattle Corridor (Dark grey area stretching from South west to north east). 

(Steece, 2011) 

 

Soroti 
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4.2: Topography and Climate of Soroti District in Uganda 
 

The study area’s terrain is generally flat, with elevation ranging between 1000- 1250 mm above 

sea level and is traversed by numerous swamps and other ravine wetlands. Annual rainfall 

averages 1100-1200 mm distributed between two seasons of March to July and September to 

November (Basalirwa, 1995). Late November to late February or early March is traditionally the 

long dry season and mid-June to late July is the short one but this has become variable with 

frequent drought spells causing famine (MWLE, 2007). 

The meteorological data was collected from the National meteorological department of the 

Ugandan Government in Kampala. The data included daily rainfall in mm/day for ten years from 

2003 to 2012, daily minimum and maximum temperature in degrees centigrade for the same 

period. Despite the fact that it’s a National Meteorological center, it was so unfortunate that some 

climatic data was missing. For example relative humidity historical data for the study area was 

missing; the wind speed, sunshine or radiation data was also missing from their records. This 

might have been due to lack of qualified personnel and tools to measure such parameters in a 

remote weather station in the study area like Soroti. 

4.3: Rainfall patterns, distribution and seasons 
 

In the South, Uganda’s rainy seasons run from March through May and from September through 

November; these rainy periods are segregated from each other by two dry seasons; a drier one 

that starts in June and a fairly wet one that starts in December; these run through August and 

February respectively. The north however has a single wet season that extends from March to 

November with the dry season starting in December through February (Mubiru, Komutunga, 

Agona, Apok, & Ngara, 2012). The first wet season running from March through May on average 

receives more rainfall than the second wet season that starts in September through November, 

with rainfall peaks for the two seasons occurring in April and November respectively. 

 The south-western and north-eastern areas, bordering north-eastern Rwanda and south-western 

Kenya respectively, experience the least precipitation annually with rainfall amounts below 

1000mm. Districts like Moroto in the north-east are semi-arid and prone to drought. On the other 

side, north-central areas including Gulu district and regions around the shores of Lake Victoria 

are the wettest, with annual rainfall amounts reaching 1500mm. The general average annual 

precipitation in Uganda is presented in Figure  4.3.  

With regard to trend, the past 25 years have shown a general decline in rainfall amounts. It’s for 

example evident that regions practicing crop cultivation have had an average decline of around 

8% when rainfall amounts between two periods, 1920 to 1969 and 2000 to 2009 are compared.  
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The optimum rainfall amount required for agricultural production is about 500mm; the bulk of 

which is received between March and June. Over the past quarter century, the area receiving this 

adequate rainfall amount during the March-June rainy season has been shown to diminish, with 

further contraction expected if a similar trend persists (Mubiru, Komutunga, Agona, Apok, & 

Ngara, 2012).  

Regions in both the west and north of the country are the most affected by the decline; areas in 

the northeast, south and northwest of Fort Portal, Gulu and Bombo districts respectively already 

experience below optimum rainfall amounts for viable agricultural production. A similar trend has 

been observed for the June-September rainfall season in the North. When the observed trend 

between 1960 and 2009 is projected to the period between 2010 and 2039, rainfall amounts 

received in parts of northern, northwestern, western, southwestern and eastern Uganda are 

expected to show a change of approximately -50 mm during the June-September season while 

most regions will experience -20 mm decline in rainfall amounts during the March-June season.  

The map of Uganda showing the mean annual rainfall in different regions 

 

Figure  4.3 Uganda mean annual rainfall in main drainage sub-basins. (Nsubuga, Namutebi, & 

Ssenfuma, 2014).  
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Soroti, one of the districts in eastern Uganda lies within the SE L. Kyoga agro ecological zone; 

with a bimodal mean annual rainfall of more than 1200 mm, major crops grown include cotton, 

finger millet, cassava, and maize among others (Kansiime et al., 2013). The district is located 

within Uganda’s cattle corridor illustrated Figure  4.2, which is a broad stretch of land running from 

the southwest to the northeast of the country, encompassing over a dozen districts; this stretch of 

land experiences extreme rainfall variability along with droughts due to late onset of rains.  

From several years back, this part of the country was occupied by pastoralists who used to move 

from place to place with their cattle looking for better pastures. They never had permanent 

settlements or residences, they were always on the move with their cattle all over this corridor 

which made the whole area overgrazed and the land lost its fertility value. As a result, occupants 

of the cattle corridor changed their lifestyle and resorted to growing crops most especially cereals. 

However this happened when climate change had already changed the weather patterns of the 

area and this has caused serious calamities like drought, hunger and floods in the region (Stark, 

2011).  

Soroti district has specifically experienced a series of extreme climatic conditions such as the 

wide spread floods and drought. These whether extremes have negatively affected agricultural 

production through both decreased crop yields and complete crop failure (U. Office of The Prime 

Minister & UNDP, 2014) 

4.4: Land Use in the study Area 

4.4:1: Crop Production  

Agriculture is the backbone of the economy of Soroti district. Over 75% of the households depend 

on subsistence farming as their principal source of livelihood. The sector provides employment to 

over 80% of the active rural population (MAAIF, 2010). The district has a high potential for a wide 

range of agricultural products, both crops and animals. According to records available in the 

Agricultural department, only 40%of the area is currently under cultivation. 

The major income source is agriculture which includes livestock and crop production. Crop 

production in the study areas is the major income source with cereals especially maize and millet 

as the major produce. 53% of the district households are farmers (Nabikolo, 2009). Agricultural 

production is the main enterprise in Soroti area therefore gaining an understanding of the current 

production systems and constraints will help inform the feasibility for any proposed irrigation 

scheme. 

4.4:2: Maize production  
Maize in Uganda is grown in multiple agricultural systems that vary in not only climate and 

elevation, but also in the socioeconomic aspect of the locals. Generally, it requires deep, well 
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drained fertile soils in a well ploughed but moderately rough field. Although maize performs well 

at several altitudes (0 to 2900 meters above sea level), certain varieties perform optimally at 

specific altitudes with 30 degrees Celsius being the most conducive temperature for growth 

(NAADS, 2013).  Annually, Uganda has two main growing seasons which coincide with the rains; 

these range from March to May and September to November Figure  4.4.  

Uganda Maize Crop Calendar for Different parts of Uganda 

Northern 

Season 

            

Eastern 

Seasons 

            

Southern 

Seasons 

            

Months J F M A M J J A S O N D 

Key Sowing Season  Growing Season  Harvesting 

Season 

 

Figure ‎4.4 Uganda's growing Seasons (FAO, Global Yield Gap Atlas, 2013) 

The Northern part has only one long growing season which runs from March till September, the 

Eastern part has two growing seasons, the first growing season runs from March to July and the 

second one from September to December. The Southern part also has two growing seasons like 

the Easter part just with a simple difference that in the south, planting for the first season begins 

in February. Figure  4.5 shows a farmer and his wife hand weeding their maize field in the study 

area. 
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Figure ‎4.5 Farmers hand weeding a maize plantation 

Maize is therefore planted at the beginning of these seasons in March or April for the first season 

and also September for the second season depending on the country location. Planting depth 

ranges from 2 to 3 and 5 to 10 centimeters for wet and dry soils respectively, with a spacing of 75 

by 30 centimeters for most varieties and 2 to 3 seeds per hole. A larger spacing is observed if 

intercropping is practiced (MAAIF & NARO, 2011b).  

Nitrogen, phosphorous and potassium are the main nutrients required by maize and these can be 

acquired from either organic sources such as farm yard manure (FYM) or from industrially 

manufactured inorganic fertilizers. Also, weeding is another key practice if high yields are to be 

realized; this is usually performed manually by using hand held implements such as hoes but 

herbicides are also used to a small extent.  In addition, it is recommended that the first weeding 

be done within the first 21 days of planting (NAADS, 2013).   

4.4:3: Maize water Requirements 
Maize or corn is the most water efficient crop amongst all the cereal crops. Adequate moisture is 

required for the proper growth of maize; moisture should not go below the recommended amount 

during three key stages, which include establishment or the initial vegetative stages, tasseling 

and silking i.e. flowering and pollination stage for the last two stages as illustrated in Figure  4.6. 

These three stages are very sensitive to moisture stress due to the fact that if the soil moisture 

depletes below the reach of the plant roots, very great loss to the final yields is registered. This is 

because these are the stages which the plants initiate growth, produce tassels and silk and the 

grain formation follows.  
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However the most critical stage for moisture need during the whole growth cycle of maize is the 

period of flowering, when the maize crop is developing the tassels which are the male corn 

flowers as well as the female flowers which are referred to as the silk. Preceding the 

establishments of both flowers, pollination occurs, so in-case of a dry spell and there is no water 

in the soil, the flowers may fail to form and if they manage to form, the male flowers may dry out 

before the female flowers have developed because they don’t develop at the same exact time.  

Maize Growth Stages 

 

Figure ‎4.6 Maize growth stages (PANNAR, 2016) 

The maize crop needs between 500 – 800 mm of water per season depending on a variety of 

factors for instance type of soil, seed variety, climatic conditions, and cultivation practices and so 

on. Each For the best yields, an optimal rainfall amount of 200mm is essential in the first five 

weeks of planting for both establishment and tasseling (NAADS, 2013).  

The maturity period for commonly used hybrid varieties such as Longe 4, Longe 5 and Salongo 

ranges from 100 to 120 days while some few local, unimproved varieties may take much longer 

(NAADS, 2013). When fully grown, maize is harvested; this is commonly done by hand through 

breaking the cobs away from the stalks and drying them. An alternative method is to let the maize 

to dry in the field and later harvest and store the cobs after removing the husks.  

Harvesting should coincide with the dry season to ensure adequate drying of grain which is then 

stored in either cribs or silos (MAAIF & NARO, 2011a) .  
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After the harvesting and drying process, maize grains are taken to the market for sale. Maize 

prices have long been fluctuating for the last ten years due to the low yields all around the nation. 

By the end of the first season of the year 2017, the prices of maize grain stood at an average of 

As of July 2017, wholesale and retail prices for maize stood at UGX 900 (approx. USD 0.25) and 

UGX 1200 (approx. USD 0.32) per Kg respectively (Infotrade Uganda, 2017). The fluctuation in 

prices mainly depends on the incidences of drought occurrence, if there were incidences of 

drought in most parts of the country during the planting seasons. The prices are always high 

compared to seasons which were not affected by drought. 

4.4:4: Charcoal Burning 
Soroti is blessed with the presence of key wetlands; a larger part of the district is covered with 

wetlands, forest reserves and grasslands. However, a lot of trees and other woody vegetation 

cover are increasingly being depleted through excessive grazing of livestock, charcoal and brick 

burning, clearing land for cultivation, and excessive tree cuttings as shown in Figure  4.7.  

These factors are due to high population increase and unsustainable utilization of natural 

resources, poverty, desire to increase per capita income, low levels of technology, low levels of 

environmental awareness, and introduction of fruit growing. Charcoal burning is quiet rampant in 

the district. 

  

 Figure ‎4.7 Deforestation for Charcoal burning  

4.5: Soils and topographical surveys of selected areas in Soroti district 
 

An assessment  of soil  properties and  their  response  to  management is  required in planning  

for  agriculture  and  other land  uses. Soil survey involves  determining the  pattern of  the  soil  

cover  and  dividing this  pattern into  homogeneous units, and  mapping their distribution and  

characterizing them (Kaaya, Balthazar, & Mrhvia, 1994). The  soil physical and chemical  

properties  can  be used  in  so many  models  and  tools  to  estimate the potential of  soil  for  
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production purposes  which  is the  main  focus of these survey. The study employs the FAO 

water model (Aquacrop) that requires both physical and chemical soil properties for its analysis. 

4.6: Profile soil sampling and laboratory soil results 
 
Soil samples were taken from three sub-counties in Soroti district which included: Ogweri, Arapai 

and Assuret in February 2017 and tested in the lab for their chemical and physical properties. The 

samples were taken from 5 different sites in the study area whose soil types have been classified 

by Chenery (1960) as shown in Figure  4.8. Most of the soil in the study area is classified as 

plinthosols which are characterized by the presence of iron and aluminium oxides giving it more 

of a red colour. These soils are very shallow and they often form hardpans with repeated wetting 

and drying which eventually lead to erosion (Driessen & Deckers, 2001).   

