
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations Student Research 

6-1-2018 

The effect of adding radiotherapy to the administrated The effect of adding radiotherapy to the administrated 

chemotherapy on infants' gut microbiome chemotherapy on infants' gut microbiome 

Nourhan Elsahly 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

Recommended Citation Recommended Citation 

APA Citation 
Elsahly, N. (2018).The effect of adding radiotherapy to the administrated chemotherapy on infants' gut 
microbiome [Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/428 

MLA Citation 
Elsahly, Nourhan. The effect of adding radiotherapy to the administrated chemotherapy on infants' gut 
microbiome. 2018. American University in Cairo, Master's Thesis. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/428 

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge 
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC 
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/428?utm_source=fount.aucegypt.edu%2Fetds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/428?utm_source=fount.aucegypt.edu%2Fetds%2F428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu


 
 
 

 
 

The American University in Cairo 
 

School of Science and Engineering 
 
 
 

The Effect of Adding Radiotherapy to The Administrated 
Chemotherapy on Infants Gut Microbiome 

 
 
 

The Biotechnology Master’s program 
 

In partial fulfillment of the requirements for 
 

the degree of Master of Science 
 

 
 

By: Nourhan Gamal Elsahly 
 
 

 
AUC Supervisor 

Dr. Ahmed Moustafa 
Associate professor, The American University in Cairo 

 
 
 

External Supervisors 
Dr. Tamer Salem 

Professor, University of Science and Technology, Zewail City  
 

Dr. Mohamed Saad Zaghloul 
Professor, Children Cancer Hospital Egypt CCHE 57357 

 
 
 
 
 
 

February/2018 
 
 



 

II 

 
 
 

THESIS PROPOSAL APPROVAL 
 
 
Student Full Name: _________________________________________ 
 
Student ID: _________________________________________ 
 
Thesis Title: _________________________________________ 
Please attach the thesis proposal to this form. 
 
Proposed Graduation Date: ____________________________________ 
 
Thesis title and proposal have been approved: 
 
Thesis Supervisor: 
Name: _________________________________________ 
Title: _________________________________________ 
Department: _________________________________________ 
Institution: _________________________________________ 
Signature: _______________________Date: _____________ 
 
First reader: 
Name: _________________________________________ 
Title: _________________________________________ 
Department: _________________________________________ 
Institution: _________________________________________ 
Signature: ________________________Date: ____________ 
 
Second reader: 
Name: _________________________________________ 
Title: _________________________________________ 
Department: _________________________________________ 
Institution: _________________________________________ 
Signature: _________________________Date: ___________ 
 
Department Chair: 
Name: _________________________________________ 
Title: _________________________________________ 
Signature: _________________________Date: ___________ 
Student: 
 
I, (Student Name) __________________________________________ 
have read and understood the thesis guidelines. 
Signature: _________________________Date: ____________ 
 
 
 



 

III 

ACKNOWLEDGEMENTS 
 

 
 
My deepest gratitude to Dr. Tamer Salem for his irreplaceable efforts 
and guidance through the whole process starting from the idea, study 
design till reaching the data representation and his exceptional and 
continuous support whenever I am down.  
 
I would like to gratefully thank Dr. Ahmed Mosutafa in guiding me 
through the data analysis and Dr. Mohamed Saad Zaghloul for 
facilitating the accessibility to the samples and the required patients’ 
history from Childern Cancer Hospital 57357-Egypt.  
 
I am also grateful to Zewail City for funding the study. This would 
have never been possible without the presence and effort of Dr. Tamer 
Salem.  
 
Special thanks to my friends Nahla Fadl and Laila AbdelSamad for 
proofreading the thesis.  
 
Last but not least, my supportive backbone, my father, my mother and 
my husband whom without I would have never been able to reach this 
day.  
 
 
 
  



 

IV 

Abstract 
 

The American University in Cairo 
 

The Effect of Adding Radiotherapy to The Administrated Chemotherapy on 
Infants Gut Microbiome 

 
 

Nourhan Elsahly 
 
 

Dr. Ahmed Moustafa 
Dr. Tamer Salem 

Dr. Mohamed Saad Zaghloul 
 
 

 
The gut microbiota has been described as the forgotten organ owing to 
its important roles in the human body, that includes but not limited to: 
digestion, immunity, homeostasis and response to some drugs such as, 
chemotherapy and immunotherapy. Its role has been also described in 
reflection to radiotherapy and associated gastrointestinal injuries, 
where dysbiosis and its associated side effects could be the driving 
force for dose determination or the complete suspension of the 
treatment plan. Linking the gut microbiota alterations to different 
cancer treatment protocols is not easy, especially in humans. However, 
enormous effort was exerted to understand this complex relationship. 
In the current study, we described the gut microbiota dysbiosis in 
infant sarcoma patients with regards to radiotherapy and antibiotics. 
Fecal samples were collected as a source of microbial DNA for which 
the gene encoding for 16S rRNA was sequenced, targeting V3-V5 
regions. Two of the three patients understudy had experienced an 
increase in alpha diversity post treatment. Although phylum 
Firmicutes overall relative abundance was generally decreasing, six of 
its taxa increased in all patients. Our results indicate the possibility of 
radiosensitivity for the elevated taxa. Further studies are needed to 
describe the extent of radiosensitivity with regards to antibiotic 
resistance. 
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 Chapter 1: Literature Review 
 
 

The terms Microbiome and Metagenome are rapidly evolving and 

grasping more attention nowadays. Metagenome refers to the study of samples 

derived from an environment. While Microbiome refers to collection of 

microorganisms living in a specific environment  (Stern et al., 2012). The 

human body includes different environments where the microbes can reside 

namely: skin, blood, liver, genital organs and the richest of all is the gut. Each 

of which has its own microbiome, i.e. collection of microorganisms that live 

and work in association. In 2008, the United States launched a five-years project 

to explore the microbiome of the human body, named “Human Microbiome 

Project- HMP”. The project offered a catalogue that included a huge diversity 

of microorganisms living in association with the human body in different body 

parts such as: skin, vagina, nose, oral cavity, gastrointestinal tract, blood and 

others. Each of which has its own microbiome. 

 

The gut is considered as the most diverse environment for a microbial 

collection. The gut alone is colonized by 10 to 100 trillion (1013-1014) bacteria; 

besides, other microorganisms like viruses (5.8%), archaea (0.8%) and 

eukaryotic microbes (0.5%) (Arumugam et al., 2011; Aziz, 2009). This number 

is approximately tenfolds the number of our own cells. It is thought that this 

microbiota encodes a surplus of 100-folds unique genes than we do; they have 

an immense impact on our physiology, nutrition, general health and body shape 

(Qin et al., 2010).  

 

Metagenomics studies provide information about the abundance of 

bacterial species and the associated functions, which could indicate for their 

survival strategies in the human gut  (Arumugam et al., 2011). It has been 

roughly calculated that 20%-60% of the human microbiome could not be 

cultivated (uncultivable) which in turn resulted in underestimation of their 

diversity and influence on the human development. The availability of such data 

offers novel approaches for both diagnosis and treatment of many diseases. 
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This chapter offers a review for human gut microbiome in 

different states of health and disease, the microbiome alterations as 

well as the effect of chemotherapy and radiotherapy prescription on 

the gut microbiota.  

  

 

1. Microbial Composition of a Healthy Gut 
 

 

The human gut is colonized by trillions of microorganisms that contribute 

to food digestion as well as shaping the state of the body being healthy or 

diseased. Unlike the human genome, that shares more than 90% similarity 

among different people, the human microbiome is highly variable among people 

in state of health. The state of health has been defined as “a dynamic state of 

wellbeing characterized by physical, mental, and social potential, which 

satisfies the demands of a life commensurate with age, culture, and personal 

responsibility” (Bircher, 2005). Healthy adults share a common core 

microbiome, a term that was addressed by Qin and colleagues, that shows to be 

constant among various people. They reported that 57 different bacterial species 

were shared among more than 90% of the people (Qin et al., 2010). The species 

constituting the core microbiota are highly abundant in fecal samples being 

necessary for performing defined functions within the body (Shade & 

Handelsman, 2012). The actual composition of the core microbiota depends on 

the inclusion and exclusion criteria that one is defining for a certain group 

(Bäckhed et al., 2012). The set of species in the core microbiome may vary 

among different geographical locations or ethnic groups (Yatsunenko et al., 

2012). Some studies defined the human core microbiome itself as variable, 

being highly affected by external factors as: life style, diet and environmental 

factors (Figure 1) (Chase et al., 2015).  
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Figure 1: The Concept of Variable and Core Microbiome 

Some bacterial species are found to be shared among different people, defining a set of core microbiome. 
The core microbiome could vary, being affected by different factors and remain normal (blue arrows) 
while other factors may alter the microbiome resulting in a diseased profile (red arrows) (Chase et al., 
2015).  
 
Permission for figure reuse in Appendix 2 
 
 
 
 

2. Distribution of Microbial Species Along the 
Gastrointestinal Tract  
 

 

The gastrointestinal tract is colonized mostly by two main phyla namely 

Bacteroidetes and Firmicutes (Huttenhower et al., 2012). The distribution and 

colonization of assorted microbial species varies along the GI tract from the 
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small intestine, caecum and large intestine (colon). Although, these parts are 

connected without barriers, each of which has its own characteristics such as 

the pH, set of active enzymes, level of oxygen and consequently the microbial 

composition.    

