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Abstract

Wireless communication systems rely on training the receiver to

learn the channel state information (CSI) to communicate informa-

tion effectively. In these coherent wireless communication systems,

pilot signals known to the receiver are sent periodically to help the

receiver learn CSI which is needed for effective detection. How-

ever, mobile wireless standards are constantly aiming to increase

supported velocities and data rates. As the velocity of the receiver in-

crease, the channel changes rapidly, and more frequent training is re-

quired, which compromise efficient communication of information.

Moreover, multiple-antenna techniques are usually required nowa-

days to increase supported data rates, which increases the number

of channel parameters that have to be estimated and thus requires

longer training periods. This lead to significant research activity in

wireless communication systems that do not require channel knowl-

edge at the receiver for detection, and thus eliminate the need for

training altogether. Those systems are called non-coherent.

In the first part of thesis, we propose an new approach to con-

struct space-time codes for the multiple-input multiple-output (MIMO)

noncoherent channel. Unlike designs which fixed the number of

transmit antennas active at any signaling interval, in our designs we

let the number of the active transmit antennas vary over constellation

points. We use numerical simulations to evaluate the performance of

our proposed designs. At low-to-moderate SNRs, simulations results

suggest that our codes could provide significant performance gains

over codes designed using direct numerical optimization and expo-

nential mappings where the number of transmit antennas is fixed,

especially at higher constellation cardinalities.
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In the second part, we consider layered space-time signaling over

the multiple input multiple output multicast channel. In our pro-

posed scheme, information is encoded in two layers; a low-resolution

layer and a high-resolution layer, and there are two classes of re-

ceivers; noncoherent receivers that do not have access to accurate

CSI and are only able to decode the information in the low-resolution

layer, and coherent receivers that have access to accurate CSI, and

thus able to decode both the low-resolution and incremental high-

resolution information. Low-resolution information is encoded us-

ing Grassmannian MIMO codes, while high-resolution information

is encoded in the indices of the transmitter antennas active during

the signaling interval using a scheme called generalized space shift key-

ing (GSSK). The proposed HR layer is completely transparent to the

LR layer. Moreover, we propose a computationally efficient two-step

decoder. Simulation results suggest that the error performance of the

proposed HR layer could be superior to existing schemes that uses

conventional space-time codes synthesized from APM symbols and

space-time codes designed by direct numerical optimization on the

unitary group.
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Chapter 1

Introduction

1.1 Motivation

It is vital to design multiple input multiple output (MIMO) transceivers

that are able to cope with various degrees of channel conditions and

knowledge of channel state information (CSI) at the receiver. It is known

that MIMO systems can achieve high gains over conventional single

input single output (SISO) systems when perfect CSI is available at

the receiver; however, acquiring perfect CSI at the receiver requires

sending known pilot signals to the receiver to "train" it to learn the

CSI, and this can take a long time especially when the number of an-

tennas is large. If the time it takes for the receiver to learn the chan-

nel is only a negligible portion of the channel coherence time, then it

is justifiable to put the effort to learn the channel. However, when

the channel is changing rapidly and training takes a significant frac-

tion of the channel coherence time, it is not worth it to acquire CSI

that will change before enough information is sent to justify the time

spent learning the channel. Hence, it is important to design space-

time signaling schemes that are able to adapt with the current state

of the channel between the transmitter and receiver, such that infor-

mation can be communicated efficiently regardless of the availability

of CSI. Space-time codes designed for the scenario of perfect CSI at
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the receiver are called coherent codes; while, codes designed to work

when no CSI is available at the receiver are called noncoherent codes.

Noncoherent MIMO was recognized by the European Union project

"Mobile and wireless communications Enablers for the Twenty-twenty

Information Society (METIS)" [38] as one of the enabling technologies

for the future fifth generation (5G) mobile networks.

In the rest of this chapter, we provide the necessary background

on wireless MIMO communications in general, and review the exit-

ing literature.

1.2 The Wireless Channel

Wireless communication systems offer the freedom of untethered

connectivity between communicating devices without the need for

costly wires and infrastructure. However, ensuring reliable high speed

wireless connectivity is a daunting task. The system designer has

to take into consideration the hostile nature of the wireless channel.

An accurate model of the wireless channel is needed to design sys-

tems that will perform well in practice. To accurately model the wire-

less channel, one must take into account the inherent way by which

the information carrying electromagnetic waves propagate between

the communicating terminals. In particular, electromagnetic waves

emitted from the transmitter impinge on various objects and reflect

off them to travel along different paths to reach the receiver. Those

signal waves that traveled along different paths will attenuate by

different amounts and undergo different phase rotations and time

delays. When two or more multipath components arrive a similar

time they will combine either constructively, or destructively and
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this will cause what appears to be random fluctuations on the re-

ceived signal power. These random fluctuations give rise to what

is widely known as the fading phenomenon [28] [7], which is one of

the key nuisances in wireless channels. Moreover, if the paths taken

by different wave components differ significantly in length, differ-

ent signal components may experience large enough delay such that

components from different symbols interfere together which lead to

what is known as inter-symbol interference [28].

The fading phenomenon resulting from multipath propagation is

not the only nuisance in wireless channels. Unlike wireline commu-

nications, where the link between the transmitter and the receiver is

an isolated point-to-point link, the wireless medium is shared by a

large number of other users and services, which may be operating in

the same frequency band and can cause significant interference at the

receiver and deteriorate the reliability of reception.

Despite of the negative effects, discussed earlier, that multipath

propagation can have on wireless links performance, it can also be

beneficial under certain conditions. Suppose the transmitter can launch

several copies of the information signal through different paths to the

receiver. If we ignore the interference and assume all paths are inde-

pendent and can be separated at the receiver. Thus each path can be

thought of as a separate channel. Even if any of these paths suffers

from deep attenuation, the rest of the paths can provide a detectable

signal to the receiver. This will increase the reliability of the link and

improve error performance. Another way to exploit multipath, is to

increase the data rate by sending multiple streams of data from the

transmitter along the different paths. Hence, multiple path propaga-

tion can be exploited to either improve the reliability of the wireless
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link or to increase the transmitted data rate and thus improve spec-

tral efficiency [7]. The former gain is called diversity gain, and the

latter is called multiplexing gain. It is worth mentioning that these

two gains are not mutually exclusive, and there exists a fundamental

tradeoff between how much of each a gain a coding scheme can get

[48].

1.3 Multiple Antenna Wireless Systems
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FIGURE 1.1: Multiple Antenna Communication Sys-
tem

One way to exploit the potential benefits of multipath propaga-

tion is to use multiple antennas both the transmitter and the receiver.

By employing multiple antennas at the transmitter and the receiver,

information can be propagated in different paths in a controlled man-

ner. Consider a communication system where the transmitter has M

antennas and the receiver has N antennas. Such a system is gen-

erally called a multiple-input multiple-output (MIMO) communica-

tion system. This system is depicted in Figure 1.1. The arrow be-

tween the i-th transmit antenna and the j-th receive antenna denote

the ij-th signal path. In general, each signal path consists of several
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subpaths [28], and the received signal from the ij-th path is the su-

perposition of the constituent subpaths. That being the general case,

each signal path can be thought of as a finite impulse response fil-

ter that characterizes the channel impulse response of this path. In

the special case, when the bandwidth occupied by the transmitted

signal is smaller than the coherence bandwidth of the channel, the

frequency response of the ij-th path channel is essentially constant

over the signal bandwidth, and the channel is said be frequency flat

or frequency non-selective. In this case, the multipath components

cannot be resolved, and the complex gain function of the channel

can be well approximated by a complex-valued scalar. On the other

hand, if the transmitted signal bandwidth is larger than the coher-

ence bandwidth of the channel, then the approximation used earlier

is not valid, and the channel is said to be frequency-selective. How-

ever, a wide-band signal can be decomposed into narrow subbands

components such that the frequency-flat model is justifiable within

each subband [11] [32] [42]. This is the approach used in multicar-

rier systems like Orthogonal Frequency Division Multiplexing (OFDM).

Therefore, the frequency-flat assumption is reasonable for a wide va-

riety of practical systems. Throughout this thesis we will restrict our

attention to frequency flat channels where the complex gain function

are assumed to be complex-valued scalars.

The complex gain functions of the wireless channel can change

over time depending on the propagation environment and mobility

of the transmitter and the receiver. Wireless channels are character-

ized based on how fast their complex gain functions change over

time. When the channel gain function change withing one symbol

duration, the channel is said to be a fast-fading channel. On the other

hand, if the channel gain functions remain unchanged for more than
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one symbol duration, the channel is said to be a slow-fading chan-

nel. Through out this thesis, we will assume the channel is a slowly-

fading frequency-flat channel. This class of channels include block-

fading channel. In a block fading channel, the channel gain functions

remain constant for several symbol periods and then change inde-

pendently to new realizations. The time during which the channel

remains constant is called the coherence time or coherence interval.

