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Abstract 

Simultaneous localization and mapping (SLAM) is a demanding and important requirement for 

truly autonomous robots. The ability to localize in an unknown environment enables the robot 

to operate autonomously. Many problems need to be tackled before the goal of SLAM is 

achieved. Moreover, added to the many challenges in the field is the problem that robots have 

limited computational resources and limited sensors. Furthermore, many sensors may suffer 

from degraded performance in different situations in the environment.  

The environment itself can be a challenge for SLAM as it may include moving (dynamic) objects 

of various shapes and irregular velocity profiles, changes in semi static structures (chairs and 

tables indoors), changes in illumination in case of camera, and ambiguity that could result from 

wrongly identifying landmarks. For this reason, many researchers limit their approaches to 

simple scenarios or to situations where only a subset of the problem is solved. The environment 

could be modified to overcome the ambiguity of landmarks or dynamic objects could be 

excluded to simplify the problem. Thus more research and work is needed to lift those 

assumptions to enable truly autonomous robots. There are many techniques and solutions used 

to face the mentioned challenges such are sensor fusion, modeling the environment, data 

association and use of bioinspired models. 

This thesis will present SLAM in the current literature to benefit from then it will present the 

investigation results for a hybrid approach used where different algorithms using laser, sonar, 

and camera sensors were tested and compared. The contribution of this thesis is the 

development of a hybrid approach for SLAM that uses different sensors and where different 

factors are taken into consideration such as dynamic objects, and the development of a scalable 

grid map model with new sensors models for real time update of the map. This is challenging 

since the interaction between modular algorithms changes when they are integrated in a full 

system with other algorithms due to data type modification and timing. The thesis will show the 

success found, difficulties faced and limitations of the algorithms developed which were 

simulated and experimentally tested in an indoors environment. From the simulations and 

experiments it was concluded that the hybrid approach is able to operate in an indoors 

environment and build a scalable map.  
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Chapter 1 

1.1 Introduction 

In this chapter the objectives and motivation behind this thesis will be presented. Further, the 

foundation of simultaneous localization and mapping (SLAM) in mobile robots will be introduced 

together with the different approaches and methods. Finally, the thesis outline will be 

presented. 

1.2 Motivation and objectives 

The objectives of this thesis are: 

• The development and testing of  a SLAM system for indoors environment 

• Adopting a hybrid approach using grid maps with option for scalability 

• Investigate and benefit from sensor fusion to benefit from the advantages of sensors 

• Detection of dynamic objects and exclusion from the map via tracking  

In details, the objective of this thesis is to investigate the possibility of developing a hybrid SLAM 

system that will address some of the research challenges in SLAM such as scalability problem, 

sensor fusion, bounding odometry error, and dynamic objects extraction. The SLAM system to 

be developed will be used in indoors environment extracting features in structured 

environments. In this thesis sensor fusion will be used to enable the robot to integrate 

information from sonar, laser and camera sensors. The image processing will be carried out 

using openCV software with the goal of detecting dynamic objects in images, and carrying out 

obstacle avoidance.  

Further, the proposed approach will be tested for each algorithm individually before applying it 

in combined form to reflect the goals and see the effects and difficulties that arise from 

integrating the algorithms. The system will be developed and will implement scalable mapping 

techniques to enhance its ability to operate in larger environment. Moreover, the proposed 

method will include the extraction of objects in a dynamic environment where dynamic objects 

which otherwise create a distraction that appears as an increase in uncertainty will be 

integrated in the map or rejected according to the nature of object. The dynamic objects will be 

identified and tracked for exclusion from the static map. The goal is to produce a final global 

map in an indoor environment and compare to the actual environment layout. 
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1.3 SLAM 

1.3.1 History of SLAM 

Autonomous navigation and mapping is an essential prerequisite for service robots to work 

efficiently [7, 73]. Precise estimation of robot pose and map of the environment is needed for 

successful navigation. The process by which this task is carried out is called SLAM [1, 2, 8]. The 

solution to the simultaneous localization and mapping (SLAM) problem with certain 

assumptions has been one of the greatest successes of the robotics community over the past 

years. History of SLAM can be traced back to Gauss who formulated the least squares method 

[1, 72, 74, 75]. Probabilistic SLAM was first adopted as the robotics and artificial intelligence 

community were adopting probabilistic methods to enhance machine intelligence, and the 

probabilistic methods became the standard in SLAM problem solution with the extended 

Kalman filter receiving most attention [2, 75, 82].  

Later it was found that the states of landmarks are correlated and as the robot moves around it 

will have to build a big state vector making it computationally expensive to update [3, 77]. This 

was the scalability problem which limited probabilistic mapping to small environments. Further, 

it was shown that the correlation of landmarks prevents from discarding low value elements of 

covariance matrix as the whole matrix is needed for convergence due to landmark correlation 

[77]. However, SLAM is convergent and a probabilistic solution is possible [1, 2, 4]. Research 

included indoor environments, outdoor environments and undersea environment, loop closure, 

scalability problems, various sensors as well as the use of real environment data to investigate 

the effect of data association [72, 74, 76].  

1.3.2 Probabilistic SLAM 

The aim of SLAM is to determine the robot pose in an unknown environment while at the same 

time building up a map of that environment [8]. SLAM depends greatly on the use of 

exterioceptive sensors such as laser ranging sensors, or sonar sensors, or camera which can be a 

mono camera or a stereotype camera [8]. In many cases some form of sensor fusion is 

employed to increase the robustness of the SLAM process as it enhances the result of SLAM 

through combining the results from different sensors as sensor fusion overcomes the limitations 

of each sensor [9].  
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There is a set of tasks that need to be carried out by robots to work autonomously in an 

environment as shown in figure 1. From this figure the two elements needed for SLAM are 

localization and mapping [10, 82]. 

 

Figure 1: SLAM is a subset of the tasks that need to be carried out by autonomous robots [10]. 

Theoretically, the robot state changes by a process model that relates the state at time t+1 to 

the state at time t by: 

𝒙𝒓(𝒕 + 𝟏) = 𝒇�𝒙𝒓(𝒕),𝒖(𝒕),𝒗(𝒕)�      (1) 

Where 𝑥𝑟is the robot state,𝑢(𝑡) and 𝑣(𝑡) are the control signal and noise at time t 

respectively. It is accepted that some assumption is made about the initial robot pose that it is 

well known [11, 77]. Therefore, the pose of the robot can be tracked and observed via the 

process model but with increasing uncertainty so sensor update is needed to limit uncertainty. 

A graphical model can be made to describe the dependencies between measurements, robot 

path, and control input in SLAM. This is shown in figure 2. 

 
Figure 2: The graphical model of SLAM shows the dependencies in SLAM [1]. 
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The states of the robot are represented by x, the odometry readings are represented by u also 

called the control input, and the measurements are symbolized by z and originate from the 

static map m [1, 11]. Probabilistic SLAM tries to find the robot state x, and map m 

probabilistically from the inputs z and u. This chain can be represented by the probabilistic 

posterior over the robot path and map P(x1:t,m|z1:t, u1:t)  which is also known as online SLAM 

where the path is not recovered. Algorithms that solve the online SLAM problem are 

incremental and hence are called filters [1]. 

1.4 SLAM frameworks 

SLAM frameworks refers to the different SLAM paradigms from which different algorithms have 

been derived. Three different paradigms built on filters are described by [1]. Since the 

estimation filters used rely on models for the environment and the process, the probabilistic 

models will be discussed before the different paradigms.  

1.4.1 Probabilistic models 

For probabilistic SLAM, the process model is assumed to be a probabilistic state transition since 

the robot motion in the environment is not perfect and includes process noise. Therefore, the 

process model is given by the state transition probability: 

𝑷(𝒙𝒕|𝒙𝒕−𝟏,𝒖𝒕)      (2) 

The state transition probability is assumed to obey the Markov assumption [2].The observation 

or senor model is used which describes the probability of making an observation given the 

current map with robot pose. This is described as: 

𝑷(𝒛𝒕|𝒙𝒕,𝒎)      (3) 

The SLAM process then becomes a two stage process. The first is the time update of the state 

and the second is the measurement update [2]. The measurement update is based on the 

observation or sensor model. Some of the different SLAM paradigms using different filters are 

discussed next. 

1.4.2. Extended Kalman Filter (EKF) SLAM 

i. Formulation of EKF SLAM 

EKF is used in SLAM as opposed to KF since it is able to handle non-linear process. In EKF SLAM 

the state of the robot and the environment are represented as a single state vector with a 
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covariance matrix that describes the uncertainty in the state vector as well as the correlations 

between the landmarks. As new features are discovered, they are added to the state vector and 

the covariance matrix increases in size in a quadratic manner and the extended Kalman filter is 

used to update the state vector and the covariance matrix [1, 73, 78]. In this approach, the state 

of the environment is represented by features that are two dimensional in appropriate domains. 

This means that for N features, the size of the state vector is 3+2N since three variables are 

needed to describe robot pose (position in 2D coordinates and orientation) and two per 

landmark in a 2D environment [1, 77, 78]. Essentially, the extended Kalman filter represents the 

state of the robot and the environment as a multivariate Gaussian distribution of mean μ and 

covariance matrix Σ. 

The probabilistic state transition model is related to the dynamic model therefore: 

𝑷(𝒙𝒕|𝒙𝒕−𝟏,𝒖𝒕)   ↔   𝒙𝒕 = 𝒇(𝒙𝒕−𝟏,𝒖𝒕) + 𝒘𝒕      (4) 

The function f models the robot kinematics and could be non-linear in nature while the variable 

wt is the additive zero mean Gaussian noise with covariance Qt. Similarly, the observation 

probability is expressed as a measurement function which is dependent on the state and the 

environment. Therefore, 

𝑷(𝒛𝒕|𝒙𝒕,𝒎)  ↔   𝒛𝒕 = 𝒉(𝒙𝒕,𝒎) + 𝒗𝒕      (5) 

Where vt is the zero mean Gaussian noise with covariance Rt and h is the measurement function 

relating measurements to the geometry of the environment [2]. Those two probabilistic models 

are used by the EKF in its processes to update the robot state. 

ii. Problems with the EKF SLAM 

An important issue in EKF SLAM is the problem of data association. Data association is about 

confirming the identity of the current landmark whether it is new or has been observed before. 

EKF is sensitive to wrong data association and this can lead to errors which can cause failure. 

Accordingly, any newly detected landmarks are compared to previous ones based on a distance 

criterion which explains how the current feature's position compares with the position of a 

previously found feature [1]. Further, some approaches keep track of the number of times a 

landmark has been observed before adding it to the map if the number of times seen exceeds a 

certain threshold to minimize the effect of wrong data association [77, 1]. 
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Another problem is the large state covariance matrix that has to be maintained and inverted 

due to off diagonal correlations between landmark positions.  

1.4.3. Particle filters SLAM methods 

SLAM methods that rely on particle filters have been introduced such as the FastSLAM algorithm 

which was the first to directly represent non linearity and non-Gaussian distributions. Particle 

filter is an implementation of Bayes probabilistic filter where the state of the system is 

represented as multi hypotheses with weights assigned to each [2, 82]. The hypotheses are 

represented as a set, S, of N weighted states (pose and map) [5]. Thus: 

𝑺 = {𝒔𝒊,𝒘𝒊} 𝒊 = 𝟏,𝟐, . . . . ,𝑵      (6) 

The weights of sets sum up to one. The particle filter works by drawing samples for the 

distribution it should represent. The more samples chosen, the more accurate the 

representation is. Figure 3 shows the sampling of two distributions with function shown and the 

samples drawn are shown as vertical lines under it. As can be seen, it is possible to sample multi-

modal and non-Gaussian distributions. The left function in figure 3 is a Gaussian function while 

the function on the right is not. The modeling of non-Gaussian functions is an advantage 

compared to Kalman filters [5]. 

 

Figure 3: An example of two functions and their representation (black lines) by particle sampling [5]. 

When using the particle filter resampling is needed to introduce new particles but this should be 

done carefully and when needed to avoid particle depletion [5]. The problem with particle filters 

in original form is that the space of SLAM is large and the number of particles needed to 

represent such a space will grow exponentially with space size as the number of features of 

increases so to overcome this problem, fastSLAM uses a set of particles, S, to represent the 

robot state at a particular time instant, t, where each particle maintains N two dimensional 
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Gaussians to represent N landmarks. FastSLAM that uses particle filters has many advantages 

compared to other EKF based approaches. The nature of the particle filter enables multi-

hypotheses representation which greatly aids to overcome errors in data association. Further, 

particle filter can be very efficient to compute with its SN two dimensional Gaussians compared 

to the N2 Gaussian of the EKF [1].  

1.4.4. RatSLAM 

i. Introduction to RatSLAM 

RatSLAM is a SLAM paradigm that is based on biologically inspired methods based on 

experimental evidence that rodents use specialized place cells and grid cells for navigation that 

are affected by animal position [13]. Since then, work has been done to apply the findings in a 

new bioinspired SLAM technique that has been called ratSLAM [13, 14, 15]. 

ii. ratSLAM Algorithm 

The ratSLAM system is based on two attractor neural networks. The robot pose is represented 

by activity packets in the network. Once visual stimulus is associated with pose, it can be used to 

modulate the activity packets. Using this approach allows for topological representation and 

multiple hypothesis in the presence of ambiguous visual input as the activity packets will 

compete with one another until visual perception strengthens one of them [14]. The system 

architecture is shown in figure 4. The information from odometry is integrated to form the path 

and injects packets into the pose cells in order to modify the pose of the robot based on 

odometry. Further, visual cues if already associated with a pose will inject packets into the pose 

cells.  

 

Figure 4: The system architecture of the ratSLAM system [14]. 
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Pose cells represent pose without separation since the separation of orientation and location in 

two competitive attractor networks will fail to represent multiple hypothesis properly [14, 15]. 

To link visual input to pose, local view cells are used. These are activated whenever an obstacle 

with certain features is encountered.  

The visual and path integration effects are the only modifiers of network activity in pose cells.  

iii. Experience maps 

RatSLAM also features experience maps that represent the environment in topological manner 

using "experiences" as nodes and the transition between them as links [12]. Experiences 

represent a snapshot of the local view and pose in a particular location in space and each 

experience is affected by a zone of association which make it fire when the cells in the local view 

and pose cells are closest to.  

Experience maps can be useful for human robot interaction and for the robot to take orders 

from human agents. Milford et al [12] describe a system where linear neural networks were 

used to correlate places in the experience map with room names to enable communication 

between the human operator and robot. 

iv. Comparison between probabilistic SLAM and ratSLAM 

In ratSLAM the robot pose is represented by the activity packets in the attractor neural 

networks which can be multiple in cases of multiple hypotheses. In probabilistic SLAM however, 

the pose is represented by the state vector and associated covariance. In the prediction step of 

probabilistic SLAM, uncertainty of the root pose is increased due to robot motion while in 

ratSLAM the activity packet is only shifted according to the robot motion without adding any 

uncertainty. Landmarks in probabilistic SLAM are used to reduce state uncertainty 

multiplicatively while in ratSLAM they serve as global references that inject activities to modify 

the state of the network in an additive fashion. Thus in ratSLAM, inactive cells could become 

strongly activated by landmarks [13] 

1.4.5. Vision SLAM 

Vision SLAM is SLAM that relies only on vision for localization, and mapping making it 

challenging compared to other approaches. There are many challenges imposed by vision only 

SLAM. First, the input rate is very high and the very rich amount of data to deal with is large 
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which makes real time SLAM using all data hard to achieve. Further, there are no long term 

features to track for consistent SLAM [8, 16]. Furthermore, there is lack of depth measurement 

in vision SLAM and therefore only few successful vision only SLAM systems are known [16]. It 

must be noted that stereo camera offer the capability to estimate depth unlike mono cameras. 

According to [16] a reasonable visual SLAM system is possible using a sparse set of landmarks 

provided that they are chosen carefully. Alternatively, high performance techniques such as 

scale invariant feature transform (SIFT) features could be used for SLAM since these provide 

high accuracy localization due to their success in object recognition but these are away from 

being real time due to high computational power needed. 

The performance of vision SLAM can be enhanced by sensor fusion and the paper by [9] 

proposes a new method which fuses sonar data with CCD camera where information fusion 

occurs at the level of features. This technique improves the reliability and precision of the 

environment observations used for the SLAM problem [9]. 

Sometimes optical flow is used by vision SLAM and its computation relies on the comparison of 

two frames and finding corresponding pixels in the two frames. Assumptions are made such as a 

constant image brightness, and smoothness of pixel motion [41]. In dense optical flow methods 

such as Horn and Schunk as well as Nordberg and Farneback methods, an optical window of size 

of m by n is considered to estimate the optical flow at its center point. Dense optical flow can 

easily show the presence of dynamic objects in a frame [41].  

Sparse optical flow on the other hand, such as the Lucas and Kanade algorithm extracts points of 

interest from the images before computing optical flow. Those points of interests can be 

extracted using Harris corner detector for example and are then tracked from the current frame 

to the next for computing optical flow [41]. Optical flow in the case of a stationary camera can 

be very useful for detecting dynamic objects in the scene with ease by comparing pixels. 

However, the situation becomes significantly challenging when the camera is moving since the 

background acquires motion opposite to that of the camera [45]. 
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1.5 Mapping approaches 

Maps are used to represent the environment in which the robot navigates and operates [5]. 

Navigation is an important ability that is needed for the operation and survival of an 

autonomous robot in a real world environment [17, 82]. The random movement of a robot in an 

environment may not be sufficient for its operation or it may not be the most efficient. It can be 

improved by relying on sensors and simple reflex actions to avoid obstacles. However, the 

performance and range of tasks that can be performed by robot will greatly be increased if the 

robot can navigate intelligently while keeping an internal representation of the environment 

called a map [17]. It is a requirement to map the environment while localizing within it 

simultaneously so the use of maps is important for environment representation and is an 

outcome of SLAM [18].  

Classically, there have been two map types which are metric and topological maps. In metric 

maps the location of obstacles and the structure of the environment are stored with respect to 

common reference frame and in topological mapping the locations that the robot can reach and 

discriminate based on features are stored together with their position information and topology 

[17, 82]. Figure 5 shows the metric versus topological representations for the same 

environment. It is common to implement metric maps using grids that discretize the 

environment [5]. 

 

Figure 5: The difference between topological and metric representations of the same environment [5]. 
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1.5.1. Grid map 

Grid maps discretize the environment into cells which can be according to the geometry of the 

environment and could result in varying cell sizes being very compact as the large empty areas 

are one space or can be discretized into fixed sized cells [20]. Each cell holds the probability that 

this region of space is occupied by an obstacle regardless of its shape. An important assumption 

is that the value in one grid cell is independent of the value in other cells. Thus the probability of 

the grid map P(m) is simply the product of the occupancy probabilities of individual cells P(c). 

𝑷(𝒎) = ∏𝒑(𝒄)      (7) 

Assuming a stream of sensor readings, z1:t, and history of robot motion (pose), x1:t, and applying 

the Markov assumption) an update equation can be found based on Bayes theorem: 

𝑷(𝒄|𝒙𝒕, 𝒛𝒕) = 𝑷(𝒛𝒕|𝒄,𝒙𝒕)𝑷(𝒄|𝒙𝒕,𝒛𝒕−𝟏)
𝑷(𝒛𝒕|𝒙𝒕,𝒛𝒕−𝟏)       (8) 

This equation can be further modified to reach a more efficient odds representation as shown in 

page 15-16 of reference [5]. The term 𝑃(𝑧𝑡|𝑐, 𝑥𝑡) describes a sensor model which depends on 

the type of sensor used. A commonly used sensor model of the Polaroid sonar sensor is given by 

reference [19] shown in figure 6. Consider the sonar to produce a beam with a half angle of β 

which is superimposed on the grid map as shown in figure 6. The beam can be divided into three 

regions along its length these are: Region I where the cells lying there are likely to be occupied 

and region II where the cells are likely to be empty. Region III has an unknown status hence it is 

excluded from the update. 

 

Figure 6: The sonar model used to build grid maps [19]. 
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Grid cells can also be built using the Dempster-Shafer theory where certainty is represented by 

belief functions. The belief function enables the sensor to express the case of limited knowledge 

about the environment it has a value of 1 but it is distributed between three elements. This 

means the sate of a cell can be occupied, or empty, or unknown. The update methods and 

operation of Dempster-Shafer theory based grid cells is explained in details in chapter 11 of 

reference [19]. 

The simplest way of creating a grid map is by the incremental scheme approach where the robot 

position is first estimated in the local map and the map is built around the estimate. Therefore, 

the robot estimates the map locally as it builds it [17]. 

In case of the grid map, the nearest unexplored cell can be used as a guidance for the robot to 

move to. In this case, the robot will move so as to explore the environment quickly. 

Furthermore, laser scans can be used instead of sonar scan to enhance the map accuracy.  

Other forms of grid map updates use techniques like the histogram in motion mapping where 

the cells are given a score and the higher the score the more likely is the cell to be occupied. 

Another decomposition method is to use a variable resolution map where the world is started as 

an empty single cell and as obstacles are discovered, the space around the obstacle is refined to 

a cell that surrounds the obstacle [17]. 

1.5.2 Topological map 

It has been proven that using an all metric global approach to map building is not feasible due to 

high computational cost. Therefore topological maps were developed that enable navigation 

between places that can be recognized using behavioral methods such as wall following or 

image matching [21]. Compared to metric mapping the topological approaches have advantages 

such as easy path planning, efficiency and easy human machine interface as well as easier in 

maintaining global consistency. However, they fail in capturing important geometrical 

information which limits their resolution [20]. 

In topological mapping, place definition in the form of features is stored in topological nodes 

and their relative positions in links. A very important act in topological mapping is correct node 

identification from topological features to ensure correctness of localization. If a new node is 

found, the link data is updated and a new node is added [82]. This can lead to the problem of 
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locally consistent but globally inconsistent map as the link data can be only locally correct with 

the error building up. Figure 7 shows an example of a locally consistent map that is not globally 

consistent [17]. 

 

Figure 7: Local consistency does not guarantee global consistency [17]. 

The problem with relying on place definition only is that it is only valid for dealing with never 

seen before nodes and an already known node may generate sensor information that 

corresponds to an undiscovered node. Therefore, odometry information has to be taken into 

account to accommodate for this or odometry may be used on its own [17]. Topological maps 

can also be constructed using Voronoi diagrams [22]. In the Voronoi diagram each basic element 

used to divide the space is called a site and is built around points. In many cases, the points in 

space under consideration are used to divide the plane into convex polygons with the property 

that any point within the region is closer to the point forming that region than any other points 

[22]. This is explained in figure 8 where all points within the polygon around p1 are closer to p1 

than any other point. 

 

Figure 8: Points within the polygon are closer to p1 than any other point [22]. 

Voronoi diagrams are affected by sensor noises and can lead to creation of unnecessary nodes 

that is why thinning algorithm is used to overcome these limitations [20]. Image thinning is an 
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algorithm used to reduce an image to a skeleton of lines that describe the topology of the image 

and can allow generation of topological maps from grid maps. An example of thinning is shown 

in figure 9.  

 

Figure 9: The thinning of a T shape in two steps [22]. 

1.5.3. Hybrid map 

One of the problems with metric maps is that the process of path planning as well as 

maintaining the map becomes increasingly difficult memory wise as the map grows in size. On 

the other hand, topological maps with their abstract nature are efficient and allow easy path 

planning but are not suitable for local navigation and obstacle avoidance. This has led 

researchers to propose hybrid solutions for better results and is gaining popularity [21, 82]. 

In the context of hybrid mapping, metric maps can be used to locally track and build a 

representation of the environment and since the operation is local, there is no need to solve the 

loop closure problem while the arrangement of local metric maps is represented topologically 

[23]. Alternatively grid maps could be used for mapping to provide an input to topological maps 

such that topological features are extracted from grid maps. This makes an easy navigation and 

path planning by the robot [23]. 

1.6 Dynamic objects 

1.6.1Dynamic objects in SLAM 

The importance of dealing with moving objects will enable SLAM operation in dynamic 

environments which will open up the way for many applications of autonomous robots [24]. 

Most researchers in their approach to SLAM assume a static rigid environment that is 

unchanging. This essentially means that dynamic objects (other than the robot) do not exist or 
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their effect is minimized. However, the accuracy of localization and mapping is badly affected 

when dynamic objects exist in the environment and are not taken care of [24]. 

There are two tasks associated with dynamic objects these are detection, and tracking of 

moving objects (DATMO). According to reference [24], a DATMO algorithm has to satisfy the 

following: 

a. Detection of objects 

b. Initiation of new moving objects list 

c. Data association for the moving old moving objects with the newly acquired ones 

d. Merging different entities of the same object 

e. Removal of objects that disappeared from the new view 

The problem of DATMO is difficult mainly due to the variety of velocities with which moving 

objects move, the possibility that objects appear and disappear, the shape of an object may 

change form one scan to the other. Further, in outdoor environments the problem is 

complicated as there are pedestrians, bikes, and cars [24]. 

1.6.2. DATMO formulation 

To simplify the SLAM with DATMO problem, assumptions are made that the sensor 

measurement can be decomposed into two components one representing the static objects, Zs 

and another for the moving objects, Zm. This implies that measurements from static objects are 

independent of dynamic objects [24]. 

SLAM process in DATMO is like the ordinary SLAM in its inputs and outputs while the moving 

object tracking (MOT) accepts exterioceptive measurements, Z, and outputs a list of dynamic 

objects, O, and optionally their states, S e.g. accelerating or constant speed, at certain location. 

SLAM with dynamic object tracking combines the two processes as shown in figure 10 [24]. 
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Figure 10: The inputs and outputs of (a) SLAM (b) MOT (c) the complete system [24]. 

Graphically MOT can be represented as in figure 11 where arrows indicate dependencies. 

 

Figure 11: Dynamic Bayes network for moving object tracking [24]. 

The process of MOT can be represented probabilistically (notation) as: 

𝑷(𝒐𝒕, 𝒔𝒕|𝒛𝒕)      (9) 

Where o indicates the moving object states, s is the motion state, and k is the time step. Using 

Bayes rule: 

𝑷(𝒐𝒌, 𝒔𝒌|𝒁𝒌) = 𝑷(𝒐𝒌|𝒔𝒌,𝒁𝒌).𝑷(𝒔𝒌|𝒁𝒌)      (10) 

The first term is the state inference while the second term is the learned mode of motion. To 

simplify matters, objects can be described as having predetermined motion states such as 

constant velocity or constant acceleration making it a discrete variable (as shown by the squares 
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in figure 11) but this limits the robustness of the approach as it cannot deal with varying motion 

states [24]. Despite this, tracking of objects is still difficult as the dynamic object could change its 

motion mode many times making it expensive to maintain a list of motion modes and variables.  

Two approaches are traditionally used for detecting moving objects. These are feature based 

and appearance based approaches which are used with laser range sensors and cameras 

respectively. Both of these methods require the prior knowledge of the object. Another 

approach developed by [24] is motion based approach which detects moving objects regardless 

of their shape. However, this method may fail to detect slow moving pedestrians.  

1.6.3 Human detection 

For indoor environments, the moving objects are likely to be humans and this simplifies 

somehow the problem of dynamic objects as there is only 1 class to deal with. Humans have 

been detected mainly using two sensors, cameras and laser sensors. There are two approaches 

to human detection. The first is using probabilistic approach using a particle filter or Kalman 

filter (or its derivatives for non-linear estimation) to track the object, while the second approach 

is based on geometric feature detection [20, 24]. 

When using cameras, there is good probability of detection of humans but the camera is 

sensitive to the viewed scene and to the brightness. Laser scanners present only a slice of the 

environment and are not robust to noise but it is accurate to a distance compared to cameras 

and is not sensitive to lighting conditions in indoor environments [20]. 

In the case of using laser sensors, legs are modeled by geometrical shapes between circles and 

ellipses as in figure 12. Legs are differentiated from other geometrical shapes such as lines 

through the measurement of inscribed angle. Further, for tracking of humans a system is 

needed that is able to predict human motion in a clutter of other humans which makes multiple 

hypotheses approaches unsuited for this case. Moreover, the geometric approach may not work 

properly in environments with shapes close to legs such as fire extinguishers [20]. 

Another approach of leg detection is through modeling a large number of leg shapes as done by 

reference [20]. They used the experimental setup in figure 12(a) where one leg was allowed to 

move in front of a board at various distance and as in figure 12(b), where the human was told to 
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move in straight line in front of the robot to have good view of the leg. The results from 3258 

cases were obtained. 

 

Figure 12: The experiments conducted by [20] to find the geometric features of the leg. 

The results showed that the point to point distances lied between 1 cm and 25 cm with 80% of 

cases less than 5 cm, the length of the legs (girth) lied between 10cm and 25 cm for 80% of the 

cases. Importantly, leg widths from 9 cm to 18 cm had 98% of the cases. Finally, the maximum 

depth of the convex legs was 3 cm. this can be used to identify and extract legs in laser scans 

[20]. This approach is not exhaustive but will cover a wide range of situations. 
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1.7 Thesis structure 

This thesis is organized as follows: 

Chapter one serves as an introduction for the topic 

Chapter two will present a literature review of some of the methods and results in the field 

Chapter three will present the layout of the system developed 

Chapter four will introduce and discuss development of each of the algorithms and will present 
the results obtained along with limitations for each algorithm 

Chapter five will present the conclusions drawn from this work and future investigations for the 
different parts of the approach. 
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Chapter 2 

Literature Review 
Robot localisation techniques are broadly classified as either being local or global [26]. Global 

localisation techniques involve the use of external beacons such as GPS to localise the robot 

which is regarded as unsuitable for indoor environments [27]. Many of the papers reviewed 

here make use of the extended Kalman filter (EKF) and feature based SLAM. The computational 

workload for the EKF is a quadratic function of the number of landmarks integrated [28].  

The authors in [29] presented a method for using laser sensors with topological mapping to 

correct for dead reckoning errors that arise from odometry. The authors' aim was to correct the 

errors in dead reckoning using data from exterioceptive sensors using a technique that 

combines the accuracy of grid based mapping and the computational efficiency of topological 

mapping. This is to ensure scalability and applicability to sparse environments. The technique 

used was to assign a coordinate frame to each topological node, as shown in figure 13, as well as 

a node region in which the robot is considered to be in this particular node. In this way, the 

odometric error becomes bounded as long as the robot is within the region of one node. The 

robot transfers its local reference frame from one coordinated to the other as it navigates.  

 

Figure 13: Example of topological map with coordinate frames [29]. 

To prove the validity of their algorithm, the authors in [29] conducted two outdoor experiments 

using a utility vehicle that was fitted with wheel encoders to collect odometry data for dead 

reckoning with SICK laser mounted on the vehicle’s front bumper and used to collect data from 

the outdoor environment. The experimental setup is shown in figure 14. 
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Figure 14: The experimental setup of [29]. 

In both cases, feature extraction algorithms were used that classified the raw data as referring 

to point features or edges and if a set of raw data did not provide an extracted feature that 

matched any of the modelled features, it was rejected. The results obtained using this method 

were displayed by the authors who were able to achieve errors on the order of 3 meters [29].  

The authors in [30] investigated the use of a localisation system based on the identification of 

artificial landmarks in an indoor environment with application to automatic guided vehicles 

(AGV). The experimental environment is shown in figure 15 where P1, P2, P3 are artificial 

landmark designators made as a barcode that can be read by the laser sensor for the robot to 

identify its location with respect to the feature. 

 

Figure 15: Elements of the setup used by [30]. 

Reference [30] use a Gaussian weighted fusion approach to localize with respect to the barcode 

features.  
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The authors simulated their algorithm to examine its ability to reject misidentified landmarks 

and their results proved this as wrong landmarks association were rejected. However, the 

environment had to be modified by attaching luminous metallic barcodes on certain landmarks 

to act as features for the laser sensor utilised it may not always be feasible or cost effective to 

modify the external environment for landmarks especially for large sparse environments [30].  

The authors in [31] proposes a method when the map is known with certainty but the problem 

is the location estimate of the robot. Odometry is widely used to aid in dead reckoning, but it 

cannot be relied upon as it suffers from errors specially those which occur during wheel slippage 

so a method for fast localisation that does not depend on robot orientation is used [31]. 

The robot is fitted with 16 sonar sensors in a ring with the readings from the 16 sonar sensors 

collected and passed through a low pass filter to form a smoother range profile which is called 

the normalized depth function [31]. The procedure applied for identifying landmarks from sonar 

readings is to store the resulting plot in memory then apply an algorithm that rotates its 

contents. Since the sonars are arranged in a circular array, this circular rotation guarantees that 

a match will be reached regardless of the robot orientation. The remaining process is comparing 

the rotated readings with the readings stored in the memory for different landmarks. Once the 

robot identifies landmarks, it can localize through its environment. Experiments were conducted 

by [31] to prove their concept from which they concluded that the process was fast and 

computationally efficient but may sometimes fail to differentiate between landmarks. 

Kong et al [26] adopted a mobile robot designed specifically to reduce uncertainty in odometry 

readings. The mobile robot used in experiments by [26] has O rings that contact the floor with a 

sharp edge while being attached via linear bearings. Reference [26] mentions that contact with 

the floor will reduce the uncertainty due to wheel base. Features such as lines and corners were 

used for SLAM. Figure 16 shows a simulation of a typical scan of an indoor environment with 

points that are circled indicating potential corners. 
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Figure 16: Corners identification in a typical laser scan [26]. 

The technique used by [26] for detecting lines is based on the continuity of a straight line 

assuming a vertical scan and every three points are labelled as a line if their orientation with 

respect to the robot forms two triangles with a common side that can be merged into one. The 

measurements from dead reckoning were combined with identified landmarks using EKF.  

Simulation carried out by [26] shows that the robot was able to successfully navigate through an 

environment of obstacles and localize based on their corner localization method. Result for the 

path followed by the robot in an experiment is shown in figure 17. 

 

Figure 17: Simulation results obtained by [26]. 

The authors in [26] concluded that the combination of relative and global localization 

techniques leads to better results. However, for this method a map must be supplied to the 

robot.   
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Fraundorfer et al [32] presented a visual topological SLAM technique that relies on building a 

topological map using a sequence of visual waypoints online. For the generation of the images a 

single perspective camera was used. The robot navigates the environment using a series of 

images stored in the database to work out its relative orientation. Whenever an image is 

captured, it is compared to the database of images and is discarded if a match is not found. 

According to the author, the loop closure is inherent in this technique. In case of a robot losing 

track, the robot moves around randomly until it finds a matching image where it can localize.    

Reference [32] calculated that it should take about 4 GB of memory for a robot with a 15 HZ 

frame rate camera to SLAM for 18.6 hours. The authors after comparing images would create a 

link between the images using a link graph also called an adjacency list [32].  

Experiments were conducted using a pioneer DX robot with sonar and camera. The sonar was 

used only to prevent collision while the camera was a 640X480 pixels camera at a frame rate of 

15Hz. Three sets of experiments were conducted to test various performance issues and in one 

set of interest the robot was first driven manually then asked to follow the path it was driven in. 

The results are shown in figure 18 where the black line indicates the driven path and the blue 

one shows the path followed by the robot. The robot needed 115 images and successfully 

identified the path.  

 

Figure 18: results of the second experiment [32]. 

Further experiments were conducted by [32] to test their method but for short distances 

hundreds of images need to processed which makes this SLAM method hard to scale up. 
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Reference [33] discusses the importance of being able to localize in the case of GPS failure for an 

outdoor agent. The authors discuss the benefits of topometric localization that uses a fine 

gridded topological approach compared to a purely topological or metric approach [33]. For 

creating the map, the authors move the vehicle on the desired route several times using Google 

street view project. Topological nodes are created at equal intervals and annotated with robot 

pose.  A Bayes filter used to probabilistically localize the vehicle. For the experiments, the 

authors used a vehicle equipped with two cameras at 45 degrees to the front of the vehicle 

attached on the right and left together with laser sensors that provided range information. The 

experiment was carried on a route 8 Km long with varying landscape and features at different 

seasons.  

For the Bayes estimation, the authors used empirical models to learn the similarity measure 

between observed data and the database to work out the measurement probabilities. For 

example they found that the measurement probability follows a Chi squared distribution while 

that for ranged data followed an exponential distribution. Localization experiments were carried 

out using the laser sensor only, the camera only, and the combination of both to see the effect 

of the different sensors on performance. Secondly, using the same data set the robot was 

kidnapped by moving the vehicle to different position and asking it to localize. The localization 

was done using range data only, vision data only, and both to evaluate the performance. Results 

are summarized in figure 19 which shows required time and distance for localization in a known 

environment using image only (a), laser only (b) and combination of both (c). 

 

Figure 19: The tests using vision are superior to those using ranged data only [33]. 
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The approach used by [33] required that the route has to be travelled beforehand i.e. the map 

must be available to the robot, and there is a need for the use of GPS. 

Reference [34] describes the use of the EKF-SLAM but with an improvement that is obtained by 

using thinning based topological information. The method used by the authors is a method used 

in image processing called thinning method and is used to extract the skeleton of an object in an 

image by gradually thinning the outside and inside of it until a skeleton is formed. Figure 20 

shows an example of a T-shape being thinned to produce its skeleton. 

 

Figure 20: Example of T-shape being converted to skeleton [34]. 

In their method, [34] used laser range device to scan the environment using a grid based 

mapping and Bayes theorem was used to update the grid elements based on readings. Thinning 

was then used to provide a skeleton topological map as figure 21 shows the steps. 

 

Figure 21: Thinning of topological map from occupancy grid [34]. 

Features are attached to each node locally, and with this method the error in data association 

can be decreased as the robot does not have to compare every feature in the map but only the 

local features. For example in figure 22 where there are many nodes with many features in the 

map, the robot will only investigate the features in the four nodes adjacent to it. 
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Figure 22: The robot investigates features in its vicinity [34]. 

For experiments, a pioneer P3-AT robot equipped with SICK laser was used and the robot moved 

at 0.2 m/s. The first experiment was conducted in an office environment 9.5 m X 7 m modeled 

with a grid 10 cm X 10 cm. Figure 23 shows the map generated by the robot (b) compared to 

actual map (a) [34].  

 

Figure 23: The map of the environment (a) and the map resulting from experiments (b) [34]. 

The authors compared the time needed for their algorithm to map in an increasing environment 

with the standard EKF SLAM and concluded that their algorithm runs constant in time for an 

increasing space while the traditional EKF SLAM grows quadratically as the number of features 

increases and the errors obtained were about +/- 20 cm for position and +/- 5 degrees for pose 

[34]. However, [34] did not mention how the grid map was obtained. This is important since grid 

maps by nature require a lot of computation unless a model is developed that minimizes 

computation time.  
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Reference [35] mentions the importance of dealing with dynamic objects and presents a system 

that splits SLAM from moving objects tracking (MOT). The architecture of the system is shown in 

figure 24. Starting at the robot pose, the algorithm analyses landmarks and groups them into 

dynamic and static landmarks. On the right side are the static ones which are divided into 

existing and new landmarks. Both of these are updated using the traditional EKF. On the left side 

is the update for dynamic landmarks [35].  

 

Figure 24: The architecture of dynamic EKF-SLAM [35]. 

Simulations were conducted in a MATLAB environment that featured an environment of 250m 

by 200m and included 35 landmarks with four dynamic landmarks [35]. Three simulations were 

made and the result for one run is shown in figure 25 that shows the robot path error variation. 

The results indicate that the error in robot path is bounded and not growing. 
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Figure 25: The robot path estimation error for three different simulations  adapted from [35]. 

Figure 26 shows the variation in landmarks location error for one of the three runs. 

 

Figure 26: The error in landmarks locations for each landmark in the three different simulations adapted from [35]. 

In [35] Simulations were conducted without experiments to confirm their algorithm. The 

authors said that the proposed method had to work with an extra number of EKF without 

mentioning the effect on time. 

The author in [36] emphasize the importance of incorporating human beings in the SLAM 

process as interactive human guidance can be used to guide the robot during SLAM.  
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Reference [36] presents an approach where the robot creates a topological map using help from 

a human guide. The human indicates the presence of a node by sending a signal to the robot 

using wireless laptop and the guide describes the connections between nodes as being door, 

corridor, or room. The robot corrects odometry drift when moving through nodes. For indoors 

environment with small set of features (structured environments) this method is effective [36]. 

The map used for localization consisted of point and line features generated during SLAM using 

a fusion of laser and sonar readings. Further, the system generates a segmented occupancy grid. 

The tour guides the robot using vocal commands by saying robot we are at room for example to 

declare a node as a room. When mapping is done, the robot switches to localization and can be 

commanded to go to nodes that it learned [36]. 

Scan matching was used by the authors in [36] with a laser sensor for correcting the odometric 

drift. An occupancy grid was used that can accommodate 700 laser scans in only 1.4 seconds of 

processing time i.e. 2 ms/scan. A method was needed to identify the human guide during the 

training phase. To do this, they segmented their laser scans according to depth discontinuities 

that exceed a preset threshold value. If these were within the expected size of legs, then they 

were labeled as legs [36]. This method is similar to the approach used in this thesis to detect 

human dynamic objects. Experiments were conducted by mapping rooms along a corridor that is 

70 meters long. The robot did not enter these locations and mapped them from outside [36].  

 

Figure 27: laser scan map before correction (a) and gird map after correction (b) [36]. 
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The features map that resulted from this mapping was curved due to odometry errors (figure 27 

part (a)) but when scan matching was used a more accurate map resulted in figure 27 (b). 

 

The method proposed by [54] carries out the scan matching using polar coordinates directly 

from the laser scanner. The first step in their method is to preprocess the scans by first applying 

a median filter with a size of 5 to the laser scan to extract moving objects and chair legs. 

Following a polar scan match transformation is worked out by iteratively minimizing a cost 

function. The authors in [54] tested their scan matching method by implementing a simple 

Kalman filter SLAM in where laser poses are used as landmarks. The laser scans were stored at 1 

meter intervals to be used as landmarks.  

The authors presented the results of one simulation and two experiments. The experiments 

used a SICK LMS 200 laser. In the simulation, a room was simulated and the reference scan was 

chosen and then the scan was transformed by 100 cm in x and y while the orientation was 

shifted 15 degrees. The algorithm was run and the final error was 0.4 cm in x direction, 0.005 cm 

in y direction, and 0.15 degrees in orientation. However, in some trials there were errors as high 

as 2 meters and 5 degrees [54]. 

In a different experiment, the algorithm was tried as part of a SLAM system based on Kalman 

filter and the results of mapping an indoor office environment are shown in figure 28 with 

odometry only (part a) and after applying scan matching SLAM (part b).  

 

Figure 28: The results of applying scan matching SLAM to indoor environment [54]. 
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Work by [37] is a method for robust sonar feature extraction that can be used to extract two 

sonar features namely; corners and plane features as shown in figure 29. 

 

Figure 29: The method proposed by the authors is used to detect corners and planes [37]. 

The point feature detection that the authors present relies on the triangulation based fusion 

(TBF) of sonar data with added modifications on the basic TBF technique to make it more 

robust. The authors have mentioned three main problems with the basic TBF algorithm to do 

with locations of obtained features which should be more accurate, the urgency of removing 

false edges which do not occur in environments, and the generation as many features as 

possible for robot localization [37].  

The first improvement made by the authors was the use of a stable intersection versus an 

unstable intersection. This is shown in figure 30 where (a) shows a stable intersection, and (b) 

shows an unstable interaction. Whether an intersection is stable depends on the angle of 

intersection. If it is greater than a preset threshold, then the intersection is stable. 

 

Figure 30: The difference between stable (a) and unstable (b) intersections [37]. 

The second modification was to the basic TBF window that updated data when the Euclidian 

distance exceeded a certain threshold which does not take into account the rotation of the 

robot which could enable the detection of edge features [37]. Further, in [37] it is claimed that 



33 
 

this will cause the heading error to remain uncorrected for. However, this claim is not entirely 

correct since observing robot pose at each update and relation between corners can recover the 

change of robot orientation. Experiments were conducted in a structured environment by [37] 

using poles to act as corner reflectors as shown in figure 31. 