 

The small intestine, which is characterized by an acidic pH and elevated 

oxygen levels, it is colonized by rapidly growing facultative anaerobes. The 

presence of bile acid at the proximal end of the small intestine limits its 

microbial diversity, since it acts as a bactericide to some species (O’Hara & 

Shanahan, 2006). However, limited number of species can withstand this 

extreme environment and still be able to survive (103–108 cells/g feces) 

(Eckburg et al., 2005). Two families were found colonizing the small intestine 

despite its harsh environment, those families are Enterobacteriaceae and 

Lactobacillaceae (Gu et al., 2013). Both families are almost saturated at the 

distal ends of the small intestines unlike the proximal ends where they inhabit 

in low amounts due to the extreme conditions mentioned earlier (Donaldson et 

al., 2015).  

 

Unlike the small intestine with its acidic pH, the large intestine is colonized 

by much larger cellular densities reaching (1011 cells/g feces) (Eckburg et al., 

2005). It is considered as the most inhabited, being colonized by the most 

diverse communities in the human body. The change in pH range from acidic 

(1.5-5) to alkaline (5-9) makes it more favorable for different bacteria to 

survive. It is worth mentioning that the oxygen content is also increasing in the 

large intestine compared to the small intestine, which enhances the probabilities 

of bacterial development. The large intestine is usually enriched in 

Bacteroidetes (Bacteroidaceae, Prevotellaceae, Rikenellaceae), Clostridiaceae, 

Firmicutes (Lachnospiraceae, Ruminococcaceae), Verrucomicrobia and 

Akkermansia muciniphila (Belzer & de Vos, 2012; Scheithauer, et al., 2016).  
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3. Functions Attributed to a Healthy Gut Microbiome  
 

 

The gut microbiota is linked to many aspects in the human body, including 

digestion, body weight regulation, maintaining the homeostasis, modulation of 

brain development and shaping the host immune response. The microorganisms 

colonizing the gut in its state of health can extract nutrients from food that 

cannot be digested by human enzymes, as in case of dietary fibers. The dietary 

fibers are obtained from the daily intake of fruits and vegetables. They are 

digested mainly through fermentation and saccharification performed by the gut 

bacteria (Flint et al., 2012). As for the proteins, it was found that members of 

the gut Bacteroidetes phylum are responsible for their digestion, while the 

bacterium Prevotella ruminicola, of the same phylum, take care of the 

carbohydrates in diet (Wu et al., 2011). The carbohydrate degrading bacteria 

have carbohydrate active enzymes (CAZymes) encoding-genes in their genome. 

The CAZymes can degrade the plants polysaccharides such as pectin, xylan and 

cellulose (Flint et al., 2012) that cannot be digested or exhibited limited 

digestion by the human enzymes.  

 

The monoamine serotonin 5-hydroxytryptamine (5-HT) is an important 

neurotransmitter in GI tract and central nervous system. It is a major regulatory 

factor activating numerous receptors in the GI tract along with other organs in 

the body. It modulates some feelings including mood and appetite. The 

Enterochromaffin cells in the human gut are considered the main source of the 

5-HT, since 90% is synthesized in there (Baganz & Blakely, 2013; Chabbi-

Achengli et al., 2012). The gut microbiome signals the Enterochromaffin cells 

to produce the 5-HT (Yano et al., 2015). It is still unclear which member of the 

gut microbiota contributes to the denovo synthesis of the 5-HT in gut. 

Accordingly, the host-microbial interaction between the residing microbiota 

and the human cells plays a major role in the regulation and the balance of the 

GI tract. 

 

The intestinal bacteria shape the immune response of the host (Round & 

Mazmanian, 2009) by various mechanisms including inhibition of the growth 



 

6 

of pathogenic species by secreting bacteriocins (toxic peptides produced by the 

bacteria to inhibit the growth of other strains) (Hammami et al., 2013). 

Commensal bacterial populations can work in cooperation with the host Paneth 

cells of the host, triggering the expression of several antimicrobial factors. Thus, 

protecting the intestinal barrier from being penetrated or invaded by other 

pathogenic bacteria (Vaishnava et al., 2008).  

 

 In the developed countries and west Europe, it was noticed the extreme 

hygiene gave rise to several autoimmune diseases, inflammatory bowel disease, 

depression (Luna & Foster, 2015)  as well as allergies (Azad et al., 2013; Blaser, 

2006). Accordingly, a balanced gut microbiome plays a crucial role in 

maintaining the homeostasis. 

 

 

4. Shaping the Profile of the Gut Microbiome  
 

 

Different factors dictate the nature of the gut microbiome in each 

person. Several studies were conducted to determine the effect of 

genetic factors on the shape of the microbiota, in identical and non-

identical twins as well as several family members. It was found that 

members of one family have highly similar microbiota, in comparison 

with unrelated people (Goodrich et al., 2014; Yatsunenko et al., 2012). 

Also identical twins share more similar microbiota compared to non-

identical pairs (Hansen et al., 2011; Turnbaugh et al., 2009). This can 

only be partially associated with the common diet and life style they 

are sharing. However, similar microbial pattern was also identified 

among related individuals, thus increasing the possibility of genetic 

inheritance effect on the nature of the microbiota. It is still unknown 

which alleles in the human genome have a direct effect on shaping the 

gut microbiota (Goodrich et al., 2014).  
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 Other factors shaping the microbiota include environmental 

differences and geographic locations that enforce a certain lifestyle or 

a certain diet. The diet itself being either the kind of food or the time 

of eating, in other words the circadian rhythm induced time of eating 

(Hall et al., 2017). An interesting study was conducted on the gut 

microbiota of the Japanese, who are famous for their sushi and diet 

containing seaweeds. Members of genus Porphyra are considered as 

the most important nutritional seaweed found in sushi and other 

traditional food. The porphyranase enzyme, originally found in marine 

Bacteroidetes, Zobellia galactanivorans, can act on the sulfated 

polysaccharide; porphyran that is found in the seaweeds from 

Porphyra genus. What grasped attention was a gene transfer 

phenomenon: the genes encoding for porphyranases were transferred 

to the gut bacterium Bacteroides plebeius isolated from Japanese 

individuals. Comparative gut metagenome analyses showed that genes 

encoding for porphyranases enzymes are frequent in the Japanese 

population and absent from the American individuals (Hehemann et 

al., 2010). Another study was conducted to compare the microbial 

profile of two populations of children (from 1 to 6 years old): one is 

from a rural African country: Burkina Faso (BF) and the other from 

Italy. Children in BF consume fibers in larger amounts compared to 

those from Italy. It was found that the high fiber intake was associated 

with increased Bacteroidetes and almost depleted Firmicutes. Fiber-

based diet was also coupled with the presence of Prevotella and 

Xylanibacter genera. Members of those genera contain bacterial 

species having genes responsible for encoding the enzymes required 

for cellulose and xylan degradation, that were absent in Italian 

children (De Filippo et al., 2010). The two abovementioned studies 

showed a clear correlation between the geographic location, regular 

diet, life style and the gut microbiome.   

 

Age also plays a major role in shaping the microbiota at various 

stages of life (Figure 2). The relationship between the gut microbiota 

and age starts at birth and depends on the mode of child delivery. 
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Cesarean section delivery affects the microbiota profile in comparison 

with the vaginal delivery. In case of cesarean section, the 

Actinobacteria and Bacteroidetes phyla were decreased; while 

Firmicutes phylum had higher richness and evenness. The cesarean 

section-delivered infants also a less abundance microbiota till they 

reached the age of one month (Rutayisire et al., 2016). On the other 

hand, vaginally delivered infants had higher colonization of 

Bacteroides genus (Ebihara et al., 2013; Grönlund et al., 1999). It is 

important to mention that several studies found that there is no 

differences in Lactobacillus genus abundance from day zero till the 

age of one month in both modes of delivery (Ebihara et al., 2013; 

Grönlund et al., 1999; Huurre et al., 2008).  

 

After acquiring a primary gut microbiome profile, neonates start to 

develop their own microbiome till reaching the age of three years 

(Kundu et al., 2017). The shift to adult microbial profile occurs in 

parallel with the weaning process and the introduction of solid-food to 

the diet (Bergström et al., 2014). The microbial development at this 

stage relies on the food introduced and any medical treatment or 

antibiotics administrated during this period of development. Therefore, 

it is recomended to minimize the chemical intervention during the 

aforementioned developmental period (Koenig et al., 2011). A stable 

microbiome begins by the age of 3 years, consisting of six phyla, two 

of which are abundant (Bacteroidetes and Firmicutes) (Figure 3), 

while the other phyla are less abundant (Proteobacteria, 

Actinobacteria), and even less Fusobacteria, and Verrucomicrobia 

(Eckburg et al., 2005). 
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Figure 2: Gut Microbiota Profile Development with Age 

The gut microbiota profile development from time of birth till reaching the adults’ profile. During 
prenatal development, some theories support the prenatal is sterile and acquire the first microbiome 
from the mother during delivery; other theories support that prenatal start to acquire their microbiome 
in the womb. The neonates’ microbiome depends on the mode of delivery and start to develop when 
the child food intake is changed. During early stage of development and puberty; the microbial diversity 
increase, the core microbiome becomes established, while the variable microbiome is shaped according 
to one’s lifestyle and environment. The microbial development occurs in parallel with the organs 
development, elongation of the intestines, allowing more niches for the microbiome to develop, increase 
in number and increase in diversity. The adulthood microbiome is considered the most stable; although, 
changes are still acceptable according to state of health and disease and other factors as aforementioned 
(Kundu et al., 2017). 
 
