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Abstract

Using Deep Neural Networks for object detection tasks has had ground break-

ing results on several object detection benchmarks. Although the trained

models have high capacity and strong discrimination power, yet inaccurate

localization is a major source of error for those detection systems. In my

work, I’m developing a sequential searching algorithm based on Bayesian

Optimization to propose better candidate bounding boxes for the objects of

interest.

The work is focusing on formulating effective region proposal as an opti-

mization problem and using Bayesian Optimization algorithm as a black-box

optimizer to sequentially solve this problem. The proposed algorithm demon-

strated the state-of-the-art performance on PASCAL VOC 2007 benchmark

under the standard localization requirements.
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Chapter 1

Introduction

Deep learning has improved many computer vision tasks and motivated by

its success in the object classification tasks [1, 2, 10, 14, 15, 20], a signifi-

cant effort has been put in place to use deep learning to improve the object

detection systems. The most notable effort is Region based CNN architec-

tures [3, 7, 8, 19] that demonstrate state-of-the-art performance on standard

detection bench marks [5, 16] and near real time execution.

There are two crucial components that makes Region based CNN archi-

tectures excel at the object detection task. The first component is replacing

the low-level hand engineered features like HOG [4] or SIFT [17], with CNN

feature maps which arguably have larger representation capacity. The only

downside of the CNN features is that they are expensive to compute and

that’s where the second component is used, a region proposal algorithm used

to propose regions of interest (ROI), that will likely contain the object of in-

terest hence reducing the features computation time by focusing the network

attention on a smaller set of ROIs.

Despite the success of region based CNN detectors, the region proposal

algorithm is still considered a week point. Consider the example that none
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of proposed regions is near the ground truth bounding box, so no matter

how discriminant the features extracted from the CNN are, there is no way

to detect the correct bounding box of the object of interest, and indeed

in many application, like autonomous driving, an accurate bounding box is

important.

In my work, I will use a search algorithm that uses the initial detections

to propose, sequentially, new bounding boxes that will likely have higher de-

tection scores and are closer to the ground truth. The search algorithm is

implemented using the Bayesian Optimization framework [24] to replace the

complex detection function with surrogate model that captures the proba-

bility distribution of the detection scores given the extracted CNN features.

The rest of the thesis is structured such that in chapter two I will discuss

the related work and modern object detection frameworks. Chapter three

serves as an introduction to Bayesian Optimization as a black box optimizer

in its general form. In chapter 4, I’ll discuss how we can formulate the

region proposal problem and make it fit into Bayesian Optimization mould

by introducing the local maxima search algorithm to refine the proposed

regions. Before I conclude in chapter 6, I’ll discuss the experiments and

results in chapter 5.
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Chapter 2

Related Work

R-CNN: Region based CNN (RCNN)[8] was the approach that pioneered

using region proposal on top of CNN features as an object detector.

In RCNN, there are three modules. The first module is an external region

proposal algorithm called selective search, where class-independent regions

are proposed randomly [25] and each ROI is cropped and wrapped and sent

to the second module for feature extraction. In feature extraction module,

a 4096-dimensional feature vector is extracted for each region. The features

are calculated by forward propagating a 227x227 RGB image through five

convolution layers and two fully connected layers. Regardless of the size

or the aspect ratio of the candidate region, a warping operation is done to

resize the region to the network expected size. The last module is a one

v.s. all SVM trained for every class using the extracted features from the

CNN. At test time the selective search algorithm is used to propose 2000

regions per image which are then propagated through the CNN for feature

extraction and then scored across the different trained SVM classifier. Given

all the scored regions a greedy non-maximum suppression is applied to reject

regions that has an intersection-over-union (IoU)[6] overlap with a higher

7



scoring selected region larger than a learned threshold. Figure 2.1 is an

overview of the RCNN architecture. The main issue with RCNN approach

was the repeated, expensive computation that was needed to be done to

extract the CNN features for each of the 2000 proposed ROI at test time.

