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ABSTRACT 

It is becoming more urgent every day to find an efficient alternative to fossil fuels. This need 

motivates the search for a low-cost and stable photocatalysts to split water and generate hydrogen gas as a 

clean and renewable source of energy. In this thesis, novel TiO2-CuO and TiO2-Cu composite nanofibers 

were fabricated and tested for solar hydrogen generation. The effect of annealing the nanofibers in different 

atmospheres on their crystal structure and morphology was investigated and correlated to the photocatalytic 

activity of the materials using XRD, electron paramagnetic resonance (EPR) techniques, transmission 

electron microscopy TEM, and Fourier transform infrared FTIR. The optical properties of the fabricated 

nanofibers were investigated using UV-Vis spectroscopy. The absorption spectra showed that the addition 

of both CuO or Cu to TiO2 shifts the absorption edge into the visible region of the solar spectrum. The 

photocatalytic activity and stability of the fabricated nanofibers were tested in a UV-reactor. The metallic 

copper supported TiO2 nanofibers showed significant enhancement in the amount of hydrogen evolved 

during the photocatalytic water splitting process. This enhancement can be related to the distinct 

characteristics of the material including, high surface area and increasing the life time of the photogenerated 

charge carriers that results in efficient charge separation. The fabricated TiO2-CuO composite nanofibers 

showed 117% enhancement in the amount of hydrogen evolved during the photocatalytic water splitting 

process compared to TiO2 nanofibers. On the other hand, TiO2-Cu composite nanofibers showed 344% 

enhancement compared to that of TiO2 nanofibers. The study showed that Cu is a promising alternative to 

noble metals as a catalyst in photocatalytic water splitting, with the advantage of being an earth abundant 

element and a relatively cheap material. 
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Chapter 1 

1 Introduction and Scope of the Thesis 

1.1 The Energy Demand 

1.1.1 Energy Demand and Environment Global Considerations 

The increasing demand on energy and the need for a solution for the global warming problem are 

two major challenges that are being studied globally. The International Energy Agency (IGA) published 

the World Energy Outlook 2011, in which they expect the global energy demand to increase dramatically 

by 40 % from 2009 to 2035. Today, the world mainly depends on fossil fuels as the primary sources of 

energy to satisfy the energy demands of the globe, Figure 1.1.b. However, these resources are nonrenewable 

and have negative impacts on the environment.1–3 Combustion of fossil fuels results in air pollutants, such 

as, heavy metals and sulfur oxides, as well as increasing the concentration of CO2 in the atmosphere, as 

shown in Figure 1.1a. CO2 is a greenhouse gas and one of the main causes of the global warming 

phenomena.4–6  

1.1.2 Renewable and Clean Sources of Energy 

As mentioned in the previous section, the world is depending mainly on fossil fuels to get the 

energy needed for human beings to sustain. However, human population is increasing rapidly and more 

fossil fuels are being consumed, resulting in more polluting emissions. Therefore, the need for sustainable 

and clean sources of energy became an urgent need. Different Renewable energy sources have been 
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introduced during the past few decades, such as wind power, hydro power, solar energy, bioenergy, and 

geothermal energy.7 In this thesis, our interest is mainly about solar energy-driven hydrogen production.  

Hydrogen gas is an energy source that can provide almost three times the energy provided by gasoline for 

instance, with the advantage of being a sustainable and clean source of energy that when combusted does 

not release any polluting gases.8 

 

 

Figure 1.1. (a) Energy-related CO2 emissions. (b) World primary energy demand of fuel.2 
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1.1.3 Energy Driven Water Splitting 

According to thermodynamics, water splitting is a nonspontaneous reaction. This means that energy 

must be introduced to the system to drive the reaction. As shown in Figure 1.2, different forms of energy 

can be used to provide the system with the energy needed, such as, electrical, thermochemical, biochemical, 

photonic energy, or hybrid of two types or more.7 This thesis mainly targets utilizing photonic energy to 

perform photocatalytic water splitting.   

 

Figure 1.2 Different water splitting techniques using photonic, electrical,  thermal, and biochemical 

energy or hybrid systems.7 

1.2 Photocatalysts 

1.2.1 Design and Description 

An efficient photocatalyst for photocatalytic water splitting should have a band gap of at least 1.23 

eV and be stable against photocorrosion. Moreover, small size and high crystallinity are favorable to 

enhance charge separation and minimize the losses due to charge recombination. So far, various groups of 
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materials have been tested as catalysts for water splitting such as, metal oxides, nitrides, sulfides, 

perovskites, lanthanides and phosphates with d10 and d0 electronic configuration, etc.9 

1.2.2 Restrictions of the Photocatalyst Material 

 Figure 1.3 summarizes the band structure of different semiconductors and their positions with 

respect to the redox potentials of water, and the limitations related to each one of them. The first problem 

is having a large band gap that reduces the absorption to a very small part of the solar spectrum, and 

accordingly the electrons in the valence band requires high energy to be excited to the conduction band. 

Another issue arises if the catalyst’s band edge position is not suitable for the electrons in the conduction 

band and holes in the valence band of the semiconductor to be transferred to the water molecules to perform 

the targeted redox reaction. Finally, some of the catalysts explored are not stable, thus they are easily 

corroded after a very short time.10  

1.2.3 Suggested Solutions 

The problems mentioned in the previous section can be overcome by doping these photocatalysts 

by ions such as V5+, Ni2+, and Cr3+. These transition metal cations can narrow the band gap of the 

semiconductor and extend its absorption towards the visible region of the solar spectrum. Co-catalysts such 

as Pt, NiO, Au, and RuO2 can be used to overcome charge recombination and facilitate the charge transfer 

process due to the electric field formed because of the heterojunction at the metal/semiconductor interface, 

this can greatly enhance the efficiency of the overall water splitting process.9 
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Figure 1.3 Band gap energies and band edge potentials of different photocatalytic materials.10 

1.3 Electrospinning Technique 

The previously mentioned limitations accompanied with the use of fossil fuels lead to the need to 

find alternative sources of energy that are renewable, sustainable, and environmentally friendly, such as, 

solar energy, nuclear power, geothermal energy, wind power, biofuel and biomass.4,11–13 The increasing 

demands for materials that is efficient for such technologies resulted in expanding the research conducted 

on nanosized materials, especially one-dimensional (1D) nanostructures, such as nanotubes, nanowires, and 

nanofibers due to their unique properties.3,11,14–16 Up to now, different techniques have been established to 

fabricate 1D nanostructures such as, template directed, hydrothermal, interface synthesis technique, 

lithography, chemical vapor deposition, focused ion beam writing, self-assembly, and electrospinning.17 

Nevertheless, most of these techniques have limitations, such as complexity, high cost, and material 

limitations. This attracted the attention to the electrospinning technique, as it is a simple and low-cost 

technique. Electrospinning technique is mainly used to fabricate nanofibers structure. It can be applied to 

metals and ceramics using natural and synthetic polymer alloys.17,18 Modified electrospinning technique 

can also be used to fabricate hollow fibers, helix fibers, core-shell fibers, and porous fibers. 
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1.4 Scope of the Thesis 

The aim of this study is to fabricate one-dimensional nanofibers of titanium and titanium-copper 

composites and study the effect of different annealing atmospheres (oxygen, air, and argon) on their crystal 

structure, band structure, absorption, and photocatalytic activity towards water splitting. The incorporation 

of CuO with its smaller band gap, would greatly enhance the light absorption characteristics of TiO2. Also, 

the possibility to keep copper in its metallic state (zero oxidation state) is expected to enhance the 

photocatalytic water splitting activity of TiO2.  

Chapter 1 gives an overall idea about the increasing energy demand and the negative impacts 

caused by combustion of fossil fuels, also how to reduce carbon dioxide emissions in the atmosphere. The 

chapter also discusses the meaning of a photocatalyst, the restrictions of the material selected. Finally, it 

describes the concept of electrospinning. 

Chapter 2 summarizes the scientific background needed for this thesis. The concept of 

photocatalytic water splitting is explained, why to use metal oxides nanostructures, the unique properties 

of TiO2 and its limitations as a photocatalyst, and finally, doping and incorporating other metals, such as 

copper to enhance the utility of TiO2. 

Chapter 3 gives an overview of the recent literature on nanofibers for photocatalytic water splitting 

and the unique properties offered by the nanofibers structure. 

Chapter 4 shows the experimental design used in the fabrication process starting from solution 

preparation, electrospinning, annealing in different atmospheres, and finally the characterization techniques 

used. 

Chapter 5 discusses the first part of the thesis, concerning the fabrication of TiO2-CuO composite 

nanofibers and their morphological, thermal and structural analysis. Besides, their optical, photocatalytic 

and photoelectrochemical behavior. 
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Chapter 6 discusses the second part of the thesis, which is Cu0 nanoparticles/TiO2 composite 

nanofibers for photocatalytic water Splitting. It includes morphological features, optical and structural 

properties of the composite, and finally the photocatalytic activity of the composite nanofibers for water 

splitting. 

