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ABSTRACT 
 

Adding more functionality to chips is an important trend in the advancement of technology. During the 

past couple of decades, integrated circuit developments have focused on keeping Moore’s Law alive – 

“More of Moore”. Moore’s law predicts the doubling of the number of transistors on an integrated circuit 

every year. My research objectives revolve around “More than Moore”, where different functionalities 

are sought to be integrated on chip. Sensing in particular is becoming of paramount importance in a 

variety of applications. Booming healthcare costs can be reduced with early diagnosis, which requires 

improved sensitivity and lower cost. To halt global warming, environmental monitoring requires miniature 

gas sensors that are cheap enough to be deployed at mass scale. 

First, we explore a novel silicon waveguide platform that is expected to perform well as a sensor in 

comparison to the conventional 220 nm thick waveguide. 50 and 70 nm shallow silicon waveguides have 

the advantage of easier lithography than conventional 220 nm thick waveguides due to the large minimum 

feature size required of 1 µm. 1 µm wide waveguides in these shallow platforms are single mode. A multi-

mode interference device is designed in this platform to function as the smallest MMI sensor, giving 

sensitivity of 427 nm / refractive index unit (RIU) at a length of 4 mm. The silicon photonic MMI sensor is 

based on detecting refractive index changes. 

Refractometric techniques such as the MMI sensor require surface functionalization to achieve selectivity 

or specificity. Spectroscopic methods, usually reserved for material characterization in a research setting, 

can be adapted for highly specific label-free sensing. Chapter 4 explores the use of a highly doped III-V 

semiconductor for on chip infrared spectroscopy. Finite element method and finite different time domain 

were both used to design a plasmonic slot waveguide for gas sensing. On chip lasers and detectors have 

been designed using InAs. While InAs is still considered more expensive than silicon, the electronics 

industry expects to start incorporating more materials in standard fabrication processes, including III-V 

semiconductors for their superior properties including mobility. Thus, experimental realization of this 

sensor is feasible.   

A drawback with infrared spectroscopy is that it is difficult to use with biological fluids. Chapter 5 explores 

the use of Raman spectroscopy as a sensing method. To adapt Raman spectroscopy for sensing, the most 

important task is to enhance the Raman signal. The way the Raman signal is generated means that the 

number of photons is generally very low and usually bulk material or concentrated fluids are used as 
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samples. To measure low concentrations of a probe molecule, the probe molecule is placed on a surface 

enhanced Raman spectroscopy (SERS) substrate. A typical SERS substrate is composed of metal 

nanostructures for their surface plasmon resonance property, which causes a large amplification in the 

electric field in particular hot spots. By decorated silicon nanowires with silver nanoparticles, an 

enhancement factor of 1011 was realized and picomolar concentrations of pyridine were detected using 

Raman spectroscopy. 

In conclusion, this thesis provides new concepts and foundations in three directions that are all important 

for on chip optical sensing. First, silicon photonics is the technology of choice that is nearest to the market 

and a multi-mode interference sensor based on shallow silicon waveguides was designed. Further work 

can explore how to cascade such MMIs to increase sensitivity without sacrificing the free spectral range. 

Second, infrared plasmonics is a promising technology. Before semiconductor plasmonics, on chip devices 

operated in the visible or near IR and then microwave region of the electromagnetic spectrum. By using 

highly doped semiconductors, it is possible to bridge the gap and operate with mid-infrared wavelengths. 

The implications are highlighted by designing a waveguide platform that can be used for next generation 

on chip infrared spectroscopy. Third, Raman spectroscopy was exploited as a sensing technique by 

experimental realization of a SERS substrate using equipment-free fabrication methods. 
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CHAPTER 1. INTRODUCTION 

1.1. Optical Sensors 

Sensing is becoming more prevalent and ubiquitous in our daily lives. From the simple bimetallic strips in 

kettles to accelerometers in our cars, the widespread use of sensors is contributing to the safety and 

convenience of humankind. Table 1.1 compares different sensing technologies. For widespread use, 

sensors must be low cost, compact and easy to mass-produce. Thus the focus of this thesis is on-chip 

sensors. Regardless of the type of sensor, the end signal must always be converted to an electrical signal 

for further processing and incorporating in a feedback system when appropriate. Thus, a key feature for 

the sensor technology of choice is its ease of integration with electronics. The biggest advantage of optical 

sensors is that they have been used in a wide variety of applications and are seen as key enablers. For 

example, electrochemical methods alone are able to detect a certain subset of analytes with certain 

accuracy, but when adding optical sensors this subset becomes vastly expanded with much improved 

accuracy. 

Table 1.1. Sensing techniques. Adapted from [1]. 

STIMULUS QUANTITIES MEASURED SIGNAL MEASURED 

ACOUSTIC Wave amplitude, phase Acoustic → Electrical 

Acoustic → Optical → Electrical 

BIOLOGICAL / CHEMICAL Concentration, thickness of layer Chemical → Electrical 

Chemical → Optical → Electrical 

ELECTRIC Conductivity, charge Electrical 

MAGNETIC Magnetic field amplitude, phase, flux 

permeability 

Magnetic → Electrical 

Magnetic → Optical → Electrical 

OPTICAL Refractive index, reflectivity, absorption Optical → Electrical 

THERMAL Temperature, thermal conductivity, Thermal → Electrical 

Thermal → Optical → Electrical 

MECHANICAL Pressure, position, velocity, force Mechanical → Electrical 

Mechanical → Optical → Electrical 

 

Early detection of the vast majority of cancers has been correlated with higher survival rates than late 

stage diagnosis. Ovarian cancer symptoms are very similar to non-serious health conditions such as 

bloating, lower back pain and loss of appetite leading to 80% of diagnosis occurring in late stages, where 
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chances of 5 year survival can be as low as 10% [2]. For early diagnosis, several biomarkers need to be 

measured simultaneously with high sensitivity and specificity [3, 4], and as many as 5 biomarkers have to 

be targeted, one of which is CA-125, considered a very rare molecule available in very low concentrations 

[5]. Cervical cancer has over 50% mortality rate % [6], the reason for high mortality rate is that the 

symptoms start to show when the disease has advanced to a very late stage that it is no longer responsive 

to treatment. A popular screening method is the Papanicolaou smear test (pap test), it is simple and 

inexpensive but suffers from a high false-negative rate [7, 8]. The human papillomavirus (HPV) itself can 

be detected by polymerase chain reaction (PCR) amplification followed by hybridization capture assay [9], 

but quantification can be difficult because the amplification step is very sensitive to the temperature, 

buffer composition and enzyme activity [10]. Thus, there is a strong need to be able to detect the virus 

without an amplification step, requiring detector sensitivities down to the femtomolar range and below. 

1.2. Sensor Design considerations 

Several standards have been proposed for design considerations for sensors, depending on the 

application. One application for example is diagnostics. By incorporating optical sensors on chip, it is 

possible to move from a centralized healthcare system, where blood samples are analyzed in highly 

specialized  , to a decentralized healthcare system where the samples are analyzed at the location of the 

care provider or at home. This will bring about many benefits to both developed and developing countries: 

Patients will be more willing to take more frequent tests as it is more convenient for them, less chance 

sample fouling / contamination due to transporting in addition to the obvious cost advantages. For 

biosensors to find their way in the developing world, the ASSURED criteria were developed by the World 

Health Organization (WHO) [11]: 

• Affordable by those at risk of infection 

• Sensitive with very few false-negatives 

• Specific with very few false-positives 

• User-friendly tests that are simple to perform and require minimal training 

• Rapid, to enable treatment at first visit, and Robust, for example not requiring refrigerated 

storage 

• Equipment-free 

• Delivered to those who need it 
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The WHO also identified the digitization and data-linking to be important for follow up visits and 

monitoring healthcare statistics of a large population [11]. Additionally, multiplexing is a useful feature. 

Multiplexing in the context of sensors refers to measuring several markers using one blood sample. 

1.2.1. Cost 

On chip sensors tackle the affordability criterion by operating on a small scale and requiring small sample 

and reagent volumes. In addition, as will be explained shortly, optical sensors can be designed to be label-

free, thus reducing the amount of steps and reagents required. More importantly, on chip sensors can be 

integrated with microfluidics and electronics components to allow full automation. By reducing the user 

interaction required, no skilled worker is needed, and this obviously brings down the cost. 

1.2.2. Sensitivity 

As listed in the ASSURED criteria, improved sensitivity reduces false-negatives. A false negative happens 

when the sensor is not sensitive enough and cannot detect the biomarker. In general terms, a biomarker 

is some measurable quantity indicative of a disease or condition. For example, a person infected with 

Hepatitis C Virus (HCV) will have small concentrations of the virus in blood, so detecting this virus is 

indicative that the person has HCV. In practise however, it is sometimes easier to detect another marker, 

for example an antibody that is released by the body to fight the disease. So a biomarker may be the 

foreign body itself responsible for the disease or something else that is released by either the body or by 

the foreign body. 

The immune system takes some time to detect a foreign body (antigen) and develop an antibody that is 

specific to that antigen. A patient just recently infected with HCV may test negative when an antibody test 

is used due to the antibody not being produced yet (the first few days after infection) or produced in 

quantities lower than the sensor detection limit. The virus itself is available in very small concentrations, 

and can be detected through the genetic material of the virus in the blood, ribonucleic acid (RNA). This is 

available in extremely small quantities and the detection methods are not sensitive enough to detect 

these small quantities. Expensive polymerase chain reaction (PCR) is required to amplify the genetic 

material before the actual detection. Despite the many disadvantages for using the antibody test as a 

diagnostic strategy, it is still used instead of the HCV RNA test. More sensitive solutions that can skip the 

PCR step are definitely needed. 

It is important to stress that early detection is possible through detecting small concentrations of 

biomarkers. The current standard methods for detecting biomarkers are all labeled methods; the Enzyme-
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Linked Immunosorbent Assay (ELISA) is the most popular. Suppose that a patient is infected with HCV. 

The body will try to fight HCV by producing antibodies that will act as a biomarker. A 96-well plate as 

shown in Figure 1.1 (a) is sold as part of a diagnostic kit for HCV [12]. It contains a capture antibody on the 

bottom of each well that binds specifically to the biomarker. A blood sample is inserted into one of these 

wells. The biomarkers will bind specifically to the capture antibodies and they will be “immobilized”. The 

well is then washed, leaving behind only the immobilized biomarkers. Another antibody, called the 

detection antibody, is introduced and binds to the biomarker from the top side, creating a “sandwich” as 

shown in Figure 1.1 (b). A further enzyme-linked antibody, a “label”, is added that causes a color change, 

the intensity of which is dependent on the amount of biomarker present [13]. A sensitive assay is one that 

undergoes an observable color change for very low concentrations. An insensitive assay is one that will 

only give an observable color change for high concentrations of the antibody being tested for. Thus, an 

insensitive assay is prone to giving false negative results. A diagnostic test based on a sensor with limited 

sensitivity will conclude that the patient does not have this biomarker although the patient may have very 

little concentrations of the biomarker that go undetected. This is quite problematic as it leads to late 

diagnosis of serious illnesses. In several diseases, symptoms appear only after the disease has progressed, 

by which time it is too late for successful intervention. 

1.2.3. Selectivity 

Selectivity refers to the test undergoing a color change due to the specific antibody that the assay is 

designed for. A non-selective test will undergo a color change due to molecules other than those being 

tested for, giving rise to false positives. In almost all ELISA tests, there is a trade-off between sensitivity 

and specificity; this is an important challenge that will be discussed in the next section. Continuing the 

HCV example, in many cases the body’s immune response is able to fight the virus without symptoms. 

Thus, if a patient becomes infected with HCV, the body may release antibodies and successfully eradicate 

the virus, but the body continues producing the antibody for several years. A patient who has undergone 

this cycle (without even knowing it), may test false positive if the antibody test is used. Thus, HCV antibody 

test is not specific enough. As already mentioned in the previous section, one solution has been to opt for 

detection strategies involving the virus itself and not the antibody. However, these tests remain too 

expensive to be used ubiquitously. 

In gas sensing application, optical sensors have been employed with high sensitivity, but selectivity 

remains a problem. Optical sensors have typically employed refractive index sensing. Gases have very 
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similar refractive indices around 1, with differences often in a fifth or sixth decimal place. Thus, a different 

mode of sensing for improved selectivity will be explored in this work. 

 

 

Figure 1.1. (a) 96-well plate used for ELISA [12]. (b). Schematic showing sandwich ELISA [13]. 