 

Figure 31: The experimental setup used by [37]. 

The authors used their modification for the original TBF algorithm to improve the results and 

reject false corners. They presented results that supported their work. Additionally, line features 

were detected based on similar readings for adjacent sonars and used by the EKF for SLAM. 

Overall results by [37] indicate a decrease in error compared to odometry using their method.  

Fang et al [9] propose a new method which fuses sonar data with data from CCD camera. Fusion 

was performed at the feature level which improves the precision of the system [9]. The 

description of the process used by the authors is shown in figure 32. 

 

Figure 32: The summary of the whole process used by the authors [9]. 

The calibrated sonar data is processed then fused with the calibrated and processed vision data 

to yield the fused data with features to update the map. Since most manmade internal 

structures (in structured environments) appear as perfect reflectors for the sonar sensors, only 
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surfaces which lie perpendicular to or close to perpendicular to the sonar central beam axis will 

be correctly ranged [9]. The Extended Kalman filter (EKF) was used to relate the same features 

from the two sensors. 

To test their system, experiments were conducted with a Pioneer 2DX robot with a sonar array 

of 16 sensors and a CCD camera. The first experiment was conducted in the corridor of a lab and 

the second experiment in a square room. The mapping results with sonar data only and sonar 

camera fusion data are compared in figure 33 parts (a) and (b) respectively. 

 

Figure 33: The mapping of square room (a) using sonar only, (b) using multi-sensor fusion [9]. 

The mapping in figure 33 (a) using sonar only shows typical unbound mapping error due to 

accumulating odometry errors while in figure 33 (b) the error is smaller with the data from the 

sonar and camera. The results indicated that there was a noticeable improvement that results 

from using multi-sensor fusion as compared to using sonar only.  

 

A triangulation based method is proposed by [38] to interpret sonar readings similar to [9] 

discussed above. The method is called TBF and is a voting scheme that assumes all sonar sensors 

lie on the same plane and is used to detect point features in an environment. To see how this 

triangulation method works, consider figure 34. 
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Figure 34: The triangulation geometry [38]. 

The edge, T, in figure 34 will be detected if the intersection point between the two sonar arcs at 

different times (corresponding to different robot locations) can be found. This is the case if the 

edge, T, satisfies the following pair of equations for the two robot positions. 

(𝒙𝑻 − 𝒙𝒔𝒊)𝟐 + (𝒚𝑻 − 𝒚𝒔𝒊)𝟐 = 𝒓𝒊𝟐    𝒊 = 𝟏,𝟐      (11) 

𝐚𝐫𝐜𝐭𝐚𝐧 �𝒚𝑻−𝒚𝒔𝒊
𝒙𝑻−𝒙𝒔𝒊

� ∈ �𝜸𝒊 −
𝜹
𝟐

,𝜸𝒊 + 𝜹
𝟐
�     𝒊 = 𝟏,𝟐      (12) 

Where subscript T indicates the coordinate belonging to the edge T, and subscript si indicates 

sonar coordinates, all symbols are defined in figure 34. Equation 11 describes the sonar cone as 

a circle whose circumference is at the edge T. Two sonar cones from two circles and the edge 

can be found by solving the equations for the two circles simultaneously. Equation 12 is used to 

exclude the intersection which does not lie within the sonar cones. These equations have to be 

solved for two sonar positions (corresponding to i=1, and i=2). The solution to these equations is 

given by the following equations. 

𝒙�𝑻 = 𝒙𝒔𝟏 + 𝟏
𝒅𝒔𝟐
�𝒅𝒙𝒔𝒅𝒓

𝟐 ± �𝒅𝒚𝒔��𝒓𝟐
𝟐𝒅𝒔𝟐 − 𝒅𝒓𝟒�      (13) 

𝒚�𝑻 = 𝒚𝒔𝟏 + 𝟏
𝒅𝒔𝟐
�𝒅𝒚𝒔𝒅𝒓

𝟐 ± �𝒅𝒙𝒔��𝒓𝟐
𝟐𝒅𝒔𝟐 − 𝒅𝒓𝟒�      (14) 

Where: 

𝒅𝒙𝒔 = 𝒙𝒔𝟏 − 𝒙𝒔𝟐      (15) 

𝒅𝒚𝒔 = 𝒚𝒔𝟏 − 𝒚𝒔𝟐      (16) 

𝒅𝒔𝟐 = 𝒅𝒙𝒔
𝟐 + 𝒅𝒚𝒔

𝟐        (17) 

Edge, T 
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𝒅𝒓𝟐 = 𝒓𝟏
𝟐−𝒓𝟐

𝟐−𝒅𝒔𝟐

𝟐
      (18) 

These equations generate the actual coordinates of the edge T, and false solutions. The false 

solutions can be verified against the first pair of equations [38]. In chapter 3 of this thesis it will 

be shown in the section about TBF (4.3) that the solution presented by [38] is not correct. 

The TBF algorithm is implemented as a sliding window where the rows correspond to individual 

sonar sensors attached to the robot, while the columns refer to individual scans time wise. The 

sliding window is dynamic and not static as it is updated when the robot has moved a certain 

threshold distance varying from 0.05m to 0.25m [38]. As the window is updated, the earliest 

scans are deleted to keep the size of the window constant. The algorithm works by finding 

possible triangulation points with the most recent sonar data for every sonar sensor with the 

allowed distance between predicted triangulation and the compared sonar reading decreasing 

with successive triangulations. 

The authors in [38] presented some results. However, it is not clear how did they obtain their 

results given the fact their solution to the triangulation problem is wrong. 

 

Roh et al [18] propose a FastSLAM method that uses scan matching and particle weight based 

grid mapping. This mapping method is a subset of grid maps where the SLAM process is carried 

out using the particle filter. Their algorithm is summarized in figure 35. 

 

Figure 35: The summary of the algorithm used by [18]. 
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The proposed algorithm is made up of a prediction step that uses odometry readings and scan 

laser matching to predict the robot pose. This is then used to predict the next pose and generate 

maps with proper data association and a weight is set to each particle map. 

The authors present the results of experiments showing the map from a small room with 

odometry only (figure 36a) and with the proposed method (36b). 

 

Figure 36: The comparison of mapping results between the raw odometry readings (a) and the proposed method 
(b) [18]. 

The authors say that the error is of the order of 7 meters for 340 meters travelled distance [18]. 

The authors in [39] present a method for topological localization using sonar data where they 

propose a template grid that is extracted from the grid map around the robot and used to 

localize as the extracted template is compared to original local grids (in topological map). A 

similarity measure is worked depending on how similar the current grid map portion to various 

templates stored in database. The resulting probability is used in the Bayes conditional equation 

to update robot state instead of the measurement probability. Reference [39] propose a 

method for the detection of the kidnapping, the authors rely on the entropy of template to 

detect kidnapping. The entropy decreases as the probability converges towards one node and 

increases otherwise. The entropy decreases as the robot localizes and increases if it is kidnapped 

(by external agent), and poor localization can also increase the entropy (positive derivative of 

entropy) [39]. 

The results by [39] indicate success in localization for kidnapped robot. However, their method 

requires a prior map as well as topologically extracted metric nodes beforehand making it 

suitable more for path planning and localization. 
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Kim et al [20] present a method to account for dynamic objects (human legs) where the legs are 

paired based on their dynamic characteristics to detect humans (individual humans). The 

authors used previous research models for predicting the location of human feet during gait 

cycle in order to group legs together. Three experiments were conducted with the first one of 

them being a human being in front of the robot in a complex environment where the robot has 

to track him. The environment map and scene are shown in figure 37. The dark track in 37(a) 

shows the person leg position, and the circles with a cross represent robot pose at different 

times. 

 

Figure 37: The experiment environment. The map (left) and the corresponding scene (right) [20]. 

The scan of the laser sensor from one moment during the experiment is shown in figure 38that 

shows the algorithm successfully extracting two clusters (3,4) and clusters (1,2) that for 

potential tracking as a human target. 

 

Figure 38: The laser scanand the algorithm result [20]. 

Another experiment was conducted to differentiate a target person from other people. The 

experiment relied on the motion model developed to filter unlikely target and was successful as 
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the authors said. The method developed by Kim et al [20] is similar to the method employed by 

this thesis except that no model of walking gait is used and no pairing of legs is made. The 

reasons are that tracking of dynamic objects is not considered but instead extracting dynamic 

objects to exclude them from the map is what is considered. Therefore, extracted objects need 

not be tracked and differentiated from each other unless required. 

Wang et al [24] discuss the DATMO in urban environments where feature extraction is prone to 

error and there is no way to estimate the uncertainty in extracted features. Therefore, they 

propose the use of a scan matching algorithm (iterative closest point) and represent the 

environment in a grid map fashion. Further, a hypothesis tree is used for data association. Once 

a new object is detected a track is initialized for that object and its motion model is predicted to 

be one of three modes which are constant velocity mode, constant acceleration mode, and 

turning mode. 

Experiments were conducted in an outdoors environment and the authors noted the presence 

of false positives. The false measurements arise in the case of [24], who have used a moving 

vehicle, due to roll and pitch motions of the vehicle. Further, if the ground is not level the scans 

may hit the ground yielding wrong moving objects. Despite this the results obtained by the 

authors showed an improvement over ordinary SLAM.  

Martinez et al [40]propose a hybrid approach of (iterative closest point) ICP and genetic 

algorithm GA to solve scan matching where the GA is used to find a coarse but fast estimate of 

the transformation matrix and the ICP is used to refine the estimate with a local search. 

Experiments were conducted using an outdoors vehicle equipped with SICK laser sensors 

(LMS200) in an alley where there unstructured objects and moving objects such as cars and 

pedestrians. The vehicle was manually driven for the purpose of collecting data for the 

experiment [40]. The authors compared the performance of their algorithm with purely GA and 

purely ICP methods.  

The purely GA methods used a population of 120 samples and required 60 iterations for 

convergence while the hybrid GA required a population of 80 samples and only 40 iterations due 

to the coarse nature of the estimate. Further, pure ICP requires 15 steps to converge while the 

hybrid ICP requires 6 iterations to converge to a fine estimate starting from the coarse estimate 

provided by the GA [40]. 
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The time required for the algorithm to run is between the time required for pure ICP and the 

pure GA. Therefore, the main advantage of this method is to overcome the local minimum 

without sacrificing accuracy. However, the average running time is still comparable to GA and in 

best cases was (60ms) but rises to (200ms) [40]. Given the fact that the laser scanner runs at 10-

15Hz, then this implementation may not be real time unless parallel computation is used. 

Wang and Thorpe [25] For SLAM used scan matching approach. According to the authors point 

to point (P2P) scan matching approaches are slow and computationally intensive but they are 

more robust to errors and unexpected shapes in the environment compared to feature to 

feature (F2F) matching methods and so the authors chose the former approach. 

Wang and Thorpe [25] have carried out a simulation where a typical outdoors environment was 

used with a grid map of a 5 cm resolution. Further, the authors propose the possibility of 

combining their point to point scan matching approach with the faster feature to feature 

matching approach to yield better results. The authors did not explain their criteria for feature 

extraction and how its accuracy could affect the results. The results presented by [25] indicated 

the ability of the vehicle to correctly identify pose changes from scan matching using a laser 

sensor. 

Milford et al [14] conducted experiments to test ratSLAM approach. A pioneer2-DXE robot was 

used with a specialized vision processor for the 40 degree FOV CCD camera and a 1.1 GHZ 

Pentium III laptop. According to the authors, the cycle time needed for all processes was 200 

ms. Experiments were carried out in a controlled indoors environment of size 20 m by 10 m. The 

environment was modified by adding colored cylinders to act as landmarks for the robot. The 

cylinders used in the first experiment had unique colors and locations thus no ambiguity was 

expected to arise from the landmarks. The results of this run are shown in figure 39. In part a, 

the map shows the expected cylinder locations based on odometry only while part b shows the 

mapping using ratSLAM.  
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Figure 39: The results from ratSLAM in a unique indoors environment (b) compared to pure odometry (a) [14]. 

The shades show the location of the cylinders and uncertainty in it. The next set of experiments 

featured some ambiguity as two red cylinders were used in two different locations. The results 

indicated the localization error kept increasing until unique landmarks are discovered [14].  

RatSLAM does not produce strictly Cartesian representations of the environment. Further, many 

factors are empirically determined values which are likely to be affected by the environment in 

which the robot operates. Moreover, the computational load due to relying heavily on image 

processing causes a low cycle rate (200 ms). Additionally, the experiment conducted by [14] 

features a controlled environment and does not account for changes in visibility or features due 

to changes in lighting and shadows. All these factors allow for more future work. 

In reference [23] an approach is used where a metric map is used to store a local perceptual 

map of the neighborhood of the robot. Further, on the control level gateways are identified 

where the robot action shifts from motion between neighborhoods to localization. This enables 

the robot to use abstraction of the topological map for large scale navigation while not losing 

the details at a local state as it relies on a metric map.  A gateway is defined by reference [23] as 

a boundary between different environment regions. The regions are identified by many factors 

such as major changes of visibility. In buildings these correspond to doorways or walls that 

create partial separation or limit visibility between two regions. The method used by reference 

[23] was applied in a large office environment with multiple loops and the authors [23] 

described the results as successful in bounding localization errors. 

Vision SLAM was tested by researchers such as reference [16] who proposes an approach for 

visual SLAM based on EKF and a feature based map. According to the authors, their approach 
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has the ability to consistently map and maintain the features in an environment since it 

propagates and updates the uncertainty in feature position.  The number of features used is 

limited to 100 features for real time implementation since the complexity of EKF update 

increases as O(N2) and thus this method is suited only for small environments. However, it is 

repeatable and consistent as the authors have explained [16]. The authors mention that their 

system needs special setup to start in that four features (four pixels in a square) of known initial 

position and depth are supplied to the system to start since it is not possible to recover depth 

from a single camera using a single frame. The authors used their algorithm with a humanoid 

robot in a cluttered indoor environment subjected to rapid acceleration of the mobile platform 

and the authors equipped the robot with a mono camera. The experimental setup is shown in 

figure 40. 

 

Figure 40: The experimental setup for vision SLAM [16]. 

The robot followed a driven circular trajectory of radius 0.75 m and the localization error was 

monitored. The final error was on the order of 2 cm. The results by [16] showed that the error 

reached its minimum when the loop was closed by being at the starting point. However, like all 

EKF based SLAM the approach by [16] suffered scalability issues as features grew in size.  

Wen et al [8] use a NAO humanoid robot equipped with a camera in its head and a laser sensor 

with a 240 degree scan range on top of the robot's head. The authors employ EKF based SLAM 

using both the camera and the laser. Thus, this method cannot be regarded as a vision only 

SLAM. The authors modified the environment by including special landmarks predefined to be 

detected by the robot for SLAM. Therefore, this approach modifies the environment similar to 

the vision only ratSLAM developed discussed by [14].  
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The experimental environment (indoors) has only two landmarks and the authors used the 

camera mainly to detect the landmarks for EKF based laser SLAM. 

To verify their approach, the authors used the algorithm on a simulator and in a real indoors 

environment with two obstacles that were of different colors. The objective was for the robot to 

move from its starting position to destination while mapping itself and avoiding obstacles. The 

experiment environment is shown in figure 41. Their results indicated that two features were 

sufficient to limit the localization error. 

 

Figure 41: The experimental environment [8]. 

The authors in reference [41] propose a method to separate dynamic objects from stationary 

objects in a moving camera scene. They use one camera and make the following assumptions 

due to unavailable prior information about image depth: 

• The assumption that the majority of optical flow is due to camera motion (ego motion) 

as the majority of image pixels are due to the stationary background 

• The optical flow vectors converge to a single point, the focus of expansion 

• Independent dynamic objects will create local foci of expansion corresponding to 

motion of groups of pixels 

The dense optical flow algorithm of Nordberg and Farneback was used by [41] in their work. The 

calculation of the FOE is used to classify whether objects belong to the background or a dynamic 

object [41]. Experiments were conducted by [41] to test their methods. OpenCV was used to 

extract optical flow vectors from video sequence.  
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Figure 42: Two consecutive frames from the video used by [41]. 

Applying the triangulation estimate of FOE based on three known background images from the 

same video as figure 42 yielded an error rate of 14% for the background, and 90% for objects. 

The authors explain that the reason for such high error rate in dynamic objects is due to the 

homogenous sky which produces zero optical flow. By labeling the sky pixels as background, the 

error in dynamic objects using this approach was reduced to 74%. The error rates obtained by 

[41] were very large and not useful for accurate identification of dynamic objects. Therefore, 

more refinement is needed before it can be used. 

The extraction of dynamic objects from camera images is approached in a different way in [42] 

where a camera is attached to a robot with the camera pointing downwards at the ground 

plane. Therefore, given the robot motion (hence camera motion) it is possible to estimate the 

expected optical flow based on a ground plane model. Pixels motions in the real image are then 

matched to predicted motions to extract dynamic objects [42]. 

Experiments were conducted in an outdoor environment with pedestrians crossing in front of 

the robot. Two consecutive frames are shown in figure 43. The robot works out the similarity of 

intensities of groups of pixels in the two frames and uses that to track pixels and calculate 

optical flow.   
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Figure 43: Part of the experiments conducted [42]. 

However, the method by [42] is not robust to shadows and may detect a stationary dynamic 

object as a moving object. An example is shown in figure 44. 

 

Figure 44: Shadows are identified as dynamic objects by mistake while car wheel is identified as dynamic when it is 
actually stationary [42]. 

The horizontal white line describes the horizon while the contours around objects describe 

detected dynamic objects. As can be seen in figure 44, shadows on the left and the right were 

mistakenly detected as dynamic objects. Additionally, stationary car wheel was detected too 

due to intensity fluctuation.  The computation time of 30 millisecond of the algorithm by [42] is 

good for real time processing and the ability to perform with skipped frames makes it robust to 

lost frames.  
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In [43] a method is proposed to estimate the ego motion of a camera attached to a driving 

vehicle in an outdoor environment using optical flow. The authors assume that the road is a 

planar surface that satisfies the rigid world assumption and other objects like cars and non-

planar objects are rejected as outliers. With this assumption the ego motion estimate becomes 

a parameter estimation model [43]. To increase the robustness of the algorithm, the parameters 

are simplified to only three parameters namely pitch, yaw and forward translation [43].  

Therefore, given the optical flow (u,v) the problem becomes how to estimate the motion 

parameters likely to produce that flow pattern. An initial guess is provided first about the vehicle 

velocities which can also be obtained from other instruments like the speedometer before 

refining it using gradient descent to reach the value of actual parameters [43].  

Experiments were carried out in real road environment outdoors with a vehicle fitted with a 50 

degree field of view camera attached to the rear mirror close to the passenger side. The images 

were digitized and processed offline at a resolution of 320 by 240 pixels. Figure 45 shows the 

result of comparing two consecutive frames at the pixel by pixel correspondence (a) and after 

applying the algorithm to take account of ego motion (b). White pixels indicate higher motion 

speed. 

 

Figure 45: The results of finding the flow between consecutive frames pixel correspondance (a) and after applying 
algorithm (b)[43] . 

To examine the accuracy of their algorithm, [43] used a road sign shown in figure 46 (a) as a 

starting point and worked out the angular displacement of the car as it drove in circle until it 

reached the same sign at frame 775 in figure 46 (c). Theoretically it should be 360 degrees and 
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the algorithm ego motion estimates reported 366.5 degree yielding an error of 1.9% or 0.017 

degrees per frame [43]. 

 

Figure 46: Set of frames taken during drive of the car in circular path to evauate accuray of algorithm egomotion 
estimate [43]. 

The authors did not have any estimate for odometry displacement but reckon that its accuracy 

should be similar to the accuracy of angular displacement estimate. Their method is not a SLAM 

technique but can be implemented in a SLAM system.  

Royden and Holloway [44] develop a neural network based approach to detect the focus of 

expansion of an optical flow pattern from a moving camera. Their method is based on the fact 

that the optical flow has rotational component which is depth independent and a translational 

component which is depth dependent. Their approach is a biomimetic one that relies on the use 

of speed and direction tuned units to detect the focus of expansion and hence the observer 

heading. 

The idea used relies on subtracting the optical flow of pairs of points in the image at different 

depths which will cancel the rotational component and will produce the radial pattern of 

expansion from which to find the focus of expansion [44].  

Simulations were carried out with observer motion towards two planes at 400 cm distance and 

1000 cm distance from the observer. An object that subtended a field of 6 by 6 degrees was 

located at the bottom right location of the image at 400 cm from the observer and was moved 

laterally at a speed of 52.6 cm/s from the observer translating at 200 cm/s [44]. 

The difference in predicted angle of optical flow vector and actual angle was used to rule out 

dynamic objects [44]. They used a threshold angle of 15, 20, 25, and 30 degrees.  
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A result of simulation is shown in figure 47. The dynamic objects detected by the system are 

labeled by their borders and shown in circles whose size corresponds to the magnitude of 

difference from the expected flow. However, note that some false corners exist. The authors 

said that the accuracy for detecting dynamic object borders is highest at a threshold angle of 20 

degrees and decreases on both ranges to the side of it. While the false borders increased as the 

angle threshold was decreased. 

 

Figure 47: The result of detecting dynamic object based on their optical flow angle compared to predicted angle of 
optical flow [44]. 

Royden and Holloway [44] tried combining both speed threshold and angle threshold and the 

results were much improved with 90% of dynamic object borders detected on average and a 

false object detection rate of 20% and lower if averaged (since averaging reduces noise). Results 

showed that the detection is sensitive to object speed getting low at lower speeds but is not 

affected by heading or object orientation as lower speeds were comparable to noise in 

magnitude [44]. 

Image segmentation to background and foreground based on optical flow in the presence of 

camera motion is discussed in the paper by [45]. Their implementation assumes only 

translational motion of the camera that is allowed along the three axes. The system 

implemented starts by defining templates for a large number of translations. The templates 

show the predicted optical flow for different translations. A probabilistic model is used to fit the 

observed optical flow to the templates in order to conclude the segments of the image that 

belong to dynamic objects.  
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The authors in [45] used a mixture of models since many independent dynamic objects can exist 

in the scene. Therefore, a method is needed to determine the number of segments or clusters in 

the image automatically. Further, the zero motion segments have to be accounted for by 

declaring a pixel as zero motion (hence undefined angle) if its x and y components are less than 

a threshold. The method of [45] was developed to overcome the problems of image 

segmentation where pixels belonging to the same object at various depths is mistakenly 

segmented into different objects. Their work does not consider scenarios of camera rotation 

around vertical axis as well as heading calculation which is a major drawback.  

A matched filter has been used by [46] to fine the FOE location. The idea is based on the fact 

that if a camera moves in the world coordinate towards a point, P, the FOE will be the projection 

of P into the image plane. Since by definition the optical flow at the FOE corresponding to point 

P in the world is zero, then all optical flow rays are divergent from that point. Therefore, the 

divergence property can be used to detect the location of the FOE even without knowing the 

magnitudes of the optical flow vectors. Authors in [46] propose the use of a matched filter 

which is a template of size 2w+1 by 2w+1 that has the origin at the center with each pixel (of the 

2w+1 by 2w+1) in that template representing the expected angle of its optical flow vector if the 

FOE is at the center of the template. This is shown in figure 48. 

 

Figure 48: The template used to find the FOE from optical flow [46]. 

A weight function is used to emphasize the less noise affected far pixels (from the FOE). 

Different templates were prepared by the authors to take into account the different camera 

motions when the heading direction is different from perpendicular. 

 

Assumed FOE 
position 



50 
 

In reference [46]the equation relating motion field to optical flow was simplified to: 

�𝒖𝒗� = 𝒇
𝒁
�
𝒙𝑽𝒛 − 𝑽𝒙
𝒚𝑽𝒛 − 𝑽𝒚

�      (19) 

Where (u,v) is the optical flow vector, (x,y) is  the pixel location in the image plane, f is the focal 

length, V is the camera velocity vector, and Z is the depth of the point (x,y). From this equation it 

is possible to estimate the depth to the scene. For accurate result, the equation is applied to the 

vicinity of pixels around the point under consideration and an average depth is found [46]. The 

method was tried on a real world image shown in figure 49.  

 

Figure 49: The scene considered for application of algorithm. First frame (a) and second frame (b) in the video 
sequence from reference [46]. 

The algorithm was applied and the result is shown in figure 50. In part (a), the region of the FOE 

is circled and in part (b) the output from the algorithm is shown with FOE as a black dot. 

 

Figure 50: The result from the algorithm (a) real FOE (b) calculated FOE [46]. 
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The actual FOE was at (136, 269) while the algorithm produced (132,273) after 500 iterations 

while More iterations refine the estimate to the actual.  

The authors in [46] tested their algorithm with dynamic objects and noticed that the FOE 

position calculated was sensitive to dynamic objects. This means their technique may not be 

suitable for dynamic environments. Further, a large number of iteration was needed to reach 

any reasonable estimate of the FOE. Even after employing the refinement phase, 1500 were still 

needed. Thus their method may not be suitable for intensive processing applications like mobile 

robots which need fast algorithms to work in real time. 

The authors in [47] propose an algorithm using mono camera and optical flow to navigate a 

robot while avoiding collision. The block diagram of the algorithm is shown in figure 51. 

 

Figure 51:The block diagram for the visual obstacle avoidance algorithm [47]. 

In the first step the optical flow vectors are extracted from the image sequence and the FOE is 

calculated to help in depth map calculation which is then used to infer the decisions to be taken 

by the robot for obstacle avoidance. A standard Horn and Schunck method was used for optical 

flow calculation based on intensity conservation [47]. 

The control law developed was a function of the change in optical flow. The relation usedis given 

by: 

∆𝑭𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 = 𝒇(∆𝒇𝒍𝒐𝒘) = ∑|𝒘𝑳|−∑|𝒘𝑹|
∑|𝒘𝑳|+∑|𝒘𝑹|      (20) 

Where the change in internal forces acting on the robot wheels is a function of the difference in 

optical flow on the right (wR) and left (wL) sides. For calculating the location of the FOE, [47] 

used a counting scheme that relied on the divergence property of the optical flow vectors. Thee 

vectors were resolved into their components and the point from which maximum number of 

vectors diverged was considered the FOE. The vectors diverge from the FOE location thus the 
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point along x axis where the vectors change direction and similarly about y axis describe the 

coordinates of FOE. 

Experiments were conducted in an indoors environment that contained no dynamic objects but 

typical indoors obstacles such as chairs, boards, and walls. The path followed by the robot is 

shown in figure 52 [47]. Further, the robot in motion with its path highlighted is shown in figure 

53. The robot successfully avoided two obstacles in the right and left sides. 

 

Figure 52: The robot path followed during experiments [47]. 

 

Figure 53: The robot in motion during the experiments avoiding obstacles at the board (left) and the radiator (right) 
[47]. 

The method proposed by [48] uses a sonar sensor equipped robot for indoors SLAM using line 

features in an EKF frame. The model used for the line features and the relation between local 

line properties to global line properties is used for predicting the observation [48]. The direct 
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control signal history that is needed for the EKF update was not available so difference in 

odometry readings was used. The authors of [48] propose two steps with the Hough transform 

applied initially to segment sonar data and the least square method is used to fit the line model. 

The authors conducted experiments in an indoor environment having two boxes as obstacles, 

the environment measured 7.6m by 4.6m. The robot used was a P3Dx robot equipped with 

sonar sensors that acquired the readings at a rate of 3 Hz. The robot was driven by joy stick in a 

circular path. The authors presented the results of their experiments as a map of the 

environment with line features. The results are shown in figure 54 with the robot path plotted in 

circles and the extracted lines shown. 

 

Figure 54: The results obtained by [48]. 

The method used by [48] combines the benefits of least mean squares method and the Hough 

transform and is suitable for sonar sensors with low computational load although the Hough 

transform may not be the best method due to false positive lines that result [79] .    

 

 

 

 

 



54 
 

Chapter 3 

 Design of the Hybrid Approach to SLAM 

Different system architectures and functional modules for the purpose of developing the hybrid 

approach with the architecture shown in figure 55. Figure 55 shows functional modules that 

make up the system as blocks and the information flow between them with arrows. The process 

starts at the sensor level using sonar, laser, and camera sensors that produce sonar data, laser 

data, and camera data respectively which represent the sensory environment of the robot. 

 

Figure 55: The layout for the system showing the interactions between various algorithms 

The sensor blocks sonar data, laser data, and camera data describe the methods and functions 

developed to acquire and process the data from sensors for use by the robot.  The output from 

sonar data is used to feed the TBF corners block, the obstacle avoidance block, and the local 

 

Robot Environment 
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SLAM map. The output from the laser data is used to feed obstacle avoidance, as well as feeding 

the local SLAM map, and feeding the blocks for corner extraction and line segmentation. The 

laser sensor sends data at the same time to dynamic objects detection block which feeds the list 

of dynamic objects that are then excluded from the SLAM local map.  

The camera data is used for feature extraction to extract corners from image which are then 

tracked by the optical flow block that carries out the optical flow to feed the dynamic objects 

detection. 

The lines extracted from the laser and the corners from the sonar feed the list of landmarks 

which via the data association are used to update the robot pose via the unscented Kalman filter 

update. This then affects the SLAM local map by modifying the robot pose. The list of landmarks 

block accepts corners from TBF block and lines from the line extraction by the laser sensor. 

The obstacle avoidance block accepts data from the sonar sensor, laser sensor, and the camera. 

The fusion between sensors takes place in the obstacle avoidance block. The dynamic objects 

detection block accepts input from laser and camera to detect the presence of dynamic objects 

and feed them to the list of dynamic objects for exclusion from the SLAM local map. The SLAM 

local map accepts inputs from sonar sensors, laser sensor, and UKF update to build the map 

incrementally as well as data for positions of dynamic objects for exclusion of dynamic objects. 

The local map is then part of the global map which consists of tiles that are linked by adjacency 

according to their geometrical relations. The robot only updates the local SLAM map and 

switches to other tiles when needed. 

The details of the blocks in figure 55 are explained in chapter 4 with the experimental tests and 

simulations carried out as well as showing the structure of the algorithm, the results of 

simulations and experiments, comparison with other approaches and the discussion of the 

results and difficulties faced whenever possible. 
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Chapter 4 

Algorithms Developed and Results 

4.1 robot calibration 

4.1.1 Introduction 

An important factor that strongly affects the operation of a mobile robot is the localization error 

which can lead to faults in mapping thus rendering maps inaccurate [50]. One frequent source 

of errors is systematic errors [49]. An odometry calibration method discussed in [49] is called 

UMBmark test was used to calibrate the robot. The result from the UMBmark test will be a 

cluster of end positions (x,y) for the CW run and the CCW run. To minimize the effect of non-

systematic errors, the center of gravity of each cluster is calculated: 

𝒙� = 𝟏
𝒏
∑ 𝒙𝒊𝒏
𝒊=𝟏       (21) 

𝒚� = 𝟏
𝒏
∑ 𝒚𝒊𝒏
𝒊=𝟏       (22) 

Where x bar and y bar indicate the center of gravity. These can be used to quantify the 

magnitude of two errors in odometry. The first is the drift that occurs when the robot travels a 

straight path thus leading to a curved path, and the second which is the error in orientation 

when the robot rotates 90 degrees. The angles of these errors are called β and α respectively. 

Both are shown below in figure 56. 

 

Figure 56: The angles beta and alpha that generate errors [49]. 
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The angle alpha can be found using the difference in x error: 

𝜶 = −𝟏𝟒.𝟑𝟐𝟒(𝒙�𝒄𝒘+𝒙�𝒄𝒄𝒘)
𝑳

     (23) 

And the angle beta is given by: 

𝜷 = −𝟏𝟒.𝟑𝟐𝟒(𝒙�𝒄𝒘−𝒙�𝒄𝒄𝒘)
𝑳

      (24) 

Once these values are calculated, correction factors can be worked out. If the robot takes an 

angle value as input then use the following: 

𝜽𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 = 𝜽𝒓𝒆𝒒𝒖𝒆𝒔𝒕𝒆𝒅 �
𝟗𝟎

𝟗𝟎−𝜶
�      (25) 

Where𝜃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑is the modified turn angle and𝜃𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑is the angle the robot is supposed to 

turn. The error in beta causes the robot to move in circular path with radius, R: 

𝑹 = 𝑳

𝟐 𝐬𝐢𝐧�𝜷𝟐�
      (26) 

Where L is the length travelled. The ratio of wheel diameters that causes this can be calculated 

as: 

𝒅 =
𝑹+�𝒃𝟐�

𝑹−�𝒃𝟐�
      (27) 

Where b is the distance between wheels and d is the ratio of wheel diameters [49]. Therefore, 

multiplying the encoder counts for each wheel by these factors will compensate for the error: 

𝒍𝒆𝒇𝒕 𝒆𝒏𝒄𝒐𝒅𝒆𝒓 𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟐
𝟏+𝒅

                  𝒓𝒊𝒈𝒉𝒕 𝒆𝒏𝒄𝒐𝒅𝒆𝒓 𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟐
𝟏
𝒅+𝟏

      (28) 

Where d is the ratio of wheel diameters previously calculated in equation 27. 

4.1.2 Calibration experiment 

The P3DX robot to be calibrated was made to follow the square path in the UMBmark test with 

each side of the square having length 440 cm (4.4 meters). The test was carried out at different 

robot speeds of 50 mm/s, 100 mm/s, 200mm/s, 300mm/s, and 400mm/s to investigate the 

effects of speeds and it was noticed that the error increases slightly at low and high speeds.  
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The exact square path was marked using tape crosses as in figure 57. 

 

Figure 57: The experimental setup. 

The results are summarized in table 1 which shows the errors in cm. the experiment was 

repeated a minimum of three times for each speed. The average error in x and y is shown in the 

last two columns. 

Table 1: summary of experimental results for CW run. 

Speed-CW X1 Y1 X2 Y2 X3 Y3 X4 Y4 �̅� 𝑦� 
50 -8.5 -5 -12 -12 -10.5 -10.5 -10 -11 -10.25 -9.625 

100 -13 -9.5 -11 -10 -10.5 -14 -10 -8.5 -11.125 -10.5 
200 -24 -19.5 -17 -19.5 -19.5 -17.5 -16.5 -17.5 -19.25 -18.5 
300 -16 -13 -23 -21 -14 -14 -20 -18 -18.25 -16.5 
400 16 13 19 23 19 20 18 18 -18 -18.6 

 

The results for the counter clockwise experiments are summarized in table 2. 

Table 2: summary of experimental results for CCW run 

Speed-CCW X1 Y1 X2 Y2 X3 Y3 X4 Y4 �̅� 𝑦� 
50 12 10 15 18 20.5 20 26 18 18.375 16.5 

100 10 3 8 11 15 16 5 8 9.5 9.5 
200 11 14 18 10 9.5 10 9.5 11 12 11.25 
300 8.5 9 13.5 10 13.5 9 14.5 19 12.5 11.75 
400 9.5 5 13 12 12 10 8.5 9 8.625 9 
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Based on these data, a value of 110,000 was calculated for R. Thus: 

𝒅 =
𝑹+�𝒃𝟐�

𝑹−�𝒃𝟐�
= 𝟏.𝟎𝟎𝟎𝟑      (29) 

Where the wheelbase, b, was measured to be 33.5 cm. The correction factors for each encoder 

are: 

𝒓𝒊𝒈𝒉𝒕 = 𝟎.𝟗𝟗𝟗𝟖       𝒍𝒆𝒇𝒕 = 𝟏.𝟎𝟎𝟎𝟏      (30) 

Or normalizing: 

𝒓𝒊𝒈𝒉𝒕 = 𝟏  𝒍𝒆𝒇𝒕 = 𝟏.𝟎𝟎𝟎𝟑      (31) 

So the left encoder reading must be degraded by: 

𝑫𝒆𝒈𝒓𝒂𝒕𝒊𝒐𝒏 = 𝑳𝒆𝒇𝒕−𝑹𝒊𝒈𝒉𝒕
𝑹𝒊𝒈𝒉𝒕

× 𝟏𝟎𝟎 = 𝟎.𝟎𝟎𝟎𝟑
𝟏

× 𝟏𝟎𝟎 = 𝟎.𝟎𝟑%      (32) 

To do this correction, the parameters in the robot microcontroller must be modified using the 

robot ARCOS software commands. More about the functions used and the ARCOS client server 

architecture can be found in reference 51. 

4.1.3Results 

To confirm the calibration, the robot was asked to travel a distance of 4.4 meters in a straight 

line with and without the correction. A marker was attached to the robot to draw the line while 

the robot moves. Figure 58 shows the two paths before and after the correction. 

 

Figure 58: The robot path before correction (green) and after correction (red). 
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As can be seen, the calibrated line is a straighter path and does not veer to the left like before. 

The distance of the lines from a known fixed reference were measured at the beginning and at 

the end. The errors before and after were 0.5 and 3 cm respectively.  

To confirm the angle alpha, the robot was asked to rotate 3 turns (3X360) on the spot and the 

error was found and divided by 3. The error was found to be 0.8 degrees per turn i.e. 0.4 

degrees per 180 degree turn. The number of revcounts in ARCOS was 16570 from this the 

desired new value is: 

𝑁𝑒𝑤 𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑜𝑙𝑑 𝑟𝑒𝑣𝑐𝑜𝑢𝑛𝑡𝑠 +
𝑜𝑙𝑑 𝑟𝑒𝑣𝑐𝑜𝑢𝑛𝑡 × 𝑒𝑟𝑟𝑜𝑟

180
= 16570 +

16570 × 0.4
180

= 16607 

Now this value can be used to help the robot maintain more certain odometry readings to 

longer distances. With the robot calibrated, the other processes in the SLAM algorithm can be 

executed with better accuracy. 
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4.2 Obstacle avoidance algorithm 

The developed obstacle avoidance algorithm is a behavior based approach based on the 

subsumption architecture with two parts for the control of the rotational velocity and for the 

control of the translational velocity. In this implementation, three layers exist for controlling the 

translational velocity control and four layers for the rotational velocity control. More about the 

subsumption architecture is in [80]. 

4.2.1 The algorithm developed 

i. Forward velocity control architecture 

The architecture for forward velocity control is shown in figure 59. Each layer outputs a desired 

forward velocity. The target seeking layer controls the robot forward speed as it heads to target, 

the velocity control layer is for maintaining a safe velocity in the vicinity of obstacles, and the 

forward turning layer will slow the robot down if the desired turn radius to clear a front obstacle 

is beyond the robot capability. The output from the target seeking layer and velocity control 

layer are compared to pass the minimum of the two as the output. However, the forward 

turning layer can subsume this output with a different one. 

 

Figure 59: The architecture proposed for forward velocity control. 

The target seeking layer outputs a velocity dependent on how far the robot is from the desired 

target location. The relation is given by: 

𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 (𝒗𝒕) = 𝟑𝟎𝟎� 𝒅𝒕
𝒅𝒕+𝟑𝟎𝟎

�      (33) 

Where 𝑑𝑡 is the distance from the current robot location to the target location in millimeters, 

and 𝑣𝑡 is the desired velocity from the target seeking layer in mm/s. 
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Optionally, an if statement could be coded to stop the robot once the output from target 

seeking layer drops below a certain value. The velocity control layer slows the robot down as 

obstacles get closer to the robot for safe motion. It works a space factor, f, for the environment 

ahead of the robot and multiplies it by 0.034 for desired velocity. Thus, 

𝒗𝒄 = 𝟎.𝟎𝟑𝟒𝒇 = 𝟎.𝟎𝟑𝟒∑ 𝒓𝒔𝒔𝒊𝒏𝜽𝒔𝟖
𝒔=𝟏       (34) 

Where 𝑟𝑠 is the distance from the current sonar sensor, s, to the nearest obstacle in millimeters, 

𝜃𝑠 is the orientation of the sonar on the robot, and 𝑣𝑐 is the desired velocity from the velocity 

control layer in mm/s. The maximum possible value of parameter f in equation 34 occurs when 

all sonar sensors are reading maximum range of 5000 mm and is 14400mm which yields a 

maximum velocity of about 490mm/s. The translational velocity control architecture uses the 

output from the target seeking layer and compares it with that from the forward velocity control 

layer to find the minimum which is selected as the desired output velocity. The forward turning 

layer, discussed in section (i), is used to turn the robot as it approaches obstacles far enough 

before reaching obstacles. As the robot approaches the obstacle, the desired turn radius 

decreases up to the point where it becomes beyond the robot capability. In this case the robot 

has to turn in place or decrease velocity significantly. A flag is set by the forward turning layer 

when this happens and any value of robot translational velocity is subsumed with the value of 

zero. 

ii. Rotational velocity control architecture 

The architecture for the rotational velocity control is made from four layers as shown in figure 

60. 

 

Figure 60: The architecture proposed for rotational velocity control. 
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In this architecture, the red lines indicate that top layer can subsume the output from the lower 

layer. For example, the target seeking layer always subsumes the sectors selecting layer. On the 

other hand, the side obstacle avoidance layer can subsume the output of two layers below (red 

line) or it can add its own output to theirs (black lines going to summing junction). 

The sector selecting layer selects a sector (left or right) from the robot front that has the 

furthest obstacles in range and returns nothing if no clear sectors were found. The output is the 

heading leading to that direction. The target seeking layer produces a heading change to guide 

the robot to the bearing of the desired target. Therefore, it subsumes the outputs of the sectors 

selecting layer that are far from target and allows only the closest sector to target bearing. The 

nearest turning direction to target (CW versus CCW) is chosen as the output from the target 

seeking layer. The flow chart for sector selecting layer is discussed in figure 61. 

 

Figure 61: The flow chart for the sector finding layer. 

The two sectors returned by the sector selecting layer are all subsumed except for the one in the 

same direction to the bearing of the target location with respect to the robot. In very crowded 
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environment, no sectors are returned in this case the default is assumed to be the sector 

directly in front of the robot i.e. the robot heading. The side obstacle layer operates when there 

are obstacles closer than a threshold to one side. In this case an immediate rotation command 

in opposite direction to that side is used and subsumes the previous layers. The flow chart is 

shown in figure 62. 

 

Figure 62: The flow chart for the side obstacle avoidance layer. 
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The forward turning layer turns the robot away from obstacles that it faces directly ahead at 

close range (less than 500mm) as well as getting the robot out of corners. If the layer detects 

that the distance ahead of the robot is less than 500mm from sensor position or that the robot 

is trapped in a corner, it commands the robot to move backwards and rotate until it has rotated 

at least 35 degrees away from obstacle or 150mm back away from obstacle. The corner 

detection is carried out using a developed feed forward non-linear neural network that was 

trained in MATLAB. The network was trained using data from real situations in which the robot 

was placed near corners and the sonar data recorded. If the forward turning layer detects a 

corner or close obstacle ahead it will subsume all other layers fully. Otherwise, it will subsume 

the layers partially by assigning weights to the layers. The sector selection layer is given a 

weight, ws, that is described by: 

𝒘𝒔 = 𝟎.𝟓�𝟏 + 𝐭𝐚𝐧𝐡� 𝟑𝑹
𝟏𝟎𝟎𝟎

− 𝟗��     (35) 

Where R is the range to nearest obstacle. The side avoidance layer is given a weight, Wa, which 

is: 

𝒘𝒔 = 𝟏𝟔𝟎−√𝑹
𝟏𝟔𝟎

      (36) 

Where R is the range to nearest obstacle. Note that this weight will never be negative since the 

maximum sonar range is 5000mm. The equations for weights were chosen based on 

experimentation to find the most suitable relations for best performance. However, there is 

scope for improvement and more testing in various environments. The reason for the empirical 

nature is due to the combined properties of sensors and the subsumption architecture that give 

rise to a non-deterministic outcome (competing behavior) [80] that needs a lot of testing to 

understand likely outcome. 

