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ABSTRACT 
 

The availability of fresh water is directly associated with accessible natural resources. 

However, 2.5 billion of the world's population (around 40%) does not have access to proper 

sanitation systems, with 6 to 8 million annual deaths related to inadequate water supply, 

sanitation and hygiene in 2013. Currently, sea water desalination offers a feasible strategy 

to face global water challenge. Different water desalination techniques were developed and 

membrane desalination is currently the highest cost effective technique. Reverse osmosis 

(RO) system is by far considered the least expensive membrane process. Typically, RO 

system uses the thin film composite (TFC) membranes. A typical TFC membrane consists of 

two layers: a top dense polyamide (PA) skin layer (responsible for salt rejection) applied on 

an underlying support layer (responsible for mechanical support of the thin PA layer). 

Recently, a new category of membranes has emerged known as thin film nanocomposite 

membranes (TFNC) where nanoparticles (NPs) are incorporated into the support layer to 

enhance its properties. 

The support layer surface pore diameters are quite crucial in supporting and preserving the 

integrity of the PA layer. Thus, the ideal support layer shall comprise a non-porous to slightly 

porous top surface. However, a support layer with non-porous surface would resist the 

water flow.  Consequently, the main target of the work represented was to fabricate a 

highly porous membrane that could still support a PA layer on top of it. Membranes with 

symmetric cross section have high permeability due to the highly interconnected porous 

structure. Yet, the surface of the symmetric membranes is also highly porous; and hence, 

serving as a TFNC support is challenging. 

Thus, this study focuses on tailoring symmetric TFNC support membranes to effectively 

support the PA layer. Firstly, we investigated the influence of different fabrication 

parameters on the support membrane properties. This entailed the understanding of the 

thermodynamic behavior of the cast solution during fabrication till the final precipitation of 

the support membrane. TFNC support membranes were prepared using cast solution of 

Polyethersulfone (PES) polymer in N-methyl-2-pyrrolidone (NMP) as a solvent. Afterwards, 

the effect of non-solvent addition was investigated using Triethylene Glycol (TEG). 

Furthermore, Pluronic® (Plu) and Titanium dioxide (TiO2) NPs were incorporated in two 

different sets of experiments to compare the enhancement of support membrane 

hydrophilicity and mechanical stability. 

Support membranes were fabricated using two consecutive phase separation processes, 

namely: Vapor-Induced Phase Separation (VIPS) followed by Liquid-Induced Phase 

Separation (LIPS). Various conditions were tested during the VIPS process, including relative 

humidity degree (RH) at exposure, exposure time and the effect of air convection during the 

exposure period. The cast solutions were prepared under 30% and 80% RH for exposure 

time ranging from 1 to 5 minutes. Forced convection condition was applied to the cast 
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solutions whereas compressed dry air was introduced to the cast solution during the 

exposure period. On the other hand, free convection condition was defined in terms of the 

absence of compressed dry air introduction during VIPS process. 

Solution composition was systematically changed to further understand its influence on the 

thermodynamic behavior under VIPS process. This entailed studying the change in PES 

content ranging from 10 to 15 wt%, as well as the TEG (0 to 60 wt%), Plu (0 to 5 wt%) and 

TiO2 (0 to 1 wt%). This variability in cast solution composition clarified the influences of the 

solution viscosity and hygroscopicity on the thermodynamic behavior of the cast solution, 

which in turns, reflected on the support membrane final morphology. Afterwards, support 

membranes were characterized for their cross-sectional morphology using scanning 

electron microscopy, pore size distribution using the capillary flow porometer, hydrophilicity 

using contact angle method, surface charge using surface charge analyzer and chemical 

composition using Fourier transform infrared spectroscopy and proton nuclear magnetic 

resonance. Also, membranes hydraulic permeability and wettability were tested. 

Membranes fabricated under different conditions showed various structures including 

asymmetric and symmetric cross section morphologies. The effect of air convection was 

significantly important and in some cases even switched the cross section structure from 

asymmetric to completely symmetric. Interestingly, at low RH value (30%) and under free 

convection condition, membranes with semi-symmetric structure were successfully 

produced. This novel structure holds the privileges of both symmetric and asymmetric 

membranes. It showed high water permeability and mechanical stability due to the highly 

interconnected pores structure, as well as, having a very thin skin surface to support the PA 

layer on top of it. Furthermore, the semi-symmetric membrane showed higher compaction 

resistance (91.3%) and recovery (94%) as compared to the asymmetric membrane. As a 

consequence, the semi-symmetric morphology was considered as the structure of our 

interest as a TFNC support membrane. 

Support membrane hydrophilicity, water permeability, mechanical stability and morphology 

are known to have high contribution to the overall TFNC membrane performance. Thus, the 

developed semi-symmetric structure was then reproduced using cast solutions containing 

the hydrophilic additives Plu and TiO2. Results showed that the addition of TiO2 had 

increased both the membrane hydrophilicity and compaction resistance. However, semi-

symmetric supports were only achievable with 0.05 and 0.1 wt% TiO2 concentrations.  

As a concluding step, polyamide (PA) top skin layer was fabricated on semi-symmetric 

support membranes of different compositions. The final TFNC showed the higher 

permeability values when semi-symmetric supports were compared to asymmetric support 

of same composition. Furthermore, the highest TFC permeability was for support 

membrane containing 1 wt% Plu and that containing 0.1 wt% TiO2.  
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Chapter 1 : Introduction 

1.1. Water global challenge 

Water has always been described as the main source of life and the core of sustainable 

development. As water resources directly contribute to food and energy production, they 

influence economic growth, human health and environmental sustainability. Although 

three-fourths of our planet's surface is water covered, 97% of which is in the oceans, 2% is 

unreachable fresh water and less than 1% is available for human usage [1]. Among which, 

only 0.3% represent accessible water with sufficient quality for direct human use. 

Referring to the World Health Organization reports, 2.5 billion of the world's population 

(around 40%) does not have access to proper sanitation systems [2], with 6-8 million annual 

deaths related to inadequate water supply, sanitation and hygiene in 2013 [3,4]. Those 

problems arise predominantly in developing countries as shown in Figure 1.1. Even more, 

the problem has been exacerbated by the increasing water withdrawals. Currently, energy 

production and agricultural activities account for 15% [5] and 70% [6] of global freshwater 

withdrawal, respectively. The increasing rates negatively influence the global water cycle. In 

addition, such intensive wastewater production introduces more pollutants to the water 

system that deteriorate fresh water quality [7].  

 
Figure 1.1: The values indicate total annual quantity from renewable water resources (in 

m3/capita) [6] 

 

Accordingly, population living under severe water stress reached 2.8 billion and expected to 

increase to 3.9 billion by 2050 [8]; yet, without accounting for climatic changes. According to 
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the UN World Water Development Report 2015, the world is expected to face 40% deficit in 

potable water by 2030. Furthermore, relationship between population growth and water 

demand has proven to be non-linear. As the world population annual growth is ca. 80 

million, by 2050 world would be populated by 9.1 billion with ever-increasing water 

demands for domestic purposes as well as agriculture, industry and energy production [9]. 

Also, other factors play important role in water sustainability; including, global warming, 

urbanization, interest in biofuel production, quality of infrastructures and water 

management regulations [10,11]. 

From a national viewpoint, Egypt is the third most-populous country in Africa and the first in 

the Middle East. The rapid industrial growth and population increase in rural areas has 

resulted in a large escalation of demand for fresh water. According to some studies 

considering population expansion rates, predictions estimated Egypt population to reach 

104 million by 2025 [12,13]. As a consequence, the demand for potable water in Egypt is 

projected to be 12.9x109 m3/year by 2025 which represents 3.5 times the present demand, 

of approximately 3.7x109 m3/year. Yet, the national annual water share from the river Nile 

(primary fresh water resource) has declined from 2500 m3/capita in 1950 to about 923 

m3/capita in 2009,  680 m3/capita in 2012 [14], and is expected to further decrease to 350 

m3/capita in 2050 which reflects severe water scarcity (water scarcity limit is 1000 

m3/capita). Furthermore, the rising conflicts with upper Nile basin countries threaten the 

annual national water share. Hence, the situation urges the development of cost effective 

renewable source for fresh water. 

On the other hand, the Egyptian coastline stretches to 3,500 km along the Red and 

Mediterranean Seas. This represents readily accessible saline sea water. Subsequently, a 

viable supplemental source of fresh water is sea water desalination. Latest studies for the 

national status of desalination showed that it contributes to 0.76% of total fresh water 

production starting from 0.08 mil.m3/d in 2007 [15], 0.166 mil.m3/d in 2011 and increased 

to 0.229 mil.m3/d by 2012 [16]. Desalination plants are mainly localized at coastal areas 

where extending freshwater pipelines were not considered cost effective. However, the 

government proposed a rescue plan with implementation of desalination plants to reach a 

sustainable production of 1.123 mil.m3/d by 2037 [15]. This national plan allocated a capital 

investment of 10.56 billion EGPs as an initiative to promote desalination solutions. 

1.2. Desalination technologies 

Desalination stands for the process of salt removal from water feed to produce fresh water. 

This removal can take place by either one of two primary processes, namely: Thermal 

processes and Membrane technologies.  

1.2.1. Thermal distillation 

Resembling the natural hydrologic cycle, thermal processes entail phase change that 

involves heating up of saline water to its boiling point. Steam produced from evaporation 

condenses back on a collector producing fresh water. The major adopted distillation 
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technologies are multi-stage flash (MSF), multiple effect distillation (MED) and vapor 

compression (VC).  

A. Multistage Flash Evaporation (MSF) 

The process consists of several successive chambers of decreasing pressure. Due to sudden 

pressure reduction from one chamber to another, the preheated feed water is vaporized. 

Afterwards, the process is repeated stage-by-stage through successive chambers of 

decreasing pressure. The vapor produced condenses on heat exchange tubes carrying the 

new feed solution so as to heat it up and minimize energy losses. Concomitantly, the vapor 

condensate on the tubes drips into the fresh water reservoirs [17]. The concentrated saline 

solution remained after the process is discharged. The feed solution temperature decreases 

as water evaporates. Accordingly, the process requires external heating power with 

relatively high energy consumption to further induce water evaporation. Process efficiency 

could be increased via increasing the temperature used. Yet, heating up the system could 

promote scale formation and system materials corrosion. On the other hand, increasing the 

efficiency by increasing the number of stages would substantially increase the capital costs 

[18]. 

B. Multi Effect Distillation (MED) 

Multi Effect Distillation, as another technology of thermal desalination, has a relatively low 

recovery percentages compared to other thermal technologies. The process involves 

heating up the feed solution using steam from burnt fuel. The feed solution is sprinkled on 

tubes containing hot steam. This induces the evaporation of water from the feed solution. 

The water vapor is then collected as fresh water that moves through tubes in the following 

chamber to act as a heater. The remaining feed solution which was not evaporated is 

pumped to the following chamber of lower pressure. Again, the feed is sprinkled on tubes 

that contain fresh water vapor produced from the previous chamber which act as a heater. 

The produced vapor is used to heat the feed for the next stage to eliminate the energy 

consumption. Once vapor is generated as a secondary steam, it goes to the next chamber 

and transfer its latent heat to the low temperature feed solution [19]. This process is 

repeated in successive stages depending on the required production capacity. At the end, 

brine is discharged and water vapor is collected as fresh water produced. 

C. Vapor Compression (VC) 

Vapor compression desalination refers to a distillation process where feed solution is 

preheated using compressed vapor. The preheated solution is then drawn to a chamber and 

allowed to evaporate using tubes containing compressed vapor. The produced water vapor 

is collected and compressed. Then the compressed vapor moves through heat exchange 

tubes to heat the feed water in the chamber and preheat the feed before entering the 

chamber. Afterwards, the compressed vapor loses most of its latent heat through the 

exchange process. Accordingly, it exits the cycle as produced fresh water. On the other 
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hand, the remaining brine is discharged. The evaporation chamber also includes an external 

heater to supplement the heat exchanger in inducing feed evaporation [20]. 

1.2.2. Membrane processes 

A membrane is defined as a selective barrier interphase between two phases. Cost 

effectiveness and small environmental footprint render polymeric membrane more 

advantageous compared to thermal processes. In addition, as membrane technologies are 

easier to up-scale and are performed isothermally, their integration with other processes 

such as a selective separation step is more feasible [21]. However, membranes are prone to 

fouling which decreases the membrane lifespan and increases the costs of the process. 

Investigations are focusing more on polymeric materials as they are relatively inexpensive, 

easier to fabricate and could be modified to produce more chemical selective separation 

membrane compared to ceramic membranes.  

Regardless of the membrane material, the aim of membrane development is to increase 

membrane flux, rejection and resistance to fouling [22]. This is mostly influenced by 

membrane pore size and hydrophilicity. Membrane pore diameters need to be appropriate 

to the intended separation application. However, smaller pore size membranes are not 

necessarily better. As they require more energy for operation. Accordingly, a trade-off 

between size exclusion performance and membrane throughput is the main motive for 

further development of membranes for different processes.   

A. Electrodialysis (ED) 

Electrodialysis represents a process of demineralization of water and other fluids containing 

ionic salts using a constant electric field and selective ion-exchange membranes. Feed 

solutions pass between selective membranes and dissolved ionic solutes dissociate due to 

an external applied electric field. The ions pass through the respective selective ionic 

membranes leaving fresh water behind. The ion-exchange membranes are polymeric films 

with ionic groups trapping and exchanging ions.  

The principle of multi-chamber electrodialysis is applied using a set of separated alternating 

cation exchange and anion exchange membranes between two external electrodes. The 

positive ion species crosses the cation exchange membrane. Once the cation crosses it is 

trapped in the new compartment as there is an anion exchange membrane. Same process 

happens to the negative species with after crossing the anion exchange membrane. Thus, 

demineralized and concentrated solutions flow in alternative compartments and are 

separated accordingly [23]. 

B. RO desalination 

When two solutions of different salinities are mixed, the solutes are distributed equally 

throughout the whole solution. This takes place through solute diffusion from regions of 

high concentration to low concentration. When both solutions are separated by a semi-

permeable membrane allowing only the passage of water molecules, water molecules will 
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spontaneously diffuse from the low concentration solution to the high concentration 

solution side (osmosis process). This diffusion is driven by osmotic pressure difference, 

which is dependent on the difference of solute concentrations in the two solutions. RO 

involves the application of pressure on the solution with high salt concentration. This 

pressure exceeds the osmotic pressure difference between the two solutions. Accordingly, it 

creates a net force which drives the water molecules from the high concentration solution 

to the lower concentration solution through the semi-permeable membrane. This process 

can be used to produce fresh water as shown in Figure 1.2 [24]. Thus, for the RO systems, 

87% of the operational costs account for electricity (energy), labor and chemicals for feed 

pretreatment [25]. Membranes with higher flux and higher fouling resistance can reduce 

energy and chemical pretreatment costs. Thus, membrane material development is 

essential for increasing the cost effectiveness of RO process. 

 

Figure 1.2: Schematic representation of RO desalination system [24] 

 

1.2.3. Energy requirements and economics of desalination processes 

Theoretically, the absolute minimum energy for salt removal from water regardless of 

technology using Van’t Hoff formula is 0.8 KWh/m3 (≈3 KJ/Kg) [26]. The formula is used to 

calculate the osmotic pressure exerted by a salt solution. 

Equation 1:           

Where π is the osmotic pressure (bar), C is the molar concentration of the salt ions, R is the 

universal gas constant (L.bar/K.mol) and T is the temperature in degree Kelvins. 

For simplification, we assume that the seawater salt concentration is equivalent to aqueous 

solution of 33 g/L NaCl. According to Van’t Hoff formula, this solution has an osmotic 

pressure of 27.8 bar or (278000 kg/m2). Desalination process entails the displacement of 

water from high concentration solution to low concentration solution against the osmotic 

pressure difference. Thus, the minimum theoretical energy required is calculated as the 
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work done on seawater of cross sectional area 1 m2 to displace it 1 m against its osmotic 

pressure using the following equation: 

Equation 2:            

Where W is the work done expressed in (J), F is the force due to osmotic pressure (N) and x 

is the displacement (m). 

The concept of minimum energy requirement is well established based on the calculation of 

the difference in free energy between feed (saline water) and permeate (fresh water) 

assuming a salinity of 33,000 ppm at 100 0K [27]. This value considers complete reversibility 

of all operations with no energy losses; thus, unrealistic. The practical minimum 

consumption is orders of magnitude of the theoretical value which has been estimated to be 

approximately 5 KWh/m3 for RO systems and 50 KWh/m3 for thermal processes [28].  

Membrane technologies (RO and ED) consume relatively lower energy as it only requires 

electricity to run the pressure pumps. On the contrary, MSF, MED and TVC processes 

require two sources for energy: thermal and electrical. Also, thermal processes necessitate 

the use of thermal resistant system components, large spaces and descaling chemical 

pretreatment; which in turn increase the capital investment. Table 1.1 presents the average 

costs for water production by the major desalination processes. 

Table 1.1: The average costs for water desalination based on feed salinity of 33,000 ppm 
using various desalination technologies 

Process 
Capacity 

(x103 m3/d) 
Production cost 

($/m3) 
Reference 

MSF 23-528 0.56–1.75 29,30,31,32 
MED 91-320 0.52–1.01 33 
VC 30 0.87–0.95 34 
RO 100-320 0.45–0.66 35 

 

Generally, all thermal desalination processes produce water with much lower dissolved salts 

compared to potable water named distilled water. Many research activities have been 

conducted to evaluate the health effects of drinking distilled water with highly reduced salt 

content, and it was found that this has negative impact on human health [36]. This in turns 

necessitates the post treatment process of solute addition before reaching end users, which 

reduces the cost effectiveness by adding further expenditures.  

Shown in Figure 1.3  [37] is the market share of each desalination technology. Considerable 

attention world widely is drawn towards RO systems for their cost effective production of 

desalinated water. Thus the global market showed technology switching from thermal to 

membrane desalination systems since early 21st century [38], as represented in Figure 1.4 

[39]. As a result, adopting this technology is of great benefit to our national development 
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using state-of-art technology. Still, further development of membrane materials is required 

to increase its life span, hydraulic permeability and decrease its carbon footprint. 

 

Figure 1.3: Global market share of different desalination technologies [37]  

 

Figure 1.4: Global market adoption of membrane versus thermal desalination 
technologies as of 2002 [39]  

1.3. Thin Film Composite Membranes 

The first breakthrough in membrane technology in the field of desalination RO membranes 

was in 1957 when Reid and Breton successfully developed a Cellulose Acetate (CA) dense 

membrane with high salt rejection values. Almost 6 years later, Loeb and Sourirajan 

fabricated the first asymmetric CA membrane [40]. The developed membrane had highly 

porous inner membrane structure, yet, comprises dense skin layer responsible for solute 

rejection. Thus, it showed superior performance for salt rejection and approximately 10 

folds enhancement of water flux compared to dense CA. This performance encouraged the 
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commercialization of the asymmetric CA membranes for microfiltration and ultrafiltration 

applications. Furthermore, the impact of membrane structural change was inspiring for the 

development of Thin Film Composite (TFC) membranes [41].  

The TFC membrane synthesis comprises two polymeric layers: a support layer and an active 

layer. Typically, the support layer is an asymmetric membrane with dense surface layer that 

is not sufficient to reject solutes, but which could effectively support the active layer on top 

of it. The active layer is applied on the support using interfacial polymerization (IP) process. 

With IP, Cadotte et. al synthesized a very thin polyamide active layer of <0.2 µm thickness 

that increased the solute rejection as a promising RO membrane [42]. However, the support 

structure and features have significant influence on the overall performance. In this regards, 

researchers used supports with different structures to study their influence on RO 

performance. 

Based on the membrane cross-section structure, membranes are divided into two 

categories: isotropic (symmetric) and anisotropic (asymmetric) membranes as shown in 

Figure 1.5 (a) and (b) respectively. As seen in the micrographs, there is a significant variation 

in the cross-section morphology between both types. Accordingly, each type holds its own 

advantages based on that morphology. Anisotropic membranes, for instance, are well 

known for their top skin layer that could effectively support the application of polyamide 

thin film on the surface. On the contrary, the relatively large surface pores of the isotropic 

membranes allow them to have significantly higher flux rates. 

 

Figure 1.5: Major membrane category based on cross sectional morphology (a) isotropic 
membrane and (b) anisotropic membrane (retrieved from results) 

In practice, membranes are packed in well-sealed modules to have high surface area of 

membrane filtration in relatively small space. The spiral-wound module is shown in Figure 

1.6 which is one of the most common modules currently used. Such modules allow the use 

of hundreds of square meters of membranes to increase the throughput. Consequently, a 

relatively small enhancement in membrane flux corresponds to orders of magnitude 

increase in the process throughput capacity and decrease in energy consumption.  
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Figure 1.6: Schematic presentation of spiral-wound module [43] 

On the other hand, the mean flow pore diameter of the membrane identifies its application. 

Based on pore diameter, membranes are of four major types: (1) Microfiltration (MF), (2) 

Ultrafiltration (UF), (3) Nanofiltration (NF), and (4) Reverse Osmosis (RO) membranes. Figure 

1.7 represents the selective separation of each membrane type with respect to its average 

pore diameter. 

 

Figure 1.7: Schematic representation of membrane selective separation based on mean flow 

pore diameter [44] 

Currently membranes are widely commercialized for many applications. For instance, 

dialysis membranes, controlled release drug delivery systems, gas separation and water 

desalination. Membranes market value increased from less than $ 20 million in 2003, to 
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21.2 billion $ in 2013 and is forecasted to reach $ 39.3 billion  by 2019 [45]. These figures 

reflect the importance of membrane development and the need to acquire a national 

hands-on experience to the state-of-the-art in this field. 

1.4. Statement of purpose 

This research aims at improving the TFC membrane performance by modifying the support 

layer. Pursuing this goal, we started with adopting a highly porous, large pore diameter MF 

membrane developed earlier that had superior MF performance compared to commercially 

available MF membranes. The effect of different parameters on the final membrane 

morphology was investigated. In accordance, membrane morphology was tailored with 

controlling fabrication process parameters to obtain more efficient TFC support membrane. 

The membrane pore size tailoring and properties optimization were conducted through two 

main work phases: 

1. Understanding the effect of changing various VIPS parameters on the thermodynamic 

and kinetic behavior of the cast solution through characterizing the final membrane 

structure, and hence, the fabrication of efficient TFNC support-membrane. This took 

place through breakdown of different parameters to be understood individually. 

a) Studying the effect of varying non-solvent and hydrophilic additive contents in 

the cast solution on the final membrane structure. This is done in order to 

optimize the membrane hydrophilicity.  

b) Studying the effect of adding TiO2 nanoparticles to the membrane material on 

the TFC support layer flux and compression resistance. 

c) Studying the effect of casting parameters influencing membrane morphology. 

This entailed the study of varying RH value and exposure time. Also, changing 

the convection conditions in the humidity chamber during VIPS process. This is 

conducted so as to optimize the adopted MF membrane pore diameter to 

achieve TFNC support layer with relatively high water flux; yet, pertain structure 

that could successfully substitute the typical asymmetric TFNC support layer. 

2. Testing the performance of membrane samples with different pore structure as a 

microfiltration membrane and TFNC support layer. 

a) Testing the filtration performance of support membranes using polystyrene 

latex beads. 

b) Testing the support membranes with different cross section morphology for 

compaction resistance. 

c) Testing the TFNC membrane performance in RO system for salt rejection and 

permeability.  
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Chapter 2 : Literature Review 
 

This chapter serves to highlight the main research endeavors developing membranes with 

different morphologies intended for various applications. The main focus will be on the 

effect of fabrication process parameters to tailor membrane cross sectional morphology, in 

addition to highlighting the effect of different membrane additives. Further to that, we will 

present some of the activities done to study the effect of support layer on TFC membrane 

performance in RO process and enhance TFC membranes’ support using TiO2 nanoparticles 

(NPs). At last will be a review of the synthesis of TFC active layer. 

2.1. Phase separation process 

Phase separation processes introduce non-solvents, either in a liquid or vapor phase, to the 

cast film during membrane fabrication. Some phase separation techniques aim at the out-

diffusion of the solvent from the cast solution rather than the in-diffusion of the non-

solvent. Thus, regardless of the methodology, phase inversion takes place by decreasing 

polymer stability in the solution forcing it to aggregate or coalesce to form a solid 

membrane [46]. This transformation from stable state to the final coagulation forming a 

membrane can be accomplished by several methods, including [47]: 

1- Thermally induced phase separation (TIPS): where the decrease in solution 

temperature will decrease the degree of polymer solubility. Thus, polymer 

precipitation takes place and the membrane is formed. Afterwards, the solvent is 

removed by extraction or evaporation [48]. 

2- Non-solvent induced phase separation (NIPS): This process takes place through the 

exposure of the polymer homogenous solution to relatively large amount of non-

solvent. The non-solvent replaces the solvent in the cast solution and decreases the 

polymer stability. This process is categorized into either liquid induced phase 

separation (LIPS) or vapor induced phase separation (VIPS) where non-solvent is 

introduced in its liquid or vapor phase, respectively [49].  

3- Evaporation induced phase separation (EIPS): In this process the solvent used should 

have a high vapor pressure. After homogenous solution casting, the cast film is 

allowed to stand for the solvent to evaporate causing the loss of solution stability 

and the polymer precipitation [50]. 

2.1.1 Non-solvent induced phase separation 

Among all the different phase inversion techniques, NIPS processes are the most commonly 

used to fabricate membranes with wide range of morphologies [51]. The homogenous 

polymer solution is initially cast on a suitable support using a blade of specific thickness. 

Directly afterwards, the cast film is drawn to a humidity chamber to undergo VIPS then to 

the final coagulation bath for LIPS process to take place. During the process of combined 

VIPS/LIPS, parameters control effectively tailors the membrane final morphology relying on 

the thermodynamic behavior of the cast film and the process kinetics. 
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In 1981, VIPS was firstly introduced by Zsigmondy and Bachmann [52] followed by a 

comprehensive description for the process by Elford [53]. Since then, VIPS drew attention 

due to its capability of synthesizing membranes with various morphologies. Typically the 

process entails the preparation of cast solution with 3 to 4 components 

(polymer/solvent/non-solvent/additive) which is then casted as a thin film on appropriate 

substrate that is exposed to non-solvent in its gaseous state. Afterwards, the cast film is 

immersed in a non-solvent bath for complete precipitation of the polymer (i.e. combined 

with LIPS) or for washing the membrane matrix from solvent traces. Thus in VIPS process, 

phase separation is governed mainly by non-solvent inflow rather than solvent outflow. 

