
v

List of figures
FIGURE 1: SLAM IS A SUBSET OF THE TASKS THAT NEED TO BE CARRIED OUT BY AUTONOMOUS ROBOTS [10]. 3
FIGURE 2: THE GRAPHICAL MODEL OF SLAM SHOWS THE DEPENDENCIES IN SLAM [1]. ... 3
FIGURE 3: AN EXAMPLE OF TWO FUNCTIONS AND THEIR REPRESENTATION (BLACK LINES) BY PARTICLE SAMPLING [5]. 6
FIGURE 4: THE SYSTEM ARCHITECTURE OF THE RATSLAM SYSTEM [14]. .. 7
FIGURE 5: THE DIFFERENCE BETWEEN TOPOLOGICAL AND METRIC REPRESENTATIONS OF THE SAME ENVIRONMENT [5]. 10
FIGURE 6: THE SONAR MODEL USED TO BUILD GRID MAPS [19]. ... 11
FIGURE 7: LOCAL CONSISTENCY DOES NOT GUARANTEE GLOBAL CONSISTENCY [17]. ... 13
FIGURE 8: POINTS WITHIN THE POLYGON ARE CLOSER TO P1 THAN ANY OTHER POINT [22]. .. 13
FIGURE 9: THE THINNING OF A T SHAPE IN TWO STEPS [22]. .. 14
FIGURE 10: THE INPUTS AND OUTPUTS OF (A) SLAM (B) MOT (C) THE COMPLETE SYSTEM [24]. 16
FIGURE 11: DYNAMIC BAYES NETWORK FOR MOVING OBJECT TRACKING [24]. .. 16
FIGURE 12: THE EXPERIMENTS CONDUCTED BY [20] TO FIND THE GEOMETRIC FEATURES OF THE LEG. 18
FIGURE 13: EXAMPLE OF TOPOLOGICAL MAP WITH COORDINATE FRAMES [29]. ... 20
FIGURE 14: THE EXPERIMENTAL SETUP OF [29]. .. 21
FIGURE 15: ELEMENTS OF THE SETUP USED BY [30]. .. 21
FIGURE 16: CORNERS IDENTIFICATION IN A TYPICAL LASER SCAN [26]. ... 23
FIGURE 17: SIMULATION RESULTS OBTAINED BY [26]. .. 23
FIGURE 18: RESULTS OF THE SECOND EXPERIMENT [32]. ... 24
FIGURE 19: THE TESTS USING VISION ARE SUPERIOR TO THOSE USING RANGED DATA ONLY [33]. 25
FIGURE 20: EXAMPLE OF T-SHAPE BEING CONVERTED TO SKELETON [34]. .. 26
FIGURE 21: THINNING OF TOPOLOGICAL MAP FROM OCCUPANCY GRID [34]. .. 26
FIGURE 22: THE ROBOT INVESTIGATES FEATURES IN ITS VICINITY [34]. ... 27
FIGURE 23: THE MAP OF THE ENVIRONMENT (A) AND THE MAP RESULTING FROM EXPERIMENTS (B) [34]. 27
FIGURE 24: THE ARCHITECTURE OF DYNAMIC EKF-SLAM [35]. ... 28
FIGURE 25: THE ROBOT PATH ESTIMATION ERROR FOR THREE DIFFERENT SIMULATIONS ADAPTED FROM [35]. 29
FIGURE 26: THE ERROR IN LANDMARKS LOCATIONS FOR EACH LANDMARK IN THE THREE DIFFERENT SIMULATIONS ADAPTED FROM