 

Figure ‎4.8  shows the soils types in Soroti district under FAO classification 

The samples under examination were collected from the upper soil horizons (0-30 cm) and in the 

subsoil layers (30 cm to 60 cm) in each site under different soil types in the area. The area has a 

soil hard pan due to the fact that most of the soils in the study area are petric plinthosols as 

explained earlier.  
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4.6:1: Soil Physical Characteristics 
 The  soil  physical  characteristics  were  obtained  from both field  surveys, observations  and 

laboratory  analysis and  these  include: soil  profile, depth, soil color, soil erosion hazard,  

surface stoniness, slope , altitude and soil textural  class got  directly  from the field  while the  

soils  particle  size  distribution from laboratory  analysis as shown in Figure  4.9 and Table  4.1.  

  

Figure ‎4.9 Soil sampling in the study area 

Surface Stoniness can directly influence the rate of soil erosion whereby an area with a stony 

surface and with no vegetation cover is very prone to soil erosion than the areas without a stony 

surface. Through continuous field visits, observations and consultation from the local farmers, we 

were able to get data related to surface stoniness and the rate of erosion in the area.  
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The soil physical characteristics of the study area 

Profile 

pits 

    Lat Long Slope% Altitude 

(mm) 

Depth 

(cm) 

Drainage  Erosion 

Hazard 

Surface 

Stoniness 

1 1.7782 33.7379 1-3 1037 90.0 Poorly  

drained 

Average Nil 

2 1.6777 33.6185 1-3 1035 70.0 Poorly 

drained 

Average Nil 

3 1.8620 33.6183 1-4 1035 90.0 Well 

drained 

Slight Nil 

4 1.8050 33.6515 2-5 1038 80.0 Well 

drained 

Slight Nil 

5 1.6120 3357640 2-5 1038 80.0 Well 

drained 

Slight Nil 

Table ‎4.1 Summary of the site characteristics of the studied soil 

4.6:2: Laboratory Analysis 
The  soil  samples were air-dried, pounded and sieved through 2 mm sieve to remove any debris 

then subjected to physical and chemical analysis following standard methods described by 

(Okalebo, Gathua, & Woomer, 2002) for  routine  analysis. Soil pH was measured in a soil water 

solution ratio of 1:2.5; Organic matter by potassium dichromate wet acid oxidation method; total N 

determined by Kjeldhal digestion; exchangeable bases from an ammonium acetate extract by 

flame photometry (K+, Na+) and atomic absorption spectrophotometer (Ca2+, Mg2+); and 

particle size distribution (texture) using the Bouyoucos (hydrometer) method (Okalebo, Gathua, & 

Woomer, 2002).  

4.7: Effective Rooting Depth 
 

The effective soil depth of the sampled points is characterized as moderately deep. The extensive 

area is covered by deep rooting plants more than 70 cm, this rooting depth is suitable for most 

cereal crops like maize, sorghum and millet. The study area exhibits a soil hardpan at an average 

depth of 100cm as it can be seen in Figure  4.10. Soil depth is a constraint for agricultural 

development projects that requires more than 100 cm depth. 
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Figure ‎4.10 Soil pit for soil sampling 

4.8: Elevations, slopes and Soil Erosion Harvard 
 

The areas lie in lowland areas with the altitude of 1000 - 1250 meters above sea level (MSL). 

Most of the profile pits that were dug fall in a slope range of one to five percent (1% -5%).  The 

sign of soil erosion hazard is slight in the area being covered by thick grasses and vegetation. 

The surface cover of the study area is not characterized with coarse fragments of stones which in 

some cases poses a threat to irrigation projects. The area lies in the Lake Kyoga drainage basin 

which is one of the biggest drainage basins across the country. 

4.9: Irrigation Practice  
 

Since the majority of Uganda’s agricultural systems are rain fed, the recent changes in rainfall 

distribution patterns have severely impacted crop yields, including those of maize. In the first 

growing season of 2005 for example, over 20 percent crop loss was experienced nationally for 

banana, maize, beans and coffee as a result of drought; maize crop losses were over 25% and 

almost 40% in Eastern and Northern Uganda respectively (Mwaura & Katunze, 2014). One 

strategy to mitigate such crop loss is by incorporating various irrigation practices into the different 

agricultural systems all over the country.  
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It is evident from Tanzania, a report showed that irrigated agricultural systems perform much 

better in terms of yield than rain fed systems for both maize and bean crops (The World Bank, 

2013). Unfortunately however, of the approximately 560,000 hectares of irrigable land available in 

Uganda, only 14,418 hectares are actually irrigated; most of these are associated with large 

commercial farms and represent about 2% of the total irrigable land. Such a low percentage is in 

part due to over reliance on rain for agricultural production (Kavuma, 2010).  

The government currently has in place a 25 –year irrigation master plan which it rolled out in 2010 

with the aim of assessing the feasibility, approach and cost of establishing irrigation schemes all 

over the country. In the master plan, two types of irrigable land are spelt out; the first is category 

A, which represents lands close to permanent bodies of water like lakes and rivers while the 

second, category B, represents those areas far from permanent water bodies requiring water 

storage facilities like valley tanks or dams.  

The goal of the plan is to increase the area of category A land under irrigation from 25 to 70% by 

2020 and 2035 respectively. Soroti district’s irrigable area stands at approximately 9,275 hectares 

with category A and B areas representing 8,585 and 690 hectares respectively. With water bodies 

representing 15 percent of Soroti’s total area, the government plans to prioritize category A areas 

for irrigation scheme development in the region (Kavuma, 2010).  

To deliver water to fields, a number of irrigation techniques can be employed depending on 

prevailing circumstances; these mainly include surface irrigation, in which gravitation force is 

exploited to apply water to the field through three different ways which are: basins, furrows and 

borders; whereas basin irrigation involves flooding an entire flattened field (basin); basins are 

surrounded by bunds to keep the applied water confined and mostly used to grow rice. Furrow 

irrigation on the other hand utilizes channels (furrows) that deliver water to a field as they run 

downwards along a slope. Water infiltrates into the soil to the root zone as it moves through the 

furrow.  

Additionally, border irrigation involves delivering irrigation water using long strips of sloping land 

demarcated by bunds on either side. The second irrigation type is sprinkler irrigation, in which 

sprinklers are used to spray irrigation water pumped and delivered by pipes onto crops, 

mimicking rainfall. Lastly, the third type is drip irrigation, which involves delivering irrigation water 

under pressure, through a framework of pipes to the field, where it’s slowly emitted through 

drippers, wetting only the adjacent root zone of the plant located next to the dripper; it has thus 

been shown to be an efficient irrigation method (Brouwer, Prins, Kay, & Heibloem, n.d).  

All irrigation methods, involve obtaining water from a source and distributing it within a field 

(Siraco Irrigation, 2017); Uganda is abundantly blessed with a multitude of water bodies including 
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lakes and rivers from which irrigation water can be tapped. Water bodies specifically in Soroti, 

occupy about 15% of the district’s total area, of which Lake Kyoga is the most important.  

The district therefore has a relatively adequate supply of water that could be utilized for irrigation; 

this is true especially for category A lands that lie in close proximity to such water bodies. 

However, despite these abundant water resources, irrigation scheme establishment in Uganda 

faces one tremendous obstacle, which is the cost of infrastructure required to transfer, store and 

distribute water to farmers’ fields. The high capital investment involved makes the adoption of 

irrigation by small holder farmers almost an impossible.  

Within the country’s irrigation master plan, the government intends to cover the costs of water 

transfer from water bodies to irrigable land gates, after which farmers are expected to cover three 

fifths of the distribution costs to their fields while the government takes on the remaining two fifths 

(Kavuma, 2010). Although such an elaborate policy is in place, it prioritizes category A lands 

while insufficiently considering category B lands that are located further from major water bodies.  

4.10: Proposed Supplemental Irrigation system 
 

 Despite the fact that, supplemental irrigation is not a routine application, it’s only done 

occasionally when required. This means that we require a temporary, mobile and flexible system 

for water application to the crop lands. This study does not give full details of the specific design 

of the pond. However it proposes and examines alternative pond volumes (400, 600, 800 and 

1000) in cubic meters with their respective surface areas. These volumes are used because 

through model simulations, the maximum runoff that can be collected annually from a catchment 

of one hectare in the study area is found to be 1000 cubic meters and the lowest runoff is 400 

cubic meters. For this matter therefore, there is no need to have a pond that exceeds 1000 cubic 

meters volume neither the one that is lower than 400 cubic meters. 

The dimensions and surface area of the alternative pond are presented in Table  4.2. The 

proposed water harvesting pond has a trapezoid shape whereby the top width of the pond is not 

equal to the bottom width. So the farmer in this case has to sacrifice approximately a maximum of 

5% area of his cropland for the construction of the pond. There are basic factors required to 

estimate the suitable pond size for supplemental irrigation. Such factors may include irrigation 

water demand, size of the irrigation land, type of crop and the financial ability of the farmer. 

Excavation of the water pond may be either by an excavator or bulldozer but this mostly applies 

to large scale farming where the pond size is relatively large. However for small-scale farming 

suitable for the land ownership scale in Uganda, excavation is commonly done using simple hand 

tools like hoes and or oxen driven ploughs. Labor is mostly supplied by family members, so there 

is no need to hire tractors for the excavation processes except if it’s a relatively large pond. 
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 The trapezoidal shaped water pond should be constructed at a point within the farm boundaries 

where it can collect the maximum amounts of runoff and also allow for the escape of the excess 

storage from the pond. The pond should be established with an embankment of about 1m away 

from all the edges of the pond and then an outlet is created at the lowest side of the embankment 

to allow spillage of excess runoff.  

It was reported by Molle, et al. (2012)  and Pandey, et al. (2013) that up to 50% of the water 

losses in the irrigation systems is attributed to evaporation. Seepage losses in water storage 

ponds have been reported by different authors around the globe. It was estimated to reach 41% 

of the total water losses in the irrigation system as mentioned by Sur, et al. (1999). Other studies 

have reported higher seepage losses up-to 89% of the total water loss in earthen ponds from 

seepage alone. This poses a great challenge to solve the problem of seepage losses in irrigation 

agriculture.  

In this study, the proposed supplemental irrigation scheme is adopted and modified from a recent 

study conducted by Pandey (2013) as shown in Figure  4.11. The modifications are mainly related 

to the pond structure whereby the proposed storage system in this study is composed of 

sedimentation or settlement pond where runoff settles before it is directed to the main storage 

pond through an underground pipe. Secondly the pond is also lined with polyvinyl chloride (PVC) 

liner to prevent the seepage losses and at the same time covered with an aquatic plant to prevent 

mosquito breeding and at some extent to reduce evaporation losses of collected water. 

Figure  4.11 illustrates the whole concept of supplemental irrigation proposed in this study. As a 

rainfall event occurs, water falls on the soil surface and it starts flowing downstream. Some of this 

water infiltrates to the deeper soil layers while some of it evaporates to the atmosphere. 

Meanwhile a bigger percentage flows as surface runoff to the lower areas of the catchment by the 

effect of gravity. This runoff is concentrated at a certain point and directed into a water storage 

pond with the aid of gullies, furrows or rills. The storage medium is composed of the 

sedimentation pond, an underground pipe and a bigger water storage pond with a spill away 

channel in case of excessive storage. 

 The sedimentation pond is mainly for the settling of sand, trash and other suspended materials in 

the runoff. Between the sedimentation and the storage pond is a small inlet pipe that allows water 

to enter into the storage pond. On one side of the pipe (at the side of the sedimentation pond) is a 

metallic wire mesh that prevents other trash from entering the storage pond. The bigger storage 

pond is well lined with a Polyvinyl chloride (PVC) to prevent the heavy losses of water through 

seepage. More specifications about the PVC liner are given in Table  4.2. 

 Furthermore the extended part of the liner on the top sides of the pond is covered with a heap of 

soil to prevent direct contact of the liner with radiation from the sun. The pond is also covered with 
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a water fern (Azolla) which makes the pond more environmentally friendly and financially 

economical. More details about the aquatic plant and why it is used in this study are given in the 

next sections in this chapter. 