 Chapter 7 presents the suggested strategies that can be applied to further improve the efficiency 

of the materials used as photocatalysts for water splitting.  
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Chapter 2 

2 Background 

2.1 Photocatalytic Water Splitting  

2.1.1 Hydrogen Generation by Water Splitting  

The water splitting process involves two main reactions as shown in Eq. 2.1, 2.2, and 2.3. 

According to thermodynamics, the process of water splitting is a nonspontaneous process, as the calculated 

Gibb’s free energy for the two half reactions is positive (ΔGH2O
o = 238 kJ mol−1).8 Also, ΔE0 = -1.23 V vs 

SHE, where the negative value of ΔE0 indicates that water splitting reaction is thermodynamically 

nonspontaneous. Thus, the system needs external energy to perform the required reaction, which can be 

provided by applying a bias of 1.23 V to enforce the reaction to proceed.19  

 

Oxidation: 2𝐻2O → 𝑂2  +  4𝐻+ +  + 4𝑒−    𝐸0 = 1.23 V vs SHE                       (2.1) 

Reduction: 2𝐻+ +  + 2𝑒− → 𝐻2                      𝐸0  =  0.00 V vs SHE                     (2.2) 

Overall: 2𝐻2O +  2 𝑒−    → 2𝐻2 + 𝑂2        Δ 𝐸0   =  −1.23 V vs SHE                 (2.3) 

2.1.2 Water Splitting 

The Electrolysis process mainly involves dissociating the bonded elements in a compound by 

applying a bias through them. In water electrolysis H2O molecule is decomposed into oxygen and 

hydrogen gas. Usually the electrolytes should contain free ions for the medium to be electrically 
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conductive. This setup used in this process is typically composed of two electrodes, anode (performs the 

oxidation reaction), and cathode (performs the reduction reaction). The main limitation with the 

electrolysis technique is that the electrons needed to perform the reaction is mainly provided using 

electricity, which is generated by combustion of fossil fuels, which is a nonrenewable source of energy 

and increases CO2 emissions as explained previously in chapter 1.8  

2.1.3 Photocatalytic Water Splitting 

Photoelectrolysis mainly depends on the direct use of light to generate the electrons needed to 

perform the water splitting reactions using a semiconductor material. Thus, combining solar energy 

harvesting and water electrolysis in one single photoelectrode. As shown in Figure 2.1 the process of 

photocatalytic water splitting mainly involves a semiconductor, which is when irradiated with light 

(photons) that possess energy equal to or larger than the energy of the band gap of the used semiconductor, 

electrons from the valence band are excited to the conduction band forming what is known as an “e--hole+” 

pair. These photogenerated charge carriers diffuse to the surface of the semiconductor, to perform the 

desired oxidation/reduction reaction of water, as shown in Eq. 2.4, 2.5, and 2.6.8 

 

2ℎν +  Semiconductor → 2ℎ+
 +  2𝑒−                                                         (2.4) 

2ℎ+
 +  𝐻2O (l) →

1

2
𝑂2(𝑔) + 2𝐻+                                                                           (2.5) 

2𝐻+ + 2𝑒− → 𝐻2(𝑔)                                                                                                      (2.6) 

 

 



10 

 

2.1.3.1 Photoelectrochemical Cells 

Photoelectrochemical cell is typically formed of three electrodes, a cathode, anode, and a reference 

electrode, at least one of the electrodes used is a semiconductor, which is called a photoelectrode, these 

electrodes are immersed in an electrolyte. When the incident solar energy is absorbed by this 

photoelectrode, current and voltage is generated. Usually an n-type semiconductor is used as a photoanode, 

on which oxygen evolution takes place, while hydrogen evolution takes place at the cathode, which can 

be a metal or a p-type semiconductor (photocathode).8 

 

Figure 2.1 Illustration of photocatalytic water splitting using a photoelectrochemical cell.8 

 

During the past few decades, various fabrication methods have been introduced to synthesize 

different nanostructures. Thus, researchers have been trying to explore different structures to determine 

which structure possesses the most promising properties to give the highest hydrogen yield. Many of these 

nanostructures are in the form of powders, like the one we are discussing in this thesis. The main advantage 

of using photocatalysts in the form of powder in water splitting is simplicity, as shown in Figure 2.2 
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Photocatalytic water splitting by powdered photocatalyst.21 The powdered photocatalyst is suspended in 

the electrolyte, the reactor is then irradiated with Sun light, and hydrogen is easily obtained. The limiting 

issue with the use of powdered photocatalyst is the limited separation of the evolved H2 and O2. However, 

the problem can be solved by using a Z-scheme photocatalyst system. Moreover, powdered photocatalyst 

is more promising on an industrial scale due to its simplicity.20 

 

Figure 2.2 Photocatalytic water splitting by powdered photocatalyst.21 

2.1.3.2 Structural Properties of the Photocatalyst 

For efficient photoelectrochemical water splitting, the material used as a photoelectrode must 

satisfy the following requirements. The semiconductor valence band and conduction band must be aligned 

with the redox potential of the water, for the electrons and holes to transfer from the conduction band and 

valence band of the semiconductor to perform the desired redox reactions. It should also be stable in wide 

range of pH, to resists dissolution and photocorrosion. Besides, it should offer high charge transfer rate to 

avoid charge recombination, charge accumulation, or corrosion of the electrode itself. Finally, the band 

gap should not be very large for the semiconductor to absorb most the solar spectrum. 
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2.2 Metal Oxides (Ceramics) as Photoanodes 

Metal oxide semiconductors have the advantage of being stable comparing to non-oxide 

semiconductors and relatively cheap. After the first study conducted of Fujishima and Honda, where they 

used n-type TiO2 as a photoanode for photocatalytic water splitting. Other metal oxides with different 

structures have been investigated as photoanodes. Metal oxides showed high stability and reasonable 

charge transfer properties. However, the main obstacle holding the applicability of photocatalytic water 

splitting is that researchers are still looking for a semiconductor that possesses narrow band gab to be able 

to harvest most of the solar spectrum and stable at the same time, as most of the materials explored have 

only one of the two characteristics. Although narrow band gap semiconductors absorb most of the solar 

radiation, they are easily corroded under illumination. On the other hand, materials with wide band gap 

show high stability against photocorrosion but absorbs only in the UV range of the solar spectrum, which 

is almost 4-5% of the solar radiation.8  

2.3 Nanostructures Properties-Large Surface to Volume Ratio (Surface Activities) 

Unlike the charge separation process in bulk materials, which is strongly affected by the electric 

field formed at the depletion layer at the interface between the electrolyte and the bulk semiconductor, 

charge transfer in nanocrystalline semiconductor occurs via diffusion from the interior to surface traps, as 

band bending is small. Semiconductor nanoparticles have the advantage of having significantly short 

diffusion lifetime (τd), of the generated charges from bulk to the surface, compared to recombination time 

(τr) of the electron-hole.8,22 As the particle size increases, τd becomes almost equal toτr, at the size of 

1 μm, electron-hole recombination rate starts to be higher than surface diffusion phenomena. Since the 

rate of charge carrier diffusion is higher than the rate of electron-hole recombination, if one of the 
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photogenerated charge carriers is captured from the surface, a quantum yield approaching unity can be 

achieved.22  

2.4 Titanium Dioxide (TiO2) 

2.4.1 Crystal Structure of TiO2 

There are three crystalline phases of TiO2, which are anatase (tetragonal), brookite (orthorhombic), 

and rutile (tetragonal), as shown in Figure 2.3 The crystal structures of TiO2 anatase (tetragonal) 

polymorphs, rutile (tetragonal), and brookite (orthorhombic).25. In all three phases, titanium cations are 

coordinated to six oxygen anions, resulting in distorted TiO6 octahedra structure. The anatase structure is 

formed by sharing the corner of TiO6 octahedra, while rutile structure is formed by sharing the edges of 

the octahedral, for the brookite structure TiO6 octahedra is joined by sharing both the corner and the edges 

of the octahedral.23 Anatase has a tetragonal  a=0.536 nm and c=0.953 nm (anatase), rutile have a 

tetragonal structure with  a=0.459 nm and c=0.296 nm. Brookite structure possesses an orthorhombic 

structure with a=0.915 nm, b=0.544 nm, and c=0.514 nm. Rutile is considered the most stable phase in 

bulk TiO2. However, at the nanoscale, anatase and brookite possess lower surface energy, and therefore 

are considered more stable at the nanoscale, there are still some debates in literature on this point.24 
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Figure 2.3 The crystal structures of TiO2 anatase (tetragonal) polymorphs, rutile (tetragonal), and 

brookite (orthorhombic).25 

2.4.2 Limitations of Using TiO2 as a Photocatalyst 

TiO2 is One of the most widely investigated materials in hydrogen generation applications, as it is 

an earth abundant element, low cost, stable and has high photocatalytic activity. However, one of the major 

limitations is its wide bandgap of TiO2, 3.2 eV for the anatase phase and 3.0 eV for the rutile phase. This 

limits its absorption to the UV range of the solar spectrum. Besides suffering from high rate of charge 

recombination. Doping TiO2 with other metals or narrow band gap semiconductors is one way to narrow 

its bandgap and enable it to absorb wider range of the solar spectrum.17 Also the electric field formed due 

to the presence of a heterojunction facilitates charge separation and lowers the rate of charge 

recombination.24 
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2.4.2.1 Wide Bandgap 

Although TiO2 fulfils many of the requirements of an efficient photocatalyst for water splitting 

application. Such as, stability against photocorrosion, non-toxicity, and reasonable cost.  It is absorption 

is still limited by its wide band gap (3.0 to 3.2 eV), various techniques have been proposed to increase the 

absorption of TiO2 to the visible region of the solar spectrum. Including, coupling with narrow band gap 

semiconductor, dye sensitization, and doping.26 

2.4.2.2 Electron-Hole Recombination 

Another limiting Factor is the recombination of the photogenerated charge carriers.26 Which is 

usually caused by bulk or surface defects or the impurities present in the material.27,28 This problem can 

be treated by incorporating species that can promote charge separation. This has been explored using 

different modifiers such as, other semiconductors29,30, noble metals31,32, and ions27,33.  