1.2.4. Multiplexing 

In some cases, several biomarkers are used together to diagnose a specific condition, this is known as a 

panel of biomarkers. For example, inflammation of the heart would cause dying heart cells to release 

Troponin I (TnI) [14], so elevated levels of TnI indicate that there is something wrong with the heart. 

However, another biomarker would be needed to indicate the reason behind these dying heart cells. C-

reactive protein (CRP) is released in any inflammatory response in the body (not just the heart). If both 

CRP and TnI are detected, this indicates that there is an inflammation of the heart, then doctors can take 

the correct course of action [15]. 

Many diseases require detecting a panel of biomarkers to help a physician reach a conclusive diagnosis 

[5]. In such cases, a single test that can detect several biomarkers would be beneficial over a method 

where several tests have to be conducted. On chip sensors allow multiplex ability. Due to their small size, 

several sensors, each sensitive to a different biomarker, can be placed on the same chip. A single sample 

can then be used for all the sensor in one experiment. Figure 1.2 shows an example of this approach. In 

this work, each region highlighted in a color contains 3 sensors that are sensitive to a particular antibody. 

Using a single sample injected using a syringe and a single laser input, all of the sensors’ outputs are 

collected simultaneously using a single camera. Thus, this is a single experiment with measurements 

corresponding to several biomarkers. 
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Figure 1.2. (Left) array of optical sensors on chip for multiplex sensing. (Middle) Single light excitation from input laser 

beam and single measurement using camera to capture fata from all 12 ring resonator sensors. Each 3 sensors are 

functionalized to be sensitive to a different material, as depicted by different colors. (Right) Optofluidic chip showing 

fluid manipulation. Reproduced from [16]. 

Similarly, in gas sensing, multiplex ability is very useful. Consider for example the application of 

environmental monitoring. Many gases should be monitored simultaneously, including carbon dioxide, 

carbon monoxide, ammonia, ethane, methane, hydrogen sulfide, methyl-phenol, benzyl alcohol [17]. 

1.3. Challenges 

So far, sensors that have been used in diagnostic tests that meet the ASSURED criteria have been simple 

such as glucose measurements, blood pressure. Attempts to simplify more complicated diagnostic tests 

have not yet reached all the ASSURED criteria. For example, HIV tests either take too long time, require 

equipment or the simpler ones are not sensitive enough [11]. Another challenge is combining multiplex 

ability with the ASSURED criteria. Novel strategies in optical sensors can be employed to improve both 

sensitivity and selectivity, overcoming the conventional trade-off associated with conventional testing 

methods. Even with miniaturized on-chip sensors that still employ labeled methods, multiplexed sensors 

can be costly as each sensor needs to be functionalized for its specific test. As will be explained in the 

following chapter, using label-free optical methods can overcome this cost barrier. The same novel 

strategies can be used to measure the concentration of a number of markers without having to 

functionalize the surface. These novel strategies make use of characteristic spectroscopic signals of 

analytes instead of simple refractive index measurements. 

1.4. Label-free sensing 

So far in this thesis, there have been some mention of labeled and label-free methods. This section is 

dedicated to understand the differences between the two methods. As mentioned earlier, the current 
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standard testing methods used clinically use labeled methods. Labeled methods, such as the ELISA 

described above can be very sensitive, but their high running costs and complexity hamper their 

ubiquitous use. Label-free methods have traditionally had limitations in sensitivity and multiplexed 

sensing, but recent innovations in interferometers, plasmonic sensors and photonic crystals[18] have 

been game changers. Plasmonic sensors in particular have been demonstrated to sense even below the 

femtomolar range. However, selectivity remains an issue with label-free methods. For example, a label-

free method would be used to measure the concentration of a particular known analyte, but its low 

specificity does not allow identifying the analyte. Infrared spectroscopy and Raman spectroscopy are two 

optical techniques that can be configured to operate as label-free detection tools. Infrared spectroscopy 

is well suited for a variety of analytes. However, the large absorption band of water requires that samples 

be completely dry for proper analysis. This would complicate sample preparation unnecessarily. For this 

reason, in this thesis, infrared spectroscopy is used in gas sensing. Raman spectroscopy on the other hand 

does not suffer from this issue and is well suited for biological fluids. The literature review section will 

discuss several examples of Raman spectroscopy used in biological applications. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

This chapter covers background related to the different aspects of this thesis. This background includes 

some historical perspective to appreciate how the technology is developing and some fundamental basics. 

It is best to discuss these basics in this chapter now before going through the actual devices designed as 

some of the explanations may be lengthy and such discussion would distract from the design objectives. 

2.1. Optical sensing 

Humans have always depended on their eyesight for almost all daily activities. It is therefore natural to 

turn to optical sensing methods. Since ancient times, doctors have used the color of skin, eye and bodily 

fluids as a means to assess patient health. The most common diagnostic tests make use of color change. 

Industrially, visual inspection has always been an integral part of quality assurance protocols and has 

recently been automated through the use of cameras and object recognition. Optical signals are always 

around us and detecting these signals has always been of strong interest. 

Figure 2.1 shows electric and magnetic fields associated with an electromagnetic wave traveling in the z 

direction. Both fields are perpendicular to each other and to the direction of propagation. As we shall see 

shortly, optical devices often behave very differently depending on the light polarization. This particular 

wave is said to be vertically polarized because the electric field is in the vertical direction. Visible light 

spans only a small segment of the electromagnetic spectrum shown in Figure 2.2. Throughout this thesis, 

different sensing strategies make use of different parts of the electromagnetic spectrum. Equations 2.1 

and 2.2 are fundamental properties of electromagnetic waves. 

 

Figure 2.1. Propagation of plane-polarized light showing electric field component (black) and magnetic field component 

(grey). Reproduced from [1]. 
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Figure 2.2. Electromagnetic spectrum. Reproduced from [2]. 

Equation 2.1 relates the wavelength 𝜆 and the frequency 𝜈 with the speed of light in a vacuum, 𝑐. 

 𝜆𝜈 = 𝑐 2.1 

Equation 2.2 is known as Planck’s equation and it describes the energy 𝐸 of a photon using Planck’s 

constant, ℎ. 

 𝐸 = ℎ𝜈 2.2 

The refractive index 𝑛 of a material summarises some of its optical properties. First, it describes the speed 

of light in that medium through the phase velocity v as per equation 2.3. 

 𝑛 =  
𝑐

v
 

2.3 

At the interface between two materials with different refractive indices, refraction occurs and this is 

described using Snell’s law, shown diagrammatically in Figure 2.3 and in equation 2.4. 

 

Figure 2.3. Refraction at the interface between materials of different refractive indices, 𝑛1 and 𝑛2. Adapted from [2]. 

 𝑛1 sin 𝜃1  =  𝑛2 sin 𝜃2 2.4 

𝜃1 

𝜃2 

𝑛2 𝑛1 



11 
 

To better understand how light as an electromagnetic wave behaves, Snell’s law is obviously insufficient. 

and we have to resort to Maxwell’s equations 2.5 and 2.6. As a simplification, the equations shown here 

assume a homogeneous and lossless dielectric medium. 

 
∇ × 𝐄 = −𝜇

𝜕𝐇

𝜕𝑡
 

2.5 

 
∇ × 𝐇 = 𝜀

𝜕𝐄

𝜕𝑡
 

2.6 

Here, 𝐄 is the electric field, 𝐇 is the magnetic field strength, 𝜇 is the permeability of the medium and  𝜀 is 

the permittivity of the medium. Noting that 𝜀 and 𝑛 are related as in equation 2.7, it becomes apparent 

how the refractive index has an effect on the electric field. 

 𝜀 =  𝜀0𝑛2 2.7 

Light can be considered as a sinusoidally varying electromagnetic wave with angular frequency 𝜔 and 

propagation constant 𝛽 propagating in the 𝑧 direction, as described by equation 2.8 [3], where the 𝑥, 𝑦 

and 𝑧 axes are as defined in Figure 2.1. 

 �̃� = 𝐄(𝑥, 𝑦)𝑒𝑖(𝜔𝑡−𝛽𝑧) 2.8 

To exploit light in sensing, it is important to understand the fate of photons as they hit a material as 

summarised in Figure 2.4 and equations 2.9 and 2.10. 

 

Figure 2.4. Fate of a photon, reproduced from [4]. 

 
T =

𝑃

𝑃0
 

2.9 

 A = − log 𝑇 2.10 
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where T is the transmittance and A is the absorbance, 𝑃0 is the power of the incident light, 𝑃 is the power 

of the measured light. 

The most common optical methods already used frequently in labs relies on the absorbance of labels as 

explained in the introduction. Figure 2.5 shows a typical tabletop ELISA plate reader. The optical system 

inside the plate reader often uses a broadband light source with a number of narrowband filters that are 

either manually or automatically changed depending on the particular experiment. For example, an ELISA 

plate reader configured for absorbance may have a broadband light source covering 400 to 750 nm 

wavelength. For a particular experiment that has the peak intensity at 407 nm, a 405 – 410 nm excitation 

filter is used that blocks all light and only allows light with 405 nm to 410 nm wavelength to pass. The 

measurement is based on the intensity of light that reaches the detector and a software calculates the 

absorbance of the sample. 

 

Figure 2.5. ELISA Plate reader. Reproduced from [5]. 

While such measurement method is commonplace in the lab, fundamentally different approaches are 

required for true lab on a chip systems. The concept of a lab on a chip has been around for decades. Soon 

after the development of microelectronic integrated circuits in the 1950s, microelectromechanical 

systems (MEMS) were used to make pressure sensors in the 1960s. Fast forward to the first lab on chip 

system in 1979, a gas chromatograph [6]. Manz et al’s visionary paper in 1990 reinvigorated the growth 

of the field by introducing the concept of a miniaturized total analysis system, integrating microfluidics, 

optics and electronics [7]. More importantly, they set solid theoretical insights highlighting the advantages 

of the miniaturization on chemical analysis: faster and more efficient separations, small sample volume 

and simultaneous measurements. Manz’ vision for lab on a chip systems sees the sensing part occurring 
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real time and such approach has no room for time consuming and expensive labeled sensing approaches. 

This leads to studying alternative label-free on chip optical sensing strategies. Two approaches will be 

covered: refractometric techniques and spectroscopic techniques. 

2.1.1. Refractometric sensing techniques 

Refractometric sensing techniques rely on detecting the refractive index of a sample. Generally, a device 

is designed such that it has a particular response under a reference sample with known refractive index 

and the output changes in response to a change in the refractive index. A typical example is a ring 

resonator such as that shown in Figure 1.2. In a ring resonator, light of particular wavelengths only couple 

to the ring and stay “trapped” in the ring for a long time. This causes light of only this wavelength to reach 

the drop port. This resonance condition is very sensitive to the top cladding material. When the top clad 

is removed and different samples are introduced, the resonant wavelength of the ring resonator is 

sensitive to small refractive index changes. Therefore, a resonant wavelength shift ∆𝜆 is observed for a 

refractive index change Δ𝑛.  The sensitivity in refractive index units (RIU) can be defined as equation 2.11 

 
𝑆 =

∆𝜆

Δ𝑛
 (𝑅𝐼𝑈) 

2.11 

The ring resonator was used as an example because it is one of the earliest and most common modulation 

and sensing method for photonic integrated circuits. However, the same performance characteristics hold 

for other refractometric sensing methods such as the interferometer, including the multi-mode 

interferometer (MMI) that will be studied at length in chapter 3. 

Refractometric techniques can be designed to have very high sensitivity. However, such high sensitivity is 

only useful in determining the concentration of a known sample and selectivity is an issue. In gas sensing 

for example, the refractive index of many gases are very similar to each other to the 5th decimal place. In 

samples that contain a mixture of chemicals, such as blood samples, it may be difficult to know which 

chemical is causing the refractive index shift. Therefore, surface functionalization is often performed. This 

causes the surface of a sensor to be sensitive to particular chemicals only. This approach is practical and 

appropriate for several cases and a new sensor based on this approach will be designed in chapter 4. 

However, to be able to detect unknown analytes without pre-functionalized sensors, spectroscopic 

methods should be employed such as infrared spectroscopy and Raman spectroscopy. 

2.1.2. Infrared Spectroscopy 

At the atomic level, the atoms and molecules are normally not stationary. Figure 2.6 (a) shows atomic-

level movements such as vibrations and rotations.  Such movements have certain resonant frequencies 
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which match infrared frequencies. Thus, a photon with energy in the infrared regime can excite these 

resonant modes. When this happens, this photon is absorbed. Infrared spectroscopy exploits this 

phenomenon because the exact frequencies cause a signature spectroscopic response for a particular 

material such as the example in Figure 2.6 (b). Infrared spectroscopy has been used as a powerful 

characterization tool. However, the absorption peak corresponding to water it difficult to analyze 

biological samples due to the requirement to dry the samples. Nevertheless, it is a useful technique and 

will be employed in chapter 5 for the design of a gas sensor. 