 The flow chart for the forward turning layer is in figure 63 and the weights set by equations 35 

and 36 are displayed graphically versus range to nearest obstacle for visualization in figure 64. 
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Figure 63: The flow chart for the forward turning layer. 

 

 

Figure 64: The variation of weights set by forward turning layer by range. 
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4.2.2 Simulation results 

Simulations were carried out using the SDK supplied by MobileRobots with a model P3Dx 

differential drive robot. The default map of Columbia lab supplied by MobileSim was used and is 

shown in figure 65. 

 

Figure 65: Map of the columbia lap showing robot starting position. 

The map was zoomed to show the starting area details and the robot was commanded to go to 

different locations at different trials. In the first simulation trial, the robot was commanded to 

move to the location (-500, 500). This location will be to the left and north of the starting 

position. The robot path showing how it avoided obstacles is shown in figure 66. 

 

Figure 66:The robot path followed to reach desired target of (-500,500). 

Start position 
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The robot starts facing an obstacle (lower part of a drawer) and thus cannot move straight so 

initially it will turn back. Further, the target seeking layer directs the robot to turn in the 

direction that faces the target left of current position. 

The robot was then commanded in a second trial to move to the location (-500, 3000). However, 

this time the robot will have to clear obstacles near the target location as well as the starting 

position as shown in figure 67. The robot starts slowly due to the proximity of obstacles but as 

the obstacles are cleared and it moves to the free space it speeds up. Further, notice how the 

robot slows down as it approaches the target evident by the distance between the trails. 

 

Figure 67: The robot path to location (-500, 3000). 

The robot follows a curved path to obstacle (not shortest path) as it moves reactively based on 

subsumption architecture. This is one drawback of using a reactive system.  

The robot was then commanded in a different trial to go to target (100, 3500) to see how it 

could reach a target obscured by obstacles. The path is shown in figure 68. Notice how the robot 

was turned away from the obstacle despite the target seeking layer requesting a direction 

towards the obstacle until the obstacle was cleared. 

Start position 
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Figure 68: The robot path to location (100, 3500). 

4.2.3 Discussion 

From the simulation trials, it is concluded that the obstacle avoidance layer operates as desired 

while not relying on demanding computations. The subsumption architecture was used in a 

modified way to enable the robot to accept commands to desired location. This is because in the 

basic subsumption architecture a robot cannot plan for motion to go to a specific target. 

Therefore, the system was modified to enable this by adding a target seeking layer. Further, the 

conflict between layers was resolved by using equations to relate the strength of output from 

each layer rather than the traditional on/off style used in pure subsumption architecture. 

Moreover, the simple approach which does not require a map beforehand nor does it require 

the robot to map a grid map enables operation in any place and situation. Finally it is easier to 

integrate the laser and sonar sensors together for more robustness in environment. 
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4.3 Sonar corner detection 

A triangulation based fusion (TBF) of sonar data to extract point features such as corners from 

the environment was proposed by the authors in [38]. The TBF is a voting scheme that 

triangulates sonar readings at different robot position thus the accuracy is limited by odometric 

drift. References [38] and [37] both discuss the use of TBF method to enhance sonar readings. 

However, reference [37] adds some modifications to the method. Section 4.3.2 will start by 

explaining the method by [38] while the approach of [37] to addressing some of the limitations 

of TBF was mentioned in chapter 2. Further, a mistake in the equation of TBF by reference [38] 

will be pointed out. 

4.3.1. TBF algorithm 

In the TBF algorithm, the sonar readings are not used instantly but are stored in a sliding 

window table. The sonar sensors are read every certain time period or when the robot has 

moved a predetermined distance. The TBF has been mentioned in chapter 2 when discussing a 

review of the work by [38]. It is claimed by [38] that even before solving intersection equations, 

the method of working out the intersection between two arcs based on center point gives good 

results. However, this could not be reproduced in the simulations carried out in this thesis. 

Further, the equations presented by the authors in [38] were found to yield mathematically 

wrong answers as shown in section 4.3.3 of this chapter. 

4.3.2 TBF Formulation 

The geometry of TBF is shown in figure 69.  

 

Figure 69: The triangulation geometry [38]. 

Assuming the sonar can be perfectly modeled as a circular arc, accordingly the intersection of 

circular arcs is likely to be due to an edge. This way the precise location of the edge can be 
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known even with wide sonar resolution. The edge satisfies equations 11 and 12 and solving 

these two equations simultaneously yields corner or edge location. 

The following solution to this simultaneous equation problem is presented by reference [38] as: 

𝒙𝑻 = 𝒙𝒔𝟏 + 𝟏
𝒅𝒔𝟐
�𝒅𝒙𝒔𝒅𝒓

𝟐 ± �𝒅𝒚𝒔��𝒓𝟐
𝟐𝒅𝒔𝟐 − 𝒅𝒓𝟒�      (37) 

𝒚𝑻 = 𝒚𝒔𝟏 + 𝟏
𝒅𝒔𝟐
�𝒅𝒚𝒔𝒅𝒓

𝟐 ± �𝒅𝒙𝒔��𝒓𝟐
𝟐𝒅𝒔𝟐 − 𝒅𝒓𝟒�      (38) 

Where: 

𝒅𝒙𝒔 = 𝒙𝒔𝟏 − 𝒙𝒔𝟐       (39) 

𝒅𝒚𝒔 = 𝒚𝒔𝟏 − 𝒚𝒔𝟐       (40) 

𝒅𝒔𝟐 = 𝒅𝒙𝒔
𝟐 + 𝒅𝒚𝒔

𝟐       (41) 

𝒅𝒓𝟐 = 𝒓𝟏
𝟐−𝒓𝟐

𝟐−𝒅𝒔𝟐

𝟐
      (42) 

However, this solution was tested and was found to yield wrong solution. In MATLAB a function, 

CIRCCIRC can be used to find the intersection of two circles together and was used to confirm 

the wrong equations of [38].Therefore, a solution was searched for as the correct answer and 

the following solution was found for the intersection of two circles from the website [52]:  

𝒙𝑻 = 𝒙𝒔𝟏 −
𝟏

�𝒅𝒔𝟐
�𝒅𝒙𝒔𝒌 ± −𝒅𝒚𝒔�𝒓𝟏

𝟐 − 𝒌𝟐�      (43) 

𝒚𝑻 = 𝒚𝒔𝟏 −
𝟏

�𝒅𝒔𝟐
�𝒅𝒚𝒔𝒌 ∓ −𝒅𝒙𝒔�𝒓𝟏

𝟐 − 𝒌𝟐�      (44) 

Where: 

𝒅𝒙𝒔 = 𝒙𝒔𝟏 − 𝒙𝒔𝟐       (45) 

𝒅𝒚𝒔 = 𝒚𝒔𝟏 − 𝒚𝒔𝟐       (46) 

𝒅𝒔𝟐 = 𝒅𝒙𝒔
𝟐 + 𝒅𝒚𝒔

𝟐       (47) 

𝒅𝒓𝟐 = 𝒓𝟏
𝟐−𝒓𝟐

𝟐−𝒅𝒔𝟐

𝟐
      (48) 
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𝒌 = 𝒅𝒔𝟐+𝒓𝟏
𝟐−𝒓𝟐

𝟐

𝟐�𝒅𝒔𝟐
      (49) 

4.3.3 Confirmation using Simulation trial 

The algorithm by [38] was tested by data supplied from the robot simulator with the following 

environment shown in figure 70. The robot was run and the results were plotted in figure 71 

with the sonar readings shown in red and the path of the sonar sensors shown in black. There 

are 10detectable corners in the figure71. 

 

Figure 70: The simulation environment developed. 

 

 

Figure 71: the environment under consideration for testing equations from [38]. 

The results of corners were then displayed (as found by TBF equations of reference [38]) as: 
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corn =[2.3020    2.4028, 2.6003    2.1206, 2.7207    2.2877] 

Only the first corner is close enough and the other two corners are wrong cornersnot all corners 

were detected as the equations by [38] were wrong so the trial failed to detect corners. 

4.3.4. TBF algorithm flowchart 

The flowchart for the TBF algorithm used is shown in figure 72.A sliding window is used to sort 

readings and the triangulation process is carried out if the sonar readings are within 300 mm of 

each other. If the result from the triangulation is within the sonar cone, a hypothesis counter, n, 

is incremented and the result of triangulation with hypothesis counter is stored as output. 
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Figure 72: The flow chart for TBF for sonar data to extract corners. 

In figure 72 counter k is compared to 8 by 9 which is the size of the sliding window sonar 

columns to triangulate with. The corner array then takes the triangulations with the 

corresponding counter in each triangulation and ensures that successive triangulations are 

closer to each other than previous ones. The triangulation process in the flow chart is simply the 

solution to the sonar arcs intersection equations. 

4.3.5 Simulations 

The algorithm was implemented in MATLAB using data from robot simulator Mobilesim in the 

environment shown in figure 73. The robot moved in a turning path while recording sonar 

readings and the pose at each reading. 
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Figure 73: The path followed by the robot in the simulation. 

The sonar readings obtained together with sonar pose were plotted for each individual sonar 

sensor. The red dots represent sonar sensors positions (on the robot) along the trajectory while 

the black dots are readings of those sensors and the sonar readings due to specular reflections 

are shown as cyan dots while the sonars that display them are blue. This is in figure 74. 

 

Figure 74: sonar path and the environment plotted in MATLAB according to data obtained from simulation. 

Starting 
position 
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The TBF algorithm was run however, only sonar intersections with angle differences (between 

triangulated corner and sonar beam axis) greater than 20 degrees were chosen as corners. This 

was mentioned by [37] as improvements to the basic TBF where intersections with higher angle 

difference between sonar sensors are called stable intersections. The corners from TBF were 

plotted as asterisk with color cycling as shown in figure 75. 

 

Figure 75: corners obtained from the TBF alogrithm for this simulation. 

Some of the corners from TBF were matching the actual corners on the map but many readings 

on a line were mistaken as corners. To try to improve this, the angle of stable intersection was 

increased from 20 degrees to 40 degrees but the improvement in rejecting false corners was not 

significant. 

To find out more, the map was zoomed in as shown in figure 76 using the same colors for 

various points as previously outlined. 

(range) 
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Figure 76: A zoomed in view from figure 75. 

As can be seen, the sonar readings are not sharp but the line boundary is fuzzy thus making the 

algorithm display corners that do not exist. Therefore, a method is needed is to refine the 

corners. One way that was tested is to apply a low pass filter but this was found to distort the 

true readings. Another approach is mentioned by [38] using local grid maps to better localize 

corners. However, this is computationally intensive and nullifies the power of using sonar i.e. 

computational efficiency. Further, the corners produced from processing of laser data is much 

more accurate than that from sonar while not being computationally expensive. 

4.3.6 Experimental trials 

The robot was tested in a lab environment with the approximate layout shown in figure 77.  

 
Figure 77: An approximate layout of the experimental environment. 
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As can be seen, the sonar readings (red dots) are noisy looking different from the actual 

environment. The robot path is shown in black and the readings in red. The robot path is drifting 

despite the very short distance (~8m) due to localization errors as the full SLAM was not 

operating. 

 
Figure 78: The experimental environment after removal of potential specular reflections 

The chairs appear as points or as a row of inclined points. This set of data was used to extract 

corners and the results are shown in figure 79 where the corners are indicated by a green 

asterisk, the robot path in black, and the readings in red. It must be noted that the drift due to 

odometry will not affect the TBF algorithm as it operates over small distances. 

 

Even after applying the stable intersection method, the sonar corners are not accurate and 

exact. Therefore, it was decided to fuse them with high weight laser sensor which has better 

resolution to benefit from both sensors. The fusion uses weights for both sensors favoring the 

laser corners. 
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Figure 79: The corners extracted by TBF algorithm. 

4.3.7 Discussion 

Clearly the sonar data is noisy and there is uncertainty in the origin of a reading which shows 

itself in the corners found by TBF in figure 79. Many of the corners correspond to corners found 

in the actual environment but some of them are false positives. Additionally, many corners are 

re-extracted and identified as new corner only because they are slightly displaced from a 

previously found corner. This can be solved by applying an algorithm similar to the merge phase 

of the split and merge algorithm or by a clustering algorithm that clusters close readings 

together then represents them by a nominal corner that could be based on the centroid of the 

cluster. However, all those methods increase complexity of both the algorithm and the tuning of 

the algorithm for better performance. 
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4.4 Scan matching 

4.4.1 Introduction 

Scan matching is a technique used to find the relation (rotation and translation) between two 

sets of points such that maximum overlap occurs. The two sets can be a scan contour and a 

known map (position estimation) or a current scan contour and the previous scan contour 

(motion estimation). Dead reckoning can be employed to provide an initial guess for faster 

convergence [40]. 

Scan matching can be performed via three main approaches. These are: 

1. Feature based approaches where certain features such as lines or corners are extracted 

and used for the scan matching, 

2. Point matching techniques that directly find correspondence between points in the set 

of two scans, and 

3. Data methods that extract certain mathematical properties from the two scans. 

The first and second approaches are common in literature. Point matching techniques are best 

used with unstructured environments where there are no features available for extraction. Due 

to limitations imposed by the inaccuracies in sensors scan matching is an optimization problem 

to minimize error[40]. For point based techniques different methods have been proposed such 

as iterative closest point (ICP), gradient computation, simulated annealing, and genetic 

algorithm. The optimization can be carried out in polar or Cartesian coordinates. Given two laser 

frames or maps at two different poses, the aim is to pair the points in the first frame to the 

second frame for finding the transformation between frames.  

Feature based method was used in this work but it was compared to one widely used point to 

point matching so point to point matching is discussed briefly. 

The laser scan is made up of points that have range, d, and angle, α. The time step at which the 

frame is taken is denoted by a subscript, k and k+1 for the two consecutive frames. So the laser 

frame at time k is: 

𝒒𝒌 = {𝒅𝒌,𝜶𝒌}      (50) 
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Where d is the range and α is the bearing (polar coordinates). The scan is arranged as a set of 

angles at discrete intervals separated by angular resolution ρ. The scanning sequence is 

represented by j where j is between 0 an N, N being the maximum number of scan angles 

(dependent on resolution). The angle of any point in the scan can be worked out if the 

resolution of the scanner is known using the equation: 

𝜶𝒌(𝒋) = 𝝆𝒋      (51) 

This notation is summarized in figure 80 where the laser scanner is at the origin of the local 

coordinate frame, two points (j and j+1) from scan qk are shown with their ranges and angle. 

 

Figure 80: The coordinate system attached to the laser scanner [40]. 

Thus from figure 80, the coordinates of the polar point qK(j) in Cartesian system are: 

𝒙𝒌(𝒋) = 𝒅𝒌(𝒋)𝐜𝐨 𝐬�∝𝒌 (𝒋)�      (52) 

𝒚𝒌(𝒋) = 𝒅𝒌(𝒋)𝐬𝐢 𝐧�∝𝒌 (𝒋)�      (53) 

When the robot moves with the scanner, two consecutive scans at time instants k and k+1 with 

coordinate reference systems are XYk and XYk+1will be recorded. The scans are called qK, and qK+1 

respectively. For scan matching, it is desired to find a coordinate transformation, Tk, composed 

of relative robot pose change (Δx, Δy, ∆∅) between the laser scanner frames at time instants k+1 

and k. 
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Since the scan pose changes in opposite pose direction to robot pose change, Tk transforms 

from frame K+1 to frame k. Figure 81 shows laser scanner at time instant k which was 

transformed by an arbitrary pose at time instant k+1. 

The readings from time instant k+1 can be projected back on the previous frame of time instant 

k i.e. XYk using a coordinate transformation equation given by: 

�𝒙
�𝒌
𝒚�𝒌
� = �

𝐜𝐨𝐬 (∆∅) −𝒔𝒊𝒏(∆∅)
𝒔𝒊𝒏(∆∅) 𝐜𝐨𝐬 (∆∅) � �

𝒙𝒌+𝟏
𝒚𝒌+𝟏� + �𝜟𝒙𝜟𝒚�      (54) 

This equation allows the user to get the location of a point in the current scan at the previous 

scan if the transformation is known. Since the output from this equation is calculated based on 

the transformation, the output is labeled with hat symbol to indicate that it is a prediction. In a 

similar way angles and ranges of all scan points can be projected. 

 

Figure 81: The  geometry of the laser scanner at two time instances. 

The predict parameters are compared with the actual measured parameters at  time instant k 

and due to sensor noise, changes in the environment, and obstruction due to sensor movement 

some points will not match their prediction. Therefore, and error is defined as the difference 

between the position of the predicted point in Cartesian coordinates and the position of the 

actual point in Cartesian coordinates. This error will be worked out for every point. So the error 

for a point pair j is denoted by error(j). A large error indicates a potentially wrong match so a 

Boolean function pT can be defined which produces true if the error exceeds a certain threshold 
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and false otherwise. This filters scan points to nT valid pair matches and their ratio is the degree 

of overlap spanning 0 to 1. 

This can be used to derive the equation that is iteratively minimized for finding the correct 

transformation: 

∑ |𝒑𝑻(𝒋)𝒆𝒓𝒓𝒐𝒓(𝒋)|𝑵
𝒋=𝟎

𝒏𝑻𝑷𝑻𝒌
      (55) 

The error threshold that is used to form the Boolean mask is critical for the ICP algorithm. 

Martinez et al [40] proposed starting with a maximum error threshold derived from odometry 

error and reducing the error threshold with each iteration to a minimum value. Feature based 

methods operate on the same principles but match feature properties instead of direct points. 

4.4.2 Scan matching algorithm 

The method employed for laser scan matching relies on extracted features, in this case line 

features. A line extraction algorithm was developed that produces an array of corner points 

where there is a significant change in gradient of the laser reading. The line extraction method is 

discussed in the next section (section i). 

i. Line segmentation 

The extraction of geometric features from data from the sensors of the robot describing an 

environment is of great use in SLAM since the use of geometric features requires less space and 

computation as well as enabling better recognition of similar data sets. Of those geometric 

features, a line feature is the simplest and most occurring one [55]. The line extraction algorithm 

is made up of two parts, the line segmentation and line identification parts.  

Line segmentation 

The method developed for segmentation relies on the observation that at line intersections, the 

gradient of the laser scan changes. Therefore, by differentiating the laser scan range with 

respect to angle it is possible to extract corners and hence beginnings and ends of line 

segments. The laser scan covers a range from 10 cm to more than 5 meters therefore to 

improve the outcome of the differentiation process, the log of the laser scan is differentiated. 

The finite difference method is used to differentiate the log of the laser scan twice to find the 

second derivative. This is then normalized by dividing by the maximum peak and the relative 
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spikes in the derivative are labeled as corners.  An array called shod (static holder of derivatives) 

will be used to save peaks from second derivative that are above an absolute magnitude of 0.1. 

These points in the array are then tested to see if they are zero crossings or not. In order to 

mark them for further processing and to avoid the use of a low pass filter, the contents of the 

array neighboring the zero crossing point are set to zero while the point is set to 10. The flow 

chart in figure 82 is executed for detection of zero crossings associated with the corners. 

 

Figure 82: Extracting zero crossings for corners. 

This produces a set of peaks that represent all possible edges/corners. However, as is the case 

with any differentiation approach, noise will appear as false peaks. Therefore, a method was 

used to filter the false peaks. 

Dealing with noise 

The approach to filter false peaks is based on two criteria that are determined heuristically. The 

first criterion is that a false peak separating two lines must not show a gradient difference 

(between the two lines) more than 10 degrees. The second criterion is shown in figure 83 and 

explained below. 
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(a) 

 

(b) 

Figure 83: the concept of the distance criterion used. 

In figure 83, the edges are separated by blue asterisk (shown in 83(a)). When considering any 

two lines, the first point on the first line is called the bottom point (point a in figure 83a), while 

the last point on the second line is called the top point (point c in figure 83a), and the point 

separating the two lines is called the corner (point b in figure 83a).The line joining the corner 

point to the first point on the second line (shown in red in figure 83 (b)) is called aa, the first line 

and the last line are shown in black are called a, and b respectively. Fora peak to be a false 

corner: 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒐𝒏 =  𝒂𝒂+𝒂+𝒃
𝒂+𝒃

> 1.05      (56) 

This means a gap between lines must exceed 5% of their combined length. 

Bottom (point a) 

corner (point b) 

Top (point c) 

aa 

c 
a 

b 
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The flow chart for application of this filter to remove false peaks is in figure 84. The corners 

produced by algorithm in figure 82 are used as inputs. 

 

Figure 84: The flow chart for separating noises from actual lines. 

The flow chart in figure 84 is repeated for every segmented line pair produced by the algorithm 

in figure 84 in shod array and the result is used to merge the lines if the peak is a true line (false 

zero crossing) or split the lines if the peak is a false line. The merging occurs by setting the 

appropriate value in shod array to zero and the splitting occurs by setting the split point to 10. 

 

 



88 
 

Results of Application of line segmentation algorithm 

The segmentation algorithm developed was applied to the environment in figure 85. 

 

 
Figure 85: The environment considered for application of line segmenting function. 

The crosses show the edge location as discovered by the algorithm. Figure 86 shows the actual 

peaks in shod array (before applying the algorithm in part ii) which include one false peak due to 

noise. 

 

 
 

Figure 86: The peaks before filtering. 

Now applying the algorithm removes the noisy peak with the results in figure 87. As can be 

seen, the false peak has been eliminated and its segments have been joined together into a 

single line. 
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Figure 87: The noisy peak was successfully removed. 

Different simulation environments featuring lines of different intersection angles were tried and 

the algorithm was successful in segmentation. Therefore, the next step was to make use of that 

segmentation result to identify the line segments via the two line parameters.  

Discussion of line segmentation 

From the results and analysis it was concluded that the use of a method based on differentiation 

to segment line can succeed and will likely be affected by noise. The noise error could be 

reduced or eliminated if an empirical criterion is used to separate lines from non-lines. Further, 

the differentiation approach is linear in time with increase in input size which corresponds to 

increased laser resolution. However, the algorithm is not fully immune to noise but the 

performance was found acceptable. The algorithm was found to be successful in eliminating 

most noise and segmenting the data for identification of lines parameters. The next step is to 

take the segmented laser sets to identify the lines by finding their gradient and intercept. 

ii. Identification of lines 

After the data was segmented, it is now possible to find the lines in the scan. To do this the total 

least squares method is used. Consider the following straight line to best fit N points: 

 
𝒀 = 𝒎𝑿 + 𝒄      (57) 

Where Y and X are vectors. The total least error can be found as: 
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𝒆𝒓𝒓𝒐𝒓 = 𝒀−𝒎𝑿−𝒄
�𝟏+𝒕𝒂𝒏𝟐𝜽

= 𝒀−𝒎𝑿−𝒄
�𝟏+𝒎𝟐

      (58) 

 
And he error squared becomes: 

 

𝒆𝟐 = (𝒀−𝒎𝑿−𝒄)𝟐

𝟏+𝒎𝟐       (59) 

 
Differentiating partially with respect to m and c and equating to zero yields two simultaneous 

equations: 

𝝏𝒆𝟐

𝝏𝒎
= (−𝟐𝒀−𝟐𝒄+𝟐𝒎𝑿)𝑿 

𝟏+𝒎𝟐 − 𝟐𝒎(𝒀−𝒎𝑿−𝒄)𝟐

𝟏+𝒎𝟐      (60) 

𝝏𝒆𝟐

𝝏𝒄
= −𝟐𝒀−𝟐𝒎𝑿−𝟐𝒄

𝟏+𝒎𝟐       (61) 

 
Equations 60 and 61 can be equated to zero and arranged to yield [81]: 

𝟎 = 𝑲𝟐𝒎𝟐 + 𝑲𝟏𝒎+ 𝑲𝟐       𝒂𝒏𝒅       𝒄 = 𝒀� −𝒎𝑿�       (62) 

Where lower case letters are scalars, uppercase indicate sum of a vector with variables of this 

type. The bar symbol indicates the average of the sum of the quantities (X and Y), and the 

constants K2, K1, are given by: 

 
𝑲𝟐 = ∑ (𝒙𝒊 − 𝒙�)(𝒚𝒊 − 𝒚�)𝒏

𝒊=𝟏       (63) 

𝑲𝟏 = ∑ �(𝒙𝒊 − 𝒙�)𝟐 − (𝒚𝒊 − 𝒚�)𝟐�𝒏
𝒊=𝟏       (64) 

The value obtained for m, the gradient, is then used to obtain the y intercept of the line joining 

those points by using equation 62 [81]. The total least squares method was used instead of the 

least squares method to enable correct identification of vertical lines which otherwise would be 

wrong. Further, it is more relevant to this data since both the x and y are not dependent on one 

another and variance exists in both quantities that stems from laser range variance.  

Once the lines have been segmented and identified, the scan matching based on line features 

can be used as explained next. 
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iii. Feature based scan matching 

Figure 88 shows image of a simulation laser scan. The line extraction algorithm was run and 
produced the corners shown by the cross points. 

 

Figure 88: Line extraction using differentiation. 

The laser sensor position in figure 88 is at the origin point (0, 0) and the positive y axis points in 

the same direction as the heading of the laser sensor. The corners representing ends and 

beginnings of the lines are used for scan matching. Scan matching requires two frames from 

laser scans with two arrays shod1 and shod2. The scan matching works by comparing lines of 

same lengths and positions in the two frames. 

The algorithm has the following steps: 

• First generate an array of relations (called rel) that has the line length for each line. This 

array is created for the two frames of lines from the two laser scans thus we have rel1 

and rel2, 

• The next step is to find the pairs of lines that have similar length. Due to sensor 

limitation a threshold of 0.05 m is allowed i.e. lines must be less than 0.05m different in 

length, and position 

• The paired lines are then compared based on their gradients to find the rotation with 

respect to the initial frame, 

X mm 

Y mm 
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• Once the rotation is found, the coordinate transform equation that relates two 

coordinate frames rotated by an angle is used to rotate frame one to frame two for 

finding the translation, 

• This is repeated for every pair of lines, and 

• The results are summed either as a weighted average by comparing these to odometry 

estimate.   

The flow charts that describe the operation of the algorithm are shown in the following pages 

where the output of each flow chart serves as the input of the flow chart of the next stage. 
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The flowchart for the first part of scan matching in figure 89 finds the lengths of the lines. 

 

Figure 89: Flow chart for the first part of scan mathing algorithm. 

The second part of the algorithm where the related lines are paired together this is in figure 90. 

The criteria used for pairing is the line length, and the location which is a property in the laser 

scan since it is a sequential scan. 
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Figure 90: The second part of algorithm where data association (pairing of lines) is carried out. 

The distance used in figure 90 to pair lines is the ratio of their lengths minus one i.e. lines should 

not show length variation more than 5%. This was empirically chosen based on experiments and 

simulation and is equivalent error threshold in the point to point scan matching. Following this, 

the rotation of the two frames is first found from gradient change as the gradients of two paired 

lines, m1 and m2 do not depend on the translation but only rotation. That is, any lines in the 

environment found at time instant k should have the same gradient as lines found at time 

instant k+1 in a different laser scan if the robot did not rotate.  If the robot rotated, then the 
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observed change in angles of the lines in the local frames will depend on the angle of rotation 

regardless of the translation. Two methods were tried for finding the rotation. The first is by 

finding the average of all rotations: 

𝚫𝛉𝟏+𝚫𝛉𝟐+.….+𝚫𝛉𝒏
𝒏

             𝒘𝒉𝒆𝒓𝒆    ∆𝜽𝒏 = 𝐚𝐭𝐚𝐧(𝒎𝟏) − 𝐚𝐭𝐚𝐧(𝒎𝟐)       (65) 

This method gives equal weight to all lines. However, in the real world some lines could be 

erroneous and some false rotations can appear due to different segmentation results. 

Therefore, it is better to have an individual weight for each estimate that is based on the 

predicted change due to odometry. This leads to the second method using the weighted 

average. The weight is related to how far from the odometric estimate is the rotation found. A 

good weight to use is a Gaussian weight since random errors can be modeled as Gaussians. The 

weight is given by: 

𝒘 = 𝒆−
�𝚫𝛉−𝚫𝛉𝟎�

𝟐

𝟏𝟖       (66) 

Where Δθ𝑂 is the rotation change estimate from robot odometry, and the constant 18 is the 

width of the Gaussian function (standard deviation). All gradients are expressed as angles. A plot 

of the weight function is in figure 91 for an odometry estimate of 10 degrees. It has maximum 

weight at the expected odometry estimate and falls in a Gaussian manner as result deviates. The 

weight function can be empirically tuned to have different width if needed. 

 

Figure 91:A plot for the weight function at different orientations. 
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Once the rotation concluded by the robot is found, the translation in X and y directions is 

needed. Two approaches were developed to complement one another. In the first one, the 

points from the laser scan before the robot movement and after the robot movement i.e. two 

frames are used for computing the translation. Using the rotation calculated by the algorithm, 

all the points of the previous frame are rotated to yield an expected estimate. The rotation is 

given by: 

𝒙𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 = 𝒙𝟐 𝐜𝐨𝐬(𝜽) − 𝒚𝟐𝒔𝒊𝒏(𝜽)      (67) 

𝒚𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 = 𝒙𝟐 𝐬𝐢𝐧(𝜽) + 𝒚𝟐𝒄𝒐𝒔(𝜽)      (68) 

Where subscript 2 indicates the previous frame (relative to current frame). This is then 

compared to the actual scan at the new frame (x1, and y1) and a Gaussian weight function is 

used to rule out bad estimates. However, this method was found to yield wrong estimates in 

cases of inclined lines. The solution to this problem is to rotate the lines itself rather than the 

points. Equations 67, and 68 are used for this but applied to the line parameters (gradient and 

intercept) instead of the line points to predict the modified line parameters due to pose change. 

In the ideal condition this should match the observed gradient and y intercept in case of no 

robot motion. In case of robot translation, the observed gradient will not change but the 

observed y intercept will change as demonstrated in figure 92. Here, the same line is observed 

from frame XkYk and Xk+1Yk+1 after it was moved an arbitrary distance, dx, in the x direction. The y 

intercept changed as a result of this motion. Using the equation for a straight line: 

𝒚𝟏 − 𝒚𝟎 = 𝒎𝒙𝟏 −𝒎𝒙𝟎      (69) 

𝒚𝟏 − 𝒚𝟎 = 𝒎(𝒙𝟏 − 𝒙𝟎)      →    ∆𝒚 = 𝒎∆𝒙      (70) 

Thus the change in y intercept is related by the gradient to the change in x direction. 

Additionally, the y intercept changes directly with motion in the y direction thus the overall 

change in y intercept is given by: 

∆𝒄 = 𝒎∆𝒙 − ∆𝒚      (71) 

Where Δx is the robot motion in x direction, and Δy is the robot motion in y direction. 
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Figure 92: The change in y intercept due to motion in x direction. 

Equation 71 has two variables (Δx, and Δy) that affect the observed change in y intercept. To 

solve this equation at least two lines are needed. The equation can be solved usingleast squares 

method (effectively finding Δx and Δy of best fit).  

In the implementation a weighted least squares method was used where the weight for the 

lines was derived from equation 66 and normalized. Further, if the number of lines is low (2 or 

less) or the difference between worked out (Δx, Δy) and actual odometry is large i.e. error 

greater than error due to method 1 then method 1 is used. The weighted least squares method 

has the general form given by [56]: 

𝑺𝑺𝑬 = ∑ 𝒘𝒊�𝒚𝒊 − �𝜷�𝒐 + 𝜷�𝟏𝒙𝒊,𝟏 + 𝜷�𝟐𝒙𝒊,𝟐 + 𝜷�𝒌𝒙𝒊,𝒌��
𝟐𝒏

𝒊=𝟏     (72) 

Where SSE is the sum of squared errors, wi is the ith weight, 𝑦 is the actual value of function, �̂�𝑘 

is the estimation of the kth parameter, and 𝑥𝑖,𝑘 is the value of the kth variable of point i. In the 

case of straight lines, there are only two parameters (gradient and y intercept) that can 

minimize the equation. 

iv. Results from scan matching algorithm 

The algorithm was run on the simulation environment shown in figure 93. As can be seen, the 

line extraction algorithm has segmented the lines (crosses indicate beginnings and ends of 

lines).  

dx 
  

 Frame origin 
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Figure 93: The simulation environment. 

The data was rotated 10 degrees anticlockwise. The original environment (blue) and rotated 

(green) are shown in figure 94. 

 

Figure 94: The original environment (blue) and the rotated environment(green). 

The results were matching to the expected rotation and translations where the algorithm 

yielded an output of 9.8 degrees rotation, 10mm translation in x, and -21mm translation in y. 

This compares with the actual transformation of 10 degrees and zero translation in both x and y. 

Following this, the algorithm was applied in a lab environment to test its performance. 

X direction 

Y 
direct
ion 

X direction 

Y 
direct
ion 
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To conduct this, actual readings were taken in a lab environment using a SICK LMS200 laser on a 

P3DX robot. The robot was rotated 5 degrees and translated 100mm while readings were taken. 

Figure 95 shows the lab environment. The line extraction algorithm succeeded in segmenting 

long line segments correctly but there are some inaccurate segments. The red dots represent 

laser readings, and the asterisk represent the line segment boundaries discovered by the 

algorithm. 

 

Figure 95: The lab environment where the actual readings were taken. 

In the above image, the robot was then rotated and the new scan read again and stored for 

processing. The robot was then moved forward by a distance of 100mm i.e. 0.1m to test the 

effect of translation. The resulting scan is shown in figure 96 on the next page. The algorithm 

was run on the data from combined translation and rotation. 

X direction mm 

Y 
direct
ion 
mm 
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Figure 96: The scan of the same environment after the robot has moved 100mm forward. 

For the translation only run, the algorithm was run and the following results were obtained. 

rott = 0.1815 

dx = -100.7236 

dy = 1.8426 

As can be seen the results are close to those expected from odometry. Therefore scan matching 

can be used to correct the robot motion path. Another trial was also made where the robot 

rotated instead of pure translation and was moved in y direction (manually an estimated 

100mm).The results are shown in figure 97. The standard estimate of error (SEE) for the 

detected lines is shown too. 

X direction mm 

Y direction 
mm 
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Figure 97: The results of scan matching algorithm compared to odometry. 

The expected translation should be zero in x and around -100mm in y but given the presence of 

noise and obstruction of lines a small error appears of the order of few cm (2 and 4 in x and y 

respectively).  Notice further how the function is not heavily biased to odometry estimate in 

that it produced an observed change in y despite the robot odometry having 0 y change. 

The function was tested in different scenarios and the time taken varies from 0.015 to 0.035 

seconds making it suitable for real time algorithm. Given the fact that the laser sensor operates 

at 10 to 15 hz i.e. ~ 0.1 seconds then the algorithm can process all laser scans. However, the 

accuracy is badly affected in corridors and heavily cluttered environments with many chair legs 

and dynamic objects or if line obstruction is likely to occur. Corridors are very challenging since 

only two different lines do not always give any margin for errors. 

4.4.3 Comparison with other line extraction methods 

The developed scan matching method will be compared to some of the commonly used 

methods. Those methods will be discussed first. Any line extraction algorithm has to address 

three main issues; to find how many lines are in a 2D laser scan, which points belong to which 

line, and given the classification of the points to different lines how to estimate the line 

parameters [55]. There are many different line extraction algorithms that deal with those three 

problems and are discussed below. In the next sections (D, E) they are compared to the 

developed algorithm. 
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i. Split and merge 

Split and merge algorithm works by iteratively fitting a line to a set of points then finding the 

point with largest distance from the fitted line above a predefined threshold. The set is divided 

into two new sets at that point and the process is repeated. The pseudo code clarifies this in the 

following steps [55]: 

1. Initial set of all points, Si, has N points where i initially is 1 

2. Fit a line to set Si and save it in array L 

3. Find the point, P, with maximum deviation from the line fitted in point 2 

4. If distance of point P from the line is less than a threshold go to point 2 else continue 

5. Split set Si at point P to get sets Si1 and Si2 

6. Go to point 2 Until point 3 can no longer be applied 

7. Merge collinear sets in L 

When fitting a line, the least squares method is used. Another variation of the algorithm joins 

the first and last points in a set to fit the line in which case it is called the iterative end point fit 

algorithm [55]. The performance of the split and merge algorithm tends to be sensitive to the 

threshold chosen in step 4 [57]. The iterative end point algorithm on the other hand is less 

sensitive to the threshold since it recursively splits a set into subsets for lines [57]. 

ii. Line regression 

Another method used for line extraction is the line regression method based on Hough 

transform. The method utilizes a sliding window with a size which is dependent on the 

environment [55].The pseudo code is given: 

1. Initialize the sliding window, Nf, of predefined size 

2. Fit a line for every Nf points 

3. Compute fidelity array as the sum of distances between every three adjacent windows  

4. Scan the array in point 3 for consecutive elements with a value less than predetermined 

threshold 

5. Merge overlapping line segments and recomputed parameters of the lines 
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iii. RANSAC algorithm 

The Random Sample Consensus algorithm (RANSAC) is an algorithm for fitting a model to a set 

of data. The algorithm is good with outliers and can be used with different features other than 

lines if the model for those features is known [55]. The pseudo code for use of RANSAC in line 

extraction is given: 

1. Choose a sample of 2 points randomly from the set N 

2. Fit a line through the points using least squares method 

3. Compute the distances of other points in set N to the line computed in 3 

4. Gather points close enough to belong to line in step 2 to be the inlier set 

5. Remove inliers from the set N 

6. Repeat step 1 until few points remain or iteration limit is reached 

For point two any fitting method could be used but normally least squares is used. Total squares 

can be used if both x and y vary. 

iv. EM algorithm 

The expectation maximization algorithm (EM) in this context is a probabilistic tool used for the 

extraction of line segments in a 2D scan using a probabilistic approach [55]. The pseudo code is 

given by: 

1. For a set, N, generate random line parameters 

2. Initialize weight for points in set 

3. Compute the weights of points from the expected line parameters obtained in step 1 

4. Recomputed the line parameters based on weighted points 

5. Repeat steps 3 and 4 until convergence or maximum number of steps reached 

6. Repeat steps 2 to 5 until maximum number of trials is reached or a line is found 

7. Remove points belonging to the line found in in step 6 from set N 

8. Repeat steps 1 to 7 until no more points remain in set N or no more lines can be found. 

The EM algorithm has several drawbacks such as it could get trapped in a local minimum while 

searching, and the initialization of random values is difficult to ensure good starting values as 

well as not being deterministic [55]. 
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Experiments were conducted by [55] in an indoors environment to find the speed and accuracy 

of various line extraction algorithms. For RANSAC algorithm 1000 iterations were used and a 

671 by 401 array was used for the Hough transform yielding a line parameters resolution of 1 

cm. for the EM algorithm 50 trails were used and 200 iterations were allowed before 

convergence. According to the results, EM performed worse speed wise at a speed of 0.6 Hz, 

Hough transform at 8 Hz then RANSAC at 30 Hz followed by split and merge which was the 

fastest at over 1000 Hz. However, RANSAC and Hough transform displayed the highest accuracy 

in terms of the line parameters. Moreover, the EM algorithm had the highest percentage of 

false positive lines. 

From this data, it was decided to use the split and merge algorithm and RANSAC algorithm as 

candidates for comparison with the developed algorithm.  

For comparison purposes the iterative end point algorithm was used with a distance threshold 

of 100 mm and RANSAC algorithm was used with the condition that a point is considered an 

inlier if it is within 50 mm of the proposed line. Proposed lines with five or more inlier points 

were chosen for fitting else they were rejected. The number of iterations was varied for 

different scenarios to see the effect on performance and time. The results of simulation are 

shown in section 4.4.4. 
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4.4.4 Comparing Line segmentation algorithms 

i. Results with RANSAC algorithm 

The RANSAC algorithm was used with the environment in figure 98.  

 

Figure 98: First simulation environment for RANSAC. 

RANSAC was run first at 10 iterations and the results were processed to remove repeating line 

segments. The lines found by the algorithm before and after the processing are shown in figure 

99 as blue lines superimposed on laser scan points. The time taken was 0.02 seconds (20 ms) 

but not all lines were found. 

 

Figure 99: The lines found by RANSAC before filtering (left) and after (right) at 10 iterations. 
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Of the total 10 lines 5 were found and one false positive (shown in red). The number of 

iterations was increased to 50 and this took a time of 0.06s (60 ms) to execute. The result at 50 

iterations is shown in figure 100. 

 

Figure 100: The lines found by RANSAC before filtering (left) and after (right) at 50 iterations. 

Of the total 10 lines 6 were found and one false positive (shown in red). Therefore the number 

of iterations was increased to 100 and this took a time of 0.15s (150 ms) to execute. The result 

indicated that out of the total 10 lines 8 were found and one false positive. It was found that 

since RANSAC is not deterministic the results varied from iteration to another but at 100 

iterations the best obtained was 9 lines out of 10 and one false positive. The repeating lines 

were omitted based on the number points, similar gradient and y intercepts, and low line 

quality given by the number of points i.e. lines with higher number of points were favored. 

Further increases in iterations above 100 did not improve results but significantly increased 

algorithm time. 

Another simulation environment was tried with two lines forming a corner. The environment is 

shown together with the results of EANSAC algorithm at 10 iterations in figure 101. The 

algorithm took 0.03 seconds (30 ms). 
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Figure 101: The results from RANSAC algorithm before processing to omit repeated lines (left) and after (right). 

All lines (2) were successfully found with one false positive. The algorithm was tired at 50 

iterations and the time taken was 50ms and more iterations did not yield different results. 

Therefore, another simulation environment was tested as shown in figure 102. The results were 

after 10 iterations and took about 0.03 (30ms) with the RANSAC algorithm. 

 

Figure 102: The lines of RANSAC algorithm applied to the environment shown at 10 iterations. 

The algorithm took 0.02 seconds (20ms). However, only two lines out of 3 were detected and 

one false positive. The algorithm was tried several times with no noticeable improvements. 

Iterations were increased to 50 but not a change. At 100 iterations, the algorithm successfully 

finds the three lines taking 0.12s (120ms) to do so.  
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ii. Results with IEP algorithm 

The iterative end point algorithm (IEP) from the split merge group of algorithms was applied to 

the same environments to compare the results. The results for the first environment are shown 

in figure 103. 

 

Figure 103: THe IEP algorithm applied to the first simulation environment. 

The time taken by the algorithm was 0.1 seconds (100 ms) and all the lines were found correctly 

with one false positive. The endpoints and starting points of the lines are shown in blue dots. 

The lines drawn in blue do not reflect the actual lines due to step gaps between lines mistakenly 

drawn as a line. This could be avoided by a simple test such as that the line has more than two 

points.  

In the results for the second simulation environment (same as figure 101) only two lines were 

successfully detected. Despite the noisy lines on the right, the algorithm successfully identified 

the segments as one line. No false positives were found and the time taken was 0.04 seconds 

(40 ms). The IEP algorithm was applied to the last simulation environment and yielded no false 

positive with all lines correctly identified and the algorithm took 0.06 seconds (60 ms) to 

conclude this process. 
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iii. Results with Developed algorithm 

Finally the line extraction algorithm that was developed by this thesis was tested with the same 

three simulation environments. The results of applying this algorithm to the first environment 

are shown in figure 104. The algorithm only segments lines and thus the start and end points of 

lines are shown as crosses. 

 

Figure 104: Results of applying the developed algorithm to the first simulation environment. 

The algorithm took between 0.008s and 0.01s (8ms to 10ms) and successfully found all the lines 

with one false positive. The lines were not plotted to show clearly the beginnings and ends of 

the lines (corners) that were used as input to total least squares. Clearly all lines are segmented 

from one another by the algorithm.  The algorithm was then tested with the second simulation 

environment. The results are shown in figure 105. The algorithm took about 0.01s (10ms) to 

conclude its operation. All lines were found but one line (on the right) was mistakenly (due to 

noise) split as two different lines. Thus it can be considered as one false positive. 
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Figure 105:Results of applying the developed algorithm to the second simulation environment. 