2.4.3  Doping 

As discussed in the previous section doping is a very promising solution that can be applied to 

overcome some of the limitations that encounters TiO2 from being an efficient photocatalyst for water 

splitting reaction.17 In this regard, doping with noble metals was shown to be very effective in enhancing 

the photocatalytic activity of TiO2. However, noble metals are very expensive and not earth abundant. 

Thus, finding alternative cost-effective materials is very crucial.34 On the other hand, blending TiO2 with 

other semiconductors  of smaller band gap to extend the absorption to a wider range of the solar spectrum 

was investigated.35 According to previous studies CuO seems to be a promising candidate due to its narrow 

bandgap (1.4-1.6 eV)34–43 which enables it to shift the absorption range to the visible region of the solar 

spectrum. 
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2.5  p-n Heterojunction 

There are three types of heterojunctions that can be formed, depending on the band positions of 

the two semiconductors, as shown in Figure 2.4. Type II is considered the most suitable condition for 

efficient separation of charge carriers. As electrons become more stable energetically when they are 

transferred from the higher conduction band to the lower conduction band, while holes move in the 

opposite direction from the lower valence band to the higher valence band. At the end electrons and holes 

are separated and move in opposite directions. Resulting in an increase in the charge carriers’ life time and 

reduces the recombination rate. This configuration is expected to be the one describing CuxO/TiO2 system, 

Besides the formation of an internal Electric field at the interface between the n-type semiconductor and 

p-type semiconductor, resulting in band bending phenomena due to charge accumulation at the interface.44 

Figure 2.5 illustrates the mechanism of charge transfer in CuO/TiO2 heterojunction.45 

 

Figure 2.4 Different types of heterojunction systems.46 
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Figure 2.5 Mechanism of charge transfer in CuO/TiO2 heterojunctions.45 

2.6  Metallic Copper and Plasmonic Photocatalysis 

TiO2 modified with metallic copper nanoparticles is very promising in UV and visible light-

induced photocatalytic reactions. Cu NPs can act as an electron sink and inhibit the recombination of the 

photogenerated charge carriers.46 As the conduction band of TiO2 is above the Fermi level of metallic Cu, 

the photogenerated electrons can be easily transferred from TiO2 to Cu NPs. Besides Cu NPs can activate 

TiO2 towards the visible light region of the solar spectrum using localized surface plasmon resonance 

(LSPR) of Cu.47–52 The LSPR effect is activated when light interacts with the free electrons of the metallic 

nanostructure, resulting in oscillations (collective excitations), these oscillations significantly improves 

the local electromagnetic field around the nanoparticles.53 Spherical metallic nanoparticles made of silver, 

gold, and copper, are relatively smaller than the wavelength of the light, thus it is resonant with the incident 

light, and an enhancement in the local electromagnetic field on the particle surface is observed.46  

This characteristic surface plasmon resonance band that absorbs light in the visible region shifts 

the absorption of noble metal modified titanium dioxide towards the visible region. This could be 
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understood in terms of the efficient transfer of the photogenerated electrons from the metal to the 

conduction band of TiO2, as shown in Figure 2.6. Thus, TiO2 becomes electron-rich, while the metal 

becomes electron-deficient. therefore, the photocatalytic oxidation reaction takes place on the surface of 

the metal rather than the surface of TiO2.54 Due to the superior properties of LSPR, many studies were 

conducted on Ag and Ag to study their plasmonic behavior. However, the plasmonic effect of copper and 

its effect when Cu nanoparticels are combined with TiO2, is not widely covered so far. This is due to the 

fact that metallic copper (zero-valent) is very hard to maintain in zero oxidation state.55–57  

 

 

Figure 2.6 The effect of gold  particles in promoting the photocatalytic activity of TiO2 under UV-

visible light irradiation.53  

2.7  Graphene 

Graphene consists of a sheet with the thickness of one-atom, formed of an sp2-bonded carbon 

structure.58 Offering superior quality of electronic and crystal structure.59–62 Previous studies suggest that 

the specific surface area of a single layer of graphene is almost 2630 m2/g.63,64 besides its significant 

electronic conductivity.65,66 
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2.7.1 Graphene-Copper Composite  

Studies have shown that due to graphene having characteristic 3-D folded structure and large 

surface area, it is an excellent carrier for copper nanoparticles.67 As copper gets adsorbed on the surface 

of graphene, thus hinders the agglomeration and oxidation of copper.68,69 At the same time, when copper 

nanoparticles is adsorbed on the surface of graphene, it weakens the π-πinteraction among the graphene 

sheets. Thus, it reduces the stacking of graphene sheets.70 

2.8 Electrospinning Technique 

The idea of electrospinning mainly depends on the electrostatic attraction of a liquid, which was 

reported by William Gilbert, he observed that when an electrically charged piece of amber is brought close 

to a droplet of water, the droplet forms a cone shape and small droplets are ejected from the tip of the 

cone.71  

2.8.1 Electrospinning Basic Principles 

A typical electrospinning setup consists of three major parts: a power supply (high voltage source), 

a metallic capillary tip, and a collector as shown in Figure 2.7. The syringe contains a polymer solution, 

the solution is usually fed through the spinneret at a constant and adjustable rate using a syringe pump, 

and a high voltage usually 10 to 50 kV is applied between the collector and the syringe tip.18,72 When the 

solution is subjected to high voltage, it becomes highly charged, thus, the solution droplet at the tip suffers 

from two opposite forces, surface tension and the electrostatic repulsion force. these electrostatic 

interactions result in the formation of a conical fluid at the tip of the syringe, this structure is called the 

“Taylor Cone”.18,73,74 At a specific voltage, the electrostatic repulsion force formed on the charged polymer 
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overcomes the surface tension of the solution, and a charged jet is ejected from the tip of the formed Taylor 

Cone, moving towards the counter electrode, and the solvent starts to evaporate. At the end solid fibers 

are collected on the counter electrode, with diameters ranging from nanometers to micrometers.17 

 

 

Figure 2.7 Schematic illustration of the basic setup for electrospinning. The inset shows SEM 

image of the PA6 nanofibrous membranes deposited on the collector.170 

2.8.2 Controlling Parameters of the Electrospinning Process 

There are mainly three types of parameters that can be changed to control the electrospinning 

process, which are: ambient parameters including the temperature and the humidity percentage in the 

surrounding atmosphere. Process parameters include applied electric field, feed rate, and the distance 

between the tip and the collector. Finally, solution parameters include conductivity, viscosity, surface 

tension, and molecular weight. The diameter of the fabricated nanofiber is easily adjusted by varying these 

parameters.14,75 
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2.8.2.1 Solution Parameters 

i. Polymer Concentration and Viscosity 

The viscosity of the solution is directly proportional to the concentration of the polymer in the 

solution. The molecular weight of the polymer, the temperature and the solvent properties also effects the 

viscosity of the solution. There is a minimum polymer concentration needed for the solution to spin, at 

high concentrations, the formed fibers are not continuous as the solution flowing to the tip is not 

constant.14,75 

ii. Conductivity 

A key factor in initiating the process of electrospinning is that the solution must be charged with 

the voltage that enables the repulsive forces in the solution to overcome the surface tension of the solution. 