So after the water has been successfully collected in the pond which in most cases is situated at 

a lower point of the cultivated land, there is a need to lift/pump water to the crops. There are 

different alternatives of water lifting from the pond to the cropped area which are examined in this 

study such as the traditional rope and bucket system, the treadle pump, diesel pump and the 

solar pumping engine. These water lifting techniques are all discussed in details in next sections 

of this chapter. Since the water surface is covered with Azolla plant, the pipe for pumping water 

should be submerged at least at 1m depth of water which on the other hand will increase the 

static lift to pump the water. The storage pond is established with a total depth of 2m to reduce 

the pumping costs and also to avoid the uplift of the pvc lining by the groundwater. More design 

parameters for rainwater harvesting ponds can be accessed from (Pingale, Khare, Sharma, & 

Mahesh, 2009) (Pandey, Zaag, & Soupir, 2013). 

Proposed supplemental Irrigation Scheme 

 

Figure ‎4.11 Supplemental Irrigation System adopted and modified from Pandey  (2013) 

This research study develops a sustainable, economical supplemental irrigation scheme and as 

observed in Figure  4.12, the scheme was under construction in the study area. The system is 

suitable for the land use in the study area in addition to other areas with similar climatic conditions 
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in Africa facing the same water shortage problem in the field of agriculture. This system can 

easily be adopted and afforded by an average famer.  The simply designed pond is developed to 

collect water that can serve and feed an average cultivated area of about 3 acres of land for 

supplemental irrigation. The pond can be designed with varying capacities to store water. Several 

simulations were conducted using Aquacrop to test for optimization among the four alternative 

storage pond volumes i.e. 1000, 800, 600 and 400 m
3
.  

Proposed Scheme under construction in the study area 

 

Figure ‎4.12 Runoff harvesting pond under construction in the study area 

4.11: Advantages and Limitations for using Pond liners 
 

Pond liners are impermeable geo-membranes which are used for the purposes of water retention. 

They are made of different types such as Polyvinyl chloride (PVC), High density polyethylene 

(HDPE), Ethylene propylene diene terpolymer (EPDM) and so many other types. Each type is 

more suitable for a specific purpose and areas of application.  
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Advantages of Pond liners 

 The most considerate advantage of using a pond liner is its low cost compared to other 

options like building concrete pond walls to avoid seepage of water. Pond liners can be 

relatively afforded by any small scale farmer in the area. 

 They have no permanent effect to the environment since they can only be used for a 

certain period of time and then they can be replaced or disposed off. 

Limitations  

 Low Durability of the plastic pond liners compared to concrete built ponds. 

 Plastic liners can be easily damaged during maintenance procedures like in removing 

silt during the off-rainy season.  

 Requires some skill of application i.e. the process of laying the liner into the pond needs 

a highly qualified personnel to do the needful, the process of binding the layers and 

laying it in the pond cannot be accomplished by a local unskilled farmer. 

4.12: Using Azolla 
 

Azolla is a floating water fern which grows in a symbiotic association with Anabaena azollae, a 

heterocystous cynobacteria. The water fern is considered as the world’s smallest macrophyte 

plant with a very fast growth cycle. The plant can grow and cover double its area of coverage on 

water with in 5 to 10 days (Kollah, Patra, & Mohanty, 2016). The provision of the natural nitrogen 

from the atmosphere by the cyanobacteria in its leaf cavities makes azolla freely to grow without 

soil on freshwater surfaces relying on the vast amounts of fixed nitrogen by the bacteria. The 

surface aquatic plant actually improves the quality of the stored water by adding atmospheric 

nitrogen into the water which will then be supplied to the crops. 

In this study, azolla is proposed as water cover primarily to control mosquito breeding on the 

open water ponds. The water fern has mostly been utilized as a green manure for soil 

improvement. Different species of Azolla like A. piñata, A. Africana and A. filiculoides have been 

used as nitrogen sources in farm lands for so many years as alternative strategies to improve 

crop production (Van Hove & Lejeune, 2002), as illustrated in Figure  4.13 

 



 

52 
 

 

Figure ‎4.13 The enormous benefits of Azolla  

Despite the fact that a lot of research has been done in the previous year’s using Azolla for soil 

and agricultural management, there is a big gap on its application in Africa in other areas such as 

water harvesting, bioremediation, animal feeding, gas mitigation etc. Azolla has a great role in 

controlling mosquito breeding over water surfaces (Subedi & Shrestha, 2015). A lot of different 

researchers have reported the potential significance of Azolla in controlling mosquito breeding on 

surface water bodies (Van Hove & Lejeune, 2002) (Imbahale, Mweresa, Takken, & Mukabana, 

2011) (McLaughlin , Hiba , G, & D, 2000) (Mahapatra & Sharma, 1989). Azolla mat suppresses 

mosquito breeding by inhibiting ovi-positioning of the female mosquitoes and also acting as a 

physical barrier for mosquitoes to lay their eggs on the surface of water as shown in Figure  4.14. 

Most of the authors argue the effectiveness of the aquatic plant is higher with 80% of the surface 

of the water covered (Imbahale, Mweresa, Takken, & Mukabana, 2011) (Van Hove & Lejeune, 

2002). 

  

Figure ‎4.14 Azolla mat on a water surface for animal feeds 



 

53 
 

Due to its fast and short growth cycle of about 5 days, Azolla has also been used for feeding 

domesticated animals like pigs, chicken, ducks, fish etc. It can replace conventional chicken 

meals with 5-15% Azolla feeds can significantly lead to a similar growth and body weight increase 

like the mustard oil cake meal in broilers (Ashraf, Matto, Ganai, Reshi, & Sheikh, 2015) (Kollah, 

Patra, & Mohanty, 2016). So in this study, it implies that Azolla can still be harvested occasionally 

and fed to the livestock since it can multiply in just 5 days, this can save the farmer the additional 

costs of animal feeds.  

Due to the already mentioned environmental and economic benefits of Azolla plants, this qualifies 

it to be the best alternative for covering the water ponds. Other options to cover the ponds can be 

the iron sheets, straw shades, or a plastic top cover. However all these alternatives have mega 

limitations compared to azolla, it may be in terms of costs like the costly iron sheets making the 

system more expensive, or in terms of sustainability and durability like the temporary straw 

shades. Azolla provides multi benefits as it can be used for several other purposes rather than 

control of mosquitoes. However, inspite of all mentioned benefits of Azolla, the plant posses also 

an environmental threat to the natural water bodies. If not handled and controlled well, azollae 

can escape and establish on surfaces of other natural bodies which can be a very big problem in 

water navigation and fishing activities.  

4.13: Ways of Water uplifting from the Pond 
 

There are four main ways of how farmers can convey irrigation water to their crop lands from the 

water harvesting ponds. 

1. Rope and Bucket method 

Local farmers in Uganda mostly use buckets and other small containers to lift water from 

their water harvesting facilities and use surface irrigation to water crops as shown in 

Figure  4.15. This system is commonly used for smaller cropping areas of maximum an 

acre of cultivatable land (horticulture). It’s also mostly used in case of vegetable cropping 

because of their ease in irrigation water application since their canopy does not grow that 

tall.  
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Figure ‎4.15 Rope and Bucket system (Shiksha, 2017) 

Advantages 

 Suitable for smaller scale farming 

 Does not need capital investments 

 Requires only man power which in most cases is provided by the family 

members 

Disadvantages 

 Not applicable to large scale farming 

 Irrigation time is longer and exhaustive 

 Requires human labor to do the work i.e. workers have to be paid for each cubic 

meter of water withdrawn. 

 Not efficient in terms of application time and water productivity 

 

2. Pedal or Treadle pumps 

These pumps were first used in Bangladesh in the late 19
th
 century and then they spread 

to different parts of the world most especially to Asia and Africa. Pedal pumps In Uganda 

commonly referred to as the ‘’money maker” since they have been made using the local 

technology that only uses manual power to induce suction power to pump water through 

a pipe from the water pond to the crop land. It can extend to more than 50m distance 

away from the water pond. It uses a pedal system which can be continuously pressed by 

one operator or a farmer himself using feet and then water is delivered to the crops 

through a pipe as shown in Figure  4.16. 
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Figure ‎4.16 Operation of a Treadle pump 

Advantages 

 No fuel costs 

 Cheap to purchase 

 Easily operated and needs less maintenance 

Disadvantages 

 Pumps water at a relatively smaller distance 

 It’s not an automated system 

 Can only  be applied for a small scale farming area 

 

3. Diesel water pumps 

These are the normal diesel water pumps used to pump water at any distance within the farm’s 

enclosure. They can be of different pumping capacities from small to bigger pumps which can 

extend the water to very far distances.  

Advantages of Fuel water pumps 

 They are easily accessible from anywhere in shops and energy companies 

 They are easily operated, do not need skilled or trained personnel 

 They are available with varying pumping capacities from small-scale farms to large 

commercial farms 

Disadvantages  

 Diesel or petro pumps consume fossil fuels i.e. not a sustainable energy resource 

 They are very expensive 

 Require periodic  maintenance   
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4. Solar Powered pump 

Solar energy water pumps have been rapidly introduced on Indian farms and they have 

proved to be the energy drivers on most of the agricultural farms in almost all the 

countries. They are more used in arid and semi-arid areas where solar radiation is 

abundant. In Uganda, most of the agricultural companies and farms are more focused 

into energy saving technologies to maximize profits. 

Advantages 

 Uses solar energy i.e. no fuel costs 

 Has higher efficiency  

 Ideal for small scale farming 

 Environmentally- friendly technology  

 Disadvantages  

 It’s a new technology  which needs further enhancement 

 Mostly applicable for small-scale holdings  

4.14: Costs related to the development of the Supplemental Irrigation 

Scheme 

4.14:1: Capital Costs 
 

 

 

 

 

 

 

 

 

Table ‎4.2 gives an account of the costs of the construction of the pond and the pond liner (PVC) 

that is used in this study for all the four different pond capacities. All these costs are calculated 

based on a one hectare piece of land for crop cultivation and irrigation. The costs are presents in 

(UGX) which means the Ugandan Currency.  $1 US is equivalent to 3550 UGX. 
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Table ‎4.2 Pond Dimensions and Construction costs 

Pond 

Volume 

(m
3
) 

Pond 

Dimensions  

(m) 

Pond Liner 

Dimensions 

 (m) 

Unit Cost 

of Pond 

Liner  

(UGX) 

Total Cost of 

Pond Liner 

(UGX) 

Total 

Construction 

Costs  

(UGX)  

Total 

Construction 

Costs  

($ US) 

400 10 x 10 x 2 16 x 16 10,000 2,560,000 4,040,000 

 

1,138 

600 20 x 15 x 2 26 x 21 10,000 5,460,000 7,655,000 

 

2,156 

800 20 x 20 x 2 26 x 26 10,000 6,760,000 9,720,000 

 

2,738 

1000 25 x 20 x 2 31 x 26 10,000 8,060,000 11,835,000 

 

3,334 

 

Before lining the pond with the polyvinyl chloride membrane liner (pvc), the pond walls and sides 

have to be coated with sand to create a smooth surface for the easy lining of the pond and also to 

prevent the damaging of the plastic liner by sharp stones or plant roots. By doing this, it helps to 
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reduce the costs of the pvc lining by only applying one layer. Annual Unit Operational and other 

related Costs 

All the necessary costs for the four different water lifting systems which are analyzed in this study 

have been thoroughly explained below and their costs have been put into consideration for the 

development of the cost benefit analysis. The system is developed to be used for supplemental 

irrigation during the most critical water sensitive stages during the growth cycle of a maize crop, 

the research focuses on irrigation during the flowering period which takes a period of 14 days i.e. 

14 days of irrigation are required in a growing season of 120 days (Maize growth cycle)  

1. The Rope and Bucket application 

As elaborated earlier, this is a traditional method that has been used for centuries to irrigate small 

plots of horticultural lands in Uganda, the major advantage associated with this method is its low 

capital investment in that it requires no great deal of tools for its application, just a mere rope and 

a bucket with a few workers. On the other hand, the same method has got major constraints 

related to the high human energy demands and the smaller flow rate. This technique can allow for 

an application of about 2 m
3
 of water per hour with an average depth of 2m under the ground. 