Finally, the third simulation environment was tested by the developed algorithm and the results 

are in figure 106. The time taken was about 0.0094s (~10ms). No false positive was found and 

three lines were correctly segmented as shown by the position of corner asterisk. 

 

Figure 106:Results of applying the developed algorithm to the third simulation environment. 
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iv. Discussion 

A summary of the comparison between the different algorithms for the three simulation 

environment tested is shown in table 3. For RANSAC the number of iterations needed is shown 

in brackets. 

Table 3: A summary of the comparison between the different algorithms developed. 

Environment Environment 1 Environment 2 Environment 3 
Algorithm Lines 

found 
False 

positives 
Time 
taken 

Lines 
found 

False 
positives 

Time 
taken 

Lines 
found 

False 
positives 

Time 
taken 

IEP 10/10 1 10 2/2 0 40 3/3 0 60 
RANSAC 9/10 1 150 

(100) 
2/2 1 30 

(50) 
3/3 0 120 

(100) 
Developed 
algorithm 

10/10 1 10 2/2 1 10 3/3 0 10 

 

It must be noted that RANSAC is not deterministic and results vary from run to run even with 

the same inputs and variables and this made the comparison difficult. However, extensive time 

was consumed testing to ensure the best results from RANSAC were obtained. Moreover, 

notice that the time taken by the algorithms should only be used as a rough guideline and is not 

meant to be an exact reflection of the algorithm complexity. This is because the time was 

obtained from MATLAB tic toc functions on a laptop computer with various background 

processes taking place. However, care was taken to test all the algorithms in the same session 

to rule out the effect of other processes in affecting the processor time due to overloading or 

different number of background threads etc. 

Although the developed algorithm performed well, the scan matching relying on it will be 

affected by environments having low number of features i.e. lines such as corridors for 

example.  

4.4.5 Comparing scan matching algorithms to the developed algorithm 

To test the various algorithms for scan matching, a simple simulation environment was made 

using line gradients and y intercepts. The environment was then rotated by any desired amount 

and translated by any desired transformation to yield the transformed environment. This is 

done by predicting the gradient and y intercept of the current lines at the given transformation.  
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A simple simulation environment was created and rotated by different amounts with one 

version that was of pure translation in y direction. The first case was a rotation of 5 degrees as in 

figure 107 (not to scale) where the laser sensor is at (0,0) and the old environment is in black 

and the rotated result is in red. The points on the edges were not included since they will move 

out of field of view. 

 

Figure 107: The rotation of a simple simulated environment by 5 degrees. 

The second case was a rotation by 1 degree. This is shown in figure 108. 

 

Figure 108: The rotation of a simple simulated environment by 1 degree. 

A third case was the translation in y direction by 200mm. This is shown in figure 109. 
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Figure 109: The translation of a simple simulated environment by 200mm in y direction. 

Those three environments generated at different pose change were used to simulate the 

various scan matching algorithms. 

i. Results with Developed method 

The developed algorithm was run using two sets rotated by 1 degree apart and the algorithm 

succeeded in extracting lines although in set 2 two points are mistakenly marked as a different 

line. The following transformation was found:  

(dx, dy, dth) =(3.195mm, 0.905mm, 1.2401 deg) 

The error in displacements in x and y is only few mm and rotation was found as 1.24 degree the 

error is due to the fact that two lines were at almost 90 degrees which makes estimating the 

small change in rotational displacement difficult. A second set was tried at 4 degree rotation. 

The lines were successfully identified as shown in figure 110.  
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Figure 110: The result of line extraction algorithm on the two sets prior to scan matching. 

The output found was : (dx, dy, dth) =(0.1565mm, 7.13mm, 4 deg) 

This correctly gets the transformation between the two frames. The final trial was at 200mm 

translation in y direction. The following output was obtained: 

(dx, dy, dth) =(-0.0123mm, -198mm, -0.0123 deg) 

Note the negative sign which occurs as the apparent motion of lines is in opposite direction to 

actual motion. 

ii. Results with GA 

The genetic algorithm from MATLAB was used with a designed cost function based on the cost 

function in the paper by the reference [40]. The cost function works according to the pseudo 

code: 

1. Map new scan into old scan given the transformation from the genetic algorithm 

2. Work out the correspondence of points in the two sets 

3. Work out the errors between the points matched in step 2 

4. Return the sum of errors squared 

The GA from MATLAB produces a transformation and tests it by passing it to the cost function 

developed (that follows steps 1-4 mentioned above) to minimize the error squared. The default 

options in GA from MATLAB were used but the population range was set between -200 and 200 

for Δx and Δy and -10 to 10 for Δth. Further, the number of chromosomes was set to 100. 
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The set rotated 5 degrees was first tested. The GA algorithm produced the result: 

>> Transform=GA(@ICPGA,3) 

Optimization terminated: average change in the fitness value less than options.TolFun. 

Transform = 

    0.6056    0.5022    0.1216 

Where the output has the form (Δx, Δy, Δth). This is far off from the actual result. However the 

algorithm was run several times (despite the significant times it takes) as it is stochastic in 

nature. The second run generated: 

>> Transform=GA(@ICPGA,3) 

Optimization terminated: average change in the fitness value less than options.TolFun. 

Transform = 

    0.4578    0.9626    3.5867 

Which still shows some error. The algorithm was tested with the sets rotated 1 degree apart. 

The results are shown. 

>> Transform=GA(@ICPGA,3) 

Optimization terminated: average change in the fitness value less than options.TolFun. 

Transform = 

0.3763    5.1517    0.9835 

A second run yielded: 

>>>> Transform=GA(@ICPGA,3) 

Optimization terminated: average change in the fitness value less than options.TolFun. 

Transform =  
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0.6422    0.6065    0.6300 

The algorithm was run with the set displaced 200mm in the y direction and yielded the results: 

>> Transform =GA(@ICPGA,3) 

Optimization terminated: average change in the fitness value less than options.TolFun. 

Transform= 

  -0.6263   -0.2873    2.0825 

The results from GA were not correctly matching to the transformations. It was not possible to 

reproduce any work similar to that of reference [40] as each run was different due to stochastic 

nature. Further, some errors are definitely introduced which is attributed to the correspondence 

problem where wrong points are matched together as possible candidates.  

iii. Results with ICP 

The iterative close point algorithm was run as described in [40] to find the transformation that 

minimizes error. Figure 111 shows the two environments with the matched points shown in red. 

 

Figure 111: The result of point correspondance in ICP for two frames. 

It is clear some points are mistakenly thought to belong to other points. This correspondence 

error is responsible for the wrong answers observed here and in the GA section. The 
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correspondence step is done by finding the distance of each point from all other points. The 

nearest neighbor is chosen as the corresponding point. However, this may not be correct in 

many cases.  

At 5 degrees the percentage overlap was found to be 60%. The transformation found on first 

iteration was: 

Δx =-27.0252 

Δy =-537.0326 

Δth = -0.0902 

The second iteration yielded: 

Δx = -878.2137 

Δy = -6.1379e+003 

Δth =2.7117 

Clearly, the algorithm is diverging. At one degree rotation the algorithm showed good matching. 

The matching points led to a high degree of overlap at 99%. However, not all points were 

correctly paired.  The first iteration gave errors of 90 mm in x and y with 0.5 errors in degrees. 

The second iteration diverged and no useful result was obtained. A Third run produced close 

enough results with errors about 9mm in displacement and 0.1 in angle. In the third case, the 

environment was displaced by 200mm in the y direction. The corresponding map is shown in 

figure 112. 
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Figure 112: The result of point correspondance in ICP for two frames. 

Only 23.2% of the points were matched and the results obtained as expected were erroneous. 

Δx =1.6511 

Δy =1.3243 

Δth =0.0018 

The second iteration diverged and the desired output was not obtained. It must be noted that 

the iterative point algorithm (ICP) was repeated with different thresholds for correspondence 

matching a well as outlier detection but improvements were slight. The reasons for the failure 

to reproduce results by [40] could be due to the nature of points used since they have used an 

outdoors environment where geometric variation is plentiful making the correspondence of 

points more accurate. Further, point to point scan matching work best when in an unstructured 

environment that will not lead to correspondence ambiguity. 

4.4.6 Discussion 

The scan matching algorithm developed based on features performs better than algorithms 

based on point to point correspondence from a time and processing speed point of view. It was 

compared to ICP scan matching, and GA optimized scan matching with the results from the 

developed algorithms more accurate and performing faster. The point to point scan matching 

may fail if there is a significant change in pose as some points may get obscured or disappear or 
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new points appear that can be mistaken for previous points resulting in errors. Further, GA and 

ICP based GA methods are stochastic and will not yield the same result every time making 

testing a lengthy process. 

On The other hand the developed method relies on good estimates of extracted lines used as 

features and thus performs badly in environments with poor lines or no lines. Further, the 

developed method is sensitive to noise since the segmentation relies on a differentiation 

approach despite the filtering operations to minimize this effect. Moreover, the algorithm may 

produce wrong results with lines that are very close to 90 degrees gradient with respect to the 

robot local frame and the reason is not known but could be due to the use of the Cartesian 

properties of lines instead of polar. The results from the scan matching algorithm are used with 

unscented Kalman filter to fuse them with predicted robot motion. This is discussed in section 

4.5.  

4.5 UKF algorithm 

The Kalman filter is an important tool for data fusion algorithms in use today with important 

properties such as being the optimal estimator for systems with Gaussian error statistics and its 

recursive nature [59]. In the process of state estimation, measurements are used with a system 

model to obtain optimal estimate using Kalman filter. However, an estimate of the process and 

measurement noises is needed. These are generally not known which requires empirical 

estimates or use of tuning techniques that modify the covariances of measurement and process 

noises until the filter performance is optimized [61]. Most of the time in robotics either the EKF 

or UKF are used since state equation is non-linear and Kalman filter is valid for linear systems 

only. 

4.5.1 The EKF 

The EKF in many applications is the standard tool for non-linear state estimation and machine 

learning problems. The EKF overcomes the limitations of the Kalman filter by using a 

linearization approach [60]. This effectively makes the EKF a linearized version of the Kalman 

filter. However, the EKF is only valid for systems which are not highly non-linear and which are 

almost linear in behavior on the time scale of the updating intervals as it will diverge if the 

approximated function by the filter is not approximating linearly behaving during updates [64]. 
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To overcome those limitations, the unscented Kalman filter was used (UKF) for better estimation 

of non-linear processes. 

4.5.2 Unscented Kalman filter (UKF) 

i. introduction 

The UKF overcomes the problems associated with the EKF as it avoids linearization all together 

and instead of that represents the Gaussian random variable using a minimal set of specifically 

selected sigma points that capture the statistics of the random variable making it suitable for 

approximating the mean and covariance of any non-linearity accurately to the third order [60, 

64]. 

ii. Equations of the UKF 

The number of sigma points is chosen according to dimensionality of the problem [65]. Thus for 

1 dimensional state vector three sigma points are needed. The first sigma point is the mean, the 

second and third points serve to capture the spread (variance) of the variable and are given by: 

𝒙𝟐,𝟑 = 𝒙� ± �(𝒏 + 𝝀)𝝈      (73) 

Where �̅�  is the mean, n is the dimensionality of the state, 𝜎 is the variance of the GRV 

(covariance in multidimensional states) and 𝜆 is a scaling factor given by: 

𝝀 = 𝜶𝟐(𝒏 + 𝒌) − 𝒏      (74) 

Where 𝛼 and 𝑘 are scaling parameters [65]. The mean and covariances of sigma points are 

computed using predefined weights. The first set of weights is used to compute the mean and 

the second is used to compute the variance. For the first sigma point (mean) the mean weight 

and the variance weight are: 

𝒘𝒎𝟎 = 𝝀
𝒏+𝝀

      (75) 

𝒘𝝈𝟎 = 𝝀
𝒏+𝝀

+ �𝟏 − 𝜶𝟐 + 𝜷�      (76) 

Where 𝛽 is chosen according to the distribution type. For a Gaussian distribution the optimum 

value is 2 [65]. For the rest of points the two weights (the mean and the variance weights) are 

equivalent and given by: 

𝒘𝝈𝒊 = 𝒘𝒎𝒊 = 𝟏
𝟐(𝒏+𝝀)

      (77) 
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The sigma points can be propagated through any non-linear function and the properties 

estimated accurately [65]. The choice of parameters k, α, and β determine the spread and 

nature of the distribution β is set to 2 for Gaussian distribution while α is usually a small 

number. 

4.5.3 UKF Algorithm for fusion of odometry and scan matching 

The scan matching algorithm developed is used to update the robot position using the 

unscented Kalman filter. A function called UKF was developed for this purpose and the function 

will need two laser scans at least to match. Thus the first step is to find the current number of 

scans to know whether a new scan must be read or two scans compared. 

Once two scans are obtained and segmented, the properties of the segmented lines must be 

found for data association. These are the number of laser point, the distance between the line 

endpoints, the gradient, and the error. Once paired, the orientations of the lines are worked out 

and subtracted to find the expected rotation. However, consider figure 113 where the line 

changes quadrant due to the robot rotation. The atan function will return about 80 degrees for 

figure 113 (a) and -80 for 113 (b). This will yield a wrong rotation of 160 degrees. To correct this 

issue, if the gradient is found to be a negative angle 180 is added to the result. 

 

Figure 113: a problem that  could arise due to line orientation and use of atan function. 

The flowchart for this function is shown in figure 114. The function is called by the main code 

periodically every time the robot moves more than 0.1m or rotates more than 5 degrees. 
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Figure 114: The flow chart for the scan matching producing inputs for UKF function. 

The process of pairing up the two segmented arrays shod and shod_G was explained in the flow 

chart in figure 90 while the process of finding pose flow chart is in figure 115. Figure 90 is the 

data association step which is very important for the success of the algorithm as wrongly paired 

lines will give rise to wrong scan matching. Although the weight function helps to lessen this 

effect, it cannot continuously accept errors in data association. Environments which show highly 

similar line features or ambiguous for the robot can cause a failure of the scan matching 

algorithm increasing the odometry error. This is because in case of algorithm failure (high errors 
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in lines or low association weight), the robot switches to believing its internally predicted state 

more compared to measurements due to the operation of the UKF. 

 

 

Figure 115: The find pose change function (a) finds rotation, and (b) finds dx and dy.  
(b) 

(a) 
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As can be seen, if the maximum weight is less than 0.9 then the estimate is likely to be 

erroneous and thus is rejected in favor of odometry. The second part of figure 115 is applied 

also to rotated line features and results are preferred if they are closer to prediction than point 

based method. 

i. Estimation of noise and measurements covariance 

The Kalman filter needs an estimate for process noise and measurement noise. For the process 

noise, the robot used is the P3DX of the differential drive type that moves only in the x direction, 

and rotates around its centre or a centre of rotation. Thus, the translation (and hence) the error 

in y direction are dependent on both the x direction translation and the rotation from the last 

time step. The errors in x and y forward motion (x direction) are independent. 

Experiments were conducted to measure the variation in x, y, and angular position of the robot 

with various commands and the results were used to find a relation: 

𝒗𝒂𝒓(𝒚) = 𝟎.𝟎𝟏𝒅𝒙 + 𝟎.𝟓𝒅𝒕𝒉.𝒅𝒙      (78) 

The multiplication with dx is due to the fact that the error in orientation is propagated to the y 

direction only when the robot moves. The variance in x position was found to be smaller than 

that in y position and was hard to measure accurately over a distance of 5 meters but was found 

to be: 

𝒗𝒂𝒓(𝒙) = 𝟎.𝟓𝒅𝒕𝒉𝒅𝒙      (79) 

The Variance in orientation is simply: 

𝒗𝒂𝒓(𝒕𝒉) = 𝟎.𝟓𝒅𝒕𝒉      (80) 

For the measurement noise, the measurement noise covariance is built in already in the 

Gaussian weight function that was used. 

The variances developed serve only as empirical estimates for the UKF algorithm. Alternatively, 

the use of fixed variances showed greater stability in operation. The use of these variable 

variances sometimes led to poor behavior of UKF although the reason for this is not known. 

Therefore, fixed variables based on an average change of 10 cm and 5 degrees were used. 
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4.5.4 Simulation results and discussion 

MobileSim was used to test the UKF algorithm with the robot. The robot was moved in a straight 

line but at an inclined starting angle and the path is shown in figure 116. 

 

Figure 116: The environment used for first simulation. 

The environment is an indoors environment with large dimensions and few observable lines at 

any point in the environment to makes the scan matching algorithm based on features likely to 

produce low number of lines and hence will have low accuracy. However, through the use of the 

UKF the noisy measurement is combined with the odometry estimate to a more accurate 

estimate. The estimate of x and y positions is shown in figure 117 while the estimate or 

orientation is shown in figure 118. The output from scan matching at different time steps is 

shown as well in the same figure. Notice how noisy the scan matching output is due to corridor 

like environment. 

 

 

Starting point 



126 
 

 
Figure 117: The estimates of x and y positions from UKF versus odometry. 

 

Figure 118: The orientation estimate from UKF and odometry (left) and the output of scan matching function 
(right). 

Notice the how the covariances start at zero and increase but to a steady state value. The y 

position estimate shows slight negative result in accordance with inclination of the robot. The 

peak in figure 118 is attributed to wrong data association and decreases as soon as the lines are 

correctly associated. In the second simulation the robot was moved in a straight line but the 

inclination angle was increased considerably to see if it affects the accuracy of scan matching 

and UKF algorithms. The path and the environment are show in figure 119. 
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Figure 119: The environment used for the second simulation. 

The estimate of x and y positions is shown in figure 120 while the estimate or orientation is 

shown in figure 121. Further, the output from scan matching at different time steps is shown as 

well in the same figure. Notice how noisy the scan matching output is. 

Notice the how the covariances start at zero and increase but to a steady state value. The y 

position estimate shows slight negative result in accordance with inclination of the robot. 

However, the value is larger due to the larger inclination. 

 

Figure 120: The estimates of x and y positions from UKF versus odometry. 
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Figure 121: The orientation estimate from UKF and odometry (left) and the output of scan matching function 
(right). 

The robot was then tested in a purely corridor environment with only two lines on the side. This 

environment is difficult compared to typical indoors environments where many lines are found. 

 

Figure 122: The corridor environment used for the third simulation. 

The estimate of x and y positions is shown in figure 123 while the estimate or orientation is 

shown in figure 124. Further, the output from scan matching at different time steps is shown as 

well in the same figure. Notice how noisy the scan matching output is. Notice the how the 

covariances start at zero and increase but to a steady state value. The y position estimate shows 

variation around zero in accordance with motion of the robot.  
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Figure 123: The estimates of x and y positions from UKF versus odometry. 

 

Figure 124: The orientation estimate from UKF and odometry (left) and the output of scan matching function 
(right). 

The robot was tested this time by executing circular motion where the rate of change of 

orientation is significantly larger than the previous cases. The path followed is shown in figure 

125 with the starting position marked with black circle. The robot executed one and half 

rotation around the circle. The estimate of x and y positions is shown in figure 126 while the 

estimate or orientation is shown in figure 127 Further, the output from scan matching at 

different time steps is shown as well in the same figure. Notice how noisy the scan matching 

output is. 
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Figure 125: The robot in circular motion 

 

Figure 126: The estimates of x and y positions from UKF versus odometry. 

 

Figure 127: The orientation estimate from UKF and odometry (left) and the output of scan matching function 
(right). 
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Notice the how the covariances start at zero and increase but to a steady state value. At time 

step 40 there is increase in covariance due to change in view angle as the robot enters the new 

rotation. However, following that the covariance falls again. Further, note that the orientation 

estimate of the UKF varies between 0 and 360 degrees while that of the odometry varies 

between 180 and -180 since it considers angles above 180 negative. The slight drift upwards is 

due to the fact that UKF starts one "frame" later than odometry since it needs two consecutive 

laser frames to produce its estimate. This can be solved by adding the dx, dy, and dth for thr first 

frame. 

4.5.5Discussion 

The use of filters to fuse data from different sources can overcome noisy sensor data which 

would otherwise lead to noisy estimates of robot pose. Further, the use of scan matching based 

on features and local change is fast to process making it real tie process. However, the use of 

features means that scan matching fails to provide enough data in featureless spaces or in some 

environments may detect only few features reducing the accuracy of pose estimate change. 

Therefore, an approach combining point to point and feature to feature scan matching 

algorithms would be more robust and faster than either. In its basic form it would start using 

feature matching and a variance threshold is used to switch to point to point matching if 

needed. 

The presence of inclined lines in the environment for prolonged periods of time may lead to 

slight errors in the y estimate of position. This is due to the use of the local frame of reference 

for scan matching. However, the effect may be overcome by the use of an algorithm to detect 

line gradients and find values for change in x and y that minimize the error between expected 

and actual y intercept. This was implemented but the results usually showed large errors mainly 

due to the lines with angles close to 90 degrees as these have infinite (practically very large) 

value of y intercept. 

However, the effect of inclined lines is likely to be less obvious in small local environment 

especially with the presence of dynamic objects that could block the view of the lines from the 

robot. The UKF algorithm used was proven n the experimental grid map building in section 3.9. 
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4.6 Grid map 

4.6.1 Grid map structure 

The grid map developed was intended to be scalable and growing with the robot motion. 

However, the problem of increasing computational load will eventually be encountered 

rendering the algorithm non real time. Therefore, a method was developed where the map is 

segmented into tiles of equal size (number of grid cells within each tile is the same) and as the 

robot moves on and explores new areas new tiles are added as shown in figure 128 it can be 

seen that when the robot navigates within a tile, it only considers the current tile for the 

updating of grid cells i.e. updates only the local tile. However, if a ranged sensor reading extends 

into another tile then the robot shifts from the current tile to upgrade grid cells in the tile where 

the obstacle is then shifts back the active to the tile it is located into. 

 

Figure 128: The process of extending the grid map by adding new tiles as the robot moves on. 

Another difficulty to be addressed is to reduce the computational cost of updating grid cells 

within the local (active) tile. Even after localizing the update process, the computational load of 

updating a large number of grid cells within the same tile cannot be carried out in real time. 

Therefore, a fast sensor model has to be developed for both the laser and sonar sensors. The 

segmentation of global map will be discussed first then sensor models afterwards. 

i. Map segmentation 

Map segmentation is carried out to enhance the computational efficiency of the algorithm as 

well as render the algorithm scalable. The segmentation is carried out by breaking the grid map 

in to a series of smaller grid maps which are not predefined but rather are added as the robot 

navigates. The robot starts in the first tile (home tile) positioned in the center of the tile. The tile 

has the dimensions shown in figure 129. 
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Figure 129: The dimensions of the tile. 

The center position of each tile is given the coordinates of (100,100) i.e. cell number 100 in x 

and 100 in y (center of tile). Given a robot position (xr, yr), the grid cell in which the robot exists 

is given by the function: 

𝒙𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍(𝒙𝒓−𝟓𝟎)
𝟏𝟎𝟎

       𝒚𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍(𝒚𝒓−𝟓𝟎)
𝟏𝟎𝟎

      (81) 

Where the function ceil is the ceiling function that rounds up variables to the nearest whole 

number, subscript r indicates robot global variable (pose) in metric space in mm, and subscript 

cell indicates the grid cell domain. Millimeters are used since the robot odometer outputs 

readings in mm. If a ranged reading (from a laser or sonar) to an obstacle has to be mapped to a 

grid cell, then the obstacle global position is first obtained from the robot global position and its 

position in the robot's local frame and the following function is used: 

𝒙𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍�𝒙𝒑−𝟓𝟎�
𝟏𝟎𝟎

      𝒚𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝒄𝒆𝒍𝒍 = 𝟏𝟎𝟎 + 𝒄𝒆𝒊𝒍�𝒚𝒑−𝟓𝟎�
𝟏𝟎𝟎

      (82) 

Where subscript p indicates the global position of the obstacle in the metric domain in mm. 

Equations 81 and 82 are only applicable to grid maps of size 20 meters by 20 meters with grid 

cells of the size 0.1 m by 0.1 m.Furthermore, the opposite conversion from grid cell domain to 

metric domain is desired in parts of the algorithm. In order to carry this out it is assumed that 

each grid cell location is represented by the metric coordinates of its center thus if the robot 

exists in cell (100,50) then its metric location in tile can be found using: 

𝒙𝒓 = 𝟏𝟎𝟎𝒙𝒄𝒆𝒍𝒍 𝒎𝒎           𝒚𝒓 = 𝟏𝟎𝟎𝒚𝒄𝒆𝒍𝒍  𝒎𝒎      (83) 

However, equation 83 is modified (to be equation 198) due to the segmentation of grid maps 

into tiles.In equations 81 and 82 the grid cells is considered to be in a different tile if its 
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coordinates are outside the range of the local tile. For example, if the robot in tile 1 senses and 

obstacle and using equation 83 finds that the coordinates of the obstacle are (120,230) then the 

y ordinate is not within the limits of the tile (0-200) and hence the obstacle lies in a tile northern 

to the current robot tile. Thus, the robot needs to keep a stack of tiles ordered labeled with their 

spatial positions relative to one another. 

ii. Stacking of map tiles 

The grid map is expanded as the robot moves by the addition of tiles. Those tiles are stacked 

and indexed according to their position relative to the starting tile. Essentially, the grid map 

becomes a stack of tiles arranged in the order in which they were created and indexed by their 

location. The stack of tiles is shown in figure 130 where the subscript indicates the order in 

which the tiles were created. Therefore T1 is the home tile and all other tiles are relative to it. 

 

Figure 130: The grid map is a set of tiles arranged in the order in which they appear. 

The index which is assigned to a tile depends on its geometrical relation to the starting tile 

which is given an index of (0,0) i.e. zero x position and zero y position.  

The robot knows it has reached the end of the current tile if local cell address from equation83 

exceeds the limits of the tile (0-200) in which case a new tile is created in the appropriate 

location and set as a working tile. Therefore, when converting from grid cell domain to metric 

domain the working tile has to be taken into account and this modifies equation 83 to become: 

𝒙𝒓 = 𝟐𝟎𝟎𝑻𝒙 × 𝟏𝟎𝟎𝒙𝒄𝒆𝒍𝒍 𝒎𝒎           𝒚𝒓 = 𝟐𝟎𝟎𝑻𝒚 × 𝟏𝟎𝟎𝒚𝒄𝒆𝒍𝒍  𝒎𝒎      (84) 

Where Tx is the x ordinate of tile index, and Ty is the y ordinate of tile index while other symbols 

have the same meanings as in equation 83. 
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4.6.2 Sensor model 

i. Laser sensor model 

The laser model used was developed with the size of grid cells in mind as the 10cm by 10 cm cell 

size means that the probabilistic model within the individual grid cell can be replaced by a 

different model where the obstacle cell is considered blocked and cells in between the obstacle 

cell and the laser sensor as unblocked. To limit the computation and enhance the speed of 

processing, only local readings less than 3000 mm away from the laser were. The laser used is 

the LMS-100 laser with a range of 15m and update rate of 10 Hz. Figure 131 part (a) shows an 

example of a laser scan superimposed on the grid cell. The blue lines indicate the laser scan. In 

this example only one obstacle is found in the cell marked with an x. in thiscase that cell will be 

marked as blocked and updated using Bayes rule if its distance from the laser is less than 3000 

mm and all cells lying on a line from the laser sensor to the obstacle cells will be declared as 

unblocked and updated as well. The result is shown in figure 131 part (b). 

 

Figure 131: The result of grid cells update. Blue indicates updated empty and green indicates updated full. 

Cells in which the obstacle exists are labeled with a probability of 1 of being full. While cells that 

are to be vacant (blue cells in figure 113) are updated using Bayes rule based on their prior 

probability and a sensor probability of 0.3. Thus, 

𝑷(𝑪𝒆𝒍𝒍 𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅| 𝑹𝒆𝒂𝒅𝒊𝒏𝒈)𝒎.𝒏 = 𝜼 × 𝑷(𝑹𝒆𝒂𝒅𝒊𝒏𝒈|𝒄𝒆𝒍𝒍 𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅)𝒎,𝒏 × 𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅)𝒎,𝒏      (85) 

Where subscript (m,n) indicates grid cell (m,n). This procedure is repeated 181 times for the 181 

laser rays. Although the discretization of the laser rays superimposed on the grid map creates 
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distortion, the use of probabilistic update overcomes this distortion as the robot moves. This 

method of update is efficient as it does not update all the grid cells in all the tiles of the map nor 

does it update al the grid cell in the current tile but instead updates the cells likely to be affected 

by the laser ray 

ii. The flow chart for the laser sensor updating 

Figure 132 shows the flow chart describing how the laser sensor data is used to update cells. 
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Figure 132: The flow chart for the grid map function that updates the occupancy propabilities of grid cells based on 
laser sensor. 

The flow chart in figure 132 has to check if the grid cell that is to be updated is in the current 

operating tile or not. Therefore, a function called allocateTile was developed to find the tile in 

which the grid cell is operating and to convert from global position to local position in a different 

tile. The desired tile is not found in the stack then it is created by the allocateTile function. 

For the map to be more robust to features that cannot be conveniently detected by the laser 

sensor e.g. glass, the sonar sensor must be used. The fusion of the laser and sonar sensor occurs 
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in the grid map based on the probabilistic update while giving higher weight to the data 

presented by the laser sensor. 

iii. Sonar sensor model 

For the sonar sensor consider figure 133 which shows a sonar beam superimposed on a grid 

map. The sonar beam is divided into two regions, a green region (region 1) where the obstacle is 

likely to be and a blue region (region 2) that is likely to be empty. 

 

Figure 133: A sonar beam superimposed on a grid map. 

The cells are updated as shown in figure 134 in two regions using two equations 86 and 87. 

 

Figure 134: The updating of cells using the devised sonar model. 

The only cells updated in region 2 are the cells highlighted in blue. The cells are updated with a 

probability being occupied according to the equation: 
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𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅) = 𝟏 −
𝑹−𝒓
𝑹 +𝜷−𝜶𝜷
𝟐

      (86) 

Where R is the maximum sonar range, r is the current range to obstacle, 𝛽 is the sonar cone 

angle, and 𝛼 is the angle of the grid cell with respect to the axis of the sonar cone. This 

probability is fused with the prior of each cell using Bayes rule. The rest of cells in the blue 

region are not updated. The cells in region 1 (green in figure 134) are updated using the 

equation: 

𝑷(𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅) =
𝑹−𝒓
𝑹 +𝜷−𝜶𝜷
𝟐

× 𝑴𝒂𝒙𝒐𝒄𝒄𝒖𝒑𝒊𝒆𝒅      (87) 

Where Maxoccupied is a predetermined value used to limit the maximum certainty in a grid cell 

and is set to 0.98. When dealing with grid cells for update with sonar sensor, the allocateTile 

function is called just as it is called in the laser updating function to check if the obstacle exists in 

a different tile from the active tile. This is because the sonar sensor is a ranged sensor. 

iv. Flow chart for the sonar sensor updating 

There are 8 sonars on the P3Dx robot used since there was no back sonar array and the front 

array has 8 sonar sensors thus the updating process was repeated for the 8 sonar sensors. The 

sonar model update algorithm works exactly like the laser flow chart but with 8 sonars updated 

instead of 181 laser readings. 

4.6.3 Simulations and comparing the developed sonar model to standard 
model 

i. First trial 

The Developed sonar model was compared to the model commonly used from [19]. The robot 

was moved in a simulation environment for the comparison. The sonar data and robot 

odometry were collected and used to simulate the grid map in MATLAB.  The first simulation 

environment tested is shown in figure 135. 
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Figure 135: The first trial of the robot in a simulation environment. 

The robot moved a distance of about 3.6m and therefore it is expected that the algorithm 

developed for grid mapping will use only 1 tile. Therefore, the environment was set as a grid 

map of size 20m by 20m and 200 by 200 cells for proper comparison. First, the standard sonar 

model algorithm was run where every single grid element is updated for every sonar sensor. 

This process makes it slow and computationally intensive. The pseudo code is:   For every grid 

cell: 

1. i=1 

2. if i<9 

3. find range and angle to the grid cell from sonar sensor 

4. if range and angle are within region 1: 

5. upgrade cell using equation 87 

6. if range and angle are within region 2: 

7. upgrade cell using equation 86 

8. increment i 

9. if i>9: 

10. end 

The result of the map produced by the commonly used sonar model that is proposed by [19] is 

shown in figure 136. 

Start 
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Figure 136: the map for the enviornment in figure 135 using standard sonar model. 

The mean time taken for 80 updates was 0.196 seconds (196 ms). After that the developed 

sonar model was tested. The result with the same environment is shown in figure 137. 

 

Figure 137:A zoomed version of the map for the enviornment in figure 135 using developed sonar model. 

The developed sonar model took on average 0.0078s (7.8 ms) for 80 runs. Thus it was faster 

than the original model although it missed more details in the environment. However, the 

general layout of the environment and close obstacles are clear. 
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ii. Second trial 

A second trial was set with the robot exploring more of the simulated environment. The path 

followed by the robot in the environment is shown in figure 138. The grid map produced by the 

standard sonar model is shown in figure 139. This map was produced by the standard sonar 

model this time a larger environment. 

 

 

 

 

 

 

 

Figure 138: The second trial in the same environment. 

 

Figure 139: The map for the enviornment in figure 138 using standard sonar model. 

The map is made up of 148 runs which on average took 0.1645s (164.5 ms) per run to update all 

sonar sensors. The developed sonar model was tested and the result is shown in figure 140. 

Start 
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Figure 140: The map for the enviornment in figure 138 using developed sonar model. 

It is made up of 148 runs which on average took 0.0058s (5.8 ms)   per run. The resulting map 

looks slightly "empty" as the sonar readings were limited to 3000 mm from the robot. If longer 

sonar readings were included, the resulting map would be as shown in figure141. However, the 

time it takes to build this map per scan increases so a compromise distance of 3000 mm is used. 

 

Figure 141: The map with develoed sonar model if longer readings are taken ino aacount. 
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As can be seen in figure 141 the vacant areas in the map are now considered by the algorithm 

but previously they were vacant, here implies having a probability of 0.5, i.e. not modified yet by 

algorithm (Cyan cells).  

4.6.4 Experiments 

To prove the concept of fusing laser and sonar data in the grid map a well as the use of tiles to 

extend the map as the robot moves on, experiments were conducted in the mechatronic lab. 

The robot used was the P3Dx differential drive robot equipped a laser sensor (LMS 200) and a 

sonar array. The robot was manually driven using joystick with the obstacle avoidance function 

not functioning but odometry reckoning was functioning. Further, the dynamic objects detection 

was not functioning too. The robot map was saved and later retrieved for displaying using 

MATLAB. The map is made of two tiles, the first being tile (0,0) the center tile and is shown in 

figure 142. 

 

Figure 142: Grid map produced by the robot tile (0,0). 

The blue areas indicate grid cells with a probability of occupancy lower than 0.5 while red cells 

are higher than 0.5 in terms of the probability of occupancy. Further, the cyan cells indicate cells 

that were not updated yet by the robot i.e. undetermined with a probability of 0.5 exactly since 
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any new tile is always initiated with 0.5 probability of occupancy. Black cells indicate robot path. 

The second tile is shown in figure 143 and is a completion of the map. 

 

Figure 143: The second tile of the map (-1,0). 

Note that the full map then becomes a combination of the two tiles as in figure 144. The map 

was combined manually as MATLB was unable to plot the big map without crashing. 

 

Figure 144: The full map formed by merging the two tiles from figure 142 and 143. 
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The resultant map is curvy and inaccurate since no UKF or scan matching was used and it was 

built using odometry only. This was only to proof the concept of local and global metric map 

fusion. The global metric map acts like a topological unit while the individual tiles act as nodes. 

In a later chapter, the same path will be followed by the robot to map the same area but using 

UKF to compare the two results. The outline of the actual lab and corridor environment is drawn 

in figure 145 (not to scale) for comparison with map produced by the robot.  

 

Figure 145: The approximate shape of the environment used. 

Notice how the map is curved with the curving being more pronounced as the robot turns 90 

degrees. The situation became severe in the 90 degree turn in the corridor which occurred due 

to a non-systematic odometry error occurring due to the robot bumping in the gap between 

ground tiles. This is all due to relying on odometry (dead reckoning). The map is fuzzy due to 

incorporation of sonar data which can be controlled by controlling the degree of fusion.  

The resolution of the map and utilization of sonar data can be affected by the degree of fusion 

that occurs between laser and sonar data. This is achieved by putting more probabilistic weight 

on the data from one sensor compared to the other. In the implementation, the grid cell size 
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was chosen as 10 cm by 10 cm since this means the laser sensor model can be simplified to a 

model where cells containing the obstacles are full while cells on the way to the obstacles 

(penetrated by laser rays) are unoccupied. The size of grid cells can be made smaller which will 

necessitate the use of more elaborate laser model and will make the fusion of sonar data with 

laser less useful due to sensor resolution differences. However, it will lead to a more accurate 

map using one sensor i.e. laser. 

4.6.5 Discussion 

The sonar model developed to be used with the grid map was compared to the standard sonar 

model used. The developed model did much better than the standard model on time basis as it 

took on average 6 ms to run while the standard model took about 160 ms to run. It must be 

noted that those times are with a 200 by 200 cells grid map and will be different for different 

grid sizes and at a maximum processed range of 3000m. The maps show less details compared 

to the standard sonar model. However, they show that the developed model is more efficient 

on time basis. The standard model gives a richer map than the developed model but it is less 

accurate at the boundaries. The developed model on the other hand has less rich map but less 

erroneous at the boundaries. Further, the developed model is better used with a laser sensor to 

enhance its results. 

4.7 Dynamic objects detection and extraction 

4.7.1 Introduction 

The aim of this section is to develop a technique that can be used to detect dynamic objects 

based on local frame to frame matching that helps to exclude the laser readings from dynamic 

objects that could lead to a wrong grid map building. 

The process of dynamic object detection and extraction is made up of two parts. The first part is 

the dynamic object extraction process which relies on geometric features of expected dynamic 

objects to extract all possible objects that match the geometric criteria. The second step is the 

detection process which refines the output of the previous process by tracking the extracted 

objects and associating them with one another from frame to frame to confirm that they are 

dynamic. The second part of the algorithm can give rise to some inaccuracies if the dynamic 

object is slowly moving. This would not have been a problem in a stationary platform but with a 
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moving robot platform, and noisy sensor readings then slowly moving dynamic objects even if 

extracted correctly can be hidden in background noise originating from sensor noise. 

The approach used here is similar to that used by [20] where experiments were conducted to 

find the geometric properties of dynamic objects. In an indoor environment, the expected 

dynamic objects are humans which can be detected as dips in the laser scan. Human legs appear 

as curves with certain depth, width, and number of scan points. Due to the fixed angular 

resolution, the number of scan points varies with distance from the laser sensor. 

To characterize the properties of human legs, experiments were carried in a lab (indoors 

environment) with the robot being moved through by a joystick. The environment was 

populated with moving humans. The laser scans were saved as the robot moved and human legs 

were identified visually by a human and marked for logging. The visual appearance of human 

legs in laser scan in polar and Cartesian coordinates is shown in figure 146. 

 

Figure 146: The appearance of human legs in Cartesian coordinates as red dots (a) and polar coordinates circled in 
(b). 

The human leg in Cartesian coordinates is characterized by the properties shown in figure 147. 
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Figure 147: The properties  used to differentiate human leg. 

Those geometric features of the human leg can be used to better differentiate human legs from 

chairs. Experiments were conducted to find the properties of legs shown in figure 147 to use 

them in order to segment and extract possible dynamic objects. The results were plotted in 

figures 148, 149 and 150. The range (interval) of dynamic objects versus distance from laser 

sensor is shown in figure 148. As can be seen, there is an inverses relation with distance. 

However, the relation is non-linear best described by if then conditions. 

 

Figure 148: The range interval (laser points subtended) of dynamic objects versus their distance from laser sensor. 

The length of dynamic objects versus distance from laser sensor is shown in figure 149. 



150 
 

 

Figure 149: Variation of width of dynamic object with its distance from laser sensor. 

No significant correlation was found between range and length as MATLAB function corrcoef 

was used to find the correlation between the two and the P value for hypothesis. The 

correlation was -0.08 and the P value was 0.6721 (more likely to be null hypothesis). The 

negative correlation with range is likely due to the decreased resolution in Cartesian coordinates 

due to fixed laser polar resolution. 

 

Figure 150: The map of depth versus length (width) of dynamic objects. 



151 
 

This shows that most legs have depth (refer to earlier geometry) of between 50mm and 180mm 

while the length varies between 80mm and 200mm. The larger values are due to two legs 

classified as one leg. Those values are similar to what [20] obtained. To help segment dynamic 

objects, a function was developed to predict the interval of dynamic object based on its distance 

from laser. The flow chart of this function is shown in figure 151. The find interval function is 

used to identify dynamic objects based on one of its properties. It will be called find_interv 

function. 

 

Figure 151: The flow chart for find interval function. 

4.7.2. Algorithm for dynamic object detection and extraction 

Dynamic objects are first detected based on geometric features then in the next step new 

dynamic objects are compared to old objects thus an association process is needed which is 
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what the function is called dyn_det and accepts two laser frames, fr and fr2, of dynamic objects 

for the current time step and the previous time step. The laser scan at the two time instants, frp 

and frp2, is acquired. The Two parts of the algorithm are executed according to the number of 

dynamic objects stored. When the number is zero the first part of the algorithm is executed 

once. If the number of objects falls again to zero this part will run again. The first step when 

there are zero objects is to store the current frames for detecting dynamic objects and 

comparing with later frames. The flow chart is in figure 152. Obj refers to the array that holds 

properties of current dynamic objects. 

 

Figure 152: The first part of the dyn_det function. 
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In figure 152 the beginning points refers to the angle in the laser scan at which the first part of 

the dynamic object is detected starting from the default scan starting angle. The last point refers 

to the last point occupied by the dynamic object.  The dynamic object is tracked by its polar and 

range velocities i.e. polar coordinates. However, when starting with no objects the velocities are 

initialized to zero. The second part of the function (figure 153) is executed when the number of 

dynamic objects is greater than 1. In this part, dynamic objects in frame two, fr2, and first frame, 

fr, are compared and the expected dynamic object pose change due to robot motion is 

calculated and used to associate old objects to objects in the new frame. If no match is found 

within the new frame for a dynamic object belonging to the previous frame, a null counter is 

incremented.  
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Figure 153: The flow chart for the second part of dyn_det function. 

The expected change in object orientation due to robot motion is due to the change in the y 

distance to the dynamic object as the robot moves (assuming the direction the robot is heading 

to is the positive y axis). Thus, 

𝒕𝒉𝒏 = 𝐚𝐭𝐚𝐧�𝒚𝒑−𝒅𝒓
𝒙𝒑

�      (88) 

Where 𝑡ℎ𝑛 is the new orientation due to robot motion that is expected of the dynamic object𝑦𝑝, 

and 𝑥𝑝 is the position of the dynamic object, and dr is the distance moved by the robot. The 

change in object range due to robot motion is given by: 



155 
 

 

𝒓𝒏 = ��𝒚𝒑 − 𝒅𝒓�𝟐 + �𝒙𝒑�
𝟐

      (89) 

Where 𝑟𝑛 is the polar range. Following this, unmatched dynamic objects in the old frame are 

marked by incrementing their null counter and if the null counter exceeds 3 i.e. dynamic object 

not detected in three consecutive time steps, then the object is eliminated from dynamic object 

list. New unmatched objects are then added to obj array. The dyn_det function makes use of fr 

and fr2 arrays which hold the points of segmented dynamic objects. The segmentation of 

dynamic objects is carried out according to the geometric features of dynamic objects. The laser 

readings (181 readings) are segmented for dynamic objects expected from human legs 

according to the model built from experimental data. Any cluster of laser measurements 

satisfying the geometric features is tracked as a potential human. The dynamic object detection 

is carried out every 0.1 seconds approximately to extract dynamic objects and remove them 

from the grid map. The algorithm was tested on a P3-DX robot in a lab environment with 

humans (typical dynamic objects indoors) moving around. The experiments and results are 

displayed next.  