 

Figure 2.6. (a) Molecular vibrations in Carbon Dioxide. Reproduced from [8].(b) IR spectrum for CO2 [9]. 

2.1.3. Raman Spectroscopy 

Referring back to Figure 2.4, we note that the previously discussed sensing methods depend on just the 

transmission and absorption properties of the material. We can make use of the scattered signal. The way 

the light scatters can be more characteristic to a particular material than transmission or absorption 

properties. Raman spectroscopy is a label-free method that is able to deduce a wealth of information from 

a particular analyte in a single measurement. The mechanism is depicted in Figure 2.7. Briefly, incident 

light is scattered inelastically due to collisions with certain functional groups in a molecule or particular 

atoms. This inelastic scattering causes the reflected light to have different energies. More specifically, the 

intensity of light at different energies (frequencies) can be recorded as a spectrum and is found to be a 

characteristic fingerprint of the material. Usually, a high concentration of material is required to be able 

to accumulate enough signal-to-noise ratio and acquire a clear signal. However, for use in a sensor, a high 
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sensitivity is desirous and low concentrations must be detectable. Here comes the role of enhancing the 

Raman signal. 

 

Figure 2.7.  Elastic versus inelastic scattering. Incident photons have frequency v0. The horizontal axis is the frequency 

of scattered photons and the vertical axis is the number of photons. Most scattered photons have the same frequency 

as the incident photons (Rayleigh scattering). Some photons scatter inelastically, either gaining energy (Anti-Stokes) 

or losing energy (Stokes). Reproduced from [10]. 

Many strategies have been used to enhance the Raman signal, the most famous of which is Surface 

Enhanced Raman Scattering (SERS), and most recently, Tip Enhanced Raman Scattering (TERS) and 

Interference Enhanced Raman Scattering (IERS). In the early days of investigating with SERS, there was 

much debate about the physical reason behind the phenomenon, eventually settling on the explanation 

that there are both chemical and electrical enhancement but the electrical enhancement due to plasmons 

is the dominant effect [11]. 

Plasmons, depicted in Figure 2.8 (a, b) were manipulated as early as the 4th century AD in the Lycargus 

cup shown in Figure 2.8 (c). The glass incorporated gold nanoparticles – being a metal, gold provided the 

required abundance of free electrons. When viewed using reflected light, it appears green. However, 

when lit from the inside, some wavelengths of light are absorbed and it appears red. The absorbed light 

excites plasmons on the gold nanoparticles [12]. This causes the color change that has made the Lycargus 

cup famous. Photography in the 18th and 19th century made use of silver nanoparticles, which was also 

based on surface plasmon resonance effects. The term plasmonics was coined in the early 2000s and 

refers to more controlled manipulation of plasmons and in particular propagating plasmons [13-18]. 

Therefore, while plasmons have been used since the ancient romans, they have not been fully understood 

until recently and the field of plasmonics is considered a relatively new field. 
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Figure 2.8. (a) Surface plasmons, (b) localized plasmon in surface plasmon resonance (SPR). Reproduced from [19]. 

(c) Lycargus cup changing color depending on lighting conditions, reproduced from [12]. 

Plasmonics involves manipulating plasmons, which are collective oscillations of electrons that are 

considered quasi-particles that behave in some ways similar to a photon, obeying Maxwell’s equations 

[20]. Plasmons are excited due to incident light in specific conditions [20]. Plasmons manifest themselves 

in nano-scale materials with an abundant population of free electrons. The most typical use of plasmonics 

in biosensing applications involves the use of surface plasmon resonance (SPR) [19]. Briefly, a plasmon on 

a small nanoparticle will be localized and oscillate without propagating along the surface of the material 

[19] as demonstrated in Figure 2.8 (b). Resonance occurs when the frequency of incident electromagnetic 

field is equal to the frequency of oscillations, which themselves are a function of the material type, 

nanoparticle size and shape and more importantly, the surrounding material [19]. The electric field 

intensity due to a localized surface plasmon is greatly amplified and causes an enhancement of the Raman 

signal by a factor of E4. 

The earliest account of SERS was found almost ‘by accident’ in the late 1970s, and researchers were unable 

to fully explain the unusually high intensities they were getting in their Raman measurements [21]. Raman 

measurements usually have to be done on very smooth surfaces, but in the case of [21], applying a voltage 

caused the roughening of the electrode, and the Raman signal was found to be enhanced by a factor of 

105. While surface plasmons were suggested as an explanation, no solid evidence was available at the 

time. A couple of years down the road, more research was underway regarding this phenomenon and the 

term ‘surface enhanced Raman scattering’ was coined [22, 23]. In addition to roughened metal films as in 

the first few experiments [21, 22], metal sol particles were also used due to their ease of preparation [23]. 

SERS remains the strongest candidate amongst Raman enhancement methods for ubiquitous use as a low 

cost sensing method. While conventionally, the setup had been quite complex, many advancements in 

nanotechnology have resulted in driving the cost of SERS substrates down drastically. In addition, 
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advancements in integrated optics have resulted in the idea of a fully integrated SERS-on-chip platform 

not too far-fetched (including on chip source and detectors). 

Only in the past decade has SERS been suggested strongly as a biosensing mechanism, and there have 

been a plethora of strategies, from core/shell structures [24], bottom-up assembly of nanoparticles [25], 

achieving enhancements ranging from 103 to 107. The larger the enhancement, the larger the sensitivity. 

For single molecule detection, pushing the enhancement even further to 109 is needed [11] and this 

required a combination of strategies. Over the decades, after fully understanding the enhancement 

mechanism, it became clear that the best strategies involve either sharp nanoparticles such as cone or 

star shapes or to bring nanoparticles into very close proximity. 

Metal nanoparticles or metal caps have been deposited onto nanowires in such a way so as to bring the 

nanoparticles in very close proximity to one another [26-30]. Highlighting one example, Schmidt et. al [27] 

deposited silver onto silicon nanowires and then managed to make the nanowires to lean towards each 

other as shown in Figure 2.9. This was done in a controllable manner without any complicated fabrication, 

just making use of a droplet’s capillary forces as it dries up, pulling the nanowires closer together. The 

nanowires themselves were made using a maskless etching scheme without lithography, making the 

method amenable to low cost fabrication. The enhancement factor achieved varies depending on 

different calculation methods and assumptions, as previously outlined in [11], the enhancement factor is 

on the order of 106 to 1011 [27]. The reason for the large discrepancy is related to whether or not this 

enhancement factor is actually detectable experimentally. 

The second method is to make sure that the nanoparticles have some sharp corners to have an antenna 

effect, such as crescent shaped silver [31] or nanocones. Ming et. al compared the performance of 

different shaped nanoparticles and concluded that the nanostar outperformed nanorods and nanopheres 

due to the sharp tips [32]. What’s interesting about the work by Ming et. al is that the SERS was 

demonstrated for biosensing applications by monitoring DNA hybridization [32]. 
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Figure 2.9. (a) leaning process. The region between the two gold nanoparticles is considered a ‘hot spot’ where the 

electric field is greatly amplified due to interaction between the plasmons on both nanoparticles, so the analyte’s Raman 

signal is greatest when it is in this hot spot. (b) scanning electron microscope (SEM) image of leaned nanowires. (c) 

Raman signal obtained when using the optimally-leaned nanopillars (blue) greatly outperforms the non-leaning pillars 

(green) and those that leaned too much (yellow). Reproduced from [27]. 

An outstanding feat that deserves some attention was accomplished by Angelis et. al by patterning 

gratings onto a silver-coated nanocone [33]. These gratings cause surface propagating plasmons to move 

towards the tip of the nanocone to really strengthen the antenna effect as can be seen in Figure 2.10. 

What’s more, with careful engineering, the surface was made to be superhydrophilic with the nanocone 

acting as a defect, causing the droplet to be pinned at this nanocone. A droplet of containing femotomolar 

concentrations of lysosome was made to evaporate in such a way so as to increase the concentration of 

the droplet while delivering the molecules to the nanocone. This way, it was possible to record the Raman 

signal of less than 5 molecules of lysosome [33]. 
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Figure 2.10. (a – c) SEM images of the plasmonic tip in the middle of the superhydrophobic surface. (d) schematic 

showing the operational principle of the plasmonic tip. Reproduced from [33]. 

2.2. Integrated Photonics 

The first on chip optical sensor considered in this thesis is based on silicon photonics technology. This 

section covers how the silicon photonics industry emerged and introduces the reader to some basic 

photonics concepts. 

2.2.1. History: From optical fibers to silicon photonics 

The first optical fibers used in long-haul communications bought about a paradigm shift in not only 

technology, but indeed society at large [34]. Better communication infrastructure allowed the boom in 

internet usage and the subsequent changes in how people interact with each other [34]. Optical fibers are 

generally made using glass that is doped with different materials to create an inner core with a higher 

refractive index than the outer cladding, as depicted in Figure 2.11. The classical description of how light 

propagates in an optical fiber is using the concept of total internal reflection. That is, ideally, light reflects 

at the interface between the high index and low index materials and thus the light remains guided inside 

the high index region. 
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Figure 2.11 Guiding light in an optical fiber by total internal reflection. Reproduced from [3]. 

The 70s and 80s saw the start of research regarding planar on chip optical devices [35, 36] and integrated 

electro-optical systems were proposed since then. Despite silicon’s use in electronics, its high index of 

refraction meant that nanoscale dimensions were required, which deterred its use. Commercial devices 

based on similar technology as optical fibers – that is doped glass – flourished, followed by III-V materials 

– Indium Phosphide (InP) in particular became a common standard for photonics chips [35, 37]. There are 

currently several foundries for InP Photonics with mature fabrication processes [37, 38]. InP chips are 

used to make optical switches and modulators for communications applications [37]. 

Integrating optics and electronics on the same chip has always been an elusive task. Such integration will 

allow reaping the benefits of optical communications along with the electronics. In particular, optical 

interconnects is a very important field [39]. Moore’s law is endangered by the interconnect bottleneck 

[40, 41]. While smaller transistors generally bring about performance benefits, scaling down the size of 

metal interconnects brings about increased resistance and increased capacitance as the wiring gets 

denser, thus poorer performance [41, 42]. Therefore, there is an urgent need to consider other 

communication strategies for chip to chip and within the chip [39, 41, 43]. As optical communications has 

proved its reliability for decades in long distance communication, optical fibres have made their way in 

rack-to-rack communications, and is poised to go inside computers for chip to chip communications [44-

48]. Silicon’s higher refractive index than glass or InP meant that single mode operation requires 

geometries of a few hundred nanometers. Such resolution lithography started to be available in the late 

80s and 1990s and silicon photonics has started since then [49-55]. Research in Silicon Photonics-

electronics integration has accelerated strongly the past decade due to the impending interconnect 

bottleneck in addition to the new-found applications of silicon photonics in sensing applications [56-58]. 

In fact, many electronics companies have produced significant research on silicon photonics research 

including Intel , HP[59-61], Oracle [62-67] and IBM [68]. 

As elegantly quoted in an IBM paper “Interconnects of the future will be dominated by optics, as this 

offers the potential for a far better cost solution for all distances. As we look to exascale, even the 
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connections between processors on a common circuit card needs to be optical because of the amount of 

bandwidth needed. Silicon photonics represents a nearly ideal solution to the interconnect problem [69].” 

Figure 2.12 shows the evolution of the vision for future electro-optical chips. The 1974 vision did not even 

consider silicon but rather III-V materials. 

1974 2008 2011 

  

 

Figure 2.12. Vision of electro-optical integration over the years. Vision from 1974 by Bell Telephone Laboratories. 

Reproduced from [35]. Vision from 2008 for 2018 by IBM [70]. Vision from 2011 by IBM [69]. 

In silicon photonics, silicon is used as the core and silicon dioxide is used as the cladding. When on chip, it 

is possible to have the underclad different from the upperclad. A large refractive index contrast between 

silicon (nSi = 3.4), and silicon dioxide (nSiO2 = 1.4) means that single-mode waveguides are smaller than was 

feasible using only glass or InP. Glass and InP single mode waveguides were usually around a few microns 

in width, while silicon waveguides are a few hundred nanometers in width. The high contrast means that 

light is well confined in the silicon and small bend radii of 5 µm are achievable with negligible loss. Thus, 

Silicon photonics allows highly dense integration of optical components on chip. Obviously, by using the 

same material as electronics, costs are much reduced. One drawback of purely silicon photonics is the 

difficulty to create on chip lasers as silicon is not a direct bandgap material, thus any attempts to produce 

light in silicon will inherently excite phonons. Thus, hybrid material systems incorporating silicon and InP 

devices are promising [57, 58]. Intel has already started commercial production of chips containing hybrid 

InP-silicon photonic interconnect systems reaching speeds of 100 gigabits per second [71]. In addition, 

Intel has been able to lead in Silicon photonics because they also accomplished automated testing 

platforms for silicon photonics, thus bringing true economies of scale to photonics from fabrication all the 

way to testing. The maturing technology has seen several foundries offering multi-project wafer (MPW) 

runs, making it possible to fabricate devices using state of the art capabilities and affordable cost [72]. 