[35]. .. 29
FIGURE 27: LASER SCAN MAP BEFORE CORRECTION (A) AND GIRD MAP AFTER CORRECTION (B) [36]. 30
FIGURE 28: THE RESULTS OF APPLYING SCAN MATCHING SLAM TO INDOOR ENVIRONMENT [54]. 31
FIGURE 29: THE METHOD PROPOSED BY THE AUTHORS IS USED TO DETECT CORNERS AND PLANES [37]. 32
FIGURE 30: THE DIFFERENCE BETWEEN STABLE (A) AND UNSTABLE (B) INTERSECTIONS [37]. .. 32
FIGURE 31: THE EXPERIMENTAL SETUP USED BY [37]. .. 33
FIGURE 32: THE SUMMARY OF THE WHOLE PROCESS USED BY THE AUTHORS [9]. ... 33
FIGURE 33: THE MAPPING OF SQUARE ROOM (A) USING SONAR ONLY, (B) USING MULTI-SENSOR FUSION [9]. 34
FIGURE 34: THE TRIANGULATION GEOMETRY [38]. .. 35
FIGURE 35: THE SUMMARY OF THE ALGORITHM USED BY [18]. .. 36
FIGURE 36: THE COMPARISON OF MAPPING RESULTS BETWEEN THE RAW ODOMETRY READINGS (A) AND THE PROPOSED

METHOD (B) [18]. .. 37
FIGURE 37: THE EXPERIMENT ENVIRONMENT. THE MAP (LEFT) AND THE CORRESPONDING SCENE (RIGHT) [20]. 38
FIGURE 38: THE LASER SCAN AND THE ALGORITHM RESULT [20]. .. 38
FIGURE 39: THE RESULTS FROM RATSLAM IN A UNIQUE INDOORS ENVIRONMENT (B) COMPARED TO PURE ODOMETRY (A) [14].

 ... 41
FIGURE 40: THE EXPERIMENTAL SETUP FOR VISION SLAM [16]. .. 42
FIGURE 41: THE EXPERIMENTAL ENVIRONMENT [8]. .. 43

121

The sigma points can be propagated through any non-linear function and the properties

estimated accurately [65]. �d�Z���� ���Z�}�]������ �}�(�� �‰���Œ���u���š���Œ�•�� �l�U�� �r�U�� ���v���� �t�� �����š���Œ�u�]�v���� �š�Z���� �•�‰�Œ�������� ��nd

�v���š�µ�Œ���� �}�(�� �š�Z���� ���]�•�š�Œ�]���µ�š�]�}�v�� �t�� �]�•�� �•���š�� �š�}�� �î�� �(�}�Œ�� �'���µ�•�•�]���v�� ���]�•�š�Œ�]���µ�š�]�}�v�� �Á�Z�]�o���� �r�� �]�•�� �µ�•�µ���o�o�Ç�� ���� �•�u���o�o��

number.

4.5.3 UKF Algorithm for fusion of odometry and scan matching

The scan matching algorithm developed is used to update the robot position using the

unscented Kalman filter. A function called UKF was developed for this purpose and the function

will need two laser scans at least to match. Thus the first step is to find the current number of

scans to know whether a new scan must be read or two scans compared.

Once two scans are obtained and segmented, the properties of the segmented lines must be

found for data association. These are the number of laser point, the distance between the line

endpoints, the gradient, and the error. Once paired, the orientations of the lines are worked out

and subtracted to find the expected rotation. However, consider figure 113 where the line

changes quadrant due to the robot rotation. The atan function will return about 80 degrees for

figure 113 (a) and -80 for 113 (b). This will yield a wrong rotation of 160 degrees. To correct this

issue, if the gradient is found to be a negative angle 180 is added to the result.

Figure 113: a problem that could arise due to line orientation and use of atan function.

The flowchart for this function is shown in figure 114. The function is called by the main code

periodically every time the robot moves more than 0.1m or rotates more than 5 degrees.

122

Figure 114: The flow chart for the scan matching producing inputs for UKF function.

The process of pairing up the two segmented arrays shod and shod_G was explained in the flow

chart in figure 90 while the process of finding pose flow chart is in figure 115. Figure 90 is the

data association step which is very important for the success of the algorithm as wrongly paired

lines will give rise to wrong scan matching. Although the weight function helps to lessen this

effect, it cannot continuously accept errors in data association. Environments which show highly

similar line features or ambiguous for the robot can cause a failure of the scan matching

algorithm increasing the odometry error. This is because in case of algorithm failure (high errors

123

in lines or low association weight), the robot switches to believing its internally predicted state

more compared to measurements due to the operation of the UKF.