The coherence time is an important factor in deciding which signal-

ing scheme to use in a given communication scenario.

In addition to nuisance caused by fading, the received signal is

also affected by thermal noise. Thermal noise results from the ran-

dom motion of electrons in the electronic devices used in signal re-

ception and processing. To model the affect of thermal noise, an ad-

ditive stochastic term is added to the received signal. This term is

statistically independent from both the transmitted signal and the

propagation parameters of the wireless channel. In Figure 1.1, Wj

represents the noise term at the j-th receiving antenna.

To utilize the full potential of multiple antennas propagation, dif-

ferent receive antennas must provide us with diverse and indepen-

dent representations of the transmitted signals. For that to happen,

the wireless channel must be richly scattered. In a richly scattered en-

vironment, the complex path gains of different paths are statistically

independent. Therefore, signals traveling along different paths suf-

fer from independent fading. Hence, the receiver is provided with

diverse statistically independent versions of the information carry-

ing signal. On the other hand, if the channel is not richly scattered,

complex path gain are statistically dependent resulting in similar

fades in different paths, and the receiver gets less diverse versions

of the information carrying signal. In a richly scattered environment,
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independent fading is approximately achieved by adequate antenna

elements separation. Field measurements conducted showed that

typical adequate antenna separation should be between 0.5λ and 10λ,

where λ is the wavelength of the carrier [12] [31]. At typical radio fre-

quencies, this corresponds to a few centimeters separation between

antenna elements. These separations could be easily achieved in

typically available space at the transmitter and/or receiver. Hence,

throughout the rest of this thesis, the channel is assumed to be richly

scattered, and thus the path gains are independent.

1.4 Space-Time Coding

In conventional wireless communication systems, there is a single

antenna element at the transmitter, and the data is encoded over the

time axis. However, in MIMO systems, the transmitter has multiple

antenna elements, and the data is encoded temporally over the time

axis and spatially over the antenna indices. The time axis is usually

partitioned into time slots where each time slot represent a channel

use. Such that every codeword is a matrix where each entry is a

space-time slot representing a specific antenna element and time slot.
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FIGURE 1.2: Generic MIMO Communication System
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Figure 1.2 shows a generic MIMO communication system. In

the transmitter, raw information bits are encoded and divided into

blocks. Then each block of encoded bits is mapped to a correspond-

ing space-time channel symbol [4]. Each space-time channel symbol

is assigned a particular set of signaling waveforms represented in

baseband by a complex matrix. The set of all possible matrices rep-

resenting all potential space-time channel symbols is called a space-

time code or codebook [4]. Finally, the signaling waveforms repre-

senting the space-time channel symbol being transmitted is then am-

plified and propagated from their corresponding antennas at their re-

spective time slots. At the receiver, the processing done at the trans-

mitter is reversed. The space-time detector decides on the best esti-

mate of the tranmsitted signaling waveforms, and then the received

signaling waveforms are demapped back to the encoded bits. Lastly,

a decoder is used to retrieve the original raw information bits.

The design of the space-time signaling waveforms depends on

the nature of the channel. One important parameter of the channel

that governs the choice of the suitable signaling strategy is the coher-

ence time of the channel. Recall that the coherence time of a wireless

channel is the time during which the channel response remains un-

changed. If the coherence time of the channel is sufficiently long [42],

the transmitter could send pilot signals which are known to the re-

ceiver, and the receiver can use these signals to estimate the channel

response. Moreover, if the length of the coherence time permits, the

receiver can send the estimated channel response to the transmitter

via a separate feedback channel. Equipped with knowledge of the

channel response, the transmitter can optimize its coding strategy to

maximize the amount of information communicated to the receiver.

The receiver also uses the channel knowledge to perform reliable and
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efficient detection of the transmitted information. For a sufficiently

long coherence time, it can be assumed that the time spent estimating

the channel response and sending it back to transmitter is a negligi-

ble portion of the coherence time, and the remaining portion of the

coherence time is spent sending information. Hence, we can reason-

ably model the system as if the channel is known to both transmit-

ter and receiver before transmision begins. This scenario requires

resources that are usually difficult to accommodate [16]. In particu-

lar, the availability of a separate feedback channel cannot always be

guaranteed; furthermore, if such a channel is available, the coherence

time has to be long enough for the receiver to feedback the channel

response to the transmitter, which is typically not the case in practical

situations where mobility of the transmitter and/or receiver causes

the channel to change rapidly. Given the impracticalities of realiz-

ing this scenario, a more practical communication model is typically

used. In this model, the transmitter also sends pilot signals for the

receiver to estimate the channel response, and it is assumed the re-

ceiver is able to estimate the channel response perfectly; however,

the receiver does not share channel knowledge with the transmitter.

This model eliminates the need for a feedback channel and lessens

the requirements on coherence time. This communication model is

usually referred to as coherent in literature [34]. In coherent commu-

nication models, the amount of time required to acquire an estimate

of the channel at the receiver through the use of pilot signals is as-

sumed to be a negligible portion of the coherence time of the channel;

thus, it is reasonable to assume that the receiver knows the channel

before transmission of information. A brief overview of codes that

are used with coherent MIMO communication systems is given in

section 1.6.2.
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In some practical situations, the amount of time required to ac-

quire an accurate estimate of the channel at the receiver is a signifi-

cant portion of the coherence time of the wireless channel. This prob-

lem is more pronounced when the transmitter and/or receiver are

moving rapidly or when the number of antennas at the transmitter

and/or receiver is large [48] which requires sending a lot of pilot

signals to estimate the channel. In such situation, it is more practi-

cal to assume that neither the transmitter nor the receiver know the

channel before transmission. This communication model is referred

to as non-coherent [34]. We can still send pilot signals and estimate

the channel at the receiver in this type of communication models;

however, the amount of time required for that has to be taken into

consideration. Codes that is used with non-coherent MIMO commu-

nication systems are briefly introduced in section 1.6.1.

1.5 System Model

In this section, we formally introduce the space-time commu-

nication model that will be used throughout this thesis. A space-

time signaling scheme consists of a set of waveforms that are local-

ized in a specific space-time slot, that is; each waveform is transmit-

ted from a specific antenna in a specific time slot. The information-

carrying waveform that is tranmsitted from the j-th antenna in the

i-th time slot can be written as sij(t). The signal space occupied by

these information carrying waveforms {sij(t)} can be represented by

a set of orthogonal functions {φk(t)} that form a basis for this sig-

nal space. Hence, any signal in this signal space can expressed as

a linear combination of the basis signals {φk(t)}, and we may write

sij(t) =
∑

k s
k
ijφk(t). A typical choice for the basis functions is the
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quadrature sinusoidals sin 2πfct and cos 2πfct, where fc is the RF car-

rier frequency. In this case, each waveform can be expressed as a

complex scalar representing the amplitude and phase of the trans-

mitted sinusoid.

In practical communication systems, the transmitted waveform

has to be shaped to make it better suited to the communication chan-

nel. In particular, the transmitted waveform has to meet the limi-

tations of the available channel bandwidth, and be resilient to tim-

ing error caused by imperfect synchronization at the receiver. To

achieve these goals, a pulse shaping waveform g(t) is used. The

pulse shaping waveform is independent of the space-time slot and

the information carrying waveform. A typical pulse shape is the

root-raised cosine waveform. The root-raised cosine pulse shape sat-

isfies the Nyquist criteria for zero inter-symbol interference (ISI) and is

quite resilient to small timing errors at the receiver [28]. The trans-

mitted waveforms, after pulse shaping, can be expressed as xij(t) =

sij(t)g(t).

In space-time signaling schemes, where the quadrature sinusoidal

basis is used, the information carrying complex scalars sij compris-

ing the space-time symbol have to posses some structure to achieve

desirable properties. These desirable properties typically include re-

silience to adverse channel effects, support for high data rates trans-

mission, and ease of detection.

Throughout this thesis, we consider the case where the quadra-

ture sinsoidal basis is used, and the transmitted waveforms are rep-

resented using complex scalars sij . We let M denote the number of

transmitter antennas and N denote the number of receiver anten-

nas. In addition, the coherence interval of the channel is assumed to
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span T time slots or channel uses. Given this scenario, any partic-

ular transmitted space-time symbol/codeword can be expressed as

a T × M complex-valued matrix S. The set of possible space-time

codewords comprises the space-time codebook S. The space-time

mapper maps each block of encoded bits to a corresponding space-

time codeword from the codebook.