Figure 2.1: RCNN overview. The system (1) takes an input image, (2)
extracts around 2000 bottom-up region proposals, (3) computes features for
each proposal using a large convolution neural network (CNN), and then (4)
classifies each region using class-specific linear SVMs[8]

In Fast-RCNN [7], the author took a different approach, instead of crop-

ping the ROI from the image directly, the cropping is delayed until an inter-

mediate feature map, with this trick many feature computation is done on

the whole image and done only once. What enabled the Fast-RCNN network

to extract a fixed size feature vector from each proposed ROI, regardless of

its shape or aspect ratio, is a newly introduced layer called ROI pooling layer.

The ROI pooling layer uses max pooling to convert features inside any valid

proposed region into a small, fixed size feature map. Another differentiator

of the Fast-RCNN approach is the elimination of the multi-stage training

used in RCNN, where we had to train a CNN for feature extraction and

then train an SVM for detection. In Fast-RCNN, the authors introduced a

multi-task loss in a form of two sibling output layers. The first output layer

is a softmax loss function to model the discrete probability of the K object
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classes we want to detect, and the second sibling layer is a bounding-box

regression offsets for each of the K object classes. With every ROI labeled

with a ground truth class u and a ground truth bounding box target v, the

multi-task loss function L can be formulated as follows

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (2.0.1)

, where p is the predicted class probability and tu is predicted bounding box

coordinates. Figure 2.2 is an overview of the Fast R-CNN architecture.

Figure 2.2: Fast R-CNN overview. An input image and multiple regions
of interest (RoIs) are input into a fully convolution network. Each RoI is
pooled into a fixed-size feature map and then mapped to a feature vector by
fully connected layers (FCs). The network has two output vectors per RoI:
soft-max probabilities and per-class bounding-box regression offsets. The
architecture is trained end-to-end with a multi-task loss.[7]

Both RCNN and Fast-RCNN relied on an external region proposal algo-

rithm, however in Faster-RCNN [19], the architecture included two modules,

a Fast-RCNN network and a dedicated region proposal network, which is

trained on anchors to generate good candidate regions while at the same

time sharing the convolution layers computations with the Fast-RCNN net-

work making the region proposal cost-free. To generate region proposals a
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small, sub network with two sibling heads, a classification head and a bound-

ing box regression head, is trained on the features extracted from a shared

set of convolution layers. This mini-network is illustrated at figure 2.3 ex-

tracting features from the last shared convolution layer at a single location.

Figure 2.3: RPN with a sliding window of size 3x3 extracting features to
train the network two sibling heads.[19]

Two train the two modules of the Faster-RCNN the authors opted to a

pragmatic 4-step alternating training. In the first step the first module of

the architecture, the RPN, is trained on a set of anchors to optimize a loss

function similar the one used in the Fast-RCNN framework. In the second

step, the second module, the Fast-RCNN detection network, is trained on the

regions proposed by RPN in step one. Up until this moment no convolution

layers are shared between the two modules. In the third step, the convolution

layers of the Fast-RCNN is used to initialize the convolution layers in the

RPN, and the training continues to fine tune only the layers specific to the
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RPN. The last step, while keeping the convolution layers fixed, the training

for the Fast RCNN is continued but this time using the RPN output to fine

tune the unique layers of the Fast-RCNN.

Although Faster R-CNN is an order of magnitude faster than Fast R-

CNN, but still the region-specific component must be applied several hun-

dred times per image, however in R-FCN[3] (Region-based Fully Convolu-

tional Networks) method the author pushed cropping the features from the

same layer where region proposals are projected, down to the last layer of

the features prior to prediction, thus minimizing the amount of per-region

computation that must be done.

Figure 2.4: Faster RCNN (left), and R-FCN [11] (right).

Localization refinement can also be considered a CNN problem but

instead of classification it is regression. Girshick et al. [8] extracted the

middle layer features and linearly regressed the initially proposed regions to

better locations. The overfeat framework [21] refined bounding boxes from

a grid layout to flexible locations and sizes using the higher layers of the

deep CNN architecture. Fast and Faster RCNN[7, 19] jointly conducted

classification and regression in a single architecture.