Figure 115: The find pose change function (a) finds rotation, and (b) finds dx and dy.
(b)

(a)

124

As can be seen, if the maximum weight is less than 0.9 then the estimate is likely to be

erroneous and thus is rejected in favor of odometry. The second part of figure 115 is applied

also to rotated line features and results are preferred if they are closer to prediction than point

based method.

i. Estimation of noise and measurements covariance

The Kalman filter needs an estimate for process noise and measurement noise. For the process

noise, the robot used is the P3DX of the differential drive type that moves only in the x direction,

and rotates around its centre or a centre of rotation. Thus, the translation (and hence) the error

in y direction are dependent on both the x direction translation and the rotation from the last

time step. The errors in x and y forward motion (x direction) are independent.

Experiments were conducted to measure the variation in x, y, and angular position of the robot

with various commands and the results were used to find a relation:

𝒗𝒂𝒓(𝒚) = 𝟎.𝟎𝟏𝒅𝒙 + 𝟎.𝟓𝒅𝒕𝒉.𝒅𝒙 (78)

The multiplication with dx is due to the fact that the error in orientation is propagated to the y

direction only when the robot moves. The variance in x position was found to be smaller than

that in y position and was hard to measure accurately over a distance of 5 meters but was found

to be:

𝒗𝒂𝒓(𝒙) = 𝟎.𝟓𝒅𝒕𝒉𝒅𝒙 (79)

The Variance in orientation is simply:

𝒗𝒂𝒓(𝒕𝒉) = 𝟎.𝟓𝒅𝒕𝒉 (80)

For the measurement noise, the measurement noise covariance is built in already in the

Gaussian weight function that was used.

The variances developed serve only as empirical estimates for the UKF algorithm. Alternatively,

the use of fixed variances showed greater stability in operation. The use of these variable

variances sometimes led to poor behavior of UKF although the reason for this is not known.

Therefore, fixed variables based on an average change of 10 cm and 5 degrees were used.

125

4.5.4 Simulation results and discussion

MobileSim was used to test the UKF algorithm with the robot. The robot was moved in a straight

line but at an inclined starting angle and the path is shown in figure 116.

Figure 116: The environment used for first simulation.

The environment is an indoors environment with large dimensions and few observable lines at

any point in the environment to makes the scan matching algorithm based on features likely to

produce low number of lines and hence will have low accuracy. However, through the use of the

UKF the noisy measurement is combined with the odometry estimate to a more accurate

estimate. The estimate of x and y positions is shown in figure 117 while the estimate or

orientation is shown in figure 118. The output from scan matching at different time steps is

shown as well in the same figure. Notice how noisy the scan matching output is due to corridor

like environment.

Starting point

126

Figure 117: The estimates of x and y positions from UKF versus odometry.

Figure 118: The orientation estimate from UKF and odometry (left) and the output of scan matching function
(right).

Notice the how the covariances start at zero and increase but to a steady state value. The y

position estimate shows slight negative result in accordance with inclination of the robot. The

peak in figure 118 is attributed to wrong data association and decreases as soon as the lines are

correctly associated. In the second simulation the robot was moved in a straight line but the

inclination angle was increased considerably to see if it affects the accuracy of scan matching

and UKF algorithms. The path and the environment are show in figure 119.

127

Figure 119: The environment used for the second simulation.

The estimate of x and y positions is shown in figure 120 while the estimate or orientation is

shown in figure 121. Further, the output from scan matching at different time steps is shown as

well in the same figure. Notice how noisy the scan matching output is.

Notice the how the covariances start at zero and increase but to a steady state value. The y

position estimate shows slight negative result in accordance with inclination of the robot.

However, the value is larger due to the larger inclination.