The following features describe the financial aspects of this particular system. The related Annual 

costs include: 

 The bucket method can deliver 2 m
3 
of water from the pond each day by one person 

 24 Workers required to do the job in 14 days at UGX 15,000 each per day 

 Total labor costs UGX 5,040,000 for the irrigation period 

 Purchasing price for buckets Annually at UGX 120,000 life time of one year 

 Annual Depreciation of UGX 28,000 

 

2. The treadle pump 

Treadle pumps are mostly designed using the locally available tools. Originated from 

Bangladesh in the late 1980’s, Treadle pumps have spread to all developing countries due their 

low capital costs and the need to expand irrigable land aiming for more produce.  They have a 

capacity that can extend 5-7 m
3
 of water per hour. It can only be operated using two workers, 

one for the pumping and the other for directing the flowing water in the pipe to different parts of 

the crop land along its reaches. Related Annual costs include: 

 The treadle pump used in this study can deliver 6 m
3 
of water per hour 

 3 workers can be employed to do the job for 14 days at UGX 15,000 @per day 

 Total labor costs for operating the system for the whole irrigation period UGX 630,000 
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 Purchasing  price for the treadle pump and its delivery horse is UGX 720,500 with an 

expected lifetime of 6 years 

 Purchasing spare parts, repair and maintenance of the pond and pump estimated at UGX 

100,000 annually 

 Annual depreciation of UGX 1,982 

 

3. Motorized Pump 

Motorized water pumps could be of either diesel fuel or gasoline with a range of capacities from 

2-5 horsepower. They allow for greater expansion of irrigable land and offer a possibility to grow 

other crops, however their high costs related to purchasing, operation and maintenance costs are 

so high. Motor water pumps have higher flow rates most especially if the water depth is not very 

deep,  when the water source is on surface i.e. not more than 2 m depth, the capacity can even 

reach 15 m
3 
per hour. The related Annual costs include: 

 The motorized pump used has a capacity of 15 m
3
/ hour  

 1 worker employed for 14 days at UGX 10,000 per day, Total Cost of UGX 140,000 

 Purchasing price is UGX 2,090,000 with a life time of 10 years 

 Spare parts, repair and maintenance of the pond and the Lubrication oil costs of the 

pump at UGX 200,000 

 Fuel consumption  of 0.5L/hour for 5 hours per day, Total fuel costs for the whole year at 

UGX 112,000 

 Annual Depreciation of UGX 886  

 

4. Solar powered pump 

Solar powered water pumps have been rapidly introduced on Indian farms and they have proved 

to be the energy drivers on most of the agricultural farms in almost all the countries. They are 

more used in arid and semi-arid areas where solar radiation is abundant. In Uganda, most of the 

agricultural companies and farms are more focused into energy saving technologies to maximize 

profits, its related costs include: 

 The solar powered pump used in the study has a capacity of 8 m
3
/ hour  

 1 worker employed for 14 days at UGX 10,000 per day, Total Cost of UGX 140,000 

 Purchasing price is UGX 5,060,000 with a life time of 20 years 

 Spare parts, repair and maintenance of the pond and the pump at UGX 120,000 

 Annual depreciation of UGX 2,915 

All the above capital, maintenance and operational costs for the water lifting techniques and 

maintenance of the pond are summarized in Table  4.3. 
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Table ‎4.3 Summarized Costs for the water lifting Techniques for supplemental Irrigation 

Water Lifting Tech Purchasing 

Price (UGX) 

Annual Operation 

costs of the pump and 

maintenance of pond 

(UGX) 

Annual 

Depreciation 

UGX 

Flow 

rate 

(m
3
/h) 

Life 

Time in 

years 

Rope and Bucket 120,000 5,040,000 28,000 2 1 

Treadle Pump 720,500 730,000 1,982 6 6 

Solar Pump 5,060,000 260,000 886 8 10 

Diesel Pump 2,090,000 452,000 2,915 15 20 
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Chapter 5. Simulation Water Model 
 

The study employed FAO’s water productivity model - Aquacrop to simulate maize crop 

production under the conditions of rain-fed and supplemental irrigation. The model is used to 

address the issues of crop-water use efficiency, food security and also assess the effect of the 

environment and field management practices on crop production. Simulations are made after a 

process of data collection from the study area which included data for different climatic 

parameters (temperature, rainfall, etc), soil sample analysis and conclusions made through 

observation during the study period (Vanuytrecht, et al., 2014).  

Simulation of maize yields from the model under different irrigation levels are studied and 

analyzed to develop a cost benefit analysis. The results from the cost benefit are used to 

recommend the best irrigation system suitable for the study area. A supplemental irrigation 

system is established with a simple designed water collecting and storage facility to 

accommodate surface runoff for the periods of wet or rainy seasons.  

5.1: Description of Aquacrop - Crop water Model  
 

Aquacrop is a climatic model developed by FAO to assess the crop yield response to soil water in 

the plant root zone. The model has been modified into several versions of which they serve the 

same purpose however with quite a few differences in inputs and outputs. Since so many years 

back, research related to field conditions has always been conducted in the field through 

conducting field experiments which could last for years and become expensive to sustain in the 

long run. 

Due to the current issues of water scarcity, Aquacrop can be used to generate results and 

develop recommendations to improve water use efficiency in agricultural food production Figure 

 5.1. In just a short time, simulations can be run and valid recommendations are formulated 

according to the inputs provide for the system. The model performs simulations using 

sophisticated mathematical models but however it presents its results in simplified and real life 

case scenarios. 
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5.2: Aquacrop Model Framework 
 

 

Figure ‎5.1 Shows the framework of the aquacrop model adopted from (FAO, Aquacrop, 2016) 

The model functions by relating the interaction between the crop parameters, climatic conditions 

and the soil properties in addition to the practices of field management. It uses relatively small 

number of parameters and attempts to balance simplicity, accuracy and robustness in its results. 

It only uses general data that can easily be attained by the researcher so that it generates 

accurate information about crop production and soil water balance.   

5.3: Model Applications 
 

The FOA model was first developed in 2009 and so far some other versions have also been 

developed to enrich its performance.  However the model can be used for multi purposes as 

outline below. 

 Understanding field crop water responses 

 Calculating yield gap analysis i.e. Actual yield and the potential yield of the crop 

 Optimizing Evapotranspiration water productivity through making modifications in sowing 

dates, changing crop cultivars, introducing deficit irrigation etc. 

 Designing irrigation schedules 

 Calculating the historical and future effects of climate change on food production 

 Formulating scenarios and recommendation for policy makers. 

AQUACROP 
MODEL 

Crop 
Environment  

Climate  

 

Rainfall 

ETo, CO2 

Temperature 

 

Crop  

Sowing Date 

Growth cycle 

Production 

Management 

Irrigation 

Field 

Soil 

Soil Profile 

Ground water 

Simulations 

Runs and 
Results 
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The FAO developed model does not use Leaf Area index (LAI) for predicting crop growth as it is 

with most of other crop water models but instead it uses the Green canopy cover i.e.  

Green Canopy Cover (CC) is defined as the percentage of ground covered by a vertical 

projection of the outermost perimeter of the natural spread of foliage of plants. 

CC =  Soil surface covered by the Green canopy.                                              (8) 

    Unit ground surface Area 
 

Steps in Crop Yield Simulation 

There are four specific different stages that the plant goes through before reaching full maturity 

and the model simulates all the changes through these four stages. 

Stage 1 - Crop development Stage 

Stage 2 - Crop Transpiration  

Stage 3 - Biomass production 

Stage 4 – Yield formation 

Crop Physiological Concept 

Figure ‎5.2 gives a summarized view of the whole concept of the physiological processes that 

take place in the crop’s life cycle. Aquacrop calculates the final crop yield by putting into 

consideration all the above processes shown in Figure ‎5.2. It shows the stages of a crop’s life 

cycle and how each stage is affected by the environmental factors. There are two most important 

types of crop stresses which are also well represented in this same figure i.e. water stress and 

temperature stress.  

Dotted arrows represent different processes and how they interact with each other. Arrows from 

(a - e) indicate how these processes are affected by water stress. Direction (a) shows how water 

stress affects canopy expansion (CC) during the initial stages of crop growth while (b) shows how 

water stress can also increase canopy expansion in the later stages of the crop’s life cycle, (c) 

indicates the possibility of extreme water stress to reduce root expansion and root depth (Zr) 

during the vegetative growth stage of the crop, (d) shows how the severe effects of water stress 

can reduce the rate of transpiration and stomata opening and (e) shows how harvest index (HI) 

can be reduced because of the effects of water stress (Vanuytrecht, et al., 2014).  

Indications (f) and (g) represent the effect of temperature stress on the crop. (f) shows low air 

temperature affects the biomass water productivity (WP*) and (g) indicates the effect of both high 

and low temperatures inhibit the process of pollination and eventually reduce1 the Harvest Index 
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(HI). The relationship between rainfall, runoff and irrigation stems on the rainfall characteristics 

such as the quantity, intensity and patterns of distribution. Furthermore collected runoff may also 

depend on the soil surface characteristics, size of the catchment area, and geomorphologic 

characteristics.  

 

 

Figure ‎5.2 Shows crop physiological Concept (Vanuytrecht, et al., 2014) 

5.4: Simulation of Soil water Balance  
  

The model simulates the soil water balance by considering all the possible soil moisture sources 

such as rainfall, capillary rise and/or irrigation as well as all the possible ways of losing the 

moisture from the soil. These include transpiration, evaporation, runoff and deep percolation as 

shown in Figure  5.3. In presence of more rainfall or irrigation water, the soil water level can go 

above the field capacity (the amount of water remaining in the soil root zone after 2 to 3 days of a 

rain event and after free drainage had stopped) hence resulting in deep percolation and 

sometimes flooding in case of the presence of a soil hard pan. This literary means that the soil 

has excessive moisture in the crop root zone and this is not good for some crops. In the case of 

low rainfall or without irrigation water in the soil, the water level in the root zone drops below the 

field capacity and eventually the moisture level reaches the permanent wilting point (PWP). This 

drives the crop into water stress conditions.  
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Figure ‎5.3 Soil Water Balance (FAO, Aquacrop, 2016) 

5.4:1: Water stress related to yield formation 
Water stress in crop production can affect crop yields in two ways; either with an increase in the 

harvesting index above the reference harvesting index or a decrease in the harvesting index 

below the reference harvesting index. The positive yield or an increase in harvesting index from 

the base reference harvest index can only occur when the water stress affecting leaf expansion 

happens during the vegetative growth stage and after the reproduction phase of the crop. 

If water stress hits during the vegetative growth, instead of the plant using the stored 

carbohydrates for leaf growth and expansion, they are then channeled for grain formation and 

filling and this eventually leads to an increase in harvest index (HI). This is elaborated in Figure 

 5.4 with the upward adjustment of the harvest index (HI adj). 

The negative adjustment or decrease in harvesting index happens when water stress affects the 

stomata closure of leaves. This means that less carbon dioxide will be used, less carbohydrate 

will be produced and finally low yields will be produced for that season, it’s the downward 

adjustment of the Harvest index.  

Both scenarios (upward or downward HI adjustments) depend on a couple of factors i.e. the type 

of the crop, magnitude of the stress parameter and also some environmental conditions.  
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Effect of water stress on the Harvest index of the Crop  

 

Figure ‎5.4 Effect of water stress on harvests (FAO, Aquacrop, 2016) 

 

There are three theoretical water stress levels (thresholds) that the plant passes through before it 

dies off at the wilting point. 

 Upper Threshold – Water stress affecting leaf expansion 

This theoretical line is just below the Field capacity water level of the soil. In the 

Aquacrop model, when the water content in the soil drops below this line, leaf expansion 

of the growing crop starts to deteriorate. However if the magnitude of this kind of stress is 

not that big, it can lead to an increase in the harvesting index hence more yields formed 

 Middle Threshold – Water Stress affecting Stomata closure  

This theoretical line represents the start of stomata closure; it’s represented by a 

transpiration factor Ks. It is the second line below the upper threshold line. When the 

water level falls below this line, the plant stomata starts to close which eventually reduces 

the transpiration process of the whole crop. Ks value reduces and gets lower than 1 when 

the water levels drop below this line and when it reaches the Wilting point, Ks becomes 

zero. 

 Lower Threshold  - Water stress triggering canopy senescence 

This line represents canopy senescence, below this level, the crop starts to die.  

5.4:2: Water stress effect on flowering 
In a normal scenario, all plants produce lots of flowers during the flowering period, actually most 

plants produce excess of flowers; however the most important point here is the pollination of all 

those flowers made by the plants. If at any point during the flowering period there is scarcity of 

water in the root zone, these flowers will not have a chance to mature to a point of being 
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pollinated due to the fact that there is no enough water to facilitate the whole process of flower 

formation. This is represented by a theoretical threshold termed as the threshold for root zone 

depletion. It means that if the water level in the soil drops below this theoretical line, there will be 

a failure in pollination of the flowers. 