As previously mentioned, we also restrict ourselves to the flat

fading and richly scattered channels; hence, the channel complex

gain functions between pairs of transmit and receive antennas are

independent and identically distributed complex scalars hij . There-

fore, the channel gain functions can be expressed as a complex-valued

M ×N matrix. The T ×N received matrix Y is given by

Y = SH + W, (1.1)

where S ∈ S and W is the T × N matrix containing the noise sam-

ples. The noise samples are assumed to be i.i.d. zero-mean complex

Gaussian random variables. Apart from scaling factors, this generic

model is used throughout this thesis.

1.6 Literature Review

1.6.1 Noncoherent MIMO Codes

In this section we review the exisiting literature on noncoher-

ent codes for the MIMO channel. By noncoherent codes, we mean

codes that are decodable without knowledge of channel coeficients

at the receiver. Research on space time codes that do not require

channel state information at the receiver was motivated by the in-

formation thoeritic works of Marzetta [34] and Zheng [49]. Marzetta
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and Hochwald [34] were able to characterize the structure of the ca-

pacity achieving signals. It was shown that the capacity of the non-

coherent MIMO channel can be achieved by using signaling matrices

that are the product of an isotropically distributed (i.e. whose distri-

bution is invariant to rotations) unitary matrix and an independent

random diagonal matrix whose entries are real and non-negative.

Moreover, at sufficiently high SNRs, the diagonal matrix elements

become deterministic, and the information is almost exclusively car-

ried by the unitary component. This lead to surge of research in

"space-time unitary modulation" which is asymptotically optimal at

high SNRs. In [49], Zheng and and Tse computed the asymptotic

capacity at high SNRs in terms of the number of transmit antenna

M , the number of receive antennas N , and the coherence time T .

The capacity gain for every 3 dB increase in SNR turned out to be

M∗ (1− M∗

T

)
bits/channel use, where M∗ = min (M,N, bT/2c). On

the other hand, the capacity gain of the coherent MIMO channel is

min (M,N) for every 3 dB increase in SNR. They also gave a geomet-

ric interpretation of the capacity expression as sphere packing on the

compact Grassmann manifold G(T,M) [45]. The Grassmann man-

ifold is the set of all M -dimensional subspaces in CT . An intuitive

explanation of this result can be given as follows, at very high SNRs,

the received matrix is approximately Y = SH, and thus the subspace

spanned by the received matrix Y is the same as the one spanned by

the transmitted matrix S. Hence, if we design the constellation such

that the different points span different subspaces, we will be able

to decode transmitted constellation point without needing to have

knowledge of the channel coefficients in H. These constellations are

called unitary or Grassmannian constellations in literature.
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Several approaches for designing non-coherent Grassmannian con-

stellations were proposed in literature. These approaches fall mainly

into two categories. In the first category, constellations are designed

by numerical optimization of some measure of distance between con-

stellation points to maximize separation between points [15] [6], or

by numerical minimization of some bound on error probability [36].

In the second category, noncoherent Grassmannian codes are synthe-

sized from coherent codes using either an algebraic construction [18]

[47] [46] [43] or a mapping to the Grassmannian manifold [22] (e.g.

the exponential map [45]). For example, in [22], the authors used the

fact that the tangent space of the Grassmannian manifold GM

(
CT
)

at an arbitrary point G is given by the set of matrices

∆ = G

 0 V

−V† 0

 , (1.2)

where V ∈ CM×(T−M), and that any point on GM

(
CT
)

can be ob-

tained from points on the tangent space by an exponential mapping.

Such that, all points on GM

(
CT
)

can be obtained using the form

X =

exp

 0 V

−V† 0


 IT,M , (1.3)

where IT,M = [IM0T−M ]†. On the other hand, in [18], constellation

points are constructed by successively rotating an initial unitary T ×

M representing an M -dimensional in a higher-dimensional complex

space. Both categories of design approaches have their advantages

and drawbacks. Generally, constellations designed by numerical op-

timization techniques exhibit superior performance; however, these

constellations do not posses any particular structure rendering their
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storage and detection cumbersome. These problems become more

pronounced for large cardinalities (i.e. sizes), which are typically de-

sirable at high SNRs. On the other hand, constellations designed

by algebraic construction and mappings are amenable to more effi-

cient storage and detection techniques, but suffer from performance

degradation compared the first category.

Aside from unitary/Grassmannian constellation, "training-based"

scheme was also proposed in literature for noncoherent MIMO com-

munications [17] [8] [14]. Although these codes are called "nonco-

herent" in literature, training is used in these schemes to estimate the

channel coefficients. However, the time spent training the receiver

is taken into consideration, and the channel coefficients are not as-

sumed to be known before tranmission to the receiver, which fit the

system model used in literature when when studying noncoherent

MIMO codes. Transmission over the channel coherence interval is

divided into two phases, a training phase where pilots are sent to

estimate the channel, and coherent a communication phase where

information is sent. These codes attains the maximum degrees of

freedom at high SNRs, however; they do not achieve full capacity

[49].

For sake of completeness, we briefly review the design of coher-

ent MIMO codes in the next section

1.6.2 Coherent Codes

Considering the scenario that the receiver has accurate CSI. The

channel is assumed to be a block-fading Rayleigh fading channel

described earlier, where channel matrix elements are iid Gaussian

and change independently to a new realization for every space-time
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codeword. The optimal coherent decoder uses the well known ML

rule and the estimated codeword is given by:

Ŝ = arg min
S
‖Y −

√
Es
M

SH‖, (1.4)

where Es is the total average energy transmitted, and M the number

of transmit antennas.

Design Criteria

Given that the ML rule is used at the receiver to estimatre the

transmitted codeword, the probability that the receiver decides in

favour of the wrong codeword S(j) given that S(i) was transmitted

can be upper bounded by the following expression [44]:

P
(
S(i) → S(j)

)
≤

(
r∏

k=1

λk(i, j)

)−N (
Es

4N0

)−rN
, (1.5)

where λk(i, j)’s and r are, respectively, the real non-negative eigen-

values and the rank of the matrix A =
(
S(j) − S(i)

) (
S(j) − S(i)

)†,
where (.)† denotes the Hermitian (conjugate transpose). This leads

to the two well known Rank Criterion and Determinant Criterion [44].

• Rank Criterion: the diversity gain of a space-time code depends

on the term
(
Es

4N0

)−rN
. Hence, for any space-time code to achieve

full spatial diversity order ofMN , the difference matrix A must

be full rank for all possible pairs of codewords in the code.

• Determinant Criterion: the coding gain of a space-time code de-

pends on the term (
∏r

i=1 λi)
−N . Hence, to maximize coding

gain, the code must be designed such that the minimum of
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the determinant of the matrix A is maximized over all possi-

ble pairs of codewords.

Before moving on, it is worth mentioning one example of coher-

ent codes, the famous Alamouti orthogonal space-time block code

(OSTBC) [3]. In the Alamouti scheme, the transmitted space-time

codeword may be expressed as

S =

s1 −s∗2

s2 s∗1

 , (1.6)

where s1 and s2 are drawn from any APM (amplitude phase modu-

lation) constellation. The difference matrix between any two code-

words Ei,j = S(j) − S(i) will take the form:

Ei,j =

e1 −e∗2

e2 e∗1

 , (1.7)

Obviously, the difference matrix is orthogonal, and hence A = Ei,jE
†
i,j

has full rank (i.e. r = M = 2) [24]. In general the Alamouti scheme

achieves a full diversity order of 2N . Moreover, the unique struc-

ture of the code renders the effective channel matrix orthogonal [3],

which reduces the complex vector ML detection problem into two

simpler scalar detection problems.

1.7 Thesis Outline and Contributions

In this thesis, we propose space-time coding techniques for two

scenarios. In the first scenario, we consider a point-to-point nonco-

herent MIMO channel, and in the second scenario; we consider a

multicast MIMO channel with coherent and noncoherent receivers.
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Throughout this thesis, it is assumed that CSI is not available at the

transmitter. The rest of this thesis is organized as follows.

In chapter 2, we propose a new approach to design non-coherent

MIMO codes. Unlike designs in literature where number of active

transmit antennas during any signaling interval is chosen to maxi-

mize the degrees of freedom used, we let the number of active trans-

mit antennas vary across constellation points to improve performance

at low-to-moderate SNRs where the system is not limited by the de-

grees of freedom. We design Grassmannian constellations of differ-

ent dimensions by direct numerical optimization [15] on the Grass-

mannian manifold. The designed constellations are then augmented

with points from a one-dimensional constellation that are chosen to

maximize the minimum distance of the augmented constellation. We

use numerical simulations to show that our designed codes exhibits

superior performance, compared to existing noncoherent codes de-

signed by direct numerical optimization or exponential mappings

[22], at low-to-moderate SNRs without sacrificing performance at

higher SNRs up to 25 dB.