4.7.3 Experiments 

Experiments were carried out in a lab environment as shown in figure 154. The scattered points 

(circled) are typical points resulting from human legs and chair legs.  

 

Figure 154: The lab environment with various objects. 
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However, some of the scattered points are chair legs due to their shape as shown in figure 155. 

 

Figure 155: One chair shown on the left. Notice that the narrow part of the chair leg is what is visible on laser scan. 

 The robot was driven manually in the environment using the joystick and the robot 

continuously monitored its pose and used it to calculate dynamic object velocities. Further, the 

robot motion at certain instances could be very close to that of dynamic objects making it hard 

to estimate the true speed and classify it as a dynamic object. In section D the Cartesian laser 

scan will be presented frame by frame and the beginning points of dynamic objects with their 

endpoints are marked in red. The objects that are too small to be classified as human legs but 

suspected to be dynamic are in green. 

4.7.4. Results 

The initial scan is shown in figure 156. 

 

Figure 156: The initial segmentation of the environment. 
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The green points refer to segments too small to be of human legs but suspected as chair legs. 

The red points are the beginning points and end points of human legs detected. Note that the 

scale of the scan is in mm i.e. the size of the environment is of the order of 4m. As the robot 

moves every 0.1 seconds a new scan is processed and compared with the previous scan in order 

to measure the speed of dynamic objects (radial component and angular component). The 

second frame is shown in figure 157 (a) with the polar laser scan (b). Notice that the robot 

identifies some of the true objects as dynamic objects but identifies segments of wall/tables as 

dynamic objects. These are ghost objects and will be omitted as the robot discovers their speed 

does not change in next frame. 

 

Figure 157: The laser scan at frame two(a) and corresponding polar scan (b). 

The average location of the dynamic object on the polar scan is shown with black dots at the 

average index. The robot calculates the speeds of detected objects as shown in figure 158. The 

speeds for dynamic velocities are shown in pairs with the top value for radial velocity (mm/s) 

and the bottom value for angular velocity (deg/s). Notice that dynamic objects detected in the 

second frame only are initialized with zero velocity while those from frame one have a 

calculated velocity. 
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Figure 158: The angular and radial speeds relative to the robot of detected dynamic objects. 

In frame 3 in figure 159, the objects detected in frame 2 are assigned speeds as shown. 

 

Figure 159: The third frame (a) and the corresponding polar plot (b). 

Note that the calculated velocity is the current velocity not the average and is based on the 

motion from frame to frame thus may not reflect true velocity of object since humans move 

with gaits and swing their legs at a speed different from average body speed. Notice that the 

robot mistakenly labels a wall segment (shown in blue circle) as dynamic object and assigns zero 

speed to it. This is will be dropped from the list of dynamic objects as the robot moves on. This is 
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shown in figure 160 which shows the fourth frame where the labeled wall segment is no longer 

in dynamic objects list. 

 

Figure 160: The cartesian frame for frame 4. Notice that the wall segment previously labeled as dynamic no longer 
exits in object list. 

 

Figure 161:The situation at frame 10. 
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The situation continues at frame 10. Here the robot has detected the two legs of one human 

directly in front at about 0 degree heading. Notice that wall segments that were previously 

classified as dynamic objects no longer exist in list. The same effect repeats itself again this can 

be seen in the situation from frame 20 to 22 as shown in figure 162. A wall segment (circled) 

was labeled as dynamic but later excluded. 

 

Figure 162: The situation of dynamic objects from frame 20 in (a) to 22 in (b). 

Sometimes a wall segment with one off shooting laser point can be classified as dynamic object 

and a ghost speed is calculated which is due to noise in laser readings coupled with robot 

motion. However, as the robot moves and views it from different positions it gets less likely it is 

segmented and included as dynamic in next frames thus eventually falling from list. This 

evolution is shown in figure 163 where it was detected by mistake as dynamic (a) then its speed 

calculated for tracking (b) and later excluded. This happened from frame 33 to 35. 

 

Figure 163: The evolution of ghost dynamic object detection (a) tracking (b) and exclusion (c). 
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Another observation seen was that a dynamic object correctly detected in one frame may move 

too much as to be labeled as a new object in next frame and have its previous position tracked 

as a ghost in next frame.  An example of this happened in frames 41 to 42 where the two legs 

tracked in frame 41 were later identified in frame 42 with one leg labeled as new. Notice that 

the left leg had zero speed when this happened. The explanation is that this happened while the 

person was stepping on the left leg and raising the right leg up and fast forward to take a step 

forward which could explain why this happened. 

 

Figure 164: Two legs in frame 41 (a) were identified in next frame (b) with one leg labelled as new and its previous 
position tracked as a ghost object. 

 

Figure 165: Zoomed in view of the two legs at frame 43(a) and frame 44(b). 

A zoomed view is shown of the next two frames which show that the ghost feature was tracked 

for one frame (43) until it was dropped in frame (44). 

  



162 
 

4.7.5 Discussion 

The dynamic object detection function succeeded in segmenting dynamic objects based on their 

geometric profile. However, sometimes some wall segments appear as dynamic objects and are 

added to the list. In those cases the algorithm may succeed in excluding those objects based on 

two ways. The first way is the geometric approach where the same objected detected from 

different pose may not satisfy the geometric criteria and thus is excluded from the list. The 

second way is because those objects are stationary, when tracked with their original speed will 

not satisfy the expected location and will be excluded such as the case demonstrated in figure 

163. 

Further, sometimes dynamic object speeds may not reflect the true speed of the dynamic object 

since the objects under consideration are humans who move with gaits by fixing one leg and 

moving the other forward to take a step then alternating the motion. Since the laser sensor only 

detects legs it will not see the true motion of the human (average speed) and may show varying 

speeds from frame to frame which may occasionally lead to the dynamic object being lost out of 

tracking. A suggestion is to develop a more involved model that can correlate leg motions 

according to different gait models and group legs into human groups then based on the gait 

model predict the human speed. However, this is challenging since gaits and their velocity tend 

to vary from person to person. Therefore, a better approach could be the use of statistical 

model that yields an average speed expected from observed gait. 

Moreover, if the human leg moves forward at high speed, it may mistakenly be marked as a new 

dynamic object and its previous position tracked as a ghost for some time. However, it will 

eventually be dropped from the tracking list of dynamic objects as the null counter counts it 

unseen for several frames (3).  

To overcome those problems, the geometric criteria for dynamic object segmentation could be 

made stricter by taking more readings to extract tighter tolerances for geometric properties of 

dynamic objects. However, in this case there is a risk that the data could be environment 

specific. For the ghost dynamic objects, the threshold of number of times unseen may be 

decreased but will lead to poorer tracking of dynamic objects due to speed variability. 

Another approach is to use average speed for tracking or build a motion model and use Kalman 

filter for tracking. However, this may not be robust with humans since humans show abrupt 
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motion change in normal day to day activity thus average speed may not reflect a standing still 

human and model based tracking methods at best will succeed in constant speed or acceleration 

situations. 

Another approach is to use a global grid map for dynamic objects that is updated locally only for 

time efficiency. However, this will be slower than the current approach but will certainly be 

more accurate. It will need better maintenance of robot pose since unlike the local method 

developed here; it relies on accurate robot pose. Thus the choice is a compromise between 

different things and this method was developed to be fused with grid mapping for ruling out 

laser readings originating from dynamic objects. Further analysis and development will be 

needed to compare global methods to local methods. 
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4.8 Camera sensor 

4.8.1 Introduction 

The camera was used in this experimental work to investigate the possibility of it as a sensor 

that could be fused with the robot laser and sonars. The algorithms for image processing were 

obtained from OpenCV and the approach was mainly focused on real time processes. Thus only 

optical flow and image enhancement algorithms were used. More in depth image processing 

like SIFT will enable more information fusion but at the cost of time so were avoided. This 

section will start by explaining optical flow since it was the algorithm mainly used. 

i. Optical flow from cameras 

Optical flow is caused by both camera rotation and translation. It is difficult to fully correlate the 

effects of the flow to each component as every point in the image has different depth and hence 

affects the optical flow differently [67]. Since optical flow is caused by the 3D motion of the 

camera, then a relation between camera 3D motion and the expected 2D image motion field is 

required. For this consider the geometry in figure 166. 

 

Figure 166: The camera geometry [67]. 

The global coordinate system XYZ is assumed to have its origin at the camera lens, and the 

image plane is located parallel to the XY plane at a depth, Z, equivalent to the camera focal 

length, fc. The following analysis is obtained from [67]. In figure 166 the point P has real world 

coordinates (X,Y,Z) which is projected on the image plane as point p with coordinates (x,y). This 

is expressed mathematically as: 
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The camera ego motion has two components, a translational and a rotational component which 

are given by: 

𝑻 = �𝑻𝒙,𝑻𝒚,𝑻𝒛�
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Assuming the camera moves a translation T and a rotation ω, the point P will appear to move to 

a new location P' which is translated by –T and rotated by – ω thus: 

𝑷′ = 𝑴−𝝎𝑷 − 𝑻     (92) 

Where M-ω is the rotation matrix by – ω. If the small angle approximation is used, the rotation 

matrix can be simplified to: 
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From this it is possible to get a relation for the expected optical flow in x and y directions on the 

image plane thus from [67]: 
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Equation 94 can be simplified to give: 
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From equation 95 it is evident that the magnitude of optical flow depends on the pixel location. 

Thus for a combination of translations at zero rotation there exists a point (x,y) where the 

optical flow vector (u,v) is (0,0). This point is called the focus of expansion (FOE). 

Further, notice from equation 95that the rotational component is depth independent while the 

translational component depends on the depth. Therefore, if an assumption of no rotation is 

made, then it is possible to estimate the range from optical flow [68].  



166 
 

ii. Focus of expansion 

In the case of pure translation, the optical flow vectors due to camera motion appear to 

originate from one point known as the focus of expansion (FOE) [41]. At the focus of expansion 

there is no optical flow and its position corresponds to the heading of the camera. This is the 

case only for forward camera translation and no dynamic objects. Figure 167 shows the optical 

flow for pure translation (a), with a dynamic object (circled) in the bottom right corner (b), and 

with rotation of the camera (c) [44]. 

 

Figure 167: Optical flow for translation only (a), with dynamic object (b) and with rotation of camera in addition to 
translation (c) [44]. 

The focus of expansion is important for three dimensional reconstruction of the image, range 

estimation, time to collision calculation, and obstacle avoidance. Thus it is very important for 

robotic systems employing vision [45, 46]. There are two main groups of techniques to estimate 

the FOE location which are local and global methods. Local methods work by comparing 

corresponding points or lines and work on a local scale in the image making them not robust to 

noise. Global methods rely on the whole optical flow field to estimate the FOE but are 

computationally expensive since they usually involve the use of least squares estimate [46]. 

iii. Neural networks 

Neural networks will be used for the estimation of the rotational component of ego motion of 

the robot. Neural networks are parallel computational units that have the ability to learn from 

examples to find the model of an unknown system [69]. Commonly used networks are multi-

layer feed forward perceptron consisting of input layer, hidden layer that implements a function 

(usually non-linear), and output layer to scale outputs [69]. 
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Mathematically each neuron, j, in the hidden layer performs the following mathematical 

operation on its inputs xi [69]: 

𝒚𝒋 = 𝒇�∑ 𝒘𝒋𝒊𝒙𝒊𝒏
𝒊=𝟏 � + 𝒃𝒋      (96) 

Where f is the function performed by the neuron, wji is the weight connecting neuron j to input 

I, and xi is the ith input. Neural networks are commonly trained using back propagation to 

gradually adjust network weights and biases. MATLAB "train" function was used for this 

purpose. 

4.8.2  Methodology 

i.  Setup used and experiments 

A P3DX robot was used which was fitted with a mono camera as shown in figure 168. 

 

Figure 168: The setup used. 

The camera used was a monocamera from Point Grey model number BFLY-U3-03S2C-CS. The 

camera has 1 megapixel 1/3 inch image format which has the following properties from [70]: 

Sensor width of 4.8mm, height of 3.6mm and a 6mm diagonal as shown in figure 169. 

 

Figure 169: The dimensions of the 1/3'' sensor of the camera [70]. 
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The camera was fitted with DF6HA-1B lens with a focal length of 6mm. Since the differential 

P3DX robot cannot rotate around the z and y axes and cannot move along the x and y axes the 

optical flow is related to the motion field by: 

�𝒖𝒗� = �
𝑻𝒛𝒙
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+ 𝝎𝒙𝒙𝒚
𝒇

𝑻𝒛𝒚
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+ 𝝎𝒙𝒇
�      (97) 

 To make use of optical flow, the optical flow due to ego rotation has to be removed first. 

OpenCV was used to implement the optical flow algorithm. The algorithm used was the sparse 

Lucas-Kanade method with pyramids implemented by OpenCV.  

The first step is trying to remove rotation effect. To do this, experiments were carried out to 

determine the actual flow due to pure robot rotation and the results were compared to the 

theoretical case of equation 97. The pixel size is 0.0075mm and the focal length is 6mm so it is 

possible to predict the flow resulting from certain rotation. An example of an expected optical 

flow pattern at 3 degree rotation is shown in figure170. 

 

Figure 170: The predicted optical flow at 3 degree rotation. 

The flow is saddle shaped and peaks at the edges of the image and is zero at the center. This is 

in accordance with the theory. Now this is was compared to the actual optical flow obtained 

from OpenCV as the robot rotated three degrees and captured two consecutive frames for 

comparison. The result is plotted in figure 171. The results are very noisy but fall within 21 to 25 

pixels. This is very different from prediction from theory. 
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Figure 171: The actual optical flow obtained at 3 degree rotation. 

The actual image is shown in figure 172. The circles represent the initial pixel locations. While 

lines indicate the direction of optical flow and their length corresponds to magnitude.  

 

Figure 172: The actual scene from which the optical flow was taken at 3 degree rotation. 

To understand why the optical flow at three degree rotation deviated from the theoretical 

optical flow, the optical flow was calculated theoretically at negative three degrees and 

compared to actual negative three degree measurements.   
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Figure 173: The predicted optical flow at -3 degree rotation. 

The flow is saddle shaped, opposite to what is obtained at figure 171 and peaks at the edges of 

the image and is zero at the center. Now this is was compared to the actual optical flow 

obtained from OpenCV as the robot rotated negative three degrees and captured two 

consecutive frames for comparison. The result is plotted in figure 174. The results are very noisy 

but fall within -37 to -42 pixels. This is very different from prediction from theory. 

 

Figure 174: The actual optical flow obtained at -3 degree rotation. 
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The actual image is shown in figure 175. The circles represent the initial pixel locations. While 

lines indicate the direction of optical flow and their length corresponds to magnitude.  

 

Figure 175: The actual scene from which the optical flow was taken at -3 degree rotation. 

Notice how the vectors indicate right to left flow movement reverse to that in figure 172. 

Following the comparison between prediction and actual data, it was concluded that the actual 

motions experienced at the camera lens were different from those at the robot center. 

Referring to figure 168 it can be seen that the lens of the camera is not at the center of the 

robot rather it is displaced at a certain distance and orientation. Therefore, equation 97 is not 

directly valid rather the actual motion at the camera is given by: 

𝑷𝒄 = 𝑻𝒄𝑹 𝑷𝑹      (98) 

Where 𝑇𝑐𝑅  is the transformation matrix, PR is the robot position, and Pc is the camera position. 

However, this transformation is difficult to figure out accurately due to many reasons such as 

the difficulty measuring the distance between camera lens and the robot center accurately, the 

need to account for motion of PTU unit on which camera is mounted, and the difficulty of 

measuring camera orientation accurately compared to robot center.  

Therefore, the robot rotation induces the effect of both rotation and translation at the camera 

lens which is responsible for the discrepancy between actual and theoretical results. Although 
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the relation is not known, it can be taught to a neural network via the use of large set of training 

data to extract the relation between the optical flow and robot rotation. Furthermore, since the 

extraction of optical flow is noisy and creates some outliers then the use of neural network will 

make the algorithm robust to outliers.  

ii. Neural network training 

Therefore, a neural network was developed and trained to predict the optical flow at any pixel 

location in the x and y directions due to the robot motion. The neural network used is the non-

linear feed forward neural network with tan sigmoid activation function. The network accepts P 

vector of inputs of R variables and has n neurons connected to inputs by weight matrix of size n 

x R. Each neuron has a bias and sums its output to a transfer function.  Using trial and error, it 

was found that a neural network of 5 hidden layers employing tan sigmoid transfer function is 

sufficient to approximate the optical flow from training data without risking over fitting. 

The layout of the neural network is shown in figure 176. The neural network accepts three 

variables at the input: 

• Y ordinate of pixel with respect to image center 

• X ordinate of pixel with respect to image center 

• Rotation angle of the robot 

The first two variables are divided by 100 to scale the inputs for easier network training. At the 

output, the network outputs two results: 

• The expected optical flow at input pixel in the y direction 

• The expected optical flow at input pixel in the x direction 

 

Figure 176: The neural network developed with inputs and outputs (biases not shown for simplicity). 
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Before training the network, strong outliers had to be removed from the data. Therefore, any 

optical flow vector in a set that pointed in a direction different from actual was rejected i.e. if 

flow is supposed to be from left to right any vector right to left is rejected. 

Training of the network proceeded using default training function in MATLAB. Training required 

142 iterations and yielded a mean square error of 31 pixels squared which corresponds to about 

an average deviation of 5.5 pixels. As can be seen there is noticeable number of outliers in the 

plot and this can be attributed to one of two reasons. The first could be due to network not 

finishing its training or could be due to the data being actual outliers that do not follow the 

learned relation by then network. The regression plot is shown in figure 177. On top of each plot 

there is an R value which is the degree of overlap between network output and targets. Training 

data set and validation sets have high degree overlap as an overall of 1 indicates perfect match 

while the actual overlap in both cases was greater than 0.9. Further, the high degree of overlap 

in validation data rules output the possibility of over fitting. This is further confirmed by the fact 

that the number of hidden neurons is very less than the training set. 

 

Figure 177: The regression plot from MATLAB for the training of the neural network. 
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The neural network was tested with validation data different from that used for training. 

However, the validation data has outliers that will affect the results. The average errors in the x 

and y directions were worked out as 27 and 1.1 pixels respectively. The reason for lower error in 

y direction is due to the magnitude of optical flow in y direction being lower than the x direction 

as the robot movement did not cause significant motion in y direction for the pixels. Further, 

notice the discrete nature of error distribution in the x direction which is due to discrete training 

data at different robot rotation angles. 

iii. Testing and results 

To visualize the performance of the network, the optical flow vectors obtained from the 

experiments were plotted as MATLAB figure with the starting pixel location labeled by black dot 

and a vector to final flow position whose magnitude reflects the magnitude of the optical flow. 

An example is shown in figure 178. 

 

Figure 178: An example of an actual optical flow image (left) plotted as vectors only in MATLAB graph (right). 

The network was then programmed to predict the optical flow given initial pixels location and 

robot rotation. The prediction for figure 178 is shown in figure 179. 
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Figure 179: Optical flow prediction from network (right) versus actual flow (left) for situation in figure 293. 

As can be seen, the network output is matching the actual experimental optical flow. The 

network is able to avoid noise in the training data. This can be shown by looking at the optical 

flow at two degree rotation in the presence of noise as shown in figure 180. 

 

Figure 180: Flow with few noisy vectors left (scene with optical flow) right (optical flow vectors only). 

In figure 180, there are some wrong optical flow vectors that deviate from the rest of the flow. 

Therefore, the network output is expected to be able to detect this noise. The network was run 

and the estimate of optical flow from the network is shown in figure 181 (left) together with the 

difference (right) between the network output and actual optical flow. 
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Figure 181: Flow from the neurl network (left) and the difference between neural flow and actual flow. 

Notice how the erroneous vectors in figure 180 appear easily in figure 181 (on the right side). 

Therefore, the neural network can be used to cancel the optical flow component due to ego 

rotation of the robot despite the noise. 

iv. Calculation of the FOE location 

For the calculating the FOE location, a counting scheme similar to the work by [47] is used that 

relies on the divergence property of the flow similar to the works of [46], [45]. The process 

starts by defining a trigonometric function for calculating the orientation of the optical flow 

vectors so they lie between zero and 360 degrees. The arctangent function produces angles that 

are between -90 degrees and 90 degrees. Bearing in mind that the y axis of images in OpenCV is 

inverted. 

This is then used to find the position of the FOE according to the divergence property. In order 

to ensure the accuracy of the results and prevent noisy readings from biasing the actual FOE 

location, all vectors that are likely to be due to noise are ruled out. To do this, optical flow 

algorithm from OpenCV was carried out at no motion to find an average value of the magnitude 

of noisy optical flow vectors. The average magnitude was worked out to be 0.2 pixels. Therefore, 

a threshold 10 times this value, i.e. 2 was chosen to ensure that noise will not interfere with FOE 

calculation. 

Following this, the image is divided into 10 columns each column 64 pixel wide and extending all 

over the image height as shown in figure 182. 
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Figure 182: The image is divided into 10 columns to process for the location of the FOE. 

Following this, each vector is given a value depending on its orientation. It is given a value of 500 

if it points right (i.e. angle less than 90 or above 270 degrees) and a value of -500 if it points left. 

In the case of exactly vertical vectors a value of 0 is given. The values of vectors in each column 

are summed to give the overall value in each column stored as a one dimensional 10X1 array. 

The plot of the sum of vector values for the optical flow in figure 182 is shown in figure 183. The 

point where the zero crossing happens is the vicinity in which the FOE lies. The location of the 

FOE is taken to be in the middle of the column in which the zero crossing takes place. The 

process can be repeated in the y direction to find y position of FOE vertical position but it was 

found to be in most trials close to the center of the vertical axis. 

4.8.3 Results of FOE finding algorithm 

The algorithm was tested first without dynamic objects as the robot moved in translational 

motion in three modes. The first was a straight mode where the robot was parallel to the nearby 

obstacles, the second was when the robot was inclined towards the obstacle (on the right), and 

the third was when the robot was inclined leftwards away from the obstacle. In all cases the 

robot moved only in translational motion. Finally, the experiments were repeated at different 

displacements of 5 cm and 10 cm. at a velocity of 200 mm/s it will take the robot 0.25 seconds 

and 0.5 seconds to travel those distances respectively. 
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A frame was grabbed then the robot moved the specified distance (5m or 10cm) and stopped 

before grabbing a second frame and working out the optical flow and FOE location. Result of 

optical flow for straight motion at 5cm is sown in figure 183. 

 

Figure 183: The result of optical flow for straight motion at 50 mm. 

The optical flow vectors were mapped to MATLAB and the FOE position was worked out. The 

mapped flow vectors are shown in figure 184 with the FOE horizontal position marked with a 

square placed at 240 pixel y position.  

 

Figure 184: The x position of the FOE (right) for situation in figure 183. 
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The results from the other experimental trials indicated that the FOE was found with acceptable 

accuracy although results at higher distances travelled tended to be worse than shorter ones. 

4.8.4 Discussions and limitations 

From the results in this section it can be concluded that the developed algorithm successfully 

removes rotation ego motion component of the optical flow to locate the FOE horizontal 

position which is needed for obstacle avoidance. The neural network developed has successfully 

removed rotational components from the optical flow enabling calculation of the FOE. The next 

step is to use the FOE position calculation for guiding the robot to avoid obstacles. 

Despite this success, the algorithm cannot work if the OpenCV identified features in the two 

frames for optical flow are wrong or unstable. When experiments where tried with the robot 

moving in continuous motion, the results were not satisfactory and many unstable features 

were being used. The Reason for this is due to the change in features properties as the robot 

moves and captures a moving frame due to indoor lightning, reflections, and changing 

perspective as well as the magnitude of distances involved. The distance moved is enough in the 

lab (despite being relatively small) to change lighting conditions which leads to different pixel 

values. The use of Histogram to normalize and even out the image helped to enable OpenCV 

optical flow to correctly identify the same features in the two frames for correct results in some 

of the trials but was not consistent enough. Therefore, the data from the camera although 

successful in isolation did not produce desirable result when used with the moving robot (even 

with no dynamic objects) this problem is being fixed but until now this is still work under 

progress. 

4.9 Results of Overall system use 

4.9.1 Driven run 

The algorithms outlined and tested individually in chapter 3 were now combined together to 

plot a map of an indoor environment. Initially, the robot was asked to move on its own and 

avoid obstacles while mapping. However, this leads to a problem since in the lab chair legs 

existed that were much smaller than the size of the chair base. The chair leg was detectable by 

the robot but the wider base was not and this lead to collision problems.  Figure 185 explains 

how the chair legs caused the problem. The robot will collide with base ring before even 

detecting it is dangerously close to the observable chair leg. 
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Figure 185: The effect of chair base on robot causing problems with obstacle avoidance. 

Therefore, to test the algorithms developed the robot was first manually driven using a joystick 

with all algorithms functional except for the optical flow (unstable see section 3.8 c) and the 

obstacle avoidance to see their effect. The robot was driven over the same path as in figure 145 

since it was marked with tape crosses in the ground to compare it to raw data in figures 142-

143. The environment is shown again for convenience, and the resultant robot map is shown in 

figure 186. 

 

Figure 186: The map produced by the robot for figure 145. 
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The robot followed the exact path marked by the cross since it was manually driven. Notice how 

the map in figure 186 resembles the actual environment much better than the raw one from 

figure 142. The odometry error was not much of a problem as scan matching helped correct 

robot pose and dynamic objects were being removed. 

4.9.2. Discussion 

The overall hybrid system performed mapping well when compared with the raw robot without 

any system. The robot was able to build a map using sensor fusion in an indoors environment 

with active human beings who could possibly lead to wrong mapping but dynamic objects were 

being extracted to help with the consistency of the map.  

Despite being successful in simulations when avoiding obstacles, the robot did not perform well 

in the lab environment and this was not due to a limitation in the algorithm itself but was due to 

hardware limitation as pointed out since the robot was unable to see the chairs at the correct 

distances due to their shapes. This could be overcome by enlarging the robot boundaries 

artificially so that it avoids the obstacle earlier on but this will limit the robot field of motion. 

Another solution would be to develop an algorithm that detects chair legs and enlarges them 

according to a chair geometrical model. One other approach is to use large cardboards at chair 

wheels to make them easy for the robot sensors to detect but this involves modifying the 

environment. 

Finally the map produced by the robot can be further processed to remove the sparse area 

based on continuity of objects in the environment. Due to the nature of sensor model used, the 

map is sparse and some gaps exist in the solid objects. This is easy for human to identify but will 

be beneficial for the robot to eliminate too. This can be part of a future investigation since it was 

not seen to happen a lot. Additionally, in the corridor there is a blocked region immediately in 

front of the robot path which is thought to happen due to wrong identification of false dynamic 

objects which are not removed immediately. 
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Chapter 5 

Conclusion and Future work 

5.1 Conclusion 

The investigation on the use of hybrid approach to combine various sensor and algorithms in a 

mobile robot SLAM application was followed by this thesis. The algorithms and sensors were 

tested one by one then combined together in one system. The Thesis concluded several points 

based on the discussion sections for each of the algorithms. First that the use of sensor fusion in 

grid map is possible enabling the employment of laser and sonar sensors for better map 

accuracy compared to a simpler sonar map. Moreover, the use of the modified sensor model 

that limits the updated cells has proven to reduce the time needed as verified by the simulations 

and comparisons done. The validation of this is reflected by the practical value that the use of 

this sensor model adds to the robot as it enables real time operation while the robot maps. 

Regarding the use of UKF to combine the results of feature based scan matching with odometry 

update, it was proven and verified by the experiments carried out before the use of the UKF 

update and after its use which showed that the resultant robot pose and hence map are more 

accurate than the raw case. The validation of this point is that in practice the smaller the error in 

robot pose and localization the smaller the error in the resulting map. 

Further, the detection and tracking of dynamic objects based on geometrical features has been 

verified using experiments only since it is not possible to simulate humans in the simulator. The 

experiments verified that humans can be tracked and hence excluded from the resulting map to 

reduce any error that is likely to happen. The validation for this is that it leads to less error prone 

maps as dynamic objects are less likely to affect the map.  

Another important conclusion was regarding the use of TBF corners from sonar sensor where it 

was verified using simulations and experiments that corners from the sonar sensor are far less 

accurate than the laser sensor and hence they were only included in the update if the laser fails 

to return any features. Further, the use of feature based scan matching is affected by the 

number of features in the environment as environments like corridors with little features tend 

to cause wrong updates. From a validation point of view this means that the use of sonar 

corners alone will affect the map accuracy. 
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It was concluded that work with images and image based sensors such as camera when limited 

to low level corner features for optical flow may not yield consistent results that help with robot 

mapping and further work is needed. This is due to the problems with intensity changes in the 

image as the robot moves. This was verified in experiments involving optical flow. However, the 

design and use of neural networks to cancel the rotational ego motion component proved 

successful and could have been implemented in the overall system if the optical flow algorithm 

from OpenCV optical flow produced stable output. The validation of this point is that more work 

is needed with image based sensors to reach better results. 

Another point that was drawn from this research is that systems with many components 

functioning with one another will tend to be complicated and individual modular blocks may 

need tuning to be accommodated in the overall system which increases difficulty in 

implementation. However, the advantage is better performance than simpler systems. This was 

verified by testing the system itself as it was built block by block and the by the final outcome 

which was better than a raw system and its map represented the environment in a better way. 

5.2 Future work 

The investigation in this thesis has led to many conclusions and discovery of many limitations 

from which further future work could be planned for more investigation. The Robot calibration 

procedure in chapter 4.1 was made using the standard method not accounting for the floor 

type. It is said in the robot manual [51] that floor type will affect the systematic and random 

odometry errors differently with carpets being worse than other types. Therefore, a future 

investigation could be carried out to see the effect of floor type on calibration results and how 

the adjustment of calibration according to environment affects the resultant map. 

The obstacle avoidance algorithm was based on a reactive subsumption principle for extreme 

speed and is different from methods like VPH and VFH in literature so a future work could be to 

compare the performance time wise of those two algorithms. Further, the obstacle avoidance 

algorithm could be coupled with a path planning algorithm that divides the robot operation 

between exploration and operation where the path planning algorithm in discovery phase helps 

the robot discover the undiscovered areas by dictating target locations while in operation phase 

commands are given by the user. However, path planning is beyond the scope of this thesis so 

no attempt was made to test it and this makes a good point for future work. 
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The sonar detection algorithm results were fused with the laser data on a feature level by fusing 

corners when the laser fails to detect any corners only. This is due to the very poor resolution 

and accuracy of sonar TBF data compared to laser corner extraction as was pointed out in 

chapter 4.3. However, the sonar data could be beneficial even with low resolution if it is fused 

correctly using a special UKF. This was not tried and could be a point for further future research 

where the sonar TBF data could be fused directly with laser corners by using a weighting 

function that produces an output dependent on the predicted performance of the sonar. 

However, this necessitates the development of sonar scan matching which is discussed in the 

next paragraph. 

The scan matching algorithm could be modified in future work to include the sonar scan 

matching where corners extracted from sonar sensors could be used to produce an independent 

estimate of scan matching from that of laser then the two are latter combined. More 

investigations into the possibility of using point based and feature based scan matching 

simultaneously to enhance one another where feature matching is used to find a rough estimate 

then point to point matching (based on ICP) could be used to refine the estimate. This approach 

could potentially be faster than pure ICP and comparable to feature based matching but with 

higher robustness and the ability to operate in unstructured environments or low feature 

corridors. Future work for the UKF Algorithm could include possibility of using variable variances 

and setting these variances online while the robot operates based on the flow of data and 

previous estimates. This is will enhance the operation of the UKF since if for example one source 

of data fails, then UKF could adjust its belief about the correctness of data from that source on 

the fly as it happens. Then when the source operates normally with correct reading the trust in 

its accuracy (represented by the covariance of its quantity) is increased again. 

Grid maps in particular are known for being computationally expensive. In the grid map 

algorithm implemented in this chapter, the grid map was modified to include a local map and a 

global map with a transition occurring between different tiles as the robot moves. Further, each 

individual tile was processed by limited sonar and laser ranges to minimize time. Therefore, 

future investigations could focus on finding ways to improve the computational efficiency. One 

such method is the use of variable size grid map. This has the feature that the size of each 

individual grid is varied according to the obstacles in the environment thus free areas are 

represented and updated with one big grid cell instead of many smaller time consuming ones. 
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However, investigation is needed to ensure that the time saved and computation decrease 

outweighs the processing and time needed to bisect and segment the tile into varying size grid 

cells according to the environment. 

The dynamic object detection has revealed the difficulty faced by robotic platforms which use 

2D sensors for motion detection since they are the most accurate with the consequence that 

limited features can be used to identify objects as they appear on a 2D laser scan. In particular, 

features of human leg size were used to identify humans. However, other objects like chairs and 

tables could move and are harder to identify and track. Future work can investigate the 

possibility of dealing with that situation. Further, in future work a dynamic objects map could be 

maintained for moving humans to not only exclude them from metric map but to ensure that 

even if they are seen after an obstruction they are correctly re-identified. This will need the use 

of multiple KF to track each individual object with the difficulty of choosing an appropriate 

dynamic model for those filters and this provides scope for significant future work. 

The camera sensor provides large amount of information but it is computationally expensive to 

use. One way to investigate possible use and benefit is to use parallel computing where an array 

of parallel processors are carried by the robot and used for processing image data to provide 

faster rates of update. Further, alternative methods to OpenCV optical flow could be 

investigated to yield a more stable algorithm to overcome the problem as was outlined in 

section 4.8. 
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Appendices 

Appendix A 

Code for Obstacle avoidance 
 
//before calling function 
double oder=robot.getOdometerDistance();//Get odometer distance 
  
 struct ret //structure to return the processing from subsumption 
layers 
        { 
            int key; 
            double f;//forward vel control 
            double rot;//rot control 
        }; 
  
  
 ret l3;ret l4;ret l5;ret l0;//structure to return from layers 3, 4, 5, 
and 0. 
while(1)//main function 
{ 
 double ng=0;   
     my.getAdjusted(&x,&y); 
 double kyr=0; 
     int a=0;int b=0;//for output from layers 1 and 2 
// if(robot.getOdometerDistance()-oder>0) 
     if(my.getButton(1)==1) 
     { 
         robot.setVel(3*y); 
         robot.setRotVel(-0.02*x); 
     } 
     else 
 {//oder=robot.getOdometerDistance(); 
    //from avoid subsumption 
double distance=laser->currentReadingPolar(-90,90)-
robot.getRobotRadius();//(robot->getSonarReading(0)->getRange()+robot-
>getSonarReading(1)->getRange()+robot->getSonarReading(2)-
>getRange()+robot->getSonarReading(3)->getRange()+robot-
>getSonarReading(4)->getRange()+robot->getSonarReading(5)-
>getRange()+robot->getSonarReading(6)->getRange()+robot-
>getSonarReading(7)->getRange())/8; 
double kk=pow(distance/5000,0.5)/pow(5,0.5);//l2 weight 
double kk2=0.5*(1+tanh((3*0.001*distance)-9));//l5 weight 
 
//get response of layers 
 a=layer1(&robot,&sonar); 
b=layer2(&robot); 
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l3=layer3(&robot); 
l4=layer4(&robot); 
l5=layer5(&robot);cout<<"\r"<<l4.rot<<" "<<l5.rot<<"\n"; 
l0=layer0(2000,000,&robot); 
//resolver 
if(b==1&&a==0) 
{kyr=1; 
    robot.setVel(-
50);robot.setRotVel(20+(20*abs(robot.getVel()/100)));ng=robot.getPose()
.getTh(); 
    oder=robot.getOdometerDistance();cout<<"\n"<<"1"; 
} 
if(b==0&&a==1) 
{kyr=1;robot.setRotVel(20); 
    robot.setVel(-50);ng=robot.getPose().getTh(); 
    oder=robot.getOdometerDistance();cout<<"\n"<<"2"; 
} 
if(b==1&&a==1) 
{kyr=1; 
    robot.setVel(-50); 
    robot.setRotVel(20);ng=robot.getPose().getTh(); 
    oder=robot.getOdometerDistance();cout<<"\n"<<"3"; 
} 
if(b==0&&a==0&&kyr==0) 
{my.getAdjusted(&x,&y); 
    robot.setVel(0.5*l3.f);//robot.setVel(3*y); 
//robot.setRotVel(l4.rot+(l5.rot*kk2));//robot.setRotVel(-0.02*x); 
ng=robot.getPose().getTh(); 
    oder=robot.getOdometerDistance(); 
    robot.setRotVel((((1-
kk)*l4.rot)+(l5.rot*kk2)+(l0.rot*1))/(1+kk2+1)); 
} 
if(kyr==1&&(abs(ng-
robot.getPose().getTh()>35)||robot.getOdometerDistance()-oder>150)) 
{ 
    kyr=0; 
} 
    avid<<3*y<<" "<<-0.02*x<<" "<<sonar.currentReadingPolar(-50,50)<<" 
"<<sonar.currentReadingPolar(-10,10)<<" "<<a<<" "<<b<<";"<<"\n"; 
 } 
  
 //layer1(&robot,&sonar); 
 //layer2(&robot); 
if(l0.key==1)//if target reached 
{ 
    robot.setVel(0); 
    break; 
} 
} 
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////////////////////////////////////////////////////////////////// 
Function definition 
struct ret layer0(int x, int y,ArRobot *robot) //this is go to target 
    { 
        double rob_ang=0;//this is used to modify robot angle to cover 
range from 0 to 360 instead of -180 to 180 
        double key=0;//this is used to declare when robot has reached 
desired target 
        double vel_control;//variable to hold desired forward velocity 
        double to_target;//distance to target 
        double control;//control signal  
        struct ret group;//structure that will be returned by function 
 
        if(robot->getTh()<0) 
{ 
rob_ang=robot->getTh()+360; 
}  
else 
{ 
rob_ang=robot->getTh(); 
}//modify range to 0-360 
 
 
        to_target=abs(170+robot->getX()-x)+abs(robot->getY()-y); 
        control=3*(-rob_ang+(atan2(y-robot->getY(),x-robot->getX()-
0)*57));//compute desired control angle *57 is to convert to degrees 
        vel_control=(500*(to_target/(to_target+500)));//setvelocity to 
slow as we approach target 
         
        if (abs(control)<5&&x<robot->getX()){control=0.1*180;} 
        if (abs(control)<5&&x>robot->getX()){control=0.1*-180;} 
 
        if(abs(robot->getX()-x)+abs(robot->getY()-y)<200) 
        { 
            key=1;  
        }else{key=0;} 
        group.key=key; 
        group.f=vel_control; 
        group.rot=1*control*robot->getVel()/400; //gain is 3/400 
 
        return group; 
} 
int layer1(ArRobot *robot,ArSonarDevice *sonar)// this is the avoid 
front collision layer 
{ 
double range=sonar->currentReadingPolar(-50.0,50.0)-300; 
 int lr=0; 
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//  if(sonar->currentReadingPolar(-50.0,50.0)-robot-
>getRobotDiagonal()<200)//read sonar in front (subtract robot diagonal) 
and if <200 act 
if(range<200) 
{  
    //robot->setVel(-50);robot->setRotVel(50);//move backwards and 
rotate 
    lr=1; 
//ArUtil::sleep(200);//sleep to give time to robt to react 
 
} 
return lr; 
} 
int layer2(ArRobot *robot)// this is the corner avoiance layer   
{int conrr=0; 
    if(Corn_detect(robot)==1&&corner2==0)//if corner is detected and 
counter is reset 
    { 
        timer1.setToNow();corner1=1;corner2=1;//set timer and counter 
    } 
     
    if(Corn_detect(robot)==1&&timer1.mSecSince()>30&&corner1>0) 
    { 
        corner1++;timer1.setToNow();//keep conting every 30 ms 
    } 
    else if(Corn_detect(robot)==0&&timer1.mSecSince()>30&&corner1>0) 
    { 
        ;timer1.setToNow();//if no corner detect decrement counter 
    } 
    if(corner1>3)//if corner is confirmed 
    {cout<<"\n"<<"new "; 
        corner1=0;corner2=0;conrr=1;//robot-
>setDeltaHeading(90);ArUtil::sleep(2000);sleeps=1;sleept=2000; 
    }//change heading and sleep to give time to robot to react 
    return conrr; 
} 
struct ret layer3(ArRobot *robot)//control of front speed function 
    { 
        struct ret group;//initialise structure to be returned 
        double front=0;//initialise front to 0 
        for(int i=0;i<8;i++) 
        { 
            front=front+(sin((robot->getSonarReading(i)-
>getSensorTh()+90)*PI/180)*pow((double)robot->getSonarReading(i)-
>getRange(),1));//work out how crowded the region is 
        } 
         
        group.key=0;//key is not needed hetre so set to 0 
        group.f=front*0.034;//set forward component 
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        group.rot=0;//layer does not affect rotational component 
        return group; 
        cout<<front*0.034<<"/n"; 
    } 
struct ret layer4 (ArRobot *robot)//layer for side avoidance 
{ 
    struct ret group; 
    double priorL=0;//set prior left to zero 
    double priorR=0;//set prior right to zero 
     
    double side_ang=0; 
     
     
    for(int i=0;i<4;i++)//for al sonar sensors on the left side 
    { 
        double S=0; 
        S=pow(5000.0,0.1)-(abs(cos((robot->getSonarReading(i)-
>getSensorTh()+90)*PI/180))*pow((double)robot->getSonarReading(i)-
>getRange(),0.1));//work out the value of S_left 
        if(S<0)//just in case user wants to consider ranges less than 
5000 
        { 
            priorL=priorL; 
        } 
        else 
        { 
            priorL=priorL+S;//add the contributions of each sonar to 
the priorL 
        } 
    } 
     
    for(int i=4;i<8;i++)//for right side sonar sensors 
    { 
        double S=0; 
        S=pow(5000.0,0.1)-(abs(cos((robot->getSonarReading(i)-
>getSensorTh()+90)*PI/180))*pow((double)robot->getSonarReading(i)-
>getRange(),0.1)); 
        if(S<0) 
        { 
            priorR=priorR; 
        } 
        else 
        { 
            priorR=priorR+S;//add the contributions of each sonar to 
the priorR 
        } 
    } 
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    priorL=priorL/(priorL+priorR);//normalise 
    priorR=1-priorL;//find prior R 
    side_ang=(priorR-priorL)*1*(robot->getVel()+50);//control signal  
     
    group.key=0; 
    group.f=0; 
    group.rot=side_ang; 
 
    return group; 
} 
struct ret layer5 (ArRobot *robot)//layer for far range avoidance 
 
{ 
    struct ret group; 
    double fL=robot->getSonarReading(3)->getRange();//read sonar 3 
(front left) 
    double fR=robot->getSonarReading(4)->getRange();//read sonar 4 
(front right) 
     
    if(fL+200<fR)//if obstacle to left rotate right 
    { 
        group.rot=(-0.035*robot->getVel()); 
    } 
    else if(fL>fR+200)//if obstacle to right rotate left 
    { 
        group.rot=(0.035*robot->getVel()); 
    } 
    else {group.rot=0;}//must set it to zero to prevent huge numbers 
from appearing 
     
    group.key=0; 
    group.f=0; 
    return group; 
 
} 
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Appendix B  

 TBF Code 

Appendix B.1: Get sonar readings 
void getSonar(ArRobot *robot)//function to get sona readings and 
arrange in shifting table 
 
{ 
  
 ofstream son_table; 
 son_table.open("son_corn.txt", ios_base::app); 
 
 //check sonar column counter to see if needed to shift table 
 if (sonar_column_counter==10) 
 
 {    
  //start shifting table 
  sonar_column_counter=9; 
   
  for(int i=0;i<8;i++) //i is rows which is equal to number 
of sonars on robot 
  { 
   for(int j=0;j<9;j++)//j is the number columns in the 
shifting table 
   { 
    sonar_range[i][j]= sonar_range[i][j+1];//shift 
columns leftwise 
    sonar_y[i][j]= sonar_y[i][j+1];//shift columns 
leftwise 
    sonar_x[i][j]= sonar_x[i][j+1];//shift columns 
leftwise 
    gamma[i][j]=gamma[i][j+1];//shift columns 
leftwise 
    y_t[i][j]=y_t[i][j+1];//shift columns leftwise 
    x_t[i][j]= x_t[i][j+1];//shift columns leftwise 
   } 
  } 
 } 
 
 
 //fill the new column (latest in the table) with recent readings 
 for (int i=0;i<8;i++) 
 { 
  //loop over all sonars to fill table 
  double sensor_diag=sqrt(pow(robot->getSonarReading(i)-
>getSensorY(),2)+pow(robot->getSonarReading(i)->getSensorX(),2));//this 
gets the sensor diagonal (distance from robot centre) 
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  sonar_range[i][sonar_column_counter]= robot-
>getSonarReading(i)->getRange();//fill first row of table by reading of 
first sonar. 
  gamma[i][sonar_column_counter]=(robot->getSonarReading(i)-
>getThTaken()*PI/180)+(robot->getSonarReading(i)-
>getSensorTh()*PI/180);//get current sonar orientation=robot 
orientation+sonar orientation on robot 
  sonar_y[i][sonar_column_counter]= robot-
>getSonarReading(i)-
>getYTaken()+(sensor_diag*sin(gamma[i][sonar_column_counter]));//store 
current y position of sonar (y of robot + y of sonar on device) 
  sonar_x[i][sonar_column_counter]= robot-
>getSonarReading(i)-
>getXTaken()+(sensor_diag*cos(gamma[i][sonar_column_counter]));//store 
current x position of sonar (x of robot + x of sonar on device) 
   
 
son_table<<sonar_x[i][sonar_column_counter]<<"  
"<<sonar_y[i][sonar_column_counter]<<"  
"<<gamma[i][sonar_column_counter]<<"  
"<<sonar_range[i][sonar_column_counter]<<"  "; 
 
  //get the "expected" obstacle (fron sonar beam midpoint) 
for each sensor 
 
 y_t[i][sonar_column_counter]=sonar_y[i][sonar_column_counter]+(so
nar_range[i][sonar_column_counter]*sin(gamma[i][sonar_column_counter]))
;//get y position of point 
 
 x_t[i][sonar_column_counter]=sonar_x[i][sonar_column_counter]+(so
nar_range[i][sonar_column_counter]*cos(gamma[i][sonar_column_counter]))
;//get x position of point 
  
 } 
  
 sonar_column_counter++;// increment counter 
son_table<<";"<<"\n"; 
 
} 

 

Appendix B.2: max dist function code 
In TBF code, a function was developed to work out the maximum deviations between successful 
triangulation. The function was called max_dst. The function compares every corner in the array 
to other corners and finds the distance between the corners. It stores the maximum distance. If 
the maximum distance is greater than 0.1m then it returns this value and terminates the 
algorithm.  