From materials perspective, literature mainly focuses on four polymers; namely, PVDF 

[54,55,56], PES [57,58,59,60,61], PSF and PEI [62,63] 

2.1.2 Achievable morphologies using VIPS 

The structure variety starts from highly porous symmetric structure to asymmetric with 

dense top layer. The four main morphologies are: 

a- Symmetric cellular structure: this occurs mainly when non-solvent inflow is relatively 

slow and precipitation takes place via spinodal decomposition process (SD) with no 

further slow coarsening of polymer domain. On the other hand, the asymmetry 

might arise from the formation of surface liquid layer that creates concentration 

gradient; hence, large cellular pores are formed near the cast film/air interface. 

b- Symmetric nodular structure: this structure results from a process known as 

“crystallization-initiation gelling” when the polymer used is semi-crystalline or 

crystalline in relatively high concentration. In such a case, the growth of crystalline 

domain before, or at an early stage of solution gelling, results in the final nodular 

structure. Li et al. showed that the dissolution temperature used during cast solution 

preparation could affect the final membrane structure through altering the time of 

inducing the crystallization process [64]. Using PVDF cast solution, they found that 

increasing the dissolution temperature resulted in more nodular structure as the 

crystallization was initiated during the gelling process. However, at a dissolution 

temperature below 400C, the membrane cross section was lacy and bi-continuous. 

c- Sponge-like, lacy or bicontinuous structure: it is the most desirable structure for 

applications requiring high fluxes. The interconnectivity of porous structure retains 

low resistance to fluid permeation. However, it is less common to reach such a 

structure due to the rapid transformation to either a cellular or a nodular structure 

with polymer vetrifiction progress. Thus preserving the bicontinuous structure is 

challenging and typically requires slow kinetics with the modulation of polymer 

dissolution temperature and an optimizing solution viscosity. Nguyen et al. studied 

the effect of polymer nature on the final membrane structure [65]. They concluded 

that semi-crystalline polymers undergo crystallization after liquid-liquid phase 

separation not during solution gelling. This resulted in an interconnected porous 
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structure. On the contrary, amorphous polymers tend to form a cellular structure as 

no crystallization took place while the precipitation took place through SD. 

d- Asymmetric finger-like structure: this structure is more common with LIPS process. 

Yet, using combined VIPS/LIPS might develop the same morphology when the 

exposure to humid air is significantly short. It results from the abrupt precipitation of 

polymer from the top cast solution surface forming a dense skin once immersed in a 

non-solvent bath. The skin inhibits the further diffusion of the non-solvent to the 

deeper layers allowing time for macrovoid growth forming the finger-like pores.   

2.1.3 Thermodynamics and kinetics of phase inversion 

The thermodynamic behavior of the cast solution system and its representative phase 

diagram is dependent on the system components. In the membrane casting process, the 

typical cast solution is made up of two (polymer/solvent), three (polymer/solvent/non-

solvent) or four components (with additive). Hereby we will focus on the ternary system 

thermodynamic isotherm as the cast solution used in our study is composed of 

(polymer/solvent/hydrophilic additive). The study of the thermodynamic process started 

with the earlier work of Micheals in 1971 [66]. As shown in Figure 2.1, the triangular phase 

diagram three vortices represent the pure system components of polymer, solvent and non-

solvent. The homogenous cast solution starts at a point in the stable (homogenous) region 

that corresponds to the ratios between the three components. As the non-solvent 

concentration increases through its in-diffusion to the system or the out-diffusion of the 

solvent, the solution composition shifts forward until it crosses the binodal boundary 

reaching the metastable region. In the metastable region the solution starts to separate into 

two phases, a polymer-rich phase and a polymer-lean phase. If the initial polymer 

concentration is above the critical point where the binodal and spinodal curves intersect, 

the polymer-lean phase will start nucleating in the polymer-rich phase directly after crossing 

the binodal boundary. On the contrary, the polymer-rich phase nucleates if the initial 

polymer concentration was below the critical point. In either case, the process of nucleation 

and growth (NG) takes place until the system composition crosses the spinodal boundary.  

Crossing the spinodal boundary brings the system to the unstable region where the polymer 

solution starts to instantaneously separate to two distinctive phases. The two phases exist in 

a thermodynamic equilibrium state with compositions linked by the tie lines. As this phase 

separation progresses, the polymer is precipitated and vetrified via spinodal decomposition 

(SD). The polymer rich phase forms the final membrane skeleton, while the porous 

interconnected structure is the conclusion of the polymer-lean phase existed during NG 

process in the metastable region. On the other hand, if the NG took place through the 

polymer rich phase (below the critical point), the resultant will be polymeric powder in a 

continuous liquid phase. 
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Figure 2.1: Thermodynamic ternary phase diagram representing different stages of 
stability of a cast solution [67] 

The final membrane morphology is also ascribed to the kinetics of the phase inversion 

process. As the rate of solvent/non-solvent demixing changes, the membrane final 

structural is dramatically influenced in terms of the pore diameter and cross sectional 

morphology. Thus, parameters that could tailor the membrane pore diameter and porosity 

rely mainly on manipulating the kinetics of phase separation. 

 In 1987, Smolders et al. attempted to study the diffusion processes in the ternary system 

used by Loeb and Sourirajan for the fabrication of asymmetric CA membranes. They 

prepared a diffusion model to calculate the composition path of CA/acetone/water system 

in the ternary phase diagram. They used light transmission analysis to measure the time 

taken until the system starts the liquid-liquid demixing. They concluded that the formation 

of skin and underlying dense sublayer for the asymmetric structure resulted from the higher 

polymer concentration at the upper layers of the cast film. The phase separation technique 

used was LIPS and the high polymer concentration at the surface was a result of rapid liquid-

liquid demixing and removal of the solvent near the interface [68]. 

On the other hand, formation of macrovoids in the membrane sublayer has been attributed 

to many factors. Researchers argued that the onset of macrovoid formation is at the 

interface between cast film and coagulation bath. Steven et al. proposed that interfacial 

tension gradients initiate convective cells that create the macrovoids [69]. Furthermore, Ray 

et al. added that these convective cells are due to the steep concentration gradient at the 

interface [70]. While Strathmann et al. claimed that the macrovoids initiation points are 

caused by the mechanical stresses at the interface [71]. On the contrary, Smolders et al. 

argued that the macrovoid initiation should not be attributed to interfacial phenomena, as 
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some macrovoids appear to start at a large distance from the interface and that the 

interfacial effects would be nullified by the high solution viscosity. They suggested that 

macrovoids are formed by the expansion of a polymer-lean nucleus in the cast film. This 

expansion would only take place if the diffusion front of the nucleus is subjected to stable 

composition in the cast film (i.e. delayed demixing onset condition). The stability at the 

nucleus front arises from the increased solvent concentration as a result of further 

expansion of the nucleus away from the interface. Additionally, the skin barrier formed from 

instantaneous demixing at the interface prohibits further introduction of non-solvent to the 

nucleus. Therefore, the nucleus keeps expanding by imbibing solvent from the stable front 

at a rate higher than the flow of the non-solvent from the nucleus to the polymer solution. 

Such expansion would be hindered if new nuclei are created not far from the expanding 

nucleus [72]. 

Wang et al. studied the effects of the surfactant degree of miscibility with the non-solvent in 

the coagulation bath on the formation of macrovoids. Results showed that larger 

macrovoids were formed when the surfactant used had higher miscibility with the non-

solvent, hence facilitating the non-solvent inflow to the sublayer. They examined the time 

elapsed for macrovoid formation and concluded that the initiation of macrovoid takes less 

than 2 seconds. On the other hand, the expansion of the macrovoid was found to be 

independent of the surrounding environment after macrovoid initiation. In other words, 

once the polymer-lean phase nuclei were created in the cast film, macrovoids started to 

propagate whether the cast film is still in the coagulation bath or left on air. They also found 

that the growing speed of a macrovoid is higher than the non-solvent penetration speed 

from the coagulation bath [73]. These results agree with the explanations in the preceding 

paragraph for mechanism of macrovoid initiation and growth providing more evidence that 

macrovoid growth is to a certain limit independent from interfacial phenomena. 

2.1.4 Effect of VIPS parameters on membrane morphology 

A. Polymer concentration 

Polymer concentration mainly alters process kinetics through changing the solution 

viscosity. However, it also has an important effect on the thermodynamic stability of the 

cast solution. Di Luccio et al. showed that by increasing polymer concentration, the solution 

become thermodynamically less stable and less water is required to precipitate the solution 

[74]. But from a kinetics perspective, increasing viscosity by increasing the solution polymer 

content hinders water uptake (slower kinetics). As a result, two contradictory factors 

interplay in the process of VIPS when the polymer concentration is increased: facilitated 

precipitation due to a thermodynamic effect and delayed precipitation due to the slow 

kinetics of non-solvent absorption. 

To better understand the influence of polymer concentration, Barth et al. investigated the 

thermodynamic behavior of the polyethersulfone (PES)/N,N-dimethylformamide 

(DMF)/water system. They found that PES concentration of 8.5 wt% introduced the system 
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to SD upon immersion in the coagulation bath, as the system passed directly through its 

critical point to the unstable region. They recommended the use of higher PES 

concentration, because relatively low PES content lead to the formation of large finger-like 

pores and skinless structure. Consequently, the membrane lost its separation property. It 

was also found that increasing PES to 16 wt% or above decreased the number of macrovoids 

and membranes had thicker and denser skin layers [75]. 

Lee et al. examined the water uptake of PSF/NMP system under a combined VIPS/LIPS 

process. Although the water vapor uptake was approximately similar for 15, 20 and 25 wt% 

polymer concentrations, the time elapsed to reach phase separation under humid air was 

inversely proportional to the polymer concentration. In other words, increasing polymer 

concentration shortened the time required to cross the binodal boundary. It is however 

worth mentioning that the solution viscosity increased, but the effect of viscosity was not 

considered in their study. Their experiment showed that the cast solution containing 15 wt% 

PSF took approximately 13 min under 90% RH to reach unstable condition. Consequently, SD 

was induced by an absorbed vapor concentration of 5.8 wt% [76]. 

Atinkaya et al. developed a model to determine the effect of the polymer/non-solvent ratio 

on the membrane final morphology using the EIPS/LIPS process. Results confirmed that the 

cast film-air interface reached the binodal boundary earlier than the bulk of the cast film 

regardless of the initial polymer to non-solvent ratio. They stated that solvent evaporation 

started from the surface followed by solvent diffusion from the inner layers of the cast film 

to its top layers. The solvent diffusion carried the dissolved polymer in the direction, 

creating a higher polymer concentration at the top layer of the cast film. Furthermore, the 

precipitation started earlier for the cast solutions with higher non-solvent content, whereas 

increasing the polymer content resulted in higher concentration at the top layer and the 

formation of a denser membrane skin [77]. 

Su et al. used FT-IR microscopy to examine the phase separation process for a 

PS/NMP/water system. They investigated PS concentrations of 10 and 20 wt% under 70% 

RH. The results demonstrated that phase separation took place by SD throughout the whole 

cross section of the 10 wt% PS cast film. On the contrary, with 20 wt% PS, the cast film 

remained longer at the metastable region as a result of three main factors. The first was the 

delayed propagation of absorbed water vapor as a result of the increased viscosity. The 

second aspect delaying the vapor absorption was the formation of a skin layer after 3 min 

exposure to humid air. Due to interfacial tension near the solution-air interface, the 

polymer-rich phase coarsened and formed the skin layer. The third factor was that 20 wt% 

PS cast solution had wider gap between binodal and spinodal boundaries. Accordingly, more 

water was required to bring the system to SD, and thus, the formed cross section 

morphology was mainly due to NG rather than SD [78]. 

Another factor that interplays with polymer concentration is the interfacial temperature 

difference between the cast film and the surroundings. According to Henry’s law, the 
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increase in polymer concentration decreases the solvent vapor pressure. It was also proven 

that during NG, the growth of polymer-lean droplets is directly proportional to the 

temperature difference at the interface [79]. Zhiping et al. examined the effect of using PES 

with increasing concentration with respect to RH and temperature under VIPS process. Their 

findings showed that pore size increased with the decrease of PES concentration, the 

increase of PES molecular weight or the increase of RH degree. Results were explained in 

light of the interfacial temperature difference where the degree of solvent evaporation 

increases with decreasing the PES content, thus, the temperature difference at the interface 

increases. Accordingly, polymer-lean droplets grew faster and resulted in larger final pore 

sizes [80]. 

In 2012, Peng et al. studied the effect of vapor temperature with solutions of increasing 

PVDF on the final morphology prepared by VIPS process. They concluded that at high 

polymer concentration, the solid-liquid demixing taking place in the thermodynamic stable 

region could have enough time for polymer to crystallize. Therefore, the polymer 

crystallization resulted in a porous skin layer upon complete precipitation. Furthermore, the 

pore size at the top surface increased with increasing vapor temperature from 27 to 75 0C. 

This substantiated that the interfacial temperature difference had high influence on surface 

nuclei growth [81]. 

Holda et al. postulated that the increase in polymer concentration increases the solution 

viscosity exponentially and decreases the quantity of non-solvent required to initiate 

precipitation. Therefore, the delayed kinetics substantially delays demixing process and 

macrovoids decreased with increasing polymer concentration [82]. 

B. Type of solvent 

Solvency power is considered a key factor affecting the kinetics of phase separation. When 

solvency power is low, a small quantity of non-solvent could induce phase separation. As a 

result, asymmetric morphology is often obtained. Generally, for a suitable phase separation 

process to occur, the solvent has to have a relatively high solvency power to the polymer in 

question, along with adequate miscibility with the non-solvent. Theoretically, Hansen 

suggested that solubility parameters are affected by hydrogen bonding, polar forces and 

dispersion forces between solvent and polymer [83]. Accordingly, it is possible to determine 

the appropriate solvent by comparing solvent and polymer solubility parameters to properly 

create a membrane forming cast solution. 

Wei et al. generated the ternary phase diagram for PES/solvent/water system. Among the 

solvents tested with this model was NMP which showed the highest miscibility gap with PES 

as compared to N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF) and 

dimethylsulfoxide (DMSO) as NMP showed the lowest interaction parameter with PES. It 

was therefore concluded that NMP would serve as a better solvent for PES. Increasing the 

interaction parameter between non-solvent/solvent (i.e less miscible) increases the 

miscibility gap, which is reflected in the increase of the thermodynamic stable region. 
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However, with the increase in polymer/solvent or polymer/non-solvent interaction 

parameters, the miscibility gap decreased and the solution is less stable [84]. The 

recommendation of NMP as a PES solvent was later practically confirmed by the work of 

Brazin et al. [85] 

Barzin et al. calculated water/NMP and water/DMAc interaction parameters based on the 

Flory-Huggins equation. They found that water/DMAc has a lower interaction parameter, 

and hence, narrower miscibility gap, as DMAc has a higher affinity to water than that of 

NMP to water. Phase separation using LIPS process of PES/DMAc/water solution resulted in 

a membrane with a sponge-like cross-sectional morphology [85]. They also evaluated the 

morphological structure of both systems in order to develop a better understanding of 

macrovoid formation using LIPS process. In the DMAc/water system macrovoids were 

inhibited. This observation was strikingly opposite to the widely accepted rule of macrovoid 

formation which postulates that the better the mixing between solvent and non-solvent, the 

higher is the formation and expansion of macrovoids. Yet, they ascribed this phenomenon 

to the process of polymer vitrification [86]. 

In the ternary phase diagram, the line that separates the homogenous solution region from 

the polymer glass region is called the vitrification boundary. The intersection between the 

vitrification boundary and the binodal boundary is the Berghmans’ point. The tie line passing 

through this point determines the gelation boundary. According to Barzin’s calculations, 

which included the data reported by Li et al., the gelation boundary for the 

PES/DMAc/water system is closer to the binodal boundary than that for the PES/NMP/water 

system [87]. In this respect, the gelation of PES occurs at a relatively lower non-solvent 

concentration when DMAc is the system solvent. Thus, the earlier gelation prevented the 

progression of the macrovoids through increased viscosity. 

Han et al. studied different PES-Matrimid polymer blends by a combined VIPS/LIPS process. 

The cast film was exposed to 55% RH for 30 sec before final immersion in a non-solvent 

bath. They showed that the interaction between the polymer blend and the DMF was higher 

than that with the NMP. Hence, DMF solutions were less stable, and accordingly, developed 

asymmetric final membrane structure. On the other hand, polymer blend with 20% to 60% 

Matrimid shifted the phase inversion process to a further delayed demixing as the viscosity 

increased. Subsequently, macrovoid formation was inhibited and membranes with skin layer 

and sponge-like cross section were achievable [88]. 

Another solvent factor that influences the process kinetics is solvent viscosity. Tsai et al. 

noticed that the bi-continuous structure was transformed to the less interconnected cellular 

structure when the solvent was changed from 2P to NMP. They explained that the viscosity 

of 2P (13 mPa.s) compared to NMP (1-2 mPa.s) was the reason for this drastic 

transformation. The increased viscosity slowed down the polymer-rich phase coalescence 

and facilitated the polymer gelling [89]. 
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C. Hydrophilic additives 

The general aim of additives is to enhance the final membrane hydrophilicity, porosity, 

mechanical stability and morphology. There are many types of additives, including: 

polymers (hydrophilic or amphiphilic), inorganic nanoparticles or non-solvents. They 

increase solution viscosity and slow down the process kinetics. 

PVP, PEG and Pluronic® are among the most widely used hydrophilic additives. Kang et al. 

studied the effect of PVP addition on membrane surface morphology. They revealed that 

increasing PVP content accelerated water uptake from humid air, which resulted in larger 

surface pore sizes [90]. Han and coworkers used PVP from 5 to 20 wt%. They illustrated that 

at low PVP concentration, PVP hydrophilic effect of increasing water absorption 

overshadowed its viscosity hindrance. In contrast, high PVP concentration delayed phase 

separation due to the increased viscosity. The solution stayed at the thermodynamic 

homogenous region during exposure to non-solvent vapor. Subsequently, it resulted in 

asymmetric finger-like membrane morphology upon instantaneous demixing in a non-

solvent water bath [91]. 

Pluronic® (Plu) is an amphiphilic triblock copolymer composed of hydrophilic poly(ethylene 

oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) blocks which is often used as a 

hydrophilic additive. Wang et al. synthesized Plu and demonstrated its excellent impact on 

membrane flux recovery and fouling resistance, with long term performance [92]. The 

stability arises from its entanglement with the PES due to the presence of PPG hydrophobic 

blocks. Furthermore, Susanto et al. examined membrane stability using similar molar 

masses of PEG, PVP and Plu. They tested the addition of 10 wt% of each in a PES/NMP cast 

solution. Results showed that membranes with Plu had the highest hydraulic permeability 

with comparable dextrane rejection. Although PES-PEG membranes were the most 

hydrophilic, PES-Plu membranes retained higher fouling resistance due to Plu higher 

stability in membrane matrix [93]. Further to that, their later work showed that increasing 

Plu content had a synergistic effect with the non-solvent content to boost the hydraulic 

permeability. It was suggested that the effect of increased viscosity was the dominating 

factor for allowing more time for NG to take place. They also showed that with Plu® F127, 

the maximum allowable TEG content to make a homogenous solution was 25wt%. Beyond 

this concentration, the incompatibility between TEG and the high PEG fraction of Plu led to 

dissolution problems. However, when they switched to Plu® PE6400, they could increase 

TEG content to 60 wt% with 5 wt% Plu [94]. 

The PES/Plu membranes were reported in many applications including oil/water emulsion 

separation [95], pervaporation [96] and microfiltration [94] with peak performances. Yet, 

blending with hydrophilic polymers changes the casting solution viscosity, and impacts the 

final membrane morphology and pore structure [97]. Moreover, hydrophilic membranes 

have a tendency to swell in aqueous solutions, which leads to an increase in pore size, loss 

of selectivity and a decrease in mechanical strength [98]. In this regard, polymer blending 
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would require a control of pore size and cross sectional structure for the membrane to 

maintain its selectivity, high flux and mechanical strength.  

A solution composition close to the binodal boundary results in more porous membranes as 

longer time is available for NG [99,100]. The addition of a hydrophilic additive 

thermodynamically brings the solution closer to this boundary, and kinetically modulates 

the solvent and non-solvent diffusion through hydrophilicity or viscosity changes. The 

increase of the hydrophilicity or the decrease in the solution stability result in more sponge-

like membrane skeletons with high molecular weight additives such as polyvinylpyrrolidone 

(PVP) and polyethylene glycol (PEG). The effect of high molecular weight additives on 

solution hydrophilicity was supported by results of Boom et al. who reported the 

elimination of macrovoids with PVP addition to the cast solution [101]. Additionally, 

Torrestiana et al. who validated that increasing either PVP, PEG or water content, increased 

permeability of UF PES membranes [102]. Similar behavior was observed by Qusay et al. 

[103] and Chakrabarty et al. [104]. On the other hand, other researchers attributed their 

results to the degree of delayed demixing based on the increase in solution viscosity. Kim et 

al. observed that increasing the PEG content or molecular weight tended to form 

membranes with larger pores. Thus, more viscous solutions would require more time before 

complete coagulation, thus leading to larger pore sizes [99]. Ohya et al. examined the 

addition of PEG with various molecular weights to a PSF/NMP system. In their work they 

neglected the NMP evaporation and correlated the induction of phase separation to vapor 

absorption and the delay onset of phase separation to the hindrance of absorption due to 

the increased viscosity. They found that with the addition of PEG 150 Kda the membrane 

had a smooth lattice structure which they attributed to the PSF/PEG demixing after 

complete saturation of polymer-lean phase [105]. 

To get more insight on the contradicting effects of hydrophilic additives, Ma et al. proposed 

a model to relate non-solvent in-diffusion speed with final membrane morphology. They 

used inorganic salts with various concentrations to increase solution hydrophilicity. The non-

solvent in-diffusion speed increased with the initial addition of salts, then declined with 

further addition. This was due to the initial effect of increased hydrophilicity followed by 

resistance due to increased solution viscosity. The final membrane structure changed from 

anisotropic to sponge-like and, with high salt concentration, to a particulate structure [106]. 

Additives might also interfere with the gelation boundary. Venault et al. showed the effect 

of copolymer addition on the PVDF membrane final structure undergoing a VIPS process. 

The increase of copolymer concentration from 1 to 4 wt% decreased the nodular size of the 

PVDF membrane. It should be pointed out that the nodular structure is a result of 

crystallization-initiation gelling. When the copolymer was added as 5 wt%, the process of 

gelation shifted to a non-crystallization initiation, forming a bi-continuous membrane 

structure. This was explained in light of the increase in solution viscosity, which hindered the 

domain growth and coarsening, leading to the preservation of pore connectivity [107]. 
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Bhatacharjee et al. conducted experiments to evaluate the effect of additives to the 

PES/NMP/water system. They tested the addition of PVP and PEG. It was found that the 

stability decreased with the increase of additive molecular weight. Additionally, the increase 

in additive content increased the solution viscosity and decreased the leaching out of 

additives from the cast film in the coagulation bath. Additives therefore decreased the 

thermodynamic stability and hindered the kinetics of the process through increased 

viscosity. Both factors are counteracting. Although less thermodynamic stability would form 

a more porous structure as a result of earlier crossing of the metastable region, kinetic 

hindrance will form denser structures due to delayed demixing. However, they found that 

with 5 wt% PEG, with molecular weight from 0.4 kDa to 10 kDa, the kinetic hindrance had 

the dominating influence on the final structure. Yet, thermodynamic instability was more 

influential with a further increase of the PEG molecular weight. Similar to that was the effect 

of increasing the additive concentration, hence causing an increase in pore sizes [108]. 

D. Non-solvent additives 

Non-solvent additives affect the final membrane morphology through modulating the phase 

separation kinetics. Young et al. proposed that the addition of a non-solvent to the cast 

solution facilitated nucleation. Nuclei formed were believed to slow the liquid-liquid 

demixing by increasing solution viscosity. These factors resulted in the inhibition of the 

growth of finger-like structures [109]. Peng et al. studied the effect of increasing the cast 

solution viscosity through non-solvent addition. They found that increasing the cast solution 

viscosity retarded macrovoid formation by enhancing polymer chain entanglement and 

inhibiting non-solvent intrusion and convection [110]. These findings were in agreement 

with other reported results in the literature [111,112]. 

With respect to the nature of the non-solvent, Jansen et al. effectively prepared asymmetric 

membranes with ultrathin skin layer using the LIPS process. Comparing low molar mass 

highly polar non-solvents (e.g. methanol) to larger and less polar non-solvent (e.g. butanol), 

they found that the former induced faster coagulation. They concluded that rapid 

coagulation induced the formation of the ultrathin skin layer [113]. 

Greenwood et al. prepared skinless PES membranes using triethylene glycol (TEG) in the 

coagulation bath [114]. On the other hand, Li and coworkers added diethylene glycol (DEG) 

to the cast solution and successfully prepared highly interconnected porous PES membranes 

using a combined VIPS/LIPS process [115]. Ulbricht group showed that the TEG content in 

the cast solution of PES/NMP had a strong positive effect on membrane hydraulic 

permeability. Increasing the TEG content from 45 to 60 wt% increased the permeability by 

more than 4 folds. However, this effect was only noticed under a combined VIPS/LIPS 

process. When the system underwent only LIPS, the increase of TEG content had a negligible 

effect on permeability. On the other hand, permeability increased consistently with 

increasing exposure time, yet, the trend leveled-off after one minute of exposure. They 

referred to the hygroscopic power of TEG as the main cause for the induction of phase 
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separation through NG. Thus, the further increase in the exposure time allowed more time 

for growth of nuclei and influenced the membrane permeability [94]. 

E. Nanoparticles addition 

The incorporation of nanoparticles (NPs) in polymeric membrane has been reported. NPs 

could impart a major enhancement to membrane characteristics and performance, 

including membrane permeability, mechanical properties, fouling resistance, selectivity, and 

thermal and chemical stability. A major limiting challenge to nanoparticle incorporation is 

their dispersion in the cast solution. Metal oxide NPs tend to agglomerate due to high 

specific surface areas and the surface hydroxyl groups that arise from acidity during NPs 

synthesis [116]. Surface interactions render the dispersion of nanoparticles with diameter 

less than 100 nm difficult. Surface interactions stated in the literature include: (a) van der 

Waal interactions, (b) overlap of electric double layer around the particles, (c) overlap of 

hydrogen bonded surface-water molecules and (d) overlap of polymer adsorbed on article 

surface [117]. In addition, factors that affect the probability of aggregation include particles 

concentration [118] and solution ionic strength [119]. The typical approaches for NPs 

incorporation are either NPs blending in the cast solution or surface self-assembly by 

subjecting the membrane to a dipping solution with functionalized NPs [120]. Although the 

latter is considered a relatively easier process, it increases surface roughness which 

negatively affects fouling resistance [121]. Li et al. and Luo et al. successfully prepared 

membranes with self-assembly of crude NPs on PES ultrafiltration membranes, and it 

showed poor antifouling resistance [122,123]. 