2.2.2. Fundamentals of integrated photonics 

Figure 2.13 (a) shows a slab waveguide with infinite width. Using the concept of total internal reflection, 

the index contrast causes the interface between two materials with high refractive index contrast to act 
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as a mirror. Light injected in the waveguide will remain trapped between these two mirrors. Consider the 

incident and reflected light at one of these mirrors. Constructive interference between these two causes 

the light intensity to be maximum at the center of the waveguide. This is known as the fundamental mode 

of the waveguide, as shown in Figure 2.13 (c). Higher order modes may exist which have different optical 

field profiles, such as the transverse magnetic mode shown in Figure 2.13 (d). A pulse of light injected 

along the z axis will propagate at different phase velocity v in each material with different refractive index 

n due to the relation in 2.3. Thus, light travels slower in regions with high refractive index. Light traveling 

in a certain mode along a waveguide will collectively travel with a certain group velocity ng, and 

subsequently the whole waveguide can be considered as a material with effective refractive index neff. It 

suffices to note that each guided mode has an effective refractive index (sometimes simply referred to as 

“effective index”) as in Figure 2.13 (b) and a group velocity. Figure 2.13 (b) is an example of how the 

thickness affects the number of guided modes and the effective refractive index of these modes. More 

detailed analysis and the equations that govern guided modes are out of the scope of this thesis and I 

refer the reader to [3] or [1]. 
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Figure 2.13. Slab waveguide analysis (a) schematic, (b) Effective index versus slab thickness for silicon core and oxide 

substrate and cladding, (c) TE mode, (d) TM mode for 220 nm thick slab waveguide with silicon core and oxide substrate 

and cladding. (a) reproduced from [3]. 

The previous discussion with slab waveguides were meant as an introduction because of the simple 1 

dimensional analysis. However planar waveguides with finite width are more realistic. Figure 2.14 (a) 

shows the cross section of the two most common types of waveguides in silicon photonics, with light 

propagating into the page. Figure 2.14 (b, c) shows scanning electron microscope image of these 

waveguides. Figure 2.14 (d, e) show the mode profiles of a strip waveguide using silicon core with 220 nm 

height and 500 nm width and silicon dioxide bottom and top cladding. As mentioned earlier, the 

polarization of the light has a strong impact on how the light behaves in the waveguide. It is obvious for 

example that in the TM mode, more of the electric field is actually traveling in the cladding rather than in 

the core. Figure 2.14 (f) shows that the effective index of the mode changes for different waveguide 

widths. In addition, waveguides larger than 450 nm are no longer single mode and support two guided 

transverse electric (TE) modes. 
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Figure 2.14. Silicon photonic waveguides. (a) cross section schemetic of the two common types of waveguides, strip 

and rib waveguides. (b, c) Scanning electron microscope images of strip and rib waveguides, respectively. (d) 

Transverse electric (TE) mode and (e) transverse magnetic (TM) mode of a strip waveguide with 500 nm width and 

220 nm height, colorbar refers to intensity of the major component of the electric field. (f) Plot showing how effective 

index changes with waveguide width. Larger waveguides support higher number of modes. (a-c, f) reproduced from 

[72]. 

2.3. Plasmonics 

Two on chip optical sensors in this thesis are based on plasmonics. This section covers how the field of 

plasmonics emerged and briefly goes through some fundamentals. 

The previous section on silicon photonics mentioned how before silicon, optical waveguides measured a 

few microns in width. Silicon photonics managed to bring the size down to a few hundred nanometers in 

width. However, with ever-decreasing size of electronics, photonics components will be taking up much 

space on the chip even when using silicon photonics. Plasmonics offers the advantages of photonics such 

as high speed interconnects at a fraction of the size of photonics [73]. Plasmonics do not suffer the 
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diffraction limit that often is accompanied with photonics [74] and plasmonic-photonic couplers have 

emerged [75]. Plasmonic waveguides can actually have 90° bends unlike silicon photonics which required 

a bend radius of several microns, thus plasmonic circuits can be very dense [76]. In addition to the obvious 

size advantages, plasmonic circuits feature new phenomena that were difficult to achieve in the photonics 

regime. Due to the right-angle bends, 3D and multilevel plasmonic circuits are more realistic than 3D 

photonic circuits [77, 78]. Photonics in the mid-infrared is difficult due to material absorption. However, 

materials can be engineered to operate in the mid-infrared with plasmonics[73, 79, 80]. The mid-infrared 

is important in many applications and in sensing in particular [73]. The biggest challenge with plasmonics 

is that it uses materials that are often incompatible with electronics chips or that use expensive fabrication 

methods. Current research trends in plasmonics is to design plasmonic devices with semiconductor 

materials and using low cost fabrication methods. 

2.3.1. Free electron gas model 

The effect of plasmons on the optical properties of metals can be described using the free electron gas 

model. Plasmons are electrons with mass 𝑚 and charge 𝑒 that oscillate in response to an applied electric 

field 𝐄, and the motion is subject to collisions as in Figure 2.15 at a frequency 𝛾 that dampen that motion 

[20]. Starting from the simple F = ma one can derive the model for the motion of a free electron subject 

to an electric field as in equation 2.12 [20]. 

 

Figure 2.15. Free electrons (blue) in metal (atoms in red). Reproduced from [81]. 

 𝑚�̈� + 𝑚𝛾�̇� = −𝑒𝐄 2.12 

Assuming a sinusoidal time-varying applied electric field as in the case of monochromatic light excitation, 

using Maxwell’s equations, one can derive the dielectric function of metals as in 2.13, also known as the 

Drude model [20]. 
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Where 𝑖 = √−1 and 𝜔𝑝 is the plasma frequency given by equation 2.14 

 
𝜔𝑝

2 =
𝑛𝑒2

𝜀0𝑚
 , 

2.14 

where n is the number of free carriers per cm3. Readers interested in the full derivation can refer to [20]. 

Material effects manifest themselves by experimental verification of 𝛾 and the mass of the electron is 

replaced by the effective mass of the electron. Other material models have been developed such as 

Lorentz and Drude-Lorentz. While these more advanced models can be more accurate, they contain more 

parameters that require rigorous experimental verification.  

2.3.2. Plasmonic waveguides 

Figure 2.16 (a, b) compares between localized surface plasmon modes typically found in metal 

nanoparticles and propagating surface plasmon polariton modes required for plasmonic waveguides. 

When the metal-dielectric interface in Figure 2.16 (b) is bought close to another metal-dielectric interface, 

the SPPs couple to form plasmon slot waveguides as in Figure 2.16 (c, d). 

 

Figure 2.16. (a) localized surface plasmon mode and (b) propagating surface plasmon polariton mode. For both cases, 

metal is in grey, dielectric white background. Electric field shown by green arrows, red indicates the field intensity. (a, 

b) reproduced from [73]. When two metal-dielectric interfaces are bought near each other in a metal-insulator-metal 

(MIM) configuration, there exist coupled modes and can be (c) antisymmetric and (d) symmetric . (c, d) reproduced 

from [13]. 
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CHAPTER 3. INTEGRATED LAB-ON-A-CHIP SENSOR USING SHALLOW 

SILICON WAVEGUIDE SILICON-ON-INSULATOR (SOI) MULTIMODE 

INTERFERENCE (MMI) DEVICE  

This chapter was submitted for publication in Journal of Nanophotonics with the following citation 

information and it will be reproduced here as is. 

M. Y. Elsayed, Y. Ismail, and M. A. Swillam, "Integrated lab-on-a-chip sensor using shallow silicon 

waveguide silicon-on-insulator (SOI) multimode interference (MMI) device" Submitted to Journal of 

Nanophotonics. 

ABSTRACT 

Waveguides with sub-100 nm height offer a promising platform for sensors. After going through a 

thorough analysis of the guided modes in the 50 nm and 70 nm shallow waveguide platforms, the designs 

of MMI sensors based on these platforms have been optimized. A minimum feature size of 1 µm was used, 

thus any low cost photolithography can be used for fabrication. The effect of the sensor length on 

performance metrics were studied. At a length of 4 mm, the 50 nm silicon device layer platform provides 

a sensitivity of roughly 420 nm / RIU, FOM of 133 and a maximum Δn of 0.023. On the other hand, the 70 

nm silicon device layer platform results in a more compact design: only 2.4 mm length was required to 

achieve similar FOM, 134 albeit having a lower sensitivity of 330 nm / RIU, while having maximum Δn of 

0.018. The shallow SOI waveguide platform is promising in sensing applications using this simple MMI 

structure which can easily be integrated with microfluidics components. 

3.1. Introduction 

On chip sensing mechanisms include optical, electrical and mechanical methods [1]. Optical sensors are 

becoming more important for lab on a chip applications because they allow the analysis of a large variety 

of analytes and monitoring reactions real time with high temporal resolution [1]. Optical detection 

methods have been used extensively in the lab, such as detecting color changes and fluorescence and 

measuring the refractive index. Moving sensing on chip will allow using the same analysis techniques that 

researchers are already familiar with. Optical sensors based on refractive index change can be used as 

label-free detection methods for a variety of lab-on-a-chip applications. Ease of integration with 
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microfluidic and electronic components is a very important feature for a sensor to be considered a viable 

commercial solution. 

An important parameter in sensors is having high light-matter interaction. One of the mostly used optical 

sensing methods is using resonance in a cavity such as fabry-perot cavity [2], ring resonator [3, 4], photonic 

crystal cavity [5] and plasmonic resonances [1, 6-10]. The objective is to cause the light to travel 

throughout the sensor several times. Spatial methods to increase the light-matter interaction include 

using nanowire wires [11] and slot waveguides. A simpler approach would be to use a shallow waveguide 

platform that leaks a lot of the light into the surrounding material. The performance of the waveguide will 

be strongly affected by the refractive index of the surrounding material and can thus be used as a sensor. 

Interference based methods are mach zhender interferometers (MZI) [12] and multimode interference 

(MMI) devices. MZI sensor have been employed for various lab on chip applications [13, 14] and this work 

employs an MMI as a sensor. 

This work explores the shallow waveguide platform and assesses its possibility to use as a sensor. The 

shallow waveguide platform has many of the advantages of more conventional silicon platforms with the 

additional advantage of easy fabrication. The relatively larger minimum feature size required means that 

advanced lithographic techniques are not required [15]. Silicon nitride waveguides with 50 to 100 nm 

height were previously proposed [16]and ring resonators were designed using these shallow waveguides 

[17, 18]. For the silicon shallow waveguide proposed in this work, a grating coupler was previously 

designed to couple light to optical fibers with 50% efficiency [19]. 

A multimode interference device relies on the self-imaging concept. The different modes interfere 

constructively at specific lengths, causing the input field to be replicated. The underlying concepts and 

fundamentals are explained at length by Soldano and Pennings [20]. Multimode interference has been 

vastly employed in fibers for a variety of applications including sensing [21]. On-chip MMI devices have 

been mostly for signal processing applications such as waveguide division multiplexing and power splitting 

[22]. A few on chip MMI sensors were also proposed [23, 24] including a silicon-based MMI temperature 

sensor [25]. This work is the first silicon-on-insulator MMI sensor and it goes through the optimization of 

MMI sensors on various SOI platforms. 

3.2. Analysis 

Figure 3.1 (a) shows a 3 dimensional schematic of the proposed MMI sensor (not to scale). A commercial 

simulator eigenmode solver was used to perform the calculations [26]. Figure 3.1 (b) shows the electric 
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field profile for the single mode waveguide of the 50 nm height waveguide platform while Figure 3.1 (c) 

shows the electric field profile for a larger waveguide supporting 5 modes. In both cases, the shallow 

waveguide platform supports only transverse electric (TE) modes. For the 70 nm height case, the field 

profile is similar, also supporting only TE modes.  

 

Figure 3.1. (a) 3D schematic of MMI sensor (not to scale), (b) mode profile of single mode waveguide, (c) mode profile 

of multimode section. 