The conductivity of the solution also affects the elongation and stretching of the resultant jet.17 If the 

conductivity of the solution is low, this result in insufficient stretching of the fiber and there might be some 

beads in the resulting fiber, while if the electric conductivity is high this result in reducing the diameter of 

the obtained nanofibers.14 The conductivity of the solution is determined by the type of the polymer, the 

salt, and the solvent sort.17 Natural polymers are generally polyelectrolytic, the presence of ions in the solution 

increases the capacity of charge carrying, this result in higher tension with the electric field. This makes 

fabricating the fiber using synthetic polymer easier than a natural polymer like gelatin for instance.17 

iii. Surface Tension 

High surface tension might encounter the spinning process if it is larger than the charge in the 

solution. Besides, it might result in droplets formation.14  It was found that surface tension is inversely 

proportional to the elongation of the charged jet, if the surface tension of the solution decreased this enables 

the electrospinning process to occur at lower voltages.17,76  
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2.8.2.2 Processing Parameters 

i. Applied Voltage  

Applying a high voltage (higher than 6 KV) is very essential to initiate the electrospinning process, 

as it induces charges in the solution, that strengthen the electrostatic force in the solution and overcomes 

the surface tension. Finally, a Taylor cone is formed. It was found that increasing the voltage decreases 

the diameter of the fiber.11,14 However, this behavior is also affected by the distance between the collector 

and the tip and the concentration of the solution.17 

ii. The Distance between the Tip and Collector 

There is an optimum value of the distance between the collector and the tip for each 

electrospinning system, below which the solvent will not have enough time to be evaporated and the 

strength of the electric field will be very high. This may lead to the presence of unevaporated solvent in 

the fiber. If the distance is very long the electrostatic field strength is decreased, thus the fiber diameter 

increases as the elongation of the fiber decreases.14,77   

iii. Feed Rate 

This factor determines the amount of the solution reaching the tip per unit time. The feed rate is 

directly proportional to the diameter of the fiber and the size of the beads, a minimum value of the feed 

rate is required to initiate and maintain the process of electrospinning. Usually, as the feed rate increases, 

the fiber diameter and beads size increase.17 

iv. Humidity 

When the electrospinning process is performed at high humidity, water vapor is condensed on the 

fiber, this might affect the morphology of the fiber, especially when the solvent used is volatile. The 

porosity of the fiber and the size of the pores formed increases as humidity increases. Humidity affects 

solvent evaporation rate, if the humidity is very low this might lead to clogging the tip of the needle at a 

very brief time due to rapid evaporation of the solvent.78 
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2.9 Ceramic Nanofibers 

Ceramic nanofibers can be easily prepared from the ceramic precursors using the electrospinning 

technique followed by calcination of the electrospun nanofibers to obtain the ceramic nanofibers. The 

strong covalent and ionic bonds present in ceramic materials makes the ceramic structure resists chemical 

corrosion, tolerates high temperatures, and its surface adsorbs foreign species. However, this also makes 

ceramics brittle due to their weak mechanical properties.17  
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Chapter 3 

3 Literature Review 

3.1  Electrospun Nanofibers for Photocatalytic Water Splitting 

3.1.1 Narrowing the Bandgap of TiO2 

As stated before, TiO2 suffers from having a wide bandgap. In this regard, Babu et.al 

synthesized N-doped TiO2 nanostructures using electrospinning technique combined with solgel 

method and they found that the bandgap of N-doped TiO2 was reduced to 2.83 eV, which was 

confirmed by an increase in the H2 evolution rate by about 12 times that of pristine TiO2. This 

enhancement in the photocatalytic activity of TiO2 was attributed to the larger surface area of the 

nanostructure and the narrower band gap.79 

3.1.2 Enhancing Charge Transfer 

Another obstacle is the recombination of the generated electron-hole pair. This problem 

can be solved by incorporating materials that are highly conductive to capture the generated 

electron before it recombines with the hole. An example of this is the electrospun TiO2/SnO2 

nanofibers that were fabricated by lee et.al. They found that the sample with 3% Sn gave the highest 

H2 evolution rate. The large surface area of nanofibers is a major advantage of nanofibers over other 

nanostructures.80 
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This concept was confirmed by the same group, where they fabricated a “Forest like” 

structure by fabricating TiO2 nanofibers, which were used as the trunk, then using hydrothermal 

techniques they grew ZnO nanorods as the branches, finally copper nanoparticles were 

photodeposited on the structure acting as the leaves. The hierarchical nature of this structure gave 

higher surface area, hence better light absorption. There was an enhancement in charge separation 

due to the coupling of different semiconductor materials.81 

3.1.3 Surface Area 

A comparison was made by Choi et.al between electrospun TiO2 (prepared using a 

suspension of TiO2 nanoparticles) and TiO2 nanoparticels. It was found that mesoporous nanofibers 

structure has larger surface area, hence it provides more active sites for water molecules to get 

adsorbed on the surface. This resulted in an overall increase in the photocatalytic activity, as the 

photocurrent of the nanofiber structure was found to be almost 3 times that of the nanoparticles 

structure. This was explained in terms of higher surface area due to the porous structure and they 

found that the nanofiber structure made the nanoparticles densely packed which increased the 

interconnection between the nanoparticles, resulting in better charge separation.82 

3.1.4 TiO2-CuO Composite 

Previous studies have shown that incorporating CuO as a co-catalyst with TiO2 can greatly 

enhance the efficiency of photocatalytic water splitting. Bandara et al. fabricated TiO2/CuO 

catalyst, which showed very high catalytic activity, due to the accumulation of the excited electrons 

from both CuO and TiO2 in the conduction band of CuO, thus the fermi level of CuO was shifted 

upwards, giving the overvoltage needed for water splitting.39 TiO2 nanotubes decorated with CuO 
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were fabricated by Xu et al., exhibiting hydrogen rates of around 64.2-71.6 mmolh-1g-1.38 However, 

the poor photostability of copper oxides limits their use as a co-catalyst in photocatalytic 

reactions.46 The amount of hydrogen reported so far is still far below the theoretical limit of 

photocatalytic water splitting. On the other hand, CuOx/TiO2 composite is mostly investigated in 

the form of nanoparticles, which suffer high recombination rates at the grain boundries.34 

 As an emerging structure, nanofibers have been investigated by Einert et al. using fibrous 

CuO as a photocathode for photocatalytic water splitting.9 However, the stability of the electrode 

was still a limiting issue.83 Also, Hou et al. fabricated electrospun TiO2/CuO/Cu mesoporous 

nanofibers combined with a foaming agent.5 These electrodes exhibited photocatalytic H2 yield of 

almost 851.3 μmol g−1 h−1. The authors attributed this enhancement to the presence of a 

heterojunctions at the TiO2/CuO, and CuO/Cu interfaces, resulting in more efficient charge carriers 

separation.37  

Herein, we report on the optimized fabrication of electrospun TiO2-CuO composite 

nanofibers. The nanofiber composites were annealed in different atmospheres and the most 

photoactive crystalline phase was identified. Also, the effect of different CuO loading as a co-

catalyst on the optical and photocatalytic water splitting performance was demonstrated. 

3.1.5 Limitations of Copper Oxides in Photocatalysis  

Both oxide forms of copper, CuO and Cu2O are p-type semiconductors with band gap 

energies of 1.5 eV and 2.1 eV, respectively.  Both are very promising as a photocatalyst in water 

splitting.84–87 However, they suffer from not being a photostable material. As CuO possesses 

smaller band gap, it absorbs larger amount of the visible spectrum of the solar radiation. Some 

studies suggest that the co-existence of CuO and Cu2O can enhance their stability and be more 

efficient than using each of them solely.88   
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3.1.6 Metallic Copper as a Co-catalyst 

According to previous studies.34–38,41,89,90 copper seems to be very promising as a co-

catalyst with TiO2. This is due to copper being an earth abundant element, unlike noble metals, 

which are rare. Besides, copper is in the same group in the periodic table of silver and gold with 

similar crystal structure, face centered cubic (FCC), and similar electronic configuration. This leads 

us to believe that there is a great potential to enhance the photocatalytic activity using TiO2 

modified with copper.46 Copper can exist in different oxidation states: Cu0, Cu+1, Cu+2 and Cu+3. 

Copper species that are promising in increasing the photocatalytic activity of TiO2 are metallic 

copper, Cu2O, and CuO.46 Although metallic copper is very promising, especially that it shows 

plasmonic activity close to that of gold and silver. However, developing an applicable technology 

that can be used to maintain copper in zero-valent oxidation sate is still an obstacle, and intensive 

research is being conducted to solve this issue.  

3.2 Stabilizing Metallic Copper 

Copper metal shows excellent thermal and electrical properties, besides its low cost. 

However, it is very hard to maintain it in the metallic form, as it is easily oxidized to CuO or Cu2O 

when exposed to air. Therefore, many studies have been performed to prevent its oxidation by 

minimizing the contact between copper and air.91 Different approaches have been investigated to 

overcome this problem. Such as polymers,92–97 and metallic coatings.92,98–101 The thickness of 

polymeric coatings strongly affects the properties of the coated metal.91,102 

Many studies have been conducted recently to fabricate protective coatings made of 

graphene, as it is chemically stable, besides having higher thermal mobility and electrical 

conductivity than copper.94,103,104 Most of the previous studies mainly involved coating copper 
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metal with graphene using chemical vapor deposition (CVD) technique.102,105 However, using CVD 

involves using a gas source, which requires a temperature of almost 1000 ∘C, thus limiting the 

number of transition metals that can be used. Other studies used polymers such as PS, PMM, and 

PVP as solid carbon sources for graphene preparation.91,106,107 Using solid carbon source has the 

advantage of reducing the temperature needed for the process.106–108 
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Chapter 4 

4 Materials and Experimental Methods  

4.1 Nanofibers fabrication 

4.1.1 Materials  

Titaniumisoprorpoxide, copper(II) acetate monohydrate (C4H6CuO4·H2O), 

Polyvinylpyrrolidone (PVP, Mw ≈ 1300 000), ethanol absolute, acetic acid. All chemicals were 

purchased from Aladdin. All chemicals were used directly without further purification. 