Among the inorganic NPs used for membrane enhancement, TiO2 has been the focus of 

numerous studies due to its availability, stability and photocatalytic activity mitigating 

fouling [124,125,126,127].  With considerably small quantities, NPs could enhance water 

permeability, thermal and mechanical resistance, in addition to the privileges of having 

hydrophilic surface and small achievable particle size (≤ 21 nm) [128]. Furthermore, for 

water treatment applications, it is considered as an ideal choice due to its oxidation power, 

photostability and non-toxicity [129]. 

The general approach for TiO2 incorporation is by the addition of predetermined amount to 

the cast solution followed by a combined VIPS/LIPS process. Wu et al. applied surface 

modification by ɣ-aminopropyl triethoxysilane. Silane acts as a coupling agent which reduces 

surface free energy and hence increases NPs-matrix interaction, reducing agglomeration. 

Therefore, they were able to synthesize membranes using 100 µm cast knife without loss in 

membrane mechanical stability [130]. A similar approach was taken by Yang et al. by using 

sodium dodecyl sulfate [131]. 

Teow et al. showed that the incorporation of TiO2 NPs in a PVDF matrix had a significant 

enhancement for fouling resistance accompanied by increase in hydraulic permeability. 

These findings suggested that observed improvements were due to increased membrane 

hydrophilicity. Yet, excessive addition of TiO2 caused pore blocking and loss in membrane 
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performance [132]. Yang et al. studied the addition of surface modified TiO2 to PS 

membranes. The hydraulic permeability increased steadily till 2 wt% TiO2, further addition 

resulted in a decrease in permeability. The steady increase of permeability was interpreted 

in terms of the increase of solution viscosity which slowed down the demixing process. As a 

consequence, membrane cross-section showed a clear shifting from asymmetric to sponge-

like structure with a dense top layer [131].  

Similar results were presented by Soto et al. They showed that increasing TiO2 concentration 

created more open and porous structure using a VIPS/LIPS process. They incorporated TiO2 

NPs in a PES/DMF system. In a concentration range from zero to 0.4 wt%, the highest 

permeability, hydrophilicity and fouling resistance was achieved at 0.2 wt%. Further 

addition induced aggregation and declined membrane performance. They showed that by 

the addition of ethanol to the solution, the dielectric constant of the solvent mixture 

decreased and hence particles aggregation was provoked. Increasing the NPs or ethanol 

concentration switched the structure from sponge-like to finger-like due to the increased 

rates of solvent/non-solvent demixing and affinity of system to water [133]. 

Similarly in earlier works by Mulder’s [134] and Kim’s [135] groups, it was found that the 

inter-diffusion speeds increased with increasing NPs content. They explained this by two 

factors. The first was the increased affinity of NPs to water leading to enhanced diffusion of 

water to the cast film. The second factor was the negative influence of the particles on the 

interaction between polymer and solvent molecules, leading to the facilitation of demixing. 

These two factors were predominated by the viscosity increase at higher concentration 

ranges. 

In the study conducted by Wu et al., they increased the concentration of functionalized TiO2 

(30 nm in diameter) from 0 to 0.7 wt% in a PES/DMAc/water system with the PES 

concentration set at 15 wt%. Results showed a peak hydraulic permeability at 0.5 wt% TiO2. 

This was due to the increased hydrophilicity due to NPs surface hydroxyl and amino groups. 

Consequently, membrane fouling performance with Bovine Serum Albumin (BSA) showed a 

flux decline of 55% with 0.5 wt% NPs compared to 87% decline for the pristine membrane. 

However, a further increase in NPs amounts led to the formation of aggregates which in 

turns induced mechanical defects in the membrane matrix. These aggregates caused pore 

blocking and reduced permeability. Similarly, membrane mechanical properties were 

negatively affected: the breaking strain and strength increased initially, reaching a peak 

value with 0.5 wt% TiO2 followed by a drastic decrease with higher NPs concentrations 

[136]. 

Razmjou et al. used silane modified TiO2 NPs in 2, 4 and 6 wt% in a PES/PVP/DMAc system 

using a VIPS/LIPS process at 50% RH. Their results showed a superior fouling performance 

for the 2 wt% composition. Flux recovery after the BSA fouling test rose from 57% to 84%. 

This was due to the increase in hydrophilicity and the alleviation of surface roughness. They 

also pinpointed the increase in membrane fouling resistance with NPs concentration beyond 



25 
 

2 wt%, suggesting that particles aggregation, and the resulting increase in surface 

roughness, was the reason for this loss of performance [137]. 

With respect to particle size, Cao et al. demonstrated that the smaller the particle size of 

TiO2 NPs, the higher was the antifouling effect. According to AFM measurements, 

membranes with smaller particles had lower surface roughness and smaller mean pore 

diameters [138]. 

F. RH degree and exposure time 

Considering that water is the most commonly used non-solvent, the non-solvent vapor 

pressure is often expressed in percentage relative humidity (RH %). The exposure time to RH 

degree affects the pores interconnectivity and the thermodynamic state reached before 

final coagulation under LIPS. Thus, exposure time represents a key factor for determining 

the final membrane morphology. With very short exposure time, membrane is barely 

affected by the non-solvent vapor and morphology represents merely the influence of the 

coagulation bath. Generally speaking, long exposure time allows polymer-lean phase 

coarsening and hence more porous morphology. 

Chen et al. tested the effect of the humidity exposure period on membrane morphology. 

They used polymer blend of cellulose acetate (CA)/polyethyleimine with a combined 

VIPS/LIPS process under RH of 95% at 500C. Observation showed that the highest 

permeability was achieved at an exposure time of 2 min. They concluded that increasing the 

exposure to humid air resulted in further polymer-lean coarsening which increased the pore 

size, yet, polymer-rich phase coalescence decreased pore connectivity and final membrane 

permeability [139]. Similar observation was reported by Shin et al. using PES with 2-

methoxyethanol [140].  

Sun et al. investigated the effect of different VIPS parameters on cellulose nitrate 

membranes in acetone. The increase of RH exposure time initially increased the water flux, 

but, with the further increase of exposure time beyond 2 minutes, the membrane flux 

significantly declined. This was explained in terms of the evaporation rate of acetone. At 

lower RH values (50 to 60 % RH), acetone evaporation was the driving factor for phase 

separation. Accordingly, increasing the exposure time allowed longer period for polymer-

lean growth. On the contrary, at RH ranging from 70 to 90%, vapor absorption was 

dominating and increasing the exposure time decreased the pore diameter. This is due to 

the effect of rapid phase separation at high RH values. Beyond a certain period of vapor 

absorption, further exposure to RH allows the polymer-rich phase to coarsen. Subsequently, 

pore connectivity and size decreased. Strikingly, the largest pore diameters were recorded 

when solution was exposed to 70% RH for 1 or 2 minutes. The final pore size decreased with 

either increasing or decreasing RH values. This is because acetone evaporation and water 

vapor absorption acted synergistically to increase the polymer-lean nuclei growth at 70% RH 

[141]. 
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Caquineau et al. studied the effect of RH values on membrane final morphology. They 

measured the mass variation of the casting solution while it was subjected to various RH 

conditions. Initially, the total mass of the solution increased due to the inflow of water 

vapor to the cast film. However, after around 30 minutes at 30% RH, the mass started to 

decline presenting the simultaneous solvent and water loss from the cast film. Furthermore, 

increasing RH values decreased the rate of solvent evaporation. They also stated that the 

uptake of water vapor, driven mainly by the hygroscopicity of the (NMP) solvent, made the 

system reach the metastable domain where NG was initiated.  However, macrovoid 

formation was inhibited due to the slowness of the non-solvent introduction which made 

the nucleation rate higher than the growth [142]. They also anticipated that at low values of 

RH (27%), the composition crossed the binodal boundary twice. The first time was from 

homogenous state to metastable state due to the imbibing of non-solvent. The second time 

was due to the diffusion of NMP from the lower layers of the cast film to the top layers 

driven by the concentration gradient along with the evaporation of non-solvent from the 

cast film surface, thus resulting in the shift to a homogenous state at the upper layers. 

Furthermore, the migration of NMP to the upper layers decreased the viscosity. This 

allowed the nuclei formed at the upper cross-section to grow relatively larger than those at 

the lower cross-section. It is worth mentioning that during the experiment the air flow rate 

was 2.5 Lmin-1 which was kept constant throughout the experiments and is believed to 

enhance the evaporation from the cast film surface [142]. 

Menut et al. measured the mass transfer of the cast film containing NMP in dry and humid 

environments. Under dry conditions with laminar flow rate of 2.5 Lmin-1, the initial NMP 

concentration declined from 84 wt% to 3.68 wt% in 11 hours at 40 0C. They divided the mass 

transfer curve into three domains. In the first domain, the drying conditions rate was the 

limiting factor. In the second domain, the limitation came from the cast film structure and 

diffusion of solvent from the inner layers. The third domain was limited by the vitrification 

of the polymer, and the mass decrease was negligible. On the other hand, when the 

surrounding environment was humid air, the water inflow dominated the mass transfer. It 

was observed that the total mass increased by 6.72, 18.88 and 54.08 wt% at RH exposure of 

30, 50 and 70%, respectively. It is important to note that this increase in weight reflected 

the higher water vapor absorption to solvent evaporation [143]. This agrees with the 

observations of Matsuyama et al. for a PVDF/DMF system. However, the percentage 

increase in weight was around 5 wt% in the latter case [144]. Thus, the increase of 54 wt% 

represented in Menut’s work was justified by the higher effect of hygroscopicity of NMP to 

absorb water vapor. Moreover, the mass increase of pure NMP solution under humid air 

was found similar to that in the polymer solution. This observation verified that a liquid 

layer of NMP was formed over the cast film and that the mass increased respective to the 

liquid layer uptake of water vapor regardless of the underlying cast film viscosity. This was 

later verified by Lee et al. work which showed that vapor absorption was similar in different 

binary solutions of PSF/NMP [76]. 
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Furthermore, Matsuyama et al. exposed PVDF cast films to 10%, 20% and 40% RH. Their 

developed model assumed that the system did not reach the binodal boundary when 

exposed to 10% RH, and thus, the membrane formed was dense. However, the morphology 

changed to cellular-like and lacy at 20% and 40% RH, respectively. This was due to the 

increase in vapor absorption with the increase in RH degree and the system crossed the 

spinodal boundary with 40% RH exposure [144]. 

On the other hand, Park et al. showed that increasing RH from 70% to 90% decreased pore 

sizes for a PS/NMP/water system. They proposed that lower RH implied slower phase 

separation and more time for pore growth [145]. A comparable observation was made by 

Caquineau et al. for their work with polyetherimide under various RH values.  An increase in 

the number of pores with RH accompanied by a decrease in pore size was observed. They 

highlighted that at high RH, large amounts of nuclei were created. Afterwards, a rapid 

increase in solution viscosity took place, and this hindered nuclei growth [142]. 

Similarly, the CA/acetone system of Atinkaya et al showed a higher rate of pre-precipitation 

of polymer with the increase of RH degree from 25% RH to 50% RH. The results implied that 

this RH increase led to a more asymmetric structure with higher porosity and smaller pore 

sizes. Experiments conducted under forced convection with air blowing over the membrane 

resulted in a completely dense non-porous structure. They indicated that the forced 

convection under 40% RH did not induce phase separation. It is worth mentioning that 

neither the air flow rate nor the direction of the blowing air was mentioned. In addition, the 

time allowed under forced convection was not stated and the cast film was left in air to 

precipitate (i.e. VIPS/EIPS process) [146]. 

Tsia et al. tested the effect of exposure to humid air during the passage of a hollow fiber 

membrane through the air-gap. It was found that with increasing the air-gap length (i.e. 

exposure time), the macrovoid formation near the outer surface disappeared, reappeared 

and disappeared once more. The formation of macrovoids was a result of the instantaneous 

demixing in the coagulation bath. Yet, when the exposure to humid air increased with 

increasing the air-gap distance, the cast solution formed a surface gel layer which inhibited 

macrovoid formation in the immersion precipitation step. Upon further increasing the gap 

distance, the polymer gel had enough time for relaxation allowing instantaneous demixing 

to take place in the coagulation bath.  Consequently, the macrovoids reappeared. Further 

increase in the gap distance induced full phase separation before the hollow fiber solution 

reached the coagulation bath. As the phase separation process in the air-gap was not 

instantaneous, macrovoid formation was inhibited [147]. As the RH value increased, the 

distance required to re-suppress macrovoid formation became shorter. In other words, 

increasing RH resulted in the rapid induction of phase separation in the air gap. Based on 

the mass variation curves, the calculated fluxes of water intake were 4.4×10−7, 2.5×10−6, and 

4.8×10−6 gcm-2s-1 for relative humidity of 30%, 70%, and 90%, respectively.  They also 

measured the mass exchange by determining the mass variation of the cast solution with 
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time. It depicted that initially, water vapor uptake dominated the NMP evaporation for the 

PS/NMP system. They investigated the effect of vapor absorption and concluded that at 

short exposure time, solvent evaporation could be neglected especially in case of low vapor 

pressure solvents such as NMP (boiling point 202 0C). This agrees with other results already 

reported in the literature [148]. As the exposure time to humid air never exceeded 20 

seconds (with the longest air-gap distance), the solvent evaporation influence was neglected 

[147].  

Gao et al. showed that by a combined VIPS/LIPS process the brominated polyphenylene 

oxide (BPPO)/NMP/water system could successfully produce membranes with optimized 

high flux and high rejection. At RH of 60%, they tested exposure times from 0.5 to 3 

minutes. It was observed that the flux increased consistently with the exposure time. They 

used ATR-FTIR to monitor the water absorption and the possible solvent evaporation. The 

ATR-FTIR spectra showed that the longer the exposure to humid air, the higher was the 

vapor absorbed by the cast film. They also found that as the rate of vapor inflow was higher 

than solvent outflow, the formation of surface localized high concentration was inhibited. 

Accordingly, the vapor inflow increased with increasing the exposure time. This in turns 

allowed nuclei of polymer-lean phase to grow further with longer exposure, resulting in 

membranes with higher flux values [149]. In addition, increasing the RH increased the 

membrane hydraulic permeability. As the NMP evaporation rate was higher at lower RH 

exposures, the evaporation created higher surface concentration of the polymer, which in 

turn created a dense layer upon immersion precipitation. This dense layer delayed the 

demixing in the inner structure and resulted in membranes with smaller pores. Using only a 

VIPS process, they illustrated that the thermodynamic rate limiting step was the slow 

diffusion of vapor into the cast film. Thus, the concentration profile across the cast film 

thickness was nearly flat. Therefore, the membrane formed had an isotropic cross section 

morphology. In case of VIPS, the decrease in the RH (60 to 30%) increased the pore sizes. 

This was explained by the fact that phase separation proceeded slowly which allowed time 

for nuclei growth and coalescence. 

In 2008, Menut et al. investigated the phenomena of liquid layer formation on the top 

surface under a VIPS process. The Poly(ether-imide) (PEI)/NMP system was used under 

controlled humidity condition (0 to 55% RH). Raman spectroscopy was used to evaluate the 

film thickness and the PEI/NMP ratio. It was found that under dry conditions (0% RH), the 

thickness decreased steadily with time owing to NMP evaporation. On the contrary, at 50% 

RH the results showed initial decrease in film thickness, an increase until 1 hour exposure, 

then further decrease. This reflected three consecutive steps of initial film shrinkage, higher 

rate of water vapor absorption, then the evaporation of NMP and water, respectively [150]. 

Furthermore, they found that the surface liquid layer was formed only after the film started 

to contract. The high mass ratio of NMP/PEI at the surface liquid layer was the reason for 

this observation. Such film shrinkage took place only when phase separation was initiated. 

For instance, at 50% RH, as phase separation started after approximately 4 minutes, no 
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obvious shrinkage or surface liquid layer was observed before this period of time. The water 

accumulated on the surface started to attract NMP from the bulk through percolation. As 

the surface layer was diluted, it caused a delayed gelation of surface polymer and enabled 

the formation of closed cells, and hence, a skin layer was formed [150]. 

Bouyer et al. experiments showed a decrease in pore size with increasing the PEI/NMP ratio 

for a system undergoing VIPS process. Their experiments showed that the decrease of RH 

from 75% to 43% had a significant influence on the pore size near the solution-air interface. 

The phase separation onset for their system was at 5 wt% water concentration in the cast 

solution. Thus, at 75% RH, the system started the phase separation much faster and resulted 

in a low polymer concentration profile near the air interface. On the contrary, at 43% RH, 

the thermodynamic equilibrium between vapor absorption and solvent evaporation was 

reached at water concentration of 4 wt% (after 350 seconds at 400C). In other words, the 

system reached equilibrium between air and cast film before phase separation was induced 

[151]. The driving force for water absorption was strongly reduced at the state of 

equilibrium, and solvent evaporation predominated. As the NMP started to evaporate, the 

polymer concentration near the interface increased resulting in smaller pores near the top 

surface. They postulated that if the mass transfer is to be governed by convective air 

laminar flow, the absorbed water at state of thermodynamic equilibrium would start to 

evaporate as long as phase inversion was not initiated. This evaporation would be 

concomitant to solvent evaporation and based on their respective evaporation rates, the 

solution might stay in the homogenous region. The minimum RH to induce solvent demixing 

was 27% RH. Below this value, water absorbed by the system was too low to induce phase 

separation [151]. 

G. Effect of Convection 

Some of the physically meaningful mechanisms for membrane skin formation were 

proposed by Pinnau et al. under a combined EIPS/LIPS process. They stated that the 

formation of ultrathin skin has four main underlying factors, namely:  

 The cast solution has to be of a ternary system with the solvent vapor 

pressure higher than the non-solvent. 

 Cast solution composition should be as close to the binodal boundary as 

possible. 

 During the evaporation process and before liquid quenching, the solvent 

evaporation should be assisted with a convective gas flow across the cast 

membrane. 

 The LIPS step should take place using a strong non-solvent. 

They proposed that low convective dry gas speeds would enhance solvent removal at the 

cast film interface allowing the system composition to reach the metastable region. Higher 

speeds would move the composition further to the unstable region initiating SD process. As 

the polymer content in their system was more than 10 vol%, the composition was well 
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above the critical point. Consequently, the NG process took place through the nucleation of 

a polymer-lean phase (i.e. non-solvent nuclei) before the system reached the unstable state. 

Although the NG followed by SD is well known to produce membrane with nodular 

structure, they ascribed the top skin layer formation to the surface tension exerted by non-

solvent nuclei created at NG period [152]. This tension arose from the curvature of the 

interstitial polymer-lean nuclei which could maximally apply a capillary pressure of 4.1 x 107 

dynes/cm2 based on Young-Laplace equation for complete wetting [153]. The capillary 

pressure exerted by the non-solvent nuclei is opposed by the polymer-rich phase modulus 

which is dependent on polymer vol%. The nodules calescence would only take place if the 

capillary pressure of the interstitial polymer-lean phase exceeded the polymer-rich phase 

modulus. Upon solvent evaporation, if the composition reached PS concentration of 50 – 70 

vol% at the top layer, polymer-rich phase would have a modulus larger than the capillary 

pressure. As a consequence, nodules coalescence will fail and top layer would have pores 

with various sizes. 

In contrast to the effect of surface tension, Ismail et al. demonstrated that the dramatic 

increase in top layer polymer vol% might also create a skin layer. They tested the effect of 

applying forced convection using nitrogen to a cast film with a flow rate of 4 Lmin-1. They 

found that the forced convection increased the rate of solvent evaporation leading to the 

migration of more solvent from the inner cast film layers. After a while, a skin layer was 

formed as the polymer concentration per unit volume of cast film was dramatically 

increased due to solvent loss. Further to that, the skin layer thickness increased with 

increasing the residence time under forced convection [154].  

Yip et al., comparing systems with various miscibility gaps, illustrated that a PS/NMP/water 

system had one of the lowest miscibility gaps, which reflected the higher probability for 

phase inversion to take place at lower polymer concentrations. They also reckoned that for 

NMP and DMF solvent evaporation were negligible and systems with such solvents would 

continue to absorb water vapor. The model results showed that phase separation was not 

likely to occur at a RH < 50%., as the calculations showed an induction time of more than 24 

hours [155]. They tested the effect of forced convection with air velocities ranging from 50 

to 2000 cm/s. It was seen that increasing the air speed increased the evaporation rate at 

98% RH, and hence, the phase separation was induced earlier. Times taken for solution 

precipitation were 60 seconds and 19 seconds for 50 and 2000 cm/s air speeds, respectively. 

Furthermore, the high air speed of 2000 cm/s created thinner skin as compared to 

membranes subjected to lower air speeds. The simulation showed that time elapsed until 

induction of precipitation was directly proportional to initial film thickness and initial 

polymer concentration. The increase in polymer concentration caused a decrease in water 

uptake by the system, which prolonged the time to reach precipitation. In addition, the 

critical humidity was lower for systems with larger miscibility gaps. 
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Likewise, Khare et al. showed that the mass transfer could dramatically increase up to 10 

folds with humid air blowing across the membrane. They proposed a model to evaluate the 

mass transfer of water vapor to a cast film made of PES/PVP/NMP/water. They specifically 

chose PES as it has a high glass transition temperature of ca 220 0C. Based on an earlier work 

by Caquineau et al. discussed above, the NMP evaporation under 70% RH became 

significant only after 3 hrs (NMP vapor pressure is <1 mmHg) [142]. Thus, the influence of 

NMP evaporation was neglected in the proposed model as the exposure time was limited to 

a few minutes. They assumed that under quiescent conditions, the mass transfer of vapor 

was only affected by the degree of vapor diffusion [156]. 

Khare et al. concentration profiles showed a steep increase of NMP concentration at the 

cast film-air interface. However, the minimum concentration of NMP was a few µm below 

the top surface. In contrast, the polymer concentration was at its minimum value at the 

interface affected by the dilution caused by NMP migration to the top. They systematically 

increased the mass transfer by circulating air in the humidity chamber. Hence, the Reynolds 

number and mass-transfer Nusslet numbers increased. Consequently, the cloud point was 

reached in 1 second when solution of 15 wt% PES was subjected to a mass transfer 

coefficient of 0.0027 kgm-2s-1. They also demonstrated that the amount of water required 

for the system to reach the cloud point decreased with the increase in PES concentration. As 

the PVP concentration increased, the top surface dilution was higher because NMP and 

water have higher affinities to PVP than PES. At low mass transfer rates (low convection 

force), the cast solution whole cross section reached the cloud point. While at forced 

convection condition, the top layer reached the cloud point long before any changes took 

place at the sublayers of the cast film. Accordingly, the bulk morphology would be mainly 

controlled by the coagulation bath conditions and cast solution viscosity [156]. 

As a conclusion, the VIPS process is an outstanding technique to tailor and manipulate the 

membrane morphology. Indeed, the number of process parameters and the influence of 

each variation is the reason for the great potential of the VIPS process. Albeit this is 

advantageous, it is complicated to precisely point out the effect of each individual 

parameter on membrane final morphology when there are multiple interacting variables. 

More specifically, when VIPS is combined with LIPS, it is still unclear which process 

dominates the phase separation due to the rapid interactive changes that take place. Thus 

more work is needed to ameliorate our understanding of this combined process. 

2.2 Thin film nanocomposite membranes 

When the Loeb-sourirajan membrane was developed, it was generally acknowledged that 

having a dense-thin skin layer on top of highly porous support is advantageous for 

separation processes. Afterwards, the concept of interfacial polymerization started back in 

1965 when Morgan introduced the viability of polymerization process to take place at the 

interface between aqueous and organic solutions of monomers [157]. More promising 

results were demonstrated by Cadotte et al. using modified interfacial polymerization 
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technique (IP) to optimize polymerization process on the porous substrate [158]. However, 

market interests in the typical asymmetric membrane was still high, as it is fabricated in a 

one step process and could better withstand high chlorine content feed solutions [159]. TFC 

membranes key feature that make them competitive to asymmetric desalination 

membranes is that each layer could be tailored independently from the other. Membranes 

with high salt removal, high hydraulic permeability, mechanical strength and compression 

resistance could be fabricated based on application requirements.  

Optimization for the active layer includes selectivity, chlorine and fouling resistance. On the 

other hand, the support layer plays a major role in solution flow resistance and compression 

resistance. Nevertheless, more efforts have been devoted for the polyamide active layer 

development as compared to the support layer. Recently, increased attention occurred to 

the effect of sub-layer on the overall process. 

2.2.1 Influence of support layer morphology 

The support layer notably affects the hydraulic permeability of TFC membranes. The water 

withdrawal to the membrane matrix increases with the support layer hydrophilicity, and 

thus, the overall membrane flux increases. Yet, with too high hydrophilicity, the PA layer 

attachment to the substrate is weakened. The most common polymer used for support 

membrane is PES. The feasibility of modulating the pore size of PES membranes renders 

these an attractive option for TFC support [160]. The support layer structure must 

compromise between having pore sizes large enough to avoid additional resistance to water 

flow and small enough to allow a smooth gradient in pore diameter from the selective skin 

to the support layer inner structure. 

 Additionally, the support layer has a large contribution to fouling resistance, firstly, through 

the support layer surface properties which affect roughness and PA layer thickness, and 

secondly, with the possible clogging of the support layer inner pores when accessed by small 

foulants that escape the top active layer. Both implications have a high relevance to fouling 

reversibility and resistance [161]. Furthermore, isotropic support layers add depth filtration 

properties to the TFC. 

To improve solute selectivity, researchers tried to increase the active layer stability and 

integrity by modifying the support membrane. One approach used by Oh et al. was to 

fabricate the polyamide layer on the polyacrylonitrate using NaOH that created ionic bonds 

between the two layers, hence increasing stability [162]. Singh et al., on the other hand, 

studied the influence of the support pore sizes on PA stability [163]. They found that the 

membrane with smaller pore diameters was more efficient in rejecting solutes. They 

attributed their findings to the increase in the active layer thickness with the decrease in 

pore sizes due to the lower penetration of the PA layer into the substrate.   