Figure 120: The estimates of x and y positions from UKF versus odometry.

128

Figure 121: The orientation estimate from UKF and odometry (left) and the output of scan matching function
(right).

The robot was then tested in a purely corridor environment with only two lines on the side. This

environment is difficult compared to typical indoors environments where many lines are found.

Figure 122: The corridor environment used for the third simulation.

The estimate of x and y positions is shown in figure 123 while the estimate or orientation is

shown in figure 124. Further, the output from scan matching at different time steps is shown as

well in the same figure. Notice how noisy the scan matching output is. Notice the how the

covariances start at zero and increase but to a steady state value. The y position estimate shows

variation around zero in accordance with motion of the robot.

129

Figure 123: The estimates of x and y positions from UKF versus odometry.

Figure 124: The orientation estimate from UKF and odometry (left) and the output of scan matching function
(right).

The robot was tested this time by executing circular motion where the rate of change of

orientation is significantly larger than the previous cases. The path followed is shown in figure

125 with the starting position marked with black circle. The robot executed one and half

rotation around the circle. The estimate of x and y positions is shown in figure 126 while the

estimate or orientation is shown in figure 127 Further, the output from scan matching at

different time steps is shown as well in the same figure. Notice how noisy the scan matching

output is.

130

Figure 125: The robot in circular motion

Figure 126: The estimates of x and y positions from UKF versus odometry.

Figure 127: The orientation estimate from UKF and odometry (left) and the output of scan matching function
(right).

131

Notice the how the covariances start at zero and increase but to a steady state value. At time

step 40 there is increase in covariance due to change in view angle as the robot enters the new

rotation. However, following that the covariance falls again. Further, note that the orientation

estimate of the UKF varies between 0 and 360 degrees while that of the odometry varies

between 180 and -180 since it considers angles above 180 negative. The slight drift upwards is

due to the fact that UKF starts one "frame" later than odometry since it needs two consecutive

laser frames to produce its estimate. This can be solved by adding the dx, dy, and dth for thr first

frame.

4.5.5Discussion

The use of filters to fuse data from different sources can overcome noisy sensor data which

would otherwise lead to noisy estimates of robot pose. Further, the use of scan matching based

on features and local change is fast to process making it real tie process. However, the use of

features means that scan matching fails to provide enough data in featureless spaces or in some

environments may detect only few features reducing the accuracy of pose estimate change.

Therefore, an approach combining point to point and feature to feature scan matching

algorithms would be more robust and faster than either. In its basic form it would start using

feature matching and a variance threshold is used to switch to point to point matching if

needed.

The presence of inclined lines in the environment for prolonged periods of time may lead to

slight errors in the y estimate of position. This is due to the use of the local frame of reference

for scan matching. However, the effect may be overcome by the use of an algorithm to detect

line gradients and find values for change in x and y that minimize the error between expected

and actual y intercept. This was implemented but the results usually showed large errors mainly

due to the lines with angles close to 90 degrees as these have infinite (practically very large)

value of y intercept.

However, the effect of inclined lines is likely to be less obvious in small local environment

especially with the presence of dynamic objects that could block the view of the lines from the

robot. The UKF algorithm used was proven n the experimental grid map building in section 3.9.

132

4.6 Grid map

4.6.1 Grid map structure

The grid map developed was intended to be scalable and growing with the robot motion.

However, the problem of increasing computational load will eventually be encountered

rendering the algorithm non real time. Therefore, a method was developed where the map is

segmented into tiles of equal size (number of grid cells within each tile is the same) and as the

robot moves on and explores new areas new tiles are added as shown in figure 128 it can be

seen that when the robot navigates within a tile, it only considers the current tile for the

updating of grid cells i.e. updates only the local tile. However, if a ranged sensor reading extends

into another tile then the robot shifts from the current tile to upgrade grid cells in the tile where

the obstacle is then shifts back the active to the tile it is located into.

Figure 128: The process of extending the grid map by adding new tiles as the robot moves on.