5.5: Modeling for Irrigation Management  
 

In the Aquacrop model, there are two modes of availing water to the crops (Vanuytrecht, et al., 

2014) 

a) Rain-fed Cropping: Aquacrop can simulate crop production and development using the 

rainfall data provided by the user in absence of any irrigation events. It can model the 

whole canopy development depending only on the rainfall events that were provided in 

the climatic file.  

b) Modeling with Irrigation during the season:  

Irrigation in the model can be simulated under two circumstances, the two strategies are 

aimed at increasing the crop water efficiency i.e. increasing the amounts of yields at the 

end of the growing season while using less amounts of irrigation water. 

i. Net irrigation water requirement – this kind of irrigation is simulated using a 

threshold (Inet) known as the allowable root zone depletion. This threshold can 

either be expressed as a fraction or a percentage of Readily Available Water 

(RAW). In case of no rainfall events for a specific period of time and the water 

level in the root zone drops below a certain level, small amount of water is 

applied to keep the water content in the root zone to keep water at a specific 

level. At field capacity RAW is equal to 0% and it’s 100% at threshold at stomata 

closure.  

ii. Generation of an Irrigation schedule - when designing an irrigation schedule 

there is a need to specify a specific date of when to supply the irrigation water to 

the crops, the water quality should also be updated i.e. the salt content of the 

water and then the net amount of water which should be applied i.e. the amount 

of water that infiltrates in the soil.  

 

Crop growth parameters  

The maize crop reaches maturity stage at 120 days; this whole period can be divided into 

four different stages from the time of planting till harvesting time. Maize is planted by 

sowing in rows either 1 plant /hill or 2 plants/hill depending on the variety of the maize 

crop and the purpose of the crop whether it’s maize for grain yield, sweet maize for 

salads or maize for livestock feeding.   With row spacing of 75cm, the space between 
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hills at 30cm, another option which is characterized by 2 plants /hill has row spacing of 

75cm and space between hills of about 60cm. The maize planting density is 44,444plants 

/ha (4.4 plants/m
2
). 

 

 

Figure ‎5.5 the Maize Growth cycle (FAO, Aquacrop, 2016) 

The growing cycle is divided into four stages Figure  5.5: 

 Emergency stage – 7days from Day After Planting (DAP) 

 Maximum Canopy – 55 days from DAP 

 Senescence stage – 95days from DAP 

 Maturity stage  - 120 days 

The flowering period takes 13 days from 68 – 81 days after planting; the crop reaches a 

maximum rooting depth at 55 days after planting which is the same time it reaches maximum 

canopy development. 

5.6: Crop characteristics 
 

Maize is a cereal grain producing crop which is the staple food for all the East African nations 

including Uganda, Kenya, Tanzania, Burundi and Rwanda. The model can either simulate crop 

development using Growing degree days (GDD) or calendar days which are directly linked to the 

growing cycle. During the simulations the later criteria was used due to the fact that sowing of 

maize crops in the Eastern region of Uganda is dependent on the planting date which is in most 

cases in the last ten days of March. 

In rare cases farmers also initiate sowing of the maize crop in the last days of March after 

receiving like some two events of rainfall. This has only been practiced when they missed the 
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planting dates because of the excessive dryness in the soil root zone. In another scenario, some 

farmers also do what is known as the dry planting. Dry planting is a practice commonly done with 

farmers in semi-arid regions whereby they initiate sowing of seeds in the soil when the soil is still 

dry without rainfall. So when the rainfall comes later after some days, seeds will start to 

germinate. 

Aquacrop uses simple mathematical calculations depending on the input data provided by the 

user to simulate crop development. The model sets default values for the available soil moisture 

in the root zone for the crop to start germinating. This is the similar to the temperature 

requirements for the crop development; Aquacrop sets a default value for the base temperature 

of 10˚C and an upper temperature of 30˚C for the whole cycle of maize development. These two 

figures represent the lowest temperature a maize crop can withstand and also the highest 

temperature that the plant can bear respectively. Outside this temperature range, the crop starts 

to deteriorate which slows down the development process. This is called the temperature stress 

effects.  

Germination – since the maize seeds are directly planted into the soil, the initial canopy cover is 

obviously very small of about 0.22% compared to other crops which are planted by transplanting. 

This means that maize crop lands experience high levels of water evaporation from the start of 

the season if no field management practices have been put into place such as mulching. The 

maximum canopy cover (CC) a maize plantation can reach is about 85% CC which it attains at 55 

days after planting (DAP).  

Canopy cover is a conservative crop parameter since it depends on the sowing patterns and the 

growth habits of the crop, for example, the previously mentioned 85% canopy cover for maize 

crop which is reached after 55 days from the sowing date, applies when the seeds are sown at 2 

plants /hill with a distance of 75cm between rows and 60 cm between the hills within a row. With 

such sowing standards, the model calculates the plant density of 4.4plants/ m
2
 which is 

equivalent to 44,444plants/ha.  

During the model simulations, Aquacrop calculates the seedling canopy size in the initial stages 

of growth of about 5cm
2
/maize seedling. The low maximum canopy cover is attributed not only 

due to the planting patterns but also the vegetative structure and the size and shape of the crop 

leaves. The fact that maize has linear leaves, they do have a smaller surface area cover 

compared to plants like the leguminous crops with broad leaves. 

Starting from sowing, a maize crop reaches emergence stage after 7 days and then it takes 48 

days from emergency to the maximum canopy stage. From the maximum canopy stage, it takes 

maize crop 40 days to reach senescence stage shown in Figure  5.6. The rest of the days are just 

for maturing the grains till the end of the season at 120 days after planting. So in summary a 
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maize crop takes 7 days after sowing till emergency stage, 55 days from sowing till maximum 

canopy stage, 95 days from sowing to reach the senescence stage and finally 120 days to reach 

maturity.  

Considering the rooting depth, maize is a medium rooted crop with a prop root system. It reaches 

its maximum rooting depth at the same time the crop attains the maximum canopy. The maximum 

rooting depth is 1m and the model goes ahead to calculate the average root zone expansion of 

the crop which is 1.5cm/day. 

 

Figure ‎5.6 Effective Rooting depth and Maximum Maize CC reference (FAO, Aquacrop, 2016) 

5.7: The climatic parameters 
 

For a better performance and accuracy of the model, Aquacrop requires daily rainfall data, daily 

minimum and maximum temperature data, daily minimum and maximum relative Humidity, wind 

speed, carbon dioxide concentration and radiation data for the study area for all the study period. 

Even though there was full access to the daily rainfall data and temperature data, some other 

parameters had missing data for quite a longer period. This prompted to go to the local study 

area’s weather station in Soroti to inquire whether they also had the same data records as that of 

the National Meteorological center. With no objections, their records matched with the National 

data records I had obtained earlier. 

The atmospheric Carbon dioxide concentration used in this research to simulate the carbon 

dioxide requirement of maize was a default value from the Aquacrop model from Muana Loa 

between the years 1902 and 2099.  
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Evapotranspiration - Before simulating with Aquacrop, the model requires the user to provide all 

the necessary data needed to calculate the reference evapotranspiration (ETo). The user needs 

to provide data for the study area which includes the minimum and maximum relative humidity, 

wind speed and the sunshine or radiation data for the study period. Unfortunately there was 

limited data in all the climatic parameters needed to calculate ETo.   

For this reason therefore, ETo is calculated using the Blaney – Criddle Method which was 

explained in Chapter one earlier. It’s a theoretical method that only uses the temperature data to 

estimate ETo. It’s a simple method that is more recommended to be used in areas with high 

relative humidity, non windy and cloudy conditions.  

So many factors influence ETo for example the prevailing rates of evaporation and transpiration. 

Soil evaporation is mostly influenced by the solar radiation that reaches the top soil surface from 

the sun. The rate of evaporation on the cropped land is highest at the time of sowing when the 

canopy cover is zero. Water evaporating from the cropped land decreases as the crop growth 

increases. The more vegetative growth the plant attains, the less is the rate of soil evaporation 

from the soil surface due to the larger coverage of the soil surface by the plant leaves and 

branches.  

Crop Transpiration has an inverse relationship with soil evaporation in that when the evaporation 

is highest, crop transpiration can either be zero is very low. However as the evaporation rate 

decreases along the growth curve, transpiration starts to increase till it reaches the maximum at 

the maximum canopy cover and the maximum rooting depth.  

5.8: Model Results  
 

This section gives a detailed account of the results from the model simulation and their 

discussion.  

5.8:1: Rain-fed Production Analysis 
The initial simulations runs of the model were based on the existing agricultural system in the 

study area which is rain-fed agriculture without considering any kind of supplemental irrigation. 

Crop yields are simulated depending on the soil characteristics, field practices and rainfall. A 

period of ten years from 2003 – 2012 is simulated and the simulated crop yields are presented  

Results from Error! Not a valid bookmark self-reference. show that there is no clear trend of 

either an increase or decrease in crop yields since 2003 and 2012. However the yields only 

increased or decreased depending on the amount of rainfall received during the particular 

season. It can be observed from the table that an increase in yields is influenced by a higher 

amount of rainfall received in the growing season. It’s clear from the table that water productivity 
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ET and Transpiration (Tr) only increased with an increase in seasonal rainfall too. However the 

reference evapotranspiration (ETo) and the potential biomass yield was almost the same for all 

the seasons since they’re localized parameters which depends on the average weather 

conditions and soil characteristics. The Actual yield (Green Biomass yield) and the Dry yield 

which is the grain yield for each season varied due the fact that it is dependent on rainfall and 

other factors that influence production. 

Table  5.1. ETo refers to Reference Evapotranspiration in mm. Tr is the Transpiration in mm. ET is 

the Evapotranspiration which is the total amount of water lost into the atmospheres through 

evaporation and transpiration in kg yield/m
3
, Potential yield is the yield of a crop cultivar grown in 

a water and nutrient non-limiting environment and free from all pests and diseases in other words 

the maximum yield a crop can attain. The actual yield is amount of crop that can be harvested per 

unit land area i.e. the green biomass yield while the Dry yield is the amount of dry crop (grains) 

harvested per unit land area both measured in tons per hectare.  

Results from Error! Not a valid bookmark self-reference. show that there is no clear trend of 

either an increase or decrease in crop yields since 2003 and 2012. However the yields only 

increased or decreased depending on the amount of rainfall received during the particular 

season. It can be observed from the table that an increase in yields is influenced by a higher 

amount of rainfall received in the growing season. It’s clear from the table that water productivity 

ET and Transpiration (Tr) only increased with an increase in seasonal rainfall too. However the 

reference evapotranspiration (ETo) and the potential biomass yield was almost the same for all 

the seasons since they’re localized parameters which depends on the average weather 

conditions and soil characteristics. The Actual yield (Green Biomass yield) and the Dry yield 

which is the grain yield for each season varied due the fact that it is dependent on rainfall and 

other factors that influence production. 

Table ‎5.1 A decade Analysis of Rain-fed Agriculture for the growing season (March – June) 

Year Seasonal 

Rainfall 

(mm) 

ETo 

(mm) 

Tr 

(mm) 

ET 

(kg yield/m
3
) 

 

Potential 

Yield  

(ton/ha) 

Actual  

Yield  

(ton/ha) 

Dry Yield 

(ton/ha) 

2003 795 537 339 1.42 13.67 13.3 6.808 

2004 426 553 226 1.16 13.7 8.6 4.285 

2005 608 539 309 1.38 13.8 12.2 5.986 

2006 423 534 229 1.14 13.8 9.0 4.061 
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2007 510 546 287 1.56 13.9 11.7 6.321 

2008 409 528 176 1.01 13.9 7.1 3.389 

2009 360 532 201 1.13 14.0 7.9 3.915 

2010 628 525 347 1.53 14.0 14.0 7.022 

2011 423 551 313 1.47 14.1 12.6 6.252 

2012 647 524 281 1.34 14.2 11.8 5.692 

 

     

5.8:2: Net irrigation water needs for Maize 
Figure  5.7 represents the Net irrigation seasonal water needs for maize analyzed for ten years 

using the model. The upper line graph shows the Net seasonal Supplemental irrigation water 

needs to keep the soil moisture always at a fixed level which is between the threshold for leaf 

expansion and the threshold for stomata closure. The maximum values for net irrigation water 

needs are observed with years that have low amounts of rainfall during the growing seasons and 

these are mainly 2004, 2006, 2008 and 2009. The lower line graph represents the potential 

annual surface runoff that can be collected over a catchment area of only one hectare calculated 

using the model.  