Gosh and his coworkers comprehensively studied the influence of supports with different 

pore sizes (30 to 70 nm), different degree of hydrophilicity and surface roughness on the 
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formed PA layer [164]. Based on the proposed mechanism of PA layer formation, both 

permeability and surface roughness increased with support layer pore diameters for 

hydrophilic membranes. Conversely, for hydrophobic membrane supports, the small pore 

diameter was almost impermeable. Still, the increase in pore diameter of the support layer 

allowed the enhancement of permeability of the TFC. TFC membranes made with 

hydrophobic supports had intermediate surface roughness. 

Other researchers improved the support membrane’s performance through additives. 

Fathizadah et al. used PVP and PEG with PES membranes to increase hydrophilicity [165]. In 

this respect, the additives introduced hydroxyl and ether groups, which allowed additional 

hydrogen bonding with the PA. This in turns increased the PA layer stability and integrity. 

Another approach was undertaken by Pendergast et al. where zeolite-A was added to both 

layers [166]. Their results showed enhancement of solute rejection and permeability. Zeolite 

composite support also showed minimal flux reduction after compaction, as compared to 

pristine PSF support. Furthermore, Cho et al. used carboxilated PSF to increase polymer 

intrinsic wettability [167]. Similarly, Wang et al. used PES blended with sulfonated PSF that 

successfully increased overall flux [168]. 

Han et al. tested the addition of sulfonated poly (ether ketone) (SPEK) to PSF cast solution to 

prepare more hydrophilic and sponge-like supports [169]. Their results demonstrated that 

the sponge-like morphology increased the membrane mechanical strength. They tested the 

mechanical strength with respect to elongation at break of the membrane. The increased 

SPEK content increased the overall TFC membrane flux due to increased support membrane 

hydrophilicity. 

Chung et al. compared a commercial isotropic PVDF support with anisotropic support of PES 

blended with sulfonated polysulfone (SPSF) [168]. Their results concluded that the PA layer 

could not form an intact film on the PVDF substrate with 100 nm pore diameter. This is due 

to the relatively large pore diameter which could not effectively support the PA. 

Accordingly, PES/SPSF asymmetric support was more efficient for TFC membrane formation. 

Another approach for support layer enhancement is through the addition of inorganic NPs. 

Sotto et al. showed the effect of TiO2 NPs addition to PES support membrane at NP 

concentration up to 0.5 wt% [161]. They illustrated that as the NPs concentration increased, 

the hydrophilicity and flux increased. This suggested that a possible enhancement strategy 

for TFNC membranes would be the incorporation of NPs in the support layer. 

2.2.2 Synthesis of TFC active layer 

The process of IP typically comprises the addition of an aqueous solution of aliphatic or 

aromatic diamine to an organic solution of reactive acid chloride. The most commonly used 

monomers for IP are m-phenylenediamine (MPD) and trimesoyl chloride (TMC). This system 

was found to form the most successful PA for TFC membranes [170]. Many literature 

reports showed the superiority of TFC membranes based on a MPD/TMC PA layer. However, 
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the reported performances show significant variations: for instance, permeability ranged 

from 9.4 L/m.hr [171] to 82 L/m.hr [172] with rejection ranging from 95% [173] to 98.4% 

[174] to NaCl solution. On the other hand, comparable commercial membranes from 

Hydranautics [175], General Electric [176] and Dow FilmTec [177] show permeability values 

of more than 40 LMH and rejections higher than 99.5%. 

Soroush et al. studied the effect of the reaction time and curing temperature on 

microporous PES supports [178]. They used 2 wt% MPD aqueous solution and 0.1 wt% TMC 

in n-hexane. They demonstrated that increasing the reaction time from 15 sec to 180 sec, 

flux and surface roughness consistently decreased, whereas salt rejection increased. A 

similar effect was shown by Sotto et al. [161]. 

Zhang et al. investigated the effect of interfacial polymerization method on the final PA film 

stability. They investigated different parameters including: method of aqueous and organic 

solution application on support membrane surface, and curing time of the TFC membrane 

after the process and prior to testing [179]. Membrane clamping in a glass frame was found 

to be the best method to spare monomer solutions consumption. However, taping the 

membrane on a glass plate trapped the hexane vapor on the underside of the membrane 

and resulted in some lateral tension. Thus a uniform PA layer was difficult to form. They also 

found that 8 minutes curing time was optimal for cross linking and longer curing times 

initiated the shrinkage of the PA layer leading to layer defects.  

Ghosh et al. evaluated the addition of Camphor sulphonic acid (CSA) and triethylamine (TEA) 

[174]. TEA is known as an acylation catalyst that acts by removing hydrogen halide formed 

during amide bond formation to avoid possible acid hydrolysis of the amide bond during the 

curing process [180]. Furthermore, the CSA was used as a wetting agent that increased the 

amine solution absorption by the support membrane [181]. They compared different 

organic solvents and found that with n-hexane the TFC formed had the highest permeability, 

rejection and comparably lowest surface roughness. This was attributed to the combined 

diffusivity and solubility of the MPD from the aqueous solution to the organic solvent. In the 

formation of the PA layer, two monomer solutions come in contact together and the 

polymerization takes place at the interface. However, the amine monomer has to diffuse to 

the organic solution of the acid chloride as the acid chloride has relatively poor solubility in 

aqueous solution. Accordingly, the amine monomer concentration in aqueous solution is 

usually higher than the acid chloride in the organic solution in order to induce partitioning of 

the amine monomer. The diffusion of the amine monomer to the organic solution is 

influenced by the organic solvent viscosity, surface tension and amine monomer solubility in 

the organic solvent. These parameters showed good compromise when n-hexane was the 

organic solvent and the amine monomer was MPD; therefore, an intact thin PA layer was 

formed. 
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Chapter 3 : Theoretical Background 
 

This chapter aims at highlighting the basic principles of the instrumental analytical and 

characterization techniques used in the conducted research work. Therefore, scanning 

electron microscopy (SEM), capillary flow porometer (CFP), particle size analyzer, surface 

charge analyzer and contact angle tool will be briefly discussed. 

3.1. Scanning electron microscopy 

The scanning electron microscopy (SEM) is one of the most versatile techniques used for 

imaging of micro and nano features with high resolution. The benefits offered that the SEM 

holds over light microscopy are based on using a high energy electron beam instead of a 

light source. Thus, it achieves high resolution relying on the short wavelength of the electric 

beam. In 1930’s, the viability of using the electron beam, positioning the detector and signal 

amplification was established. Since then, various developments to the instrument have 

been addressed to achieve higher resolution reaching 1nm by the modern SEM systems 

[182]. 

The electron beam targeted at the specimen creates various interactions that generate 

charged particles and photons. Once the generated species are detected, the out coming 

signal is amplified to generate an image. The interaction between the primary electrons and 

specimen undergoes two major processes, either elastic or inelastic scattering. Elastic 

scattering takes place when primary electron hit an atomic nucleus or outer-shell electron 

losing negligible energy. As a result, the primary electron is deflected and if the deflection 

angle is higher than 900, the electron is then called a back scattered electron (BSE). On the 

other hand, the collision might result in a significant energy loss, which is transferred to a 

sample electron called secondary electron (SE). The SE is then set in motion to either leave 

the sample or scatter. If the SE comes from an inner orbital, it leaves an electron hole. The 

electron hole is then filled by an outer orbital electron and the energy difference is released 

in the form of X-ray or electron ejection (Auger electron) [183]. 

As different generated electrons have different energies, they have different emission 

depths. The SE and Auger electrons have relatively low energies and thus small mean-free 

paths in the sample and typically generated from smaller depths. In addition, the generated 

particles and photons have different relevance in application, for instance, BSE and SE are 

used for imaging whereas Auger electrons and X-ray are used to collect information about 

sample composition. 

The depth at which this cascade of interactions take place is dependent on the sample 

electron density expressed in its atomic number, the beam energy controlled by potential 

difference across the vacuum column and the incident beam angle. Hence, the interaction 

depth increases with the increase in beam energy or the decrease in the sample electron 

density. 
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As SEs are emitted from a smaller depth, they are very sensitive to the topography of the 

sample, and hence, most widely used in imaging. The SEs also have a smaller mean free 

path, therefore generate better resolution images. The ratio between the number of SEs 

emitted and the incident electrons is known as SE emission coefficient (SEEC). Gold for 

instance has a SEEC of 0.2 which creates relatively higher number of SEs per incident beam 

electrons. Thus, it is prefed as a coating material for nonconductive samples. On the other 

hand, BSEs can give information about the composition and the topography of the sample. 

Yet, BSEs are preferred in samples with smooth surfaces as some surface features can cause 

shadowing and the image may then show some artifacts. The BSEs generation is higher with 

samples of high atomic number. Those samples have highly positive nucleus; accordingly, 

incident electrons are more likely to bounce back with a large deflection angle [184]. 

The instrument has a beam column containing electron gun, condenser lenses, objective 

lens and apertures. The beam column is responsible for beam emission and focusing. The 

machine also contains sample stage and signal processing system connected to the 

detectors. The beam column, detectors and sample stage are suited in a vacuum chamber 

as shown in Figure 3.1. 

 

Figure 3.1: Schematic presentation of SEM [184] 

There are three main types of electron guns, namely, the thermionic, lanthanum hexaboride 

(LaB6) and field emission (FEG). The thermionic generates an electron beam through heating 

the cathodic filament. On the other hand, with the FEG, electrons are extracted from a 

tungsten single-crystal tip (radius less than 100 nm) using a strong electric field. Vacuum is 

required to avoid incident electrons scattering upon interaction with gases atoms. Although, 

FEG gives better resolution, it requires an ultra-high vacuum to assure that the tip is free of 

contaminants and oxide [184]. 
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After beam generation, the electron beam passes through electronic lenses to demagnify 

the beam and focus it on the specimen. Once incident electrons reach the samples it 

interacts with sample atoms and loses its energy. Afterwards, charge starts to accumulate in 

the sample if not discharged to a ground. Accordingly, nonconductive samples are usually 

coated with platinum, gold-palladium or carbon to allow discharging. In this study, samples 

are polymeric; hence, all samples were sputter-coated to allow better imaging. 

3.2. Capillary flow porometer 

Capillary flow porometer (CFP) is a technique used to measure an approximation of the pore 

diameter of porous materials. It depends on the gas flow/liquid displacement method to 

evaluate the pores structure. The gas flows through the porous sample before and after 

wetting. The flow rate is determined against an increasing pressure using rotameter. The 

difference in the flow rate before and after wetting stands for the resistance of the wetting 

solution to the pressure applied. This resistance decreases as the pore diameter increases. 

Accordingly, the software calculates the pore diameter from the resistance of dewetting 

process considering the wetting liquid surface tension. Although, this is a straightforward 

measurement for cylindrical pores, irregular pores are also expressed in diameter equivalent 

to a cylindrical pore with similar perimeter to area ratio [185].   

A critical element in the CFP technique is the choice of a suitable wetting liquid. The liquid 

has to possess low surface tension, so as to spontaneously wet the pores. The required 

pressure for purging the liquid from the pores can be expressed by the following equation: 

Equation 3:      
        

 
  

where P is the pressure required to displace the liquid,   is the liquid/solid surface tension, 

  is the contact angle and d is the pore diameter.  

According to the previous equation, the wetting liquid in the largest pores would be purged 

at the lowest pressure. However, as the pores are practically tortuous, liquid is only purged 

when the pressure is high enough to displace it from the most constricted section of the 

pore structure. Yet, the results are considered satisfactory in water applications; as the most 

constricted area of the pore structure has the major influence in flow resistance. Thus, 

regardless of the pore opening at the membrane surface, the results represent the empirical 

population of each pore diameter (constricted area diameter), which is considered as the 

average pore diameter for each membrane for a comparative overview. 

3.3. Surface charge analyzer 

Membrane surface charge originates either from a surface functional group or the 

adsorption of charged species. Membrane surfaces that lack dissociating functional groups 

can acquire surface charges based on Stern’s theory of preferential ion adsorption. The 

adsorption creates an electric double layer on the solid surface. Thus, upon the flow of a 

pressure-driven neutral solution a charge transport takes place by the transfer of the 
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surface adsorbed ions. Consequently, a current is created which is known as the streaming 

current. Adsorption of water on the surface takes place competitively with ions adsorption. 

Accordingly, membranes of higher hydrophilicities are expected to have lower zeta potential 

[186]. 

 The potential could then be calculated using Helmholtz-Smoluchowski equation: 

Equation 4:         
      

   
    

Where, Ustr is the streaming potential, ϵrs is the relative permittivity of the liquid, ϵ0 is the 

electrical permittivity of vacuum, ζ is the zeta potential, ∆P is the pressure difference, KL is 

the specific conductivity of the liquid and η is the liquid dynamic viscosity [187].  

The instrument measures the electric field generated by the flow of KCl liquid in a gap with 

the gap walls comprising the solid sample. The flow pressure is fixed while the current is 

measured against an increasing PH. 

3.4. Particle size analyzer 

The basic principle of the particle size analyzer is the dynamic light scattering (DLS) process. 

When light encounter a particle of a size larger than its wavelength, light scatters from 

different positions on the particle creating an angular distribution of scattering. On the 

other hand, if light hits a particle with a size smaller than the incident light wavelength, the 

particle will act as a point source of scattered light. However, small particles are not 

stationary in the solution and undergo a random movement known as Brownian motion. 

This random motion brings about two major influences on the scattered light, which are the 

change in frequency and phase. Leon Brillouin was the first to predict a pair of shifts in 

scattered light frequency causing what is known as Brillouin doublets. However, these 

doublets were hard to experimentally observe due to their small shifts from the main light 

frequency. 

On the contrary, phase changes due to Brownian motion were found to be more reliable. As 

the particle undergoes small displacements in a liquid, the scattered light from a 

monochromatic source changes its phase when detected from a fixed position. Although it is 

difficult to measure the light phase changes, it is relatively easier to record the 

superposition and interference of the scattered light. These constructive and destructive 

interferences of the scattered monochromatic light change the intensity which is easily 

detected and analyzed. Thus, an algorithm called autocorrelation was developed to evaluate 

the scattered light in a time domain. Using autocorrelation, the degree by which the 

function changes with time relates to the movement of particles in the solution. This motion 

is referred to as the diffusion coefficient is dependent on the particle size according to 

Stokes-Einstein equation as follows [183]: 
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Equation 5:      
  

    
  

 Where D is the diffusion coefficient, K is the Boltzmann constant, T is the temperature in 

degree kelvin, R is the particle radius and η is the liquid viscosity. 

A DLS apparatus has a laser source, photo detector, sample container and photo correlation 

electronics as shown Figure 3.2. The laser provides monochromatic light with minimum 

noise and high coherence wavelength. The detector should be sensitive enough to 

determine even the slightest scattering of the laser light. On the other hand, if the laser is 

quite powerful, a filter should be added to avoid detector saturation with the scattered light 

and would then be able to determine scattering fluctuations. The two main types of laser 

sources are gas and semiconductor diode lasers.  He-Ne gas laser is used for high scattering 

samples; while for low scattering samples a more powerful laser may be required, such as 

Argon laser [183]. 

 

Figure 3.2: Schematic presentation of DLS device 

The photodetector is typically a photomultiplier tube. The tube consists of a window to 

allow photons to enter a vacuum sealed tube and photocathode made of a thin 

photoelectrical material that generates electrons upon encountering an incident photon. 

Inside the vacuum tube, the generated electrons are accelerated to dynode which generates 

secondary electrons multiplying the incident electrons from the photocathode. The process 

continues hitting consecutive dynodes until the secondary electrons finally reach the anode 

with amplified signal. Finally, the signals are transmitted to the autocorrelation electronics 

to process the data [188]. 

3.5. Contact angle measurement 

Membrane interfacial contact angle plays a key role in evaluating the membrane efficiency. 

It provides valuable information about degree of biocompatibility, coating efficiency for 

coated membranes, quality of adhesion, and degree of wetting in water applications [189]. 
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Even more, with proper interpretation, the contact angle could drive conclusions about the 

membrane surface chemistry considering polar and non-polar surface functional groups. 

Although it is referred to as the simplest approach to evaluate surface free energy, it 

requires effort to precisely evaluate solid surfaces due to the possible reorientation of 

surface groups when contacted with a liquid [190].  

There are two thermodynamic equilibrium states, namely, complete wetting and partial 

wetting. Complete wetting occurs when liquid forms a thin layer upon contacting with solid 

surface (contact angle = 0). On the contrary, the liquid forms a drop shape on the solid 

surface with partial wetting state (contact angle > 0). The drop shape is generally governed 

by two contradictory forces which are the interfacial tension and gravity. Interfacial tension 

tends to make a spherical drop, while gravity acts toward flattening the liquid on the solid 

surface. The final drop shape could be described by Laplace equation as follows: 

Equation 6:       (
 

  
 

 

  
)  

Where, ∆P is the pressure difference at the interface, Ɣ is the liquid interfacial tension and 

R1, R2 are the two radii of the drop curvature as shown in Figure 3.3. 

 

Figure 3.3: Representation of Young’s equation for contact angle 

However, three interfacial forces interact when a drop is settled on a solid surface 

corresponding to three interfacial tension expressions; which are, the solid-liquid (Ɣsl), solid-

vapor (Ɣsv) and liquid-vapor (Ɣlv) [191]. The equilibrium between the three tensions 

determines the contact angle (θe) using Young’s equation [192]:  

Equation 7:          
       

   
 

According to Young and Laplace equations, the contact angle determines the degree of 

wettability of solid surfaces. Thus the instrument uses a straight forward procedure to 

determine the angle of contact between the drop and the solid surface. Firstly, a precise 

drop volume is dropped on the solid surface. Then a video camera captures the drop at a 

microscale. The operator afterwards adjusts the baseline at the interface between the drop 

and the solid. Consequently, using the ellipse equation, the software proposes an imaginary 
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circle and calculates the contact angle by drawing tangents to both sides of the drop. The 

contact angle is the average between the angles at both sides of the drop. 

 There are two main approaches in determining surface contact angle: the sessile drop and 

captive bubble. As the contact angle is in principle the outcome of competing interfacial 

forces between different phases, the difference between the two methods is in the type of 

droplet phase and the surrounding phase, as shown in Figure 3.4. In the sessile drop 

method, a liquid droplet is settled on the surface where the surrounding is typically air. On 

the other hand, the captive bubble method uses air droplet subjected to the surface which 

is submerged in a liquid.   

 

Figure 3.4: Images showing the adjusted baseline, imaginary circle and the tangents 
drawn to calculate the contact angle using sessile drop method (a) and captive bubble 

method (b) 
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Chapter 4 : Materials and Methods 

4.1. Materials and supplies 

PES powder (Ultrason® E 6020 p) purchased from BASF (Germany) was dried at 70C for 6 

hours prior to use.  N-methyl-2-pyrrolidone (NMP) purchased from Merck (Darmstadt, 

Germany) was used as solvent while the non-solvent was Triethylene glycol (TEG) purchased 

from Arcos (Geel, Belgium). The pore forming hydrophilic additive Pluronic® PE6400 

(MW∼2900 g/mol) was obtained from BASF (Ludwigshafen, Germany). Nitrogen gas 

purchased from Messer Griesheim GmbH (Krefeld, Germany) was of ultrahigh purity. 

Filtration tests were conducted using latex beads polystyrene (LB3) with mean particle size 

of 300 nm purchased from Sigma–Aldrich. Materials for nanoparticles (NPs) surface 

modification purchased from Sigma-Aldrich were Ɣ-aminopropyl triethoxysilane (purity 

≥98%) and absolute ethanol (purity ≥99.8%). Titanium dioxide (TiO2) powder purchased 

from Sigma-Aldrich with a mean particle size of ≤ 25 nm.  

Chemicals for polyamide formation included N,N-Diethylethanamine (TEA) purchased from 

Merck-Millipore (purity ≥99%), and D(+)-10-Camphorsulfonic acid (purity ≥99%), m-

Phenylenediamine (purity ≥99%) and 1,3,5-Benzenetricarboxylic acid chloride (purity ≥98%) 

from ACROS Organic, as well as, anhydrous hexane (purity ≥95%) from Sigma-Aldrich. 

4.2. Membrane fabrication 

The work was conducted at Prof. Mathias Ulbricht laboratories in the department of 

Technical Chemistry, Universität Duisburg-Essen, Germany. Other experiments took place at 

Prof. Ramadan’s laboratory in the department of chemistry, The American University in 

Cairo and Ass. Prof. Khalil’s laboratory in the department of physics at Fayoum university.  

4.2.1. Equipment used: 

Deionized water used throughout the study was generated from Milli-Q system from 

Millipore (Burlington, MA, USA). An ultrasonic homogenizer for NPs dispersion was 

Sonoplus® HD 3200 (Bandeline, Germany). Flowmeter to measure the air flow rate 

ALMEMO® 2590 (Ahlborn, Germany). Humidifier used to adjust chamber humidity was 

Nordmann steam humidifier (model RC4/DC4, Nordmann Engineering AG, Basel, 

Switzerland). Electro-kinetic analyzer to measure membrane surface charge was SurPASS 

(Anton Paar GmbH, Austria). Dead-end stirred cells used for permeability measurements 

were (Amicon cells model 8010, Millipore Corporation). The NMR spectrum obtained at 

300MHz with DRX 300 (Bruker) using Spinworks 4© (Version 4.1.0.0, University of 

Manitoba). SEM micrographs generated from Quanta 400 FEG environmental scanning 

electron microscope at standard high vacuum conditions after sample sputtering using K 

550 sputter coater (Emitech, UK). Capillary Flow Porometer for pore size measurements was 

CFP-34RTG8A-X-6-L4 (PMI Inc. Ithaca, NY, USA). Contact angle measurements were 

conducted using OCA 15 Plus from (Dataphysics GmbH, Filderstadt, Germany). Stabisizer® 
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was the particle size analyzer from Particle Metrix, Germany. The rheometer used was 

TruGap™ rheometer model Physica MCR 301 (Anton Paar, Germany).  

4.2.2. Cast solution preparation 

Dope solution was prepared by the sequential addition of solvent/non-solvent at the 

desired quantities, followed by Plu. After 30 min of mixing on a magnetic stirrer at 200 rpm, 

PES was added in portions with stirring at 200 rpm till completely dissolved (clear solution). 

The solution was left to release air bubbles for 3 hours before proceeding with casting. 

4.2.3. Nanoparticles addition 

To incorporate TiO2 NPs, at first surface modification was performed to enhance their 

dispersion in the cast solution. The 3 gm of TiO2 was added to a solution of 0.1 gm Ɣ-

aminopropyl triethoxysilane in 100 ml ethanol. The solution was stirred at 200 rpm for 1.5 h 

at 60 0C. Afterwards, the solution was centrifuged and powder was washed with distilled 

water twice and dried at 70 0C for 2 h. Powder was then added to the cast solution in a 

mixing flask and dispersed using ultrasonic horn with amplitude of 70% for 10 min using the 

ultrasonic homogenizer. 

Cast solutions of different compositions were prepared as summarized in Table 4.1. 

Table 4.1: Cast solutions composition and their respective codes 

PES (wt%) NMP (wt%) TEG (wt%) Plu® (wt%) 
TiO2 NPs 

(wt%) 
Solution 

code 

10 30 55 5 - P10T55Pl5 

10 90 - - - P10T90Pl0 

10 85 - 5 - P10T0Pl5 

10 30 60 - - P10T60Pl0 

11 30 55 4 - P11T55Pl4 

13 30 55 2 - P13T55Pl2 

15 30 55 - - P15T55Pl0 

15 30 54 1 - P15T54Pl1 

15 30 50 5 - P15T50Pl5 

15 40 45 - - P15T45Pl0 

15 60 25 - - P15T60Pl0 

15 30 54.99 - 0.01 P15T54.99N0.01 

15 30 54.95 - 0.05 P15T54.95N0.05 

15 30 54.9 - 0.1 P15T54.9N0.1 

15 30 54.5 - 0.5 P15T54.5N0.5 

15 30 54 - 1 P15T54N1 
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4.2.4. Support layer synthesis 

Casting was conducted with in-house built equipment, computer-controlled for casting 

speed which was maintained at 70 mm/sec. A casting knife with 200 µm gap was used for 

casting the dope solution onto a glass substrate. The casting knife was fixed and the glass 

plate moved against the knife. This was placed within a closed chamber with computer-

controlled humidity conditions. Humidity was adjusted to 30%, 55%, 60% or 80% RH (±3%) 

under two convection conditions. The convection was controlled by pumping dry air into the 

humidity chamber. Casting was thus conducted either under free or forced convection 

referring to the dry-air flow rate in the chamber as listed in Table 4.2.  

Table 4.2: Free and Forced convection conditions based on air flow rate 

 
Average flow 

rate (m/s) 
Volume exchange 

rate (m3/h) 

Chamber volume 
exchange rate 
(cycles/min) 

Free convection (Cf) 0.68 1.8 0.97 
Forced convection (C0) 2.62 12 6.45 

 

The flow rate was measured using the flowmeter which was connected to a probe that ends 

with a small fan. The fan was subjected for 2 minutes to the vapor outlets of the chamber 

shown in Figure 4.1 to obtain the average flow rate. The outlets have a total area of 145 cm2 

and the fan diameter was 7 cm. Thus, volume exchange rate was calculated as the total air 

volume escaping the chamber per hour. Subsequently, we calculated the number of air 

cycles where the total chamber volume was exchanged per minute. 
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Figure 4.1: Casting tool with arrows showing the casting process (a) and vapor 
controlling system (b) 

After the determined exposure time, the nascent membrane is drawn to the non-solvent 

water bath kept at room temperature for final precipitation. After 1 hour, membranes were 

transferred to another water bath at room temperature and stored overnight in a new 

water bath to ensure washing out of solvent. For testing and characterization, samples were 

taken from the middle of the formed membrane, and reported data represent the average 

of at least 5 samples per sheet and at least 3 membrane sheets per data point. 