Permission for reuse in Appendix 2 
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Figure 3: Variation in Microbiota Composition with Age 

Actinobacteria (yellow), Bacteroidetes (red), Firmicutes (blue), Proteobacteria (pink). The numbers 
represent the age groups (from neonates to centenarians). The Firmicutes dominate the adult gut 
microbiome compared to the neonates’ microbiome that is dominated by Actinobacteria. By increasing 
age groups (above 70 years old), the Bacteroidetes and Proteobacteria increase while the Actinobacteria 
decreases noticeably (Odamaki et al., 2016). 

Authors’ permission for reuse in Appendix 2. 

  

 

5. Dysbiosis of gut microbiota  
 

 

Dysbiosis is defined as a state of imbalance or shift from the 

normal microbiota profile. Gut microbiota dysbiosis has been linked to 

several diseases as inflammatory bowel disease (IBD), autism, stress, 

depression, immunity related diseases and several others. Many links 

were created to the gut microbiota, being either affected by the disease 

or the imbalance being the cause of the disease. The state of imbalance 

could occur as a result of several factors including: exposure to drugs, 

diet alterations, toxins and radiation. The imbalance could be either a 

change in the proportionality of the already existing bacteria (as in 

case of increased Lactobacillus in obese individuals) (Armougom, et 
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al., 2009) or could appear because of the introduction of undesired 

bacteria as Clostridium difficile (C. difficile) that may develop several 

complications. 

 

 

5.1. Changing the Proportionality among the Symbiotic 
Bacteria  
 

 

Symbiotic bacteria reside in the host in a well-balanced form 

that should be maintained to ensure a healthy state of life (Round & 

Mazmanian, 2009). Whenever the balance is interrupted, a shift from 

health state to disease occurs  (Chow et al., 2010).  

 

Obesity is a common disease linked with abnormal 

proportionality in the gut microbiota profile. Obese or overweight 

individuals usually consume excessive amounts of fats and 

carbohydrates in their diets; moreover, their lifestyle does not enforce 

much physical exercise. Accordingly, calories are stored in the body in 

the form of fats in adipocytes (Chakraborti, 2015). Since the gut 

microbiota plays a vital role in the food digestion and production of 

metabolic end-products, some phyla are directly linked to the 

production of certain metabolic end-products that govern the 

absorption of the digested food in the host body. Members of phylum  

Firmicutes are correlated with the production of butyrate, while 

acetate and propionate are usually correlated with Bacteroidetes and 

Actinobacteria (Chakraborti, 2015). Accordingly, the abundance of 

each phylum depends upon the availability of the target substrate in 

diet (Shoaie et al., 2013). In obese individuals, some studies reported 

an increase in Firmicutes over the Bacteroidetes (Abdallah Ismail et 

al., 2011; Bervoets et al., 2013; Hartstra et al., 2015). Members of 

phylum Firmicutes are more concerned with degradation of high 

energy food, thus raising the amount of lipid droplets leading to higher 

weight gain (den Besten et al., 2013; Semova et al., 2012). On the 



 

12 

other hand, was no observed difference in the proportion of 

Bacteroidetes at the phylum level between obese, non-obese and obese 

undergoing weight loss diet. Yet proportion of the Firmicutes was 

reduced in the group of obese undergoing weight loss diet (Duncan et 

al., 2008).  

 

 

5.2. Invasion by Pathogenic Bacteria 
 

 

Symbiotic bacterial strains are considered as a defense line, 

protecting the host from invading pathogens. Those symbiotic bacteria 

are perfectly occupying the available niches in the gut. Therefore, the 

invading pathogenic bacteria have to compete for space and food 

resources with the already existing and well-adapted symbiotic strains 

and escape the host immune response (Rohmer et al., 2011). Despite 

the high protection level in the gut, some pathogens succeed in the 

invasion and colonization of the gut niches.  

 

Clostridium difficile is one of the gut pathogens that can escape 

the defense line and colonize in the intestine. Infection by C. difficile 

is symptomatic, appearing in the form of diarrhea that can even 

become more complicated resulting in pseudomembranous colitis and 

toxic megacolon, and might even lead to the death of the patient 

(Gerding, 2004). C. difficile is a gram positive, spore-forming 

bacterium (McDonald et al., 2006; Rupnik et al., 2009). The 

persistence of spores renders C. difficile as a major health issue, since 

the infection is usually associated with prolonged hospital-stays along 

with antibiotics prescription (Buffie et al., 2012). Long exposure to 

antibiotic treatment can alter the natural microbiota, decreasing its 

richness and diversity for a period of time (antibiotic perturbation) 

following the treatment, after which the host can retain the original 

microbiota profile. Clindamycin and cephalosporins are among the 

antibiotics associated with the possible development of C. difficile 
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infection. The C.  difficile makes a great use of the dysbiosis occurring 

post antibiotic treatment, its spores in the surrounding environment 

can initiate the invasion (Lawley et al., 2010). In an experiment 

performed on mice, consumption of clindamycin antibiotic led to 

expected gut microbiota perturbation. In the absence of C. difficile 

spores, the mice were able to re-structure their original microbiota 

profile within 21 days after antibiotic treatment. On the other hand, in 

the same experimental set up, but in presence of C. difficile spores, the 

bacteria succeeded in the invasion. Moreover, the gut microbiota 

dysbiosis became persistent till 49 days post-clindamycin treatment 

(Lawley et al., 2012).  

 

 

5.3. Differentiation Between Commensals and Pathogens 
 

 

The gut can differentiate between symbiotic bacteria or beneficial 

commensals from intruding pathogens. Symbiotic bacteria are 

recognized by ones immune system once acquired in early 

developmental stage (Hooper et al., 2012). During the weaning period, 

the host Paneth cells secrete anti-microbial peptide that targets gram-

positive pathogens while gram-negative commensals are not affected 

(Hooper et al., 2003). The host uses pattern recognition receptors, such 

as Toll-like receptors (TLRs), to identify different bacterial 

components (Ferreira et al., 2014). When TLRs recognize a symbiotic 

bacterial factor, homeostasis is induced. On the other hand, when 

pathogenic bacteria are recognized by the TLRs, inflammation is 

induced along with secretion of antimicrobial peptides to eradicate the 

pathogens (Figure 4) (Burdelya et al., 2008; Hsiao et al., 2008). 
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Figure 4: Host differentiation mechanisms between symbiotic and pathogenic bacteria 

(4A): Identification of symbiotic bacteria in Orthobiosis (balanced beneficial symbionts in microbiota) 
(4B): Dysbiosis accompanied with pathogenic bacteria identification by TLR (Ferreira et al., 2014). 

Permission for figure Reuse in Appendix 2 

 
 

5.4. Dysbiosis Treatment  
 

 

When a gut microbiota profile is identified as unhealthy or 

unfavorably altered, a treatment could be offered to shift it to a healthy 

profile. Such treatment relies on getting rid of pathogens or 

introducing missing taxa. One simple method for a desired microbial 

shift is following a healthy diet. The microbiota can undergo a rapid 

shift based on diet habits (David et al., 2014). Other ways for desired 

microbial shift will be addressed below, which includes the 

administration of probiotics, prebiotics, tailored drugs as Ecobiotics 

and fecal microbiota transplantation (FMT) from healthy donors.  

 

Probiotics are defined by the World Health Organization as 

“live microorganisms that can provide benefits to human health when 

administered in adequate amounts, which confer a beneficial health 
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effect on the host” (WHO, 2001). The most common bacterial genera 

in probiotics are Bifidobacteria and Lactobacilli. Probiotics’ beneficial 

effects have been linked to alleviation of traveler’s diarrhea, antibiotic 

associated diarrhea and inflammatory bowel disease (Kaur et al., 

2009). The probiotics mode of action is species specific. Some 

L.bacilli can produce defensins (antimicrobial peptides) that are 

normally produced by the host intestinal cells (Möndel et al., 2009). 

Saccharomyces boulardii can lessen ulcerative colitis by competing 

with Citrobacter rodentium which are pathogenic bacteria, for 

adherence to the host epithelial cells (Wu et al., 2008). Probiotics 

could be obtained either from food sources as yogurt and milk or 

administrated as drugs. The amounts of probiotics administrated are 

determined as colony forming unit (CFU). It is important to mention 

that the effect of probiotics is transient and diminishes in about 4 

weeks after stopping probiotics intake (Gogineni et al., 2013).  