Another difficulty to be addressed is to reduce the computational cost of updating grid cells

within the local (active) tile. Even after localizing the update process, the computational load of

updating a large number of grid cells within the same tile cannot be carried out in real time.

Therefore, a fast sensor model has to be developed for both the laser and sonar sensors. The

segmentation of global map will be discussed first then sensor models afterwards.

i. Map segmentation

Map segmentation is carried out to enhance the computational efficiency of the algorithm as

well as render the algorithm scalable. The segmentation is carried out by breaking the grid map

in to a series of smaller grid maps which are not predefined but rather are added as the robot

navigates. The robot starts in the first tile (home tile) positioned in the center of the tile. The tile

has the dimensions shown in figure 129.

133

Figure 129: The dimensions of the tile.

The center position of each tile is given the coordinates of (100,100) i.e. cell number 100 in x

and 100 in y (center of tile). Given a robot position (xr, yr), the grid cell in which the robot exists

is given by the function:

𝒙𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍(𝒙𝒓−𝟓𝟎)
𝟏𝟎𝟎

 𝒚𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍(𝒚𝒓−𝟓𝟎)
𝟏𝟎𝟎

 (81)

Where the function ceil is the ceiling function that rounds up variables to the nearest whole

number, subscript r indicates robot global variable (pose) in metric space in mm, and subscript

cell indicates the grid cell domain. Millimeters are used since the robot odometer outputs

readings in mm. If a ranged reading (from a laser or sonar) to an obstacle has to be mapped to a

grid cell, then the obstacle global position is first obtained from the robot global position and its

position in the robot's local frame and the following function is used:

𝒙𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍�𝒙𝒑−𝟓𝟎�
𝟏𝟎𝟎

 𝒚𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍�𝒚𝒑−𝟓𝟎�
𝟏𝟎𝟎

 (82)

Where subscript p indicates the global position of the obstacle in the metric domain in mm.

Equations 81 and 82 are only applicable to grid maps of size 20 meters by 20 meters with grid

cells of the size 0.1 m by 0.1 m.Furthermore, the opposite conversion from grid cell domain to

metric domain is desired in parts of the algorithm. In order to carry this out it is assumed that

each grid cell location is represented by the metric coordinates of its center thus if the robot

exists in cell (100,50) then its metric location in tile can be found using:

𝒙𝒓 = 𝟏𝟎𝟎𝒙𝒄𝒆𝒍𝒍 𝒎𝒎 𝒚𝒓 = 𝟏𝟎𝟎𝒚𝒄𝒆𝒍𝒍 𝒎𝒎 (83)

However, equation 83 is modified (to be equation 198) due to the segmentation of grid maps

into tiles.In equations 81 and 82 the grid cells is considered to be in a different tile if its

134

coordinates are outside the range of the local tile. For example, if the robot in tile 1 senses and

obstacle and using equation 83 finds that the coordinates of the obstacle are (120,230) then the

y ordinate is not within the limits of the tile (0-200) and hence the obstacle lies in a tile northern

to the current robot tile. Thus, the robot needs to keep a stack of tiles ordered labeled with their

spatial positions relative to one another.

ii. Stacking of map tiles

The grid map is expanded as the robot moves by the addition of tiles. Those tiles are stacked

and indexed according to their position relative to the starting tile. Essentially, the grid map

becomes a stack of tiles arranged in the order in which they were created and indexed by their

location. The stack of tiles is shown in figure 130 where the subscript indicates the order in

which the tiles were created. Therefore T1 is the home tile and all other tiles are relative to it.

Figure 130: The grid map is a set of tiles arranged in the order in which they appear.

The index which is assigned to a tile depends on its geometrical relation to the starting tile

which is given an index of (0,0) i.e. zero x position and zero y position.