4.1.2 Solution Preparation 

Titanium nanofiber and titanium-copper composite nanofibers were fabricated using the 

electrospinning technique. For titanium nanofibers, a solution consisting of 0.5 gm of titanium 

isoprorpoxide was added to 4 gm of (Polyvinylpyrrolidone) PVP 10% (The PVP solution was made 

using PVP and ethanol absolute as polymer and solvent, respectively), and 1 gm acetic acid, finally 

the solution was stirred for 2 hours.  

For copper nanofibers different weights of copper acetate monohydrate (0.05, 0.075, 0.1, 

and 0.125) were dissolved in 2.5 gm of ethanol absolute, the solution was stirred for 2 hours at 80 

°C, after copper acetate was completely dissolved, the heat was turned off and 0.25 gm of PVP and 

5 gm of acetic acid were added to the solution, the mixture was stirred until the polymer is 

completely dissolved. Finally, to prepare the titanium-copper composite nanofibers, the two 

solutions previously mentioned were mixed with continuous stirring till complete homogeneity.  
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4.1.3 Electrospinning  

The diameter of the fabricated nanofibers was optimized by changing the applied voltage 

and the feed rate. Different voltages (14 to 21 KV) and different feed rates (3.9 to 4.5 ml/h) were 

chosen for comparison. 

Chosen Parameters 

After trying different voltages and feed rates. The following parameters were chosen for 

during the fabrication process of the nanofibers studied in this thesis. The distance between the 

syringe tip and the grounded aluminum foil collector was fixed at 15 cm. The voltage was fixed at 

the range of 19 to 21 kV, and the feed rate was in the range 4 to 4.5 ml/h, at humidity of (35 ± 

5%). Each of the prepared solutions was passed through the syringe with a 1.1 mm diameter 

stainless steel nozzle (Li and Xia, 2003).  

4.1.4 Annealing  

The electrospun nanofibers were annealed in a Lindberg/Blue M tube furnace (model 

number: TF55030C-1) in air or oxygen atmospheres at 450 ∘C (1 deg/min) for 2 hours, and in argon 

atmosphere at 600 ∘C (2 deg/min) for 4 hours. Table 4.1 Coding of the fabricated titanium and 

titanium-copper composite nanofibers annealed in air and oxygen atmospheres.summarizes the 

details of the fabricated titanium and titanium-copper composite nanofibers annealed in different 

annealing atmospheres.  
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Table 4.1 Coding of the fabricated titanium and titanium-copper composite nanofibers 

annealed in air and oxygen atmospheres. 

Titanium 

isopropoxide (g)  

Copper 

acetate (g) 

Annealing 

Atmosphere 
Sample ID 

 

0.5  

 

0 

O2 

O1 

0.05 O2 

0.075 O3 

0.1 O4 

0.125 O5 

0.5  

0 

Air 

A1 

0.05 A2 

0.075 A3 

0.1 A4 

0.125 A5 

 

 

0.5  

 

 

0 

Ar 

R1 

0.05 R2 

0.075 R3 

0.1 R4 

0.125 R5 
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4.1.5 Characterization  

The morphology of the fabricated nanofibers was characterized with Zeiss SEM Ultra 60 field 

emission scanning electron microscope (FESEM), and High-resolution transmission electron 

microscopy (HRTEM). 

The thermal stability of the fabricated nanofibers was characterized using TGA NETZSCH STA 

409 C/CD apparatus under air. The crystal structure was identified using PANalytical X’pert Pro PW3040 

MPD X-Ray Diffractometer (XRD) using copper CuKα radiation (λ= 0.15406 nm) in the range of 5° to 

80° at a scan rate (2θ) of 3o s -1 and was further confirmed using Raman microscope (Pro Raman-L 

Analyzer) with an excitation laser beam wavelength of 532 nm. Fourier transform infrared (FTIR) was 

also used to perform elemental analysis. 

The absorption spectra of the nanofibers were recorded on a Lambda 950 UV/Vis spectrometer, 

EPR measurements were performed using Bruker EMX 300 EPR spectrometer (Bruker BioSpinGmbH, 

Silberstreifen 4, Germany).  

Photoelectrochemical measurements were performed in a three-electrode cell, glassy carbon 

electrode loaded with the nanofiber was used as the working electrode, while platinum foil was used as 

the counter electrode, and saturated calomel electrode (SCE) as the reference electrode in 1 M KOH. A 

300 W ozone-free xenon lamp and an AM 1.5 G filter at 100 mWcm-2 were used to simulate Sunlight. 

And a scanning potentiostat (Biologic SP-200) was used to measure the photocurrent densities.  

The photocatalytic activity of the fabricated nanofibers was tested in an inner-irradiation quartz 

annular reactor with a 300 W xenon lamp (CEL, HUL300), a vacuum pump, a gas collection, a 

recirculation pump, and a water-cooled condenser. 0.1 g of the sample was suspended in 1 M KOH using 

ultrasonic oscillator. Then the mixture was transferred into the reactor and deaerated by the vacuum pump. 

The xenon lamp was utilized as a light source, and the cooling water was circulated through a cylindrical 
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Pyrex jacket located around the light source to maintain the reaction temperature. The reactor was sealed 

with ambient air during irradiation, and the hydrogen evolution was monitored using an online gas 

chromatograph (GC, 7900) equipped with a Porapak-Q column, high-purity nitrogen carrier, and a thermal 

conductivity detector (TCD).  
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Chapter 5 

5 TiO2-CuO Composite nanofibers for Photocatalytic Water Splitting† 

5.1 Nanofibers Optimization  

i. Voltage 

 As shown in Figure 5.1, as the voltage increases from 14 to 17 KV, with a fixed feed rate of 4.1 

ml/h, and fixing the distance at 15 cm, there was a decrease in the diameter of the fabricated fiber from 

1.84 µm to 433 nm. 

 

 

 

 

 

                                                      
†  This Chapter has been submitted for publication: Menna M. Hasan and Nageh K. Allam, Unbiased Spontaneous 

Photocatalytic Water Splitting using Stable Erath Abundant Composite Nanofibers. 

Figure 5.1 FESEM images illustrates the change in the diameter by changing the voltage applied, (a) 

at 14 KV, (b) at 17 KV. 
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ii. Feed rate 

Fixing both the voltage at 16 KV, and the distance at 15 cm, it was found that by increasing the 

feed rate from 3.9 to 4.3 ml/h, the diameter of the fabricated nanofiber also increased from 1.4 µm to 2 

µm, as shown in Figure 5.2. 

5.2 Morphological Features 

Figure 5.3 shows FESEM images of the fabricated nanofibers before and after annealing for the 

air annealed samples. The as-electrospun TiO2 nanofibers were smooth and highly dense with diameters 

ranging from 1.594 µm to 2.254 µm, Figure 5.3. Upon annealing in air atmosphere, the diameters were 

reduced to 180±10 nm, see Figure 5.4. While the Cu nanofibers completely collapsed upon annealing in 

air (Figure 5.3e), the TiO2-CuO composite nanofibers maintained their morphology (Figure 5.3f) even 

with the highest copper concentration, see Figure 5.4. 

Figure 5.2 FESEM images illustrates the change in the diameter by changing the feed rate, (a) at 

3.9 ml/h, (b) at 4.3 ml/h. 
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Figure 5.3 FESEM images of the electrospun (a) Ti NFs, (b) Cu NFs, (c) Ti+Cu composite NFs 

before annealing, (d) TiO2 NFs, (e) CuO NFs, (f) TiO2+CuO NFs composite after annealing in air 

atmosphere. 
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5.2.1 Thermal Analysis 

Figure 5.5 shows the TG analyses of the fabricated TiO2 and TiO2-CuO composite nanofibers. 

Four major weight loss steps can be identified in the TG graph of TiO2 nanofibers. The weight loss (2.78%) 

below 100 °C can be attributed to the evaporation of the residual moisture or any possible residual traces 

of the solvent (ethanol). The weight loss between 100 °C and 320 °C (3.11%) can be ascribed to the 

decomposition of the side chain of PVP. The steep slope in the range 320 - 470 °C involves a weight loss 

of 54.52% and can be related to the degradation of the main chain of PVP. The final step involves the 

conversion of the as-spun titanium oxide nanofibers into the anatase phase.109–111 In contrary, the TG 

analysis for the TiO2-CuO composite nanofibers showed a small weight loss of almost 20% in the 

temperature range 40 - 200 °C, which can be related to the evaporation of moisture and any residuals from 

the solvent. Note the major weight loss (65.5%) in the temperature range 230 - 370 °C, which can be 

related to the degradation of the polymer (PVP). 112 No further weight losses were observed up to 800 °C.  