Samples were coded after their respective cast solution and fabrication conditions. Letters 

(P), (T), (Pl) and (N) stand for PES, TEG, Pluronic and nanoparticles, respectively; and were 

subscripted with the concentration used in weight percentage. Also, letters (H) and (C) were 

subscripted with humidity degree and convection conditions, respectively. As the 

convection conditions were either forced or free, the (C) code was subscripted with (f) for 

forced or (0) for free convection. Samples are listed in Table 4.3. 
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Table 4.3: List of cast solutions, fabrication parameters and corresponding membrane 
codes 

Solution 
code %RH 

a Convection 
condition 

Sample code Exposure time 

P10T55Pl5 
30 Forced P10T55Pl5-H30Cf 1 and 5 min 
55 Forced P10T55Pl5-H55Cf 3 min 
80 Forced P10T55Pl5-H80Cf 1 and 5 min 

P10T0Pl0 
30 Forced P10T0Pl0-H30Cf 1 and 5 min 
55 Forced P10T0Pl0-H55Cf 3 min 
80 Forced P10T0Pl0-H80Cf 5 min 

P10T0Pl5 55 Forced P10T0Pl5-H55Cf 3 min 

P10T60Pl0 
30 Forced P10T60Pl0-H30Cf 1 and 5 min 
55 Forced P10T60Pl0-H55Cf 3 min 
80 Forced P10T60Pl0-H80Cf 1 and 5 min 

P11T55Pl4 
Ambient Free P11T55Pl4-H60C0 1 min 

30 Forced P11T55Pl4-H30Cf 1 min 
80 Forced P11T55Pl4-H80Cf 1 min 

P13T55Pl2 
Ambient Free P13T55Pl2-H60C0 1 min 

30 Forced P13T55Pl2-H30Cf 1 min 
80 Forced P13T55Pl2-H80Cf 1 min 

P15T55Pl0 

Ambient Free P15T55Pl0-H60C0 1 min 

30 
Free P15T55Pl0-H30C0 1 min 

Forced P15T55Pl0-H30Cf 1 min 

60 
Free P15T55Pl0-H60C0 1 min 

Forced P15T55Pl0-H60Cf 1 min 

80 
Free P15T55Pl0-H80C0 1 min 

Forced P15T55Pl0-H80Cf 1 min 

P15T54Pl1 

30 
Free P15T54Pl1-H30C0 1 min 

Forced P15T54Pl1-H30Cf 1 min 

60 
Free P15T54Pl1-H60C0 1 min 

Forced P15T54Pl1-H60Cf 1 min 

80 
Free P15T54Pl1-H80C0 1 min 

Forced P15T54Pl1-H80Cf 1 min 

P15T50Pl5 

30 
Free P15T50Pl5-H30C0 1 min 

Forced P15T50Pl5-H30Cf 1 min 

60 
Free P15T50Pl5-H60C0 1 min 

Forced P15T50Pl5-H60Cf 1 min 

80 
Free P15T50Pl5-H80C0 1 min 

Forced P15T50Pl5-H80Cf 1 min 

P15T45Pl0 
30 

Free P15T45Pl0-H30C0 1 min 
Forced P15T45Pl0-H30Cf 1 min 

80 
Free P15T45Pl0-H80C0 1 min 

Forced P15T45Pl0-H80Cf 1 min 

P15T60Pl0 
30 

Free P15T60Pl0-H30C0 1 min 
Forced P15T60Pl0-H30Cf 1 min 

80 Free P15T60Pl0-H80C0 1 min 
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Forced P15T60Pl0-H80Cf 1 min 

P15T54.99N0..01 
30 Free P15T54.99N0.01-H30C0 20 sec 
80 Forced P15T54.99N0.01-H80Cf 1 min 

P15T54.95N0.05 30 Free P15T54.95N0.05-H30C0 20 sec 

P15T54.9N0.1 30 Free P15T54.9N0.1-H30C0 1 min and 20 sec 

P15T54.5N0.5 30 Free P15T54.5N0.5-H30C0 20 sec 

P15T54N1 30 Free P15T54N1-H30C0 1 min and 20 sec 
a
 All values of the percentage relative humidity (RH) are approximated where the system 

adjusted had a narrow range of (+/- 4%)to stabilize the condition. 

4.2.5. Polyamide active-layer synthesis 

 The PA layer was prepared using interfacial polymerization (IP) process. Firstly, the 

membrane was fixed in a home-designed glass frame with paper clips to allow exclusive 

application of aqueous and organic monomers’ solutions to the membrane surface as 

shown in Figure 4.2. Samples of support membrane were 25 cm in diameter with application 

area of 23 cm in diameter. Aqueous solution of 2 g MPD, 4 g Camphor sulfonic acid and 2 g 

Triethanolamine in 100 ml water was poured on the application area and left for 5 minutes. 

During this period, the aqueous solution and monomers were allowed to diffuse through 

the top layer of the support membrane to insure that proper quantity of monomer would 

be available for the IP reaction.  

 

Figure 4.2: Glass frame used for PA application on support membranes 

Afterwards, the solution was decanted from the frame and the frame was flipped over for 5 

min (lag period). During the lag period the membrane surface starts to dry-up through 

draining the extra aqueous solution. Following that, the organic solution of 0.1 gm TMC in 

100 ml n-Hexane was added to the application area and left for 10 seconds, during which 

the IP reaction takes place. Then, the extra organic solution was decanted from the 

application area and the newly formed TFC sample was dried in the oven at 75 0C for 10 

min. It is important to mention that TMC was firstly liquefied using oil bath at 70 0C for 10 

minutes prior to the preparation of the organic solution. This recipe was adapted from 

earlier work of Elsherbiny et al. [193]. 
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4.3. Characterization 

4.3.1. Cast solution viscosity 

Cast solution viscosity was measured using a rheometer. The rheometer used was TruGap™ 

rheometer model Physica MCR 301 (Anton Paar, Germany). The viscosity was determined 

using conical probe (CP 25-2) 24.98 mm in diameter and angle of 2.0020 at a shear rate of 

125 s-1 against an increasing temperature from 20 to 40 0C. 

4.3.2. Particle size analysis 

Particle size analysis was done using dynamic light scattering technology (Stabisizer® from 

Particle Metrix, Germany). The mean particle size of LB3 beads were measured using a 

solution of 100 ppm concentration in deionized water. On the other hand, TiO2 NPs were 

examined using the cast solution containing the TiO2 after sonication to test the dispersion 

quality.  

4.3.3. Membrane hydrophilicity 

Contact angle system was used with the captive bubble module. Membrane samples were 

flipped over and fixed in a glass water container filled with MilliQ water at room 

temperature. An air bubble was then injected from a high precision micro syringe with 

bubble volume of 3 µl. Ellipse equation was used to calculate the contact angle. For each 

membrane sample at least 6 contact angle values, measured at different surface locations, 

were averaged.  

For evaluating bulk hydrophilicity, wettability tests were done where the time needed for a 

5 µl water droplet to disappear was recorded. Once the droplet reaches the membrane 

surface, the OCA software starts tracking the decrease in contact angle values continuously 

until the droplet completely diffuses into membrane pores. The contact angles are then 

drawn against time elapsed, giving an indication for membrane wettability. In order to 

compare different membrane samples, the decreasing contact angle values were 

normalized to the initial value and then curves were recreated and shown as wettability 

curves where curve slope represents a comparative overview of the degree of wettability. 

4.3.4. Membrane cross-sectional morphology 

Membranes top surface and cross-section images were taken by the SEM. For reducing the 

charging effect, membranes were sputtered using sputter coater with gold/palladium (0.5 to 

1 minute). For the cross-sectional morphology, membranes were broken under liquid 

nitrogen prior to sputtering to maintain the integral cross-section morphology. 

4.3.5. Membrane pore size distribution and porosity 

Using a Capillary Flow Porometer, 25 mm of membrane samples were tested for the mean 

pore size and pore size distribution using the “dry up-wet up” model. This model entails 

measuring dry air flow at increasing transmembrane pressure (up to 7 bar) before and after 

membrane pores wetting with 1,1,2,3,3,3-hexafluoropropene (“Galwick”, PMI surface 
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tension 16 dyne/cm). The mean flow pore diameter data points are the average of at least 3 

membrane samples. 

Membrane porosity was calculated using the following Equation 8: 

Equation 8:           
     

        
  

Where Ɛ is the membrane porosity (%), l, the membrane thickness (m), A, the membrane 

area (m2), m, the membrane mass (Kg), and     , is the polymer density (Kg/m3). In our 

study PES was used and     =1400 Kg/m3. 

4.3.6. Membrane surface charge (streaming potential) 

Membrane surface zeta potential was measured using an electro-kinetic analyzer. Two 

samples (20 mm x 10 mm) from each membrane were fitted with a gap cell set at 100 µm. 

The samples were rinsed twice using MilliQ water for 480 seconds at 100 mbar pressure. 

Afterwards, samples were rinsed with 1 mM KCl prior to measurement run. Measurements 

were conducted using 1 mM KCl, whereas, 0.1 M HCl and 0.1 M NaOH solutions were used 

to adjust the pH for conductometric titration. The electro-kinetic analyzer used the resultant 

streaming current to calculate surface zeta potential using Helmholtz–Smoluchowski model. 

All represented points for membrane surface charge are averaged data of 2 measurements 

for each membrane. 

4.3.7. Membrane composition 

The membrane final content of the hydrophilic additive (Pluronic ®) was validated using 

H1NMR. A sample of the dried membrane was dissolved in deuterated dimethyl sulfoxide (d-

DMSO), and then the NMR spectrum obtained at 300MHz. The content of Plu® was 

estimated by normalizing the integrated peaks corresponding to the PEG repeating unit (4H) 

in Plu® to that of the peaks corresponding to PES (8H). As such the mass content of the Plu® 

could be estimated. Peak integration was carried out using Spinworks 4© (Version 4.1.0.0, 

University of Manitoba). 

4.4. Membrane testing 

4.4.1. Hydraulic permeability 

Flux measurements were undertaken with a dead-end stirred Amicon cell. A reservoir of 

1450 ml was connected to the cell and pressurized by nitrogen gas. Membranes were firstly 

compacted at 1 bar for 0.5 hour till a stable flux was obtained. The flux was then measured 

at different pressures from (0.2 bar-1 bar) and the average of 3 measurements for at least 5 

samples per membrane sheet was taken as to calculate the permeability value. Deionized 

water was used for all experiments. 

4.4.2. Microfiltration performance 

To elucidate the microfiltration performance, runs were conducted under isothermal and 

isobaric conditions. Membrane samples of 4.15 cm2 tested surface (25 mm in diameter) 
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were fitted in the dead-end stirred cell with magnetic stirrer at 400 rpm at 0.2 ± 0.02 bar to 

minimize the effect of concentration polarization. Initial membrane hydraulic permeability 

was calculated as the volume of pure water passing through the membrane per unit 

membrane area, time and transmembrane pressure, expressed in (L/m2.hr.bar). Polystyrene 

latex beads were used as a model microfiltration solute reported in literature [194,195,196]. 

The average bead diameter is 300 nm. Using 100 ppm solution of LB3 beads in deionized 

water, the permeate was collected for 2 minutes at 5 minutes intervals for calculating the 

relative flux reduction (RFR) over a total period of one hour.  RFR was calculated according 

to Equation 9. 

Equation 9:             
      

  
 

Where J0 is the initial flux and Ja is the flux after interval of filtration.  

Considering the flux recovery, the membrane initial flux was measured at a transmembrane 

pressure of 0.2±0.01 bar, then; the membrane was allowed to permeate 25 ml of 100 ppm 

LB3 solution. Afterwards, membrane samples were cleaned externally by immersion in 20 

ml of MilliQ water and shaking at 100 rpm for 2 hours. The internal cleaning was conducted 

by backwashing the membrane with MilliQ water at 1 bar for a period of 10 minutes. Then 

the water flux was measured as the recovery value. Recovery percentage (Rc %) was 

calculated using the following equation: 

Equation 10:            
      

  
 

Where J0 is the initial flux and Ja is the flux after cleaning. 

4.4.3. Compaction resistance 

Samples of the support membrane were compacted using dead-end stirred amicon cell. The 

hydraulic permeability was measured at increasing pressure of 0.2, 0.4, 0.8, 1 and 1.2 bar for 

2 minutes per each transmembrane pressure to measure the average initial flux (J0). Then 

the samples were left at 1.2 bar for 1 hour followed by another hydraulic permeability 

measurement for 2 min indicating the flow after compaction (Jc). Afterwards, the pressure 

was released back to 0.2 bar and hydraulic permeability was measured for 2 min period (Jr). 

Loss due to compaction calculated as the percentage difference between initial flux (J0) and 

flux after compaction (Jc). Afterwards, percentage difference between flux after pressure 

release (Jr) and initial flux (J0) was the degree of recovery. 

4.4.4. TFNC performance 

Samples of 23 cm in diameter of TFC samples were tested in a dead-end RO cell of stainless 

steel. Experiments were run under pressure difference of 15±0.2 bar. First 2 ml of the 

permeate solution were discarded to avoid dilution effect, followed by collection of 10 ml 

for flux and rejection measurement. The TFC flux was calculated as per the time taken to 

collect 10 ml of the permeate solution. The feed solution of 2000 NaCl was used with the 
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initial conductivity of approximately 3.7 ms/cm. Conductance was then measured using 

conductometer and the difference between feed and permeate conductance reflected the 

salt rejection (%). For each flux and rejection data point at least 3 TFC membranes were 

tested and results were averaged.  
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Chapter 5 : Results and Discussion 
This chapter presents the results for enhancing the support layer of TFNC membranes by 

controlling the support layer morphology. The targeted morphology ought to have an 

isotropic cross section with surface pore size small enough to efficiently substitute the 

conventional support layers in stabilizing the thin active film of PA. 

5.1. TFNC support-membrane 

In this section the results on the variation of the different fabrication parameters for the 

VIPS/LIPS process are reported. The effect of each parameter on the properties and features 

of the support-membrane is reported. Following this, the combined effect of the different 

parameters for tailoring the support-membrane structure of different cast solution 

compositions is presented and discussed. 

5.1.1. Cast solution composition 

Starting with P10T0Pl0-H55Cf for 3 min exposure, the formed membrane had an asymmetric 

cross section with hydraulic permeability of approximately 2,268 L/m2.hr.bar. To achieve an 

isotropic cross-section membrane, one approach was to add non-solvent to the cast 

solution. Thus, 60 wt% of TEG were incorporated and the membrane P10T60Pl0-H55Cf showed 

an isotropic cross-section with an increase in permeability reaching 15,132 L/m2.hr.bar (as 

seen in Figure 5.1).  

Another approach adopted was the addition of a hydrophilic pore forming additive. When   

5 wt% Plu® 6400 was added, the hydraulic permeability of the membrane increased to 

39,809 L/m2.hr.bar for P10T0Pl5-H55Cf sample that preserved the isotropic cross-section 

morphology as seen in Figure 5.2. The reason for such an increase in the hydraulic 

permeability can be explained in light of the thermodynamic behavior of the cast solution. 

The addition of the non-solvent TEG decreased the solution stability and it was easier for 

the solution to reach the metastable state when exposed to humidity. Once the solution 

reached the metastable state, NG process took place. Similar behavior has been reported in 

the literature where non-solvent addition decreased the solution stability and allowed more 

time for NG [109,110,111]. On the contrary, when the non-solvent was not included in the 

cast solution, the water vapor absorbed by the solution during the exposure time of 3 

minutes was not enough to induce metastable state. Thus, the solution was still at the 

homogenous state and was merely influenced by the coagulation bath kinetics. Accordingly, 

P10T0Pl0-H55Cf membrane had anisotropic cross-section due to the instantaneous liquid-

liquid demixing.  The average pore diameters of the asymmetric P10T0Pl0-H55Cf samples were 

not determined due to equipment limitations. 

On the other hand, the addition of Plu® increased the solution hygroscopicity and the rate 

of absorbing water vapor from the surroundings [90,91]. This facilitated the induction of 

metastable state and more water vapor was absorbed as compared to the P10T60Pl0-H55Cf. As 

a consequence, the nuclei grew larger and the membrane with Plu® showed higher 

permeability. To validate this explanation, the membrane average pore diameter was 
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analyzed. The P10T0Pl5-H55Cf samples showed an average pore diameter of 430 (±30) nm 

compared to 340 (±20) nm for P10T60Pl0-H55Cf samples. 

 

Figure 5.1: Hydraulic permeability of samples with different solution composition (a) and 
their respective mean flow pore diameter (b) 

 

Figure 5.2: SEM micrographs for P10T0Pl5-H55Cf membrane cross section (a), cross section 

near the top (b) and cross section near the bottom (c) 
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The permeability increased in Plu containing samples was due to the increase in the pore 

diameter and the membrane hydrophilicity. Accordingly, P10T55Pl5 cast solution was 

prepared and fabricated at the same conditions to test the combined effect of adding non-

solvent and hydrophilic additive. The average pore diameter was 250 nm whereas the 

membrane hydraulic permeability was 24,554 L/m2.hr.bar, with maintaining the isotropic 

cross-section. Similar observations were recorded by Susanto et al [94]. The non-solvent 

addition increased the solution viscosity which hindered nuclei growth [110,111,112]. That 

explains the reduction in hydraulic permeability compared to the solution P10T0Pl5-H55Cf as 

seen in Figure 5.1. The viscosity increase is advantageous in our study as it hinders the rapid 

shift of solution thermodynamic state and permit better understanding of the effect of 

other parameters to be studied. Hence, this composition was chosen for further tailoring of 

membrane features. 

A. Polymer content 

Polymer content of the cast solution was increased gradually to decrease the membrane 

average pore diameter in order to create more efficient TFNC support membrane. PES and 

Plu constituted 15 wt% of the solution. Accordingly, the increase in the polymer 

concentration was compensated by a decrease in the Plu concentration to maintain the 15 

wt%. The polymer concentration was increased from 10 wt% to 11, 13 and 15 wt% along 

with the reduction of Plu concentration from 5 to 4, 2 and zero wt%. The humidity applied 

to the system was 30% RH for 1 minute exposure time. As shown in Figure 5.3, the results 

showed a consistent decrease in hydraulic permeability with correspondence to the 

decrease in membrane average pore diameter. The solution stability decreased with the 

increase in the PES concentration which was reported repeatedly in the literature [74, 76]. 

This should have facilitated the induction of the metastable condition, as the initial 

composition was closer to the binodal boundary (i.e. less stable). In this case, the earlier 

induction of the metastable state should result in membranes with larger mean flow pore 

diameter, because longer time was available for nuclei growth. However, the results here 

indicate that the increase in solution viscosity resisted vapor absorption and dominated the 

influence of the decreased stability. In consequence, the increase in PES concentration 

decreased the polymer-lean nuclei growth. Similar observations to the effect of increased 

viscosity with polymer concentration have been reported [79,82]. As the solution viscosity 

increases exponentially with polymer concentration [78], the influence of decreased 

stability was not significant. 

Although Lee et al. results showed no influence of increased polymer concentration on 

vapor uptake by the solution, the cast solution they tested was PSf/NMP which had 

relatively lower viscosity than the one tested in our experiment [76]. On the contrary, Sua et 

al. findings agreed with our observations. They showed that SD took place with 10 wt% PS 

solution indicating rapid shift of the composition to the unstable state, while 20 wt% 

solution reached the metastable condition and NG took place. The 20 wt% solution had a 

higher viscosity which allowed the slow transformation from stable state to metastable 
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state. Also, they stated that the 20 wt% solution had a wider gap between binodal and 

spinodal boundaries [78]. In our study, the reason for the dominance of the viscosity effect 

was the presence of TEG in the solutions prepared. The viscosity increase with non-solvent 

addition was repeatedly reported in literature [109,110,111,112]. More specifically, TEG 

addition and its influence on viscosity was also reported [114,115,94]. TEG along with high 

polymer content acted synergistically to increase viscosity and show its significance. Even 

more, the presence of higher polymer content per unit volume of the solution offers a 

straightforward explanation to the inverse relation between polymer concentration and 

average pore diameter [154]. 

 

Figure 5.3: Effect of increasing polymer content on the hydraulic permeability and 
average pore diameter 

The relation between the decrease in the pore diameter and permeability loss did not show 

a linear relationship. In other words, with the decrease in the pore diameter a higher extent 

of reduction in the hydraulic permeability was observed. Accordingly, to compensate the 

permeability loss while preserving the small pore diameter, we needed to increase the 

membrane hydrophilicity. 

B. Hydrophilic additive 

After successfully decreasing the pore diameter by increasing the polymer content, another 

approach to improve the membrane quality is to increase its hydrophilicity. The ideal 

improvement aligned with the purpose of our study is to increase the membrane 

hydrophilicity while maintaining the relatively small pore diameter which is critical for the 

membrane to be an efficient TFNC support layer. However, hydrophilic additives typically 

act as pore formers by increasing the cast solution hygroscopicity. Thus, they increase the 

water vapor absorption, allowing the polymer-lean nuclei to grow faster when the cast 

solution reaches the metastable region, leading to a membrane with larger pores. 



59 
 

Results in this study demonstrated that the addition of Plu in 1 wt% to P15T55Pl0 solution 

increased the hydraulic permeability of P15T54Pl1-H80Cf membrane by 33.8% compared to 

P15T55Pl0-H80Cf. However, the further increase of Plu to 5 wt% in P15T50Pl5-H80Cf showed only 

a slight increase in the hydraulic permeability by 2.3% as compared to P15T54Pl1-H80Cf 

membranes. In addition, the pore size distribution showed a slight increase in the average 

pore diameter from 200 to 219 for P15T54Pl1-H80Cf and P15T50Pl5-H80Cf, respectively as shown 

in Table 5.1. 

Table 5.1: Various cast solutions viscosity and their respective membranes hydraulic 

permeability, mean flow pore diameter and Plu content in the final membrane matrix. 

Cast 

solution 

µ 

(Pa.S) at 20 
0C 

te 

(min) 

% RH 

(±4%) 

Jw 

(L/m2.hr.bar) 

Mean flow 

pore diameter 

(nm) 

Plu/PES 

(wt%) 

P10T0Pl0 n.d.
a 

1 
30 

1,705 n.d. n.d. 

5 5.864 78(±15) n.d. 

P10T60Pl0 n.d. 

1 
30 

40,948 508(±35) n.d. 

5 31,007 448(±36) n.d. 

1 
80 

17,422 235(±13) n.d. 

5 16,360 202(±18) n.d. 

P10T55Pl5 0.495 

1 
30 

37,782 621(±47) 3.46 

5 31,665 496(±33) 3.85 

1 
80 

16,065 351(±29) 4.80 

5 15,469 273(±16) 4.65 

P13T55Pl2 3.68 
1 30 24,454 425(±54) 3.47 

1 80 8,099 181(±12) 3.9 

P15T55Pl0 5.53 

1 30 10,410 304(±25) n.d. 

1 60 5,958 183(±27) n.d. 

1 80 4,643 130(±14) n.d. 

P15T54Pl1 6.33 

1 30 4,348 168(±8) 2.70 

1 60 7,512 242(±23) 1.77 

1 80 6,165 200(±20) 1.49 

P15T50Pl5 8.60 

1 30 5,044 182(±11) 6.83 

1 60 9,628 253(±24) 5.22 

1 80 6,308 219(±13) 6.02 

P15T45Pl0 4.13 
1 30 1,585 n.d. n.d. 

1 80 2,418 229(±34) n.d. 

P15T25Pl0 1.83 
1 30 1,754 n.d. n.d. 

1 80 6,761 n.d. n.d. 
a 

n.d. stands for not determined values. 
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This unexpected low contribution of the increased Plu content at 5 wt% can be ascribed to 

the increased solution viscosity. This viscosity increase counteracted the influence of 

hygroscopicity enhancement upon Plu addition. Similar contradiction on the effect of 

polymeric hydrophilic additive incorporation on the kinetic behavior of a cast solution has 

been reported in the literature. Whereas some researchers reported an increase in the 

water vapor absorption [90, 101, 102], others have clearly stated that viscosity hindrance to 

vapor absorption was the dominating effect [94, 105]. Although, both factors have opposing 

effects on the final pore diameter, it can be seen from the results in Table 5.1 that the 

dominating factor is concentration dependent. As shown in Figure 5.4, the addition of 1 wt% 

Plu had a relatively low influence on the solution viscosity in respect to the influence of 5 

wt% addition. At room temperature (20 0C), the viscosity increased by 14.47% and 55.52% 

for P15T54Pl1 and P15T50Pl5 solutions, respectively. Accordingly, the increased viscosity 

hindrance to pore growth and significant opposition to the effect of increased 

hygroscopicity was more prominent in the case of 5 wt% Plu. However, further insight to the 

thermodynamic influence of the interplaying factors will be comprehensively discussed later 

in this chapter. 

 

Figure 5.4: Viscosity curves for cast solutions with various composition at room 
temperature (20 0C) 

5.1.2. Changing fabrication parameters 

A. Effect of RH exposure time 

Increasing the exposure of a cast solution to water vapor has various effects on the final 

membrane based on the state of the solution at the end of the short exposure time. For 

example: 

1- If the solution stayed in the homogenous state at the end of the short exposure 

time, increasing the exposure would allow the solution to cross the binodal 
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boundary moving into its metastable state; thus, the pore diameter would increase 

as the NG started to take place. 

2- If the solution crossed the binodal boundary at the end of the short exposure, longer 

exposure will permit longer time to NG process; hence, more nuclei will coalesce to 

form larger ones. Accordingly, membrane final pore diameter will significantly 

increase. 

3- If the cast solution was close to the spinodal boundary or crossed it by the end of the 

short time of exposure, the increase in the exposure time would majorly allow the 

polymer-rich domain undergoing SD to further vitrify and thicken. This thickening 

would decrease the final membrane pore diameter. 

Experiments showed that increasing the exposure time from 1 to 5 minutes increased the 

hydraulic permeability of P10T0Pl0-H30Cf membrane from 1705 to 5864 L/m2.hr.bar as 

presented in Table 5.1. This agreed with the earlier observation of the asymmetric 

morphology for P10T0Pl0-H30Cf exposed for 1 minute, which indicated that the solution did 

not cross the binodal boundary during the 1 minute exposure period. However, when the 

period was extended to 5 minutes along with the low viscosity of the solution, the absorbed 

water vapor induced the metastable condition to the cast film. As a consequence, NG 

process took place and the cross-section morphology changed from anisotropic to isotropic. 

On the contrary, the solutions P10T60Pl0 and P10T55Pl5 are less stable due to higher non-

solvent content, thus, showed a decrease in the average pore diameter when exposure to 

30% RH was increased from 1 to 5 minutes (see Table 5.1). As mentioned earlier, both 

solutions under the stated conditions resulted in membranes with isotropic cross-section, 

indicating that the process of NG took place even at short exposure of one minute. 

Subsequently, the increase in exposure time shifted the solution composition to the 

unstable region and as the polymer vitrification started, the polymer domain kept 

thickening and pore diameter was reduced in comparison to the 1 minute exposure 

samples. 

In the literature, some researchers reported that increasing the RH exposure time increased 

the pore diameter [139, 149]. However, others demonstrated that the increase in exposure 

time decreased the pore diameter [141, 145]. This leads us to conclude that the effect of 

increasing the RH exposure time is dependent on the solution state during the extended 

exposure as expressed earlier. Generally, increasing the exposure time allows more vapor to 

be introduced to the solution. This further vapor absorption in our study induced state of 

instability, and hence, reduced the pore diameter due to polymer-rich phase thickening. 