Figure 3.2 shows the dispersion analysis for both types of waveguides, the 50 nm height and the 70 nm 

height for different waveguide widths. It provides a good background for any further work with these 

platforms particularly those supporting multiple modes.  

 

Figure 3.2. Effective indices of guided modes for various widths for (a) 50 nm height and (b) 70 nm height waveguides. 
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The shallow waveguide platform can be fabricated using a standard foundry process supporting partial 

etch. An example would be a silicon photonics process starting with SOI wafer with a thick BOX layer of 

several microns, 220 nm device layer and 150 nm partial etch, leaving behind 70 nm. 

Sensing is based on the self-imaging principle of multi-mode interferometers. Each mode has a different 

effective index and thus a different phase velocity. Interference occurs between these modes after a 

certain distance, 𝐿. Figure 3.3 shows the field distribution in the multi-mode section, demonstrating that 

the input is replicated periodically. 

 

Figure 3.3. Visualizing the effect of Δn = 0.3. (Left) Background index 1.3. 4 self-images in a multi-mode section with 

length 94.1 µm for background refractive index 1.3. (Right) Background index 1.6. The beating length increased due to 

the increased n_eff and thus taking the output at the same distance 94.1 µm results in much lower transmission. 

The beating length 𝐿𝜋 is the where interference of the first two fundamental modes is maximum and is 

given by equation 3.1. 

 𝐿𝜋 =
4𝑛𝑒𝑓𝑓𝑊𝑒

2

3𝜆
 3.2 

where 𝑛𝑒𝑓𝑓 is the effective index of the TE0 mode, 𝜆 is the operating wavelength 1550nm, 𝑊𝑒 is the 

effective width of the multi-mode section which was taken as the geometrical width in this work. Thus 

the refractive index of the superstrate affects the beating length directly through 𝑛𝑒𝑓𝑓. 

As explained previously [25], using a multi-mode section supporting more than 5 modes increases losses 

and has no benefit in sensitivity. Thus, for the 50 nm height waveguide, we fixed the multi-mode section 

width to 4.5 µm and for the 70 nm height waveguide, we fixed the multi-mode section width to 3 µm. The 

analysis in Figure 3.2 shows that these dimensions support 5 modes. Equation 3.3 describes the self-

imaging length for symmetrical injection as in our case. 

 𝐿 = 𝑝 (
3 ⋅ 𝐿𝜋
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3.3. Results 

The design is a single input single output multi-mode interference (MMI) device with symmetric injection, 

where the input single mode waveguide is placed at the center of the multi-mode waveguide. The longer 

the MMI section, the more light-matter interaction there is. Therefore, several lengths corresponding to 

different multiples of the self-imaging length were analyzed for each of the 50 nm and 70 nm height 

waveguides. The performance of different length sensors is shown in Figure 3.4. Self-imaging occurs at 

these lengths at 1550 nm wavelength, and a wavelength sweep was performed. The spectral shift due to 

a change in refractive index is used as a performance indicator of the sensor as in equation 3.3. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
∆𝜆

𝛥𝑛
 (nm/RIU) 3.5 

 

 

Figure 3.4. Spectral response of the sensor with reference (blue solid line) taken as water with n = 1.318 [27]. Peak 

transmission due to self-imaging is at 1550 nm wavelength. Green dashed line shows the red-shift due to a change in 

the refractive index. For (a) to (d), silicon device layer height is 50 nm, MMI section width is 4.5 µm and the MMI section 

length is about 1, 2, 3, 4 mm respectively. Δn is 0.01 for the shorter sensors and 0.05 for the 4 mm sensor. For (e) to 

(h), silicon device layer height is 70 nm, MMI section width is 3 µm and the MMI section length is about 0.4, 1.2, 2.4 

and 3.2 mm respectively. Δn is 0.01 for the shorter sensors and 0.02 for the 2.4 and 3.2 mm sensors. 
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We found that the sensitivity as defined in equation 3.5 was not alone a good indicator of performance. 

In fact, the sensitivity was not affected strongly by the length. As expected, the shallower wavelength of 

50 nm was more sensitive than the 70 nm one due to the mode leaking out of the core more in the 

shallower waveguide thus being more strongly affected by the surrounding medium. The 50 nm height 

MMI demonstrated a sensitivity of ~420 nm / RIU irrespective of the MMI section length while the 70 nm 

height MMI demonstrated a sensitivity of ~350 nm / RIU irrespective of the MMI section length. As is 

already evident from Figure 3.4, the full-width at half-maximum (FWHM) and free spectral range (FSR) 

respond strongly to the MMI section length. A figure of merit (FOM) can be defined as equation 3.6. A 

narrower FWHM makes it easier to extricate the spectral shift and thus this definition of the FOM is 

experimentally useful. The FSR’s significance is in the maximum Δn that can be imposed. A Δn causing a 

Δλ larger than the FSR will give an ambiguous spectral shift and the results will be difficult to interpret.  

 𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑚𝑒𝑟𝑖𝑡 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝐹𝑊𝐻𝑀
 3.6 

Figure 3.5 (a) compares the FOM for the different sensor platforms. Despite the 50 nm height platform 

providing a better sensitivity than the 70 nm platform, the 70 nm platform provides sharper transmission 

peaks and thus outperforms the 50 nm platform using the FOM defined in equation 3.6. Figure 3.5 (b) 

shows that the longer MMI section length corresponds to narrower FSR and thus a smaller discernable 

Δn. 

 

Figure 3.5. Performance metrics for the MMI sensor based on the shallow waveguide platforms: 50 nm (blue circles) 

and 70 nm (green crosses) silicon device layer. (a) Figure of merit as defined in equation 3.6 indicates the ease of 

which it is possible to measure a spectral shift. (b) Free spectral range is reduced with increasing length due causing 

a reduction in the maximum discernible Δn, (c). 
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3.4. Conclusions 

The effects of waveguide width on the number of guided modes were presented for both the 50 nm height 

and 70 nm height waveguides. This analysis allowed the optimization of the design of MMI sensors based 

on these platforms. Such shallow silicon device layers are realizable in standard silicon photonics runs that 

include a partial etch step. Particular applications will require the designer to understand the tradeoffs. 

At a length of 4 mm, the 50 nm silicon device layer platform provides a sensitivity of roughly 420 nm / 

RIU, FOM of 133 and a maximum Δn of 0.023. On the other hand, the 70 nm silicon device layer platform 

results in a more compact design: only 2.4 mm length was required to achieve similar FOM, 134, while 

having maximum Δn of 0.018. The shallow SOI waveguide platform is promising in sensing applications 

using this simple MMI structure which can easily be integrated with microfluidics components. 
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CHAPTER 4. SEMICONDUCTOR PLASMONIC GAS SENSOR USING ON-

CHIP INFRARED SPECTROSCOPY 

This chapter was published in Applied Physics A with the following citation information and it will be 

reproduced here as is. 

M. Y. Elsayed, Y. Ismail, and M. A. Swillam, "Semiconductor plasmonic gas sensor using on-chip infrared 

spectroscopy," Applied Physics A, vol. 123, p. 113, 2017. 

ABSTRACT 

In this chapter, we take a novel approach in optical sensing of gases. Gases have conventionally been 

optically sensed using refractive index, which is a non-ideal method because of the difficulty in 

differentiating gases with very similar refractive indices. Infrared absorption spectra on the other hand 

have characteristic peaks in the fingerprint region that allow identifying the analyte. Highly doped n-type 

Indium Arsenide (InAs) was used to design a plasmonic slot waveguide and a dispersion analysis was 

carried out using the finite element method to study the effect of dopant concentration and waveguide 

geometry on the guided modes.  Finite difference time domain was used to simulate the transmission 

spectrum of the waveguide with air, methane and octane and the characteristic peaks in the IR spectra 

showed up strongly. This is a very promising versatile method that can sense any IR active gas. 

4.1. Introduction 

Integrated optical sensors conventionally detect refractive index change of surrounding medium. This has 

served well in liquids whether in seawater monitoring or biosensing applications [1-3]. When sensing 

gases in particular, the sensor is required to be very sensitive, and there have been much progress in this 

area recently, particularly making use of plasmonic resonators [4, 5], nanowires [6] or photonic crystals 

[7] to achieve sensitive sensors with a small footprint. However, optical sensing methods are still limited 

with respect to selectivity; while detecting that the analyte is not air, even if the sensor is able to detect a 

minute change in refractive index, it is sometimes impossible to identify the gas responsible for the 

refractive index change. For example, at 1.68 µm, CO2 and CH4 have  refractive indices of 1.0004372 and 

1.0004365, respectively [8, 9]. So even while detecting that there is some pollutant, there is no way to 

identify the sample. 
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Selectivity has been highlighted as a problem for gas sensors in general, whether optical or not, as 

discussed in great detail in [10]. To improve selectivity for optical sensors, one method is to functionalize 

the surface of the sensor such that it will be sensitive to a specific gas. For example, nanoporous 

aluminosilicate was deposited on a ring resonator sensor, causing refractive index changes to be more 

pronounced for an alkali gas such as NH3 in comparison to an acidic gas such as CO2 [11]. While this 

improves selectivity, it is not specific as it is only selective in relative to a subset of gases. A sensor that 

takes selectivity a step further and achieve specificity is highly desirous. Furthermore, this method doesn’t 

support real-time or label-free features, which are two of the most important advantages of optical 

sensing methods [10], dictating that a sensor with the correct functionalization has to be designed for 

each gas required. 

The objective of this work is to design an integrated general purpose label-free sensor. The generality 

means that the sensor can be used for a wide range of gases with high specificity. 

Infrared spectroscopy offers a rigorous label-free method to identify compounds based on the absorbance 

properties of specific bonds. IR spectroscopy is considered an elaborate method and is generally used in 

advanced research facilities. Miniaturizing IR spectroscopy to chip level will lead to more ubiquitous use 

of IR spectroscopy as one technique employable in a variety of applications, from environmental 

monitoring, investigating leaky oil and gas wells to diagnostics and quality control. 

The wavelengths of interest are in the mid infrared, mostly around 3 to 10 µm. For example, an 

absorbance peak around 5.8 µm corresponds to a C=O bond stretching while absorbance peaks around 

6.8 µm correspond to C-H bond bending. It is also possible to distinguish between different isomers of the 

same compound through the fingerprint region, generally from 6.5 µm to 10 µm. In this region, different 

bonds absorb the incoming energy through different mechanisms (e.g. stretching vs rotating). The sensing 

mechanism based on IR spectroscopy depends on characteristic peaks that collectively act as a signature 

for each gas. 

Sensing in IR has been demonstrated using localized surface plasmon resonances (LSPR) [12, 13]. Localized 

surface plasmons are collective oscillations of electrons that remain localized on a small area on the 

interface between a metal and an insulator and they usually occur with particles smaller than the 

wavelength used for excitation. These nanoparticles can be designed such that the oscillations are 

strongest at specific wavelengths; i.e. they exhibit resonance. The resonant frequency is very sensitive to 

small changes in the refractive index of surrounding medium, and that is why LSPRs have been used in 
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sensing applications, with silver and gold being popular choices for the visible spectrum. More recently, 

doped semiconductors have been explored because of the potential to engineer the material properties 

to the application required; in particular extending the region of operation to the Infrared. Propagating 

surface plasmon polaritons (SPPs) have not yet been explored in the MIR. 

Like LSPRs, SPPs are also collective oscillations of electrons but these oscillations propagate along the 

interface between the metal and insulator. Because they propagate, SPPs provide more possibilities with 

respect to light manipulation. SPPs can be exploited to direct light in MIR while staying at the submicron 

scale. The plasmonic slot waveguide fits well in this application because of the air gap, making it amenable 

to sensing applications due to the high overlap between the electric field and sensing medium. The 

plasmonic slot waveguide is easy to integrate with on-chip sources and detectors as coupling to and from 

the waveguide is feasible. In addition, sources and detectors working in the MIR are made from III-V 

semiconductors [14]. 

Silicon plasmonic slot waveguides have been previously explored for mid infrared applications [15], and 

while it has obvious advantages due to it being a standard material used in CMOS processing, there are 

limitations that can be overcome if other materials are explored. A very large doping concentration, 

exceeding 1021 cm-3 is required to achieve a plasma frequency in the mid infrared range [15]. More 

importantly, the transmission spectrum of silicon contains peaks over the range 5 to 10 µm, making it 

unsuitable for detection in this range [16]. Indium Arsenide (InAs) has been identified as a material that 

requires less doping concentration to function in the mid infrared [17] and it has a smooth transmission 

spectrum with no peaks in the mid infrared region [16].Indium Arsenide (InAs) detectors in particular have 

a high sensitivity in the MIR compared to other semiconductors[14]. InAs-based sources working in the 

mid infrared have been demonstrated [14, 18]. 