 

Figure 5.4 FESEM images illustrates the change in the diameter of TiO2-CuO composite 

nanofiber, (a) before annealing, (b) after annealing. 
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5.3 Structural and Elemental analysis 

Figure 5.6 shows the XRD patterns of the fabricated nanofibers annealed in different atmospheres. 

The XRD pattern of TiO2 nanofibers annealed in air showed three dominate diffraction peaks at 2ϴ = 

25.4°, 37.2° and 48.2°, corresponding to (101), (004), and (200) facets of the anatase phase, 

respectively.113,114 However, upon annealing the TiO2 nanofibers in oxygen, the peaks were observed at 

2ϴ = 27.4°, 36°, and 41°, corresponding to (110), (101), and (111) facets of the rutile phase, respectively. 

In oxygen-rich atmosphere there is a large number of adatoms that react instantly with interstitial Ti3+ on 

the surface forming TiOx islands, which act as rutile islands, resulting in a very high rate of phase 

transformation at lower temperature.115,116 However, in poor-oxygen atmosphere, there is no enough O2 to 

react with Ti3+, hindering the phase transformation.116  

This assumption was supported by the electron paramagnetic resonance (EPR) analysis of the 

sample O5, Figure 5.7, where a weak signal was observed at g = 2.013, indicating that most of the Ti3+ 

Figure 5.5 TG curves of thermal decomposition of as-spun TiO2 and TiO2-CuO composite 

nanofiber nanofibers in air. 
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species in the sample were oxidized back to the Ti4+ ions. Also, this g value is characteristic of the oxygen 

radical species O‧ and O2-.117–119 For TiO2-CuO composite nanofibers, the diffraction patterns indicated the 

formation of the anatase phase in air and rutile phase in oxygen. In both atmospheres, copper was oxidized 

to CuO as indicated by the presence of new peaks at 2ϴ = 35.5° and 38.7° corresponding to the -111, 002 

(both appear at the 35.5°), and 111, respectively.  

 

For the samples annealed in air atmosphere, after the incorporation of CuO with TiO2, the 

diffraction peak at 25.4° became broader and its intensity decreased, indicating a reduction in the crystallite 

size. This was confirmed by calculating the crystallite size for both samples, which were 318.49 Å and 

196.13 Å for A1 and A5, respectively. Since Cu2+ has larger ionic radius (0.73 Å) than Ti4+ (0.64 Å), the 

incorporated Cu2+ ions may distort the lattice structure of TiO2. This was confirmed by calculating the 

microstrain, which was found to be 0.551 for A1 and 0.895 for A5. These findings might suggest the 

creation of substitutional defects by replacing some of the Ti4+ ions with Cu2+ ions. 120  

The formation of oxygen vacancies in the lattice of TiO2 is also possible to compensate for the 

change difference.120,41. On the other hand, for the oxygen-annealed samples, the broadening of the peak 

at 27.4o was the same for both TiO2 and TiO2-CuO composite nanofibers samples. This might be attributed 

Figure 5.6  XRD pattern of the fabricated nanofibers annealed in different annealing 

atmospheres. 
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to the rutile structure being more compact than the anatase phase, requiring more energy to remove the 

Ti4+ ions from the rutile crystal structure and replace it with Cu2+ ions. 

 

Figure 5.7 EPR spectra of TiO2-Cu nanofiber annealed in oxygen. 

 

Electron paramagnetic resonance (EPR) analysis was performed for the sample A4 to confirm the 

presence of Ti3+ species, and the coordination of the Cu2+ in the frame work of TiO2, Figure 5.8 The EPR 

signal is asymmetric, indicating the distortion of the octahedral coordination of TiO2, possibly due to the 

replacement of Ti4+ ions with Cu2+ in the anatase structure. The EPR spectra show an intense peak at gII = 

2.00072 and another peak at g⊥ = 2.062, indicating that Cu2+ substituted Ti4+ ions in the octahedral 

coordination system. As the value of g⊥ is larger than that of gII, the ground state of the resulting structure 

is 2A1g.41,120–122 The observed peak broadening can be attributed to the dipolar interaction between Cu2+ 

ions.120  
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Figure 5.9 shows the Raman spectra of the nanofibers annealed in different atmospheres. The TiO2 

nanofibers annealed in air showed the major four Raman bands of anatase at 158, 410, 524, and 646 cm−1, 

corresponding to Eg, B1g, A1g and Eg active modes, respectively. On the other hand, the TiO2 nanofibers 

annealed in oxygen showed the typical Raman bands of rutile at 163, 265, 445, and 618 cm-1, 

corresponding to the B1g, two phonon scattering, Eg, and A1g modes, respectively.114 The Raman spectra 

was almost the same for the Ti-CuO composite nanofibers with a very small shift, even for the samples 

containing the highest copper concentration.43,113 A new peak was observed at 276 cm−1 that can be 

assigned to the Ag mode of CuO.43 The Ti-O bond lengths (R) were calculated using Eq. 1 and was found 

to be (2 × 1.88, 3 × 2.01 and 2.17 Å) for TiO2 nanofibers and  (2 × 1.9, 3 × 2.15 and 2.4 Å) for TiO2-CuO 

composite nanofibers based on the observed Raman bands at 645, 526, and 409 cm-1. These results prevail 

that the TiO6 octahedron in anatase was distorted in case of TiO2-CuO composite nanofibers.114  

𝜐𝑇𝑖−𝑂 = 722𝑒−1.54946(𝑅−1.809)                          () 

 

Figure 5.8 EPR spectra of TiO2-CuO composite nanofiber annealed in air. 
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5.4 Optical Properties 

Figure 5.10a shows the UV-Vis absorption spectra of the fabricated nanofibers. The TiO2 samples 

annealed in air and oxygen atmospheres exhibited an absorption in the UV region of the light spectrum 

with a peak at 400 nm and 410, respectively. However, a significant red shift in the absorption spectra was 

observed for the TiO2-CuO composite nanofibers. As the concentration of CuO increases, the absorption 

edge extends to a wider range of the light spectrum, with the sample containing the highest CuO 

concentration show an extended absorption to the near IR region, corresponding to a bandgap energy of 

1.4 eV. Figure 5.10b shows the corresponding Tauc plots, plotted using the Eq. 5.2. Note that as the 

concentration of CuO increases, the optical band gap decreases from 3 eV for TiO2 nanofibers to 1.45 eV 

for the sample with the highest copper concentration (A5). This comes in agreement with the study 

conducted by Chen et al. on the effect of CuO/TiO2 photocatalyst with different loadings of CuO, where 

they found that there was a shift in the absorption edge for the CuO/TiO2 to lower energy as the loading 

of CuO increased.36 

Figure 5.9 Raman shift of the electrospun nanofibers annealed in different atmospheres. 
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h= C(h-Eg)n                                                                                            (5.2) 

where v is the frequency of photons, (n = 2 for indirect band gap semiconductors), C is a constant, h is 

the Plank’s constant (6.626 × 10−34J-s), and Eg is the average band-gap energy. 

 

5.5 Photocatalytic and Photoelectrochemical Measurements 

The photocatalytic H2 production activity of the fabricated nanofibers was evaluated under 

irradiation with a 300 W xenon arc lamp using 1M KOH solution, Figure 5.11a, b. For TiO2 nanofibers, 

the anatase nanofibers showed the highest H2 yield (1253 μmol g−1), while the rutile nanofibers resulted in 

lower H2 yield (919 μmol g−1) due to its band misalignment with the water redox potentials. For both the 

oxygen- and air-annealed samples, the incorporation of CuO greatly enhances the amount of hydrogen 

evolved.  

Figure 5.12 shows the normal volcano shape usually seen in catalysis research, where the amount 

of evolved hydrogen increases with increasing the CuO loading till 0.1 g (1116 and 2715 μmol g−1 for the 

nanofibers annealed in oxygen and air atmospheres, respectively) then declines upon increasing the CuO 

(b) (a) 

Figure 5.10 UV-Visible absorbance spectra of the TiO2-CuO composite nanofibers with 

different copper loadings annealed in (a) oxygen and air atmospheres and (b) the 

corresponding Tauc plots of the air annealed samples. 
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loading to 0.125 g. This might be attributed to the shielding effect caused by CuO at concentrations higher 

than 0.1g, as most of the solar radiation would be absorbed by CuO, thus lower amount of the light is able 

to reach TiO2 to excite the electrons in the VB.41,123  

The enhancement in the hydrogen yield can be attributed to the transfer of electrons from the 

conduction band of TiO2 to the lower conduction band of CuO,40,45,124 due to the formation of a p–n 

junction between TiO2 and CuO. This p-n junction is very effective in separating the photogenerated 

charge carriers and hence enhancing the photocatalytic activity. The hydrogen yield obtained from the 

fabricated TiO2-CuO composite nanofibers in absence of a hole scavenger in the electrolyte, is superior 

compared to previous reports.  