200 
 

The code is given below. 

 
function max=max_dst(arry)%function for finding the maximum distance 
between elements of an array (x,y) 
 
if(size(arry,1)<2)% if the array is less than two elements in size 
max=0; %set max to zero  
end 
 
 
 
if(size(arry,1)>1)%if more than 1 element in array 
max=0;%initialise max 
   i=1;%loop index 
   j=1;%loop index 
while (i<size(arry,1)+1) 
while (j<size(arry,1)+1) 
dst=sqrt(((arry(i,1)-arry(j,1))^2)+((arry(i,2)-arry(j,2))^2)); %find 
distance 
 
if(dst>max)%if dist is greater than max then set max to distance 
max=dst; 
end 
 
if(max>0.1)%if max is greater than 10 cm then quit loop to save time 
             i=20; 
             j=20; 
end 
         j=j+1;%increment counter 
end 
       i=i+1;%increment counter 
end 
 
end 
end 
 

 

Appendix B.3: Circcirc function code from matlab 
A code to plot two circles then find and plot the intersection points for comparison with 
theoretical solution. 

figure(1) 
th = 0:pi/50:2*pi;%complete circle 
xunit = 100 * cos(th) + 100;%circle x 
yunit = 100 * sin(th) + 100;%circle y 
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plot(xunit, yunit,'r');%plot first circle of radius 100 and center 
(100,100) 
hold on 
%second circle 
th = 0:pi/50:2*pi; 
xunit = 300 * cos(th) +  00; 
yunit = 300 * sin(th) +  00; 
plot(xunit, yunit,'b'); 
figure(1) 
th = 0:pi/50:2*pi; 
xunit = 400 * cos(th) + 100; 
yunit = 400 * sin(th) + 100; 
plot(xunit, yunit,'r');%plot second circle of radius 400 and center 
(0,0) 
hold on 
%th = 0:pi/50:2*pi; 
%xunit = 300 * cos(th) +  00; 
%yunit = 300 * sin(th) +  00; 
%plot(xunit, yunit,'b'); 
%title('Intersection of two cicles') 
xlabel('x axis') 
ylabel('y axis') 
axis([-700 700 -700 700]) 
axis([-700 700 -700 700]) 
plot(0,0,'*b')%plot centers of circles 
plot(100,100,'*r') 
[xout,yout] = CIRCCIRC(0,0,300,100,100,400)%find intersection point 
plot(xout(1),yout(1),'*k',xout(2),yout(2),'*k')%plot it 
 

Appendix B.4: TBF algorithm code 
nc=1;%hypothesis counter 
figure(2) 
for l=2:43%to cycle through last sonar (last column in sliding window 
table) 
 
forjj=1:size(fg,2)/4 %for each sonar in the last column of sliding 
window table  
nc=1;%set counter to 1 
for j=1:size(fg,2)/4%for each sonar in table  
for i=1:size(fg,1)-45+l+0%for each column except last one 
 
intersect=180*(fg(l+1,3+(4*(jj-1)))-fg(i,3+(4*(j-1))))/3.142;% the 
intersection angle between two candidtate sonars for TBF 
fgx1=fg(l+1,1+(4*(jj-1)))+(cos(fg(l+1,3+(4*(jj-1))))*fg(l+1,4+(4*(jj-
1))));%x ordinate of first sonar reading 
fgy1=fg(l+1,2+(4*(jj-1)))+(sin(fg(l+1,3+(4*(jj-1))))*fg(l+1,4+(4*(jj-
1))));%y ordinate of first sonar reading 
 



202 
 

fgx2=fg(i,1+(4*(j-1)))+(cos(fg(i,3+(4*(j-1))))*fg(i,4+(4*(j-1))));%x 
ordinate of second sonar reading 
fgy2=fg(i,2+(4*(j-1)))+(sin(fg(i,3+(4*(j-1))))*fg(i,4+(4*(j-1))));%y 
ordinate of second sonar reading 
angrng=(atan2(fgy2-fg(l+1,2+(4*(jj-1))),fgx2-fg(l+1,1+(4*(jj-
1)))))*180/3.142;%to check whether within sonar range 
dist=sqrt(((fgx1-fgx2 )^2)+((fgy1-fgy2)^2));%distance between readings 
 
 
if(abs(angrng-(fg(l+1,3+(4*(jj-1)))*180/3.142))<20&&dist<300)%if within 
sonar cone  
 
%set parameters for TBF algorithm radii of circles are the range of 
%sonars, and centres of circles are postions of sonars 
r1=fg(i,4+(4*(j-1))); 
r2=fg(l+1,4+(4*(jj-1))); 
 
x1=fg(i,1+(4*(j-1))); 
x2=fg(l+1,1+(4*(jj-1))); 
 
y1=fg(i,2+(4*(j-1))); 
y2=fg(l+1,2+(4*(jj-1))); 
 
 
dx=x1-x2; 
dy=y1-y2; 
 
 
ds2=(dx^2)+(dy^2); 
%dr2=((r1^2)-(r2^2)-ds2)/2; 
k=(ds2+(r1^2)-(r2^2))/(2*sqrt(ds2)); 
 
%result of first solution use angle criterion to filter wrong solution 
xtt=x1-(dx*k/sqrt(ds2))+((-dy/sqrt(ds2))*sqrt((r1^2)-(k^2))); 
ytt=y1-(dy*k/sqrt(ds2))-((-dx/sqrt(ds2))*sqrt((r1^2)-(k^2))); 
 
angrng= (atan2(ytt-fg(l+1,2+(4*(jj-1))),xtt-fg(l+1,1+(4*(jj-
1)))))*180/3.142; 
faill=0;%flag for failing triangulation 
 
if(abs(angrng-(fg(l+1,3+(4*(jj-1)))*180/3.142))>20)%if first solution 
out of sonar cone work out second solution 
xtt=x1-(dx*k/sqrt(ds2))-((-dy/sqrt(ds2))*sqrt((r1^2)-(k^2))); 
ytt=y1-(dy*k/sqrt(ds2))+((-dx/sqrt(ds2))*sqrt((r1^2)-(k^2))); 
 
angrng= (atan2(ytt-fg(l+1,2+(4*(jj-1))),xtt-fg(l+1,1+(4*(jj-
1)))))*180/3.142; 
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if(k^2>r1^2)% if not possible to triangulate set fial flag 
faill=1; 
end 
 
if(abs(angrng-(fg(l+1,3+(4*(jj-1)))*180/3.142))>20)%if no solution 
within cone then set fail flag 
faill=1; 
end 
 
end 
 
 
if(faill==0)% if not fail find distance between reading of sonar nd 
triangulation 
sep=sqrt(((xtt-fgx1)^2)+((ytt-fgy1)^2)); 
 
 
if (sep<300/nc&&abs(intersect)>40&&abs(r1-r2)>500)%if matching criteria 
increment counter of hypothesis 
nc=nc+1; 
 
 
end 
end 
end 
end 
 
if(nc>1) 
figure(2) 
holdall 
plot(xtt,ytt,'*') 
end 
 
 
end 
 
end 
%pause 
end 
 

 

Appendix B.5 Plotting code 
%sonar readings accepted ffrom array FG in the format [sonar x 
position, 
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%sonar y position, sonar orientation, sonar range] where each row 
%represents a time step 
figure(2) 
holdon%to plot on same handle 
for i=1:size(fg,1)% for each time step i.e. column in table 
for j=1:size(fg,2)/4%for each sonar 
plot(fg(i,1+(4*(j-1))),fg(i,2+(4*(j-1))),'.r')%plot the position of 
sonar sensor 
fgx=fg(i,1+(4*(j-1)))+(cos(fg(i,3+(4*(j-1))))*fg(i,4+(4*(j-1))));%x 
ordinate of sonar reading 
fgy=fg(i,2+(4*(j-1)))+(sin(fg(i,3+(4*(j-1))))*fg(i,4+(4*(j-1))));%y 
ordinate of sonar reading 
plot(fgx,fgy,'.k')%plot sonar reading 
if(fg(i,4+(4*(j-1)))>4990)%if likely to be specula reflection 
plot(fg(i,1+(4*(j-1))),fg(i,2+(4*(j-1))),'.b')%plot specualr sonar in 
red 
plot(fgx,fgy,'.c')%and reading in cyan 
end 
end 
pause 
end 
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Appendix C 

Line features related code 
 

Appendix C.1: Line Segmentation algorithm 
vector<double> segmentLaser(void) 
{ofstream seg;seg.open("segger.txt",ios_base::app); 
seg<<"\n"<<"new call to segment laser function "<<"\n"; 
    double p1[181][1];//to hold the log oflaser readings 
      double dr1[181][1];//to hold first derivative 
      double dr2[181][1];//to hold second derivative 
      double max_dr1=0;//to hold maximumof dr1 
  
      seg<<"log readings"<<"\n"; 
        for (int i=0; i<181; i++) 
        {  
        p1[i][0]=log(laser_range[i][0]);//take ln of reading 
        seg<<p1[i][0]<<"  ";  
        } 
 seg<<"\n";seg<<"first d"<<"\n"; 
        dr1[0][0]=(-p1[2][0]+(4*p1[1][0])-(3*p1[0][0]))/2;//first 
derivative of first element 
     seg<<dr1[0][0]<<"  "; 
        max_dr1=abs(dr1[0][0]);//set first reading to max 
        for (int i=1; i<180; i++)//first derivative of the rest of 
elements 
        { 
            dr1[i][0]=(p1[i+1][0]-p1[i-1][0])/2; 
            max_dr1=max(max_dr1,abs(dr1[i][0]));//find maximum of the 
two 
            seg<<dr1[i][0]<<"  ";    
        } 
        dr1[180][0]=(p1[180-2][0]-(4*p1[180-
1][0])+(3*p1[180][0]))/2;//derivative of the last element 
         seg<<dr1[180][0]<<"\n"; 
      
        max_dr1=57.2/max(max_dr1,abs(dr1[180][0])); 
  
seg<<"atan"<<"\n"; 
        for (int i=0; i<181; i++) 
        {  
        p1[i][0]=atan(max_dr1*dr1[i][0]);//find atan(mdr*dr) 
        seg<<p1[i][0]<<"  "; 
        } 
        seg<<"\n";seg<<"derv 2 "<<"\n"; 
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        dr2[0][0]=(-p1[2][0]+(4*p1[1][0])-(3*p1[0][0]))/2;//second 
derivative of first element 
         seg<<dr2[0][0]<<"  "; 
          
        for (int i=1; i<180; i++)//second derivative of the rest of 
elements 
        { 
            dr2[i][0]=(p1[i+1][0]-p1[i-1][0])/2; 
             seg<<dr2[i][0]<<" ";        
        } 
        dr2[180][0]=(p1[180-2][0]-(4*p1[180-
1][0])+(3*p1[180][0]))/2;//derivative of the last element 
          seg<<dr2[180][0]<<"\n"; 
  
  
  
vector<double> shod;//array to hold peak points 
int tr=0; //key to switch between if conditions 
seg<<"shod array now i  "<<0<<"\n"; 
for (int i=0;i<181;i++) 
{ 
   if(abs(dr2[i][0])>0.1)//if value is peak 
   { 
      shod.push_back(dr2[i][0]);//set value in array 
      
   }      
   else 
   { 
       shod.push_back(0);//else put zero 
         
   }   seg<<i<<"  "<<shod[i]<<" "; 
} 
   
for (int i=1;i<179;i++)//for all array 
{seg<<i<<"  "<<shod[i]<<"  "<<shod[i+1]<<"\n"; 
    if(shod[i]>0&&shod[i+1]<0)//if one point and the other are opposite 
polarity 
    { 
    tr=1;//set key 
    } 
  
    if(shod[i]<0&&shod[i+1]>0)// if the other way around set key 
    { 
        tr=1; 
    } 
  
   if(tr==1&&i<179)//added second condition //if key is set i.e. zero 
crossing 
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   { 
      shod[i-1]=0;//shod(i-1)=0; 
      shod[i]=10;//shod(i)=10;%was 10 
      shod[i+1]=0;//shod(i+1)=0;%set to 10 for diff 10; 
      //shod[i+2]=0;//shod(i+2)=0; 
      tr=0; 
   }    
} 
  
for (int h=0;h<shod.size();h++) 
{ 
seg<<shod[h]<<"  "; 
  
}seg<<"\n"; 
int i=0;//%loop index 
int mm=0;//%holder of previous index 
int st=0;//holder of index copy 
while(i<179) 
{seg<<i<<"\n"; 
    int m=0;//%set m to zero 
    if(abs(shod[i])>0) 
    { 
        m=1;//if first point is found set m to 1 
        mm=i;//hold current index in mm 
        st=i;//hold another copy in st 
         
        while(shod[i]!=0&&shod[i]!=10&&i<179)//while point is 
disvontinouity and not an edge 
        { 
            if(abs(shod[i+1])>abs(shod[mm])) //this is to find mono 
peak 
            { 
                mm=i+1; 
            } 
                i=i+1; 
              
        } 
         
        for (int k=st;k<i;k++)//for range of peaks 
        { 
           shod[k]=0;  
        } 
         
        shod[mm]=10; 
         
     
} 
    i=i+1; 
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} 
  
  
for (int h=0;h<shod.size();h++) 
{ 
seg<<shod[h]<<"  "; 
  
}seg<<"\n"; 
 
////////////////////////////////////////////////////// 
int rt=0;//%this is the root value 
int knk=2;//%this is the corner (knee) value 
int tp=0;//%this is the top VAL 
int prcss=0;//%this is a semaphore to start processing data 
int ind1=1;//%this indicates that knee value has been obtained 
int ind2=0;//%this indicates whether top value has been obtained 
int ll=0;//%this is to indicate if the point satissfies a line 
 i=0;//%this is the loop index 
 seg<<"second while "<<"\n"; 
while(i<181) 
{ 
   if(shod[i]==10&&ind1==1) //%while first line not obtianed yet 
   {  
    knk=i;//%get knee 
    ind2=1;//%prepare for next line 
    ind1=0; i=i+1;//%increment counter 
   } 
    
   if(shod[i]==10&&ind2==1)//%once first line is obtained, find second 
   { 
      tp=i; 
      ind2=0;// %consider setting later 
      prcss=1;//%start processing the line segments 
   } 
    
   if(prcss==1) 
   { 
    
     
  
double a1=atand(((laser_range[knk-1][0]*sind(knk-1))-
(laser_range[rt+1][0]*sind(rt+1)))/((laser_range[knk-1][0]*cosd(knk-
1))-(laser_range[rt+1][0]*cosd(rt+1))));//%this is the gradient of 
first lline 
double b1=atand(((laser_range[tp-1][0]*sind(tp-1))-
(laser_range[knk+1][0]*sind(knk+1)))/((laser_range[tp-1][0]*cosd(tp-
1))-(laser_range[knk+1][0]*cosd(knk+1))));//%this is the gradient of 
second lline 
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if(a1<0){a1=a1+180;} 
if(b1<0){b1=b1+180;} 
 // i added the following modification  
if(knk-1==rt+1&&knk+1!=tp-1) 
{ 
a1=b1; 
} 
if(knk-1!=rt+1&&knk+1==tp-1) 
{ 
b1=a1; 
} 
if(knk-1==rt+1&&knk+1==tp-1) 
{ 
a1=0;b1=0; 
} 
//end modification 
double a=sqrt(pow(((laser_range[knk][0]*sind(knk))-
(laser_range[rt+1][0]*sind(rt+1))),2)+pow((atand(laser_range[knk][0]*co
sd(knk))-atand(laser_range[rt+1][0]*cosd(rt+1))),2));//%this is a 
distance 
double b=sqrt(pow(((laser_range[tp][0]*sind(tp))-
(laser_range[knk+1][0]*sind(knk+1))),2)+pow((atand(laser_range[tp][0]*c
osd(tp))-atand(laser_range[knk+1][0]*cosd(knk+1))),2));//%this is b 
distance 
double c=sqrt(pow(((laser_range[tp][0]*sind(tp))-
(laser_range[rt+1][0]*sind(rt+1))),2)+pow((atand(laser_range[tp][0]*cos
d(tp))-atand(laser_range[rt+1][0]*cosd(rt+1))),2));//%this is c 
distance 
double aa=sqrt(pow(((laser_range[knk-1][0]*sind(knk-1))-
(laser_range[knk+1][0]*sind(knk+1))),2)+pow(((laser_range[knk-
1][0]*cosd(knk-1))-(laser_range[knk+1][0]*cosd(knk+1))),2));//%this is 
aa distance 
  
//DEBUG 
seg<<"\n"<<" points  "<<laser_range[knk-1][0]*sind(knk-1)<<" 
"<<laser_range[rt+1][0]*sind(rt+1)<<laser_range[knk-1][0]*cosd(knk-
1)<<" "<<laser_range[rt+1][0]*cosd(rt+1)<<"\n"; 
 seg<<"\n"<<" rt knk tp a1 b1 aa "<<rt<<" "<<knk<<" "<<tp<<" "<<a1<<" 
"<<b1<<" "<<aa<<"\n"; 
if(abs(a1-b1)<=10)//%if gradient difference is less than 10 deg 
{ 
if(aa<100)//(abs(aa+a+b)/c)<=1.05)//%distance criterion less than 
1.05//DEBUG added = 
{ 
    ll=1;//%set to same line 
    seg<<"entered ll=1 due to gradient "<<"\n"; 
} 
//} 
else if(aa>100)//(abs(aa+a+b)/c)>1.049) 
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{ 
    ll=0;//%set to different line 
} 
} 
  
if(abs(a1-b1)>15)//%if gradient greater than 10 
{ 
//if(aa>100)//(abs(aa+a+b)/c)>1.049) 
{ 
     ll=0; 
} 
//} 
//else if(aa<100)//(abs(aa+a+b)/c)<1.05) 
{ 
  //  ll=1;seg<<"entered ll=1 not due to gradient "<<"\n"; 
} 
} 
  
  
   if(ll==1)//%if two segemtns are acctualy false segements (due to 
noise) 
   { 
       shod[knk]=0; 
    knk=tp; 
    ind2=1; 
    ind1=0;//was added now 
    prcss=0;  
   } 
      
        
    //%if not line%%%%%%% 
    if(ll==0) 
    { 
        rt=knk; 
        knk=tp; 
        ind2=1; 
        ind1=0; 
        prcss=0; 
    } 
      
    prcss=0;ll=0; 
   } 
  i=i+1; 
} 
shod[0]=10;shod[180]=10;seg<<"shod is "<<"\n"; 
for (int h=0;h<shod.size();h++) 
{ 
seg<<shod[h]<<"  "; 
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} 
return shod; 
} 
 
 

Appendix C.2: Line extraction algorithms 
vector<double> LineFit(vector<double> shod) 
{ofstream linefitl;linefitl.open("fitter.txt",ios_base::app); 
linefitl<<"new call to function"<<"\n"<<"\n"; 
    unsigned int i=0;//%array index for while loop 
vector<double> mss;//%array for gradients 
vector<double> bound;//array for points vector<double> css;//%array fpr 
y intercept 
linefitl<<"i  "<<i<<"\n"; 
int wz=0; 
i=1; 
 int n=0;//%points counter 
   double xm; 
 double ym ; 
 double ys=0;//%y 
 double xs=0;//%x 
 double x=0;double y=0;  
 double m1=0;//temp gradient 
  double m2=0;//temp y intercept 
 double c0=0;//temp y intercept 
  double c1=0;//temp y intercept 
   double c2=0;//temp y intercept 
  double e1=0; 
  double e2=0; 
 int flg=0;//%flag to act as semaphore 
while (i<shod.size()) 
{ 
linefitl<<"entered"<<"   i = "<<i<<"\n"; 
  n=0;//%points counter 
   
  ys=0;//%y 
  xs=0;//%x 
  x=0;y=0;  
  m1=0;//temp gradient 
  m2=0;//temp y intercept 
  c0=0;//temp y intercept 
  c1=0;//temp y intercept 
  c2=0;//temp y intercept 
  e1=0; 
  e2=0; 
  flg=0;//%flag to act as semaphore 
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while(shod[i]!=10&&i<shod.size())//%while point is within line 
boundaries 
{linefitl<<"entered while "<<i<<"\n"; 
    flg=1;//%set flag 
    xs=xs+(laser_range[i][0]*cosd(i));//sum of xs 
    ys=ys+(laser_range[i][0]*sind(i));// sum of ys 
    i=i+1; 
} 
linefitl<<"n wz i "<<n<<"  "<<wz<<" "<<i<<"\n"; 
 n=i-wz-1; 
   xm=xs/(i-wz-1); 
   ym=ys/(i-wz-1); 
  
int nn=sqrt(pow((laser_range[wz+1][0]*cosd(wz+1))-(laser_range[i-
1][0]*cosd(i-1)),2)+pow((laser_range[wz+1][0]*sind(wz+1))-
(laser_range[i-1][0]*sind(i-1)),2)); 
  
  
if(flg==1&&nn>100&&n>2)//4 %if line detected and more than 4 points 
{ 
linefitl<<"entered for "<<"\n";linefitl<<"xm ym "<<xm<<" "<<ym<<"\n"; 
  
for (int ft=wz+1;ft<i;ft++) 
{ 
   x=(laser_range[ft][0]*cosd(ft)); 
   y=(laser_range[ft][0]*sind(ft)); 
   c2=c2+((x-xm)*(y-ym));  
   c1=c1+pow((x-xm),2)-pow((y-ym),2); 
   linefitl<<" n"<<ft<<"\n"; 
} 
  
  
c0=-1*c2;linefitl<<" c0 c1 c2 "<<c0<<" "<<c1<<" "<<c2; 
m1=((-c1/c2)+sqrt(pow(c1/c2,2)+4))*0.5; 
m2=((-c1/c2)-sqrt(pow(c1/c2,2)+4))*0.5; 
  
c1=ym-(m1*xm); 
c2=ym-(m2*xm); 
linefitl<<"line "<<c1<<" "<<c2<<" "<<m1<< " "<<m2<<"\n"; 
//find error 
for (int ft=wz+1;ft<i;ft++) 
 {   
    x=(laser_range[ft][0]*cosd(ft)); 
    y=(laser_range[ft][0]*sind(ft)); 
    e1=e1+((pow(y-c1-(m1*x),2))/(1+(m1*m1))); 
    e2=e2+((pow(y-c2-(m2*x),2))/(1+(m2*m2)));    



213 
 

} 
    e1=sqrt(e1/(i-wz-1)); 
    e2=sqrt(e2/(i-wz-1)); 
linefitl<<"error "<<e1<<" "<<e2<<"\n"; 
    if (e1<e2&&e1<150) 
    { 
    mss.push_back(m1);  
    mss.push_back(c1);mss.push_back(wz+1);mss.push_back(i); 
    } 
     
    if(e2<e1&&e2<150) 
    { 
    mss.push_back(m2); 
    mss.push_back(c2);mss.push_back(wz+1);mss.push_back(i); 
    } 
     
    if(e1==e2&&e2<150) 
    { 
    mss.push_back(m1); 
    mss.push_back(c1);mss.push_back(wz+1);mss.push_back(i); 
    } 
  
wz=i;  
flg=0; 
} 
else 
{wz=i;} 
  
i=i+1;//%increment loop counter 
} 
  
//process before returning 
linefitl<<"\n"<<" now processing "<<"\n";  
for (int q=0;q<(mss.size()/4)-1;q++) 
{  
 int ptr=mss[(4*(q))+3]-1; 
 int ptr0=mss[(4*(q))+2]; 
 int ptr2=mss[(4*(q+1))+2]; 
 int ptr3=mss[(4*(q+1))+3]-1; 
 double grd1= atand(mss[(4*(q))+0]); 
 double grd2= atand(mss[(4*(q+1))+0]); 
 double xx=(laser_range[ptr][0]*cosd(ptr)); 
 double yy=(laser_range[ptr][0]*sind(ptr)); 
 double xx2=(laser_range[ptr2][0]*cosd(ptr2)); 
 double yy2=(laser_range[ptr2][0]*sind(ptr2)); 
 double sep=sqrt(pow(xx-xx2,2)+pow(yy-yy2,2)); 
if(grd1<0){grd1=grd1+180;} 
if(grd2<0){grd2=grd2+180;} 
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 if(sep<100&&abs(grd1-grd2)<5) 
 { 
 c1=0;c2=0; 
  xs=0;ys=0;e1=0; e2=0; 
  
  for(int jk=ptr0;jk<ptr3+1;jk++) 
  { 
    xs=xs+(laser_range[jk][0]*cosd(jk));//sum of xs 
    ys=ys+(laser_range[jk][0]*sind(jk));// sum of ys 
   }  
  
  
n=ptr2-ptr; 
xm=xs/n; 
ym=ys/n; 
 for (int ft=ptr0;ft<ptr3+1;ft++) 
{ 
   x=(laser_range[ft][0]*cosd(ft)); 
   y=(laser_range[ft][0]*sind(ft)); 
   c2=c2+((x-xm)*(y-ym));  
   c1=c1+pow((x-xm),2)-pow((y-ym),2); 
   
} 
  
  
c0=-1*c2;  
m1=((-c1/c2)+sqrt(pow(c1/c2,2)+4))*0.5; 
m2=((-c1/c2)-sqrt(pow(c1/c2,2)+4))*0.5; 
  
c1=ym-(m1*xm); 
c2=xm-(m2*xm); 
  
//find error 
for (int ft=ptr0;ft<ptr3+1;ft++) 
 {   
    x=(laser_range[ft][0]*cosd(ft)); 
    y=(laser_range[ft][0]*sind(ft)); 
    e1=e1+((pow(y-c1-(m1*x),2))/(1+(m1*m1))); 
    e2=e2+((pow(y-c2-(m2*x),2))/(1+(m2*m2)));    
 } 
    e1=sqrt(e1/(n)); 
    e2=sqrt(e2/(n)); 
 linefitl<<" df "<<e1<<" "<<e2<<" n "<<n<<" ptr ptr2 "<<ptr<<"  
"<<ptr2<<"\n"; 
    if (e1<e2&&e1<150) 
    { 
    bound.push_back(m1); 
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    bound.push_back(c1);  
    bound.push_back(e1); 
    bound.push_back(ptr0); 
    bound.push_back(ptr3); 
    mss[(4*(q+1))+0]=m1;mss[(4*(q+1))+1]=c1; 
    mss[(4*(q+1))+2]=ptr0;//mss[(4*(q+1))+3]=ptr2; 
    linefitl<<m1<<" "<<c1<<" MERGED "<<"\n"; 
    } 
     
    if(e2<e1&&e2<150) 
    { 
    bound.push_back(m2); 
    bound.push_back(c2);  
    bound.push_back(e2); 
    bound.push_back(ptr0); 
    bound.push_back(ptr3); 
    linefitl<<m2<<" "<<c2<<" MERGED "<<"\n"; 
    mss[(4*(q+1))+0]=m1;mss[(4*(q+1))+1]=c1; 
    mss[(4*(q+1))+2]=ptr0;//mss[(4*(q+1))+3]=ptr2; 
    } 
     
    if(e1==e2&&e2<150) 
    { 
    bound.push_back(m1); 
    bound.push_back(c1); 
    bound.push_back(e1); 
    bound.push_back(ptr0); 
    bound.push_back(ptr3); 
    linefitl<<m1<<" "<<c1<<" MERGED "<<"\n"; 
    mss[(4*(q+1))+0]=m1;mss[(4*(q+1))+1]=c1; 
    mss[(4*(q+1))+2]=ptr0;//mss[(4*(q+1))+3]=ptr2; 
    } 
 } 
    else 
    {  
    bound.push_back(mss[(4*(q))+0]); 
    bound.push_back(mss[(4*(q))+1]); 
    e1=0;m1=mss[(4*(q))+0];c1=mss[(4*(q))+1];n=0; 
    for (int ft=ptr0;ft<ptr+1;ft++) 
    { 
        n=n+1; 
    x=(laser_range[ft][0]*cosd(ft)); 
    y=(laser_range[ft][0]*sind(ft)); 
    e1=e1+((pow(y-c1-(m1*x),2))/(1+(m1*m1))); 
    } 
    e1=sqrt(e1/(n)); 
    bound.push_back(e1); 
    bound.push_back(ptr0); 
    bound.push_back(ptr); 
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  //  bound.push_back(mss[(4*(q+1))+0]); 
  //  bound.push_back(mss[(4*(q+1))+1]); 
    linefitl<<mss[(4*(q))+0]<<" 
"<<mss[(4*(q))+1]<<"\n";//<<mss[(4*(q+1))+0]<<" 
"<<mss[(4*(q+1))+1]<<"\n"; 
     
     
 } 
 if(q==((mss.size()/4)-2)) 
    {bound.push_back(mss[(4*(q+1))+0]); 
     bound.push_back(mss[(4*(q+1))+1]); 
     e1=0;m1=mss[(4*(q+1))+0];c1=mss[(4*(q+1))+1];n=0; 
    for (int ft=mss[(4*(q+1))+2];ft<mss[(4*(q+1))+3];ft++) 
    { 
        n=n+1; 
    x=(laser_range[ft][0]*cosd(ft)); 
    y=(laser_range[ft][0]*sind(ft)); 
    e1=e1+((pow(y-c1-(m1*x),2))/(1+(m1*m1))); 
    } 
    e1=sqrt(e1/(n)); 
      
    bound.push_back(e1); 
    bound.push_back(mss[(4*(q+1))+2]); 
    bound.push_back(mss[(4*(q+1))+3]-1); 
     linefitl<<mss[(4*(q+1))+0]<<" "<<mss[(4*(q+1))+1]<<"\n"; 
    } 
  
} 
linefitl<<"done "<<bound.size(); 
  
return bound; 
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Appendix D  

Scan matching algorithm 
vector<double> scn_mtch(double dx,double dy,double dth, ArLaser *laser) 
{ 
      
     
    //if no prior scan obtained 
    if(acquired==0)//acquired global variable indicates that no 
previous scan existed i.e. number of acquired scans is zero 
    { 
        
diff[0]=dx;diff[1]=dy;diff[2]=dth;diff[3]=01;diff[4]=01;diff[5]=1;//if 
no previous scan exists, return the current odometry variables with the 
errors specified 
        getLaser1(laser);//read laser data 
        shod_G=segmentLaser(); //segement laser data to get the points 
where corners exist 
        outpt<<"THe laser readings  "<<laser_range[0][1]<<"  
"<<laser_range[180][1]<<"start"<<"\n"; 
        for (int of=0;of<181;of++)//set the previous scan as the 
current scan (for next cycle) 
        { 
            prev_scan[of][0]=laser_range[of][0];//set cuurent range as 
prev range 
            outpt<<prev_scan[of][0]<<"  ";  
            prev_scan[of][1]=laser_range[of][1];//set current angles of 
ranges as previous 
        } 
        outpt<<"shod_G"<<"\n"; 
        for (int of=0;of<181;of++) 
        { 
            outpt<<shod_G[of]<<"   "; 
        } 
    } 
    outpt<<"\n"; 
    //if priorscan obtained 
    if(acquired==1) 
    { 
        outpt<<"new scan"; 
        getLaser1(laser);//get the new laser data 
        vector<double> shod=segmentLaser();//segment the new data and 
store in array 
        ///for plotting 
        for (int of=0;of<181;of++) 
        { 
            outpt<<laser_range[of][0]<<"   "; 
        } 
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        outpt<<"\n"; 
        outpt<<"shod_new"<<"\n"; 
        for (int of=0;of<181;of++) 
        { 
            outpt<<shod[of]<<"   "; 
        } 
        outpt<<"\n"; 
         
        unsigned int i=0;//%array index 
        vector< vector<double> > rel1;//%relations array for scan 1 
        vector<double> rel1a;//row for intermediate operation 
        vector< vector<double> > rel2;//%relations array for scan 2 
        vector<double> mylines;//array to get lines from new scan 
        vector<double> mylines2;//array to get lines from old scan 
  
        mylines2=LineFit(shod_G); 
        mylines=LineFit(shod); 
         
        for (int yi=0;yi<mylines2.size()/5;yi++)//for old/previous scan 
        { 
            int strt;int fnl;double mr;double ee;double cc;double 
sep;double x;double y; 
            strt=mylines2[(5*(yi))+3];//record starting point 
            fnl=mylines2[(5*(yi))+4];//record final line point 
            mr=mylines2[(5*(yi))+0];//record gradient of line 
            cc=mylines2[(5*(yi))+1];//record intercept (y) of lines 
            ee=mylines2[(5*(yi))+2];//record error in line 
            x=(prev_scan[strt][0]*cosd(prev_scan[strt][1]))-
(prev_scan[fnl][0]*cosd(prev_scan[fnl][1]));//difference in x 
            y=(prev_scan[strt][0]*sind(prev_scan[strt][1]))-
(prev_scan[fnl][0]*sind(prev_scan[fnl][1]));//difference in y 
            sep=sqrt(pow(x,2)+pow(y,2));//line length 
            rel1a.clear(); 
            
rel1a.push_back(strt);rel1a.push_back(fnl);rel1a.push_back(sep);rel1a.p
ush_back(mr);rel1a.push_back(ee);rel1a.push_back(cc);//%record the 
starting and final index of the line as well as the distance  added 
intercept y at end 
            rel2.push_back(rel1a);outpt<<"\n"<<"rel2 old scan row  str   
fnl   sep  mr   ee cc "<<strt<<" "<<fnl<<" "<<sep<<" "<<atand(mr)<<" 
"<<ee<<" "<<cc<<"\n"; 
        } 
  
        for (int yi=0;yi<mylines.size()/5;yi++)//for new/recent scan 
        { 
            int strt;int fnl;double mr;double ee;double cc;double 
sep;double x;double y; 
            strt=mylines[(5*(yi))+3];//record starting point 
            fnl=mylines[(5*(yi))+4];//record final line point 
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            mr=mylines[(5*(yi))+0];//record gradient of line 
            cc=mylines[(5*(yi))+1];//record intercept (y) of lines 
            ee=mylines[(5*(yi))+2];//record error in line 
            x=(laser_range[strt][0]*cosd(laser_range[strt][1]))-
(laser_range[fnl][0]*cosd(laser_range[fnl][1]));//difference in x 
            y=(laser_range[strt][0]*sind(laser_range[strt][1]))-
(laser_range[fnl][0]*sind(laser_range[fnl][1]));//difference in y 
            sep=sqrt(pow(x,2)+pow(y,2));//line length 
            rel1a.clear(); 
            
rel1a.push_back(strt);rel1a.push_back(fnl);rel1a.push_back(sep);rel1a.p
ush_back(mr);rel1a.push_back(ee);rel1a.push_back(cc);//%record the 
starting and final index of the line as well as the distance  added 
intercept y at end 
            rel1.push_back(rel1a);outpt<<"\n"<<"rel1 new scan row  str   
fnl   sep  mr   ee cc "<<strt<<" "<<fnl<<" "<<sep<<" "<<atand(mr)<<" 
"<<ee<<" "<<cc<<"\n"; 
  
        } 
        outpt<<"\n"<<"pairs  "; 
        
///////////////////////////////////////////////////////////////////////
//////////////////////////////////////////find pairs 
        vector< vector<double> > pairs;//%empty array for pairing 
points 
  
        for (unsigned int i=0;i<rel1.size();i++)//%for all elements of 
relation array 
        {  
            unsigned int j=0;//%initialise index for array 
            while (j<rel2.size()) 
            { 
                double sse=max(rel1[i][4],rel2[j][4]);//find max error 
                int len=rel1[i][1]-rel1[i][0];//interval 
                int len2=rel2[j][1]-rel2[j][0];//interval of second 
line 
                double clsf=abs(((rel1[i][2]/len)/(rel2[j][2]/len2))-
1);//length of line divided by interval 
                double 
dmagi=abs((rel1[i][5]*cosd(abs(atand(rel1[i][3]))))-
(rel2[j][5]*cosd(abs(atand(rel2[j][3])))));//difference in distance to 
line pairs 
                outpt<<"i "<<i<<" j  "<<j<<" clsf "<<clsf<<"size j 
"<<rel2.size()<<" "<<dmagi<<" "<<dx<<"\n"; 
                if(clsf<=0.1&&dmagi<abs(4*dy)&&abs(rel1[i][1]-
rel2[j][1])<25)//sse<200)//if possible match found 
                {  
                    outpt<<" match found"; 
                    vector<double> pairsa; 
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pairsa.push_back(rel1[i][0]);pairsa.push_back(rel2[j][0]);pairsa.push_b
ack(rel1[i][3]);pairsa.push_back(rel2[j][3]);pairsa.push_back(rel1[i][5
]);pairsa.push_back(rel2[j][5]);pairsa.push_back(rel1[i][4]);pairsa.pus
h_back(rel2[j][4]);//%group matched pairs  str, mr, intercept error 
                    outpt<<"\n"<<" line pair "<<pairs.size()<<" 
{str(1,2) mr(1,2) intercept(1,2)}: "<<rel1[i][0]<<"  "<<rel2[j][0]<<"  
"<<rel1[i][3]<<"  "<<rel2[j][3]<<"  "<<rel1[i][5]<<"  "<<rel2[j][5]; 
                    pairs.push_back(pairsa); 
                    rel2.erase(rel2.begin()+j);//%remove matched pair 
                    j=180;//%terminate while loop 
                } 
                outpt<<"\n"; 
                j=j+1 ; //%increment counter if didnot find match 
            } 
        } 
        
///////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////finding theta///// 
        ////find theta 
        ofstream ash;ash.open("debugger.txt",ios_base::app); 
        vector<double> x1; 
        vector<double> y1; 
        vector<double> x2; 
        vector<double> y2; 
          
        for (int h=0;h<181;h++) 
        { 
            x1.push_back(laser_range[h][0]*cosd(laser_range[h][1])); 
            y1.push_back(laser_range[h][0]*sind(laser_range[h][1])); 
            x2.push_back(prev_scan[h][0]*cosd(prev_scan[h][1])); 
            y2.push_back(prev_scan[h][0]*sind(prev_scan[h][1])); 
        } 
        outpt<<"finding th  "<<"\n"; 
        double detr=0; 
        double rot=dth;//% for rotation values 
        double sumRot=0;// 
        double wgt;//% for weight 
        double sumWgt=0;//sum of weihts 
        if(pairs.size()>0) 
        { 
            //DEBUG added 
            double certn=0; 
            //added fr least squares method 
            vector<double> wghts;vector<double> UKFCO;ash<<"\n"<<"new 
rotation"<<"\n"; 
            for (unsigned int ii=0;ii<pairs.size();ii++)//%for all 
pairs 
            { 
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if(atand(pairs[ii][2])<0&&!(atand(pairs[ii][3])<0)){pairs[ii][2]=atand(
pairs[ii][2])+180;}//to avoid wrong quadrant 
                
if(atand(pairs[ii][3])<0&&!(atand(pairs[ii][2])<0)){pairs[ii][3]=atand(
pairs[ii][3])+180;} 
                rot= atand(pairs[ii][2])- 
atand(pairs[ii][3]);outpt<<"\n";UKFCO.push_back(-1*rot);outpt<<" line 
"<<rot<<" details 1 2 "<<atand(pairs[ii][2])<<"  
"<<atand(pairs[ii][3]); 
                wgt=exp(-1*pow(-rot-dth,2)/9);//consider narrowing the 
gaussian 
                detr=max(detr,wgt); 
                certn=certn+wgt; 
                sumWgt=sumWgt+(wgt*wgt); 
                sumRot=sumRot+(wgt*rot*wgt);outpt<<"\n"<<"rot   
"<<rot<<"  wgt   "<<wgt;wghts.push_back(wgt); 
            } 
            double meanth=0; 
            double covth=0; 
            for (unsigned int 
ty=0;ty<UKFCO.size();ty++){meanth=meanth+UKFCO[ty];}meanth=meanth/UKFCO
.size();outpt<<"\n"<<" avg th "<<meanth<<" covth "; 
            for (unsigned int 
ty=0;ty<UKFCO.size();ty++){covth=covth+pow(meanth-UKFCO[ty],2);} 
outpt<<covth; 
            certn=certn/pairs.size(); 
            rot=-1*sumRot/(sumWgt);//robot rotation 
            //if(detr<0.1){rot=dth;certn=0.1;} 
            diff[2]=rot;outpt<<" actual "<<rot<<" dth from robot 
"<<dth<<" detr "<<detr; 
            diff[5]=9;//covth;//0.5/certn; 
             