My work will be based on [27] which uses the information from multiple

existing regions instead of a single bounding box for predicting a new can-

didate region, and it focuses only on maximizing the localization ability of

the CNN classifier instead of doing any regression from one bounding box to
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another. In addition, instead of applying [27] method on regions proposed

using the selective search algorithm [25], the algorithm will be applied on the

proposals from the RPN network in the Faster RCNN framework.
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Chapter 3

Bayesian Optimization as

black-box optimizer

Bayesian optimization is a black-box optimization algorithm that is best used

to maximize/minimize expensive objective functions. As a black-box opti-

mization algorithm, Bayesian optimization searches for the extremum of an

unknown objective function from which a pair of [input, output] can be ob-

tained. Bayesian optimization is model-based optimization technique which

means it creates a model of the objective function with a regression method,

uses this model to select the next point to acquire, then updates the model

according to the new point and its true objective function evaluation. It is

called Bayesian because, in its general formulation, this algorithm chooses

the next point by computing a posterior distribution of the objective function

using the likelihood of the data already acquired and a prior on the type of

function.

p(f |Dn) ∝ p(Dn|f)p(f), (3.0.1)
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Bayesian optimization uses the prior and evidence to define a posterior

distribution over the space of functions. Following the Bayesian model allows

us to describe some of the objective function attributes, such as smoothness,

that we think important using the informative prior. Optimizing follows the

principle of maximum expected utility, or, equivalently, minimum expected

risk. The process of deciding where to sample next requires the choice of a

acquisition function and a way of optimizing this function with respect to

the posterior distribution of the objective function.

Algorithm 1 General Bayesian Optimization

1: for i← 1, t do
2: find xi by optimizing the acquisition function over the posterior dis-

tribution of the objective function.
3: Evaluate the object function at xi, yi = f(xi)
4: Augment the data D1:i ← D1:i−1 ∪ {(xi, yi)} and update objective

function posterior distribution.

Following the Bayesian optimization loop in Algorithm 1, we can extract

two components: the posterior distribution over the objective function and

the acquisition function. To build the posterior distribution, we accumulate

observations D1:i ← D1:i−1 ∪ {(xi, yi)}, a prior distribution P (f) is then

combined with the likelihood function P (D1:i|f) to produce the posterior

distribution: p(f |Dn) ∝ p(Dn|f)p(f). The posterior captures the updated

beliefs about the unknown objective function and act as surrogate of the

objective function. In the next section we discuss how we fit a GP and use

it as the prior, P (f),for the objective function.
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3.1 Gaussian Process as objective function

prior

A Gaussian process is a generalization of the Gaussian probability distribu-

tion. Whereas a probability distribution describes random variables which

are scalars or vectors (for multivariate distributions), a stochastic process

governs the properties of functions we can loosely think of a function as a

very long vector, each entry in the vector specifying the function value f(x)

at a particular input x. Gaussian processes are particularly interesting for

regression because they not only model the cost function, but also the uncer-

tainty associated with each prediction. For a cost function f(x), a Gaussian

process defines the probability distribution of the possible values f(x) for

each point x. This distribution over functions is completely specified by a

mean function m(x) and covariance function k(x, x̂).

f(x) ∼ GP (m(x), k(x, x̂)), (3.1.1)

To put it differently, when using GP as f(x) prior, instead of returning a

scalar value the GP returns the mean and the variance of a normal distri-

bution over the possible values of f at x.

Now the interesting question would be what the covariance function k be.

A very popular choice would be to use the squared exponential function:

k(xi, xj) = exp(−1

2
‖ xi − xj ‖2) (3.1.2)

This function approaches the value of 1 as the points get closer and ap-

proaches 0 as they get further apart, this means that closer points are highly

correlated and far away points have less influence on each other. Now let’s
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Figure 3.1: Simple 1D Gaussian process with three observations. The solid
black line is the GP surrogate mean prediction of the objective function given
the data, and the shaded area shows the mean plus and minus the variance.
The superimposed Gaussians correspond to the GP mean, µ(.), and standard
deviation, σ(.), of the prediction at the points, x1:3.[22]

say we have a set of points x1:t, and we evaluate the objective function at

each point to produce the pairs x1:t,f1:t , we can say that the function val-

ues are drawn according to to a zero mean multivariate normal distribution

N(0,K), where the kernel matrix is given by:

K =


k(x1, x1) . . . k(x1, xt)

...
. . .