In chapter 3, a multi-layer coding scheme for the MIMO multicast

channel is considered [19, 20, 21] [29, 30]. The proposed scheme com-

bines noncoherent Grassmannian MIMO codes with spatial modula-

tion (SM) [37]. Two classes of receivers are considered; one class of

receivers are able to acquire CSI, and the other class are unable to

acquire CSI. Information is encoded in two layers; we encode basic

low resolution (LR) information using noncoherent Grassmannian

MIMO codes which all receivers should be able to decode, and in-

cremental high resolution (HR) information is encoded in the indices

of the transmit antennas used to transmit the Grassmannian code-

word, and only receivers with CSI knowledge are able to decode it.
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Furthermore, We propose a two step decoder that is more computa-

tionally efficient than the optimal decoder. Simulation results sug-

gest that the proposed coding scheme for the high-resolution layer

outperforms existing space-time codes synthesized from APM con-

stellations [20], and those obtained by direct numerical optimization

on the unitary group [21].

Finally, in chapter 4, we conclude this thesis and suggest few di-

rections for future work.
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Chapter 2

Non-coherent Grassmanian

MIMO Codes for

Low-to-Moderate SNRs

In this chapter, we propose a new approach to construct space-

time codes for multiple-input multiple-output (MIMO) noncoherent

channel. Unlike designs which fixed the number of transmit anten-

nas M , which was chosen to utilize all the complex degrees of free-

dom of the system (i.e. M = min
(⌊

T
2

⌋
, N
)
, where T is the coherence

interval of quasi-static Rayleigh fading channel, and N the number

of receive antennas, in our designs we let the number of the trans-

mit antennas be a variable m which could take any value from 1 to

M = min
(⌊

T
2

⌋
, N
)

over constellation points. We use numerical sim-

ulations to evaluate the performance of our proposed designs. At

low-to-moderate SNRs, where the system is not limited by the de-

grees of freedom used, simulations results show that our codes could

provide significant performance gains over codes designed using di-

rect numerical optimization and exponential mappings [22] where

the number of transmit antennas is fixed, especially at higher constel-

lation cardinalities. Moreover, there is no discernible loss in perfor-

mance at higher SNRs up to 25 dB from not utilizing the maximum
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number of degrees of freedom.

2.1 Introduction

Multiple-input multiple-output (MIMO) communication systems

operating in a Rayleigh fading environment promise significant gains

in capacity over single antenna systems. However, to reap the ben-

efits of MIMO communications, like higher capacity or lower error

rate, the channel fading coefficients must be statistically indepen-

dent and known to the receiver. Acquiring accurate channel state

information (CSI) becomes increasingly difficult if the number of an-

tennas becomes too large, the channel is changing rapidly, or when

traffic is bursty in nature and communication resources are too valu-

able to waste estimating the channel instead of sending data as is the

case in the emerging area of Internet of Things.

Considering the difficulties of acquiring accurate CSI, non-coherent

MIMO systems become an attractive option in various scenarios. Non-

coherent MIMO systems do not rely on accurate CSI at the receiver

nor at the transmitter. It has been shown in [34], that the capacity of

the non-coherent MIMO link is achieved when the T×M transmitted

signal matrix, where T is the coherence interval of the channel and

M the number of transmit antennas, is the product of an istropically

distributed T×M unitary matrix and an independent random diago-

nal matrix D whose entries are real and non-negative. This structure

achieves the capacity regardless of the received SNR, and channel

coherence interval T . Designing non-coherent constellations that are

optimal both at low and high SNRs is still an open problem. For ex-

ample, at high SNRs, the capacity achieving input signals is isotrop-

ically distributed unitary matrices [35] [49] (i.e., D = IM ) provided
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that T ≥ min (M,N) + N , where N is the number of receive anten-

nas, while at low SNRs [41], only one entry of D is non zero, and the

optimal number of transmit antenna M is one.

In literature, the majority of constellation designs for non-coherent

MIMO channel assumes the communication system operates at high

SNRs, and seek to use all the degrees of freedom, M
(
1− M

T

)
bits

per seconds per hertz [49], of the system, where M = min
(⌊

T
2

⌋
, N
)

is the required number of transmit antennas to attain the maximum

number of degrees of freedom. These constellations are packings on

the complex Grassmann manifold, and are designed either numeri-

cally by maximizing some measure of distance between constellation

points [15] [6], using algebraic construction [46], or by using param-

eterized mappings [22] [47]. On the other hand, constellation de-

signs that are more appropriate for low SNR were proposed in [1],

where the Kullback-Leibler distance metric is used to design multi-

level unitary constellations (orthogonal) more suitable at low SNRs.

However, the structure of the constellations designed in [1] depends

on the value of the SNR, and a separate constellation has to be de-

signed for each SNR value.

In the following sections, we design space-time block codes for

the non-coherent MIMO channel that perform better than conven-

tional unitary constellations designed to exploit all the degrees of

freedom of the system, at low SNR, without sacrificing performance

at practical higher SNRs. Guided by information theoretic results

that using only one transmit antenna is optimal at low SNRs [41],

we let the number of transmit antennas used be variable across the

constellation. In our designed constellation, the points are either one-

dimensional vectors or T×M matrices whereM is the required num-

ber of antenna to exploit all the degrees of freedom of the system.
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Simulation results show that our designs exhibit performance supe-

rior to constellations in [15] and [22] at low-to-moderate SNRs.

2.2 Preliminaries and System Model

2.2.1 The Grassmann Manifold

Consider the set of all T ×M unitary matrices for T ≥ M . This

set defines the Stiefel manifold ST,M of dimension T ×M . Define an

equivalence relation where two points P and Q on the Stiefel man-

ifold are equivalent if their T -dimensional column vectors span the

same subspace. In other words, P ≡ Q if they are related by right

multiplication of a unitary matrix Ω such that

P = QΩ, Ω ∈ UM , (2.1)

where UM is the unitary group consisting of all M ×M unitary ma-

trices. The Grassmann manifold GM

(
CT
)

is defined as the quotient

manifold of the Stiefel manifold ST,M with respect to the equivalence

relation in (2.1). Every point on the Grassmann manifold is an equiv-

alence class in the Stiefel manifold. For more details, consult any

standard textbook (e.g. [45]).

2.2.2 Chordal Frobenius Distance

Constellation design requires an appropriate metric to measure

the distance between constellation points. It was shown in [15], based

on an analysis of how the noise perturbs the subspace spanned by

the transmitted signal point, that the chordal Frobenius norm is an
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appropriate metric to measure distance between points on the Grass-

mann manifold. Given two constellation points Si and Sj , the chordal

Frobenius norm between them is defined as

d(Si,Sj) =
√

2M − 2 Tr(ΣS†iSj
), (2.2)

where S†iSj = US†iSj
ΣS†iSj

VS†iSj
is the singular value decomposition

(SVD) of S†iSj [13]. We adopt the chordal Frobenius norm as a mea-

sure of distance between signal points in our designs.

2.2.3 System Model

A MIMO channel is considered. The transmitter has M anten-

nas, and the receiver has N antennas. The channel is assumed to be

a quasi-static Rayleigh flat fading MIMO channel, and the noise is

additive white Gaussian noise. The system can be modeled as

Y = SH +

√
M

ρT
W, (2.3)

where Y is the T ×N received matrix at the receiver. S is the T ×M

transmitted codeword matrix. H denote the M × N channel matrix

between the transmitter and the receiver and W denote the T × N

noise matrix at the receiver. The entries of the channel and noise ma-

trices are independent, and identically distributed, circularly sym-

metric, complex Gaussian random variables with zero means and

unit variances CN (0, 1). Finally, the SNR is given by ρ. The channel

matrix entries are assumed to remain constant for the coherence in-

terval T , and then change independently to a new realization. At the

receiver, the maximum likelihood detector [34] is used.
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2.3 Code Construction and Decoding

In [15] and [22], the number of transmit antennas M was chosen

to maximize the number of degrees of freedom of the system for a

given coherence interval T and number of receive antennas N

M∗ = min

(⌊
T

2

⌋
, N

)
. (2.4)

Maximizing the degrees of freedom is particularly useful at high

SNRs, where the system is degrees-of-freedom limited. However, at

lower SNRs, the system is power limited, and maximizing the de-

grees of the freedom will not necessarily lead to better error perfro-

mace. Moreover, information theoretic results [49, 41] show that, in

the case of unitary modulation, the optimal number of transmit an-

tennas at low SNR is only one. The low-SNR mutual information for

unitary modulation was calculated [41] to be

1

T
I (Y; S) =

N (T −M)

2M
ρ2 + o

(
ρ2
)

, (2.5)

which is maximized by letting M = 1. These results were supported

by our simulations, which showed that one-dimensional Grassman-

nian constellations performed better thanM∗-dimensional Grassman-

nian constellations at lower SNRs. However, as the SNR increases,

the system begins to be limited by the degrees of freedom, and the

M∗-dimensional constellations start to perform better. This suggest

that by letting the number of transmit antenna be a variable m which

is not constant for the entire constellation and can take any value

from 1 to M∗, we can design codes that perform better at low-to-

moderate SNRs without incurring discernible performance loss at
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higher SNRs. Following this argument, we augment anM∗-dimensional

Grassmannian constellation with one-dimensional points, such that

the transmitted signal matrices are either T×M∗ unitary matrices or a

T ×M∗ matrix where the first column represents a one-dimensional

Grassmannian point and the rest of the entries equal to zero (e.g.,

S =
[
QT×1 0T×(M∗−1)

]
). We limit ourselves to points that are either

one-dimensional or M∗-dimensional in this chapter because one di-

mension is optimal at low SNRs, while the other is optimal at high

SNRs, but; in general, points with dimensions ranging from 1 to M∗

can be used to design constellation with variable dimensions.