In this paper, we start by describing the material modeling approach then characterizing the plasmonic 

slot waveguide and studying the effect of changing the size of the gap and dopant concentration. In 

particular, we will highlight how the plasmonic slot waveguide can be engineered to work in different 

wavelength ranges. We then demonstrate the plasmonic slot waveguide as a gas sensor. 

4.2. Methods 

4.2.1. Numerical Simulations 

Mode profiles for the plasmonic slot waveguide given in Figure 4.1 (a) were determined and dispersion 

analysis was performed using Finite Element Method using COMSOL Multiphysics with MATLAB. Perfectly 
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Matched Layer (PML) boundary conditions were used. Adaptive mesh refinement feature in COMSOL was 

used, and the mesh convergence test is shown in Figure 4.1 (b). The final used meshing used a mesh size 

of 1 nm in the gap as shown in Figure 4.1 (c, d). To ensure correct PML behavior, a large simulation region 

was used to ensure the boundaries are far from the slot. Due to working in infrared with wavelengths 

reaching 10 um, the Doped InAs arms extended 20 um to the left and right of the slot.  Livelink was used 

between the two programs for semi-automated mode tracking during parametric sweeps. Finite 

Difference Time Domain (FDTD) using Lumerical was used to simulate the waveguide’s transmission 

spectrum with different gases. 
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Figure 4.1. (a) n-type InAs plasmonic slot waveguide, (b) COMSOL Mesh convergence test using adaptive mesh 

refinement, (c) Meshing used for all the results, (d) zoom in the gap region showing minimum mesh element size 1 nm 

and maximum mesh element size 20 nm. 
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4.2.2. Material Modeling 

4.2.2.1. Doped Indium Arsenide 

For highly doped semi-conductor, we used the Drude model in equation 4.1 to obtain a relation between 

the permittivity 𝜀 and the angular frequency 𝜔 as a function of doping, as shown in Figure 4.2 (c). This 

model is for n-type InAs doped with Silicon. 

 𝜀(𝜔) = 𝜀𝑠 (1 −
𝜔𝑝

2

𝜔2 +Γ
2) + 𝑖𝜀𝑠

Γ ∙ 𝜔𝑝
2

𝜔(𝜔2 +Γ
2

)
 , 4.1 

where 𝜀𝑠 is the relative permittivity of undoped InAs at low frequency, Γ is the scattering rate and 𝜔𝑝 is 

the plasma frequency, given by equation 4.2 

 𝜔𝑝
2 =

𝑛𝑒2

𝜀𝑠𝜀0𝑚∗
 , 4.2 

where 𝑛 is the carrier concentration, assumed to be equal to the dopant concentration N, 𝑒 is the 

elementary charge, 𝜀0 is the permittivity of free space and 𝑚∗is the effective mass. 

The work in this thesis uses novel materials for which the Lorentz and Drude-Lorentz models cannot be 

derived due to the lack of available information on InAs, and thus only the Drude model can be used. 

Furthermore, the study is a proof-of-concept one where we aim to understand the device behavior 

qualitatively and thus the limitations of the Drude model are not significant. 

As demonstrated experimentally, Γ and 𝑚∗ are both functions of N [12]. We exploited the fact that 

the semiconductor band gap changes as a function of dopant concentration using the empirical relation 

given in equation 4.3 [19] 

 ΔΕ𝑔 = Α ∙ N1 3⁄ + Β ∙ N1 4⁄ + C ∙ N1 2⁄  , 4.3 

with Α, Β and C for InAs determined to be 14 × 10−9, 1.97 × 10−7 and, 57.9 × 10−12  respectively [19]. 

This band gap is then related to the effective mass through the relation given in equation 4.4 [12], yielding 

Figure 4.2 (a). 

 ΔΕ𝑔 = (
ℎ2

2𝑚∗N
) (

3N

8𝜋
)

2 3⁄

   , 4.4 

where h is Plank’s constant. 
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Figure 4.2.Empirical models of (a) effective mass versus dopant concentration, (b) scattering time versus dopant 

concentration. Experimental data for n-type InAs doped with Silicon [12]. Drude model shown in (c) and (d). 

Scattering rate as a function of doping is shown in Figure 4.2 (b). We used the empirical model in equation 

4.5 [20] to obtain the hall mobility as a function of doping while optimizing the parameters to fit the 

experimental data given in [12] as in Table 4.1.  The hall factor [21] was found to be 1 in InAs for N>1x1019 

cm-3. 
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1 + (
𝑁
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𝑇

300)
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)

𝜆
 

4.5 

 

Finally, we can relate the drift mobility 𝜇 to the scattering time 𝜏 through 𝜇 =   𝑒𝜏/𝑚∗ . From those 

parameters, we have the Drude model for n-type InAs highly doped with Silicon as shown in Figure 4.2 (c). 
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We can deduce from Figure 4.2 (c) the advantages of working with InAs as the plasma wavelength is low 

in comparison with other semiconductors with the same dopant concentration, as already concluded in 

previous reports [17], giving access to plasmonic devices in the mid infrared range. 

Table 4.1. Parameters for mobility model for doped InAs. 

PARAMETER VALUE 

𝝁𝒎𝒊𝒏 80 cm2/V s 

𝝁𝒎𝒂𝒙 34500 cm2/V s 

𝑵𝒆𝒇𝒇 1.8x1017 cm-3 

𝝀 0.86 

𝜽𝟏 1.57 

𝜽𝟐 3.0 

4.2.2.2. Analytes 

Absorption data is readily available for many analytes of interest in the mid-infrared region. The complex 

refractive index can then be estimated as demonstrated in [22]. Absorption data for Methane and Octane 

were obtained from the NIST database [23]. The extinction coefficient, 𝑘, was obtained from 

absorption, 𝛼, through equation 4.6. 

 𝛼(𝜆) =
4𝜋𝑘(𝜆)

𝜆
 . 4.6 

Refractive index, 𝑛, was estimated for each wavelength 𝜆0 from 𝑘 using the kramers-kronig relation in 

equation 4.7 following the implementation in [24], where 𝑛(𝜆1) is a known refractive index of the analyte 

at wavelength 𝜆1 and P is the Cauchy principal value of the integral. 

 

𝑛(𝜆0) = 𝑛(𝜆1) + 𝑃 [
2(𝜆1

2 − 𝜆0
2)

𝜋
∫

𝜆𝑘(𝜆) 𝑑𝜆

(𝜆0
2 − 𝜆2)(𝜆1

2 − 𝜆2)

∞

0

] , 4.7 

4.3. Results and Discussion 

4.3.1. Dispersion Analysis 

We studied the guided plasmonic modes supported by the plasmonic slot waveguide depicted in Figure 

4.1. Figure 4.3 demonstrates that the operating bandwidth of the waveguide can be engineered by 

changing the dopant concentration; a dopant concentration of N=1×1020 cm-3 yields a plasmonic slot 

waveguide operating in the 6 to 10 µm wavelength window while a higher dopant concentration N=1x1021 

cm-3 gives a plasmonic slot waveguide operating at shorter wavelengths, from 2.7 to 6 µm. This is due to 
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the plasma frequency’s dependence on carrier concentration as highlighted earlier in Figure 4.2 (c); at 

N=1×1020 cm-3, the plasma wavelength is 4.24 µm while it is 1.65 µm at N = 1×1021 cm-3, and it is well 

known that there is a forbidden region near the plasma frequency where the losses are too high to support 

guided modes [25]. 

 

Figure 4.3. Dispersion relation for different slot widths for (a) N=1020 cm⁻3, (b) N=1021 cm⁻3 (c) Mode profile for N=1020 

cm⁻3 at 8 µm, effective index = 6.6562+3.9123i, x component of electric field, (d) average electric field intensity (all 

directions). 

The dispersion curves show that the effective index peaks at a specific wavelength, λspp [26]. The value 

and position of λspp is clearly affected by the slot gap width w. At wavelengths lower than λspp but higher 

than the plasma wavelength λsp, the modes have a negative group velocity. Also, that peak is much 

broader with lower dopant concentration (Figure 4.3 (a)) than with higher dopant concentration (Figure 

4.3 (d)). Moreover, after a certain width, increasing the width further has no observable effect on the 

dispersion curve evident from the similarity in the dispersion curves for the 500 nm and 1000 nm widths. 

We tuned the InAs dopant concentration to get a bandwidth around an interesting mode of operation for 

IR spectroscopy; Figure 4.4 shows the dispersion relation for the plasmonic slot waveguide with n-type 

InAs with N=2.2×1020 cm–3.  The dispersion curves don’t change much when the gap width w is increased 

beyond 500 nm. Figure 4.4 (b) shows the effect of the height on the modes. Increasing the height of the 
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doped InAs layer h acts to decrease both real and imaginary curves down without any noticeable shift in 

λspp. 

 

Figure 4.4. Dispersion relations for dopant concentration N = 2.2×1020 cm–3 (a) constant height 200 nm, changing width, 

(b) constant width 200 nm, changing height. 

Figure 4.5 compares two slots with the same area but with different geometries. The effective index is 

strongly affected by the interface itself, which is obviously different whether the gap is wide or tall. The 

wide gap has an InAs/air interface of 200 nm + 200 nm for each side, for a total of 400 nm, while the tall 

gap has a total InAs/air interface of 2000 nm. Thus, the effective index is affected by the interface. On the 

other hand, the extinction coefficient remains the same for different geometries of the same cross 

sectional area. 
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Figure 4.5. Dispersion analysis of different gap geometries for the same area. Blue solid line refers to InAs/air interface 

of 400 nm in total while the green dashed line refers to InAs/air interface of 2000 nm in total. 

Dispersion analysis shows that the plasmonic slot waveguide range of operation can be engineered by 

controlling the dopant concentration in InAs. More accurately though, it is the carrier concentration 

responsible for modifying the range of operation. Thus, it is possible to design a single device whose range 

of operation is on-line tunable by controlling the carrier concentration through any of a variety of methods 

such as charge injection, p/n junction, optical pumping, etc. 

4.3.2. Transmission Analysis and suitability as a sensor for hydrocarbons 

Finite difference time domain (FDTD) method was used to study the transmission properties of the 

waveguide and how sensitive it is to the material in the gap. Figure 4.6 shows the transmission with a 

length of 1 µm (transmission time 5000 fs). For methane, the curve is easily distinguishable from that of 

air, but Octane’s peaks are not too obvious. The sensitivity can easily be increased by increasing the 

waveguide length. In Figure 4.7, the signals are subtracted from that of air when used as a reference and 

normalized. In this case, the peaks that correspond to the IR absorption peaks are easy to identify and 

different materials can easily be distinguished using this method. FDTD analysis of a couple of gases was 

performed just as proof of concept, but the mode of operation that we described here is actually 

applicable to all IR-active materials. 
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Figure 4.6. (a) Transmission spectrum for waveguide when filled with air (solid line), methane (dashed line) or octane (dotted line). 

 

Figure 4.7. Absorption spectra as obtained from the NIST database [23] for (a) methane and (b) octane. The transmission spectra 

for methane (c) and octane (d) shown in Figure 4.6 was subtracted from that of air and normalized. 

4.4. Conclusions 

By engineering the plasmonic slot waveguide geometry and semiconductor dopant concentration, we 

were able to tune the response of the sensor to a wavelength range of interest, namely the mid infrared. 

6 6.5 7 7.5 8 8.5 9 9.5 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Wavelength (m)

T
ra

n
sm

is
si

o
n

 

 

Air

Methane

Octane

6 6.5 7 7.5 8 8.5 9 9.5 10
-0.5

0

0.5

1

Wavelength (m)

T
ra

n
sm

is
si

o
n

 

 

Methane absorption spectrum

6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

Wavelength (m)

N
o

rm
a

li
ze

d
 t

ra
n

sm
is

si
o

n

 

 

Methane

6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

Wavelength (m)

T
ra

n
sm

is
si

o
n

 

 

Octane absorption spectrum

6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

Wavelength (m)

N
o

rm
a

li
ze

d
 t

ra
n

sm
is

si
o

n

 

 

Octane

(a) (b)

(c) (d)



55 
 

We have made use of characteristic infrared absorption peaks in the fingerprint region of the IR spectrum 

in methane and octane for integrated optical sensing using the plasmonic slot waveguide resulting in an 

ultracompact design. The plasmonic slot waveguide is designed using materials and processes that have 

been used to make on chip sources and detectors, so a fully integrated system is feasible. This approach 

can be easily adapted for a wide variety of IR-active materials. 
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CHAPTER 5. SILICON-BASED SERS SUBSTRATES FABRICATED BY 

ELECTROLESS ETCHING 
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ABSTRACT 

Surface enhanced Raman scattering has recently been proposed as a label free sensing method for 

diagnostic applications. Raman scattering is an excellent analysis tool because a wealth of information 

can be obtained using a single measurement, however the weak signal has made it unsuitable for 

detecting low concentrations of analytes. Using plasmonic nanostructures to create SERS substrates, 

the Raman signal can be amplified by several orders of magnitude, but SERS substrates have been 

complicated to fabricate. Here we report low cost silicon substrates based on simple fabrication 

method of silver nanoparticles and silicon nanowires decorated with these nanoparticles for use as a 

convenient practical platform for SERS-active substrates. In addition, the placement of silver 

nanoparticles on silicon nanowires allowed the auto-aligning of the hot spots such that low cost 

Raman systems with normal incident laser can be used. These substrates have the ability to detect 

wide range of concentrations of pyridine, as low as 10-11 M. An enhancement factor of around 6 to 

8×105 was observed for silver nanoparticles alone. By depositing the same nanoparticles on silicon 

nanowires, the enhancement factor jumped by orders of magnitude to 1011. 