...

k(xt, x1) . . . k(xt, xt)
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Now we want to decide which point,xt+1, should be considered next. Let

us denote the value of the objective function at this arbitrary point as ft+1 =

f(xt+1), then by the properties of Gaussian processes, f1:tandft+1, are jointly

Gaussian:  f1:t
ft+1

 ∼ N

0,

K k

kT k(xt+1, xt+1)


where

k = [k(xt+1, x1) k(xt+1, x2) . . . k(xt+1, xt)]

Using the Sherman-Morrison-Woodbury formula[23], we can arrive at an ex-

pression for the predictive distribution:

P (ft+1|D1:t, xt+1) = N(µt(xt+1), σ
2
t (xt+1))

where

µt(xt+1) = kTK−1f1:t (3.1.3)

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k (3.1.4)

That is, µt(xt+1) and σ2
t (xt+1) are the sufficient statistics of the predictive

posterior distribution P (ft+1|D1:t, xt+1).

3.2 Acquisition Functions for Bayesian Opti-

mization

In this section we will discuss the second component of Bayesian optimization,

acquisition functions. The acquisition function is used to guide the search

for the optimum. Typically, acquisition functions are defined such that high

17



acquisition corresponds to potentially high values of the objective function,

whether because the prediction is high, the uncertainty is great, or both.

In other words, we wish to evaluate the object function at argmaxx u(x|D),

where u(.) is the acquisition function.

3.2.1 Improvement-based acquisition functions

One of the widely used acquisition functions is probability of improvement [13]

where the next point, x is chosen to maximize:

PI(x) = P (f(x) ≥ f(x+) = Φ

(
µ(x)− f(x+)

σ(x)

)

where x+ is the best point seen so far, and Φ is the normal cumulative

distribution function. The drawback of this formulation is that it is pure

exploitation, meaning that points which have high probability of being in-

finitesimally greater than (x+) will be chosen over other points that offer

larger gains but high uncertainty because the formula divides by σ(x).

Another alternative acquisition function would be not to only consider

the probability of improvement but also take into account the magnitude of

that improvement. This alternative acquisition function is called the expected

improvement [18] function with respect to f(x+):

EI(x) =

(µ(x)− f(x+))Φ(z) + σ(x)φ(z) if : σ(x) > 0

0 if : σ(x) = 0

(3.2.1)

z =
µ(x)− f(x+)

σ(x)

where φ() and Φ() denote the PDF and CDF of the standard normal distri-

bution respectively.
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Figure 3.2: 1D Gaussian process additionally showing the region of probable
improvement. The best point seen so far is at x+. The darkly-shaded area in
the superimposed Gaussian above the dashed line can be used as a measure
of improvement. By sampling at x1 or x2, the model predicts almost no
possibility of improvement, while sampling at x3 is more likely to improve
on f(x+).[22]
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Chapter 4

Region Proposal using

Bayesian Optimization

Let f(x, y) denotes a detection score function that receives two inputs, x is

the image and y as a region coordinates. The job of an object detection

framework is to find the local maximum of f with respect to y on a new,

unseen image x.

With the resolution of images we have right now it is crucial to find an

efficient searching algorithm for the candidate regions as we have to evaluate

the scoring function at many locations. The sliding window approach was the

dominant method where a fixed size window is applied at different locations

and scales to find the region that maximizes the detection score, however

when f relies on features extracted from a CNN, it becomes more expensive

to evaluate and such approach becomes unpractical.

In region-based CNN object detectors, the detection framework requires

evaluating the detection scoring function f on a much fewer number of regions

(e.g., few hundreds or thousands). However, there exist one potential issue of

object detection pipelines based on region proposal which is that the correct

20



detection will not happen if there is no region proposed in good enough

proximity to the ground truth bounding box. To mitigate this risk usually,

region based CNN detection pipelines propose more bounding boxes to cover

the entire image more densely, but again this will increase the detection time

significantly.

Within the Bayesian Optimization context which is used as a global max-

imizer of an unknown function f [22], we can develop a sequential searching

algorithm that uses the previously proposed regions to find new bounding

boxes that are expected to have a higher detection scores without signifi-

cantly increasing the number of proposed regions.

The main idea is to fit a probabilistic surrogate model, representing the

prior distribution that captures our beliefs about the behaviour of f(x, y) and

then use an acquisition function that describes how optimal a sequence of

queries, in our case regions, are. With the acquisition function guide, we can

easily follow a sequence of queries to find the optimal region that maximizes

f .