 

Prebiotics are: “A non-digestible food ingredient that 

beneficially affect the host by selectively stimulating the growth and/or 

activity of one or a limited number of bacteria in the colon thus 

improves the host health” (Gibson & Roberfroid, 1995). They are 

found in some food sources including garlic, onion, wheat, soybean 

and asparagus (Van Loo et al., 1995). Prebiotics are mainly composed 

of carbohydrates although they might include some non-carbohydrate 

moieties. One major criterion to identify a food source as a potential 

prebiotic is its ability to resist hydrolysis by gastric enzymes, transfer 

to the intestine and undergo fermentation in the large intestine, thus 

enabling the intestinal microbiota to flourish  (Xiao et al., 2014). Most 

of the microbiota residing in the large intestine are anaerobes; 

therefore, their energy uptake is based on fermentation. This reflects 

the indirect effect of prebiotics and its importance in enhancing the 

activity and growth of the intestinal microbiota.  

 

Many pharmaceutical companies formulate drugs to 

supplement patients with useful microorganisms in a form of capsule 
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to shift the diseased profile to a healthy state, thus preventing or 

treating the microbiome-linked diseases. The formulated capsules 

could be probiotics, synbiotics or Ecobiotics. The synbiotics are 

formulations based on prebiotics and probiotics together. The choice 

of each should be in synergism, that is the prebiotics favoring the 

growth of the probiotics chosen. One example for a synbiotic drug 

could be Bifidobacteria and oligofructose, while the same prebiotic 

oligofructose cannot be grouped with the probiotic bacteria 

Lactobacilli for a synbiotic formulation (since the Lactobacilli 

requires Inulin as a substrate)  (Schrezenmeir & de Vrese, 2001). The 

new trend of ecobiotic drugs is rapidly growing. Ecobiotics are based 

on the selection of desired bacteria from healthy stool and 

concentrating their spores in the form of capsule to shift certain 

diseased profiles to healthy ones (Hoffmann et al., 2017).  

 

Several microbiome centers are being established worldwide, 

and many pharmaceutical companies started to benefit from the 

available data to develop various medications. SERES Therapeutics in 

the United Kingdom is working on several ecobiotic drugs, in clinical 

trials, that shift the microbiota from diseased states as recurrent of C. 

difficile (SER-109), primary C. difficile infection (SER-262) and 

ulcerative colitis (SER-287) to a health state. MicroBiome 

Therapeutics in the United States released its first product: NM504, in 

early 2017, targeting the GI dysbiosis in diabetic patients. Novartis has 

also teamed up with the University of California in San Francisco and 

funded $8.1 million to support microbiome research. Accordingly, this 

field of science became one of the basic research requirements for 

pharmaceutical developments and drug discovery. 

 

Fecal Microbiota transplantation (FMT) is another possible 

solution for shifting the diseased microbiota profile to a healthy one or 

a healthier microbiota. FMT was first reported in late the 1950s in 

Colorado. Enemas aimed at treating patients with pseudomembranous 

colitis as a result of C. difficile infection (Borody & Khoruts, 2012; 
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Eiseman et al., 1958). Gustaffson and colleagues studied microbiota-

associated characteristics (as interaction with antibiotics, symptoms 

ranging from diarrhea to membranous colitis) in 32 patients before and 

after FMT; the effect of FMT on the microbial shift was reported four 

days post transplantation (Gustafsson et al., 1999). It is important to 

mention that in case of C. difficile infection; the patients’ microbiota is 

almost destroyed by the intensive use of antibiotics. Accordingly, 

implementation of a new healthy microbial profile is applicable 

(Borody & Khoruts, 2012). As for other diseases linked to microbiota 

disruption or imbalance as obesity, IBD or chronic fatigue, more 

studies are testing the effect of FMT on the recipient’s health. In a 

study testing the effect of FMT between lean and obese men, the obese 

recipients had a noticeable decrease in fasting triglycerides level 

compared to self-recipients (placebo group) (Vrieze et al., 2012). 

 

 

6. Relationship Between Gut Microbiota and Cancer 
 

 

The relationship between the gut microbiota and Cancer 

development at various sites of the body is complicated, entering the 

dilemma of which came first (Figure 5). Is the gut microbiota 

dysbiosis the cause of cancer development? Or is it cancer and its 

associated cancer treatment protocols that caused dysbiosis? How will 

the response to treatment be in a cancer patient with an altered gut 

microbiota? 
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Figure 5: Relationship between dysbiosis, cancer and cancer treatment 

A complicated relationship between dysbiosis, cancer and cancer treatment protocols. Gut microbiota 
dysbiosis might give rise to cancer and vice versa. While the common cancer treatment plans can result 
in gut microbiota dysbiosis. 
 

 

6.1. Is the Gut Microbiota Dysbiosis Considered a Cause 
for Cancer Development? 
 

 

Gut microbiota dysbiosis was linked to several cancer types 

including colorectal cancer (CRC), hepatocellular carcinoma (HCC) 

and gastric cancer. An observational study linked CRC and lymph 

node metastasis with the increased colonization by the pathogenic 

bacterium, Fusobacterium nucleatum (Castellarin et al., 2012). 

Cuevas-Ramos and colleagues have linked the development of CRC to 

the colonization of Escherichia coli of group B2 in mice (Cuevas-

Ramos et al., 2010). The genomic DNA of 40%-60% of group B2 E. 

coli bacteria contains a pathogenicity island (54-kb) known as pks 

(McCarthy et al., 2015), the genes in pks island encode for the 

synthesis of a polyketide-peptide genotoxin named colibactin. The 

colibactin peptide has the ability to induce DNA double strand breaks 

in the host colon enterocytes (Nougayrede et al., 2006). The effect of 
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colibactin on DNA damage was assessed in mice and was comparable 

to the damage induced by 0.5 Gy of gamma radiation. Both colibactin 

and 0.5 Gy of whole body irradiation were able to induce DNA 

mutations, aneuploidy, chromosomal instability and consequently 

colon carcinogenesis  (Cuevas-Ramos et al., 2010).  

 

Gut microbiota dysbiosis has been linked to obesity as 

explained earlier. Another link was established between the gut 

microbiota dysbiosis, obesity and HCC. Yoshimoto and colleagues 

have described the complex link between high-fat diet, microbiota 

dysbiosis and HCC development in mice models (Yoshimoto et al., 

2013). The high-fat diet can directly shift the microbiota profile, that 

in turns affect the microbial by-products produced, one of which is the 

deoxycholic acid (DCA). The DCA results from microbial bile-acid 

metabolism and adversely leading to DNA damage. Elevated DCA 

level induces the production of senescence-associated secretory 

phenotype (SASP) that is a group of proteases, chemokines and 

inflammatory cytokines. The elevation of SASP enhances the 

tumorigenesis. Liver diseases are associated with translocation of 

bacteria and bacterial components within the patients’ body 

(Roderburg & Luedde, 2014). Another study highlighted the presence 

of the stomach pathogen H. pylori in the liver of patients with HCC (8 

positive H. pylori out of 20 HCC) (Huang et al., 2004). 

 

 

6.2. A Reciprocal Link Between Cancer Treatment 
Medications and Gut Microbiota 
 

 

Common treatment protocols administrated to cancer patients 

are usually relying on chemotherapy, immunotherapy, radiotherapy or 

a combined treatment protocol. Each of which can cause a shift in the 

patients’ gut microbiota. Moreover, treatment protocols are sometimes 
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combined with antibiotic administration, which adds a burden on the 

gut microbiota.  

 

Zwielehner and colleagues studied the effect of 17 different 

chemotherapeutic agents in presence and absence of antibiotic 

administration and radiation (Zwielehner et al., 2011). Their study 

relied on PCR fingerprinting on denaturing gradient gel 

electrophoresis (PCR-DGGE), quantitative real-time PCR along with 

454-sequencing for samples from only two patients. Accordingly, the 

results reflected overall species abundance with special emphasis on 

the potential pathogenic bacteria: Clostridium cluster IV. The study 

reported a steep drop in bacterial species richness, in comparison with 

healthy controls, after the first shot of chemotherapy. It also described 

a “rebound-effect” in the bacterial richness of the gut microbiota in 

their last time point (5-9 days after chemotherapy), but with a different 

composition. Another study focused on the effect of 

Cyclophosphamide (CTX) on the gut microbiota in mice models 

(Viaud et al., 2013). CTX did not alter the intestinal microbiota 

instantaneously (24 and 48 h after the first shot). However, the 

dysbiosis in the small intestine was only reported one week after the 

drug administration. Aside from the dysbiosis of gut microbiota, an 

important link was made between the absence of gut microbiota and 

resistance to CTX. It was found that the tumors in germ free mice 

were resistant to CTX treatment.  

 

The link between the immunotherapies targeting the 

programmed cell death protein-1 (PD-1) and the gut microbiome was 

studied in Melanoma cancer patients (Gopalakrishnan et al., 2018) and 

patients suffering from epithelial tumors (Routy et al., 2018). The two 

studies have described a “favorable profile” of the gut microbiome 

was described in cancer patients, who responded to anti-PD1 drugs. 

Gopalakrishnan and colleagues described the favorable profile of the 

responders patients with higher alpha diversity and increased relative 

abundance of family Ruminococcaceae along with Faecalibacterium, 
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compared to the non-responders gut profiles (unfavorable) that has 

increased abundance of Bacteroidales and  decreased alpha diversity 

(Gopalakrishnan et al., 2018). A favorable gut microbiome was also 

linked to a better antigen presentation and presence of higher level of 

effector T-cells in the tumor micro-environment. Routy and colleagues 

linked resistance to immunotherapies as immune check point 

inhibitors (ICI) with altered gut microbiome (the unfavorable profile 

described by (Gopalakrishnan et al., 2018)). They also found 

Akkermansia muciniphila to be common among responders to ICI. 