5.1. Introduction 

Surface enhanced Raman scattering (SERS) allows using the optical signatures for label-free specific 

sensing by improving the sensitivity and allowing the detection of low concentrations. Surface 

enhanced Raman scattering (SERS) is caused by surface plasmons on metallic nanostructures 

enhancing the electric field [1]. 

The Raman signal is enhanced due to the amplified electric [1]. Since the discovery of the SERS effect, 

many SERS substrates were reported such as roughened silver electrodes, metal films [2] and silver 

and gold nanoparticles and sols[3]. SERS substrates can be classified into two main categories: metal 

nanoparticle colloids and nanostructures on planar substrates. 

Metal nanoparticle colloids are easy to fabricate in a low cost method but it is unstable and the colloids 

can easily be contaminated if ultra-pure chemicals are not used in preparation [4]. Contaminants can 
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superimpose the SERS spectra of the analyte. Different shapes of metal nanostructures were reported 

experimentally such as nanotriangles [5], nanocubes [6, 7], grated nanocones [8], nanorods [6, 9], 

nanostars [9, 10] and nanodog-bone shape [6], and were able to reach enhancement factor on the 

order of 105 to 106 [8, 9] and even up to 109 [6]which is higher than metallic nanospheres because 

sharp nanostructures induce an antenna-like effect that amplifies the electric field greatly. However, 

reproducibility is an issue due to the difficulty in controlling the particle size and distribution [11]. 

Core/shell nanoparticles have also been explored with enhancement factors reaching 103 [12]. 

Nanostructures on planar substrates can further be categorized by bottom-up and top-down 

fabrication methods. SERS substrates prepared by bottom-up techniques have shown good stability 

and reproducibility by offering good control on size and demonstrated enhancement factors on the 

order of 105 to 107 [13-16]. Nanostructures prepared using lithographic techniques can prepare highly 

ordered metallic nanostructures with great accuracy in shape, size, and spacing between them.  This 

fabrication method includes electron / ion beam lithography and nanoimprint lithography and were 

able to show enhancement factors on the order of 105 [17]. 

Despite these advancements in SERS substrates, we have yet to see ubiquitous use of SERS substrate 

for sensing applications due to the complicated fabrication methods with high cost and low yield. One 

solution is to metallize silicon nanostructures. Patterning silicon is very mature due to its extensive 

use in the electronics industry. In addition, silicon offers a strong and stable platform for metal 

nanoparticles fabrication as it acts as a reducing agent. The low zeta potential of metal nanoparticles 

formed on Silicon – less than -30 mV – decreases the interaction with molecules adsorbed on their 

surface for improved stability, robustness and reproducibility [18, 19]. Metallized Silicon 

nanostructures were previously used as effective SERS substrates in different applications [20-23]. The 

large surface area to volume ration allows exploiting surface modifications. In [20], the analyte is 

trapped in the hot spots and surface plasmons are confined if the spacing between the nanostructures 

is smaller than the excitation wavelength. High aspect ratio nanostructures enhances light scattering 

inside the material, increasing light-matter interaction due to the high surface area [22], improving 

SERS signal sensitivity. 

Silicon nanowires (SiNW) in particular are gaining popularity in a variety of applications [24-27]. SiNW 

fabrication methods include Oxide assisted growth (OAG), vapor–liquid–solid (VLS)[28, 29], chemical 

vapor deposition (CVD) [24], molecular beam epitaxy[30], laser ablation[31], and thermal 

evaporation[32]. However, these methods are time consuming, costly and complicated for mass 

production. Top-down approaches are more common place in industry, in particular lithography and 

reactive ion etching [30, 33]. Nano-scale lithographic methods however are most suited for modest 

size of few mm2 and cannot be used for large scale production. Electroless metal wet chemical etching 
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(EMWCE) is a solution-based process that is simple and low cost and has been demonstrated to quickly 

produce vertical highly dense crystalline SiNWs over a large area mostly for photovoltaic applications 

[34-41]. 

We report a simple low cost large area top-down fabrication approach with a good control over the 

dimensions. We start with single step etching and then decorate the SiNWs with silver nanoparticles 

using lithography-free and equipment-free method. Our fabrication method conveniently places the 

nanoparticles such that the hot spots are auto-aligned for best enhancement using normal incidence. 

As such, this substrate is useable with low cost Raman systems. We previously reported similar 

structures with modest enhancement factors of 20 to 40 with reduced graphene oxide [42]. With 

further optimizations, we report much stronger enhancement with pyridine, reaching 1011. 

5.2. Methods 

5.2.1. Design Methodology 

Finite Difference Time Domain (FDTD) simulations were used to predict the enhancement factor of 

different substrates. A 3D commercial FDTD Maxwell’s equation solver [43] was used to study the 

electric field amplification at different locations. The material definitions of silicon and silver are based 

on curve fitting to the data of Palik [44] and Johnson and Christy [45], respectively. A simulation time 

of 40 fs was needed to observe the electric field amplification with dt = 0.00017 fs, i.e. over 200,000 

time steps were required and the computation time using 4 cores typically took 18 to 24 hours. Due 

to the spherical shape, very fine meshing was needed and the mesh size was 0.1 nm at the hot spots. 

Source was total-field scattered-field which is a useful analytical tool in separating the scattered field 

from the incident field. 

5.2.2. Fabrication 

Silicon nanowires and silver nanoparticles can both be synthesized using electroless deposition. Silicon 

is a strong reducing reagent for metal ions, therefore it is possible to deposit nanoparticles directly on 

silicon substrate or silicon nanowires by redox displacement reaction using AgNO3 and HF. AgNO3 

concentration and reaction temperature determine the redox reaction rate and the shape of silver 

structure. The role of HF is to remove the oxide layer which would otherwise inhibit the reaction by 

barricading charge transfer [36]. 

5.2.2.1. Silicon Nanowires 

SiNWs were fabricated through single step catalytic electroless chemical etching using n-type Si (1 to 

10 Ωcm resistivity, 650 to 700 μm thickness). The mechanism was discussed in details in our previous 

work involving solar cell applications [46]. For silicon nanowire formation, elevated temperature and 
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concentrations of AgNO3 and HF are used, causing the formation of silver dendritic structures inside 

the silicon. Si squares were dipped in the etchant solution of AgNO3 (5mM) and HF (3M) at 60 – 80°C 

using a water bath for 30 to 60 minutes. Silver dendritic structures formed during the etching process 

were removed using HNO3 for 1 minute, leaving behind nanowires as shown in Figure 5.1 (a). Longer 

nanowires were found to bunch up due to capillary forces pulling them as the water between them is 

drying. In fact, this effect was previously exploited for SERS to reduce the spacing between metal 

nanoparticles on silicon nanowires [20]. We found that these capillary forces were very powerful for 

the longer nanowires prepared by dipping in the etchant solution for >45 minutes, causing aggregation 

and leading to effectively larger nanowires as shown in Figure 5.1 (d). 

5.2.2.2. Silver Nanoparticles 

For AgNP formation, moderately low concentration and temperature are used such that the silver 

structures remain superficial and do not penetrate deep into the silicon. Si squares were dipped in the 

deposition solution of AgNO3 (0.5mM) and HF (0.14M) at 11°C for 2 to 5 minutes, yielding the silver 

nanoparticles (AgNPs) shown in Figure 5.1 (b). 

5.2.2.3. Silicon nanowires decorated with silver nanoparticles 

Figure 5.1 (c) shows the SiNWs that were decorated with AgNPs by dipping them in AgNO3 and HF 

using the same conditions for AgNPs. 

The size distributions of the different nanostructures are shown in Figure 5.1 (d) – (f) and are 

summarized in Table 5.1, where incubation time refers to either etching time (when forming SiNWs) 

or deposition time (when forming AgNPs). An interesting observation is the different nanoparticle 

diameter when grown on bare silicon compared with those grown on silicon nanowires. On a bare 

surface, there are a multitude of nucleation sites, so many particles form and then grow with time. On 

silicon nanowires, only the tip of the nanowire acts as a nucleation site, so there are a small number 

of nucleation sites. The number of nanoparticles produced is therefore much less. However, the same 

amount of reactants is present in solution, so the same amount of silver is produced in the synthesis 

process, thus the particles are larger. Additionally, nanoparticle growth rate is different on nanowire 

as compared to on bare silicon. On bare silicon, reactants reach the nucleation site from the top only, 

so the rate of particle growth is low. In nanowire, reactants can reach the nanoparticle from all 

direction, so the rate of particle growth is higher. 
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Figure 5.1. Fabricated nanostructures. (a) 45° tilted SEM image of silicon nanowires prepared with 45 minutes incubation time. 

(b) Top view SEM image of silver nanoparticles prepared with 2 minutes incubation time (c) 45° tilted SEM image of silver 

nanoparticle-decorated silicon nanowires prepared with 30 minutes incubation time for silicon nanowires followed by 5 minutes 

incubation time for silver nanoparticles. Size distribution of (d) silicon nanowires diameters, (e) silver nanoparticles, and (f) 

diameters of silver nanoparticles that are decorating the silicon nanowires. For (f), silver nanoparticles were prepared by 

incubating for 5 minutes. Bars show histograms while lines show normal distribution. 

5.2.3. Raman Scattering measurements 

Serial dilutions were performed to prepare aqueous solutions of pyridine with different 

concentrations from 0.01 M to 10-11 M. A droplet of known volume and concentration of pyridine was 

deposited on different SERS substrates and left covered for 1 hour for the pyridine to adsorb on the 

substrate. Measurements were performed using a ProRaman-L analyzer comprising a 532 nm 

wavelength 66 mW laser diode with 2.0 cm⁻1 linewidth. The laser power was measured using, a 

Newport 1918-R power meter, the linewidth was measured using Ocean Optics USB4000 

spectrometer and the spot size was measured using Newport LBP-3-USB mode profiler. The detector 

is a CCD camera that is thermoelectrically cooled to -50°C. The laser is fiber coupled to a 0.22 NA 

objective lens which is mounted adjacent to the detector. The sample is placed flat underneath (and 

perpendicular to) this assembly at a spacing of 7 mm. The spot was Gaussian with 0.7 mm diameter. 
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Table 5.1. Nanostructure diameters versus incubation time 

SiNW SiNW Diameter 

Etching time Mean S.D. 

30 minutes 252 nm 74 nm 

45 minutes 336 nm 71 nm 

60 minutes 857 nm 232 nm 

AgNP AgNP Diameter 

Deposition time Mean S.D. 

2 minutes 16 nm 7 nm 

3 minutes 30 nm 11 nm 

4 minutes 39 nm 17 nm 

5 minutes 43 nm 20 nm 

AgNP on SiNW AgNP Diameter 

Etching timea Mean S.D. 

30 minutes 118 nm 50 nm 

45 minutes 177 nm 52 nm 

60 minutes 180 nm 54 nm 

aAgNP deposition time on all SiNW was 5 minutes 

5.3. Results 

Figure 5.2 shows the simulation results. Figure 5.2 (a) and (b) show the electric field enhancement 

between the AgNP and Si. There is a drastic amplification of the electric field due to surface plasmons. 

Raman enhancement factor is given by equation 5.1. 

 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛
2 ⋅ 𝐸𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

2 5.1 

where 𝐸𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 is the electric field at the excitation wavelength (532 nm) and 𝐸𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 is the electric 

field at the emission wavelength at v1 peak of pyridine around 1050 cm⁻1 (563 nm). 