Our design approach starts with a initial M∗-dimentional Grass-

mannian constellation CM designed using the direct approach in [15]

whose size is half of the desired constellation size |C|. This constella-

tion is then augmented with one dimensional points. One-dimensional

points are selected one-by-one from a one-dimensional constellation,

also designed using the direct method, C1 with high cardinality |C1|

to maximize the minimum chordal Frobenius distance with all pre-

viously added points. This will result in what we call augmented

constellations, whose half of their points is one-dimensional and the

other half is M∗-dimensional. Different ratios of one-dimensional

and M∗-dimensional points could be used, but we limit ourselves to

this case, because our trials showed that this case strike a compro-

mise between low and high SNRs performance.
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2.3.1 Initial Constellation Design

In this section, we briefly review the direct constellation design

approach in [15] used to construct the multi-dimentional initial con-

stellation and the one-dimentional constellation from which we aug-

ment the initial constellation. Using this approach, an entire constel-

lation is jointly designed in one step. In particular, the |C| points on

GM

(
CT
)

are represented by a single point on GM |C|
(
CT |C|), and an

analytical cost function that penalizes the pairwise chordal Frobe-

nius distances between all constellation points is synthesized and

numerically minimized using a derivative-based optimization algo-

rithm [2] that automatically ensures all points remain on the surface

of the Grassmann manifold after every iteration. The optimization

problem can be written as:

min
{Sk}

|C|
k=1

max
1≤i,j≤|C|

Tr (Σij)

subject to Sk ∈ GM

(
CT
)
, k = 1, . . . , |C| ,

(2.6)

where UijΣijV
†
ij is the singular value decomposition of S†iSj . The op-

timization problem in (2.6) has two issues; first, the objective function

is non-differentiable because of the max(.) function, and second, it is

over multiple-points over the Grassmannian manifold at the same

time. To solve the first issue, a refined Jacobian approximation [15]

is used to obtain a smooth approximate representation, and to solve

the second issue, the multiple points on GM

(
CT
)

is represented as a

single point on a manifold of higher dimension GM |C|
(
CT |C|). Hence,
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the optimization problem can be rewritten as

min
{Sk}

|C|
k=1

log

|C|−1∑
i=1

|C|∑
j=i+1

exp (Trn (Σij))

 1
n

subject to Sk ∈ GM

(
CT
)
, k = 1, . . . , |C| ,

(2.7)

where n ≥ 1 is a parameter of the refined Jacobian approximation,

such that as n → ∞, the approximation approaches the exact value

of the max(.) function. Each matrix Σij is expressed as

Σij = U†ijI
(i)
M S̄†

(
I

(i)
M

)†
I

(j)
M S̄

(
I

(j)
M

)†
Vij , (2.8)

where S̄ is the |C|T × |C|M block diagonal matrix given by

S̄ = blkdiag
(
S1, . . . ,S|C|

)
, (2.9)

and I
(l)
K denotes a fat block diagonal matrix with the l-th K×K block

being the identity matrix IK and all other elements are equal to zero.

Now by using (2.8), the optimization problem in (2.7) can be writ-

ten as an optimization over the block diagonal matrix S̄. Because

of its constrained structure, the matrix S̄ actually represent a point

on a sub-manifold of GM |C|
(
CT |C|). It was shown in [15], that this

sub-manifold inherits the canonical inner product and the projector

from the parent manifold GM |C|
(
CT |C|), and that its tangent vectors

posses the same block diagonal structure as S̄. This implies that if

the optimization algorithm begins on a point in this sub-manifold,

subsequent iterations will remain on the same sub-manifold. The

conjugate gradient method in [2] can be used to minimize the cost

function in (2.7) along geodesics of the manifold. To use the algo-

rithm in [2], we need to find the gradient of the cost function derived
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in (2.7). The gradient is defined on the Grassmann manifold as [2]

∇F = FS̄ − S̄S̄†FS̄, (2.10)

where FS̄ is the matrix of partial derivatives which we computed to

be

FS̄ =

log

|C|−1∑
i=1

|C|∑
j=i+1

eTrn (Σij)

 1
n
−1

∑|C|−1
i=1

∑|C|
j=i+1 eTrn (Σij) Trn−1 (Σij)

d Tr (Σij)

dS̄∑|C|−1
i=1

∑|C|
j=i+1 eTrn (Σij)

,

(2.11)

where the derivative d Tr (Σij)

dS̄
can be calculated to be [39]

d Tr (Σij)

dS̄
=
(
I

(i)
M

)†
UijV

†
ijI

(j)
M S̄†

(
I

(j)
T

)†
I

(i)
T +(

I
(j)
M

)†
VijU

†
ijI

(i)
M S̄†

(
I

(i)
T

)†
I

(j)
T ,

(2.12)

Now, we have everything we need to use the conjugate gradient al-

gorithm in [2]. More details on this algorithm are covered in Ap-

pendix A.

2.3.2 Augmented Constellation

TheM∗-dimensional constellation designed in section 2.3.1 is then

augmented with one-dimensional points using Algorithm 1 to con-

struct the final constellation C . The algorithm takes as input two con-

stellations; one is multi-dimensional with cardinality |CM | which is

half that of desired cardinality |C| = 2 |CM |, and the other one is one-

dimensional with cardinality |C1| � |CM |. The multi-dimensional

constellation is augmented with |CM | points from the one-dimensional

constellation sequentially. In particular, in each iteration, the pair-

wise distances between all one-dimensional in C1 and multi-dimensional
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points in CM is calculated, and the one-dimensional point with the

maximum minimum-distance from all points in the multi-dimensional

constellation is added to the multi-dimensional constellation and re-

moved from the one-dimensional constellation. This process is illus-

trated more clearly in Algorithm 1.

Algorithm 1 Algorithm for Augmented Constellation Design

Input: M-dimensional constellation CM and one-dimensional con-
stellation C1

Output: Augmented Constellation
Initialisation :

1: for i = 1 to |CM | do
2: for j = 1 to |C1|+ 1− i do
3: for k = 1 to |CM | − 1 + i do
4: Compute the distance dj,k =

√
2M − 2 Tr Σj,k

5: end for
6: end for
7: Find the one-dimensional point that maximizes the minimum

distance with all previous points.

Ŝj = arg max
j

min
k
dj,k

8: Add this one-dimensional point to multi-dimensional constel-
lation.

9: Remove this point from the one-dimensional constellation.
10: end for

2.3.3 Decoder

The optimal noncoherent detector for the augmented constella-

tion constructed in section 2.3.2 is the conventional non-coherent Max-

imum Likelihood (ML) decoder [34]. The probability distribution of

the received matrix conditioned on the transmitted signal matrix can
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be written as

p (Y|S) =

exp

(
−Tr

(
Y†
(
M
ρT

IT + SS†
)−1

Y

))
πTN detN

(
M
ρT

IT + SS†
) . (2.13)

The ML decoder searches over the entire constellation, C, and de-

cides in favour of the transmitted matrix that maximizes the expres-

sion in (2.13). It is worth mentioning that this decoder is not equiv-

alent to the GLRT decoder given by Ŝ = arg maxS∈C Tr
(
Y†SS†Y

)
since the transmitted matrices are not always unitary in our case.

2.4 Simulation Results

In this section, numerical simulations are used to evaluate the

performance of the proposed constellations. Our constellations are

compared with the direct designed constellations from [15], and con-

stellations constructed using exponential mapping [22]. In all sim-

ulations, the number of receive antennas N is two, and the channel

coherene interval T is equal to four symbol durations. The maximum

likelihood detector [34] is used, and the number of transmit antennas

M depends on the constellation. For the constellations constructed

using exponential mapping, we used the coherent code [22] given by

C =

 s1 + θs2 φ (s3 + θs4)

φ (s3 − θs4) s1 − θs2

 , (2.14)
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where φ2 = θ = ei
π
4 and si are drawn from QAM constellations

whose size depend on the desired Grassmannian constellation car-

dinality. In all cases, the homotheitc factors are chosen by numerical

maximization of the minimal chordal product distance [22].
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FIGURE 2.1: Performance of the augmented constella-
tion against the ones in [15] (Direct, M = 1 and M = 2)
and [22] (Exp.). For the Exp. constellation, s1 and s2

are drawn from 4-QAM const., where as s3 and s4 are
drawn from BPSK const.