Aquacrop is used to calculate the total annual cumulative surface runoff that can be collected 

over a catchment of one hectare. In reality, a catchment area can be either bigger or smaller than 

one hectare depending on the slope which influences the gravitational flow of the runoff to the 

collection point. Aquacrop also calculates the net irrigation water needs using the threshold called 

the Allowable root zone depletion. This is expressed as a percentage of Readily Available Water 

(RAW). So Figure  5.7 tries to give a realistic picture about the needed amount of water for 

irrigation (demand) and the potentially available annual surface runoff that can be used as 

irrigation water (supply). 

Readily Available Water (RAW) is the water which can be easily extracted from the soil by the 

growing crops. RAW is 0% at field capacity, 50 % at the first threshold of leaf expansion and 

growth and finally RAW becomes 100% at the threshold for stomata closure. There are different 

ways to calculate the net irrigation water requirements depending on the crop under cultivation, 

rainfall availability, variety of the crop, evapotranspiration and also the available soil moisture. In 

this study, the net irrigation water needs for maize are estimated by keeping the soil moisture 
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between the two thresholds, the threshold for leaf expansion and the threshold for stomata 

closure.  

At this level, RAW is 75%, this means that the available water in the soil root zone is not in 

excess to initiate runoff and still the level of soil moisture is not very low to create a negative 

effect on the growth and production of the crops. When the soil moisture is kept at 50% RAW, 

most of the water is used for leaf expansion and canopy growth, meaning less water is left for 

grain formation. At the same time when the soil moisture is kept at 100% RAW, the available 

water in the soil root zone is not enough which triggers the closure of the leaf stomata hence 

reducing the crop water productivity.  

 

Figure ‎5.7 Net Irrigation water needs and Potential Cumulative Annual runoff (Irrigation Demand 

Vs Supply) 

5.8:3: Reducing the Maize water gap  
Figure  5.8 compares the average seasonal maize water needs for the study area which is set at 

580mm for each season while keeping other factors constant, the total seasonal rainfall received 

over the study area for a period of ten years and then a combination of total seasonal rainfall and 

Annual cumulative runoff supplied as supplemental irrigation.  The later assumes a scenario 

where supplemental irrigation can be applied using surface runoff. These values per unit area are 

calculated using the model to give an insight about the existing irrigation water gap between the 

seasonal crop water needs and the seasonal cumulative rainfall. The growing season in the study 

area is from March to June. These results explains the significance of supplemental irrigation 

using runoff water as to reduce the water gap between what is needed and what is supplied.  

Maize crops require an average seasonal water needs between 500 – 800mm depending on the 

cultivar of the crop, soil characteristics and climatic conditions of the area. The seasonal water 
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needs for maize in the study area is 550mm or more, that’s why it is set to a constant value in all 

the growing seasons for the different years. 

 

Figure ‎5.8 Irrigation water gap 

5.8:4: Optimization of the pond size/volume 
Different simulations and continuous runs are conducted in this study to find answers for the 

research questions that were stated in the first chapter. After estimating the cumulative total 

annual surface runoff by the model, the study found that the maximum amount of runoff that can 

be collected from a hectare catchment is 100mm and the minimum at about 30mm. With these 

values, different alternative pond volumes are proposed that can be used to collect the all year 

around runoff for supplemental irrigation of maize in the critical stages. The capacities that are 

examined in this study are 1000, 800, 600 and 400 m
3
 pond volumes.  

Figure  5.9 shows the total yields in ton/ha with Rain-fed Agriculture alone and Supplemental 

Furrow Irrigation using different pond volumes over the critical growth stages of maize crops 

under a one hectare land. The study found that that the optimal pond capacity is 800 cubic meter 

pond for surface runoff to supply irrigation water for an agricultural land area of one hectare. As 

elaborated earlier in Chapter 4, the study analyzes the four different pond capacities of 1000, 

800, 600 and 400 cubic meter volumes to supplement rain-fed system. Of all the four volume 

alternatives, the 800 cubic meter pond is estimated to be the optimum pond volume and the most 

efficient pond capacity that gives the highest increase in yields in for a hectare of agricultural 

land.  
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Figure ‎5.9 Yield (ton/ha) for Supplemental Furrow Irrigation  

In other results, Figure  5.10 shows rain-fed and supplemental Drip irrigation for maize. As an 

alternative form of irrigation, this study tested the possible yields by using drip irrigation in the 

model simulation. Drip irrigation and furrow irrigation are two quite different types of irrigations. 

They differ in all means such as the way irrigation water is applied to the crops, pressure and 

speed of application, flow rates, etc. The most common form of irrigation in cereal crops in 

particular maize is the furrow irrigation. Although it is a cheap method to use, it consumes a lot of 

irrigation water whereby more than 40 - 60% of the soil surface is covered. Water coverage is 

greater in closely spaced crops. However the drip irrigation system is more preferred for water 

efficiency since it only covers about 30% of the soil surface. The drip system specifically supplies 

water at the exact point of the crop stand. So both systems are tested in this study to see which is 

more productive. Figure  5.9 and Figure  5.10 illustrates furrow and drip irrigation respectively. This 

study found very miniature differences between the yields of the two systems. Nevertheless it’s 

the drip irrigation that had higher values in yields than the furrow irrigation in some few seasons.  

Figure  5.10 show the total yields in ton/ha with Rain-fed Agriculture alone and then Supplemental 

Drip Irrigation using different pond volumes over the critical growth stages of maize crops under a 

one hectare land. Although irrigation of the maize croplands in most parts of the globe is furrow 

irrigation, this study tried to test the maize yield with drip irrigation. The results presented in 

Figure  5.10 shows the maize crop yields using the drip system. Results are not that different from 

the results achieved with furrow irrigation except in a few seasons. Additionally the cost of drip 
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irrigation being higher than that of furrow irrigation, the later is normally preferred for maize crop 

irrigation. 

 

Figure ‎5.10 Yield (ton/ha) for Supplemental Drip Irrigation 

The graph in Figure ‎5.11 illustrates the yield relationship between furrow and drip irrigation using 

the 800 cubic meter pond to irrigate a hectare of maize cropland. This is intended to compare the 

maize yields that could be attained while using both of the irrigation systems. The yields turned 

out to be almost the same just with few differences in the case of drip irrigation. The main 

difference that is spotted in this comparison is the irrigation efficiency. Drip irrigation uses less 

water compared to the furrow system though with fewer differences in yields while applied on the 

same acreage of cropland.  
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Figure ‎5.11 Furrow and Drip irrigation 

5.8:5: Temperature and Rainfall variability 
The study also applied some statistical tools to find out the influence of temperature on rainfall. 

When the climatic data (daily rainfall and daily average temperature) was subjected to regression 

in SPSS statistical analysis, daily average temperature was analyzed as the independent variable 

while daily rainfall was the dependent variable. From Figure  5.12, R Square indicates that the 

independent variable (daily average temperature) explains a 2.4% in the change (variation) of the 

dependent variable (daily rainfall). The SPSS results indicate that the model is significant at a 

95% confidence interval. The results also show that when the temperature increases by one unit 

(degree), the amount of rainfall decreases by 0.947 units (mm).  

 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .156
a
 .024 .024 8.78714 

Figure ‎5.12 Regression Analysis 

5.9: Discussion of Model Results 

5.9:1: 10 years Rain-fed analysis 
Amongst the 10 analyzed growing for seasons rain-fed reductions, some of the seasons received 

more rainfall than the others and hence they experienced few or no dry spells during the season, 

these include 2003, 2005, 2007, 2010 and 2012. These years had a cumulative seasonal rainfall 

greater than 500 mm. whereas the other years 2004, 2006, 2009, and 2011) experienced 
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frequent dry spells and the cumulative amount of rainfall received during the growing season was 

low and below 500mm.  

The results from the model show that crop failures can be caused by short term agricultural 

droughts which can occur for just few days and the yields can be greatly reduced. This is 

evidenced from the simulated results of the model more particularly with the water stressed 

seasons such as the 2004, 2006, 2008 and 2009 which had very low dry yields without 

supplemental irrigation. Some seasons however like 2003, 2005, 2007, and 2012 had no water 

stress during the growth seasons, they therefore had a low yield increment of a maximum of 11% 

with supplemental irrigation. Seasons of 2003 and 2010 had the lowest yields with supplemental 

irrigation due to the fact that they received abundant rains during the growing season. 

5.9:2: Net Irrigation water needs 
In regards to the net irrigation water needs of maize, Figure  5.7 shows a comparison between 

what is needed and what can be potentially supplied. Setting the soil moisture level at 75% 

creates limited tension or stress to the crop whereby it directs most of its available water needs to 

grain formation. This moderate level of water stress in the soil root zone induces more grain 

formation in many cereal crops. Actually soil root zone moisture at 75%RAW is known to have a 

positive increment on the crop yields. A percentage increase in the value of RAW means a 

decrease in the amount of soil moisture in the root zone till it reaches 100% at the threshold for 

stomata closure. 

The irrigation water needs corresponds to the area subjected to the amount of soil moisture in the 

soil root zone. If the Allowable root zone depletion reaches 75% RAW, irrigation is initiated and 

when the amount of soil moisture is greater or equal to 75%, irrigation is terminated.  Figure  5.7 

shows that the net irrigation water requirements is still high even when set at a considerable RAW 

value with minimal moisture stress to the crop. This amount of water needed to cope with the 

irrigation demand can be achieved maybe with a larger catchment area, additional underground 

water pumping or stream diversion.  

Aquacrop also estimates the potential cumulative runoff that can be collected in a year from a 

catchment of one hectare. These values for each year are compared to the net irrigation water 

requirements in the growing seasons. The results show that there is a limited possible water 

supply for irrigation of the crops from one hectare catchment. So, unless the catchment area is 

bigger than one hectare, there is need for additional irrigation water supply. Actually the 

maximum cumulative runoff estimated by the model annually is about 100mm from a catchment 

area of one hectare. This water is not even half the irrigation water demands for a full irrigation 

schedule for maize crops. This is why this study proposed a supplemental irrigation system and 

more specifically to be applied in only the critical growth stages of maize. 
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5.9:3: Reducing the maize water gap 
In a way to cope with the water shortage in rain-fed agriculture, Figure  5.8 presents a better 

solution of how the water gap in maize production can be reduced. Applying supplemental 

irrigation reduces the moisture water demands by more than 50%. For a better understanding of 

this illustration, the maize seasonal water needs in the study area is 550mm and so it is set 

constant for all the growing seasons. It can be seen that, applying supplemental irrigation actually 

provides close to the needed seasonal water needs required by the maize crop to flourish and 

produce good yields. 

In case of supplemental irrigation, results in  

Results from Error! Not a valid bookmark self-reference. show that there is no clear trend of 

either an increase or decrease in crop yields since 2003 and 2012. However the yields only 

increased or decreased depending on the amount of rainfall received during the particular 

season. It can be observed from the table that an increase in yields is influenced by a higher 

amount of rainfall received in the growing season. It’s clear from the table that water productivity 

ET and Transpiration (Tr) only increased with an increase in seasonal rainfall too. However the 

reference evapotranspiration (ETo) and the potential biomass yield was almost the same for all 

the seasons since they’re localized parameters which depends on the average weather 

conditions and soil characteristics. The Actual yield (Green Biomass yield) and the Dry yield 

which is the grain yield for each season varied due the fact that it is dependent on rainfall and 

other factors that influence production. 

Table  5.1 shows a percentage increase of between 25 to 50% compared to rain-fed system 

alone. These four seasons were actually considered as dry years by the Ugandan government 

since they had frequent dry spells and droughts that lead to the failure of almost all the crops 

nationwide and also led to the death of animals since there was inadequate water to feed the 

livestock (GOU, 2007).  

This study’s findings conform to the studies conducted by Rockstrom & Barron (2007) who 

reported that their crop yields increased by over 60% compared to rain-fed system. Other 

researchers found relatively similar results with just in the increment in yields for example 

Pandey, et al. (2013) Reported that growth seasons which were supported with supplemental 

irrigation during the growth cycle of crops had a 74% increase for dry seasons or water stressed 

seasons compared to the rain-fed. They also reported a maximum of 14% yield increase for the 

case of wet years or seasons that didn’t experience water stress. 

5.9:4: Optimization of the pond size/volume 
Optimization results from this study found that the 800 cubic meter pond is the optimum water 

storage pond for a one hectare crop land of maize. Results show that actually the larger 100 
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cubic meter pond was found to have relatively similar crop yields with supplemental irrigation. 