This was observed from the decrease in the mean flow pore diameter and hydraulic 

permeability of P10T60Pl0 and P10T55Pl5 membranes when exposure extended to 5 minutes at 

either 30% or 80% RH exposure (Table 5.1). 

Differently, at 80% RH P10T60Pl0 and P10T55Pl5 solutions did not show significant change when 

exposure time increased from 1 to 5 minutes. This observation strongly agrees with the 
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explanation above. As the RH increased to 80%, the kinetics of the process were 

considerably faster specially as the viscosities of these solutions are relatively low compared 

to other compositions in this study (as shown in Table 5.1). The process of crossing the 

metastable region and inducing SD took place at a rate which was high enough to complete 

precipitation. In consequence, neither the pore diameter nor the hydraulic permeability 

showed a significant difference for either solutions with an increasing exposure time. In 

other words, after inducing SD the process kept thickening the polymer domain reaching a 

point of almost complete polymer precipitation and further increase in the exposure time 

showed only a minor difference in the average pore diameter.  

Similar observation was reported by Chen et al. when membranes were exposed to 95% RH, 

the increase in exposure time beyond 2 minutes resulted in further polymer-rich phase 

coarsening. Hence, membrane average pore diameter decreased [139]. Also, Sun et al. 

reported that the effect of polymer-rich phase thickening took place at high RH values (70% 

to 90%) [141]. On the contrary, at RH values below 70%, the increase in exposure time 

increased the final pore diameter. Those reports agree to our explanation that thickening 

takes place after polymer coagulation when SD is induced. Caquineau et al. proposed 

another explanation to this phenomenon. They claimed that at high RH values, nucleation is 

rapidly induced. The high number of nuclei created, caused an increase in cast solution 

viscosity and hindered the nuclei growth [142]. 

As aforementioned, the increase in exposure time has a complex influence on the final 

membrane average pore diameter more specifically with solutions of low viscosity as the 

solution thermodynamic state shift could be rapid to an extent that the influence of other 

parameters becomes insignificant. In addition, long exposure times may hide the minor 

influences of other parameters of interest in our study. Consequently, experiments aimed to 

study other parameters were all set under 1 minute exposure time. Furthermore, the 

investigations reported in the following sections were conducted using solutions with 

relatively higher viscosities (based on solution composition) to facilitate the demonstration 

of the effects of other parameters on phase separation kinetics. 

B. Effect of RH degree 

Generally, the increase in vapor concentration increases the chemical potential for the 

vapor to diffuse to the cast solution based on Nernst-Einstein law of diffusion [197]. It is 

then expected that the RH degree would change the membrane permeability and pore 

diameter due to the impacts on the phase separation kinetics. In this respect, a schematic 

representation in Figure 5.5 shows the main factors affecting the phase separation kinetics. 

These factors will serve as the key elements explaining the various changes in membrane 

morphology under different exposure conditions. Additionally, all membrane samples 

discussed in this section showed an isotropic sponge-like cross-section morphology which 

indicated that the composition stayed for a period of time in the metastable region. 
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Figure 5.5: Schematic representation of factors affecting VIPS process kinetics 

At the early stages of our study, the effect of increasing RH degree was consistent. Samples 

of P10T60Pl0 and P10T55Pl5 showed a decrease in the hydraulic permeability and the average 

pore diameter with increasing the RH degree represented in Table 5.1. The hydraulic 

permeability for membranes of P10T60Pl0 decreased from 40,948 to 17,422 L/m2.hr.bar with 

the RH increase from 30% to 80% under 1 minute exposure; respectively. Similarly, P10T55Pl5 

samples showed a decrease from 37,782 to 16,065 L/m2.hr.bar. Both solutions represented 

a permeability loss of approximately 57.5 %. This loss was attributed to the rapid induction 

of the unstable state and polymer-rich phase thickening during the SD process. 

Likewise, samples with higher PES concentrations of cast solutions P11T55Pl4, P13T55Pl2 and 

P15T55Pl0 showed a consistent decrease in hydraulic permeability with the RH increase as 

seen in Figure 5.6. However, the percentage loss in permeability leveled-off. For example 

the loss in permeability for P11T55Pl4 and P13T55Pl2 membrane samples were 40% and 33%, 

respectively. These values are lower than the 57.5% loss for P10T60Pl0 and P10T55Pl5 samples 

as shown in Table 5.1. This is due to the effect of increased viscosity with the moderate 

increase in polymer concentration that hindered the vapor diffusion to the cast solution. 

This hindrance affected the rate of inducing the unstable state with the increased RH in the 

relatively high viscous solutions P11T55Pl4 and P13T55Pl2. Thus, increasing the RH degree from 

30% to 80% did not show the same magnitude of permeability loss as compared to the 

solutions with lower viscosity.  
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Figure 5.6: Effect of increasing RH degree at 1 minute exposure for solutions of 
increasing polymer content 

On the contrary, the further increase in solution viscosity by increasing PES concentration to 

15 wt% (P15T55Pl0 solution) showed higher percentage permeability loss (44%). P15T55Pl0 

solution has higher viscosity and less stability compared to P11T55Pl4 and P13T55Pl2 solutions. 

Although the viscosity barrier hindered the vapor diffusion and was expected to decrease 

the rate of inducing the unstable state, the solution starting point in the ternary phase 

diagram was closer to the binodal boundary due to the higher polymer content [74,76]. 

Consequently, the increase in RH had a more prominent effect on the time spent in the 

metastable region and unstable state was reached at a shorter exposure period when 

compared to P11T55Pl4 and P13T55Pl2 solutions. Accordingly, polymer thickening was more 

extensive in P15T55Pl0 solution and concluded to a higher permeability loss. 

As explained before, the addition of Plu to the P15T55Pl0 cast solution increased both the 

hygroscopic property and the viscosity of the solution. Figure 5.7 shows the effect of 

increasing RH degree on solutions of increasing Plu content. At 80% RH, the Plu addition at 1 

wt% increased the hydraulic permeability but the effect was less significant with further Plu 

addition. This was ascribed to the dominating influence of viscosity with 5 wt% Plu. To 

further verify this observation, the solutions P15T54Pl1 and P15T50Pl5 were tested with 60% RH 

for 1 minute exposure. The permeability increased by 26% for P15T54Pl1-H60Cf and 61.5% for 

P15T50Pl5-H60Cf as compared to membranes without Plu (P15T55Pl0-H60Cf). Likewise were the 

thermodynamic state shifts for solutions when tested at 80% RH. 

In contrast, P15T54Pl1 and P15T50Pl5 solutions behaved differently at 30% RH. At first, 

P15T54Pl1-H30Cf membrane samples showed a significant reduction in the hydraulic 

permeability as compared to P15T55Pl0-H30Cf reaching 4,348 L/m2.hr.bar (see Table 5.1). This 

reduction is due to the effect of increased viscosity, which hindered the vapor absorption. 
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The hindrance to vapor absorption prolonged the time taken by the solution to reach the 

metastable state. Accordingly, the time remaining from the exposure period for NG process 

was much shorter. However, as stated above, this behavior was nullified when the solution 

was exposed to 60% or 80% RH. This suggested that at low chemical potential for vapor to 

diffuse to the cast film (i.e low RH of 30%), the effect of the increased viscosity was more 

significant. The effect of the vapor chemical potential on the vapor absorption rate has been 

reported previously [139-150]. Although there is a wide agreement on the increase of 

absorption rate with the RH value, the influence of this increase on the membrane 

morphology or pore diameter was not consistent in literature. This is because such influence 

is highly dependent on the cast solution thermodynamic state and its composition during 

the higher vapor absorption rate. 

 

Figure 5.7: Effect of RH degree on cast solutions with increasing Pluronic content at 1 
minute exposure time 

Furthermore, the addition of more Plu (5 wt%) to the solution moderately increased the 

permeability for P15T50Pl5-H30Cf compared to the membrane with 1 wt% Plu as shown in 

Table 5.1. The permeability increase is allegedly due to two factors affecting time permitted 

for NG process. The first is the decrease in the solution stability when more Plu was 

incorporated which has been reported in the literature with various polymeric hydrophilic 

additives [99,100]. The second factor is the increase in solution hygroscopicity with the Plu 

increase [94]. As the solution with 5 wt% Plu is less stable due to higher polymer content, 

the initial composition was closer to the binodal boundary. Meanwhile, the increased 

hygroscopicity of the solution increased the rate of vapor absorption. Both ended up 

shortening the time required for the induction of metastable state.  All represented samples 

in Figure 5.7 had a fixed exposure time (1 minute) during the VIPS process. Consequently, 
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the time consumed in the metastable region was longer for P15T50Pl5-H30Cf compared to that 

of P15T54Pl1 and resulted in membrane with larger pore diameter. 

SEM micrographs in Figure 5.8 showed that membranes had sponge-like cross-section. This 

observation validates our assumption that composition of different solutions entered the 

metastable region and NG process took place at some point during membrane preparation. 

The composition bath explained earlier with the contribution of various factors is 

summarized in Figure 5.9. 

 

Figure 5.8: SEM micrographs of P15T55Pl0-H30Cf (a, c) and P15T50Pl5-H80Cf (b, d) 
representing top surface and cross-section, respectively 
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Figure 5.9: Schematic representation to the solutions thermodynamic behavior under 
forced convection condition 

C. Effect of convection 

Allowing free convection to preside over the process of non-solvent vapor absorption 

slowed down the process kinetics. A comparative schematic representation to the solutions 

thermodynamic behavior under free convection condition is shown in Figure 5.10.  

 

Figure 5.10: Schematic representation to the solutions thermodynamic behavior under 
free convection condition 

As per the results demonstrated in Figure 5.11 (a), interestingly, at exposure to 30% RH for 1 

minute under free convection condition, vapor absorbed by the dope solution P15T55Pl0 was 

not enough to render the system in the metastable region, but rather kept the cast film at 

the late homogenous stage of the ternary phase diagram. As the cast solution film was 

transferred to the water bath, the abrupt increase in non-solvent concentration of the 

exposed film surface induced the formation of the skin layer through the rapid liquid-liquid 

demixing kinetics. However, the underlying layers of the cast film were at the late 

homogenous stage. The rapid coagulation of the polymer at the top layer yielded a thin skin 
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layer which slowed down the further introduction of the non-solvent to the underlying 

layers. In consequence, the underlying layers were permitted more time to start NG as the 

non-solvent slow diffusion induced metastable condition. This resulted in a membrane with 

sponge-like cross-section, still, a skin layer at the top surface was developed as 

demonstrated in Figure 5.12 (d). 

 

Figure 5.11: Free and forced convection effect on hydraulic permeability of membranes 
prepared by solutions (a) P15T55Pl0, (b) P15T54Pl1 and (c) P15T50Pl5 at different % RH 

The difference between the thermodynamic state at the cast solution interface and 

underlying layers was a result of using free convection instead of forced convection. Forced 

convection increases the mass transfer to the cast solution which was repeatedly reported 

in the literature [142,154,156]. Thus, at free convection condition, water vapor diffuses to 

the cast solution merely depending on the other two factors affecting vapor absorption, 

namely: chemical potential of the vapor [141,143,146,147,149] and the affinity of the cast 

solution [90,93,94]. When solution composition and RH value were fixed, the only factor 

influencing the vapor absorption then was the convection condition. Accordingly, diffusion 

is relatively slower with free convection when compared to that with forced convection. 
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This slow diffusion of vapor causes a high concentration gradient at the interface. The 

formation of liquid layer on top of the cast film has been reported by Menut et al. and 

Matsuyama et al.[143,144]. Also later observed and recorded by Lee et al. [76]. This liquid 

layer concentration gradient drives NMP from the underlying layers by percolation. The 

NMP migration from the underlying layers towards the interface has two influences. First, it 

decreases the stability of the underlying layers and shifts the composition at these depths 

towards the metastable state. Second, it dilutes the cast film at the interface and shifts its 

composition to more stable state. Accordingly, as a result of this redistribution of the 

solvent, the interface becomes more stable than the underlying layer. Following to that, the 

coagulation bath causes instantaneous demixing to the homogenous solution at the 

interface creating a skin layer. However, the underlying layers undergo NG and render the 

isotropic cross-section morphology. The final membrane structure then comprises a skin 

layer on the top surface and isotropic cross-section morphology. This structure hereinafter 

will be referred to as “semi-symmetric” cross-section morphology. 

This phenomenon of NMP diffusion was previously presented in the literature where NMP 

diffusion to the cast solution surface was ascribed to two different influences. In the work of 

Caquineau et al. they proposed that NMP migration to the top of the cast film shifted the 

top layer to homogenous state [142]. On the other hand, Menut et al. stated that NMP 

diffusion was accompanied by the polymer dissolved in the solvent; hence, the polymer 

concentration was higher at the top layer. This higher polymer concentration was 

responsible for the skin layer formed in their study [150]. 

A similar effect took place with P15T54Pl1-H30C0 and P15T50Pl5-H30C0. Generally, the major 

difference between both solutions was the quantity of vapor absorbed during the exposure 

time to water vapor. This quantity of vapor determined the degree of the solution stability 

and how far is the solution from the binodal boundary at the end of exposure time. 

This difference in the thermodynamic state was not noticeable when forced convection was 

used. Although the effect of forced convection was poorly reported in the literature, most 

researchers agree that the time for precipitation decreases with the increase of the 

convection flow rate. Some researchers related this effect to the increase of the non-solvent 

in-diffusion with the increase in convection flow rate [156]. Others related it to the increase 

in solvent evaporation rather than non-solvent absorption [154]. Both justifications are 

valid. Yet, in our study the solvent was NMP which is well known for its low vapor pressure. 

Accordingly, evaporation of NMP was considered negligible in many studies. Thus, 

considering our cast solution system, the effect of convection force mainly increased the 

diffusion of water vapor to the cast film.  The increased rate of water vapor diffusion from 

the humidity chamber to the film was reflected as well on its diffusion along the whole cross 

section of the cast film. Accordingly, no major difference was noticed between the solution 

interface and its cross section when forced convection was used. 
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There were two interplaying effects as a result of increasing Plu content. The first is the 

increase in the solution degree of hygroscopicity which was more prominent in case of 

P15T54Pl1 solution. Accordingly, the cast film absorbs higher quantity of water vapor 

compared to P15T55Pl0. The solution then moved further towards the binodal boundary and 

became less stable. This decreased the severity of the abrupt exposure of the top layer to 

the non-solvent in the water bath. Accordingly, the skin layer formed is presumably more 

porous which was confirmed by the higher hydraulic permeability of P15T54Pl1-H30C0 versus 

P15T55Pl0-H30C0. 

 

Figure 5.12: SEM micrographs of P15T55Pl0-H30 membranes representing cross section, top 
and bottom surface at forced convection (a, c, e) and free convection (b, d, f), respectively 
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The second effect is the increase in solution viscosity which is demonstrated by P15T50Pl5 

solution. In case of the higher viscous solution of P15T50Pl5, the hindrance to the vapor 

diffusion is higher. Following this, the immersion in the non-solvent water bath 

instantaneously created a skin layer. However, in this case the water diffusion through the 

cast film was much slower as it was resisted by both the increased viscosity and the skin 

layer formed. Subsequently, macrovoids near the bottom surface of the membrane were 

observed (as seen in Figure 5.13 (c)), indicating that time permitted for the polymer lean 

nuclei to coalesce was longer at the bottom layers. 

On the other hand, increasing the relative humidity degree at exposure for P15T55Pl0 from 

30% to 60% or 80%, lead to a rapid crossing to the binodal boundary due to higher chemical 

potential driving higher rate of vapor absorption, and thus, more time was available for NG 

and for polymer-lean nuclei to coalesce. Accordingly, the hydraulic permeability increased 

with the increase of relative humidity which represents complete opposite trend to the 

effect of increased relative humidity under forced convection as shown in Figure 5.11 (a). 

 

Figure 5.13: SEM micrographs of P15T50Pl5-H30C0 samples showing top surface, cross-
section near top surface and overall cross-section in a, b and c respectively 
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In case of P15T54Pl1 solution, increasing the RH to 60% allowed enough water vapor to be 

imbibed by the dope solution and along the whole cross-section. The system was driven to 

cross the binodal boundary where NG took place, and, the process of absorption was slow 

enough allowing more time for polymer-lean phase to grow. Thus, this yielded larger pore 

diameters as compared to 30% RH exposure with free convection. Even more, pores were 

larger than those created when same dope solution was subjected to 60% RH under forced 

convection and demonstrated in the increase of hydraulic permeability (Figure 5.11 (b)). 

Because, when vapor was forced to diffuse into the cast film, considerably larger quantity of 

water was introduced inducing more rapid crossing of the metastable region and earlier 

induction of SD process. Instead, at free convection the solution stayed longer in the 

metastable region which reflected in the nuclei coalescence and the formation of larger 

pores. On the other hand, the exposure of P15T54Pl1 solution to 80% RH under free 

convection, the vapor higher chemical potential drove the water into the dope solution 

faster and final membrane had smaller pore size and lower hydraulic permeability relative 

to that at 60% RH as shown in Figure 5.11 (b). 

The solution viscosity increases with increasing Plu content. Accordingly, with the increased 

viscosity of P15T50Pl5 cast solution, under free convection the viscosity barrier demonstrated 

a major hindrance to the effect of increasing the vapor chemical potential (as represented in 

Figure 5.5). Accordingly, only at 80% RH, the vapor chemical potential was high enough to 

overcome the viscosity barrier; hence, vapor absorption had significantly increased the 

hydraulic permeability as shown in Figure 5.11 (c). This indicates that the NG process took 

place for a longer time period only at 80% RH. 

D. Validation of free versus forced convection effect: 

To validate the effect of convection force, solutions with relatively higher stability were 

tested at the two extremes of humidity for 1 minute exposure time, that is to say, solutions 

with compositions that lies further away from the binodal boundary. Dope solutions of 

P15T45Pl0 and P15T25Pl0 were tested under both convection conditions. As seen in Figure 5.14, 

the effect of convection at 30% RH in the highly stable solution P15T25Pl0 was not significant. 

As the solution has relatively low viscosity, vapor absorption was quite fast even under free 

convection condition. Thus, forcing vapor diffusion to the cast film through forced 

convection did not show a significant difference on the final membrane. However, as the 

solution viscosity increases in P15T45Pl0 due to higher TEG content, the forced diffusion effect 

become more prominent. Interestingly, increasing the RH value led to the increase in the 

mean flow pore diameter, which is a reflection to the more non-solvent introduced to the 

system. 



73 
 

 

Figure 5.14: Free and forced convection effect on solutions with higher stability and 
lower viscosity at 30% and 80% RH 

For solution P15T45Pl0, the forced convection at 80% RH induced the state of metastability of 

the system, thus, nuclei formation and their coalescence took place and showed a 

significant increase in the hydraulic permeability as represented in Figure 5.14. The solution 

thermodynamic behavior during the exposure time of 1 minute is schematically represented 

in Figure 5.15. 

 

Figure 5.15: Effect of free and forced convection on P15T45Pl0 cast solution under 80% RH 

SEM micrographs in Figure 5.16 provide a clear example of the significance of convection 

force. As demonstrated, at 80% RH free convection created asymmetric membrane with 

underlying finger-like macrovoids while forced convection ended-up forming a symmetric 

structure. The complete shift in the cross section morphology from anisotropic to isotropic 

was only tailored by the convection condition. The anisotropic structure is typically crated 
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from the spontaneous phase inversion of homogenous solution at stable thermodynamic 

state. On the contrary, the isotropic sponge-like structure is an outcome of NG process 

which takes place only when the solution reaches the thermodynamic metastable state. 

Thus, these results demonstrate the influence of convection on the solution thermodynamic 

state during VIPS process. This illustration, along with the aforementioned experiments, 

provides evidence that the generalization of humidity exposure effect is irrelevant and 

mainly dependent on the solution composition and force of convection in VIPS process even 

at short exposure time. 

 

Figure 5.16: SEM micrographs for samples P15T45Pl0-H80 representing cross section, top 
and bottom surface at forced convection (a, c, e) and free convection (b, d, f), respectively 
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5.1.3. Effect of Nanoparticles incorporation 

Nanoparticles of TiO2 were incorporated so as to compare their effect against that of Plu in 

improving the membrane performance by enhancing its hydraulic permeability and 

compaction resistance. Once the TiO2 was added to the cast solution, the solution was 

sonicated to disperse the NPs. The particle size distribution for the solution was then 

measured. As shown in Figure 5.17, the solution with the unfunctionalized NPs resulted in 

aggregates with 859 nm in diameter. On the other hand, Ɣ-aminopropyl triethoxysilane 

functionalized NPs were successful in producing a solution with better NPs dispersion where 

the mean size distribution was 66.3 nm. This better distribution was a result of decreased 

surface free energy as a result of surface functionalization; and hence, reduced particles 

aggregation [76]. Accordingly, the later preparation procedure was followed in preparing all 

cast solutions that included TiO2 NPs. 

 

Figure 5.17: Particle size analysis for cast solution with unfunctionalized and 
functionalized NPs 

To fabricate membranes with the favorable semi-symmetric structure, similar conditions to 

those applied to Plu-containing solutions were adopted. Accordingly, solutions with 0.1 and 

1 wt% TiO2 were exposed to 30% RH under free convection for 1 minute. Those two specific 

concentrations were chosen in order to have an overview over the general effect of NPs 

concentration. The resultant membranes showed isotropic cross-section morphology and 

not the semi-symmetric structure. The hydraulic permeability increased from 5,152 to 5,989 
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L/m2.hr.bar for P15T54.9N0.1-H30C0 and P15T54N1-H30C0, respectively as represented in Table 

5.2. The produced isotropic morphology (Figure 5.18) illustrates that the solutions have 

reached the metastable region where NG took place. On comparing the Plu-containing cast 

solution to NPs-containing cast solution of same concentration (1 wt%), the Plu-containing 

cast solution had semi-symmetric structure when exposed to same conditions. This means 

that NPs-containing cast solution stayed longer in the metastable region. The P15T54.9N1 

solution viscosity is higher than P15T54Pl1 (8.19 Pa.s and 6.33 Pa.s, respectively). 

Consequently, it is reasonable to suggest that the affinity to absorb water vapor was higher 

with the inorganic NPs than that of Plu of same concentration. 

 

Figure 5.18: SEM micrographs of P15T54.9N0.1-H30C0 and P15T54N1-H30C0 showing top 
surface (a, b) and cross-section (c, d), respectively 

One approach to achieve the semi-symmetric membrane morphology is to allow the cast 

solution to cross the binodal boundary at a late stage of the exposure time (i.e. just prior to 

LIPS process) as explained earlier. Thus, in order to achieve the semi-symmetric membrane 

morphology for NPs-containing cast solutions, the exposure time was decreased to 20 

seconds. The reduction in the exposure time should allow the cast solution to absorb non-

solvent from the surrounding vapor, yet, the absorbed vapor concentration would be small 
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enough not to permit long period of NG process. Successfully, with TiO2 concentrations of 

0.05 and 0.1 wt% the semi-symmetric morphology was achievable when exposure time was 

decreased to 20 seconds as shown in Figure 5.19. However, NPs at the top surface were not 

detected by imaging. 

The hydraulic permeability increased with increasing the NPs content as seen in Figure 5.20. 

This increase was more significant when NPs concentration increased to 1 wt%. This 

observation could be ascribed to the membrane surface porosity and the absence of skin 

layer when NPs concentration increased to 0.5 and 1 wt%. Solutions containing 0.5 and 1 

wt% TiO2 resulted in isotropic membranes with sponge-like cross-section morphology. This 

morphology explains the increase in the hydraulic permeability with P15T54.5N0.5 and 

P15T54N1. In addition, for P15T54.5N0.5 membrane samples, NPs scattered along the surface 

were observed in the SEM micrographs as shown in Figure 5.21 (c). Still, P15T54N1-H30C0 

samples had higher hydraulic permeability than P15T54.5N0.5-H30C0 due to larger surface pore 

diameter (Figure 5.21 (d)) that was accompanied by the higher solution hygroscopicity due 

to the higher NPs content. Cast solutions with 0.5 and 1 wt% TiO2 showed isotropic cross-

section at 20 seconds exposure time. Further shortening of the exposure time was not 

practically possible, thus, only P15T54.95N0.05-H30C0 and P15T54.9N0.1-H30C0 membranes were 

used as TFNC support membranes as they showed the desirable semi-symmetric structure. 

Table 5.2: Various cast solutions containing TiO2 NPs viscosity and their respective 

membranes hydraulic permeability (Jw) at different exposure time (te) for 30% RH under free 

convection 

Cast solution 
Viscosity at 20 0C 

(Pa.s) 
te 30% RH Jw (L/m2.hr.bar) 

P15T54.95N0.05 n.d.
a 

20 sec 1363 (±124) 

P15T54.9N0.1 6.53 
1 min 5152(±566) 

20 sec 1939 (±398) 

P15T54.5N0.5 n.d. 20 sec 3273 (±135) 

P15T54N1 8.19 
1 min 5989 (±712) 

20 sec 5375 (±123) 
a 

n.d. stands for not determined values. 
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Figure 5.19: SEM micrographs of P15T54.95N0.05-H30C0 and P15T54.9N0.1-H30C0 representing 
cross-section (a, b) and top surface (c, d), respectively 

 

Figure 5.20: Hydraulic permeability of membranes with increasing NPs concentration 
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Figure 5.21: SEM micrographs of P15T54.5N0.5-H30C0 and P15T54N1-H30C0 representing cross-
section (a, b) and top surface (c, d), respectively 

5.2. TFNC support-membrane characterization 

5.2.1. NMR Plu entrapment 

H1NMR analysis was used to quantify the Plu to PES weight% in the final membrane 

samples. As shown in Figure 5.22, the spectra had peaks appearing at ~1 ppm for methyl 

group, ~3.4 for methylene group and ~3.5 ppm for methyne group of the Plu. PES aromatic 

protons also appear in two split peaks from 7 to 8 ppm. Thus, the ratio between the 

integrated peaks at 1 ppm and 7-8 ppm was used to calculate the Plu to PES weight% in the 

final membrane. 