4.1 General Bayesian optimization framework

Let’s assume that our detection score function f(x, y) has a set of solutions

{y1, y2, ..., yn}. In the Bayesian Optimization framework, f(x, y) is assumed

to be drawn from a probabilistic model:

p(f |Dn) ∝ p(Dn|f)p(f), (4.1.1)

where Dn = {(yj, fj)}nj=1, and fj = f(x, yj). Now once we fit a proba-

bilistic model on f , the goal becomes sampling a new solution yn+1 with a

high chance that it will maximizes the value of fn+1. Here the chance is
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represented by an acquisition function α(yn+1|Dn) that is used to trade-off

between exploration (variance) and exploitation (mean) of the fitted proba-

bilistic model on f . Once the model and the acquisition function is fitted, the

Bayesian Optimization algorithm is used recursively to sample new position

yn+1 and create the set Dn+1 = Dn ∪ {yn+1}

Algorithm 2 Bayesian Optimization based Region Proposal

Require: Image x, classifier fcnn, a set of regions with classifications scores
Dn.

Ensure: A set of newly proposed regions with detection scores.
1: function Propose Regions
2: D ← Dn

3: for i← 1, t do
4: Dproposal = ϕ
5: for all (ybest, fbest) ∈ D do
6: Dlocal = {(y, f) ∈ D : IoU(y, ybest) > threshold}
7: ŷ = argmaxy α(y|Dlocal)

8: f̂ = fcnn(x, ŷ)
9: Dproposal ← Dproposal ∪ {(ŷ, f̂)}
10: D ← D ∪Dproposal

4.2 Bayesian optimization and Faster-RCNN

As mentioned in previous chapter Faster-RCNN uses an embedded region

proposal network to propose class agnostic bounding boxes. Those boxes

are then fed to a classifier which will assign class membership probability for

every class we are testing against. In this section I will discuss how Bayesian

optimization can improve the objectiveness of the proposed regions and get

higher classification probability.

The Faster-RCNN architecture has a layer called region proposal layer,

this layer is implemented in python and used to order all the regions that are
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proposed so far and return the regions with the highest objectiveness score

to be tested with the classifier.

In order to apply Bayesian optimization on top of those regions, a network

surgery had to take place by splitting the detection pipeline into two parts,

the first part starts from the input layer up to the region proposal layer, and

the second part, to be refereed to as Npro, starts with the bounding boxes

from the region proposal up till the classification layer.

With this split, I was able to formulate the objective function for the

Bayesian optimization framework as:

P (c|x, y) = Npro(x, y)[c] (4.2.1)

where x is the image, y is the region coordinates, c is the class we are opti-

mizing for.

4.3 Local Maxima Search using Bayesian op-

timization

With the defined object function P (c|x, y), now the next step would be to

decide on the set of the initial evaluated regions which will be used for fitting

the GP model, and the choice came as follows. First we select the top R

regions form the proposal layer according to their objectiveness scores, in my

experiments R was 30.

For every region y in R we compute P (c|x, y), and all the regions that

had the background class as the most probable was discarded. What was

left is a set of regions that are not background, and each one of those regions

are used as an initial point (local maxima) for one Bayesian optimization
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optimization run.

Once a local maxima is picked up, we select all the original regions that

have pascal distance, IoU, greater than or equal ρ, in my experiments ρ was

0.65. We can think of this step as defining the domain of the regions that

the Bayesian optimization can choose from to maximise our object function.

The higher the ρ value the smaller the domain, the lower the ρ value the

bigger the domain. I would choose hight ρ values to constraint the size of

the regions that the Bayesian optimization will propose.

Once we had our set of regions (One local maxima and its IoU set) we map

the coordinates of all those regions to a different space, instead of having the

regions represented as (x1, y1, x2, y2) ⇒ (left, top, right, bottom), I trained

BO on regions with representation (xc, yc, log(w), log(h)), where xc, yc is the

region center, and w, h is the region width and height, respectively.

With this setup, we can iterate N times and each time we use Bayesian

optimization to maximize P (c|x, y), by feeding in the initial regions, their

class membership probability and regions domain, and getting out a new

region that should have better classification score, then each newly proposed

region is evaluated with the true objective function, and the true score is

used to update the Gaussian process model as the objective function prior.