Similar findings have also been reported by a number of authors (Pandey, Panda, & Panigrahi, 

Sizing on-farm reservoirs for crop-fish integration in rainfed farming systems in Eastern India. , 

2006) (Pandey, Soupir, Singh, Panda, & Pandey, 2011) (Panigrahi, Panda, & Mull, 2001) who 

suggested that small water reservoirs for water collection during heavy rainfall events can 

produce a significant increase in crop yields when the water is supplied to the crops during the 

periods of critical water needs. 

Findings from different authors (Rockström & Barron, 2007) (Pandey, Zaag, & Soupir, 2013) who 

have done related studies concerning runoff harvesting for supplemental irrigation of different 

crops in different locations for example in Kenya (East Africa) and Burkina Faso (West Africa) 

have reported up-to 38% increase in crop yields with smaller pond capacities. 

Furthermore (Pandey, Panda, & Panigrahi, 2006) emphasized the use of smaller water ponds 

and in their study, they reported a higher increment in crop yields by developing smaller sized 

ponds for dry spell mitigation. Despite the many conducted studies on runoff harvesting, there 

seems to be few published data specifically for supplemental irrigation of maize crops which 

happens to be the staple food for most of the sub-Saharan African countries (Pandey, Zaag, & 

Soupir, 2013). Additionally (Rockström, Barron, & Fox, Water productivity in rain-fed agriculture: 

Challenges and opportunities for smallholder farmers in drought-prone tropical agro- ecosystems 

in Water Productivity in Agriculture: Limits and Opportunities for Improvements, 2003) estimated 

a pond size of 600 -900 cubic meters of water for supplemental irrigation in the case of sorghum. 

These authors went further to test the significance of their results (increment in crop yields) and 

they found out that they were significant.  

There have been fewer research studies that were conducted in line to the economic feasibility of 

rainwater harvesting using excavated ponds as storage facilities to supplement rain-fed 

agricultural system. As the different pond capacities were thoroughly analyzed in this study, 

results showed that using a 1000 cubic meter pond volume for supplemental irrigation of maize 

crops could rather just reduce the benefits from production. Meaning large reservoirs do not 

necessarily increase per capita income from maize production in particular. This contradicts with 

a study that was conducted by Hanjra, et al. (2009), they proposed that increasing the size of the 

water reservoir would increase the yield of the crops and hence the profits from production. 

Also a study by (Rockström, Barron, & Fox, Water productivity in rain-fed agriculture: Challenges 

and opportunities for smallholder farmers in drought-prone tropical agro- ecosystems in Water 

Productivity in Agriculture: Limits and Opportunities for Improvements, 2003) found that for a 

water pond of 2000 cubic meters of irrigation water was sufficient to increase annual crop 

production in rain-fed agricultural zones. In 2008, another study was conducted by (van der Zaag 

& Gupta, 2008), these two authors had different findings too. They reported that 1000 cubic meter 
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pond of water storage from rainwater harvesting would produce the highest yields from 

agricultural production under a one hectare crop land. However, all the above findings were 

conducted on a variety of different crops, this study focuses on maize production and the 

supplemental irrigation is only supplied during the critical growth stages and hence triggered by 

the shortage in soil moisture. 

Large water facilities or dams do not only reduce benefits from production but also have negative 

environmental impacts. These findings were also presented by (McCartney & Smakhtin, 2010) 

who emphasized the fact that large water reservoirs have negative consequences to the 

community where they are established. First of all, large water reservoirs or dams occupy a very 

large surface area which reduces the area under crop production. Additionally some few studies 

have also presented similar findings that large water reservoirs/dams/ponds have negative social 

– environmental and economic impacts (FAO/IIASA, 2000). FAO reported that these big water 

facilities are very paramount in environmental degradation, distortion of the soil structure and 

underground water movement hence leading to disastrous natural disasters like floods, 

earthquakes and drought.  

5.9:5: Temperature and Rainfall variability 
Regression analysis is conducted to find out whether temperature has an effect on rainfall. The 

results presented in Figure  5.12 technically means that if there is an increase in daily temperature 

by one degree centigrade, rainfall will decrease by 0.947mm. However it should be noted that 

there are various factors that affect or influence rainfall occurrence. As stated in the previous 

paragraph, temperature only contributes 2.4% of rainfall occurrence; the other 97.6% is 

influenced by other different factors like topography, green cover, wind etc.  

5.10: Cost Benefit Analysis results and Discussion  
 

To develop the Cost Benefit Analysis, the yield benefits or yield values from the simulated 

historical data running from 2003 to 2012, they are converted into monetary form (money) by 

multiplying the yield in tons for each season basing on the current price of 1,200,000 UGX per ton 

as of the price of maize grain for 2017 (TradingEconomics, 2017). By this way the yield for the 

entire four pond capacities are monetized in addition to the rain-fed yield without irrigation. The 

irrigation method used to simulate these results was supplemental furrowing irrigation only.  

5.10:1: Monetary Yields for Different pond volumes for 10 years in UGX (Historical) 
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Table ‎5.2 summarizes the results of simulating the use of different pond sizes ranging 

from 400 – 1000 cubic meters water volumes. It shows how these pond sizes will affect the 

production for the years from 2003 – 20012 with the exact rainfall patterns in these years. 

The study used the ten years because it was assumed that these ten years are typical ten 

years not too wet and not too dry. So the assumption is that these ten years are typical 

years and can‎be‎repetitive,‎having‎twenty‎years‎study‎would‎mean‎that‎it’s‎another‎cycle‎

for these same ten years. It can observed from the results in  

 

Table  5.2 that the system without irrigation has the least cumulative value from the yields and 

followed by the supplemental irrigation system with the smallest volume of irrigation water i.e. 400 

cubic meter pond, then the 600, 800 and then the system with the highest amount of irrigation 

water in this case the 1000 cubic meter pond had the highest monetary value since it also has the 

highest grain yields. This is the historical benefit analysis for the systems and only based on the 

grain yield in accordance to the amount of water irrigated during the critical stages of the growth 

cycle. These results are used to calculate the Average Annual Growth.  

UGX is the Ugandan currency and $1 US is equivalent to 3550 UGX. 

 

 

Table ‎5.2 Historical Seasonal Monetary yields 

Season Different Pond capacities 

1000 m3 800 m3 600 m3 400 m3  No Irrigation 

2003 8,179,200 8,180,400 8,181,600 8,188,800 8,169,600 

2004 7,382,400 7,273,200 6,711,600 6,176,400 5,142,000 

2005 8,161,200 8,158,800 8,155,200 7,924,800 7,183,200 

2006 6,874,800 6,872,400 6,316,800 5,786,400 4,972,800 

2007 7,826,400 7,810,800 7,790,400 7,771,200 7,485,600 

2008 5,192,400 5,150,400 5,115,600 4,840,800 4,099,200 

2009 7,833,600 7,419,600 6,783,600 6,114,000 4,698,000 

2010 8,426,400 8,426,400 8,426,400 8,426,400 8,419,200 
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2011 8,154,000 8,154,000 8,154,000 8,154,000 7,702,800 

2012 8,500,800 8,498,400 8,250,000 7,814,400 6,830,400 

Total (UGX) 76,531,200 75,944,400 73,885,200 71,197,200 64,702,800 

Total (US $) 21,558 21,392 20,812 20,055 18,226 

 

Average Annual growth 

Basing on the monetary values for each season of the historical data, the Average Growth- Year 

over Year (YOY) is also calculated. The Annual yield is calculated with the following equation: 

 

Annual Yield Growth = Yield in Present year – Yield in Previous year   X 100      (9) 

      Yield in Previous Year 

 

From equationAnnual Yield Growth = Yield in Present year – Yield in Previous year   X 100      

(9) (SIBs, 2017), the study calculates the Annual Average growth for Irrigated agriculture which is 

found to be 2.86%, however this rate doesn’t take into consideration the rain-fed system alone 

(without irrigation) since it’s not part of the irrigation strategies. The calculated annual average 

growth rate is then used to forecast the future yield values for a period of 17 years.  

The period of forecast is selected to be 17 years to fit the life span of all the water lifting 

alternatives in this study, for instance, the rope and bucket has to be replaced every year, the 

treadle pump has be replaced every after 6 years, the solar pump has to be replaced every 10 

years and the diesel pump life span is estimated to be 20 years. In this case, setting a forecast of 

17 years meant to avoid any costs for any of the lifting techniques without considering the 

respective benefits. For example the costs and benefits of the treadle pump are only considered 

for only two replacements since its life span is 6 years.  

 

This still explains that the cost benefit analysis (CBA) does not include the costs for the third 

replacement nor its benefits. So, the would be third replacement for a treadle pump at 18 years’ 

time is avoided by limiting the CBA to only 17 years. The same scenario applies to the solar 

pump which has to be replaced only once, so the benefits and costs are only estimated before 

the second replacement. It’s obvious for the diesel pump because it does not need to be replaced 

for the period of 17 years yet the rope and bucket is replaced every year. 

The considered starting year for the forecast is the present year 2017 till 2034; however the 

presented table for average growth starts from 2012 simply because the historical data that was 

collected for this study is from 2003 to 2012. Since there were no records from 2012 till 2017, and 
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2017 is the baseline year for the future predictions, this study makes predictions for the missing 

years till 2017 so as to have a baseline from the current year (2017). The values are also 

presented in Ugandan currency. 

 

 

 

 

 

 

 

 

 

 

 

5.10:2: Average Growth YOY (Forecast) 

 

Table ‎5.3 Monetary Yield Value (Forecast) 

 

Season Pond capacities 

1000 m3 800 m3 600 m3 400 m3 No Irrigation 

2012 8,500,800 8,498,400 8,250,000 7,814,400 6,830,400 

2013 8,743,923 8,741,454 8,485,950 8,037,892 7,025,749 

2014 8,993,999 8,991,460 8,728,648 8,267,776 7,226,686 

2015 9,251,227 9,248,616 8,978,288 8,504,234 7,433,369 

2016 9,515,813 9,513,126 9,235,067 8,747,455 7,645,963 

2017 9,787,965 9,785,201 9,499,189 8,997,632 7,864,638 

2018 10,621,635 10,618,636 10,308,264 9,763,988 8,534,493 

2019 11,526,312 11,523,057 11,186,250 10,595,616 9,261,401 

2020 12,508,042 12,504,511 12,139,016 11,498,076 10,050,222 

2021 13,573,390 13,569,558 13,172,933 12,477,402 10,906,230 
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2022 14,729,476 14,725,317 14,294,911 13,540,139 11,835,146 

2023 15,984,030 15,979,517 15,512,451 14,693,394 12,843,181 

2024 17,345,437 17,340,540 16,833,693 15,944,874 13,937,074 

2025 18,822,800 18,817,486 18,267,469 17,302,947 15,124,136 

2026 20,425,995 20,420,228 19,823,364 18,776,691 16,412,304 

2027 22,165,738 22,159,480 21,511,780 20,375,958 17,810,189 

2028 24,053,660 24,046,869 23,344,003 22,111,439 19,327,136 

2029 26,102,383 26,095,013 25,332,281 23,994,737 20,973,287 

2030 28,325,601 28,317,604 27,489,908 26,038,441 22,759,644 

2031 30,738,177 30,729,499 29,831,306 28,256,213 24,698,152 

2032 33,356,240 33,346,823 32,372,128 30,662,879 26,801,767 

2033 36,197,291 36,187,072 35,129,359 33,274,529 29,084,554 

2034 39,280,323 39,269,233 38,121,432 36,108,620 31,561,773 

 

 

 

 

5.10:3: Net present Value (NPV) 
After the calculation of the yield forecast, the study goes further to calculate the discounted cash 

flow (DFC), by this kind of analysis, future cash flow from the forecasted yields is discounted to 

arrive to a present value for better comparison of the financial feasibility of the project under 

study. The equation for the present value is used to estimate the DFC from the present year 2017 

till 2034 (SIBs, 2017) i.e.  

PV = (1 + i) 
– n 

                (10) 

Where PV means the Present Value, i refer to the interest rate and n is the number of years. The 

interest rate that is used in this study is for the current year 2017 for the Ugandan economy which 

is 10% (TradingEconomics, 2017). All the values are presented in the Ugandan Currency UGX. 