 

Recently, CuOx/TiO2 composite films were tested for photocatalytic water splitting, with reported 

hydrogen yield of only 50 mmol.m-2h-1.34 Ternary TiO2/CuO/Cu mesoporous nanofibers were also tested 

for photocatalytic water splitting, with the highest hydrogen yield obtained of 4000 μmol g−1.37 However, 

both studies used hole scavenger in the electrolyte to reduce the recombination rate. In this regard, our 

obtained hydrogen yield, with no hole scavengers, is considered superior. To test the stability of the 

Figure 5.11 H2 evolution measurements for the oxygen annealed samples (a), the air annealed 

samples (b), and the correlation between the H2 evolution of the different annealing atmospheres 

and different copper loading. 



45 

 

fabricated nanofibers, the experiment was repeated for three times. As shown in Figure 5.11a, b, the 

samples showed high stability along 15 hours, then a slight decrease in the hydrogen yield was observed.  

 

 

The photoelectrochemical activity of the fabricated nanofibers to split water was also evaluated, 

Figure 5.13. The TiO2-CuO composite nanofibers annealed in air showed superior photocurrent density of 

almost 0.26 mA cm-2 compared to a dark current of 0.05 mA cm-2 at 1.0 VSCE. The TiO2 nanofibers, on the 

other hand, showed lower photocurrent density of almost 0.2 mA cm-2, and a high dark current of 0.1 mA 

cm-2 . This comes in agreement with the results conducted by Tao et al. for CuxO quantum dots deposited 

on TiO2 films.125  However, the overpotential was still relatively high (0.55 VSCE), which was mostly 

attributed to the resistance due to the discontinuity of the nanofibers layer deposited on the electrode. 

Nevertheless, these findings indicate the positive effect of CuO when combined with TiO2 to form a more 

efficient photocatalyst to split water.  

 

 

 

Figure 5.12 The correlation between the H2 evolution of the different annealing atmospheres 

and different copper loading. 
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The enhanced behavior can be related to the nature of the created defects upon CuO incorporation.  

To this end, the defect sensitivity factor (S).126 

𝑆 =  
𝐶𝑑𝑎𝑟𝑘

𝐶𝑙𝑖𝑔ℎ𝑡
                                                                                                             (5.2) 

where c is the current density shift term that can be defined as 𝑐 =
𝐽𝑔𝑎𝑠

𝐽𝑎𝑖𝑟
, was calculated for the samples A1 

and A4.  

The sensitivity factor was found to be 0.325, indicating the formation of shallow impurity level 

by the conduction band of CuO. This can explain the increase in photocurrent density for TiO2-CuO 

composite nanofibers compared to that of TiO2 nanofibers, facilitating the transfer of more electrons to the 

CB.  

 

 

 

Figure 5.13 Photoelectrochemical measurements of the samples A1 and A4 in dark and 

under illumination. 



47 

 

5.6 Conclusion  

In this study, TiO2 and TiO2-CuO composite nanofibers were fabricated and their structural, 

thermal, optical and photocatalytic properties were compared. Annealing in different atmospheres was 

found to influence the crystalline phase and thus photocatalytic activity of the fabricated nanofibers. For 

the nanofibers crystallized in anatase phase, XRD and EPR analysis suggest the substitution of some of 

the Ti4+ ions by Cu2+ ions, leading to the formation of shallow defect states below the conduction band of 

TiO2. Those shallow defects result in a bandgap narrowing and facilitate charge carriers transport and 

separation.  Besides, as the position of the conduction band of CuO is lower than the conduction band of 

TiO2, electrons can easily be transferred to CuO, thus enhancing the charge separation process, leaving 

free charge carriers needed to perform the redox reaction increases. This was supported by measuring the 

amount of hydrogen evolved, where TiO2-CuO showed 117% enhancement compared to TiO2 nanofibers. 

The results of this study prove that manipulating the band structure of TiO2 using optimized composite 

formation can be a very promising approach to overcome the limitations of TiO2 as a photocatalyst for 

water splitting reaction. It also indicates that copper shows an immense potential as a co-catalyst for 

photocatalytic water splitting and has a remarkable effect in hindering the recombination of the 

photogenerated charge carriers, thus enhancing the charge transfer process.  
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Chapter 6 

6 Cu0 Nanoparticles/TiO2 Nanofibers for Photocatalytic Water Splitting ‡ 

6.1 Morphological Features 

Figure 6.1 shows FESEM images of the fabricated nanofibers before and after annealing. The as-

electrospun TiO2 nanofibers were smooth as shown in Figure 6.1a. After annealing in argon atmosphere, 

the structure of the nanofibers was completely different, Figure 6.1b. The change in diameter was hard to 

detect, due to the incomplete combustion of the polymer (PVP), which is expected when the annealing 

process is performed in an inert atmosphere. However, nanoparticles imbedded in the fiber were detected, 

which were further investigated using TEM.  

 

                                                      
‡ This Chapter has been submitted for publication: Menna M. Hasan and Nageh K. Allam, In-situ 

Formation of Copper Nanoparticles Impeded in TiO2 Nanofibers Significantly Enhances the Efficiency 

of Photocatalytic Water Splitting. 
 

Figure 6.1 FESEM images of the electrospun (a) Titanium-copper nanofibers before annealing, (b) 

Titanium-copper nanofibers after annealing.  
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6.2 Optical Properties 

 The UV-Vis spectrum, Figure 6.2, showed high absorption intensity and a shift towards 

the visible region of the solar spectrum (almost 800 nm) for both TiO2 and TiO2-Cu composite nanofiber, 

which is consistent with the black color observed for both samples. This shift can be related to the 

formation of graphene in the samples during annealing, which is in agreement with previous studies.127 On 

the other hand, a recent study by  Samani et al. who fabricated black titania core-shell nanoparticles by 

annealing the synthesized nanoparticles in argon atmosphere at different temperatures, the shift in the 

absorption spectrum was attributed to the formation of thin Ti2O3 surface layer.128 Li et al. measured the 

absorbance of carbon-doped TiO2 and noticed that there was a shift in the absorption up to 700 nm, which 

enhanced the photocatalytic activity compared to TiO2 nanofibers. They suggested that this shift is due to 

the formation of Ti3+ defect states between the conduction band and the valence band of TiO2.129 

 

Figure 6.2 UV-Visible absorbance spectra of TiO2 nanofibers R1, and TiO2-Cu composite 

nanofibers R4. 
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6.3 Structural and Elemental Analysis 

As shown in Figure 6.3, XRD analysis was performed to study the effect of annealing at different 

temperatures in argon atmosphere on phase transformations, and whether copper facilitates or inhibits the 

phase transformation from anatase to rutile. For titanium nanofibers annealed at 500 °C, a characteristic 

peak of the (101) facet of the anatase phase was observed at 25.4°. However, titanium nanofibers annealed 

at 600 °C showed two peaks at 25.4° and 27.17° corresponding to (101) of the anatase phase and (110) of 

the rutile phase. This comes in agreement with the results obtained from a recent study, where a mixture 

of anatase and rutile phases was obtained when TiH2 powder was annealed in argon atmosphere at 530 

°C.130 Eq  6.1 was used to determine the rutile percentage in the nanofibers.131  

Rutile percentage% = [1/ (1 + 0.79IA/IR)] * 100                                                        (6.1) 

where IR and IA are the peak intensities of (110) and (101) reflections for rutile and anatase, respectively.132 

It was found that the anatase-to-rutile ratio is 60:40 respectively. For Ti-Cu composite nanofibers (R2) 

annealed at 600 °C, we noticed the presence of new peaks at 2ϴ = 43.3°, 50.4°, 74.2°, which correspond 

to the (111), (200), and (220) facets of face-centered cubic copper, respectively,70,133,134 besides the sharp 

peak at 25.2° corresponding to the anatase phase. While no peak related to the rutile phase was detected, 

indicating that copper stabilizes the anatase phase and hinders the transformation to rutile phase. For Ti-

Cu composites with higher copper loadings (R3, R4, and R5), we were not able to detect the peaks related 

to TiO2, due to the high intensity of the peaks related to copper. However, for the sample with the highest 

copper loading (R5), a new peak related to graphene was detected at 2ϴ = 24°. According to previous 

studies the low intensity of this peak is due to the low crystallinity of this graphene and the high intensity 

of the copper peaks.133  
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The obtained Raman spectra for TiO2 nanofibers showed the major four Raman bands of anatase 

at 158, 410, 524, and 646 cm−1, which correspond to Eg, B1g, A1g and Eg active modes, respectively, as 

shown in Figure 6.4a. For the TiO2-Cu composite, the typical peaks of the D and G bands were observed 

at 1360 cm-1 and 1590 cm-1.91,94,135–138 The D band is attributed to the local defects, while the G band is 

related to sp2 hybridized graphene domains.139 As shown in Figure 6.4b,there was a an increase in the 

intensity of the peaks related to the D and G bands for the composites R4 and R5 compared to that of TiO2 

nanofibers. There was a significant increase in the intensity of the D and G bands for the composites R2 

and R3, indicating an optimum ratio of copper to PVP that facilitates the formation of graphene. This 

might be due to the consumption of larger amount of carbon in maintaining the excess amount of copper 

at zero-valent state. This is supported by the results obtained from XRD measurements, Figure 6.3, where, 

the intensity of the peaks related to metallic copper is much stronger than that of graphene. This comes in 

agreement with the results conducted recently, where lignin was used as a carbon source, it was found that 

the amount of graphene formed was dependent on the amount of copper present in the sample.133   