Accordingly, they concluded the possibility of manipulating the gut 

microbiome to decrease the resistance to ICI through FMT along with 

providing Akkermansia muciniphila bacterium in the form of oral 

supplementation (Routy et al., 2018).  

 

The term pharmacomicrobiomics started to appear with the 

HMP. It was defined as “The effect of microbiome variations on drug 

disposition, action, and toxicity” (Rizkallah et al., 2010). The 

interdisciplinary field of pharmacomicrobiomics adds a great value to 

microbiome research, since determining the interaction between the 

gut microbes, in either health or disease, and various medications can 

offer a better response of the same drug by manipulating the patients’ 

gut microbiome.  
 

The TIMER (T: Translocation, I: Immunomodulation, M: 

metabolism, E: enzymatic degradation, R: reduced diversity and 

ecological variation) relationship between the patients’ microbiome 

and chemotherapeutic drugs offered a better view for the complicated 

nature of this relationship (Alexander et al., 2017). The TIMER is a 

collective description for the modulation of the gut microbiota to 

different chemotherapeutic agents. Each of the TIMER component 

represents a different mechanism by which the gut microbiota can 

facilitate the antitumor effect of various chemotherapeutic agents. 

CTX chemotherapeutic drug induces the translocation of some gram-

positive bacteria to reside in the lymphoid organs. The translocated 
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bacteria induce the production of pathogen T-helper 17 that in turn 

enhances the tumor response to the antitumor activity of CTX (Viaud 

et al., 2013). Iida and colleagues highlighted the importance of having 

intact commensal microbes in the tumor microenvironment that is 

required for a proper immunomodulation of myeloid-derived cells 

activated by immunotherapy and chemotherapy: CpG 

oligodeoxynucleotides and Oxaliplatin respectively (Iida et al., 2013), 

beacause the germ-free mice responded poorly to the aforementioned 

drugs.  

 

Accordingly, it became necessary to understand the role of the 

commensal bacteria in antitumor effect of various chemotherapeutic 

agents, to enable the compensation for the commensal deterioration 

towards a better response to the therapy.  

 

 

6.3. Link Between Radiotherapy and Gut 
Microbiota: Is It Only Dysbiosis? 

 

 

Radiotherapy is administrated as a palliative or curative 

therapy to up to 50% of the cancer patients, either independently or in 

combination with chemotherapy (Abbasakoor et al., 2006). Focusing 

on the radiotherapy directed to the abdominal and pelvic regions, 

radiation enteropathy is the main concern in determining the coming 

therapeutic plan. Several symptoms arise after the first or second week 

of treatment as a side effect of radiation in abdominal region 

including: bloating, diarrhea, imperfect food absorption, abdominal 

pain and nausea (Bismar & Sinicrope, 2002). The side effects are 

usually the driving force for the dose limitation or discontinuation, 

thus affecting the patients’ health. Radiation associated enteropathy is 

usually resulting from the effect of radiation on the intestinal region. 

Although the small intestine is not a common target for radiation, but 

its large surface area and the high sensitivity of its mucosal lining to 
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radiation are the main reason for the enteropathy side effects 

appearing on the patients (Packey & Ciorba, 2010).  

 

An important study conducted on mice, has tested the role of 

the gut microbiota in determining the sensitivity to radiation 

(Crawford & Gordon, 2005). The mice in this study were subjected to 

a lethal dose (16 Gy) of total body irradiation (TBI) followed by bone 

marrow transplantation (BMT). All germ-free mice survived (more 

than 40 days) compared to the conventionally raised mice, where 52% 

died in 7 days post TBI. To further confirm the relation to the gut 

microbiota; the germ-free mice were inoculated with fecal samples 

from the conventional mice then subjected to the same dose (16 Gy) of 

TBI followed by BMT, 44% died in 7 days. A more recent study that 

was conducted on mice by Gerassy-Vainberg and colleagues 

(Gerassy-Vainberg et al., 2018) has focused on the relationship 

between post-radiation injuries, gut microbiota dysbiosis and the effect 

of dysbosis on increasing the liability to inflammations. Accordingly, 

a sequential effect of radiation was proposed as follows: radiation 

inducing gut microbiota dysbiosis, the altered microbiota induces a 

higher secretion of Interleukin-1b which consequently increases the 

susceptibility to tissue damage and appearance of proctitis.  

 

The impact of radiation on gut microbiota was assessed in a 

group of gynecological cancer patients (45-64 years old) (Nam et al., 

2013). The study reported a massive change in microbiota 

composition after receiving radiotherapy. Firmicutes phylum 

decreased by 10% while the Fusobacterium decreased by 3%. The 

post-radiotherapy samples collected in the follow-up period (one to 

three months after radiotherapy) showed a remold or reshaping of the 

gut microbiota.  

 

In a nutshell, the relationship between gut microbiome, cancer 

development, chemotherapies, immunotherapies and radiotherapy are 
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ultimately complicated. The microbial balance during chemotherapy 

and immunotherapy may lead to a better response to treatment. While 

the presence of gut bacteria during radiotherapy has several unwanted 

side effects. On the other hand, the total absence (as in germ free 

mice) can render the patient resistant to lethal doses of radiation. 

Accordingly, the proper manipulation of gut bacteria during cancer 

treatment can increase the success rates of the prescribed treatment 

protocols. Therefore, this study has focused on understanding the link 

between infants’ gut microbiota and radiotherapy treatment.  

Chapter 2: Study Objective and Design  
 

 

1. Study Objective  
 

 

This study is an observational study, to determine the effect of 

radiotherapy on the infants’ gut microbiome. 

 

 

2. Study design  
 

 

In the current study we analyzed 10 fecal samples, obtained from two 

healthy individuals and three cancer patients. It included two sets of controls: 

self-control (same patient before starting radiotherapy sessions) and healthy 

individuals. The healthy is defined as not consuming any chemotherapeutic 

agents or antibiotics (antibiotic free period was defined by at least 1 month 

before sample collection) and never exposed to radiotherapy before. All the 

participants in the study (patients and healthy individuals) are males, within the 

age range 3.5-7 years old.   

 

Patients in the current study suffer from Rhabdomyosarcomas in the 

pelvic region. Such type of cancer receives a high dose of radiation. The patient 
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receives 50.4 Gy (180 cGy/fraction). The sample collection points were defined 

as follows: day 0: before starting radiotherapy sessions, mid-point: ranging from 

day 12 to day 16 and the last collection point: day 26-28. Patients with 

Rhabdomyosarcomas follow a combined treatment protocol including 

chemotherapy (Cyclophosphamide, Vincristine and Dactinomycin) and 

radiotherapy; 28 fractions of 50.4 Gy (180 cGy/fraction). The patients started 

the radiotherapy sessions either after 12 weeks of chemotherapy (Patient 1 and 

patient 3) or after 4 weeks of chemotherapy (patient 2). During the 

chemotherapy; a set of antibiotics (Table 1) is usually prescribed according to 

the patients’ case or needs.  

 

Table 1: Set of Antibiotics prescribed before and during radiotherapy 

 

Antibiotic 
Antimicrobial 

Spectrum 

Patient 

(1) 

Patient 

(2) 

Patient 

(3) 

 
Before Radiotherapy 

 
Amikacin Gram-negative NA NA Less than 

1 months 

Azithromycin Enteric bacteria 
and other 
eubacteria and 
several 
pathogenic 
bacteria 

2 months NA NA 

Ceftriaxone Broad spectrum  3 months NA Less than 
1 months 

Ciprobay  

(Ciprofloxacin) 

Broad spectrum  NA Less 
than 1 
month 

Less than 
2 months 

Meropenem Broad spectrum  NA NA Less than 
1 months 

Rocephin Broad spectrum  NA NA Less than 
1 months 
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*Days and Months are calculated with respect to the start of radiotherapy sessions.  

**Duration of antibiotic course ranges from 4 days to 3 weeks. 

***Antibiotic spectrum information is retrieved from DrugBank Database (Wishart et al., 2018). 

 

 

 

  

Sulfamethoxazole and 

trimethoprim 

Broad spectrum  
and several 
pathogenic 
bacteria 

4 months Less 
than 1 
month 

Less than 
1 month 

Sutrim Broad spectrum  
and several 
pathogenic 
bacteria 

2 months Less 
than 1 
month 

Less than 
2 months 

Tavanic Broad Spectrum  NA NA Less than 
2 months 

Zithromax Enteric bacteria 
and other 
eubacteria and 
several 
pathogenic 
bacteria 

4 months Less 
than 1 
month 

NA 

 
During Radiotherapy 

 
Augmentin Broad spectrum  NA Day 2 NA 

Ceftriaxone Broad spectrum  NA NA Day 13 

Levofloxacin Broad spectrum  NA NA Day 6 

Sulfamethoxazole and 

trimethoprim 

Broad spectrum  
and several 
pathogenic 
bacteria 

Yes 

 

Day 2 Day 22 

Sutrium Broad spectrum  
and several 
pathogenic 
bacteria 

NA Day 15 NA 
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 Chapter 3: Materials and Methods 
 

 

1. Sample collection and informed consents 
 

 

An institutional review board (IRB) approval was granted from the AUC 

(Approval of study #2016-2017-041) – Appendix 3. All participants have 

signed (child assent form) and the guardians have approved the participation in 

study and signed a parental permission form. Fecal samples were collected from 

the participants, by the help of their parents, in sterile falcon tubes, transferred 

on ice to the lab at Zewail City and stored in -80°C freezer until DNA extraction.  