The Net Present Values (NPV) is needed to better estimate the profitability of the project if 

farmers adopt and willingly invest their money in such a project of supplemental irrigation. Due to 

the fact that farmers only have one focal point in their farming system which is an increase yields 

hence an increment in income, the study calculates the NPV to measure the profitability of the 

investment.  In the appendix, Table  0.1 in the appendix presents the cumulative DCF to reach a 

total NPV of the establishment of the different pond sizes that are proposed in this study.  
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A similar concept of Net Present Value (NPV) for the water lifting techniques is also applied with 

all the different alternatives of lifting water from the storage pond to be delivered to the crops. 

This is also forecasted for 17 years from the present year 2017. Since the forecast is set at 17 

years, this period is longer compared to the life span of some of the lifting water techniques. This 

means that some of them will have to be replaced twice or more. Most probably all these future 

costs will have a different pricing different from the current prices, so they are subjected to an 

inflation rate. The inflation rate that is used in this study stands at 5.50% as of the trading 

economics of the Ugandan government (TradingEconomics, 2017). As described earlier in 

Chapter 4, the study tries to analyze the capital costs, operation and maintenance costs for all the 

alternative techniques which are: the rope and bucket, treadle pump, solar pump and diesel 

pump. The unit annual costs are presented at the end of Chapter 4.  

 



 

88 
 

5.10:4: Optimization of Supplemental Irrigation 
After the calculation of both the Net Present Values for the pond storage system and the water lifting 

techniques, in addition to the benefits from the supplemental irrigation scheme period, the most profitable 

duo system i.e. (the optimum pond volume and the most profitable lifting technique) in terms of money 

value is estimated. Figure  5.13 presents the most profitable supplemental irrigation for maize production 

in rain-fed systems. The presented values in the table are the profits for 17 years of applying the systems 

in Ugandan currency UGX. 

 

From the model results, the 800 m3 pond is proved to be the moat optimum pond compared to all the rest 

of the proposed volume alternatives. With the complete analysis of the cost-benefit, the study finds that 

the most profitable system is the 800 cubic meter pond along with the diesel pumping technique using 

furrow irrigation. Due to the high number of workers required for the rope and bucket system to carry out 

the manual irrigation activities, it makes the system unfeasible to implement on such a large scale of a 

hectare piece of land. All the values are in negatives, meaning no profits can be attained using such a 

method on a large scale. 

 

The rope and bucket system is a traditional method which has been used for decades. It was an option 

before the spread of other new techniques like the water pumps. Since the spread of the improved and 

more efficient techniques of water lifting, this system started fading and its use is only limited in the most 

rural and poor communities. Though still some few people think of it as an option for irrigating 

horticultural crops and vegetables. Most of these crops have a short growth period of less than 2 months 

and are grown on a very small piece of land of less than an acre such as home gardens, backyards etc. 

 

Regarding the treadle pump, actually it gives very good profits even more than the solar pump though 

still low compared to the diesel pump. The treadle pump is a new technique that has just been 

introduced in the country originally from South Asian countries. It requires only two persons to conduct 

the irrigation and it not that expensive to purchase. This means its operation costs and maintenance 

costs are lower. Concerning the solar pump, its profitability is lower compared to the treadle and the 

diesel pump. This might be because of its high purchasing costs since it is still a new technology in the 

area though it has very important significance of being environmentally friendly.  

 

The diesel pump presents the highest profits amongst others maybe because of its durability (very long 

life span if maintained well). However it poses a great challenge to the environment since the system 

uses fossil fuels to operate by burning fuel.   

Furthermore the study calculated the payback period or the break even period for the selected system 

(800m
3
 /diesel pump) to be 6.02 years. This means that after the 6 years, the farmer can have his/her 

total costs equal to the total revenue. 
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Figure ‎5.13 Profitability of different pond sizes with different lifting techniques 
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Chapter 6. Conclusions and Recommendations 
 

General Conclusions 

In efforts to handle the growing food demands, there is need to change the mindset of the poor illiterate 

famers in Africa. However much the governments try to invest in more of the same, it is unlikely to 

produce better results. Weather patterns are changing drastically and rainfall is becoming more erratic 

with non-uniform distribution. Farmers need to embrace the fact that rainfall is not anymore sufficient for 

their crops. In many of the rain-fed agricultural zones, low crop yields are attributed due to low soil 

moisture, inappropriate management of soil and other field practices. Shortage of soil moisture due to 

short droughts and dry spells especially during the critical crop growth stages (flowering and grain filling 

or formation) can lead to severe losses of crop harvests. Such challenges can be mitigated through the 

application of supplemental Irrigation as a strategy to minimize or reduce crop failures. 

This study presents a simple sustainable economic solution for the problem of crop reductions due to 

short droughts and dry spells during the rainy seasons. Maize being one of the most important staple 

foods in almost all regions of Sub-Saharan Africa, its production has greatly decreased because of water 

shortages during the growing period. So this study proposes that if a farmer can sacrifice 5% of his 

cropland to construct a micro storage system that can collect surface runoff and use it primarily during the 

crop critical growth period of 2 weeks for a maize crop, it can greatly reduce the crop failures to a larger 

extent. Such a system of a low finance can maintain higher crop production of any crop even when the 

area is subjected to intermittent droughts during the rainy seasons. The study suggests a small sized 

pond because large storage systems have a higher financial investment that may not be afforded by a 

small scale farmer unless there is an intervention by the government to fund such a project. 

The findings of the study further suggests an optimum sized pond of 800 cubic meters by volume to 

protect a one hectare piece of cropland from being severely affected by short droughts during the critical 

growth stages. This system proves to be more profitable with such a pond size but it if the farmer has a 

small piece of land less than one hectare, it is important and economical to use a small pond size. For 

instance, if the farmer practices all his/her agricultural activities on half a hectare of cropland, then it is 

better to have a 400 cubic meter sized pond.  

Conclusion related to the cost benefit analysis   

Furthermore the proposed scheme in this study is financially viable and economical. A cost benefit 

analysis is developed and the results shows that with such a low investment, there is a considerable 

increase in yields and the benefits can exceed the total costs in a few years. The calculated payback 
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period from the simulation model is 6 years which is quite a short time in the agricultural industry. This is 

achieved a employing a simple excavated open water pond lined with plastic polyethylene sheets for run-

off storage and covered with Azolla for control of mosquito breeding. Since almost all agro ecological 

zones in Uganda receive at least a single relatively heavy rainfall season annually, regardless of onset 

and distribution of rains, surface runoff harvesting during the wet seasons provides a tremendous 

opportunity for collecting and storing water. The stored water can sustain crop production when used for 

supplemental irrigation during periods of drought or intermittent rains. Such a relatively cheap technology 

could greatly facilitate the up scaling of rainwater harvesting for small scale irrigation; this would in turn 

facilitate continuous crop production during the growth seasons and reduce crop failures in times of 

drought. This would thus boost farmers’ yields and prevent crop loss due to insufficient or unevenly 

distributed rainfall.  

Conclusion related to the model  

The study makes use of the crop water productivity model (Aquacrop) to estimate and predict the yield of 

supplemental irrigation using data from the study area in Eastern Uganda. The model is found very useful 

in relating climatic data more particularly rainfall patterns to crop yields. Model simulations and runs 

shows that years that had higher amounts of rainfall during the growing seasons exhibited higher crop 

yields compared to the seasons with low rainfall amounts.  Such a model can be utilized for other 

locations anywhere in the world to estimate crop yields in relation to rainfall patterns for that specific 

location. It is observed from the model that benefits from supplemental irrigation can vary between growth 

seasons depending on the rainfall patterns and distribution, type and cultivar of the crop, time of water 

application, cultural practices like mulching, fertilizer applications and other so many other factors which 

contribute to the final yield of the crops.  

The setbacks for adopting such a system may range from, illiteracy, low economic power and lack of 

skilled extension workers to teach and spread the awareness amongst the local farmers of such practices 

to mitigate drought. To facilitate adoption by small holder farmers will necessitate the organizations 

spearheading the promotion of rainwater harvesting for supplemental irrigation to focus on cheap and 

locally available technologies. One such technology which is the focus of this research is having an open 

excavated plastic lined pond; cultivated with an aquatic plant (azolla) and an irrigation water lifting system 

that best suits the farmer depending on his/her financial ability. 

Recommendations for the farmer 

The study findings proved that for supplemental irrigation of maize, a pond capacity of 800 cubic meters 

with a diesel pump can produce the highest yields per unit area. This system proves to be more profitable 

but it may have limitations due to the high initial investment. So for a small scale farming business, it can 

only be implemented by some few farmers but not all of them due to financial constraints. Meaning that 

with whatever pond size that may be established, the diesel and solar pumps leaves the farmer with 
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fewer choices to be applied because of their high initial costs except with some financial support from the 

government or Non-Governmental Organizations (NGO’s). 

However, considering the farmers’ context in the region and the study area in particular, their financial 

capability is low since they mostly practice subsistence farming. This means that they grow most of their 

food for home consumption while a surplus is for trade, this practice can be sustainable though it keeps 

the farmers’ economic power always low.  So a better recommendation would be having the optimum 800 

cubic meter pond for a one hectare piece of land with a treadle pump because it is cheaper to purchase 

and maintain compared to the solar or diesel pump and it can also be operated by the family labor without 

employing external labor.  

This system (800m
3
/treadle pump) is also a profitable venture that has a shorter payback period and at 

the same time it can help sustain production while reducing crop failures and it requires lesser capital that 

can be afforded by the local farmer. Due to the lower capital investment and the use of the family labor 

(two operators), the farmer can easily secure a small loan that can be easily paid back from the farmers 

groups or from a banking institution. Fencing around the pond is also recommended for safety reasons. 

 In case of a smaller cropped area that is less than a hectare of land (approx 3 acres), then a smaller 

capacity pond of about 300 - 400 cubic meters would be recommended but still with a treadle pump. The 

rope and bucket technique can be best while cultivating vegetable crops which are characterized with a 

smaller cropping area of less than an acre of land. The farmer in this case can easily lift water in a bucket 

and with the guidance of the gullies or furrows; water can be delivered to the different parts of the 

gardens. 

Recommendations for further research  

First and foremost additional research in the area of supplemental irrigation is very vital due to the fact 

that there is only few published data in such a broad and important area of research. In this study, we 

considered a number of assumptions to generate the study’s results. These results are based on the data 

from the study area, so the results are area specific. This means that if the model is applied to other 

areas with different climatic and soil data, the results may be different. The crop under investigation in the 

study is a maize crop which still has different moisture critical stages, different water needs and as well 

different growth patterns compared to other crops. So all these differences are possible areas of research 

which needs to be covered.  

The study did not give an account or details of the pond balancing for the whole year, it only focused on 

the two weeks critical period of supplemental irrigation during the growing season of the maize crop. 

Further research could be of greater significance with more realistic results if the full year pond balancing 

is put under consideration. The study proposes growing azolla on the pond during the whole year when 

the pond is not under its primary use. However the economic benefits of this plant are not analyzed nor 
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the value of the 5% sacrificed piece of land that is used for the establishment of the storage pond. These 

are all potential areas of future research.  

The study further generates some important research questions that may be used in my future further 

studies or used by other researchers who have interest in this area of concern. Among the research 

questions are: 

 What if the calculated cost of the pond can be done in a more realistic way that could give a slightly 

different pond size? 

What if the calculated size of the pond can be done using a longer rainfall records of more than 10 years, 

would climate change have a serious effect on the length of the drought period and if so, by how many 

additional days? 

What if the supplemental irrigation is set to be applied also during other growth stages in case of 

occurrence of a short drought or dry spell? 

So if all these assumptions can be revisited and modified, maybe the results can be also improved. 

Yield improvement in crop production is not only attributed by the soil moisture content, it’s a combination 

of so many other factors which include field practices like mulching, fertilizer application, deep plough, 

weeding, crop-rotation and so many other practices. These in combination with supplemental irrigation 

can give tremendous yield results at the end of the growing season. More research with such settings of 

combining supplemental irrigation with such practices is still lacking.  

Lastly there is great need of conducting participatory research with full inclusion of women in all 

agricultural community research projects because women play a central role in food production among 

the developing countries. More research should also be done in areas of macro water harvesting systems 

since the production with small micro or in-situ harvesting strategies is gradually deteriorating. Such 

systems were significant with reliable rainfall and at the times of occasional infrequent drought.  
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Appendix  

 

Table ‎0.1 Net Present Values for the projected 17 years for different pond volumes 
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