///////////////////////////////////////////////////////////////////////
////////////////////find y intercept/////////////////////////////////// 
          /*  vector<double> cexp;//expected y intercept 
            double c1=0; 
            double c2=0; 
            double c0=0; 
            double m1; 
            double m2; 
            double mbar=0; 
            double dcbar=0; 
            double e1=0; 
            double e2=0; 
  
            for (unsigned int ii=0;ii<pairs.size();ii++)//%for all 
pairs 
            { 
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                double resul; 
                
resul=pairs[ii][5]*(cosd(rot)+(sind(rot)*pairs[ii][2])); 
                cexp.push_back(resul); 
                /*if(wghts[ii]>0.7) 
                { 
                 
                mbar=mbar+pairs[ii][2]; 
                dcbar=dcbar+pairs[ii][4]-resul; 
                outpt<<"\n"<<"cexp  ctrue  "<<resul<<" "<<pairs[ii][4]; 
                } 
            } 
            mbar=mbar/pairs.size(); 
            dcbar=dcbar/pairs.size(); 
            outpt<<"\n"<<"mbar  dcbar "<<mbar<<" "<<dcbar<<"\n"; 
            for (unsigned int ii=0;ii<pairs.size();ii++) 
            { 
                double mym=pairs[ii][2]; 
                double mydc=pairs[ii][4]-cexp[ii]; 
                if(wghts[ii]>0.7) 
                { 
                c2=c2+((mym-mbar)*(mydc-dcbar));  
                c1=c1+pow((mym-mbar),2)-pow((mydc-dcbar),2); 
                outpt<<"\n"<<"mym mydc "<<mym<<" "<<mydc; 
                } 
            } 
            //m1 is dx we need c is dy we need 
            c0=-1*c2;  
            outpt<<"\n"<<" c0 c1 c2 "<<c0<<" "<<c1<<" "<<c2<<"\n"; 
            m1=((-c1/c2)+sqrt(pow(c1/c2,2)+4))*0.5; 
            m2=((-c1/c2)-sqrt(pow(c1/c2,2)+4))*0.5; 
  
            c1=dcbar-(m1*mbar); 
            c2=dcbar-(m2*mbar); 
            for (unsigned int ii=0;ii<pairs.size();ii++) 
            {   
                double mym=pairs[ii][2]; 
                double mydc=pairs[ii][4]-cexp[ii]; 
                e1=e1+((pow(mydc-c1-(m1*mym),2))/(1+(m1*m1))); 
                e2=e2+((pow(mydc-c2-(m2*mym),2))/(1+(m2*m2)));    
            } 
            diff[0]=m2; 
            diff[1]=c2; 
            outpt<<"ms and ces and ees"<<m1<<" "<<m2<<" "<<c1<<" 
"<<c2<<" "<<e1<<" "<<e2<<"\n"; 
            if (e1<e2) 
            { 
                diff[0]=m1; 
                diff[1]=c1; 
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            } 
            diff[3]=3600/2; 
            diff[4]=3600/2; 
               
            double wghtx=exp(-pow(-diff[0]-dx,2)/(3600)); 
            double wghty=exp(-pow(-diff[1]-dy,2)/(3600)); 
             
            if(pairs.size()<2) 
            { 
                diff[0]=dx;diff[1]=dy; 
            } 
            if(wghtx<0.5) 
            { 
                diff[0]=dx; 
            } 
            if(wghty<0.5) 
            { 
                diff[0]=dy; 
            } 
            e1=0;e2=0;*/ 
        } 
        if(pairs.size()<2||detr<0.9) 
            { 
                diff[2]=dth;diff[5]=100;rot=-dth; 
            } 
//m1 is dx we need c is dy we need.  i used dx which is dy for robot 
thus dy is actually robot dx cheers 
            vector<double> xe(181,0);//x expected 
            vector<double> ye(181,0);//y expected 
            double sumWgx=0; 
            double sumWgy=0; 
            double expdx=0; 
            double sumx=0; 
            double expdy=0; 
            double sumy=0; 
            for(int in=0;in<181;in++) 
            { 
                xe[in]=(x2[in]*cosd(rot))-(y2[in]*sind(rot));//%find 
expected x from rotation of coordinates 
                ye[in]=(x2[in]*sind(rot))+(y2[in]*cosd(rot));//%find 
expected y from rotation of coordinates 
                expdx=x1[in]-xe[in]; 
                wgt=exp(-pow(-expdx-dx,2)/(2*400)); 
                  
                sumWgx=sumWgx+(wgt*wgt); 
                sumx=sumx+(wgt*expdx*wgt); 
                expdy=y1[in]-ye[in]; 
                wgt=exp(-pow(-expdy-dy,2)/(2*400)); 
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                sumWgy=sumWgy+(wgt*wgt); 
                sumy=sumy+(wgt*expdy*wgt);  
            } 
            expdx=-sumx/sumWgx;//%find  expected dx %/(size(xrnd,2)); 
            expdy=-sumy/sumWgy;//%find  expected dy %/(size(yrnd,2)); 
            diff[0]=expdx; 
            diff[1]=expdy; 
            diff[3]=400;//certn; 
            diff[4]=900;//certny; 
            outpt<<"\n"<<"dx dy "<<expdx<<" "<<expdy<<"\n"; 
        shod_G=shod; 
        for (int of=0;of<181;of++) 
        { 
            prev_scan[of][0]=laser_range[of][0]; 
            prev_scan[of][1]=laser_range[of][1]; 
        }        
} 
  if(acquired==0) 
  { 
    acquired=1; 
  }  
  return diff; 
}//scan matching based on lines 
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Appendix E 

UKF related code 

Appendix E.1: UKF in main loop 
while(1) 
{ 
    robot.setVel2(100,200); 
    pos=robot.getPose(); 
    double modTh=pos.getTh();//This is the modified th to take into 
account +/- 180  
    double shrt=0;//key to shorten extended range 
    if(pos.getTh()<0){modTh=pos.getTh()+360;}//keep within 0-360 
  
    if(abs(modTh-breaker[2][0])>300&&modTh>180)//differet quadrants top 
vs bottom 
    { 
        shrt=-1; 
    } 
  
    if(abs(modTh-breaker[2][0])>300&&breaker[2][0]>180)//differet 
quadrants top vs bottom 
    { 
        shrt=1; 
    } 
    
  
    if(abs(modTh-breaker[2][0]+(shrt*360))>5||abs(pos.getX()-
breaker[0][0])>100||abs(pos.getY()-breaker[1][0])>100) 
    { 
        double dth=modTh-breaker[2][0]+(shrt*360); 
        double dx=pos.getX()-breaker[0][0]; 
        double dy=pos.getY()-breaker[1][0]; 
        breaker[2][0]=modTh; 
        breaker[0][0]=pos.getX(); 
        breaker[1][0]=pos.getY(); 
        vector<double> lns; 
        lns=scn_mtch(dx,dy,dth,laser); 
        
globl_scn[0]=globl_scn[0]+lns[0];globl_scn[1]=globl_scn[1]+lns[1];globl
_scn[2]=globl_scn[2]+lns[2]; 
     
    ofstream ako;ako.open("logs2.txt",ios_base::app); 
//  ako<<"\n"<<" new run has : "<<"dth  "<<dth<<" tho "<<globl_ps[2]<<" 
ztho  "<<globl_scn[2]<<" odo "<<breaker[2][0]<<" zdth "<<lns[2]<<" 
sigth "<<sqrt(globl_ps[5])<<" sigzth "<<sqrt(lns[5])<<"\n"; 
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    ako<<"\n"<<modTh<<" "<<dth<<"  "<<globl_ps[2]<<"  
"<<breaker[2][0]<<" "<<lns[2]<<" "<<dx<<"  "<<globl_ps[0]<<"  
"<<breaker[0][0]<<" "<<lns[0]<<" "<<dy<<"  "<<globl_ps[1]<<"  
"<<breaker[1][0]<<" "<<lns[1]<<" ;";   
    
globl_ps=UKF1(dx,dy,dth,globl_ps[0],globl_ps[1],globl_ps[2],lns[0],lns[
1],lns[2],sqrt(globl_ps[3]),sqrt(globl_ps[4]),(globl_ps[5])); 
  
  
    msb<<"\n"<<" dx dy dz                  "<<lns[0]<<"  "<<lns[1]<<"  
"<<lns[2]; 
    msb<<"\n"<<"pose est  dx dy dz      "<<globl_ps[0]<<"   
"<<globl_ps[1]<<"   "<<globl_ps[2]<<";"; 
    msb<<"\n"<<"observe   dx dy dz      "<<globl_scn[0]<<"   
"<<globl_scn[1]<<"   "<<globl_scn[2]<<";"; 
    msb<<"\n"<<"odometer dx  dy dz     "<<pos.getX()<<"   
"<<pos.getY()<<"   "<<pos.getTh()<<";"<<" ffft "<<5/lns[5]<<"  
"<<lns[5]; 
    cout<<"\n"<<"odometer dx     "<<pos.getX()<<" dy "<<pos.getY()<<"  
dth "<<pos.getTh()<<";"; 
    cout<<"\n"<<"ukf dx "<<globl_ps[0]<<" ukf dy "<<globl_ps[1]<<" ukf 
dth "<<globl_ps[2]<<"\n"; 
  
    } 
} 
 

Appendix E.2: UKF function 
vector<double> UKF1(double dx,double dy,double dth,double xo, double 
yo,double tho,double zxo,double zyo,double ztho, double sigx, double 
sigy, double sigth) 
{ 
    //inputs dx/dy/dth xo/yo/tho from previous run zxo,zyo,ztho are 
deltas from scan matching sigx sigy sigth are from previous run 
     //assume dx is for dv.dt 
  
     
//update=UKF1(dx,dy,dth,update[0],update[1],update[2],zx,zy,zth,update[
3],update[4],update[5]); 
      
     //returnable 
     vector<double> update(6,0);//xo yo tho sigx sigy sigth 
     ofstream offf;offf.open("debug2.txt",ios_base::app); 
     offf<<"\n"<<"This is new  "<<"\n"; 
     offf<<" inputs "<<dx<<" "<<dy<<" "<<dth<<" "<<xo<<" "<<yo<<" 
"<<tho<<" "<<zxo<<" "<<zyo<<" "<<ztho<<" "<<sigx<<" "<<sigy<<" 
"<<sigth<<"\n"; 
     offf<<"For DX "<<"\n"; 
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     //for dx 
     double scx=0;//square root of covariance of cx 
     double Qx=400;//measurement noise covariance 
     double Rx=(30)+abs((1*dx*sind(tho)));//process noise covariance 
     offf<<"Rx is "<<Rx<<"\n"; 
     //sigma points 
     double sx1; 
     double sx2; 
     double mx=0;//mean of sigma points 
      
     //weights for sigma points 
     double k=2; 
     double alpha=0.25; 
     double lamda=(pow(alpha,2)*(1+k))-1; 
     double wm=lamda/(1+lamda);//weight for mean of first point 
     double ws1=(lamda/(1+lamda))+(1-(alpha*alpha)+2);//weight for 
variance of first point 
     double wc=1/(2*(1+lamda));//weight for rest of points 
     offf<<" Weights wm "<<wm<<" ws1 "<<ws1<<" wc "<<wc<<"\n"; 
     double pcx=0; 
      
     //create sigma points 
     sx1=xo+sqrt((1+lamda)*sigx*sigx); 
     sx2=xo-sqrt((1+lamda)*sigx*sigx); 
     offf<<"Sigma points "<<xo<<" "<<sx1<<" "<<sx2<<"\n"; 
     //propagate sigma point 
     xo=xo+dx; 
     sx1=sx1+dx; 
     sx2=sx2+dx; 
     mx=mx+(wm*xo)+(wc*sx1)+(wc*sx2); 
     offf<<"Propagations "<<xo<<" "<<sx1<<" "<<sx2<<"with mean 
"<<mx<<"\n"; 
     //predicted covariance 
     pcx=pcx+(ws1*(xo-mx)*(xo-mx)); 
     pcx=pcx+(wc*(sx1-mx)*(sx1-mx)); 
     pcx=pcx+(wc*(sx2-mx)*(sx2-mx)); 
     pcx=pcx+Rx; 
     offf<<" Covariance predicted "<<pcx<<"\n"; 
     //expected measurement is the same 
     double Sx=pcx-Rx+Qx; 
     double CCx=pcx-Rx;//cross covariance 
      
     double KG=CCx/Sx;//kalman gain 
     //state update 
     mx=mx+(KG*(xo-dx+zxo-mx)); 
     double cx=(pcx)-(KG*KG*Sx); 
     offf<<"Covs sx "<<Sx<<" ccx "<<CCx<<" KG "<<KG<<"\n"; 
     update[0]=mx; 



228 
 

     update[3]=cx; 
     offf<<"final  "<<mx<<" "<<cx<<"\n"; 
     
//////////////////////////////////////////////////////////////////// 
     //for dy 
     double scy=0;//square root of covariance of cx 
     double Qy=400;//measurement noise covariance 
     double Ry=(30)+abs((1*dy*cosd(tho)));//process noise covariance 
     offf<<"\n"<<"For Dy "<<"\n"; 
     //sigma points 
     //use same sigma points 
     mx=0;//mean of sigma points 
     offf<<"Ry is "<<Ry<<"\n"; 
     //weights for sigma points 
     //use same weights 
     pcx=0; 
      
     //create sigma points 
     sx1=yo+sqrt((1+lamda)*sigy*sigy); 
     sx2=yo-sqrt((1+lamda)*sigy*sigy); 
     offf<<"Sigma points "<<yo<<" "<<sx1<<" "<<sx2<<"\n"; 
     //propagate sigma point 
     yo=yo+dy; 
     sx1=sx1+dy; 
     sx2=sx2+dy; 
     mx=mx+(wm*yo)+(wc*sx1)+(wc*sx2); 
     offf<<"Propagations "<<yo<<" "<<sx1<<" "<<sx2<<"with mean 
"<<mx<<"\n"; 
     //predicted covariance 
     pcx=pcx+(ws1*(yo-mx)*(yo-mx)); 
     pcx=pcx+(wc*(sx1-mx)*(sx1-mx)); 
     pcx=pcx+(wc*(sx2-mx)*(sx2-mx)); 
     pcx=pcx+Ry; 
     offf<<" Covariance predicted "<<pcx<<"\n"; 
     //expected measurement is the same 
     Sx=pcx-Ry+Qy; 
     CCx=pcx-Ry;//cross covariance 
      
     KG=CCx/Sx;//kalman gain  y 
     //state update 
     mx=mx+(KG*(yo-dy+zyo-mx)); 
     cx=(pcx)-(KG*KG*Sx); 
     offf<<"Covs sx "<<Sx<<" ccx "<<CCx<<" KG "<<KG<<"\n"; 
     update[1]=mx; 
     update[4]=cx;     
     offf<<"final"<<mx<<" "<<cx<<"\n"; 
     
//////////////////////////////////////////////////////////////////// 
     //for dth 
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     if(tho<0){tho=tho+360;} 
     offf<<" For Dth "<<"\n"; 
     double scth=0;//square root of covariance of cx 
     double Qth=9;//measurement noise covariance 
     double Rth=pow(2+(0.05/(2*0.33)),1);//process noise covariance 
     offf<<"Rth is "<<Rth<<"\n"; 
     //sigma points 
     //use same sigma points 
     mx=0;//mean of sigma points 
      
     //weights for sigma points 
     //use same weights 
     pcx=0; 
      
     //create sigma points 
      
     sx1=tho+sqrt((1+lamda)*sigth*sigth); 
     sx2=tho-sqrt((1+lamda)*sigth*sigth); 
     offf<<"Sigma points "<<tho<<" "<<sx1<<" "<<sx2<<"\n"; 
     //propagate sigma point 
     tho=tho+dth; 
     sx1=sx1+dth; 
     sx2=sx2+dth; 
     mx=mx+(wm*tho)+(wc*sx1)+(wc*sx2); 
     offf<<"Propagations "<<tho<<" "<<sx1<<" "<<sx2<<"with mean 
"<<mx<<"\n"; 
     //predicted covariance 
     pcx=pcx+(ws1*(tho-mx)*(tho-mx)); 
     pcx=pcx+(wc*(sx1-mx)*(sx1-mx)); 
     pcx=pcx+(wc*(sx2-mx)*(sx2-mx)); 
     pcx=pcx+Rth; 
     offf<<" Covariance predicted "<<pcx<<"\n"; 
     //expected measurement is the same 
     Sx=pcx-Rth+Qth; 
     CCx=pcx-Rth;//cross covariance 
      
     KG=CCx/Sx;//kalman gain  y 
     //state update 
     mx=mx+(KG*(tho-dth+ztho-mx)); 
     cx=(pcx)-(KG*KG*Sx); 
     if(mx<0){mx=mx+360;} 
     update[2]=mx; 
     update[5]=cx; 
     offf<<"Covs sx "<<Sx<<" ccx "<<CCx<<" KG "<<KG<<"\n"; 
     offf<<"final"<<mx<<" "<<cx<<"\n"; 
     offf<<"summary "<<update[0]<<" "<<update[1]<<" "<<update[2]<<" 
"<<update[3]<<" "<<update[4]<<" "<<update[5]<<"\n"; 
     return update; 
} 
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Appendix F 

 Get laser function 
Function to get laser sensor data for grid map, obstacle avoidance, and dynamic objects 
detection. 

void getLaser1(ArLaser *Laser) 
{ 
    //optional to print out to user 
    ofstream las1; 
    las1.open("reading las.txt", ios_base::app); 
     
    const std::list<ArSensorReading *> *readingsList;//pointer to array 
with laser readings 
    std::list<ArSensorReading *>::const_iterator it;//iterator to loop 
through readings 
    int i = -1; //Loop counter for readings 
    readingsList = Laser->getRawReadings();//get laser readings and 
save in array 
     
    for (it = readingsList->begin(); it != readingsList->end(); it++) 
    { 
        i++; 
        laser_range[i][0]=(*it)->getRange();//save laser range 
        laser_range[i][1]=(*it)->getSensorTh();//save laser angle 
     
         
        //Output distance and angle 
    las1 << "Laser reading " << i << " = " << (*it)->getRange()<< " 
Angle " << i << " = " << (*it)->getSensorTh() << "\n"; 
    las1 << (*it)->getRange()<< "  "; 
    }   
     
    laser_pose[0][0]=(*readingsList->begin())->getXTaken(); 
    laser_pose[1][0]=(*readingsList->begin())->getYTaken(); 
    laser_pose[2][0]=(*readingsList->begin())->getThTaken(); 
    las1<<laser_pose[0][0]<<"  "<<laser_pose[1][0]<<"  
"<<laser_pose[2][0]<<" ;";las1<<"\n"; 
//las1<<laser_pose[1][1]<<";         "<<laser_pose[2][1]<<";        
"<<laser_pose[3][1]<<";\n"; 
    las1.close(); 
 
 
}//get laser readings 
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Appendix G 

 Grid map related code 

Appendix G.1: Acquiring sonar data for grid map 
vector<vector<double>> sonarRanges(ArRobot *robot)//function for grid 
map 
{ 
    vector<vector<double>> readings;//ofstream outp;//outp.open("sonar 
grid.txt",ios_base::app); 
  
            for (int i=0;i<8;i++) 
            { 
                vector<double> rows;  
                double rng= robot->getSonarReading(i)-
>getRange();//fill first row of table by reading of first sonar. 
                double gamma=(robot->getPose().getTh()*PI/180)+(robot-
>getSonarReading(i)->getSensorTh()*PI/180);//get current sonar 
orientation=robot orientation+sonar orientation on robot 
           
                double mag=sqrt((robot->getSonarReading(i)-
>getSensorX()*robot->getSonarReading(i)->getSensorX())+(robot-
>getSonarReading(i)->getSensorY()*robot->getSonarReading(i)-
>getSensorY()));//distance of sonar from robot centre 
                double x=robot->getPose().getX()+(mag*cos(gamma));//to 
be used for building map origin of sonar scan 
                double y=robot->getPose().getY()+(mag*sin(gamma));   
                
rows.push_back(x);rows.push_back(y);rows.push_back(gamma);rows.push_bac
k(rng); 
                readings.push_back(rows); 
            } 
  
            //plotting 
            //for (int i=0;i<readings[0].size();i++) 
            //{ 
            //  outp<<readings[0][i]<<"  "<<readings[1][i]<<"  
"<<readings[2][i]<<"  "<<readings[3][i]<<"  "<<readings[4][i]<<"  
"<<readings[5][i]<<"  "<<readings[6][i]<<"  "<<readings[7][i]<<" ; 
"<<"\n"; 
  
        //  } 
          //  outp.close(); 
                 
return reading 
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Appendix G.2:  Basic Grid Map Laser only 
void mapp3(ArRobot *robot,ArLaser *laser) 
 { 
    getLaser1(laser); 
    double id=0;        
    for (int i=0;i<181;i++) 
    { 
        double lxc; 
        double lyc; 
        double olxc; 
        double olyc; 
        double 
lx=laser_pose[0][0]+(laser_range[i][0]+(100*sind(i)))*cosd(laser_range[
i][1]+laser_pose[2][0]);//point x 
        double 
ly=laser_pose[1][0]+(laser_range[i][0]+(100*sind(i)))*sind(laser_range[
i][1]+laser_pose[2][0]);//point y 
        int k=1; 
        if(laser_range[i][0]>5000) 
        { 
            
lx=laser_pose[0][0]+(5000+(100*sind(i)))*cosd(laser_range[i][1]+laser_p
ose[2][0]); 
            
ly=laser_pose[1][0]+(5000+(100*sind(i)))*sind(laser_range[i][1]+laser_p
ose[2][0]); 
            k=0; 
        } 
        lxc=100+ceil((lx-50)/100);// laser xc 
        lyc=100+ceil((ly-50)/100);//laser yc 
        if(!(k==0)) 
        { 
            mapg2[lyc][lxc]=1; 
        } 
  
        olxc=100+ceil((laser_pose[0][0]-50)/100);//origin x of laser 
grid cell 
        olyc=100+ceil((laser_pose[1][0]-50)/100);//origin y of laser 
grid cell 
        mapg2[olyc][olxc]=10; 
        double m=(lyc-olyc)/(lxc-olxc);//gradient of line 
        double c=lyc-(m*lxc);//intercept 
        for (int 
j=min(olxc,lxc)+1;j<max(lxc,olxc);j++)//j=olxc+1;j<lxc;j++ modified 
        { 
            int cell=ceil((m*j)+c); 
            double prob=0.3; 
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mapg2[cell][j]=(prob*mapg2[cell][j])/((prob*mapg2[cell][j])+((1-
prob)*(1-mapg2[cell][j])));//bayesian update 
        } 
} 
  
     
 } 
 

Appendix G.3: Basic grid map sonar only 
void mapp1(ArRobot *robot) 
 { 
//mod 
 for (int i=0;i<8;i++)//for each sonar 
 { 
     double sensor_diag=sqrt(pow(robot->getSonarReading(i)-
>getSensorY(),2)+pow(robot->getSonarReading(i)->getSensorX(),2));//this 
gets the sensor diagonal (distance from robot centre)     
     //find robot position 
     double sonc[1][2];//sonar centre position x,y 
     double robc[1][2];//robot centre position x,y 
     sonc[0][1]= robot->getSonarReading(i)-
>getYTaken()+(sensor_diag*sin(gamma[i][sonar_column_counter]));//store 
current y position of sonar (y of robot + y of sonar on device) 
     sonc[0][0]= robot->getSonarReading(i)-
>getXTaken()+(sensor_diag*cos(gamma[i][sonar_column_counter]));//store 
current x position of sonar (x of robot + x of sonar on device) 
     robc[0][1]=0.5*( robot->getSonarReading(0)->getYTaken()+robot-
>getSonarReading(7)->getYTaken());//store current y position of robot  
     robc[0][0]= robot->getSonarReading(0)->getXTaken();//store current 
x position of robot  
      
     double robl[2][2];//limits array for robot position 
     robl[0][0]=robc[0][0]-177;//min x 
     robl[0][1]=robc[0][0]+177;//max x 
     robl[1][0]=robc[0][1]-177;//min y 
     robl[1][1]=robc[0][1]+177;//max y 
//mod 
     double robcr[2][2];//to get coordinates in of cells in grid map 
     robcr[0][0]=100+ceil((robl[0][0]-50)/100);//min x cell 
     robcr[0][1]=100+ceil((robl[0][1]-50)/100);//max x cell 
     robcr[1][0]=100+ceil((robl[1][0]-50)/100);//min y cell 
     robcr[1][1]=100+ceil((robl[1][1]-50)/100);//max y cell 
      
     for (int l=robcr[1][0];l<robcr[1][1]+1;l++)//fill cells with 
current robot poition i.e. occupied by robot 
     { 
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         for (int m=robcr[0][0];m<robcr[0][1]+1;m++) 
         { 
             mapg[l][m]=10;//cells occupied by robot      
         } 
     } 
      
     double ang=(robot->getSonarReading(i)-
>getThTaken()*PI/180)+(robot->getSonarReading(i)-
>getSensorTh()*PI/180);//get current sonar orientation=robot 
orientation+sonar orientation on robot 
     double rng=robot->getSonarReading(i)-
>getRange()+sensor_diag;//range of sonar 
      
     for (int l=0;l<201;l++) //fill map 
     { 
         for (int m=0;m<201;m++) 
         { 
             double ex=(100*(m-100))-robc[0][0];//element x 
             double ey=(100*(l-100))-robc[0][1];//element y 
             double er=sqrt((ey*ey)+(ex*ex));//element distance 
             double ea=atan2(ey,ex);//element angle 
              
             if(abs(ea-ang)<11.5*3.142/180&&er<5000+sensor_diag) //if 
elelement within sonar cone 
             { 
                 if(rng-150<er&&rng+150>er&&!(rng==5000))//region 1 
                 { 
                     if(!(mapg[l][m]==10)) 
                     { 
                     double prob=(((5000-er)/5000)+((3.89-(ea-
ang))/3.89))*0.5*0.98; 
                     
mapg[l][m]=(prob*mapg[l][m])/((prob*mapg[l][m])+((1-prob)*(1-
mapg[l][m])));//bayesian update 
                     } 
                 } 
                  
                 if(rng-150>er)//region 2 
                 { 
                      if(!(mapg[l][m]==10)) 
                     { 
                     double prob=1-((((5000-er)/5000)+((3.89-(ea-
ang))/3.89))*0.5); 
                     
mapg[l][m]=(prob*mapg[l][m])/((prob*mapg[l][m])+((1-prob)*(1-
mapg[l][m])));//bayesian update 
                     } 
                 } 
             } 
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         } 
     } 
 } 
} 
 

Appendix G.4: Basic Grid map laser and sonar 
void mapp2(ArRobot *robot,ArLaser *laser) 
 {//ofstream gh;gh.open("details map.txt",ios_base::app);gh<<" function 
call new  "<<"\n"<<"\n"; 
     //laser 
     vector< double> mod; 
     int tilesensor;//this is the tile in which the sensor operates 
     int tileread;//this is the tile in which the reading is 
     getLaser1(laser); 
    //double id=0;      
    for (int il=0;il<181;il++) 
    { 
        double lxc; 
        double lyc; 
        double olxc; 
        double olyc; 
        double 
lx=laser_pose[0][0]+(laser_range[il][0]+(100*sind(il)))*cosd(laser_rang
e[il][1]+laser_pose[2][0]);//point x 
        double 
ly=laser_pose[1][0]+(laser_range[il][0]+(100*sind(il)))*sind(laser_rang
e[il][1]+laser_pose[2][0]);//point y 
        int k=1; 
        if(laser_range[il][0]>3000) 
        { 
            
lx=laser_pose[0][0]+(3000+(100*sind(il)))*cosd(laser_range[il][1]+laser
_pose[2][0]); 
            
ly=laser_pose[1][0]+(3000+(100*sind(il)))*sind(laser_range[il][1]+laser
_pose[2][0]); 
            k=0; 
        } 
        lxc=100+ceil((lx-50)/100);// laser xc 
        lyc=100+ceil((ly-50)/100);//laser yc 
        mod=allocateTile(lxc,lyc); 
        tileread=tile; 
        lxc=mod[0]; 
        lyc=mod[1]; 



236 
 

  
        if(!(k==0)) 
        { 
            fullmap[tile][lyc][lxc]=1;//mapg2[lyc][lxc]=1; 
        } 
  
        olxc=100+ceil((laser_pose[0][0]-50)/100);//origin x of laser 
grid cell 
        olyc=100+ceil((laser_pose[1][0]-50)/100);//origin y of laser 
grid cell 
        mod= allocateTile(olxc,olyc); 
        olxc=mod[0]; 
        olyc=mod[1];     
        tilesensor=tile; 
        fullmap[tile][olyc][olxc]=100;//mapg2[olyc][olxc]=100; 
  
        //prepare for loop grid 
        lyc=((200*mapstack[tileread][1])+lyc); 
        olyc=((200*mapstack[tilesensor][1])+olyc); 
        lxc=((200*mapstack[tileread][0])+lxc); 
        olxc=((200*mapstack[tilesensor][0])+olxc); 
        double m=(lyc-olyc)/(lxc-olxc);//double 
m=(((200*mapstack[tileread][1])+lyc)-
((200*mapstack[tilesensor][1])+olyc))/(((200*mapstack[tileread][0])+lxc
)-((200*mapstack[tilesensor][0])+olxc));//gradient of line 
        double c=lyc-(m*lxc);//intercept 
        if(lxc-olxc==0){ 
  
            for (int j=olyc;j<lyc;j++)  
        { 
            int cell=lxc; 
  
            mod= allocateTile(cell,j); 
            //use instead of j mod[0][0]; 
            cell=mod[1];     
            
if(!(fullmap[tile][cell][mod[0]]==100))//!(mapg2[cell][j]==100)) 
            { 
                double prob=0.3; 
                
fullmap[tile][mod[1]][mod[0]]=(prob*fullmap[tile][mod[1]][mod[0]])/((pr
ob*fullmap[tile][mod[1]][mod[0]])+((1-prob)*(1-
fullmap[tile][mod[1]][mod[0]])));//mapg2[cell][j]=(prob*mapg2[cell][j])
/((prob*mapg2[cell][j])+((1-prob)*(1-mapg2[cell][j])));//bayesian 
update 
            } 
            }} 
        else{ 
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        for (int j=min(olxc,lxc);j<max(lxc,olxc);j++)  
        { 
            int cell=ceil((m*j)+c); 
  
            mod= allocateTile(j,cell); 
            //use instead of j mod[0][0]; 
            cell=mod[1];     
            
if(!(fullmap[tile][cell][mod[0]]==100))//!(mapg2[cell][j]==100)) 
            { 
                double prob=0.3; 
                
fullmap[tile][cell][mod[0]]=(prob*fullmap[tile][cell][mod[0]])/((prob*f
ullmap[tile][cell][mod[0]])+((1-prob)*(1-
fullmap[tile][cell][mod[0]])));//mapg2[cell][j]=(prob*mapg2[cell][j])/(
(prob*mapg2[cell][j])+((1-prob)*(1-mapg2[cell][j])));//bayesian update 
            } 
        }} 
} 
  
  
     //laser done 
      for (int i=0;i<8;i++)//for each sonar 
      {//gh<<"new sonar "<<i<<"\n"; 
          if(robot->getSonarReading(i)->getRange()<3000){ 
     double sensor_diag=sqrt(pow(robot->getSonarReading(i)-
>getSensorY(),2)+pow(robot->getSonarReading(i)->getSensorX(),2));//this 
gets the sensor diagonal (distance from robot centre)     
     //find robot position 
     double sonc[1][2];//sonar centre position x,y 
     double robc[1][2];//robot centre position x,y 
     double robcc[1][2];//robot centre position grids 
     double ang=(robot->getSonarReading(i)-
>getThTaken()*PI/180)+(robot->getSonarReading(i)-
>getSensorTh()*PI/180);//get current sonar orientation=robot 
orientation+sonar orientation on robot 
     sonc[0][1]= robot->getSonarReading(i)-
>getYTaken()+(sensor_diag*sin(ang));//store current y position of sonar 
(y of robot + y of sonar on device) 
     sonc[0][0]= robot->getSonarReading(i)-
>getXTaken()+(sensor_diag*cos(ang));//store current x position of sonar 
(x of robot + x of sonar on device) 
     robc[0][1]=0.5*( robot->getSonarReading(0)->getYTaken()+robot-
>getSonarReading(7)->getYTaken());//store current y position of robot  
     robc[0][0]= robot->getSonarReading(0)->getXTaken();//store current 
x position of robot  
     robcc[0][0]=100+ceil((robc[0][0]-50)/100); 
     robcc[0][1]=100+ceil((robc[0][1]-50)/100); 
     double soncc[1][2]; 
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     soncc[0][0]=100+ceil((sonc[0][0]-50)/100); 
     soncc[0][1]=100+ceil((sonc[0][1]-50)/100); 
//gh<<" sonar x "<<sonc[0][0]<<" sonar y "<<sonc[0][1]<<" robot x 
"<<robc[0][0]<<" robot y "<<robc[0][1]<<"\n"; 
     double robl[2][2];//limits array for robot position 
     robl[0][0]=robc[0][0]-177;//min x 
     robl[0][1]=robc[0][0]+177;//max x 
     robl[1][0]=robc[0][1]-177;//min y 
     robl[1][1]=robc[0][1]+177;//max y 
  
     double robcr[2][2];//to get coordinates in of cells in grid map 
     robcr[0][0]=100+ceil((robl[0][0]-50)/100);//min x cell 
     robcr[0][1]=100+ceil((robl[0][1]-50)/100);//max x cell 
     robcr[1][0]=100+ceil((robl[1][0]-50)/100);//min y cell 
     robcr[1][1]=100+ceil((robl[1][1]-50)/100);//max y cell 
     mod= allocateTile(robcr[0][0],robcr[1][0]);  
        robcr[0][0]=mod[0]; 
        robcr[1][0]=mod[1];  
        tilesensor=tile; 
  
        mod= allocateTile(robcr[0][1],robcr[1][1]);  
        robcr[0][1]=mod[0]; 
        robcr[1][1]=mod[1];  
        tileread=tile; 
    // gh<<"robot cells x " <<robcc[0][0]<<" y "<<robcc[0][1]<<"\n"; 
    // gh<<"robcr[0][0] "<<robcr[0][0]<<" robcr[0][1] "<<robcr[0][1]<<" 
robcr[1][0] "<<robcr[1][0]<<" robcr[1][1] "<<robcr[1][1]<<"\n"; 
        robcr[0][1]=((200*mapstack[tileread][0])+robcr[0][1]);//max x 
        robcr[0][0]=((200*mapstack[tilesensor][0])+robcr[0][0]);//min x 
        robcr[1][1]=((200*mapstack[tileread][1])+robcr[1][1]);//max y 
        robcr[1][0]=((200*mapstack[tilesensor][1])+robcr[1][0]);//min y 
  
     for (int l=robcr[1][0];l<robcr[1][1]+1;l++)//fill cells with 
current robot poition i.e. occupied by robot 
     { 
         for (int m=robcr[0][0];m<robcr[0][1]+1;m++) 
         { 
             mod= allocateTile(m,l); 
             fullmap[tile][mod[1]][mod[0]]=100; 
             //mapg2[l][m]=100;//cells occupied by robot      
         } 
     } 
      
     double rng=robot->getSonarReading(i)-
>getRange()+sensor_diag;//range of sonar 
     double mang=tan(ang);//find gradient 
     double nang=-1/(mang+0.001);// gradient of normal 
     nang=atan(nang);//ange of normal 
     double cnt[1][2]; 
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     cnt[0][0]= (cos(ang)*rng)+sonc[0][0]; 
     cnt[0][1]= (sin(ang)*rng)+sonc[0][1];//centerline point  
     double wdth=rng*23*3.142/360;//this is the half width of sonar 
beam 
     double endpt[2][2]; 
     endpt[0][0]=cnt[0][0]-(wdth*cos(nang));//x low 
     endpt[0][1]=cnt[0][1]- (wdth*sin(nang));//y low 
     endpt[1][0]=cnt[0][0]+(wdth*cos(nang));//x high 
     endpt[1][1]=cnt[0][1]+(wdth*sin(nang));//y high 
     double cntc[1][2]; 
     cntc[0][0]=100+ceil((cnt[0][0]-50)/100); 
     cntc[0][1]=100+ceil((cnt[0][1]-50)/100);//centre cell 
     double endptcmx[1][2]; 
     double endptcmn[1][2]; 
     endptcmx[0][0]=100+max(ceil((endpt[0][0]-
50)/100),ceil((endpt[1][0]-50)/100));//max x 
     endptcmx[0][1]=100+max(ceil((endpt[0][1]-
50)/100),ceil((endpt[1][1]-50)/100));//cell max y 
     endptcmn[0][0]=100+min(ceil((endpt[1][0]-
50)/100),ceil((endpt[0][0]-50)/100));//min x 
     endptcmn[0][1]=100+min(ceil((endpt[1][1]-
50)/100),ceil((endpt[0][1]-50)/100));//cell min y 
      
//gh<<" angle "<<ang<<" range "<<rng<<"\n"; 
//gh<<" Tx  "<<cnt[0][0]<<" Ty "<<cnt[0][1]<<" cells x "<<cntc[0][0]<<" 
cells y "<<cntc[0][1]<<"\n"; 
  
//gh<<" wdth "<<wdth<<" endpt xl "<<endpt[0][0]<<" endpt xh 
"<<endpt[1][0]<<" endp yl "<<endpt[0][1]<<" endpt yh 
"<<endpt[1][1]<<"\n"; 
//gh<<" cell endpt xl "<<endptcmn[0][0]<<" cell endpt yl 
"<<endptcmn[0][1]<<" cell endpt xh "<<endptcmx[0][0]<<" cell endpt yh 
"<<endptcmx[0][1]<<"\n"; 
//gh<<"cntc[0][0] "<<cntc[0][0]<<" cntc[0][1] "<<cntc[0][1]<<" 
robcc[0][0] "<<robcc[0][0]<<" robcc[0][1] "<<robcc[0][1]<<"\n";    
//gh<<" soncc x "<<soncc[0][0]<<" soncc y "<<soncc[0][1]<<"\n";     
  
        mod= allocateTile(soncc[0][0],soncc[0][1]);  
        soncc[0][0]=mod[0]; 
        soncc[0][1]=mod[1];  
        tilesensor=tile; 
  
        mod= allocateTile(cntc[0][0],cntc[0][1]);  
        cntc[0][0]=mod[0]; 
        cntc[0][1]=mod[1];   
        tileread=tile; 
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        cntc[0][0]=((200*mapstack[tileread][0])+cntc[0][0]);//max x 
        soncc[0][0]=((200*mapstack[tilesensor][0])+soncc[0][0]);//min x 
        cntc[0][1]=((200*mapstack[tileread][1])+cntc[0][1]);//max y 
        soncc[0][1]=((200*mapstack[tilesensor][1])+soncc[0][1]);//min y 
  
  
    double m=( cntc[0][1]- soncc[0][1])/( cntc[0][0]- soncc[0][0]); 
        double c= cntc[0][1]-(m* cntc[0][0]);//intercept 
  
  
//cout<<" m "<<m<<"\n"; 
if(cntc[0][0]- soncc[0][0]==0) 
  
{for (int m=soncc[0][1];m<cntc[0][1]+1;m++) 
     { 
               
             mod= allocateTile(cntc[0][0],m); 
             double ex=(100*(cntc[0][0]-100));//element x 
             double ey=(100*(m-100));//element y 
             double er=sqrt((ey*ey)+(ex*ex));//element distance 
             double ea=atan2(ey,ex);//element angle  
             if(!(fullmap[tile][mod[1]][mod[0]]==100)&&er<rng-
100&&abs(ea-ang)<11.5*3.142/180) 
             { 
                 
                 double prob=1-((((5000-er)/5000)+((3.89-(ea-
ang))/3.89))*0.5); 
                 
fullmap[tile][mod[1]][mod[0]]=(prob*fullmap[tile][mod[1]][mod[0]])/((pr
ob*fullmap[tile][mod[1]][mod[0]])+((1-prob)*(1-
fullmap[tile][mod[1]][mod[0]])));//bayesian update 
             }  
                 
                 
}}//if 
  
else{ 
      
         for (int 
jj=min(cntc[0][0],soncc[0][0]);jj<max(cntc[0][0],soncc[0][0])+1;jj++) 
         {    
                   int cell=ceil((m*jj)+c); 
                   mod= allocateTile(jj,cell); 
               
             double ex=(100*(jj-100))-sonc[0][0];//element x 
             double ey=(100*(cell-100))-sonc[0][1];//element y 
             double er=sqrt((ey*ey)+(ex*ex));//element distance 
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             double ea=atan2(ey,ex);//element angle 
  
  
             if(!(fullmap[tile][mod[1]][mod[0]]==100)&&er<rng-
100&&abs(ea-ang)<11.5*3.142/180) 
             { 
                 
                 double prob=1-((((5000-er)/5000)+((3.89-(ea-
ang))/3.89))*0.5); 
                 
fullmap[tile][mod[1]][mod[0]]=(prob*fullmap[tile][mod[1]][mod[0]])/((pr
ob*fullmap[tile][mod[1]][mod[0]])+((1-prob)*(1-
fullmap[tile][mod[1]][mod[0]])));//bayesian update 
             } 
         }} 
  
     //for cells in range 
    // gh<<"\n"<<"the debug  "<<endptcmn[0][1]<<"  
"<<endptcmx[0][1]+1<<"  "<<endptcmn[0][0]<<"  "<<endptcmx[0][0]<<"\n"; 
  
        mod= allocateTile(endptcmn[0][0],endptcmn[0][1]);  
        endptcmn[0][0]=mod[0]; 
        endptcmn[0][1]=mod[1];   
        tilesensor=tile; 
  
        mod= allocateTile(endptcmx[0][0],endptcmx[0][1]);  
        endptcmx[0][0]=mod[0]; 
        endptcmx[0][1]=mod[1];   
        tileread=tile; 
  
        
endptcmx[0][0]=((200*mapstack[tileread][0])+endptcmx[0][0]);//max x 
        
endptcmn[0][0]=((200*mapstack[tilesensor][0])+endptcmn[0][0]);//min x 
        
endptcmx[0][1]=((200*mapstack[tileread][1])+endptcmx[0][1]);//max y 
        
endptcmn[0][1]=((200*mapstack[tilesensor][1])+endptcmn[0][1]);//min y 
double mm=( endptcmx[0][1]- endptcmn[0][1])/( endptcmx[0][0]- 
endptcmn[0][0]); 
           c= endptcmx[0][1]-(mm* endptcmx[0][0]);//intercept 
  
  
if(endptcmx[0][0]- endptcmn[0][0]==0) 
  
{for (int m=endptcmn[0][1];m<endptcmx[0][1]+1;m++) 
     { 
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             mod= allocateTile(endptcmx[0][0],m); 
             double ex=(100*(endptcmx[0][0]-100));//element x 
             double ey=(100*(m-100));//element y 
                 
             double ea=atan2(ey-sonc[0][1],ex-sonc[0][0]);//element 
angle 
             
             if(rng<5000&&abs(ea-ang)<11.5*3.142/180) 
             { 
                 
                 
                 
if(!(fullmap[tile][mod[1]][mod[0]]==100))//(!(mapg2[l][m]==100)) 
                 {  
                     double prob=0.98*0.8;//((3.89-(ea-
ang))/3.89)*1*0.98; 
                     
fullmap[tile][mod[1]][mod[0]]=(prob*fullmap[tile][mod[1]][mod[0]])/((pr
ob*fullmap[tile][mod[1]][mod[0]])+((1-prob)*(1-
fullmap[tile][mod[1]][mod[0]]))); 
                     
  
                 } 
             } 
}}//if 
  
else{ 
  
     for (int m=endptcmn[0][0];m<endptcmx[0][0]+1;m++) 
     { 
             int cell=ceil((mm*m)+c); 
             mod= allocateTile(m,cell); 
             double ex=(100*(m-100));//element x 
             double ey=(100*(cell-100));//element y 
                 
             double ea=atan2(ey-sonc[0][1],ex-sonc[0][0]);//element 
angle 
             
             if(rng<5000&&abs(ea-ang)<11.5*3.142/180) 
             { 
                 
                 
                 
if(!(fullmap[tile][cell][mod[0]]==100))//(!(mapg2[l][m]==100)) 
                 {  
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                     double prob=0.98*0.8;//((3.89-(ea-
ang))/3.89)*1*0.98; 
                     
fullmap[tile][cell][mod[0]]=(prob*fullmap[tile][cell][mod[0]])/((prob*f
ullmap[tile][cell][mod[0]])+((1-prob)*(1-
fullmap[tile][cell][mod[0]]))); 
                     
  
                 } 
             } 
     }} 
  
      }} 
 } 
  
 
N.B. For including the UKF update in the map, the UKF updated pose should be used instead of 
the pose declared by the robot. 