The robot knows it has reached the end of the current tile if local cell address from equation83

exceeds the limits of the tile (0-200) in which case a new tile is created in the appropriate

location and set as a working tile. Therefore, when converting from grid cell domain to metric

domain the working tile has to be taken into account and this modifies equation 83 to become:

𝒙𝒓 = 𝟐𝟎𝟎𝑻𝒙 × 𝟏𝟎𝟎𝒙𝒄𝒆𝒍𝒍 𝒎𝒎 𝒚𝒓 = 𝟐𝟎𝟎𝑻𝒚 × 𝟏𝟎𝟎𝒚𝒄𝒆𝒍𝒍 𝒎𝒎 (84)

Where Tx is the x ordinate of tile index, and Ty is the y ordinate of tile index while other symbols

have the same meanings as in equation 83.

135

4.6.2 Sensor model

i. Laser sensor model

The laser model used was developed with the size of grid cells in mind as the 10cm by 10 cm cell

size means that the probabilistic model within the individual grid cell can be replaced by a

different model where the obstacle cell is considered blocked and cells in between the obstacle

cell and the laser sensor as unblocked. To limit the computation and enhance the speed of

processing, only local readings less than 3000 mm away from the laser were. The laser used is

the LMS-100 laser with a range of 15m and update rate of 10 Hz. Figure 131 part (a) shows an

example of a laser scan superimposed on the grid cell. The blue lines indicate the laser scan. In

this example only one obstacle is found in the cell marked with an x. in thiscase that cell will be

marked as blocked and updated using Bayes rule if its distance from the laser is less than 3000

mm and all cells lying on a line from the laser sensor to the obstacle cells will be declared as

unblocked and updated as well. The result is shown in figure 131 part (b).

Figure 131: The result of grid cells update. Blue indicates updated empty and green indicates updated full.

Cells in which the obstacle exists are labeled with a probability of 1 of being full. While cells that

are to be vacant (blue cells in figure 113) are updated using Bayes rule based on their prior

probability and a sensor probability of 0.3. Thus,

𝑷(𝑪𝒆𝒍𝒍 𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅| 𝑹𝒆𝒂𝒅𝒊𝒏𝒈)𝒎.𝒏 = 𝜼 × 𝑷(𝑹𝒆𝒂𝒅𝒊𝒏𝒈|𝒄𝒆𝒍𝒍 𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅)𝒎,𝒏 × 𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅)𝒎,𝒏 (85)

Where subscript (m,n) indicates grid cell (m,n). This procedure is repeated 181 times for the 181

laser rays. Although the discretization of the laser rays superimposed on the grid map creates

136

distortion, the use of probabilistic update overcomes this distortion as the robot moves. This

method of update is efficient as it does not update all the grid cells in all the tiles of the map nor

does it update al the grid cell in the current tile but instead updates the cells likely to be affected

by the laser ray

ii. The flow chart for the laser sensor updating

Figure 132 shows the flow chart describing how the laser sensor data is used to update cells.

137

Figure 132: The flow chart for the grid map function that updates the occupancy propabilities of grid cells based on
laser sensor.

The flow chart in figure 132 has to check if the grid cell that is to be updated is in the current

operating tile or not. Therefore, a function called allocateTile was developed to find the tile in

which the grid cell is operating and to convert from global position to local position in a different

tile. The desired tile is not found in the stack then it is created by the allocateTile function.

For the map to be more robust to features that cannot be conveniently detected by the laser

sensor e.g. glass, the sonar sensor must be used. The fusion of the laser and sonar sensor occurs

138

in the grid map based on the probabilistic update while giving higher weight to the data

presented by the laser sensor.

iii. Sonar sensor model

For the sonar sensor consider figure 133 which shows a sonar beam superimposed on a grid

map. The sonar beam is divided into two regions, a green region (region 1) where the obstacle is

likely to be and a blue region (region 2) that is likely to be empty.

Figure 133: A sonar beam superimposed on a grid map.

The cells are updated as shown in figure 134 in two regions using two equations 86 and 87.

Figure 134: The updating of cells using the devised sonar model.