After exhausting the N iterations we end up with a new set of regions

that should have higher detection scores. we keep repeating this process for

every local maxima we have to support multiple objects in the same picture.

Once the process is done a non-maxima suppression algorithm is used to

produce the final detections.
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Chapter 5

Experiments and Results

I trained and tested both Faster-RCNN and Faster-RCNN with Bayesian op-

timization on images with a single scale [9]. Each image is rescaled such that

its shorter side is s = 600 pixels. The total stride for the last convolutional

layer, for the ZF architecture [26], is 16 on the re-scaled images. For anchors,

I used 3 scales with box areas 1282, 2562, 5122, and 3 aspect ratios of 1:1,1:2,

and 2:1 as shown in figure 5.1.

Figure 5.1: Anchors with 3 scales with box areas 1282, 2562, 5122, and 3
aspect ratios of 1:1,1:2, and 2:1
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As anchors are generated for every image pixel, there will be anchors that

cross image boundaries, those anchors needs to be handled with care.

For training, all cross-boundary anchors are ignored so that they don’t

contribute to the network loss. Roughly, there exists 20000 (≈ 60× 40× 9)

anchors for a typical 1000 × 600 image, and with cross-boundary anchors

ignored we are left with 6000 anchors for training.

As for testing, the same process is applied as the fully convolutional RPN

is applied to the entire image and cross-boundary boxes maybe generated.

Additionally, some RPN proposals are highly overlapped so to reduce

redundancy non-maximum suppression (NMS) is applied on proposed regions

based on their class scores. I fixed the IoU threshold for NMS at 0.7, resulting

in roughly 2000 proposed regions per image for testing.

After NMS, I used the top-N ranked proposed regions for both the base-

line (Faster-RCNN) and the starting set for the Bayesian optimization local

maxima search and top-M ranked regions to build the Bayesian optimization

domain, by picking all the proposed regions that have an IoU ≥ 0.65 with

the current local maxima. I conducted the local maxima search with top-M

set having a maximum of 900 regions.

5.1 Experiments on PASCAL VOC

I evaluate my method on the PASCAL VOC 2007 detection benchmark [6].

This dataset is composed of 5000 trainval images and 5000 test images for

20 object categories. For the ImageNet pre-trained network, I use the ZF

net [26] that has five convolutional layers and three fully-connected layers.

I primarily evaluate detection mean Average Precision (mAP) as the metric

for object detection.
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Figure 5.2: ZF Network Architecture.

The results are in Table 5.1 summarizes the performance of Faster R-CNN

with and without the Bayesian optimization search algorithm.

Model aero bike bird boat bottle bus car cat chair cow

Faster-RCNN (ZF) 0.609 0.609 0.485 0.375 0.233 0.677 0.626 0.70 0.276 0.695
Faster-RCNN (ZF) + BO(Matern52) 0.62 0.621 0.483 0.4 0.24 0.69 0.628 0.70 0.274 0.68

table dog horse mbike person plant sheep sofa train tv mAP

Faster-RCNN (ZF) 0.684 0.69 0.80 0.611 0.604 0.309 0.622 0.622 0.69 0.426 0.567
Faster-RCNN (ZF) + BO(Matern52) 0.692 0.694 0.81 0.61 0.604 0.3 0.62 0.65 0.7 0.431 0.572

Table 5.1: Test set mAP of PASCAL VOC 2007. The first row is the base-
line using Faster RCNN with number of regions to be tested equals 30.
The second row is the Faster RCNN augmented with Bayesian Optimization
search algorithm, a GP is used as the objective function prior and Matern52,

k(r2) =
(

1 +
√

5 r2 + 5 r2

3

)
exp

(
−
√

5 r2
)

, is used as the GP kernel and the

GP domain threshold is set to 0.65.

5.1.1 Kernel effect on GP fitting

The results shown in Table 5.1 are for successful integration between Faster-

RCNN and ROBO - a Robust Bayesian Optimization framework [12] and in

this section I tune ROBO to use different kernel to better capture the spatial

relationship between two proposed regions. One popular choice would be to

use the ExpSquared kernel to give high correlation coefficient for close-by

regions and exponentially decays as the regions move apart.