Figure 2.1 shows the error performance of the 64-point augmented

constellation; superior performance over direct designed and expo-

nentially mapped constellations withM = 2 is observed for SNRs up

to 15 dB, while superior performance compared to direct designed

constellation with M = 1 is observed over 15 dB. However, some

degradation in performance is observed after 20 dB compared to de-

signed and exponentially mapped constellations with M = 2 for this

constellation size, which is expected, because we are not utilizing all

the degrees of freedom of the system.
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FIGURE 2.2: Performance of the augmented constella-
tion against the ones in [15] (Direct, M = 1 and M = 2)
and [22] (Exp.). For the Exp. constellation, s1, s2 and
s3 are drawn from 4-QAM const., where as s4 is drawn

from BPSK const.

Figures 2.2 and 2.3 show the error performance for the 128 pt and

256 pt constellations respectively, where the augmented constella-

tion exhibit better performance for low-to-medium SNRs up to al-

most 18 dB over direct designed and exponentially mapped constel-

lations with M = 2. We also note there is no loss in performance

for SNRs up to 25 dB compared to those constellations, and that the

augmented constellations outperform one-dimensional (i.e. M =

1) direct designed constellations for SNRs over 17 dB. In general,

as expected, the augmented constellations strike a compromise be-

tween one-dimensional and multi-dimensional constellations, where

the it performs better than multi-dimensional constellation for low-

medium SNRs without significant loss in performance at higher SNRs

where the system begins to be limited by the degrees of freedom.
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FIGURE 2.3: Performance of the augmented constella-
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and [22] (Exp.). For the Exp. constellation, s1, s2, s3
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FIGURE 2.4: Performance of the augmented constella-
tion against the ones in [15] (Direct, M = 1 and M = 2)
and [22] (Exp.). For the Exp. constellation, s2, s3 and
s4 are drawn from 4-QAM const., where as s1 is drawn
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FIGURE 2.5: Performance of the augmented constella-
tion against the ones in [15] (Direct, M = 1 and M = 2)
and [22] (Exp.). For the Exp. constellation, s1, s2 and
s3 are drawn from 8-QAM const., where as s1 is drawn

from BPSK const.

As the constellations grow in size, we note our designs show even

better performance for a wider range of SNRs. This can be seen

in figures 2.4 and 2.5 for the 512 points and 1024 points constella-

tions, where gains over strictly multi-dimensional constellations can

be seen all the way to an SNR of 25 dB.
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Chapter 3

Multiresolution Multicasting

using Grassmannian MIMO

codes and Space Shift Keying

In this chapter, we consider layered space-time signaling over the

multiple input multiple output multicast channel. In multi-resolution

multicast MIMO systems, the transmitter sends multi-resolution in-

formation to multiple receivers. In the scheme we propose, infor-

mation is encoded into two layers; low-resolution (LR) information

which can be detected noncoherently, and high-resolution (HR) in-

formation which must be detected coherently. Depending on the

mobility of the receiver and relative location from the transmitter,

the receiver may not be able to acquire accurate CSI. Receiver that

are not able to acquire CSI can still decode the basic low-resolution

information, while receivers with CSI can also decode the incremen-

tal high-resolution information on top of the low-resolution informa-

tion. In our proposed scheme, low-resolution information is trans-

mitted using Grassmannian constellations discussed earlier, while

high-resolution information is encoded in the indices of the trans-

mitter antennas active during the signaling interval. We will show

later that the noncoherent detector performance is not affected by
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the incremental HR information encoded in the antenna indices.

3.1 Brief Overview of Spatial Modulation

The idea of encoding information in the indices of used transmit

antennas was first proposed by Mesleh et al. [37]. It was seen as

an effort to eliminate two common problems in conventional MIMO

systems; inter-channel interference (ICI) which required complex de-

coding algorithms, and the need for precise synchronization between

antenna (Inter-antenna synchronization (IAS)). By activating only one

antenna in each channel use both problems can be eliminated. The

original concept is depicted in figure 3.1. Suppose you need to send
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��

�
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FIGURE 3.1: Illustration of the basic concept of Spatial
Modulation

two APM symbols s1 and s2, you can transmit only one symbol s1 ex-

plicitly, while the other symbol is implicitly transmitted by the choice

of the index of the transmitter antenna used.

Later Jedadeyban et al. [27] proposed to get rid of the APM sym-

bols, and encode the information only in the active antenna index,

this scheme was called space shift keying (SSK). Then, the concept

was generalized to what is called generalized space shift keying [26]. In

GSSK, each sequence of bits b = [b1b2 . . . bn] is mapped to a constel-

lation vector x = [x1x2 . . . xM ], where M is the number of available
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transmitter antenna. At any signaling interval, only MA transmitter

antennas are active; hence, the vector x has only MA nonzero val-

ues, and number of possible antenna combinations is given by
(
M
MA

)
,

each antenna combination represent a possible codeword. In Fig. 3.2,

the performance of GSSK for different M and MA is plotted against

V-BLAST [11] and SM [25]. All simulated schemes have a spectral

efficiency m = 3 bits/s/Hz, and the number of receiver antennas is

N = 4.
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FIGURE 3.2: BER performance of GSSK versus V-
BLAST, and SM, for = 3 blts/s/Hz transmission (N =

4).

In subsequent sections, we combine both Grassmannian constel-

lations and GSSK to design a multilayer encoding scheme for the

MIMO multicast channel.
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3.2 System Model

A MIMO multicast system is considered. The transmitter has M

antennas of which only MA are active at any time, and the i-th re-

ceiver has Ni antennas. The channel is assumed to be a quasi-static

Rayleigh flat fading MIMO channel, and the noise is additive white

Gaussian noise. The system can be modeled as:

Yi = SHi +

√
MA

ρT
Wi

= UAHi +

√
MA

ρT
Wi, i ∈ NC ∪NNC

(3.1)

where Yi is the T×Ni received matrix at the i-th receiver. S = UA

is the T ×M transmitted matrix, where U is the T ×MA matrix con-

taining the LR information and A is the MA ×M antenna selection

matrix containing the HR information. Hi denote theM×Ni channel

matrix between the transmitter and the i-th receiver and Wi denote

the T×Ni noise matrix at the i-th receiver. NC andNNC denote the set

of coherent and non-coherent receivers, respectively. The entries of

the channel and noise matrices are independent, and identically dis-

tributed, circularly symmetric, complex Gaussian random variables

with zero means and unit variances CN (0, 1). The channel matrix

entries are assumed to remain constant for the signaling period T ,

and then change independently to a new realization. Throughout

the rest of the chapter, receiver index i is dropped for notational con-

venience.

There are two classes of receivers. The first class of receivers are

assumed to have perfect knowledge of channel coefficients (CSI), and

thus able to perform coherent detection to retrieve both the LR infor-

mation encoded in U, and the incremental HR information encoded
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FIGURE 3.3: The MIMO Multicast System Model

in A. The second class of receivers do not have knowledge of the

channel coefficients, and thus perform non-coherent detection to re-

trieve only the LR information in U.

The LR information is encoded in the subspace spanned by the

matrix U which represent a single point on the Grassmann mani-

fold, whereas the incremental HR information is encoded implicitly

in the choice of the indices of theMA active antennas used to transmit

the matrix U using GSSK. The rows of the antenna selection matrix

A are standard unit vectors (ei) multiplied by ejθi , specifying which

antennas are active during the signaling period T and ensuring max-

imum separation between transmitted matrices. The construction of

the matrices U, A and the role of ejθi will be discussed further in

section 3.3.
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3.3 Code Structure

In the proposed scheme, information is encoded in both points

on the Grassmann manifold and the indices of the used transmit-

ter’s antennas. The transmitted matrix X is the product of two ma-

trices. The matrix U represents points on the Grassmann manifold

and contains the LR information which is detected by both classes

of receivers, and the antenna selection matrix A contains the incre-

mental HR information which is only detected by receivers that have

CSI. The construction of both matrices are discussed next. Through

out the rest of the chapter, |CL| and |CH | denote the cardinalities of

the LR and HR constellations, respectively.