The only cells updated in region 2 are the cells highlighted in blue. The cells are updated with a

probability being occupied according to the equation:

139

𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅) = 𝟏 −
𝑹−𝒓
𝑹 +𝜷−𝜶𝜷
𝟐

 (86)

Where R is the maximum sonar range, r is the current range to obstacle, 𝛽 is the sonar cone

angle, and 𝛼 is the angle of the grid cell with respect to the axis of the sonar cone. This

probability is fused with the prior of each cell using Bayes rule. The rest of cells in the blue

region are not updated. The cells in region 1 (green in figure 134) are updated using the

equation:

𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅) =
𝑹−𝒓
𝑹 +𝜷−𝜶𝜷
𝟐

× 𝑴𝒂𝒙𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅 (87)

Where Maxoccupied is a predetermined value used to limit the maximum certainty in a grid cell

and is set to 0.98. When dealing with grid cells for update with sonar sensor, the allocateTile

function is called just as it is called in the laser updating function to check if the obstacle exists in

a different tile from the active tile. This is because the sonar sensor is a ranged sensor.

iv. Flow chart for the sonar sensor updating

There are 8 sonars on the P3Dx robot used since there was no back sonar array and the front

array has 8 sonar sensors thus the updating process was repeated for the 8 sonar sensors. The

sonar model update algorithm works exactly like the laser flow chart but with 8 sonars updated

instead of 181 laser readings.

4.6.3 Simulations and comparing the developed sonar model to standard
model

i. First trial

The Developed sonar model was compared to the model commonly used from [19]. The robot

was moved in a simulation environment for the comparison. The sonar data and robot

odometry were collected and used to simulate the grid map in MATLAB. The first simulation

environment tested is shown in figure 135.

140

Figure 135: The first trial of the robot in a simulation environment.

The robot moved a distance of about 3.6m and therefore it is expected that the algorithm

developed for grid mapping will use only 1 tile. Therefore, the environment was set as a grid

map of size 20m by 20m and 200 by 200 cells for proper comparison. First, the standard sonar

model algorithm was run where every single grid element is updated for every sonar sensor.

This process makes it slow and computationally intensive. The pseudo code is: For every grid

cell:

1. i=1

2. if i<9

3. find range and angle to the grid cell from sonar sensor

4. if range and angle are within region 1:

5. upgrade cell using equation 87

6. if range and angle are within region 2:

7. upgrade cell using equation 86

8. increment i

9. if i>9:

10. end

The result of the map produced by the commonly used sonar model that is proposed by [19] is

shown in figure 136.

Start

141

Figure 136: the map for the enviornment in figure 135 using standard sonar model.

The mean time taken for 80 updates was 0.196 seconds (196 ms). After that the developed

sonar model was tested. The result with the same environment is shown in figure 137.

Figure 137:A zoomed version of the map for the enviornment in figure 135 using developed sonar model.

The developed sonar model took on average 0.0078s (7.8 ms) for 80 runs. Thus it was faster

than the original model although it missed more details in the environment. However, the

general layout of the environment and close obstacles are clear.

142

ii. Second trial

A second trial was set with the robot exploring more of the simulated environment. The path

followed by the robot in the environment is shown in figure 138. The grid map produced by the

standard sonar model is shown in figure 139. This map was produced by the standard sonar

model this time a larger environment.

Figure 138: The second trial in the same environment.

Figure 139: The map for the enviornment in figure 138 using standard sonar model.

The map is made up of 148 runs which on average took 0.1645s (164.5 ms) per run to update all

sonar sensors. The developed sonar model was tested and the result is shown in figure 140.

Start

143

Figure 140: The map for the enviornment in figure 138 using developed sonar model.

It is made up of 148 runs which on average took 0.0058s (5.8 ms) per run. The resulting map

looks slightly "empty" as the sonar readings were limited to 3000 mm from the robot. If longer

sonar readings were included, the resulting map would be as shown in figure141. However, the

time it takes to build this map per scan increases so a compromise distance of 3000 mm is used.

Figure 141: The map with develoed sonar model if longer readings are taken ino aacount.