As Plu is a water miscible polymer, it is expected to leach out of the membrane matrix in the 

non-solvent water bath during the LIPS step. However, this possible leaching is resisted by 

the Plu entanglement to the PES matrix. Accordingly, the wt% of Plu/PES increased with 

higher Plu entrapment which resulted from samples having smaller average pore diameter. 
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Figure 5.22: H1NMR spectra for P15T50Pl5-H80 with integrated peaks representative to (4H) of Plu® at ~1.1 

ppm and (8H) of PES at ~7.2-8 ppm 

Although the starting Plu/PES was 50 wt% in the cast solution P10T55Pl5, Plu in the final 

membrane samples at 30% and 80% RH was around 34.6% and 47.96%, respectively. This 

change was due to Plu leaching, which decreased with the decrease in the average pore 

diameter. A similar behavior was observed when the Plu content in the dope solution 

increased. It was found that increasing the Plu/PES in the dope solution from P15T54Pl1 to 

P15T50Pl5 (i.e. from 6.67% to 33.33%) increased the final Plu/PES from ≈1.5% to 6%, 

respectively. This indicated higher fraction leaching for the P15T50Pl5-H80Cf sample attributed 

to larger average pore diameter, and hence, lower entrapment. Similar observations relating 

the average pore diameter to Plu ratio was found when solutions of the same composition 

were subjected to different RH degrees as represented in Table 5.3. A comparable 

observation has been reported previously by Ulbricht et al. [94]. 

Table 5.3:  Measured %Plu/PES based on H-NMR results for various membrane samples 
and the respective samples pore diameter 

Composition %RH Mean flow pore diameter (nm) (%Plu/PES) 

P10T55Pl5 30 621 3.46 

80 351 4.80 
P13T55Pl2 30 425 3.47 

80 181 3.90 
P15T54Pl1 30 168 2.7 

60 242 1.77 
80 200 1.49 

P15T50Pl5 30 182 6.83 
60 253 5.22 
80 219 6.02 
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5.2.2. Hydrophilicity: 

A. Surface hydrophilicity 

Surface hydrophilicity was evaluated for samples with increasing Plu concentration using 

captive bubble method. Figure 5.23 presents images for P15T55Pl0-H60Cf and P15T54Pl1-H60Cf 

showing the significant change in contact angle decreasing from 610 to 440, respectively.  

Unexpectedly, the further increase of Plu to 5wt% in P15T54Pl5-H60Cf increased the contact 

angle to 580, thus indicating a decrease of surface hydrophilicity. This observation might be 

explained in light of the different orientation the Plu building blocks may attain.  

As Plu consists of hydrophilic and hydrophobic blocks of PEG and PPG, respectively, the 

orientation that blocks adopt reflects in the membrane surface hydrophilicity. During the 

process of combined VIPS/LIPS, firstly the PPG blocks orient to the dope solution/air 

interface resulting in a hydrophobic surface. On the other hand, in the coagulation bath 

reorientation takes place and hydrophilic PEG blocks start to protrude to the polymer/water 

interface increasing the surface hydrophilicity. Using advanced spectroscopy, Shi et al. 

observed the different conformations of Plu®127 in PES model films [198]. Similarly, Suk et 

al. and Ulbricht et al. observed the same behavior of Plu blocks under VIPS process [199, 

94]. Understanding this, it is reasonable that the increase in dope solution viscosity would 

hinder such reorientation. Accordingly, solution P15T54Pl5 brought more hydrophobic groups 

to the surface, those groups were harder to reorient due to the increased viscosity 

compared to P15T54Pl1 solution under similar conditions of 60% RH. As a consequence, 

P15T54Pl5-H60Cf samples had higher contact angle than P15T54Pl1-H60Cf. 

 

Figure 5.23: Contact angle images for (a) P15T55Pl0, (b) P15T54Pl1 and (c) P15T54Pl5 samples 
exposed to 60% RH using captive bubble method 

On the contrary was the behavior at 30% RH under forced convection. In this case vapor 

mass transfer to the cast film was higher, as formerly explained. This created higher 

chemical potential for the hydrophilic affinity of Plu, hence, Plu subjected its PEG hydrophilic 

moiety to polymer/vapor interface during the VIPS process. Followed by coagulation in the 

non-solvent bath, the membrane matrix fixed the blended Plu with this favorable 

orientation. Thus, increasing Plu up to 5wt%, regardless of the viscosity barrier, was 

successful in inducing more surface hydrophilicity compared to 1wt% addition. This is due to 
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the higher availability of hydrophilic moieties with the higher Plu concentration. 

Correspondingly, the contact angle was reduced from 520 to 410 for P15T54Pl1-H30Cf and 

P15T50Pl5-H30Cf. Similar behavior was observed at 80% RH as shown in Figure 5.24. 

 

Figure 5.24: Contact angle for various membranes under RH of 30%, 60% and 80% 

B. Bulk hydrophilicity: 

Wettability measurements showed total agreement with Plu content calculated from NMR 

charts. As shown in Figure 5.25, the curves slopes show the rate of water droplet diffusion 

through the membrane. As seen, increasing Plu content generally increased the slope 

negative value. Furthermore, comparing samples of the same composition but prepared 

under different conditions illustrated the difference in Plu entrapment. Furthermore, 

comparing the wettability of P15T55Pl0 solution under different conditions of RH value 

showed inverse proportionality of wettability with pore size (Figure 5.25 (a)). This suggests 

that the capillary effect of smaller pore diameters increases the wettability. More 

interestingly, membranes with smaller average pore diameter had higher Plu entrapment 

(as explained earlier). Hence, membranes with smaller pore diameter had higher wettability 

because capillarity acted synergistically with the higher Plu entrapment as per the results 

shown in Figure 5.25 (b and c).  
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Figure 5.25: Wettability curves under various %RH exposure for (a) P15T55Pl0 (b) P15T55Pl1 
(c) P15T55Pl5 

In order to compare the induced hydrophilicity effect of NPs, wettability experiments were 

conducted with samples with different amounts of incorporated TiO2 NPs. Results shown in 

Figure 5.26 demonstrated that wettability increased with increasing NPs concentration in 

the cast solution. Yet, membrane formed with 1 wt% TiO2 showed the lowest wettability. 

This observation supports the suggested pore blocking effect with high NPs concentration as 

discussed above and reported in literature [37,38]. It is important to note that the 

wettability behavior increased with the increase of NPs regardless of the membrane cross 

section morphology which is different from the behavior showed when Plu was the additive 

used. 
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Figure 5.26: Wettability curves of membranes with increasing NPs concentration 

On the other hand, with comparing membranes with different structures, interestingly semi-

symmetric morphologies showed the highest wettability. As illustrated in Figure 5.27, the 

isotropic morphology showed lower wettability relative to the anisotropic membrane of 

same composition. The lowered wettability is intuitive as the water droplet is supposed to 

wet the surface pores first before starting to diffuse through the cross section. Accordingly, 

the isotropic surface pores filled with air hinders this wetting, counter to the effect of 

anisotropic structure skin surface. Also, isotropic structure with the incorporated NPs 

showed better wettability compared to the membranes of nascent composition. 

On the other hand, the semi-symmetric membranes had superior wettability as compared 

to both the anisotropic and the isotropic membranes of the same composition. The semi-

symmetric membrane had better wettability than the isotropic structure for the same 

reason explained in the preceding paragraph which is the better surface wetting. Although 

semi-symmetric and asymmetric membranes have skin layer, semi-symmetric membrane 

showed better wettability. The difference in wettability is then attributed to the inner 

membrane structure. The semi-symmetric structure has interconnected porous morphology 

in the cross section below the skin layer. This interconnectivity facilitated the diffusion of 

water through the membrane. On the contrary, the asymmetric structure has thicker skin 

layer and air filled macrovoids, and both resist wettability. 

The highest permeability was for the semi-symmetric structure with the highest Plu content 

as shown in Figure 5.27. The P15T50Pl5-H30C0 membrane held many privileges for increasing 

wettability. It acquired the preferable thin skin layer and the interconnected porous 
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structure. Besides, the higher entrapment of Plu in the dense skin layer increased the 

surface hydrophilicity. 

 

Figure 5.27: Wettability curves of membranes having different morphologies 

5.2.3. Porosity 

Membrane porosity was calculated in percentage pore volume to sample total volume using 

Equation 8 and the data presented in Table 5.4. The average porosity of samples of different 

cast solution composition showed an increase with the increase in Plu concentration. All 

membrane samples with no Plu content produced at different RH degrees had an average 

porosity of 62%. By adding 1 wt% Plu to the cast solution, the pore volume reached 76% and 

was further increased to 80% with 5 wt% Plu. This agrees with the general trend of the 

membrane hydraulic permeability. As the Plu concentration increased the total polymer-

lean phase volume increased; thus, the final pore volume increased. Accordingly, this 

observation substantiated the effect of Plu in increasing the vapor absorption by its 

hygroscopic effect. 

Table 5.4: Thickness (L), area (A), mass (m) and calculated porosity (Ɛ) for different 

membranes samples of 12.5 mm radius and total area (A) of 490.65 x10-6 m2. 

Conditions L x10-5 (m) m x10-4 (Kg) Ɛ (%) 

P15T55Pl0 6 12.69 62.22 

P15T54Pl1 6.9 11.35 76.06 
P15T50Pl5 8 14.37 79.69 
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5.2.4. Membrane surface charge 

Membrane surface charge measurements showed a shift of the zeta-potential to a more 

negative value with increasing Plu content (seen in Figure 5.28). This observation supports 

the explanation provided earlier for the availability of Plu groups on the membrane surface 

and their influence on increasing the membrane hydrophilicity by increasing its surface 

charge density. 

 

Figure 5.28: Membrane surface charge for samples of increasing Plu concentration 

5.3. TFNC support-membrane testing 

5.3.1. Microfiltration fouling 

In Figure 5.29, samples exposed to humidity under forced convection were investigated for 

the effect of membrane morphology on RFR% under microfiltration processes using 

polystyrene beads (LB3) with an average particle diameter of 297.1 nm (represented in 

Figure 5.30). P15T55Pl0-H30Cf membranes had the highest reduction in flux after 60 min of 

filtration reaching ≈18% of the initial value. This agreed with the large average pore size of 

this membrane as compared to others. Thus, LB3 preferentially accumulates on top-of or 

inside the membrane surface pores. As a consequence, flux recovery was the lowest due to 

the accumulation inside the membrane matrix and the LB3 entrapment seemed irreversible 

under the adopted cleaning procedure. The SEM image in Figure 5.31 provides a 

visualization of LB3 aggregates in the cross section near to the membrane top surface of 

P15T55Pl0-H30Cf. Increasing the RH degree of exposure decreased the pore size, and as well, 

the percent reduction in flux. 
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Figure 5.29: RFR % and recovery % using LB3 on membrane samples of (a) P15T55Pl0, (b) 
P15T54Pl1 and (c) P15T50Pl5 at different RH exposure 



88 
 

 

Figure 5.30: Particle size distribution result of 100 ppm LB3 solution 

 

Figure 5.31: SEM micrograph of P15T55Pl0-H30Cf showing LB3 aggregates inside the 
membrane large pores near the top surface 

As P15T54Pl1 membrane prepared at 30% RH had smaller mean flow pore diameter, it 

showed the highest recovery of almost 99%. Surface hydrophilicity as shown from contact 

angle measurement and hindrance of depth accumulation due to small pore diameter (see 

Table 5.1) were responsible for this behavior. Similarly, 30% RH exposure had the highest 

performance among all P15T55Pl5 samples owing to its structure. Both membranes at 60 and 

80% RH had higher reduction and lower recovery. Due to the higher entrapment of LB3 in 

their matrix, back flushing of both was not enough to flush out the LB3 trapped inside the 
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membranes matrices. However, at 80% RH the smaller pore size reflected the slightly better 

performance (Figure 5.29 (b,c)). 

Generally, the addition of Pluronic increased bulk hydrophilicity. Figure 5.32 compares the 

cross-section images of two membranes with comparable mean flow pore diameter (≈183 

nm). However, they have different compositions (P15T55Pl0-H60Cf and P15T50Pl5-H80Cf), and 

hence, different bulk hydrophilicity. As LB3 are hydrophilic in nature, images show LB3 

beads diffusing all over the cross-section (Figure 5.32 (a,c)) with the membrane of high bulk 

hydrophilicity (P15T50Pl5-H80Cf). On the contrary, P15T55Pl0-H30Cf membrane sample shows LB3 

beads only on the top surface. It is however worth mentioning that the diffusion of LB3 

through membrane versus its accumulation on the membrane surface did not show a 

negative effect on recovery. This is ascribed to the facilitated backwash of entrapped LB3 in 

case of membranes with higher bulk hydrophilicity. 

 

Figure 5.32: SEM micrographs of P15T50Pl5-H60Cf and P15T55Pl0-H80Cf showing cross section 
near top surface (a, b) and near bottom surface (c, d), respectively 

Interestingly, further to the addition of 1wt% Plu, the membranes at 60 and 80% RH 

exposure had lower RFR% as compared with P15T55Pl0 samples under the same conditions. 

Knowing that all RFR runs were conducted under isobaric condition, one shall assume that 

higher quantity of LB3 passed through P15T54Pl1 at the same period of time compared to 

their complementary P15T55Pl0 samples. However, the increased hydrophilicity is the reason 

for such decrease in RFR value. For instance, at 60% RH with pore size of 242 nm for 
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P15T54Pl1 and 183 nm for P15T55Pl0, the successful trade-off with Plu addition diminished the 

expected negative effect of larger pore diameter. As the increased bulk hydrophilicity 

hindered the attachment of LB3 to the membrane inner matrix and the beads washing-out 

was relatively easier. 

Comparably, at 80% RH, 1wt% Plu composition showed inferior performance despite of its 

mean pore diameter of 154 nm versus 219 nm in case of 5wt%. While as P15T50Pl5 had 42.2% 

larger pore size than P15T55Pl1, the hydrophilicity compensated this factor and the flux 

reduction was approximately similar for both with higher recovery of P15T54Pl5. 

Cyclic filtration runs were conducted to evaluate the membrane recovery performance. As 

represented in Figure 5.33, P15T55Pl0-H80Cf membrane samples showed better performance 

than P15T55Pl0-H60Cf due to the relatively smaller average pore diameter that concluded to 

lower degree of LB3 beads entrapment. Accordingly, the cumulative loss in performance 

was relatively lower than that observed for P15T55Pl0-H60Cf membrane samples. 

 

Figure 5.33: LB3 cyclic filtration curves for membrane samples of P15T55Pl0 prepared at 
60% and 80% RH under forced convection 

Similar behavior was observed with P15T54Pl1 and P15T50Pl5 samples, where membranes 

prepared at 80% RH showed better performance than those prepared at 60% RH. This 

agrees with the observation in the preceding paragraph that the decrease in average pore 

diameter with the increase in RH degree of exposure, resulted in lower degree of LB3 beads 

entrapment; and accordingly, better performance. Furthermore, all samples that 

incorporated Plu in its structure (Figure 5.34) demonstrated better performance than that of 

P15T55Pl0 samples (Figure 5.33). However, increasing Plu content from 1 wt% to 5 wt% did 

not show significant improvement in membrane performance. This is believed to be due to 

the antagonistic factors that interplay with increasing membrane Plu content.  

It was observed earlier that increasing membrane Plu content not only increased the 

membrane average pore diameter, but also increased membrane wettability and bulk 
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hydrophilicity. Thus, considering that cyclic filtration is affected by both factors, it is 

expected that the increase in the average pore size would negatively affect the cyclic 

filtration performance. On the contrary, increasing membrane bulk hydrophilicity should 

improve the cyclic filtration performance. Subsequently, both factors nearly demolish the 

significance of increasing membrane Plu content and samples of 1 wt% and 5 wt% Plu 

demonstrated comparable performance. 

 

Figure 5.34: LB3 cyclic filtration curves for membrane samples of P15T54Pl1 and P15T50Pl5 
prepared at 60% and 80% RH 

5.3.2. Compaction resistance performance 

TFC membranes are made of thin PA layer supported by the underlying membrane that 

typically has an asymmetric morphology. The asymmetry of the support layer is essential so 

that the skin layer could effectively stabilize the integrity of the top PA thin film. However, 

the inner structure of the support layer is of great influence on the overall membrane 

performance, including the membrane fouling resistance and mechanical stability. 

Accordingly, our motivation to improve membrane lifetime was through increasing the 

support layer hydrophilicity and mechanical strength; yet, maintaining the availability of the 

support membrane skin surface.  

In a previous section, we have demonstrated the adopted conditions to fabricate the semi-

symmetric structure. Further to that, semi-symmetric structure showed superior bulk 

hydrophilicity as compared to isotropic structure of same composition. Thus, in order to 

achieve the one of the main objectives of our study, the compaction resistance was tested 

to compare semi-symmetric to asymmetric support layer. P15T55Pl0 solution was used to 

prepare semi-symmetric and asymmetric support layers tailored by modifying the 

fabrication conditions. As shown in Table 5.5, the initial hydraulic permeability of the 

support layer with semi-symmetric cross-section was higher by 12% due to its thinner skin 
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thickness. Furthermore, as demonstrated in Figure 5.35, the semi-symmetric membrane had 

lower permeability loss under compaction and higher recovery value when pressure was 

released. This indicated that the semi-symmetric structure would be a better substitute to 

the typical asymmetric support membranes in TFC membrane formation. 

Table 5.5: Hydraulic permeability of membranes with different cross-sectional 
morphology using P15T55Pl0 solution 

Conditions Cross-sectional 
structure 

Jw (L/m2.hr.bar) 

Initial (J0) Compacted at 
1 bar (Jc) 

Recovery (Jr) 

30% RH-Free convection 
for 1 min 

Semi-symmetric 1732 1581 (91.3%) 1628 (94%) 

LIPS Asymmetric 1520 1345 (88.5%) 1374 (90.4%) 

 

 

Figure 5.35: The hydraulic permeability of compacted asymmetric and semi-symmetric 
membranes of same composition and semi-symmetric nanocomposite membranes and their 

recovery after pressure release for one cycle 

On the other hand, the addition of NPs did not show a significant increase in compaction 

resistance. Still, slight improvement was observed where the semi-symmetric membrane 

containing NPs at 0.1 wt% was tested as represented in Table 5.6. 

Table 5.6: Hydraulic permeability before and after compaction of membranes with and 
without NPs, as well as, the permeability recovery after pressure release 

Membrane Cross-sectional 
structure 

Jw (L/m2.hr.bar) 

Initial (J0) Compacted 
at 1 bar (Jc) 

Recovery (Jr) 

P15T55Pl0-H30C0 Semi-symmetric 1732 1581 (91.3%) 1628    (94%) 

P15T54.9N0.1-H30C0 Semi-symmetric 1939 1801 (92.9%) 1861 (96%) 
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5.4. TFNC performance 

To fabricate a stable TFC membrane, the support layer surface has to have a relatively small 

pore diameter to effectively support the thin PA layer on top of it. That is why most of the 

TFC commercial membranes have an asymmetric support layer. Because the skin layer of 

the asymmetric support membrane maintains high stability for the PA layer upon applying 

pressure during operation [161,163].  On the other hand, it is preferable for the support 

layer to have low resistance to water flow in order not to decrease TFC membrane flux. 

Thus, support membrane hydrophilicity, average pore diameter and skin layer thickness are 

quite important to be considered in order to have efficient TFC membrane [161,168,169]. 

For instance, interfacial polymerization process for PA formation might take place inside the 

pore if the diameter is wide enough. Hence, no solute rejection would be noticed for the 

TFC membrane because of the PA layer defects (as shown in Figure 5.36). Also, even if the 

PA formed an intact film it might be broken when high pressure is applied. Accordingly, 

support membranes with relatively small pore diameter or that comprise a skin layer are 

preferred for TFC fabrication. 

 

Figure 5.36: Schematic presentation of the importance of the support layer surface pore 

diameter 

TFC membrane samples were prepared using various support layers. In order to study the 

influence of the support layer structure, a PA thin layer was applied to asymmetric and 

semi-symmetric support membranes of comparable composition. Afterwards, FTIR 

spectroscopy measurements were done to verify the PA synthesis. As seen in Figure 5.37, 

the FTIR spectra of the P15T50Pl5-H30C0 support membrane shows the characteristic peaks of 

PES. The strong transmittances appear at 1151 cm-1 for SO2 bond stretching, 1244 cm-1 for 

ether bond vibration and 1490 cm-1 for C-S vibration [200]. The macromolecular hydrophilic 

additive (Plu) did not show a characteristic peak. However, the transmittance at 1105 cm-1 is 

a combined effect of C-O bond stretching in both PES and Plu (schematically presented in 

Figure 5.38) [93]. The TFC membrane showed characteristic peaks for PA layer. This included 

the appearance of aromatic amine bonds stretching at 1240, 1290 and 1320 cm-1. Also, 

amide bonds stretch vibrations appeared at 1680 cm-1.  
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Figure 5.37: Comparison of representative FTIR spectra of the support membrane P15T50Pl5-

H30C0 and its TFC membrane (after applying the PA layer) 

As per the results showed in Table 5.7, substituting the asymmetric support with the semi-

symmetric support increased the TFC permeability by 8.01%, yet, salt rejection was not 

significantly altered. This increased permeability is owing to the thinner skin layer of the 

semi-symmetric structure. On the other hand, the thin skin layer could still effectively 

support the applied PA with the same competence as seen in Figure 5.39. 

Further to that, semi-symmetric supports of increasing Plu content were used to prepare 

TFC membranes. The TFC of the support membrane P15T54Pl1-H30C0 had higher permeability 

and lower salt rejection compared to that of P15T50Pl5-H30C0 support membrane. This is due 

to the higher surface porosity of P15T54Pl1-H30C0 support membrane skin layer. This 

increased surface porosity increased the permeability and poorly supported the PA layer. 

Thus, defects on the PA layer might have been formed, hence, the salt rejection decreased. 
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Figure 5.38: Schematic presentation of chemical structures of PES, Plu and PA [94,200] 

 

 

Figure 5.39: SEM micrographs showing the (a) top side view, (b) focus on top surface and (c) 

top surface, (d) top cross section of TFC membrane based on P15T55Pl0-H30C0 semi-symmetric 

support 

On the other hand, TFNC membranes were prepared using the semi-symmetric 

nanocomposite support layers as seen in Figure 5.40. Nanoparticles introduction showed an 
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increase in the membrane permeability. Support layers containing 0.05 wt% and 0.1 wt% 

TiO2 increased the permeability by 4.46% and 26.77%, respectively as represented in Table 

5.7.  

Table 5.7: TFC membranes water flux, rejection and salt permeability based on different 
support membranes 

Support membrane Support membrane 
structure 

Permeability 
(L/m2.hr.bar) 

Permeability 

enhancement
a
 

(%) 

Rejection 
(%) 

P15T45Pl0-H30C0 Asymmetric 0.907 ± 0.08 0 91.43 
P15T55Pl0-H30C0 Semi-symmetric 0.986 ± 0.06 9 91.73 
P15T54Pl1-H30C0 Semi-symmetric 1.77 ± 0.24 95 89 
P15T50Pl5-H30C0 Semi-symmetric 1.051 ± 0.12 16 93.47 

P15T54.95N0.05-H30C0 Semi-symmetric 1.03 ± 0.072 14 92.53 
P15T54.9N0.1-H30C0 Semi-symmetric 1.25 ± 0.053 38 91.64 

a 
Permeability enhancement was calculated as percentage increase in permeability in 

respect to the permeability of TFC membrane prepared using asymmetric support layer. 
 

 

Figure 5.40: SEM micrographs showing the (a) cross section, (b) focus on top surface, and (c) 

top cross section of TFNC membrane based on P15T54.9N0.1-H30C0 semi-symmetric support 
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Chapter 6 : Conclusions and Outlook 
The further advancement of membrane desalination technology relies on the membrane 

durability and performance. The current challenge for such a sustainable process is 

increasing the membrane lifetime without compromising its permeability and salt rejection. 

In this study, the development of TFNC support layer tackled both challenges through 

increasing the membrane compaction resistance and hydrophilicity. In this study we showed 

different approaches to tailor the TFNC membrane support-layer structure and properties. 

Those approaches included the RH degree at exposure, exposure time and convection 

condition. The convection condition during VIPS process was found to be highly influential 

on the cast solution thermodynamics. Thus, a relatively new membrane cross sectional 

morphology was revealed upon fine tuning of the process parameters, which is the semi-

symmetric morphology.  

In the process of developing high performance TFNC support layer, hydrophilic additives 

were incorporated to increase the membrane throughput. Two types of additives were 

studied, a hydrophilic block copolymer (Plu) and inorganic nanoparticles (TiO2). H1NMR 

analysis was used to study the degree of entrapment of Plu in the final membrane structure 

which was significantly affected by the fabrication process. In addition, contact angle 

measurements and wettability were used for a comparative study of the hydrophilicity 

enhancement by NPs versus Plu. Also, for Plu containing membranes, microfiltration fouling 

experiments were conducted to reveal the fouling resistance to polystyrene beads.  

Further to that, cast solutions with different compositions were tailored to yield semi-

symmetric membranes to serve as a TFNC support layer. SEM imaging and the capillary flow 

porometer were used to study the effect of VIPS parameters on membrane final 

morphology. Based on the results presented in this study, the TFC support layer with semi-

symmetric morphology holds various advantages when compared with its asymmetric 

counterpart. The semi-symmetric structure showed higher hydraulic permeability without 

compromising the PA layer supporting property. Furthermore, the semi-symmetric 

membranes had higher compaction resistance and higher recovery percentages enduring 

high pressure applications.  

The introduction of TiO2 nanoparticles further increased the hydraulic permeability and 

compaction resistance of the semi-symmetric support. Although, NPs addition changed the 

cast solution thermodynamic properties, we were successful in tailoring the process 

conditions to obtain the semi-symmetric structure based on the previous practice using Plu. 

Finally, for future perspective some complimentary work can be suggested as follows: 

- Further study of the thermodynamic states of the solution under VIPS/NIPS 

combined process using dynamic Fourier transform infrared and cloud point 

measurements. 
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- Studying the influence of different hydrophilic additives to obtain the semi-

symmetric structure and further improve it. 

- Optimization of the PA thin film application on the semi-symmetric support to 

enhance its salt rejection. 

- Investigating long term RO performance of TFNC based on semi-symmetric support. 

- Scaling up of the fabricated TFNC and undertake a comparative study with currently 

available commercial TFC.  

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

References: 
                                                      

1 Vital water graphics - an overview of the state of the world’s fresh and marine waters. 2nd 

edition. United Nations Environmental Programme, (2008). Adapted from: 

<http://www.unep.org/dewa/vitalwater/index.html>, accessed on July 2015. 

2 Progress on drinking water and sanitation: special focus on sanitation, World Health 

Organization, (2008). Adapted from: 

<http://www.who.int/water_sanitation_health/monitoring/jmp2008/en/>, accessed on July 

2015. 

3 World health statistics. World Health Organization, (2008)b. Adapted from: 

<http://www.who.int/whosis/whostat/2008/en/>, accessed on July 2015. 