 

 

2. DNA extraction  
 

 

Microbial DNA was extracted from the collected fecal samples by DNA 

extraction kit from stool, QIAamp DNA stool mini kit (Qiagen, USA), 

according to the manufacturer’s instruction. The protocol used enhances the 

nonhuman DNA over the human DNA extracted from the sample, through 

optimization of the lysis conditions. The DNA was eluted in 50 µl elution buffer 

provided by the kit and stored in -20°C.  

 

 

3. 16S rRNA sequencing  
 

 

The extracted DNA was sent to Eurofins Genomics in Germany for 

sequencing of 16S rRNA. The sequence was performed on Illumina MiSeq 

platform, targeting V3-V5 variable regions of the 16S rRNA. The run was 

performed on 2x300 paired-end reads. The target region (V3-V5) length is 

approximately 700 bp; accordingly, the obtained reads do not overlap.  
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4. Data Analysis  
 

 

The 16S rRNA sequencing data received from Eurofins 

Genomics were already demultiplexed (remove barcodes and assign 

each read to its original sample). The analysis was completed on 

Qiime2 pipeline (version 2017.12), q2cli command line interface 

(Qiime2 script in appendix 1). The denoise command was used 

followed by length trimming to 230 bp. Feature table was constructed 

on the same program (also referred as OTU table) using “Deblur” 

approach for OTU table construction, that is compatible with Hi-seq 

and Mi-seq Illumina results. The Deblur approach uses an error 

profile, operating on per-sample bases and depends on the read length 

and diversity in amplicon sequences. Thus, it offers a higher 

sensitivity and requires lower computational powers compared to 

other OTU clustering algorithms (Amir et al., 2017).  

 

Taxonomy classes were assigned using the constructed feature 

table in comparison with SILVA database (Silva-119 99% OTUs full-

length sequences). Unrooted phylogenetic tree was also constructed on 

Qiime2 (qiime phylogeny fasttree). The taxonomic classification was 

appended to the feature table and exported as a biom format file, the 

phylogentic tree was exported as (Newick tree format) and the 

sequences corresponding to the classified OTUs were exported as fasta 

file. All exported files from Qiime2 analysis were imported to 

phyloseq package (McMurdie & Holmes, 2013) on R-CRAN for 

figures plotting. It is important to mention that reads were not rarefied 

to an even sampling depth (McMurdie & Holmes, 2014) 

 

Another OTU clustering algorithm was tested through USeacrh 

pipeline (Edgar, 2010), that resulted in clustering to 792 OTU. 

However, the taxonomy assignment on this platform was not 

accessible through the free version of USearch (Script used in 

Appendix 1).  
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Chapter 4: Results 
 

 

1. Reads quality and optimization  
 

 

A total of 10 fecal samples obtained from two healthy controls 

and three cancer patients (three samples on three-time points from 

each patient, except patient 1). Although, the original experimental 

design targeted a larger set of patients, only three could be reached due 

to the following constrains: (1) limitation of the number of patients 

with Rhabdomyosarcoma since it is a rare cancer type, (2) targeted age 

range; the patients were young and were not aware of participating in 

a study, (3) most of the patients were suffering from constipation 

before starting radiotherapy that made the sample collection at point 

zero (pre radiation) a challenging task. The patients with 

Rhabdomyosarcoma in the pelvic region underwent a combined 

treatment protocol of chemotherapy (Cyclophosphamide, Vincristine 

and Dactinomycin), radiotherapy (50.4 Gy on 28 fractions; 180 

cGy/fr.) and a complex set of antibiotics as described previously in 

table 1. The microbial DNA was extracted and used for 16S rRNA 

sequencing on Illumina MiSeq platform, targeting V3-V5 region, 

paired-end reads (2x300).  

 

The high throughput sequencing generated a sum of 904,685 

reads, containing a yield of 510,237 bp (mean reads per sample = 

42,407.9 and median reads per sample = 41,645.5) (Figure 6). The 

average read length obtained (Forwards reads ~ 280 bp, Reverse reads 

~ 250 bp). All reads were trimmed to 230 bp after denoising on qiime2 

(qiime deblur denoise-16S).  
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Figure 6: Validation of sequencing reads 

Overview of sequencing reads (A): number of reads obtained from each sample. The least 
number of reads obtained were from sample (pre_patient_1) while the highest number of 
reads were from Mid_Pateint_3 (B) read length and quality score for both forward and 
reverse reads from each sample. The average reads length is 280 bp for all forward reads 
while the reverse read length ranges between 200 bp to 250 bp. 

 
  

A 

B 
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2. Alpha diversity analysis  
 

 

All indices of alpha diversity measures (Observed OTU, 

Chao1, ACE, Shannon, Simpson, Inverse Simpson and Fisher) all 

showed a higher diversity in healthy controls compared to cancer 

patients in the three-time points collected (Figure 7). After completing 

the radiotherapy treatment along with the antibiotics courses (Last, 

blue) the alpha diversity has generally declined when compared to the 

mid-point (after 12-15 fractions) and pre (before radiation). The out 

layers at each time point are obvious, this could be attributed to the 

personal variations between the patients, along with the variation due 

to the set of antibiotics prescribed, antibiotic course duration and 

antibiotic course timing relative to the radiotherapy and sample 

collection time.   

 

 
Figure 7: Alpha diversity analysis across different time points  

Box plot showing different alpha diversity indices across the time points (Pre: before 
radiation, Mid: after 12-15 fractions and Last: after 26-28 fractions of radiation that is 
equivalent to 50.4 Gy) the control are healthy participants (never subjected to chemotherapy 
or radiotherapy before and at least one month free of antibiotics before the sample 
collection time).  
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3. Alpha diversity per sample  
 

 

Alpha diversity measures (Chao1 and Shannon) per sample did 

not indicate a direct relationship between exposure to radiation, 

consuming intensive antibiotics courses and the relative abundance of 

all bacterial species per sample (Figure 8). Surprisingly, patients 1 and 

2 experienced an increase in the alpha diversity after the two 

aforementioned exposures. Unlike patient 3 who experienced a 

massive drop in alpha diversity. On the other hand, a pattern or a 

relationship was inferred between high alpha diversity and response to 

treatment (Table 2). The decreased bacterial abundance was associated 

with a positive response to radiotherapy and vice versa. It is important 

to mention that the Chao1 index reflect the richness only (number of 

bacterial species per sample), while Shannon index reflects both 

richness and evenness (relative abundance of species that make up the 

richness).  
 

 

Figure 8: Chao1 and shannon indices per sample 

Chao1 and Shannon indices of alpha diversity per sample. Neither index indicated a direct relationship 
between exposure to radiation and alpha diversity  
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Table 2:Alpha diversity with reflection to the response to radiation 

 
Sample Chao1 Shannon Response to treatment  

Control-1 111.2 3.184 NA 

Control-2 127 3.11 NA 

Pre-patient-1 104.25 3.121 
NR 

Mid-Patient-1 134 3.651 

Pre-Patient-2 44 1.82 

R Mid-Patient-2 74.167 2.19 

Last-Patient-2 79.333 2.717 

Pre-Patient-3 46 1.894 

R Mid-Patient-3 10 0.143 

Last-patient-3 15 0.12 

 

NA: Not Available 

R: Responded to radiotherapy 

NR: Not Responding to radiotherapy   
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4. Describing the variation in the bacterial abundance at 
different taxonomic levels  
 

 

At the phylum level, the two healthy controls showed normal 

variation between the four most abundant bacterial phyla (Firmicutes, 

Bacteroidetes, Proteobacteria and Actinobacteria) (Figure 9), with 

domination of Firmicutes and relatively high abundance of 

Proteobacteria (Odamaki et al., 2016). Control-2 showed relative high 

abundance of Actinobacteria compared to Control-1. However, a 

related point to consider is that up to date, there is no database for the 

Egyptians’ gut microbiota profile to which the controls could be 

compared to obtain a correct reflection with the Egyptian diet and life 

style.  