As shown in Table 5.2, choosing the right kernel is important to get even
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Model aero bike bird boat bottle bus car cat chair cow

Faster-RCNN (ZF) 0.609 0.609 0.485 0.375 0.233 0.677 0.626 0.70 0.276 0.695
Faster-RCNN (ZF) + BO(ExpSquared) 0.6223 0.62 0.486 0.471 0.24 0.68 0.626 0.70 0.275 0.696

table dog horse mbike person plant sheep sofa train tv mAP

Faster-RCNN (ZF) 0.684 0.69 0.80 0.611 0.604 0.309 0.622 0.622 0.69 0.426 0.567
Faster-RCNN (ZF) + BO(ExpSquared) 0.6844 0.683 0.81 0.62 0.61 0.294 0.6144 0.641 0.7 0.44 0.576

Table 5.2: Test set mAP of PASCAL VOC 2007. The first row is the base-
line using Faster RCNN with number of regions to be tested equals 30.
The second row is the Faster RCNN augmented with Bayesian Optimiza-
tion search algorithm, a GP is used as the function prior and ExpSquared,

k(r2) = exp
(
− r2

2

)
, is used as the GP kernel.

better results, for our case the points are spatially correlated so choosing

a kernel that easily capture and reflect on this property immediately gives

better results.

5.1.2 Excluding RPN Regions

Figure 5.3 is depicting how ill-localized the best regions proposed by the

RPN network in the Faster-RCNN framework, which serves as a good mo-

tivation behind augmenting the original proposed regions with the, likely to

give higher detection score, regions suggested by the Bayesian Optimization

search algorithm.

It can be observed in Figure 5.4, how the local maxima search algorithm

using Bayesian Optimization can improve on the best regions originally pro-

posed by the RPN.

However in the section I present the results of totally excluding the RPN

regions and only relying on the regions coming out of the Bayesian Optimiza-

tion. The intuition would be that these regions are highly optimized to give

a higher classification scores so dumping the RPN regions shouldn’t affect

the detection precision, yet as shown in Table 5.3 the mAP is significantly
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decreased, especially for classes that usually have multiple overlapping ob-

jects in the same scene, leaving us to believe that Bayesian Optimization

may converge to a single box if the objects are highly overlapping, and that’s

why the GP domain construction parameter is very important to control this

behaviour by limiting the space where the GP can sample new regions.

Model aero bike bird boat bottle bus car cat chair cow

Faster-RCNN (ZF) 0.609 0.609 0.485 0.375 0.233 0.677 0.626 0.70 0.276 0.695
Faster-RCNN (ZF) + BO(Matern52) 0.62 0.60 0.42 0.4 0.24 0.61 0.54 0.69 0.27 0.62

table dog horse mbike person plant sheep sofa train tv mAP

Faster-RCNN (ZF) 0.684 0.69 0.80 0.611 0.604 0.309 0.622 0.622 0.69 0.426 0.567
Faster-RCNN (ZF) + BO(Matern52) 0.693 0.68 0.72 0.61 0.53 0.3 0.54 0.62 0.7 0.431 0.542

Table 5.3: Test set mAP of PASCAL VOC 2007 after excluding RPN regions.
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(a) Depicting the top scoring region (b) Depicting the 3-top scoring regions

(c) Depicting the 5-top scoring regions (d) Depicting the 200-top scoring regions

(e) Original picture

Figure 5.3: Projecting the best scoring region(s) to the last feature map in
the convolution layers
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Figure 5.4: Red box depicting the final detection proposed by the RPN.
Green box depicting the result after local maxima search using Bayesian
Optimization.
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Chapter 6

Conclusion and Future work

In this work I proposed a complementary method to improve the performance

of the Faster-RCNN object detection framework, a fine-grained search algo-

rithm using Bayesian Optimization to refine the proposed regions. I demon-

strated the state-of-the-art performance on PASCAL VOC 2007 benchmark

under the standard localization requirements.

With many knobs to tune, the method could yield better results by ex-

ploring different models as the object function prior, for example, bayesian

neural network and random forests. In addition to choosing different models,

still we could try different kernels with the Gaussian process as the function

prior and/or hyper-parameter optimization including the IoU threshold used

for the GP domain construction, number of iteration for a single optimization

run, and number of optimization runs.
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