3.3.1 LR Layer (Non-coherent) Code Construction

To achieve the capacity of the non-coherent layer at high SNR,

the matrix U should should represent isotropically distributed MA-

dimensional subspaces of CT , provided that Ni ≥ MA, T ≥ Ni + MA

and MA ≤ bT/2c. These conditions are necessary to ensure that the

noncoherent code can achieve the capacity [49] and are assumed to

be satisfied throughout. Each subspace represent a single point on

the compact Grassmann manifold. As discussed earlier in chapter 2,

it was shown in [15], that the chordal Frobenius norm is an appropri-

ate metric to measure the distance between Grassmannian constella-

tion points. The chordal Frobenius norm between any pair of matri-

ces Ui and Uj is given by
√

2MA − 2 Tr(Σij), where Σij is the matrix

containing the singular values of the matrix U†iUj [2]. The Grass-

manian constellation points are designed simultaneously using the

direct method in [15]. The |CL|-point constellation design problem is
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equivalent to the optimization problem given by:

min
{Uk}

|CL|
k=1

max
1≤i,j≤|CL|

Tr (Σij)

subject to Uk ∈ GMA
CT , k = 1, 2, . . . , |CL| .

(3.2)

We already addressed the solution of this optimization problem

in Chapter 2 and Appendix A.

3.3.2 HR Layer (coherent) Code Construction

The incremental HR information information is encoded in the

indices of the active antennas during the signaling interval, and is

represented by the antenna selection matrix A. This matrix specifies

the indices of the MA active antennas used to transmit the matrix U.

Let em denote the standard unit vector of size 1×M whose elements

are all zeros except the m-th element which is equal to one. Each row

of A is a standard unit vector multiplied by a complex exponential

ejθ. In particular, each realization of A will take the form

A =



exe
jθ1

eye
jθ2

...

eze
jθMA


, (3.3)

where

e1 =



1

0

0

...

0



T

, e2 =



0

1

0

...

0



T

, . . . , eM =



0

0

...

0

1



T

, (3.4)
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and the rotation angles θ1, θ2, . . ., θMA
are chosen by computer nu-

merical search, for a particular Grassmannian constellation, to en-

sure maximum possible diversity and maximum distance between

the codewords of the resulting space time block code. If the rota-

tion angles are not used, the diversity order will decrease. Each row

of the antenna selection matrix A represents the selection of one an-

tenna element out the available M antennas at the transmitter, and

each realization of A represents a particular combination of trans-

mit antennas out of the possible
(
M
MA

)
combinations. The following

simple example illustrates how the HR layer data is encoded.

Example 1 (M = T = 4,MA = 2 and |CH | = 4): In this example

the LR matrix U = [u1 u2] belongs to the Grassmannian constellation

with cardinality |CL| and represents log2 |CL| information bits, and the

matrix A represents the HR information and has four different real-

izations that represent 4 different combinations of antennas indices

(out of the possible
(

4
2

)
= 6). This HR layer code convey 2 infor-

mation bits per signaling interval T . For any realization of the LR

matrix U, the HR matrix A can take one of four possible realizations

depending on the 2 HR information bits. So, for a specific LR matrix

U, the transmitted matrix S can be one of these four codewords:

C11 = UA11 =

(
U 04×2

)
C12 = UA12 =

(
04×2 U

)
C21 = UA21 =

(
04×1 u1e

jθ1 u2e
jθ2 04×1

)
C22 = UA22 =

(
u1e

jθ3 04×2 u2e
jθ4

)
(3.5)

. Define a group of non-interfering codewords with b elements as a

group of codewords that have non-overlapping columns such that
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CijC
H
ik = 0T×T , j, k = 1, 2, ..., b, j 6= k. Hence, the four codewords in

this example constitute two non-interfering codewords groups;

C1 = {C11,C12}

C2 = {C21,C22}
, (3.6)

and the complete code is
2⋃
i=1

Ci. The rotation angles are optimized us-

ing numerical search for a given Grassmanian constellation to max-

imize the minimum distance between codewords, and ensure max-

imum diversity order is achieved. Throughout this chapter, we use

the Frobenius norm of the difference matrix between any two code-

words denoted by ‖Ci −Cj‖F as a measure of distance between those

two codewords. Maximizing the minimum distance ‖Ci −Cj‖F be-

tween all possible codewords is called the trace criterion for design

of space time codes [23] [24]. Define the minimum distance between

two non-interfering groups Ci and Cj as

dmin (Ci, Cj) = min
k,l
‖Cik −Cjl‖F , (3.7)

and the minimum distance of the entire codebook
⋃
∀i
Ci as:

dmin (C) = min
i,j,i6=j

dmin (Ci, Cj). (3.8)

Using the scheme illustrated in the example, we can send two extra

HR information bits per signaling interval T . In general, for arbitrary

number of transmit antennas M and number of active antennas MA,

a technique similar to that described in [9] can be used. This tech-

nique is given as follows:
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1. Given the total number of transmit antennas M and the num-

ber of active antennas MA, calculate cardinality of the HR con-

stellation |CH | as the largest integer ≤
(
M
MA

)
that is a power of

2.

2. Calculate the number of codewords in each non-interfering group

of codewords as b = b M
MA
c, and the total number of non-interfering

groups as n = d |CH |
b
e. In general, the last non-interfering code-

words group does not need to have b codewords.

3. Construct the first non-interfering group C1 as:

C1 = {
(
U 0T×(M−MA)

)
,(

0T×MA
U 0T×(M−2MA)

)
,(

0T×2MA
U 0T×(M−3MA)

)
,

...(
0T×(b−1)MA

U 0T×(M−bMA)

)
}

. (3.9)

4. Construct the remaining non-interfering groups Ci, i = 1, 2, . . . , n

sequentially as in step 3 while making sure that

• Every group contains codewords that have non-overlapping

columns.

• The same antenna combination can never be used more

than once.

5. Finally, the rotation angles are chosen by numerical search to

maximize the minimum distance between codewords for a given

Grassmannian constellation. In particular θopt = arg maxθ dmin (C),

where θ is a vector comprising all the rotation angles.
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The spectral efficiency of the proposed scheme can be easily esti-

mated to be η = 1
T

(log2 |CH |+ log2 |CL|) bits/s/Hz. It is worth men-

tioning that as long as this technique is used, different choices of an-

tenna combinations in non-interfering groups will exhibit the same

performance for uncorrelated channels.

3.4 Detectors

In this section, three types of detectors are discussed. For the class

of receivers that do not have reliable CSI, the optimal non-coherent

detector is introduced. For the class of receivers that possess reliable

CSI, two detectors are introduced. The optimal ML coherent receiver

jointly detects the LR information and the incremental HR informa-

tion but is computationally expensive. To reduce detection complex-

ity, a sub-optimal two step detector maybe used to first detect the LR

information, and then detect the HR information.

3.4.1 The Optimal Non-coherent Detector

The optimal ML detector when the channel is unknown to the

receiver, but the channel coefficients are i.i.d complex Gaussian ran-

dom variables, is given by

Û = arg max
U

exp

(
−Tr

(
Y†
(
MA

ρT
IT + UU†

)−1

Y

))
πTN detN

(
MA

ρT
IT + UU†

) . (3.10)

However, since the matrix U is unitary the ML detector can be sim-

plified to

Û = arg max
U

Tr(Y†UU†Y), (3.11)
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which is equivalent to the GLRT receiver given by [5]

Û = arg max
U

sup
H
p(Y|U,H). (3.12)

For the optimality of the detector in (3.11) to hold, the unitary LR

matrix U has to be subjected to a channel matrix whose entries are

i.i.d complex Gaussian random variables. From (3.1), the equivalent

channel matrix "seen" by the non-coherent layer is Heq = AHi. The

matrix A merely picks the rows corresponding to the active transmit

antennas and rotate them. Since all the entries of H are circularly

symmetric, rotation does not alter the distribution of the channel co-

efficients, and the performance of the non-coherent detector is unaf-

fected by the incremental HR information encoded in A.

3.4.2 Optimal (Joint) One Step Coherent Detector

The optimal detector in AWGN when the channel matrix H is

known a the receiver, is the minimum distance detector given by:

Ŝ = arg min
S
‖Y − SH‖2

F
(3.13)

The detector in (3.13) requires an exhaustive search over all possible

values of S. Denote the cardinality of Grassmmannian LR constel-

lation by |CL|, and the cardinality of the HR spatial constellation by

|CH |. Hence, the detector requires |CL| |CH |metric computations. For

large constellations this would be prohibitively expensive computa-

tionally and the two step detector proposed in the next subsection is

a more practical option.
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3.4.3 Two Step Suboptimal Coherent Detector

To reduce the complexity of detection, the two step detector de-

tects the LR information and then detects the incremental HR infor-

mation. In the first step, the optimal non-coherent approach in (3.11)

is used to detect the Grassmannian codeword in matrix U. The de-

tected matrix Û is assumed to be correct, and is fed to the second

step. In the second step, a maximum likelihood detector is used to

detect A:

Â = arg min
A
‖Y − ÛAH‖2

F
(3.14)

The two step detector requires only |CL|+ |CH |metric computations,

which is significantly more efficient than the |CL| |CH |metric compu-

tations required by the optimal joint detector. However, the GLRT

used in the first step does not take advantage of the CSI available;

therefore, there is a performance degradation compared to the opti-

mal joint detector.