 

After the exposure to different doses of radiation that ranged 

between (21.6 Gy and 50.4 Gy), along with the antibiotic courses 

(Table-1) the relative abundance of Firmicutes decreased while the 

Proteobacteria increased in the three patients. This comes in 

agreement with the previous results of Wang and colleagues (Wang et 

al., 2015). The phylum abundance frequency table (Table-3) showed 

the expected disturbance of microbial phyla in cancer patients when 

compared to the controls. However, when comparing each patient to 

himself (at the different time points collected), it was found that 

Actinobacteria, Bacteroidetes and Proteobacteria phyla increased after 

antibiotics and radiation while Firmicutes decreased. This can give a 

better insight for the increase in alpha diversity visualized earlier 

(Figure 8).   
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Figure 9: Relative abundance of bacterial species at the phylum level  

The abundance of the four major bacterial phyla across different samples. (A) Bar plot showing the 
relative abundance of the four major phyla in controls and patients. (B) Heat map showing the abundance 
at the phylum level. The heat map showed that Firmicutes is the dominant phylum across all samples, in 
exception of patient 3, who has the Proteobacteria phylum dominating over all others. The two healthy 
controls and patient 1 (in both time points) are quite comparable, this could be due to the lessen 
exposure of patient 1 to antibiotics. However, the bar plot showed a relative decrease in Firmicutes and 
increase in Proteobacteria after his exposure to radiation (21.6 Gy)  

A 
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Table 3: Frequency of each phylum  

 
 

Phylum 
Patient-1 Patient-2 Patient-3 Controls 

Pre Mid Pre Mid Last Pre Mid Last (1) (2) 

Actinobacteria 153 736 0 2 21 4 21 2 211 134 

Bacteriodetes 3958 7093 4 12 25 0 0 192 628 9161 

Firmicutes 22860 19888 38875 33170 25832 15960 1938 692 34990 26391 

Fusobacteria 0 0 0 0 0 0 0 0 0 34 

Proteobacteria 607 4554 598 773 8060 29542 66865 49113 7944 9821 

Verrucomicrobia 0 0 0 0 0 0 0 0 0 2977 
Bacteria 

(unclassified) 79 63 0 0 0 0 0 0 41 55 

 
 
 

 

The increase in bacterial frequencies in the presence of 

multiple broad spectrum antibiotic courses along with a high dose 

(50.4 Gy) of directed gamma radiation at the pelvic region is an 

abnormal phenomenon. Therefore, a higher resolution or an intuition 

of more specificity to the bacterial taxa was needed. The frequency 

table at the genus level was obtained for all samples from qiime2. The 

search criteria for the specific increasing genera was set as follows: (1) 

the frequency per patient is higher at each time point (fluctuating taxa 

were excluded), (2) frequencies per taxa is elevated in the three 

patients or completely absent in one patient. According to these 

criteria, eight different genera were identified (Table-4), six of which 

belong to the Firmicutes phylum (that had overall decreased): one 

belongs to Proteobacteria and the last is a member of Bacteroidetes 

phylum.  
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Table 4: Constantly increasing bacterial genera 

 

Genus 
Patient-1 Patient-2 Patient-3 Controls 

Pre Mid Pre Mid Last Pre Mid Last (1) (2) 

Bacteroides 5 23 0 7 22 0 0 192 20 20 

Streptococcus 13 22 14 46 72 NA NA NA 535 286 

Defluviitaleaceae* 127 478 0 98 467 NA NA NA 12 0 

Dorea 28 309 57 97 135 NA NA NA 95 119 

Subdoligranulum 309 1434 0 7 79 NA NA NA 1909 112 

Ruminococcaceae* 1120 2575 6 237 368 NA NA NA 444 468 

Clostridiales** 25 647 0 3 23 NA NA NA 1225 0 

Escherichia-shigella 95 1117 598 549 7977 25630 66865 49113 3330 2087 

 
*Family 
**Order 
NA: Not Available  
 
 
Full taxonomic classification: 
 

1. Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; 
Bacteroides 

 
2. Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; 

Streptococcus 
 

3. Bacteria; Firmicutes; Clostridia; Clostridiales; Defluviitaleaceae; 
uncultured 

 
4. Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Dorea 

 
5. Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; 

Subdoligranulum 
 

6. Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae 
 

7. Bacteria; Firmicutes; Clostridia; Clostridiales 
 

8. Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; 
Enterobacteriaceae; Escherichia-Shigella  
 

 
 
 
 



 

38 

 Chapter 5: Discussion 
  

 

The gut microbiota is now being linked to various aspects in 

life rather than only its role in food digestion. It has been described as 

the “forgotten organ”, owing to its diverse and effective roles (O’Hara 

& Shanahan, 2006). The relationship between microbiota and cancer 

has been intensively studied. Various links were created to describe 

the role of microbiota in developing cancer at different body sites as 

well as its role in determining the response to treatment, including 

chemotherapy, radiotherapy or immunotherapy (Gerassy-Vainberg et 

al., 2018; Gopalakrishnan et al., 2018; Nam et al., 2013; Routy et al., 

2018; Viaud et al., 2013).  

 

Crawford and colleagues reported that the GF mice are 

resistant to high dose (16 Gy) of TBI (Crawford & Gordon, 2005). 

The described resistance to TBI in GF mice was attributed to the role 

of the microbiota in inducing severe intestinal inflammation and 

increasing Interleukin-1b, that result in tissue damage and might lead 

to mice death. Several studies on human and mice models reported the 

microbiota dysbiosis after radiotherapy directed to the pelvic region, 

with a general decrease in Firmicutes and Bacteroidetes along with an 

increase in Proteobacteria and overall decrease in alpha diversity 

(Nam et al., 2013; Wang et al., 2015).  

 

In the current observational study, we describe the effect of 

directing radiotherapy to the pelvic region on the microbial alpha 

diversity of infant cancer patients who were already on chemotherapy 

along with intensive doses of various broad-spectrum antibiotics. In 

comparison with two healthy controls; the patients’ alpha diversity 

was generally lower. However, the extent of reduction was variable 

among the patients in study. This can be attributed to the different 

antibiotics courses prescribed for each, independent of the others.  
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On the phylum level, Firmicutes decreased post radiation while 

Proteobacteria increased. This agrees with previously described 

dysbiosis after radiotherapy in adults (Nam et al., 2013; Wang et al., 

2015). Our results contradicted those by Nam and colleagues who 

reported an elevation in the relative abundance of Actinobacteria in 

gynecological cancer patients compared to healthy individuals (Nam 

et al., 2013). In their study, they selected gynecological cancer patients 

who did not take any antibiotics at the time of sample collection. 

However, excluding antibiotics from infants’ treatment protocols was 

not possible. Therefore, the variation observed might be attributed to 

antibiotics. Moreover, by comparing actinobacterial abundance 

between patient-1 (at least 2 months between last antibiotic and point 

zero collection), patients 2 and 3 (last antibiotic course was on the 

same month of sample collection) we can find that Patient-1 has more 

Actinobacteria. In general, Patient-1 had higher alpha diversity 

(chao1: 104, Shannon: 3.121) that was comparable to the controls 

(chao1: 111, 127 and Shannon: 3.18, 3.11 respectively). This could be 

due to the long gap between the last antibiotic dose and point zero 

collection time, since it was previously reported that the microbiota 

can fully rebound in most patients after antibiotics courses within 90 

days (Raymond et al., 2016).  

 

By comparing the alpha diversity indices for each patient to 

himself at the three sample collection points, we found that Patient-3 

experienced a drop in alpha diversity post radiation and antibiotics. On 

the contrary Patients 1 and 2 had surprisingly higher alpha diversity 

post treatment. We further defined the taxa that were constantly 

increasing at the three-time points and the three patients at the highest 

resolution that could be inferred from the sequencing reads. 

Accordingly, eight taxa were identified (Bacteroides, Streptococcus, 

Defluviitaleaceae, Dorea, Subdoligranulum, Ruminococcaceae, 

Clostridiales and Escherichia-shigella). Except for Bacteroides that 

belongs to Bacteroidetes phylum and Escherichia-shigella that 
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belongs to Proteobacteria phylum, all remaining six taxa belong to 

Firmicutes phylum that was generally decreasing.  

 

When ionizing radiation is directed to the targeted body 

location, it primarily disrupts the cellular macromolecules including 

proteins, lipids and DNA resulting in mutations that might trigger the 

DNA damage response pathways or activate one of the cellular death 

mechanisms that include: apoptosis, autophagy or necrosis (Van Der 

Kogel et al., 2009). The damaging effect of ionizing radiation on the 

bacterial cells is reflected on DNA mutations as in eukaryotes. 

However, the radiosensitivity of bacteria differs greatly from one 

bacterial species to another. Some bacterial species are known to be 

radiosensitive, while others are extremely radioresistant, e.g. 

Deinococcus radiodurans that can withstand up to 5000 Gy of gamma 

irradiation (Slade et al., 2011). Goudarzi and colleagues studied the 

effect of 12 Gy of X-ray irradiation on the gut microbiome of mice; 

they reported an increase in families Lactobacillaceae and 

Staphylococcaceae while the Lachnospiraceae, Ruminococcaceae and 

Clostridiacea families have decreased in their relative abundance 

(Goudarzi et al., 2016). Direct comparison between those reported 

variations in relative abundance to the variations we have reported (all 

five families were increasing in relative abundance post radiation) is 

not rational because of the following reasons: (1) the reported changes 

were due to low dose X-ray irradiation, while we used 50 Gy of 

gamma irradiation, (2) our study was conducted in the presence of 

antibiotics and chemotherapy, which both affect the microbiota. 