Figure 6.3 XRD pattern of the fabricated nanofibers annealed at different temperatures. 
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FTIR analysis was performed to study the composition of the fabricated nanofibers. As shown in 

Figure 6.5, the band at 594 cm-1 is characteristic of the Ti-O-Ti bond,140 another peak was observed at 

3419 cm-1, which corresponds to the stretching vibration of the hydroxyl groups OH– group.91,140–142 While 

the band at 1300 cm-1 is related to C-N.91,143 The peak at 1700 cm-1 is related to C=O. The broad bands at 

1400 and 1230 cm-1 are assigned to the deformation of O–H vibration from C–O and C–OH stretching 

vibrations in C–OH.143 The peak at 850 cm-1 is characteristic of the epoxide groups,139,144 and the peak at 

1560 cm-1 is related to the skeletal vibration of graphene sheets.139,145 

Figure 6.4 (a) Raman shift of TiO2 nanofibers R1, and TiO2-Cu composite nanofibers R4 (b) The 

change in D and G bands intensity with copper loadings.  
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The data obtained from electron paramagnetic resonance (EPR) measurements, Figure 6.6,  

showed a peak at g = 2.008, which indicates the presence of carbon centered radicals due to the incomplete 

oxidation of the PVP polymer.130 For the TiO2-Cu composite, the intensity of the peak was very weak, 

which can be related to larger amount of the polymer undergoing an oxidative reaction through electron 

transfer to copper atoms. This also explains the stabilization of copper metal at zero oxidation state. 

 

Figure 6.5 FTIR spectra of the fabricated nanofibers with different copper loadings. 

 

Figure 6.6 EPR spectra of TiO2 nanofibers R1, and TiO2-Cu composite nanofibers R4. 
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As shown in Figure 6.7a, the measured vertical d-spacing of the lattice is  3.52 Ao and 2.1 Ao 

which correspond to the (101) lattice planes of the anatase phase of TiO2,146 and the (111) lattice plane of 

metallic copper, as shown in Figure 6.7b.147 The particle size of copper nanoparticles was found to be in 

the range of 23 - 33 nm, which are well distributed among the nanofibers, as shown in Figure 6.7c. 

Moreover, the electron diffraction patterns shown in Figure 6.7d, confirm that the material is 

polycrystalline. 

 

6.4 Photocatalytic Water Splitting Measurements 

The photocatalytic activity of the fabricated nanofibers was tested under irradiation with a 300 W 

xenon arc lamp using a solution of 1M KOH. Figure 6.8 shows the amount of H2 obtained upon testing 

the fabricated nanofibers. For TiO2 nanofibers, the H2 yield was almost 1150 μmol g−1. The amount of 

Figure 6.7 TEM images of TiO2-Cu composite nanofibers. 



55 

 

hydrogen collected increased with the increase in copper concentration and reaches the highest H2 yield 

of 5110 μmol g−1 for the sample containing the highest copper concentration. This could be due to the 

plasmonic behavior of copper nanoparticles, which results in an increase in the density of the generated 

charge carriers, along with the enhanced charge separation due to the heterojunction formed at the interface 

between copper and TiO2. These values were obtained in absence of hole scavenger species in the 

electrolyte, making the fabricated TiO2-Cu composite nanofibers superior in performance compared to the 

results reported in previous studies. Recently, the catalytic activity of TiO2 nanotube arrays decorated with 

Cu nanoparticles only showed 15 μmol cm-2.148  

 

 

 

 

Figure 6.8 H2 evolution measurements.  
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6.5 Conclusion 

In this study, TiO2 and TiO2-Cu composite nanofibers were fabricated, their morphological, 

structural, optical and photocatalytic properties were studied. Annealing at different temperatures was 

found to affect the crystallinity of the fabricated materials. The photocatalytic activity of the fabricated 

nanofibers in water splitting reaction was also tested. Metallic copper nanoparticles were stabilized by the 

carbon present in the fiber. Copper nanoparticles were found to stabilize the anatase phase. Annealing in 

argon atmosphere also facilitates the conversion of PVP to graphene. The presence of graphene shifted the 

absorption to almost 800 nm. For Ti-Cu nanofibers, there was a 344% increase in the hydrogen yield 

compared to that of TiO2 nanofibers. This enhancement is attributed to the efficient charge separation due 

to the presence of copper and graphene. Besides the plasmonic effect of copper nanoparticles increases the 

number of the generated charge carriers. This study introduces a new approach for stabilizing metallic 

copper nanoparticles. This study proves that further optimization of composite nanofibers can greatly 

enhance the efficiency of TiO2 as a photocatalyst for water splitting reaction and overcome its limitations.  
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Chapter 7  

7 Summary and Suggestions for Future Work 

7.1  Summary 

In this Thesis, TiO2 and TiO2-Copper composite nanofibers were fabricated and annealed in 

different atmospheres, oxygen, air, and argon. The effect of different annealing atmospheres on the 

fabricated composite was studied. In terms of, the change in morphology before and after annealing, the 

resulting crystal structural, the optical and photocatalytic properties. It was found that annealing in air 

atmosphere resulted in the formation of anatase phase and CuO, rutile phase and CuO was formed in 

oxygen atmosphere. While for the argon annealed samples, a mixture of anatase and rutile phases was 

formed at 500 oC, at 600 oC only rutile phase was obtained. However, it was found that copper stabilizes 

the anatase phase even at 600 oC. For the anatase phase, XRD and EPR analysis suggest that some of the 

Ti4+ ions were substituted by Cu2+ ions, this lead to the formation of shallow defect states below the 

conduction band of TiO2. Accordingly, the bandgap became narrower and charge carriers transport and 

collection was enhanced.  Besides, electrons can easily move to the conduction band of CuO due to the 

lower position of the conduction band relative to that of TiO2. Thus, charge recombination is hindered. 

This enhancement in the hydrogen yield also confirms these findings, where TiO2-CuO of the air annealed 

samples showed 117% enhancement compared to TiO2 nanofibers. For the samples annealed in argon 

atmosphere, metallic copper nanoparticles were stabilized by the carbon present in the fiber. Annealing in 

argon atmosphere also resulted in converting PVP to graphene. The presence of graphene shifted the 

absorption to almost 800 nm. This resulted in a percent increase in the hydrogen yield by almost 344% for 

Ti-Cu nanofibers compared to that of TiO2 nanofibers. This enhancement is attributed to the efficient 

charge separation facilitated by the presence of copper and graphene. Besides the plasmonic effect of 



58 

 

metallic copper nanoparticles, which increases the number of the generated charge carriers. This study 

introduces a new approach for metallic copper nanoparticles stabilization, and graphene synthesis. This 

study prove that further optimization of composite nanofibers can greatly enhance the efficiency of TiO2 

as a photocatalyst for water splitting reaction and overcome its limitations.  

7.2 Nanofibers 

The structure of the nanofibers is very promising for photocatalysis applications, due to their large 

surface area and directional charge transfer of the photogenerated charge carriers, hence reduces the 

recombination rate. Thus, nanofibers of other metals and metal oxides need to be explored and studied for 

comparison, and to increase the obtained hydrogen yield. 

7.3 Metallic Copper Stabilization  

The work presented in this thesis shows a great potential of metallic copper in catalysis, thus 

further investigation need to be conducted on stabilizing copper in zero oxidation state. In this regard, 

carbon-based materials seem to be very promising in metallic copper stabilization. Thus, other carbon 

sources can be explored to maintain the zero-valent copper nanostructures.  

7.4  Plasmonic Behavior of Metallic Copper Nanoparticles 

Plasmonic materials show some unique properties that can be used to enhance the efficiency of 

the overall photocatalytic water splitting reaction. In this regard, copper nanoparticles show great potential 

as a plasmonic material with the advantage of being cheap and earth abundant, rather than the conventional 

plasmonic materials. Such as, gold and silver, which are very expensive and very rare in the earth crust. 
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7.5 New Approach for Graphene Synthesis 

According to the results obtained in this thesis, the polymeric materials used in the electrospinning 

process can be used as a carbon source and be converted into graphene if the annealing process is 

conducted in an inert atmosphere. This approach should be further investigated through using catalysts 

that can accelerate this transformation. Modifying the annealing conditions can also help enhancing the 

crystal structure of the formed graphene sheets. 
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