Simulations suggested that increasing the nanoparticle size increases the enhancement factor, Figure 

5.2 (d) because the electromagnetic field is more strongly localized in the gap. Figure 5.2 (b) shows 

the electric field amplification in SiNWs decorated with AgNPs and it explains the large enhancement 

factor in the metallized nanowires. This is strongly related to the direction of light propagation in 

relation to the hot spot, the spacing between the SiNW and AgNP. The hot spot is vertically aligned 

and is thus oriented with the direction of light polarization. Figure 5.2 (e) shows that by depositing 

these nanoparticles on silicon nanowires, enhancement factors around 107 to 108 and as high as 109 

is possible. Coupling between nanoparticles can also occur when the nanowires bring the 
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nanoparticles very close to one another. Figure 5.2 (c) shows the electric field amplification caused by 

coupling two silver nanoparticles with 1 nm gap in between. Figure 5.2 (f) highlights the effect that 

the coupled nanoparticles have; enhancement factor increased by an order of 2. 

 

Figure 5.2. Simulation results showing electric field distribution with 532 nm wavelength incident laser for (a) 60 nm diameter 

silver nanoparticle. Linear scale, E4 plotted at 532 nm. (b) 200 nm diameter silicon nanowire decorated with 60 nm diameter silver 

nanoparticles. Log scale, E4 plotted at 532 nm. (c) Coupled 100 nm diameter silver nanoparticles each on 100 nm diameter 

nanowires with 1 nm gap in between. Linear scale, E4 plotted at 532 nm. Simulated enhancement factors for (d) different 

diameters of silver nanoparticles on silicon substrate, (e) different diameter silicon nanowires decorated with 60 nm diameter 

silver nanoparticles, and (f) Coupling between metallized silicon nanowires. The dashed lines define the boundaries of Si. 

Figure 5.3 shows the experimental Raman spectra obtained for low concentration pyridine on AgNP 

prepared with different times. The scale bars for the Raman spectra are equivalent. Thus, it is easy to 

see the increased enhancement effect of depositing the nanoparticles on the nanowires for those 

prepared with 30 minutes incubation time in comparison to the nanoparticles deposited on bare 

silicon. When the nanoparticles were deposited on the nanowires prepared with 45 and 60 minutes 

incubation time, the Raman spectra obtained are actually degraded compared to the nanoparticles 

alone. 
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Figure 5.3. Experimental Raman spectra of pyridine for different substrates, (a) low concentration pyridine on silver nanoparticles 

compared with 1M pyridine in vial. (b) low concentrations pyridine on silicon nanowires that are decorated with silver 

nanoparticles. 

As discussed earlier, these long times etching produced longer nanowires than those prepared with 

30 minutes incubation, causing the nanowires to be prone to collapse. Figure 5.3 (b) shows the Raman 

spectra obtained for pyridine as low as 10-11M on the SiNW / AgNP prepared using 30 minutes etching 

time and 5 minutes deposition time. The 1050 cm⁻1 peak was visible in all cases. 

Enhancement factor was calculated as in equation 5.2 below 

 𝐸. 𝐹. =
𝐼𝑆𝐸𝑅𝑆

𝐼𝑅𝐸𝐹
 ⋅

𝑁𝑅𝐸𝐹

𝑁𝑆𝐸𝑅𝑆
 5.2 

where I refers to intensity, N is the number of pyridine molecules adsorbed on the surface. The 

reference was taken to be 1 M pyridine on bare silicon or 𝑁𝑅𝐸𝐹 = 1 × 1018. For 10⁻6 M pyridine, 

𝑁𝑆𝐸𝑅𝑆 was estimated to be between 6×1011 and 3×1012 as not all experiments used the same droplet 

volume. For the lower concentrations, 𝑁𝑆𝐸𝑅𝑆 was as low as 6×106. 

Figure 5.4 (a) shows the intensity versus Pyridine concentration to assess the substrate’s usability as 

a quantitative sensor. Large changes in concentration are associated with large changes in intensity 

only until 10⁻9 M. For 10⁻10 M and 10⁻11 M, the change in intensity is too low to confidently use the 

measurement as a quantitative one. Nevertheless, this SERS substrate is useful for detecting a very 

small concentration of the probe molecule. Figure 5.4 (b) shows the calculated enhancement factors 

from the measured intensity values at the lowest concentration detected for each SERS substrate. 
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With an observed experimental enhancement factor around 6×105 to 8×105 for nanoparticles with 

diameters 40 to 60 nm, we see a good match between simulations and experiments. The experiments 

slightly outperform the simulations due to some aggregation of nanoparticles that cause effectively 

larger diameter nanoparticles. We chose the densest and largest nanoparticle preparation conditions 

to metallize nanowires. For metallized nanowires, we observed an experimental enhancement factor 

of 3×1011. 

 

Figure 5.4. (a) Intensity of the v1 peak around 1050 cm–1 for different pyridine concentrations left to incubate of silicon nanowires 

prepared by 30 minutes etching time and decorated with silver nanoparticles prepared by 5 minutes deposition time. (b) 

Experimental enhancement factors for different SERS substrates. 

Figure 5.5 assesses the reproducibility of the SERS substrate using 10-9M pyridine on the SiNW 

prepared using 30 minutes etching time decorated with AgNP prepared using 5 minutes deposition 

time. Spot to spot variation was 16.9%, sample to sample variation was 16.8% and batch to batch 

variation was 22.9%. Figure 5.6 shows its robustness, using the sample experimental conditions. After 

8 days, the signal has degraded by 9%. Overall, the SERS substrate is able to give a qualitative signal 

for the presence of the probe molecule at extremely low concentrations. 
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Figure 5.5. Results of repeatability experiment. The dark blue spectra are different positions on the same sample 

(P1 – P3). Different shades of blue are different samples prepared in the same batch (S1-S3) while different colors 

refer to different batches. 

 

Figure 5.6. Robustness. After 8 days, the intensity of the signal was 8% lower than the initial measurement. 

Table 5.2 compares our results with recently published results  using decorated SiNWs as active SERS 

substrates [47, 48]. We fabricated our SERS substrates in low cost simple fabrication method and 

detected a very low concentration with high E.F compared to [47, 48]. 

Table 5.2. Comparison of this work with the state of the art 
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LITHOGRAPHY / MACE [22] 4-

methylbenzenethiol 

10 mM Not 

reported 

WET TEXTURING – THERMAL EVAPORATION [49, 

50] 

Rhodamine 6G 10-8M 9.5×106 [49] 

1.2×109 [50] 

E-BEAM EVAPORATION, CVD, SPUTTERING [51] Rhodamine 6G 10-10M 1.5×107 

MACE, ELECTROLESS DEPOSITION [23] Rhodamine 6G 10-15M Not 

reported 

SAM, ICP [47] 4,4’-Bipyridine 1 mM Not 

reported 

METAL CLAD WAVEGUIDE [48] 1,4-BDT Not 

reported 

39 

The state of art of our work is the fabrication of our SERS substrates in one step low cost and low 

energy required method and also tuning the dimensions of our nanostructures till we reach the best 

E.F. In case of using SiNWs as SERS substrates we studied the E.F with increasing diameter and length 

of SINWs we found that the increasing diameter and length inhibits enhancement. This could be 

resulted from that the longer and larger diameter SiNWs trapped more light than the shorter one so 

the signal remained in the structure and didn’t reach Raman detector [47]. 

The ProRaman-L analyzer used in this work is a low-cost compact system. SERS have traditionally 

required the use of more complex systems for accurate tuning of resonant wavelength and incident 

angle. The silver nanoparticles are orientated such that the incident angle excites the resonant modes 

on the nanoparticle without requiring accurate tuning of angle. This work greatly increases the 

accessibility of SERS experiments by using a substrate that is easy to prepare and a low cost 

measurement system. 

5.4. Conclusions 

Metal assisted chemical etching is a simple method that was used to fabricate surface enhanced 

Raman scattering (SERS) substrates based on silver nanoparticles-decorated silicon nanowires. 

Simulations showed that the enhancement factor of nanoparticles increased from 20 to 105 as the 

nanoparticle size increased. By depositing these silver nanoparticles on silicon nanowires, we 

observed a drastic increase in the enhancement factor reaching 1011 experimentally and enabling the 

detection of picomolar concentrations of pyridine. 
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CHAPTER 6. CONCLUSIONS 

On-chip optical sensing is highly versatile for lab on a chip applications. The cost of healthcare is increasing 

at an alarming rate and accurate, early and low cost diagnosis is the best way to reach a more sustainable 

healthcare system, and this requires the use of lab on a chip systems. This thesis focused on three different 

sensing concepts: measuring the refractive index, infrared spectroscopy, Raman spectroscopy. 

We designed a multimode interference (MMI) sensor using shallow waveguide silicon photonics platform. 

The advantage of silicon photonics is that it is already being commercialized and many of the fabrication 

and characterization expertise gained in the mature electronics industry can be transferred easily to 

silicon photonics. In this work we opted for a shallow platform of only 50 to 70 nm height. This has not 

been explored extensively because the major applications of silicon photonics has been in 

communications, where high density is a necessity, and the shallow waveguide platform exhibits high 

losses with small band radius, thus it is not suitable for dense photonic integrated circuits. However, in 

sensing applications, the shallow waveguide provides increased light-matter interaction due to low 

confinement. The MMI sensor designed has a sensitivity around 420 nm / RIU. This work was designed to 

be able to fabricate it using the facilities at the Science and Technology Research Center at the AUC. 

Further work would be to carry out this fabrication and perform experimental verification. In addition, it 

would also be interesting to fabricate the MMI sensors designed here using commercial foundry services 

and see how the performance of the in-house sensors compare with those fabricated using a standard 

process. It would be of utmost importance to study the fabrication tolerance of the MMI sensors and see 

how much variation between devices and explore ways to overcome these variations. 

Next, I designed a plasmonic slot waveguide gas sensor using on chip infrared spectroscopy. Gas sensing 

using refractive index is not effective as different gases have very similar refractive indices up to the 6th 

decimal place. Infrared spectroscopy has been suggested as a more specific gas sensing technique. 

However, for large scale deployment, on chip solutions are necessary. Metals provide good plasmonic 

response only in the visible range of wavelengths. By doping semiconductors, we can “engineer” materials 

with desired plasmonic properties. In this work, Indium Arsenide was chosen as the semiconductor 

requiring the least amount of n-type dopant to enable supporting surface plasmon polaritons (SPP) in the 

mid infrared. With a dopant concentration of 2.2×1020 cm–3, the plasmonic slot waveguide was designed 

to support modes from 5 to 10 µm wavelengths, corresponding to the fingerprint region of infrared 

spectroscopy. The fingerprint region is highly characteristic of the sample being measured. The geometry 
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of the plasmonic slot waveguide uses a slot with cross section 200 nm by 200 nm and using a length of 

just 1 µm, the transmission of the waveguide matches the infrared spectrum of the gas inside the slot. 

Future work would be to design a plasmonic resonant structure to enable detecting the concentration of 

the analyte in addition to identifying the analyte, i.e. study the sensitivity of a sensor based on this 

plasmonic slot waveguide. 

Finally, a surface enhanced Raman spectroscopy (SERS) substrate based on silicon nanowires decorated 

with silver nanoparticles was designed. In this work, a low cost, equipment free fabrication method was 

used to pattern silicon into silicon nanowires using metal assisted chemical etching. Silver nanoparticles 

were deposited on the silicon nanowires using electroless deposition. Different etching and deposition 

conditions were used to arrive at a SERS substrate that boasts an enhancement factor on the order of 

1011. The substrate is able to detect pyridine with a signal intensity that is correlated with the pyridine 

intensity in micro- and nanomolar concentrations. Picomolar concentrations of pyridine were also 

successfully detected. It would be interested for extending this work to explore different shape 

nanoparticles, in particular those with sharp corners such as squares, triangles and stars as they are 

expected to exhibit high electric field amplification due to an antenna effect. Such nanoparticles have 

been fabricated using exquisite fabrication methods, a low cost fabrication of cubical nanoparticles would 

be beneficial extension of this work. Experimental verification using other probe molecules and 

biologically relevant samples would be useful. 

The connecting theme for the different sensors presented here is that they are all on chip and realizable. 

Full systems on chip are possible for all three sensor configurations, for complete lab on chip applications 

that provide sample-to-answer functionality. Silicon photonics is already commercially used. III-V 

semiconductors including InAs are planned to be introduced in the electronics industry within the next 

five years due to their superior mobility over silicon to continue performance improvements. Lastly, the 

silicon nanowire platform is already experimentally verified. This work demonstrated several solutions for 

on chip optical sensing. 
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