 

Appendix G.5: Allocate tile code 
vector<double> allocateTile(double a,double b)//ord 0=x 1=y 
{// ofstream gh;gh.open("details map.txt",ios_base::app);gh<<" function 
call new  "<<"\n"<<"\n"; 
     
vector<double> newloc; 
vector<double> mapindex1; 
int outx=0;  
int outy=0; 
int found=0;//gh<<"a txl txh b tyl tyh "<<a<<" "<<txl<<" "<<txh<<" 
"<<b<<" "<<tyl<<" "<<tyh<<"\n"; 
if(a<txl||a>txh)//outside current tile xwise 
{ 
    outx=1; 
} 
  
if(b<tyl||b>tyh)//outside current tile xwise 
{ 
    outy=1; 
}//gh<<"outx out y "<<outx<<" "<<outy<<"\n"; 
  
if(outx==1&&outy==0)// not in tile xwise 
{ //gh<<"not xwise"<<"\n"; 
double desx=ceil((a-200)/200);//desired index for tile 
double desy=ceil((b-200)/200);//desired index for tile 
 found=0;//not found 
//search if index exists 
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for (int i=0;i<mapstack.size();i++) 
{ 
if(mapstack[i][0]==desx&&mapstack[i][1]==desy) 
{ 
found=1;//found 
outx=0; 
outy=0; 
tile=i; 
} 
} 
} 
  
if(outx==0&&outy==1)// not in tile ywise 
{//gh<<"not ywise"<<"\n"; 
int desiredx=ceil((a-200)/200);//desired index for tile 
int desiredy=ceil((b-200)/200);//desired index for tile 
 found=0;//not found 
//search if index exists 
for (int i=0;i<mapstack.size();i++) 
{ 
if(mapstack[i][0]==desiredx&&mapstack[i][1]==desiredy) 
{ 
found=1;//found 
outx=0; 
outy=0; 
tile=i; 
} 
} 
} 
  
if(outx==1&&outy==1)// not in tile x/y wise 
{//gh<<"not x/ywise"<<"\n"; 
int desiredx=ceil((a-200)/200);//desired index for tile 
int desiredy=ceil((b-200)/200);//desired index for tile 
 found=0;//not found 
//search if index exists 
for (int i=0;i<mapstack.size();i++) 
{ 
if(mapstack[i][0]==desiredx&&mapstack[i][1]==desiredy) 
{ 
found=1;//found 
outx=0; 
outy=0; 
tile=i; 
} 
} 
} 
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if(outx==0&&outy==0&&found==1)//if in found tile 
{//gh<<"in tile"<<"\n"; 
    txl=mapstack[tile][0]*200; 
    txh=txl+200; 
    tyl=mapstack[tile][1]*200; 
    tyh=tyl+200; 
    newloc.push_back(a-txl); 
    newloc.push_back(b-tyl); 
    return newloc; 
} 
  
  
if((outx==1||outy==1)&&found==0)//if no tile found tile 
{//gh<<"no tile found"<<"\n"; 
int desiredx=ceil((a-200)/200);//desired index for tile 
int desiredy=ceil((b-200)/200);//desired index for tile 
mapindex1.push_back(desiredx); 
mapindex1.push_back(desiredy); 
mapstack.push_back(mapindex1); 
tile=mapstack.size()-1; 
vector<vector< double > > mapn ( 201, vector<double> ( 201, 0.5 ) ); 
fullmap.push_back(mapn); 
txl=mapstack[tile][0]*200; 
txh=txl+200; 
tyl=mapstack[tile][1]*200; 
tyh=tyl+200; 
newloc.push_back(a-txl); 
newloc.push_back(b-tyl); 
return newloc; 
} 
  
  
if(outx==0&&outy==0&&found==0)//if in found tile 
{//gh<<"all zero"<<"\n"; 
    txl=mapstack[tile][0]*200; 
    txh=txl+200; 
    tyl=mapstack[tile][1]*200; 
    tyh=tyl+200; 
    newloc.push_back(a-txl); 
    newloc.push_back(b-tyl); 
    return newloc; 
} 
 } 
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Appendix H 

 Dynamic objects related code 
 

Appendix H.1:  Dyn Det function code 
vector<double>  dyn_det(vector<double> fr,double 
frp[181][1],vector<double> fr2,double frp2[181][1],double rdr,double 
rdth,double tme)//dynamic object function 
{ 
    ofstream boi;boi.open("lshtot.txt",ios_base::app); 
    boi<<"\n"<<"\n"<<"\n"<<"New call to function "; 
    boi<<"\n"<<"rdr rdth  "<<rdr<<" "<<rdth<<" size of frames 
"<<fr.size()<<" "<<fr2.size()<<" objn "<<objn; 
  vector<double> DOIi;//return dynamic objects 
if(objn==0) 
{  
//no objects detected yet 
boi<<"\n"<<"entered no objects if cond"; 
for (int i=0;i<fr.size()/2;i++) 
{     
   obji.push_back(fr[2*i]); 
   obji.push_back(fr[(2*i)+1]); 
   obji.push_back(0.5*(fr[2*i]+fr[(2*i)+1])); 
   double meanfrp=0;  int index1;int index2; 
   for (int j=fr[2*i];j<fr[(2*i)+1]+1;j++)//add one to max array 
   { 
     meanfrp=meanfrp+frp[j][0]; 
   } 
   meanfrp=meanfrp/(1+fr[(2*i)+1]-fr[2*i]);//one was added in the 
denominator 
index1=fr[2*i];index2=fr[(2*i)+1]; 
   boi<<"\n"<<" objects in fr "<<fr[2*i]<<" "<<fr[(2*i)+1]<<" 
"<<0.5*(fr[2*i]+fr[(2*i)+1])<<" "<<frp[index1][0]<<" 
"<<frp[index2][0]<<" "<<meanfrp;   
   obji.push_back(meanfrp); 
   obji.push_back(1); 
   obji.push_back(0); 
   obji.push_back(0); 
 boi<<"\n"<<" The parameters for object "<<i<<" is "<<fr[2*i]<<" 
"<<fr[(2*i)+1]<<" "<<0.5*(fr[2*i]+fr[(2*i)+1])<<" "<<meanfrp; 
   obj.push_back(obji); 
   obji.clear(); 
   objn=objn+1; 
}   
} 
  
boi<<"\n"<<" objn is "<<objn;   
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if(objn>0) 
{boi<<"\n"<<"entered if due to objects greater than 0 "; 
    //comparing frames 
  double rn;double thn; 
   vector<vector<int>> newobj;// array to hold new objects 
   vector<double> newobja;// array to hold new objects 
    vector<double> cnda;//comparison array 
 vector<vector<double>> cnd;//comparison array 
 boi<<"\n"<<"now comparing obj and fr2 sizes "<<obj.size()<<" 
"<<fr2.size(); 
   for (int i=0;i<obj.size();i++) 
   {boi<<"\n"<<"for every object in obj"; 
         int fnd=0; 
       //find possible candidates assume 50cm/s speed 
       //assume dth=500.57/R about 3 deg at 1000mm 
         
       int j=0; 
       int sz=fr2.size()/2;  
         
       while (j<sz)//was 1 now removed one 
       { 
       if(fr2[(2*(j))]!=180) 
       { 
             double meanfrp=0;   
             for (int ii=fr2[2*j];ii<fr2[(2*j)+1]+1;ii++) 
             {  
              meanfrp=meanfrp+frp2[ii][0]; 
             } 
              
              double mnr=meanfrp/(fr2[(2*j)+1]+1-fr2[2*j]); 
              
              double mnth=0.5*(fr2[2*j]+fr2[(2*j)+1]);//mean th 
location of object 
       int index1=fr2[2*j];int index2=fr2[(2*j)+1]; 
       //'checking match' 
       //here i will correct for object th change or just use x and y 
       boi<<"\n"<<"\n"<<"The objects compared are "<<"fr2 
"<<fr2[2*j]<<" "<<fr2[(2*j)+1]<<" "<<mnth<<" "<<frp2[index1][0]<<" 
"<<frp2[index2][0]<<" "<<mnr; 
       boi<<"\n"<<"The objects compared are "<<"obj "<<obj[i][0]<<" 
"<<obj[i][1]<<" "<<obj[i][2]<<" "<<obj[i][3]<<" "<<obj[i][4]; 
              int dne=0;//index to know if this i was used before 
              for (int y=0;y<cnd.size();y++) 
              { 
           if(cnd[y][0]==i) 
           { 
               dne=1; 
           } 
              } 
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             for (int y=0;y<cnd.size();y++) 
             { 
           if(cnd[y][1]==j) 
           { 
               dne=1; 
           } 
             } 
        
    //the change in theta of the feature due to robot motion 
       thn=180*atan2((obj[i][3]*sind(obj[i][2]))-
rdr,obj[i][3]*cosd(obj[i][2]))/3.142;//change in theta robott motion 
       rn=sqrt(pow((obj[i][3]*sind(obj[i][2])-
rdr),2)+pow((obj[i][3]*cosd(obj[i][2])),2));//change in range due to 
robot motion 
       boi<<"\n"<<"mnr mnth thn rn "<<mnr<<" "<<mnth<<" "<<thn<<" 
"<<rn; 
       if(abs(mnr-obj[i][3])<1.3*rdr&&abs(mnth-thn-
rdth)<10||abs(obj[i][2]-mnth)<10+abs(rdth))//abs(mnth)<10+thn-
(rdth)&&dne==0)//match found 
       { 
            boi<<"\n"<<"match found between "<<i<<" "<<j; 
           
cnda.push_back(i);cnda.push_back(j);cnda.push_back(mnr);cnda.push_back(
obj[i][3]);cnda.push_back(obj[i][2]); 
           cnda.push_back(rn);cnda.push_back(thn);cnda.push_back(rdth); 
           cnd.push_back(cnda); 
             
           obj[i][5]=mnr-rn;//-rdr;//(0.5*obj(i,6))+(0.5*(0-
obj(i,4)+mnr+(rdr*sind(obj(i,3)))));%*cosd(90-obj(i,3))));%mnr-
obj(i,4)+(rdr*cosd(90-obj(i,3)));%obj(i,6)+mnr-obj(i,4); 
           obj[i][6]=mnth-thn-rdth;//(0.5*obj(i,7))+(0.5*(mnth-
obj(i,3)+rdth));%obj(i,7)+mnth-obj(i,3); 
           //update matrix 
           obj[i][3]=mnr;obj[i][2]=mnth; 
           obj[i][0]=fr2[(2*(j))]; obj[i][1]=fr2[(2*(j))+1]; 
 boi<<"\n"<<" The object speed  r th "<<obj[i][5]<<" "<<obj[i][6]; 
           fr2[(2*(j))]=180; 
           fr2[(2*(j))+1]=180; 
           fnd=1; 
       
           j=189; 
       } 
       }//////i placed if condition here       
       sz=fr2.size()/2;   
       j=j+1; 
         
       }boi<<"\n"<<"ended while "; 
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       double vthrs=sqrt(pow(obj[i][6],2)+pow(obj[i][5],2)); 
       boi<<"\n"<<"threshold 50"<<vthrs; 
       if(fnd==0||vthrs<60)//no match found increment nill counter and 
move object 
       { boi<<"\n"<<"no match found for "<<i; 
           obj[i][4]=obj[i][4]+1; 
           obj[i][3]=obj[i][5]+rn+rdr; 
           obj[i][2]=obj[i][6]+thn+rdth; 
             
       } 
   } 
     
   //eliminate old objects 
   boi<<"\n"<<"eliminating old objects ";  
   int i=0;  
   while(i< obj.size()) 
   { boi<<"\n"<<"i index"<<i; 
   if(obj[i][4]>3) 
   { 
        boi<<"\n"<<"erased i = "<<i; 
        obj.erase(obj.begin()+i); 
       i=i-1; 
   } 
   i=i+1; 
   }  
   objn=obj.size();  
    boi<<"\n"<<"size of objn "<<objn;  
  //noww find new objects 
    boi<<"\n"<<"find new objects "; 
   for (int ji=0;ji<(fr2.size()/2);ji++)  
   { 
    if(fr2[2*ji]!=180) 
   {  
   newobja.push_back(fr2[(2*(ji))]); 
   newobja.push_back(fr2[(2*(ji))+1]); 
   newobja.push_back(0.5*(fr2[2*ji]+fr2[(2*ji)+1]));//was i 
   double meanfrp2=0;  boi<<"\n"<<"new object found "<<fr2[(2*(ji))]<<" 
"<<fr2[(2*(ji))+1]<<" "<<0.5*(fr2[2*ji]+fr2[(2*ji)+1]); 
   for (int jj=fr2[2*ji];jj<fr2[(2*ji)+1]+1;jj++)//add one to max array 
   { 
     meanfrp2=meanfrp2+frp2[jj][0]; 
   } 
  
   meanfrp2=meanfrp2/(1+fr2[(2*ji)+1]-fr2[2*ji]);boi<<" "<<meanfrp2; 
   newobja.push_back(meanfrp2); 
   newobja.push_back(1); 
   newobja.push_back(0); 
   newobja.push_back(0); 
  // newobj.push_back(newobja); 
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   obj.push_back(newobja);newobja.clear(); 
   objn=objn+1;//was 0.5 
   boi<<"\n"<<" due to new objn is "<<objn; 
    } 
   } 
   boi<<"\n"<<" objn is "<<objn; 
   //boi<<"\n"<<"sort in order "; 
   boi<<"\n"<<"The old and new are "<<" "<<obj.size()<<" 
"<<newobj.size(); 
   //now sort in order 
   vector<vector<double>> interobj;//intermediate obj vector 
   for (int i=0;i<newobj.size();i++) 
   { 
      double srt=newobj[i][0]; 
      int j=0;//was 1 now changed to zero 
      int   sz=obj.size(); 
      while (j<obj.size()) 
      { 
        if(obj[j][0]>srt) 
        { 
         
          for(int h=0;h<j;h++)//push back all of objects except j 
           
          { 
          interobj.push_back(obj[h]); 
          } 
  
  
          vector<double> fill;//vector used to fill new object 
          for(int u=0;u<newobj[0].size();u++)//add new object 
          { 
              fill.push_back(newobj[i][u]); 
          } 
          interobj.push_back(fill); 
  
  
       //   interobj.push_back(newobj[i]); 
           
          for(int h=j;h<sz;h++)//fill rest of obj 
           
          { 
          interobj.push_back(obj[h]); 
          } 
          obj.swap(interobj);    
          j=180; 
       }////////////////if obj greater than start 
        else if(srt>maxvec(obj)) 
        { 
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            vector<double> fill;//vector used to fill new object 
            for(int u=0;u<newobj[0].size();u++) 
            { 
                fill.push_back(newobj[i][u]); 
            } 
            obj.push_back(fill); 
            j=180; 
        } 
        j=j+1; 
      } ////////////////////////////////////////while loop 
  }//////////////////////////////for loop 
} 
  
//boi<<"\n"<<"Final draft "; 
 for (int i=0;i<obj.size();i++) 
 {boi<<"\n"<<obj[i][0]<<" "<<obj[i][1]; 
 DOIi.push_back(obj[i][0]); DOIi.push_back(obj[i][1]); 
 boi<<"\n"<<" size "<<obj.size()<<" "<<obj[0].size()<<" "<<DOIi.size(); 
 } 
 return DOIi; 
} 
  
 
 

Appendix H.2: Dyn Extract function code 
void DynExtrct(double dx, double dy, double dth, double tme) 
{ 
int i=0;//index for while loop 
int ky=0;//key 
  
  
    ofstream minfilt;minfilt.open("filter data.txt",ios_base::app); 
    minfilt<<"\n"<<" entered new call"; 
while (i<180) 
{ 
    double rf; 
    int str; 
    if(laser_range[i][0]<=3200&&ky==0)//if reading is greater 3000 
     {  ky=1; 
        rf=laser_range[i][0];//reference point  
        str=i;//start of leg proposed 
        i=i+1;//increment 
     } 
    else if(laser_range[i][0]>3200&&ky==0)//if reading not less than 
3000 
    { 
        i=i+1; 
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    } 
  
    if(ky==1)//if ref point found 
    { 
        ky=0; 
        double x1=rf*cosd(str); 
        double y1=rf*sind(str); 
        double x2=laser_range[i][0]*cosd(i); 
        double y2=laser_range[i][0]*sind(i); 
        double dstr=sqrt(pow(x1-x2,2)+pow(y1-y2,2));//length of segment 
  
        double rng1=rf;//range equal to refernce 
        double rng2=laser_range[i][0];//next point range 
        double bmp=abs(rng1-rng2);//bump in range 
         
        int loopent=0;//index to confirm while loop is entered 
        while(dstr<300&&i<180&&bmp<120)//to stop after 300 mm max 
expected length 
        { 
           i=i+1; 
           x2=laser_range[i][0]*cosd(i); 
           y2=laser_range[i][0]*sind(i); 
           dstr=sqrt(pow(x1-x2,2)+pow(y1-y2,2));//length of segment 
            
           rng1=laser_range[i-1][0]; 
           rng2=laser_range[i][0]; 
           bmp=abs(rng1-rng2); 
           loopent=1; 
           } 
          
        if (i-str<2) 
        { 
             i=i+1; 
             arr2.push_back(str);arr2.push_back(i-1); 
        } 
            
              
        else if(i-str>=find_interv(laser_range[str][0]))  //if dynamic 
leg found 
    { 
       if(str>2&&i<178) 
       {minfilt<<"\n"<<" entered as str and i are "<<str<<" "<<i<<" "; 
          double ff[181][1]={0}; 
    for (int l=str-2;l<i+3;l++) 
    {minfilt<<"\n"<<"for loop at l="<<l; 
       double minn=laser_range[l][0]; 
       int mindx=l; 
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     minfilt<<"\n"<<"minn llaser[l] laser[l-1] laser[l+1] "<<minn<<" 
"<<laser_range[l-1][0]<<" "<<laser_range[l+1][0]; 
       if(laser_range[l-1][0]+100<minn) 
       {minfilt<<"\n"<<"mindx and minn "<<mindx<<" "<<minn; 
           minn=laser_range[l-1][0]; 
           mindx=l-1; 
       } 
      
        
       if(laser_range[l+1][0]+100<minn) 
       {minfilt<<"\n"<<"mindx and minn "<<mindx<<" "<<minn; 
           minn=laser_range[l+1][0]; 
           mindx=l+1; 
       } 
  
       ff[mindx][0]=ff[mindx][0]+1;  
    } 
      
     
    if(ff[str][0]>1||ff[i-1][0]>1) 
    {minfilt<<"\n"<<"pushing back "<<str<<" "<<i-1; 
        arr.push_back(str);arr.push_back(i-1); 
    } 
     
     
       
       } 
        } 
  
    }}//here is supposed brackets!!!!!! 
  
//%now we use dyn function' 
  
ind.clear(); 
for (int iu=0;iu<arr.size()/2;iu++) 
{ 
    
   if(arr[2*iu]!=arr[(2*iu)+1])//was arr[2*iu]!=arr[2*iu]+1 
    { 
      ind.push_back(arr[2*iu]);ind.push_back(arr[(2*iu)+1]);//same here  
    } 
} 
if(dyn==1) 
      
   {   
   fr2.clear(); 
   for(int i=0;i<ind.size();i++) 
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   { 
   fr2.push_back(ind[i]); 
   } 
    
   for(int i=0;i<181;i++) 
    
   { 
   frp2[i][0]=laser_range[i][0]; 
   } 
   vector<double> rest;DOI.swap(rest); 
   ofstream cor;cor.open("cors.txt",ios_base::app); 
         for (int f=0;f<181;f++) 
         { 
          cor<<frp[f][0]<<" "; 
         } 
         cor<<"\n"; 
         for (int f=0;f<181;f++) 
         { 
          cor<<frp2[f][0]<<" "; 
         }cor<<"\n"<<laser_pose[0][0]; 
          cor<<"\n"<<"\n"; 
  
   DOI=dyn_det(fr,frp,fr2,frp2,sqrt(pow(dx,2)+pow(dy,2)),dth,tme); 
   
    
   fr.clear(); 
    for(int i=0;i<ind.size();i++) 
    
   { 
   fr.push_back(fr2[i]); 
   } 
    
   for(int i=0;i<181;i++) 
    
   { 
   frp[i][0]=frp2[i][0]; 
   } 
  
  
  } 
  
if(dyn==0) 
 { 
   for(int i=0;i<ind.size();i++) 
    
   { 



255 
 

   fr.push_back(ind[i]); 
   } 
    
   for(int i=0;i<181;i++) 
    
   { 
   frp[i][0]=laser_range[i][0]; 
   } 
      
    dyn=1; 
 }     
   
 } 
 

Appendix H.3: Find_interv function 
int find_interv(double rng)//find interval expected for dynamic object 
{ 
int interv; 
if(rng>=2200)//????? 
{ 
    interv=3; 
} 
  
  
if(rng>=1500&&rng<2200) 
{ 
    interv=4; 
} 
  
  
if(rng>=1200&&rng<1500) 
{ 
    interv=6; 
} 
  
  
if(rng>=1000&&rng<1200) 
{ 
    interv=8; 
} 
  
if(rng<1000) 
{ 
    interv=10; 
} 
return interv; 
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} 
 

Appendix H.4: maxvec function code 
double maxvec(vector<vector<double>> obj)//find max of obj function for 
dynamic 
{ 
double val=obj[0][0]; 
double val2=val; 
for (int i=1;i<obj.size();i++) 
{ 
  val2=obj[i][0]; 
  
if(val2>val){val=val2;} 
} 
return val2; 
} 
 

Appendix H.5: Code to acquire dynamic objects for matlab display 
int o=1; 
  
  
  
//robot.setVel(200); 
double tt=(clock()-lastime)/(double) 
CLOCKS_PER_SEC;//cout<<"\n"<<"\n"<<tt<<"\r"<<"\n"<<"\n"<<"\n"<<"\n"<<"\
n"<<"\n"<<"\n";//lastime=clock(); 
if(tt>0.1){lastime=clock();simdyn++; 
getLaser1(laser);ofstream dynp;dynp.open("dynp.txt");ofstream 
dynk;dynk.open("dynke.txt"); 
//for(int e=0;e<181;e++) 
//{laserMotion[e][0]=(0.5*laserMotion[e][0])+ 
laserFrame[e][0]=laser_range[e][0]*cosd(laser_range[e][1]); 
//laserFrame[e][1]=laser_range[e][1]*sind(laser_range[e][1]); 
{ 
ofstream dyn;dyn.open("dyna.txt",ios_base::app);for(int e=0;e<181;e++){ 
dyn<<laser_range[e][0]<<"  ";dynp<<laser_range[e][0]<<"  
";}dyn<<";"<<"\n";dyn.close();dynp.close();dynk<<o;dynk.close();//} 
ofstream dyn1;dyn1.open("dyna1.txt",ios_base::app);{dyn1<<tt<<"  
"<<laser_pose[0][0]<<"  "<<laser_pose[1][0]<<"  "<<laser_pose[2][0]<<"  
";}dyn1<<";"<<"\n";dyn1.close();}} 
//break; 
  
if(my.getButton(8)&&gotit==1){gotit=0;cout<<"8";pos2=robot.getPose();sa
mp<<"\n"<<"distance "<<robot.getOdometerDistance()<<" rot pose 
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"<<pos2.getTh()<<" ";for(int e=0;e<181;e++){samp<<laser_range[e][0]<<"  
";}samp<<";"<<"\n";} 
if(my.getButton(9)&&gotit==0){gotit=1;cout<<"9";} 
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Appendix I 

 Image processing codes 

Appendix I.1: MATLAB codes for preparing neural network 

Part 1: Data preparation  
 
arrn=[]; 
 
for i=1:823%for negative flows 
if(negone(i,3)-negone(i,1)<0)%if floww vector negative  
       af=abs(atand((negone(i,4)-negone(i,2))/(negone(i,3)-
negone(i,1))));%angle of flow vector 
 
if(af<30)%if vector is not due to noise 
arrn=[arrn;negone(i,:)];%add to array of negative values 
end 
end 
 
if(negtwo(i,3)-negtwo(i,1)<0)%repeat with data for two degree rotation 
       af=abs(atand((negtwo(i,4)-negtwo(i,2))/(negtwo(i,3)-
negtwo(i,1)))); 
 
if(af<30) 
arrn=[arrn;negtwo(i,:)]; 
end 
end 
 
if(negthree(i,3)-negthree(i,1)<0) %repeat with data for three degree 
rotation 
    af=abs(atand((negthree(i,4)-negthree(i,2))/(negthree(i,3)-
negthree(i,1)))); 
if(af<30) 
arrn=[arrn;negthree(i,:)]; 
end 
 
end 
 
end 
 
 
arrp=[];  
for i=1:823%for positives 
if(posone(i,3)-posone(i,1)>0) 
       af=abs(atand((posone(i,4)-posone(i,2))/(posone(i,3)-
posone(i,1)))); 
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if(af<30) 
arrp=[arrp;posone(i,:)]; 
end 
end 
 
if(postwo(i,3)-postwo(i,1)>0) 
       af=abs(atand((postwo(i,4)-postwo(i,2))/(postwo(i,3)-
postwo(i,1)))); 
 
if(af<30) 
arrp=[arrp;postwo(i,:)]; 
end 
end 
 
if(posthree(i,3)-posthree(i,1)>0)  
    af=abs(atand((posthree(i,4)-posthree(i,2))/(posthree(i,3)-
posthree(i,1)))); 
if(af<30) 
arrp=[arrp;posthree(i,:)]; 
end 
 
end 
 
end 
 

Part2: Training the network 
cmb=[arrn; arrp ;zero];%combine arrays for negative positive and zero 
optical flows 
cmb(:,[1 3])=cmb(:,[1 3])-320; 
cmb(:,[2 4])=cmb(:,[2 4])-240; 
indice=randperm(length(cmb));%select random vectors for training and 
different ones for validation 
indice=indice(1:4500); 
p=cmb(indice,1:2)'/100; 
p=[p ;cmb(indice,5)'];%creat vector of inputs 
flow=[cmb(indice,3)-cmb(indice,1)]';%xoptical flow 
flow2=[cmb(indice,4)-cmb(indice,2)]';%y optical flow 
 
indice=randperm(length(cmb)); 
indice=indice(1:1500); 
pv=cmb(indice,1:2)'/100;%validation vecotr 
pv=[pv ;cmb(indice,5)']; 
flowv=[cmb(indice,3)-cmb(indice,1)]'; 
flowv2=[cmb(indice,4)-cmb(indice,2)]';%y 
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The network was then trained using the commands: 

net=newff(p,[flow;flow2],5,{'tansig'}); %creaate nonlinear feedforward 
network with 5 neurons with tan sigmoid  
net.inputs{1}.processFcns={}; %do not scale inputs 
net.outputs{2}.processFcns={};%do not scale outputs 
net.trainparam.min_grad=1e-0010; %set minimum gradient for training alg 
net.trainparam.max_fail=100; %max times to repeat before failure 
train(net,p,[flow;flow2]); %train 
 

Part 3: Simulating the network 
fd=sim(net,pv); 
errr=(fd(1,:)-flowv); 
sum(abs(errr))/size(errr,2) 
figure(1) 
plot(1:size(errr,2),errr,'.r') 
xlabel('index of validation data') 
ylabel('error in x component of optical flow in pixels') 
Title('Error plot X component') 
errr=(fd(1,:)-flowv2); 
sum(abs(errr))/size(errr,2) 
figure(3) 
plot(1:size(errr,2),errr,'.r') 
xlabel('index of validation data') 
ylabel('error in y component of optical flow in pixels') 
title('Error plot Y component') 
 

Appendix I.2: Optical flow code 
ArJoyHandler my;//inistantiate joystick 
     my.init();//initialise joystick 
ArDPPTU ptu(&robot); 
ptu.init(); 
int x; 
int y; 
x=ptu.getMaxPosPan(); 
y=ptu.getMaxPosTilt(); 
if(ptu.getMaxPosPan()>ptu.getMaxNegPan()){x=ptu.getMaxNegPan();} 
if(ptu.getMaxPosTilt()>ptu.getMaxNegTilt()){x=ptu.getMaxNegTilt();} 
my.setSpeeds(-0.1*x,-0.1*y); 
     
  //ArUtil::sleep(3000); 
  //ptu.setDeviceConnection(con); 
 
   
  //start camera 
  Camera cam;//inistantiate camera object 
  PGRGuid *pguid=NULL;//instantiate connection guide setting to null will 
make it look for anywhere the camera is connected. 
     Error error;// instantiate error to output error message (optional) 
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 // Connect to a camera 
    error = cam.Connect(pguid);// connect and return error if connection fails 
    if (error != PGRERROR_OK)//if failed return -1 exit 
    {      
       // return -1; 
    }  
 
 ArUtil::sleep(2000);//sleep to wait for camera to connect 
  
 int frstfr=0;//key to indicate if first image frame was acquired 
  
 ofstream imd;imd.open("dats.txt",ios_base::app); 
 
 int acc; 
 while(1){/*while loop is created to ensure infnite operation of this code*/ 
  //this section is for displaying contours remove to take pictures 
also displaying optical flow has been disabled 
  Mat fr1;  
  Mat neural;//neural 
  Mat diff;//neural difference 
  Mat mono_fr1;//mat to hold mono 
  Rect myROI; 
   
  if(frstfr==0)//if no frame taken then take it! 
  { 
   double snrng=laser->currentReadingPolar(-15,15);//get front 
laser readings 
   cout<<"\n"<<snrng; 
      acc=0; 
   if(snrng>1400) 
   { 
    acc=1; 
   } 
    
    
   Image rawImage;//instantiate image  
   double startTime=clock(); 
    
   error = cam.StartCapture();//capture image and return error if 
any. 
   // Retrieve an image 
   error = cam.RetrieveBuffer( &rawImage );//save  image and 
return error if any 
   // Create a converted image 
   Image convertedImage;//instantiate class for converted image 
 
 
   error = rawImage.Convert( PIXEL_FORMAT_RGB, &convertedImage 
);//convert to RGB 
   JPEGOption uu;//get instant of JPEGoption 
   convertedImage.Save("fr1.jpeg",&uu);//save as frame 1 
  
   unsigned int rowBytes 
=(double)convertedImage.GetReceivedDataSize()/(double)convertedImage.GetRows(); 
            fr1 = Mat(convertedImage.GetRows(), convertedImage.GetCols(), CV_8UC3, 
convertedImage.GetData(),rowBytes);//frame one as RGB MAt. 
            neural =fr1.clone(); 
   diff=fr1.clone(); 
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   if(acc==1) 
   { 
    double ang=atan(280/snrng)*21.223*180/3.142; 
    myROI=Rect(0,240,640,(int)ang-2); 
    Mat sonimg=fr1(myROI); 
  //  fr1=sonimg.clone(); 
   } 
   else if(acc==0) 
   { 
    myROI=Rect(0,240,640,240); 
    Mat sonimg=fr1(myROI); 
  //  fr1=sonimg.clone(); 
   } 
   cvtColor(fr1, mono_fr1, CV_BGR2GRAY);//convert to gray 
   cout <<"\n"<<"time to capture and convert image "<< double( 
clock() - startTime ) / (double)CLOCKS_PER_SEC<< " seconds." << endl; 
   frstfr=1; 
   imshow("my image 1",fr1); 
   imshow("my image 1m",mono_fr1); 
   waitKey(0); //wait infinite time for a keypress 
   robot.move(100); 
   //robot.setDeltaHeading(-2.5); 
   ArUtil::sleep(1000); 
  } 
 
 
 
  if(frstfr==1)//if  frame taken  
  { 
   frstfr=0; 
   Image rawImage;//instantiate image  
   double startTime=clock(); 
    
   error = cam.StartCapture();//capture image and return error if 
any. 
   // Retrieve an image 
   error = cam.RetrieveBuffer( &rawImage );//save  image and 
return error if any 
   // Create a converted image 
   Image convertedImage;//instantiate class for converted image 
 
   error = rawImage.Convert( PIXEL_FORMAT_RGB, &convertedImage 
);//convert to RGB 
   JPEGOption uu;//get instant of JPEGoption 
   convertedImage.Save("fr2.jpeg",&uu);//save as frame 1 
   unsigned int rowBytes 
=(double)convertedImage.GetReceivedDataSize()/(double)convertedImage.GetRows(); 
            Mat fr2 = Mat(convertedImage.GetRows(), convertedImage.GetCols(), 
CV_8UC3, convertedImage.GetData(),rowBytes);//frame one as RGB MAt. 
   if(acc==1) 
   { 
    Mat sonimg=fr2(myROI); 
 //   fr2=sonimg.clone(); 
   } 
   else if(acc==0) 
   { 
    myROI=Rect(0,240,640,240); 
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    Mat sonimg=fr2(myROI); 
  //  fr2=sonimg.clone(); 
   } 
   Mat mono_fr2;//mat to hold mono 
   cvtColor(fr2, mono_fr2, CV_BGR2GRAY);//convert to gray 
    
    
    
   cout <<"\n"<<"time to capture and resort "<< double( clock() - 
startTime ) / (double)CLOCKS_PER_SEC<< " seconds." << endl; 
   startTime=clock(); 
   //do optical flow 
   vector<Point2f> corn;//corner points for optical flow first 
frame 
   vector<Point2f> corn2;//corner points or optical flow second 
frame 
   Mat stat; 
   Mat erre; 
 
   goodFeaturesToTrack(mono_fr1,corn,300,0.01,10);//get features 
from image 
   calcOpticalFlowPyrLK(mono_fr1,mono_fr2,corn,corn2,stat,erre); 
   cout <<"\n"<<"time to optical flow "<< double( clock() - 
startTime ) / (double)CLOCKS_PER_SEC<< " seconds." << endl; 
 
   double robv=0; 
   double pxls=0;double noisey=0;//noise in optical flowy 
   double numneg=0;double numpos=0;double numnegy=0;double 
numposy=0; 
   double y2=0;//py^2 
   
    
   double py=0; 
   double four=0; 
   //paper method variables 
   double vi2=0;//vi^2 
   double ubi=0;//ui.bi 
   double vbi=0;//vi.bi 
   double uvi=0;//ui.vi 
   double ui2=0;//ui^2 
 
   imd<<"\n"<<"New motion  flow"<<"\n"; 
   //neural 
   vector<Point2f> flow=netrot(corn,-0); 
   vector<double> avg(20,0.0); 
   vector<double> avg1(32,0.0); 
   for(int i=0;i<corn.size();i++) 
   { 
    int fc=(int)stat.at<uchar>(i); 
    if(fc==1) 
    { 
    
     imd<<corn[i].x<<"  "<<corn[i].y<<" 
"<<corn2[i].x<<" "<<corn2[i].y<<";"<<"\n"; 
     double fc2=(corn2[i].x-
corn[i].x);//sqrt(pow(corn[i].x-corn2[i].x,2.00)+pow(corn[i].y-
corn2[i].y,2.00));// 
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 //if(fc2<0){numneg=numneg+1;cout<<"\n"<<"neggg";}else 
if(fc2>0){numpos=numpos+1;cout<<"\n"<<"pos";} 
     double fc3=(corn2[i].y-corn[i].y)*0.047118; 
      if(fc3<0){numnegy=numnegy+1;}else 
if(fc3>0){numposy=numposy+1;} 
     noisey=noisey+pow(fc3/0.047118,2); 
     //matlab vote method 
     double htc=corn[i].y; 
     double htc1=corn[i].x; 
     int avgin=ceil(htc/24); 
     int avgin1=ceil(htc1/20); 
     avg[avgin-1]=avg[avgin-1]+(fc3/0.047118); 
     avg1[avgin1-1]=avg1[avgin1-1]+(fc2); 
 
 
     //paper method varialbes 
     vi2=vi2+pow(fc3/0.047118,2); 
     ui2=ui2+pow(fc2,2); 
     double bi=(corn[i].x*fc3/0.047118)-
(corn[i].y*fc2); 
     ubi=ubi+(fc2*bi);   
     vbi=vbi+(fc3*bi/0.047118); 
     uvi=uvi+(fc3*fc2/0.047118); 
      
 
     //now workout vehicle forward motion using v=d X 
opf X sin(a); 
     double pxlang=(corn[i].y)*0.047118;//pixel angle 
in camera 
     double xang=(320-corn[i].x)/21.33;//angle in 
laser corresponding to pixel location 
     double pxlrn=laser->currentReadingPolar(xang-
0.5,xang+0.5);//range of feature ppixel is refering to 
      
    
 //robv=robv+(pxlrn*fc3/sin(3.142*pxlang/180));//supposedly the robot 
velocity 
 
     //new method 
     double k1=sin(3.142*pxlang/180)-
(cos(3.142*pxlang/180)*pxlang); 
     double k2=cos(3.142*pxlang/180); 
 
     robv=robv+(pxlrn*fc3/(k1+(k2*fc3))); 
     cout<<"\n"<<pxlang<<" "<<xang<<"  "<<pxlrn<<"  
"<<fc3<<" "<<k1<<" "<<k2<<" "<<(pxlrn*fc3/(k1+(k2*fc3)))<<"\n"; 
                    pxls=pxls+1; 
    
 //circle(img2,corn2[i],0.06*fc2,Scalar(255,200,0),1,3,0); 
    
 //circle(fr2,corn2[i],1*abs(fc2)/1.0047118,Scalar(255,200,0),1,3,0); 
     circle(fr2,corn[i],3,Scalar(200,200,100),2,3,0); 
     line(fr2, Point(corn[i].x, corn[i].y), 
Point(corn2[i].x,corn2[i].y),Scalar(0,00,0),1,8,0); 
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 circle(neural,corn[i],3,Scalar(200,200,100),2,3,0); 
     line(neural, Point(corn[i].x, corn[i].y), 
Point(corn[i].x+flow[i].x,corn[i].y+flow[i].y),Scalar(0,00,0),1,8,0); 
  circle(diff,corn[i],3,Scalar(200,200,100),2,3,0); 
     line(diff, Point(corn[i].x, corn[i].y), 
Point(corn[i].x+corn[i].x+flow[i].x-corn2[i].x,corn[i].y+corn[i].y+flow[i].y-
corn2[i].y),Scalar(0,00,0),1,8,0); 
   
     //my method 31/1 
    
 py=py+(fc3/0.047118);y2=y2+pow(fc3/0.047118,2);four=four+4; 
     
    } 
   } 
 
  //matlab method y 
   int sgnchng=0; 
   int crntsgn=1; 
   int t=0;int tc=0; 
   while (t<20-2) 
   { 
    int sgn[3][1]; 
        sgn[0][0]=avg[t]/abs(avg[t]);//sign of first 
element 
        sgn[1][0]=avg[t+1]/abs(avg[t+1]);//sign of 2nd 
element 
        sgn[2][0]=avg[t+2]/abs(avg[t+2]);//sign of 3rd 
element 
     int modsgn=0; 
    for(int y=0;y<3;y++) 
    { 
     if(sgn[y][0]<0) 
     { 
      modsgn=modsgn+1; 
     } 
    } 
 
    if(modsgn>1) 
    { 
     crntsgn=-1; 
    } 
    else 
    { 
     crntsgn=1; 
    } 
 
    if(sgnchng==0) 
    { 
     sgnchng=crntsgn; 
    } 
    else 
    { 
     if(sgnchng/crntsgn<0) 
     { 
      tc=t; 
      t=100; 
     } 
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     t=t+1; 
   } 
   } 
 
   //x matlab method 
   sgnchng=0; 
   crntsgn=0; 
   t=0;int tcy=0; 
   while (t<32-4) 
   { 
    int sgn[5][1]; 
        sgn[0][0]=avg1[t]/abs(avg1[t]);//sign of first 
element 
        sgn[1][0]=avg1[t+1]/abs(avg1[t+1]);//sign of 2nd 
element 
        sgn[2][0]=avg1[t+2]/abs(avg1[t+2]);//sign of 3rd 
element 
     sgn[3][0]=avg1[t+3]/abs(avg1[t+3]);//sign of 3rd 
element 
     sgn[4][0]=avg1[t+4]/abs(avg1[t+4]);//sign of 3rd 
element 
     int modsgn=0; 
    for(int y=0;y<5;y++) 
    { 
     if(sgn[y][0]<0) 
     { 
      modsgn=modsgn+1; 
     } 
    } 
 
    if(modsgn>3) 
    { 
     crntsgn=-1; 
    } 
    else 
    { 
     crntsgn=1; 
    } 
 
    if(sgnchng==0) 
    { 
     sgnchng=crntsgn; 
    } 
    else 
    { 
     if(sgnchng/crntsgn<0) 
     { 
      tcy=t; 
      t=100; 
     } 
     t=t+1; 
   } 
   } 
 
    
   //paper method 
   double det=(ui2*vi2)-(pow(uvi,2)); 
   double xfoe=((vi2*ubi)-(uvi*vbi))/det; 
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   double yfoe=((ui2*ubi)-(uvi*ubi))/det; 
   yfoe=480-(tc*24);xfoe=20*tcy; 
   circle(fr2,Point(xfoe,yfoe),3,Scalar(200,50,50),2,3,0); 
   double ae=four+(2*py)+y2;double be=-1*(y2+(2*py)); 
   double res1=(-1*be+sqrt(pow(be,2)-(4*ae*y2)))/(2*ae); 
   double res2=(-1*be-sqrt(pow(be,2)-(4*ae*y2)))/(2*ae); 
   double k11=sqrt(res1);double k12=-1*sqrt(res1); 
   double k21=sqrt(res2);double k22=-1*sqrt(res2); 
   double foey1=pow(k11,2)*(py-(four*0.5)); 
   double foey2=pow(k12,2)*(py-(four*0.5)); 
   double foey3=pow(k21,2)*(py-(four*0.5)); 
   double foey4=pow(k22,2)*(py-(four*0.5)); 
   //cout<<"\n"<<" FOEY "<<foey1<<"  "<<foey2<<"  "<<foey3<<"  
"<<foey4<<"\n"; 
   cout<<"\n"<<" FOEY "<<xfoe<<"  "<<yfoe<<"\n"; 
 
   cout<<"vel "<<(double)robv/pxls<<"\n"; 
   cout<<"the average of noise "<<sqrt(noisey/corn.size())<<"  
percentage right "<<(double)(numpos/(numneg+numpos))*100<<"  percentage left 
"<<(double)(numneg/(numneg+numpos))*100; 
cout<<"/n"<<"  percentage right "<<(double)(numposy/(numnegy+numposy))*100<<"  
percentage left "<<(double)(numnegy/(numnegy+numposy))*100; 
 
   //copy latest frame to previous 
   /*fr1=fr2.clone(); 
   mono_fr1=mono_fr2.clone(); 
   double snrng=laser->currentReadingPolar(-15,15);//get front 
laser readings 
   acc=0; 
   if(snrng>1400) 
   { 
    acc=1; 
   } 
   if(acc==1) 
   { 
    double ang=atan(280/snrng)*21.223*180/3.142; 
    myROI=Rect(0,240,640,(int)ang-2);  
   }*/ 
    
 
 
   imshow("my image 2",fr2); 
   imshow("my image 2m",mono_fr2); 
   imshow("neural expectation",neural); 
   imshow("difference between two",diff); 
   waitKey(); //wait infinite time for a keypress 
  // break; 
 
   destroyAllWindows(); 
  } 
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