3.5 Simulation Results

In this section, some simulation results for the proposed system

is presented. In all simulations, MA = N = 2 and M = T = 4, and

the 4-point HR layer code presented earlier in Example 1 is used.

Figure 3.4 shows the block error probability of the LR layer using the

non-coherent detector. As expected, antenna selection and rotation

performed by the HR matrix A has no effect on the performance of

the non-coherent receiver, this is also observed in figure 3.7.

In Figure 3.5, the gain of the rotation is not obvious in the 2-step

detector. This is because the size of the LR constellation is much
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FIGURE 3.4: Performance of the noncoherent detector.
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tector. (256 point LR constellation constructed on G4,2

using the direct method and 4 point HR spatial con-
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larger than the spatial HR constellation, and most errors occur be-

cause the first step fed an incorrect Û to the second step. Therefore

increasing the distance between spatial constellation points will not

have a significant effect on the HR layer performance.
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FIGURE 3.6: Performance of the 1-step coherent de-
tector. (256 point LR constellation constructed on G4,2

using the direct method and 4 point HR spatial con-
stellation.)

However, from Figure 3.6, it is obvious that the optimized rota-

tion angles in A achieve significant gain in the performance of the

joint 1-step detector.

To observe the effect of optimized rotation angles on the perfor-

mance of the two step detector, the constellation size of the LR layer

was reduced to only two. Figure 3.8 shows the performance of the

two step detector in that case. The vital role of the rotation angles is

evident, and a gain of almost 7 dB can be observed at a symbol error

rate of 10−4.

Finally, in Fig. 3.9, we compare the performance of our proposed

HR layer code against the HR layer code proposed in [21]. In [21], the

same system model used here applies, and the LR layer information
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FIGURE 3.7: Performance of the noncoherent detector.
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is also encoded the subspace spanned by the transmitted codeword,

but the HR layer information is encoded in the particular basis of the

subspace. Square unitary matrices are used to rotate the subspace

basis, and are designed by direct optimization on the unitary group

UM . Results show that in the simulated case, the proposed spatial

codes outperforms the codes in [21], and consequently [20].
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FIGURE 3.9: Comparison with the unitary code in [21]
(2 point LR constellation constructed on G4,2 and 4

point HR constellations.)
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This thesis consisted of two parts. In chapter 3, we proposed

a new design approach to construct space-time codes for the non-

coherent MIMO channel. In our approach, we let the number of

transmit antennas vary across constellation points. We used a conju-

gate gradient method to design Grassmannian constellations of dif-

ferent dimensions, and mixed points from these constellations to con-

struct new constellations where the number of transmit antennas

used is variable. Numerical simulations were used to evaluate the

performance of the proposed constellations, and results show that

our constellations show superior performance at low-to-moderate

SNRs, without sacrificing performance at practical higher SNRs up

to 25 dB.

In chapter 4, we proposed a new multi-resolution space-time sig-

naling scheme for the MIMO multicast channel. The proposed scheme

encodes information in two layers; low-resolution information is en-

coded using a Grassmannian noncoherent code that could be de-

coded without knowledge of CSI at the receiver, while high-resolution

incremental information is encoded in the indices of the transmitter

antennas using GSSK. We showed that the HR layer is transparent to
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the underlying LR layer. Numerical simulations suggest that the er-

ror performance of the HR layer in the proposed scheme is superior

to schemes using conventional unitary space-time block codes [20],

and unitary constellations generated by direct numerical optimiza-

tion on the unitary group [21].

4.2 Future Work

We mention two directions to expand the work presented in this

thesis. For the first part on noncoherent MIMO codes, the most im-

portant contribution to make would be to find the ergodic capacity

for any SNR, and thus find the optimal signaling distribution that

would achieve capacity regardless of the SNR.

For the second part on multilayer coding, one possible direction

for expanding the work done would be to explore using unitary space-

time on top of transmitting antennas indices to encode information in

the high-resolution layer. Using unitary codes for the high-resolution

layer was proposed in [19] [20], but encoding additional information

in the indices of the transmitting antennas would boost the transmit-

ted data rates in the high-resolution layer.
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Appendix A

Conjugate Gradient on The

Grassmann Manifold

Nonlinear conjugate gradient techniques are simple to implement,

require little storage, and have superlinear convergence in the limit.

Conjugate gradient method was first developed to solve a linear sys-

tem of n equations in n unknowns, or equivantely, minimize a quadratic

function on Euclidean space Rn in n steps[33]. However, it could

be easily modified to find the minimum of a nonquadratic function

on Rn. In particular, algorithms by Fletcher-Reeves [10] and Polak-

Ribiere [40] assume that the second order Taylor expansion provides

a sufficiently accurate representation of the function near the mini-

mum, and thus general functions can be minimized using the conju-

gate gradient algorithm; but, convergence in n steps is not guaran-

teed.

In Euclidean space, the conjugate gradient method is straight for-

ward. Given a function f : Rn 7→ R with local minimum at x̂ which

is at least twice differentiable and an initial point xo ∈ RN , compute

the negative gradient direction H0 = −G0; then, the iterative part

starts. In the iterative part, (i) a line search is performed to find the

step size tmin which minimizes f(xk+1) where xk+1 = xk + tHk, (ii)
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the point is updated xk+1 = xk + tminHk, (iii) the gradient at the up-

dated point Gk+1 is computed and (iv) the new search direction is

computed Hk+1 = −Gk+1 +γkHk, where γk is chosen to ensure conju-

gancy between old and new search directions [13]. It is worth men-

tioning that when the objective function is non quadratic, but closely

approximated by a quadratic function, the algorithm converges more

rapidly if it is reset by setting Hk+1 = Gk+1 every n step.

Algorithm 2 Conjugate Gradient for Minimizing F(Y) on The Grass-
mann Manifold
Input: Initial point on the Grassmann manifold Y0.
Output: Another point on the Grassmann manifold that minimizes

the objective function F (Y )

1: Compute G0 = FY0 − Y0Y
†

0 FY0 then set H0 = −G0.
2: while true do
3: Call a line search over t to minimize F (Yk(t)) where

Y (t) = Y V cos (Σt)V † + U sin (Σt)V †

and UΣV † is the compact singular value decomposition of Hk.
4: Update: tk = tmin and Yk+1 = Yk(tk).
5: Compute Gk+1 = FYk+1

− Yk+1Y
†
k+1FYk+1

6: Parallel transport Hk and Gk to the point Yk+1:

τHk = (−YkV sin (Σtk) + U cos (Σtk)) ΣV †

τGk = Gk − (−YkV sin (Σtk) + U (I − cos (Σtk)))U
†Gk

7: Compute new search direction: Hk+1 = −Gk+1 + γkτHk,

where γk = 〈Gk+1−τGk,Gk+1〉
〈Gk,Gk〉

(Polak-Ribiere),
and 〈∆1,∆2〉 = Tr ∆†1∆2

8: Reset Hk+1 = −Gk+1 if k + 1 ≡ 0 mod M(T −M).
9: Stopping check:

10: if F (Yk)− F (Yk+1) ≤ ε then
11: stop
12: end if
13: end while

The ideas behind the conjugate gradient algorithm in flat space

can be generalized to Riemannian geometry. However, unlike flat
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space, the line search will be performed along a geodesic on the man-

ifold and tangent vectors must be parallel transported along geodesics

to compute the new search direction. Let G be a smooth Grassman-

nian manifold, and let f be a smooth differentiable function defined

on this manifold. Given an initial point Y0 on G, compute gradient of

F at Y0 given by G0 and set search direction H0 = −G0. The iterative

part goes as follows: (i) perform a line search over t to find the step

size tmin that minimizes F (Y (t)) along the geodesic in the search di-

rection Hk, (ii) update tk = tmin and Yk+1 = Yk(tk), (iii) compute

the gradient at Yk+1 given by Gk+1, (iv) parallel transport the tangent

vector Gk and Hk to the updated point Yk+1 and (v) compute the

new search direction combining the old search direction and the old

gradient. The new and old search directions must satisfy the conju-

gacy condition. To improve the computational efficiency of this step,

finite difference approximations are usually used as in the formu-

las proposed by Fletcher-Reeves [10] and Polak-Ribiere [40]. Using

the ideas and concepts discussed earlier, the conjugate gradient al-

gorithm to minimize a function defined on the Grassmann manifold

is given in Algorithm 2.
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