Raymond and colleagues have studied the effect of antibiotics on 

microbiome using deep shotgun sequencing and reported the detection 

of resistant genes post antibiotic treatment, that might have been 

related to an increase in relative abundance of those species post 

antibiotics (Raymond et al., 2016). Accordingly, what could be 

inferred is the possible radiosensitivity of the fluctuating bacterial 

families. Further studies are needed to confirm with reflection to the 
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possible mutations in antibiotics resistant genes that might increase or 

decrease the antibiotics sensitivity to the target bacteria.  

 

In conclusion, the relationship between the gut microbiome 

and cancer treatments is ultimately complicated. The increase in 

relative abundance of eight taxa (Bacteroides, Streptococcus, 

Defluviitaleaceae, Dorea, Subdoligranulum, Ruminococcaceae, 

Clostridiales and Escherichia-shigella) together with the previously 

reported fluctuation in the same taxa might indicate their 

radiosensitivity. However, further studies are needed to confirm. The 

gut microbiota profile of the patients’ prior cancer treatment may 

predict the response, while the proper manipulation of the gut 

microbiome can improve the effect of cancer therapy.  
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 Appendix 1- Scripts 
 
Qiime2-2017.12 
 
#Generate OTU table (feature table), Assign Taxonomy (SILVA full 
length) and generate the phylogenetic tree 
 
#Import sequence files to Qiime2 
#manifest phred33 
 
#create a manifest file 
#rename file names as in the manifest  
 
qiime tools import --type 'SampleData[PairedEndSequencesWithQuality]' 
--input-path pe-33-manifest --output-path paired-end-demux.qza --
source-format PairedEndFastqManifestPhred33 
 
#quality check 
 
qiime demux summarize \ 
  --i-data paired-end-demux.qza \ 
  --o-visualization demux-summary-1.qzv 
 
#The sequences are sorted inline from eurofins, sequences sorted by 
barcode then trimmed.  
 
   
#quality_filter  
   
 qiime quality-filter q-score \ 
 --i-demux paired-end-demux.qza \ 
 --o-filtered-sequences demux-filtered.qza \ 
 --o-filter-stats demux-filter-stats.qza 
 
 
#denoise_after_filtering  
  
 qiime deblur denoise-16S \ 
  --i-demultiplexed-seqs demux-filtered.qza \ 
  --p-trim-length 230 \ 
  --o-representative-sequences rep-seqs-deblur.qza \ 
  --o-table table-deblur.qza \ 
  --p-sample-stats \ 
  --o-stats deblur-stats.qza 
 
 
mv rep-seqs-deblur.qza rep-seqs.qza 
mv table-deblur.qza table.qza 
 
 
#create qiime visualizations 
 
qiime metadata tabulate \ 
  --m-input-file demux-filter-stats.qza \ 
  --o-visualization demux-filter-stats.qzv 
 
qiime deblur visualize-stats \ 
  --i-deblur-stats deblur-stats.qza \ 
  --o-visualization deblur-stats.qzv 
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#create a metadata file on google sheets and save as (.tsv) 
#feature table and feature summary  
 
qiime feature-table summarize \ 
  --i-table table.qza \ 
  --o-visualization table.qzv \ 
  --m-sample-metadata-file sample-metadata.tsv 
 
 
qiime feature-table tabulate-seqs \ 
  --i-data rep-seqs.qza \ 
  --o-visualization rep-seqs.qzv 
 
 
#Generate a tree for phylogenetic diversity analyses 
 
qiime alignment mafft \ 
  --i-sequences rep-seqs.qza \ 
  --o-alignment aligned-rep-seqs.qza 
   
 
#mask or filter 
 
qiime alignment mask \ 
  --i-alignment aligned-rep-seqs.qza \ 
  --o-masked-alignment masked-aligned-rep-seqs.qza 
   
#create a phylogenetic tree  
 
qiime phylogeny fasttree \ 
  --i-alignment masked-aligned-rep-seqs.qza \ 
  --o-tree unrooted-tree.qza 
 
 
#taxonomy_silva_full_length  
 
qiime feature-classifier classify-sklearn \ 
  --i-classifier silva-119-99-nb-classifier.qza \ 
  --i-reads rep-seqs.qza \ 
  --o-classification taxonomy.qza 
 
 
qiime metadata tabulate \ 
  --m-input-file taxonomy.qza \ 
  --o-visualization taxonomy.qzv 
 
 
#bar_plot 
 
qiime taxa barplot \ 
  --i-table table.qza \ 
  --i-taxonomy taxonomy.qza \ 
  --m-metadata-file sample-metadata.tsv \ 
  --o-visualization taxa-bar-plots.qzv 
 
 
#export to biom hdf5 
 
 
qiime tools export \ 
  table.qza \ 
  --output-dir exported-feature-table 
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#export the following files to be used in R-phyloseq: 
feature table in biom format 
taxonomy (export as tsv) 
re_seq_file.fasta 
tree.nwk 
metadata.tsv 
 
#append taxonomy classification to feature table and convert to biom 
format 
 
biom add-metadata -i feature-table.biom -o table.w_omd.biom --
observation-metadata-fp taxonomy.tsv --observation-header 
OTUID,taxonomy --sc-separated taxonomy 
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Usearch Script 
 
 
#fastq_info_command_in_fq_directory 
 
mkdir -p ../fastq_info 
for fq in *.fastq 
do 
  usearch -fastx_info $fq -output ../fastq_infotrim/$fq 
done 
 
#extract EE 
 
cd ../fastq_infotrim 
grep "^EE" * 
 
#quality_chart 
 
usearch -fastq_chars 16s_sample1_2_V3V5_FWD.fastq -log chars.log 
 
#trimming_to_200bp 
#Sample1 
 
usearch -fastx_truncate 16s_sample1_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatA1_R1.fastq 
 
#Sample2 
 
usearch -fastx_truncate 16s_sample2_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatA2_R1.fastq 
 
 
#sample3 
 
usearch -fastx_truncate 16s_sample3_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatB1_R1.fastq 
 
#sample4 
 
usearch -fastx_truncate 16s_sample4_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatB2_R1.fastq 
 
#sample5 
 
usearch -fastx_truncate 16s_sample5_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatB3_R1.fastq 
 
#sample6 
 
usearch -fastx_truncate 16s_sample6_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatC1_R1.fastq 
 
#sample7 
 
usearch -fastx_truncate 16s_sample7_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatC2_R1.fastq 
 
#sample8 
 
usearch -fastx_truncate 16s_sample8_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout PatC3_R1.fastq 
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#sample9 
 
usearch -fastx_truncate 16s_sample9_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout Cont1_R1.fastq 
 
#sample10 
 
usearch -fastx_truncate 16s_sample10_2_V3V5_FWD.fastq -trunclen 
200 -label_suffix _R1 -fastqout Cont2_R1.fastq 
 
#Sample1_REV 
 
usearch -fastx_truncate 16s_sample1_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatA1_R2.fastq 
 
 
#sample2_REV 
 
usearch -fastx_truncate 16s_sample2_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatA2_R2.fastq 
 
 
#Sample3_REV 
 
usearch -fastx_truncate 16s_sample3_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatB1_R2.fastq 
 
 
#sample4_REV 
 
usearch -fastx_truncate 16s_sample4_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatB2_R2.fastq 
 
 
#sample5_REV 
 
usearch -fastx_truncate 16s_sample5_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatB3_R2.fastq 
 
#sample6_REV 
 
usearch -fastx_truncate 16s_sample6_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatC1_R2.fastq 
 
#sample7_REV 
 
usearch -fastx_truncate 16s_sample7_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatC2_R2.fastq 
 
#sample8 
 
usearch -fastx_truncate 16s_sample8_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout PatC3_R2.fastq 
 
#sample9 
 
usearch -fastx_truncate 16s_sample9_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout Cont1_R2.fastq 
 
#sample10_REV 
 
usearch -fastx_truncate 16s_sample10_2_V3V5_REV.fastq -trunclen 
200 -label_suffix _R2 -fastqout Cont2_R2.fastq 
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#cat command to pool FWD and REV (applied to the 10 samples) 
 
cat Cont1_R1.fq Cont1_R2.fq > Cont1_R.fq 
 
 
#cat all reads in one file 
 
cat samples.txt  | while read sample ; do cat $sample"_R2.fq" | paste 
- - - - | awk -v sample=$sample 'BEGIN {FS="\t"} {print 
"@"sample"."NR"\n"$2"\n"$3"\n"$4;}' > $sample.fastq ; done 
cat *.fastq > tmp 
mv tmp merged.fq 
 
#filter_sequences 
 
usearch -fastq_filter merged.fq -fastq_maxee 1.0  -fastaout 
filtered.fa -relabel Filt 
 
#finding_uniques 
 
usearch -fastx_uniques filtered.fa -sizeout -relabel Uniq -fastaout 
uniques.fa 
 
#Cluster_OTU 
 
usearch -cluster_otus uniques.fa -otus otus.fa -relabel Otu 
 
 
#OTU table 
 
usearch -otutab merged.fq -otus otus.fa -otutabout otutab_raw.txt -
biomout otutab.json -mapout map.txt -notmatched unmapped.fa -
dbmatched otus_with_sizes.fa -sizeout 
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Appendix 2- Permissions for Figure Reuse 
 
 
 
Permission for figure 1 reuse  
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Permission for figure 2 reuse  

 
 
Permission for figure 3 reuse 
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Permission for figure 4 reuse  
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