4 UN water fact sheets. United Nations Educational, Scientific, and Cultural Organization, 
(2013). Adapted from: <http://www.unwater.org/water-cooperation-2013/water-
cooperation/facts-and-figures/en/>, accessed on July 2015. 

5 Water and energy, World Water Assessment Programme, (2014). Adapted from: 

<http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-

water-and-energy/>, accessed on July 2015. 

6 Facing the challenges, World Water Assessment Programme, (2014). Adapted from: < 

http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-

water-and-energy/ >, accessed on July 2015. 

7 Water in a changing world, World Water Assessment Programme, (2009). Adapted from: 

<http://www.unesco.org/new/en/natural-

sciences/environment/water/wwap/wwdr/wwdr3-2009-> , accessed on July 2015. 

8 Managing water for all, Organization for Economic Cooperation and Development, (2009). 

Adapted from: 

<http://www.oecd.org/env/resources/managingwaterforallanoecdperspectiveonpricingand

financing.htm> accessed on July 2015. 

9 World population prospects. Population Division Database. Detailed Indicators-2015 

Revision, United Nations Department of Economic and Social Affairs (2013a). Adapted from: 

< http://esa.un/undp/wpp/Publications/ > accessed on June 2015, 

10 Annual report, United Nations-Habitat, (2010). Adapted from: < http://unhabitat.org/un-

habitat-annual-report-2010/ > accessed on July 2015. 

http://www.who.int/water_sanitation_health/monitoring/jmp2008/en/
http://www.unwater.org/water-cooperation-2013/water-cooperation/facts-and-figures/en/
http://www.unwater.org/water-cooperation-2013/water-cooperation/facts-and-figures/en/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-water-and-energy/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-water-and-energy/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-water-and-energy/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2014-water-and-energy/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr3-2009-
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr3-2009-
http://www.oecd.org/env/resources/managingwaterforallanoecdperspectiveonpricingandfinancing.htm
http://www.oecd.org/env/resources/managingwaterforallanoecdperspectiveonpricingandfinancing.htm
http://esa.un/undp/wpp/
http://unhabitat.org/un-habitat-annual-report-2010/
http://unhabitat.org/un-habitat-annual-report-2010/


101 
 

                                                                                                                                                                     

11 Water for food security and nutrition, High Level Panel of Experts on Food Security and 

Nutrition, (2015). Adapted from: < http://www.fao.org/cfs/cfs-hlpe/en/ > accessed on July 

2015. 

12 Batisha, A.F. Water desalination industry in Egypt, Eleventh International Water 

Technology Conference, Sharm El-Sheikh, Egypt Jan. 2007. 

13 Fahim M. A.; Hassanein M. K.; Khalil A. A.; Abou Hadid A. F. Climate change adaptation 

needs for food security in Egypt, Nature and Science 12, 68-74 (2013). 

14 Adaptation to Climate-change Induced Water Stress in the Nile Basin: A Vulnerability 

Assessment Report, United Nations Environment Programme (2013), Adapted from: 

<http://www.unep.org/dewa/assessments/EcoSystems/water>, accessed on July 2015. 

15 Youssef, R.M.; Sakr, M.L.; Shakweer, A.F. Desalination Technology Roadmap 2030, The 

Cabinet Information and Decision Support Center, Egypt 2007. 

16 Osman, G. DESERTEC Cost Analysis and Economic Impact Assessment, World Wind 

Energy Association, (2011). Adapted from: < http://www.esi-africa.com/wp-

content/uploads/Galal_Osman.pdf > accessed on July 2015. 

17 Ettouney, H. Design & Analysis of humidification dehumidification desalination process II, 

Desalination, 183, 341-352 (2005). 

18 Saidur, R.; Elcevvadi, E.T.; Mekhilef, S. An overview of different distillation methods for 

small scale applications. Renew. Sust. Energ. Rev. 15, 4756-4764 (2011). 

19 Müller-Holst H. Solar thermal desalination using the multiple effect humidification (MEH) 

method. Solar Desalination for the 21st Century. 215–25 (2007).  

20 Energy options for water desalination in selected ESCWA member countries. United 

Nations. Economic and Social Commission for Western Asia. (2001). 

21 Ulbricht,M. Advanced functional polymer membranes, Polymer, 47, 2217-2262 (2006). 

22 Wang, Y.; Kim, J.-H.; Choo, K.-H.; Lee, Y.-S.; Lee, C.-H. Hydrophilic modification of 

polypropylene microfiltration membranes by ozone-induced graft polymerization, J. Membr. 

Sci., 169(2), 269-276 (2000). 

23 Lee, H.J.; Safert, F.; Strathmann, H.; Moon, S.H. Designing of an electrodialysis 

desalination plant, Desalination, 142, 267-286 (2002). 

24 Karaghouli, A.; Kazmerski, L. Energy consumption and water production cost of 

conventional and renewable-energy-powered desalination processes. Renew. Sust. Energ. 

Rev. 24, 343-356 (2013) 

http://www.fao.org/cfs/cfs-hlpe/en/
http://www.unep.org/dewa/assessments/EcoSystems/water
http://www.esi-africa.com/wp-content/uploads/Galal_Osman.pdf
http://www.esi-africa.com/wp-content/uploads/Galal_Osman.pdf


102 
 

                                                                                                                                                                     

25 Energy Makes All the Difference: Desalination Operating Costs Compared - Chart, Global 

Water Intelligence, 8 (2007). Adapted from: < https://www.globalwaterintel.com/global-

water-intelligence-magazine/8/2/uncategorized/chart-of-the-month > accessed on July 

2015. 

26 Loupasis s. Technical analysis of existing renewable energy driven desalination schemes. 

Commission of the European Communities, Directorate General for Energy and Transport, 

(2001). 

27 Lachish U. Osmosis and thermodynamics. Am. J. Phys. 75(11). 997 – 998 (2007). 

28 Semiat R. Energy issues in desalination processes. Environ. Sci. Technol. 42,8193-8201 

(2008). 

29 Karagiannis, I.C.; Soldatos, P.G. Water desalination cost literature: review and 

assessment. Desalination. 223, 448-456 (2008). 

30 Jaber, I.S.; Ahmed M.R. Technical and economic evaluation of brackish groundwater 

desalination by reverse osmosis (RO) process. Desalination 165, 209-213 (2004). 

31 Mohamed E.S.; Papadakis, G.; Mathioulakis, E.; Belessiotis, V. The effect of hydraulic 

energy recovery in a small sea water reverse osmosis desalination system; experimental and 

economical evaluation. Desalination 184, 241–246 (2005). 

32 Borsani, R.; Rebagliati, S. Fundamentals and costing of MSF desalination plants and 

comparison with other technologies. Desalination 182, 29–37 (2005). 

33 Wu S. Analysis of water production costs of a nuclear desalination plant with a nuclear 

heating reactor coupled with MED processes. Desalination 190, 287–294 (2006). 

34 Al-Karaghouli, A.; Renne, D.; Kazmerski, L. Solar and wind opportunities for water 

desalination in the Arab regions. Renew. Sust. Energ. Rev. 13, 2397–2407 (2009). 

35 Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and 

environmental impacts of desalination technologies. Desalination. 266, 263-273 (2011). 

36 Nour-Eldin M. Untraditional water resources priorities survey. Environment and Climate 

Change Research Institute, Egypt; 2000. 

37 Desalination in Addressing Water Scarcity. Economic and Social Commission for Western 

Asia, 2009. Retrieved from 

<http://www.escwa.un.org/information/pubaction.asp?PubID=620> accessed on July 2015. 

38 Desalting projects report No. 17. Wangnick Inventory, 2002. Retrieved from 

<https://www.desalination.com/articles/11552> accessed on July 2015. 

https://www.globalwaterintel.com/global-water-intelligence-magazine/8/2/uncategorized/chart-of-the-month
https://www.globalwaterintel.com/global-water-intelligence-magazine/8/2/uncategorized/chart-of-the-month
http://www.escwa.un.org/information/pubaction.asp?PubID=620
https://www.desalination.com/articles/11552


103 
 

                                                                                                                                                                     

39 Camacho, L.; Dumee, L.; Zhang, J. Advances in Membrane Distillation for Water 

Desalination and Purification Applications. Water. 5, 94-196 (2013). 

40 Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane, 

in Saline Water Conversion–II, Advances in Chemistry Series Number 28, Am. Chem. S., 117–

132 (1963). 

41 Cadotte, J.E.; Steuck, M.J.; Petersen, R.J. Research on in-situ-formed condensation 

polymers for reverse osmosis membranes, NTIS Report No. PB- 288387, loc. cit, 1978 (Mar). 

42 Cadotte, J.E.; Cobian, K.E.; Forester, R.H.; Petersen, R.J. Continued evaluation of insitu-

formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB-

253193, loc. cit, 1976 (Apr). 

43 Adapted from <www.roplant.or.kr> accessed on February 2015.  

44 Adapted from Membrane sciences course materials; M. Ulbricht presentation, 2013. 

45 Membrane separation market, Transparency Market Research 2014. Adapted from: 

<http://www.transparencymarketresearch.com/membrane-separation-market.html> 

accessed on February 2015. 

46 Kesting, R.E., Synthetic Polymeric Membranes, John Wiley & Sons, New York (1985) 

47 Mulder, M. Basic Principles of Membrane Technology, Kluwer Academic Publishers, 

(1996). 

48 Van de Witte, P.; Dijkstra, P.J.; Van den Berg, J.W.A.; Feijn, B.J. Phase separation 

processes in polymer solutions in relation to membrane formation, J. Membr. Sci. 117, 1 

(1996). 

49 Park, H.C.; Kim, Y.P.; Kim, H.Y.; Kang, Y.S. Membrane formation by water vapor induced 

phase inversion, J. Membr. Sci. 156, 169 (1999). 

50 Abu Tarboush, B.J.;  Rana, v.; Matsuura, T.; Arafat, H.A.; Narbaitz, R.M., Preparation of 

thin-film-composite polyamide membranes for desalination using novel hydrophilic surface 

modifying macromolecules, J. Membr. Sci. 325, 166–175 (2008). 

51 Liu, N.A.; Hashim, Y.T.; Abed, M.R.M.; Li, K. Progress in the production and modification 

of PVDF membranes, J. Membr. Sci. 375, 1–27 (2011). 

52 Zsigmondy, R.; Bachmann, W.Z. “Uber Neue Filter”, Z. Anorg. U. Allgem. Chem. 103, 119–

128 (1918). 

http://www.roplant.or.kr/


104 
 

                                                                                                                                                                     

53 Elford, W.J. Principles governing the preparation of membranes having graded porosities. 

The properties of ‘gradocol’ membranes as ultrafilters, Trans. Faraday Soc. 33, 1094–1104. 

(1937). 

54 Yip, Y.; McHugh, A.J. Modeling and simulation of nonsolvent vapor-induced phase 

separation, J. Membr. Sci. 271, 163–176 (2006). 

55 Wang, Q.; Wang, Z.; Wu, Z. Effects of solvent compositions on physicochemical 

properties and anti-fouling ability of PVDF microfiltration membranes for wastewater 

treatment, Desalination 297, 79–86 (2012). 

56 Peng, Y.; Fan, H.; Dong, Y.; Song, Y.; Han, H. Effects of exposure time on variations in the 

structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-

induced phase separation”, Appl. Surf. Sci. 258, 7872–7881 (2012). 

57 Shin, S.J.; Kim, J.P.; Kim, H.J.; Jeon, J.H.; Min, B.R. Preparation and characterization of 

polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination. 

186, 1–10 (2005). 

58 Bikel, M.; Punt, I.G.M.; Lammertink, R.G.H.; Wessling, M. Micropatterned polymer films 

by vapor-induced phase separation using permeable molds, ACS Appl. Mater. Interfaces. 12, 

2856–2861 (2009). 

59 Giron`es, M.; Akbarsyah, I.J.; Nijdam, W.; van Rijn, C.J.M.; Jansen, H.V., Lammertink, 

R.G.H., Wessling, M. Polymeric microsieves produced by phase separation micromolding, J. 

Membr. Sci. 283, 411–424 (2006). 

60 Khayet, M.; Garc´ıa-Payo, M. C.; Qusay, F.A.; Khulbe, K.C.; Feng, C. Y.; Matsuura, T. Effects 

of gas gap type on structural morphology and performance of hollow fibers, J. Membr. Sci. 

311, 259–269 (2008). 

61 Ulbricht, M.; Schuster, O.; Ansorge, W.; Ruetering, M.; Steiger, P. Influence of the 

strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration 

membrane on filtration performance, Sep. Purif. Technol. 57, 63–73 (2007). 

62 Watchanida, C.; Bouyer, D.; Pochat-Bohatier, C.; Deratani, A.; Dupuy, C. Effect of a drying 

pretreatment on morphology of porous poly(Ether-Imide) membrane prepared using vapor 

induced phase separation, Dry. Technol. 24 (10), 1317–1326 (2006). 

63 Peng, N.; Chung, T. S.; Chng, M. L.; Aw,W. Evolution of ultra-thin dense-selective layer 

from single-layer to dual-layer hollow fibers using novel Extem R _ polyetherimide for gas 

separation, J. Membr. Sci. 360, 48–57 (2010). 



105 
 

                                                                                                                                                                     

64 Li, C.L.; Wang D.M.; Deratani, A.; Quémener, D.; Bouyere, D.; Lai, J.Y. Insight into the 

preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation. J. 

Membr. Sci. 361, 154–166 (2010). 

65 Nguyen, Q.T.; Alaoui, Q.T.; Yang, H.; Mbareck, C.  Dry-cast process for synthetic 

microporous membranes: Physico-chemical analyses through morphological studies. J. 

Membr. Sci. 358, 13–25 (2010). 

66 Michaels, A.S.  High Flow Membrane, US Patent No. 3,615,024 (October, 1971). 

67 Baker, R. Membrane Technology and Applications. Third Edition, John Wiley & Sons, 
(2012). 

68 Smolders, C.A.; Reuvers, A.J. Formation of Membranes by Means of Immersion 

Precipitation, J. Membr. Sci., 67-86 (1987). 

69 Sterling, V.; Scnven, L.E. Interfacial turbulence Hydrodynamic stablhty and the Marangom 

effect. AIChE. J. 5, 514 (1959). 

70 Ray, R. J.; Kranz, W. B.; Sam, R. L. Linear stablhty theory model for finger formation 1s 

asymmetric membranes, J. Membr. Sci. 23, 155 (1985). 

71 Strathmann, H.; Kock, K.; Amar P.; Baker, R. W. The formation mechanism of asymmetric 

membranes, Desalination, 16, 179 (1975). 

72 Smolders, C.A.; Reuvers, A J.; Boom R.M.; Wienk I.M. Microstructures in phase-inversion 

membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259-275 (1992). 

73 Wang, D.-M.; Lin, F.-C.; Wu, T.-T.; Lai, J.-Y. Formation mechanism of the macrovoids 

induced by surfactant additives, J. Membr. Sci. 142(2), 191-204 (1998). 

74 Di Luccio, M.; Nobrega, R.; Borges, C. P. Microporous anisotropic phase inversion 

membranes from bisphenol-A polycarbonate: study of a ternary system, Polymer, 41, 4309–

4315 (2000). 

75 Barth, C.; Gonçalves, M.C.; Pires, A.T.N.; Roeder, J.; Wolf, B.A. Asymmetric polysulfone 

and polyethersulfone membranes: effects of thermodynamic conditions during formation 

on their performance. J. Membr. Sci. 169, 287–299 (2000). 

76 Lee H.J.; Jung, B.; Kang, Y. S.; Lee, H. Phase separation of polymer casting solution by 

nonsolvent vapor. J. Membr. Sci. 245, 103–112 (2004). 

77 Altinkaya, S.A.; Yenal, H. Ozbas, B. Membrane formation by dry-cast process Model 

validation through morphological studies. J. Membr. Sci.  249, 163–172 (2005). 



106 
 

                                                                                                                                                                     

78 Sua, Y.S.; Kuo, C.Y.; Wang, D.M.; Lai, J.Y.; Deratani, A.; Pochate, C.;  Bouyer, D. Interplay 

of mass transfer, phase separation, and membrane morphology in vapor-induced phase 

separation, J. Membr. Sci. 338, 17–28 (2009). 

79 Beysens, D.; Steyer, A.; Guenoun, P.; Fritter, D.; Knobler, C.M., How does dew form? 

Phase Transitions, 31, 219-246 (1991). 

80 Wenfang, L.U.; Zhiping, Z.; Lei, S.; Mingzhen, W. Formation of Polyethersulfone Film with 

Regular Microporous Structure by Water Vapor Induced Phase Separation. Chin. J. Chem. 

Eng. 18 (3), 150-157 (2010). 

81 Peng, Y.; Fan, H.; Ge, J.; Wang, S.; Chen, P.; Jiang, Q. The effects of processing conditions 

on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes 

prepared via vapor-induced phase separation. Appl. Surf. Sci. 263, 737–744 (2012). 

82 Hołda, K.; H.y Aernouts, B.; Saeys, W.; kelecom J. V. Study of polymer concentration and 

evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. 

Membr. Sci.  442, 196–205 (2013). 

83 Hansen, C.M. Polymer science applied to biological problems: Prediction of cytotoxic 

drug interactions with DNA. Eur. Polym. J. 44, 2741–2748 (2008).  

84 Wei, Y.-M.; Xu, Z.-L.; Yang, X.-T.; Liu H.-L. Mathematical calculation of binodal curves of a 

polymer/solvent/non-solvent system in the phase inversion process. Desalination. 192, 91–

104 (2006). 

85 Barzin, J.; Sadatnia, B.  Theoretical phase diagram calculation and membrane morphology 

evaluation for water/solvent/polyethersulfone systems. Polymer 48, 1620-1631 (2007). 

86 Barzin, J.; Sadatnia B. Correlation between macrovoid formation and the ternary phase 

diagram for polyethersulfone membranes prepared from two nearly similar solvents. J. 

Membr. Sci. 325, 92–97 (2008). 

87 Li, S.G.;  van den Boomgaard, Th.; Smolders, C.A.;  Strathmann, H.  Physical gelation of 

amorphous polymers in a mixture of solvent and non-solvent. Macromolecules 29, 2053 

(1996). 

88 Han, J.; Lee, W.; Choi, J.M.; Patel, R.; Min, B.R. Characterization of 

polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: 

Precipitation kinetics, morphology and gas separation. J. Membr. Sci. 351, 141–148 (2010). 

89 Tsai, J. T.; Su, Y. S.; Wang, D. M.; Kuo, J. L.; Lai, J. Y.; Deratani, A. Retainment of pore 

connectivity in membranes prepared with vapor-induced phase separation. J. Membr. Sci. 

362, 360–373 (2010).  



107 
 

                                                                                                                                                                     

90 Kang, J.S.; Kim K.Y.; Lee, Y.M. Preparation of PVP immobilized microporous chlorinated 

polyvinyl chloride membranes on fabric and their hydraulic permeation behavior. J. Membr. 

Sci. 214, 311–321 (2003). 

91 Han, M. J.; Nam, S. T. “Thermodynamic and rheological variation in polysulfone solution 

by PVP and its effect in the preparation of phase inversion membrane. J. Membr. Sci. 202, 

55–61 (2002). 

92 Wang, Y.-Q.; Su, Y.-L.; Ma, X.-L.; Sun, Q.; Jiang, Z.-Y. Pluronic polymers and 

polyethersulfone blend membranes with improved fouling-resistant ability and 

ultrafiltration performance. J. Membr. Sci. 283, 440–7 (2006). 

93 Susanto, H.;  Ulbricht, M.  Characteristics, performance and stability of polyethersulfone 

ultrafiltration membranes prepared by phase separation method using different 

macromolecular additives. J. Membr. Sci. 327, 125 (2009). 

94 Susanto, H; Stahra, N.; Ulbricht M. High performance polyethersulfone microfiltration 

membranes having high flux and stable hydrophilic property. J. Membr. Sci. 342, 153–64 

(2009). 

95 Peng, J.M.; Su, Y.L.; Zheng, L.L.; Wang, L.J.; Jiang, Z.Y.; Chen, W,J. Separation of oil/water 

emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep. 

Purif. Technol. 66, 591–7 (2009). 

96 Li, B.; Zhao, W.; Su, Y.L.; Jiang, Z.Y.; Dong, X.; Liu, W.P. Enhanced desulfurization 

performance and swelling resistance of asymmetric hydrophilic pervaporation membrane 

prepared through surface segregation technique. J. Membr. Sci. 326, 556–63 (2009). 

97 Sadrzadeh, M.; Bhattacharjee, S. Rational design of phase inversion membranes by 

tailoring thermodynamics and kinetics of casting solution using polymer additives. J. Membr. 

Sci. 441, 31–44 (2013). 

98 Van der Bruggen, B. Chemical modification of polyethersulfone nanofiltration 

membranes: A review. J. Appl. Polym. Sci. 114, 630–642 (2009). 

99 Kim, H.;  Lee, K.-H. Effect of PEG additive on membrane formation by phase inversion. J. 

Membr. Sci. 138, 153 (1998). 

100 Reuvers, A.J.;  Smolders, C.A. Formation of membranes by means of immersion 

precipitation. Part II. The mechanism of formation of membranes prepared from the system 

cellulose acetate–acetone–water. J. Membr. Sci. 34,  67 (1987). 



108 
 

                                                                                                                                                                     

101 Boom, R.M.; Wienk, I.M.; van den Boomgaard, T.;  Smolders, C.A.  Microstructure in 

phase inversion membranes. Part 2. The role of a polymeric additive. J. Membr. Sci. 73, 277 

(1992). 

102 Torrestiana, S.B.;  Basurto, R.I.O. Effect of nonsolvent on properties of spinning solution 

and polyethersulfone hollow fiber ultrafiltration membranes. J. Membr. Sci. 152, 19 (1999). 

103 Xu, Z.L.; Qusay, F.A. Polyethersulfone (PES) hollow fiber ultrafiltration membranes 

prepared by PES/non-solvent/NMP solution. J. Membr. Sci. 233  101 (2004). 

104 Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on 

membrane morphology and transport properties. J. Membr. Sci. 309, 209 (2008). 

105 Ohya, H.; Shiki, S.; Kawakami, H. Fabrication study of polysulfone hollow-fiber 

microfiltration membranes Optimal dope viscosity for nucleation and growth.  J. Membr. Sci. 

326, 293–302 (2009). 

106 Wang, Z.; Ma, J., The role of nonsolvent in-diffusion velocity in determining polymeric 

membrane morphology. Desalination 286, 69–79 (2012). 

107 Venault, A.; Wu, J.-R.; Chang, Y.; Aimar, P. Fabricating hemocompatible bi-continuous 

PEGylated PVDF membranes via vapor-induced phase inversion. J. Membr. Sci. 470, 18–29 

(2014). 

108 Sadrzadeh, M.; Bhattacharjee, S., Rational design of phase inversion membranes by 

tailoring thermodynamics and kinetics of casting solution using polymer additives. J. Membr. 

Sci. 441, 31–44 (2013). 

109 Young, T.H.; Chen, L.W. Pore formation mechanism of membranes from phase inversion 

process. Desalination, 103, 233–247 (1995). 

110 Peng, N.; Chung, T.-S.; Li, K.Y. The role of additives on dope rheology and membrane 

formation of defect-free Torlon® hollow fibers for gas separation. J. Membr. Sci. 343, 62–72 

(2009). 

111 Lin, K.Y.; Wang, D.M.; Lai, J.Y. Non-solvent-induced gelation and its effect on membrane 

morphology. Macromolecules, 35 (17), 6697–6706 (2002). 

112 Fu, X.Y.; Sotani, T.; Matsuyama, H. Effect of membrane preparation method on the 

outer surface roughness of cellulose acetate butyrate hollow fiber membrane. Desalination. 

233, 10 (2008). 



109 
 

                                                                                                                                                                     

113 Jansen, J.C.; Buonomenna, M.G.; Figolia, A.; Drioli, E.  Ultra-thin asymmetric gas 

separation membranes of modified PEEK prepared by the dry–wet phase inversion 

technique. Desalination 193, 58–65 (2006). 

114 Greenwood, J.M.; Johnson, J.S.; Witham, M.J. Preparation of polyethersulfone 

membranes, US Patent No. 6,056,903 (2000). 

115 Li,  J.F.; Xu, Z.L.; Yang, H. Microporous polyethersulfone membranes prepared under the 

combined precipitation conditions with non-solvent additives. Polym. Adv. Technol. 19, 251 

(2008). 

116 Lin, H.; Huang, C.P.; Li, W.;  Ni, C.  Ismat Shah, S., Tseng, Y.-H. Size dependency of 

nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-

chlorophenol. Appl. Catal. B, 68(1), 1-11 (2006). 

117 Schaep, J.; Vandecasteele, C.; Leysen, R.; Doyen, W. Salt retention of Zirfon® 

membranes Sep. Purif. Technol. 14, 127-131 (1998). 

118 Yu, L.-Y.; Shen, H.-M.; Xu, Z.-L. PVDF–TiO2 composite hollow fiber ultrafiltration 

membranes prepared by TiO2 sol–gel method and blending method. J. Appl. Polym. Sci. 

113(3), 1763-1772 (2009). 

119 Gilbert, B.; Ono, R.K.; Ching, K.A.; Kim, C.S. The effects of nanoparticle aggregation 

processes on aggregate structure and metal uptake. J. Colloid Interf. Sci. 339,  285-295 

(2009). 

120 Bae, T.H.; Tak,T.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration 

membranes for activated sludge filtration. J. Membr .Sci. 249, 1-8 (2005). 

121 Elimelech, M.;, Zhu, X.; Childress, A.E.; Hong, S. Role of membrane surface morphology 

in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis 

membranes. J. Membr .Sci. 127,  101-109 (1997). 

122 Li, J.H.; Xu, Y.Y.; Zhu, L.P.; Wang, J.H.; Du, C.H. Fabrication and characterization of a 

novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. 

Membr. Sci. 326, 659-666 (2009b). 

123 Luo, M.-J.; ,Zhao, J.-Q.; Tang, W.; Pu, C.-S. Hydrophilic modification of poly (ether 

sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. 

Sci. 249, 76-84 (2005). 

124 Arthanareeswaran, G.; kaivelan, P.T. Fabrication of cellulose acetate–zirconia hybrid 

membranes for ultrafiltration applications: performance structure and fouling analysis, Sep. 

Purif. Technol. 74, 230–235 (2010). 



110 
 

                                                                                                                                                                     

125 Hamid, N.A.A.; Ismail, A.F.; Matsuura, T.; Zularisam, A.W.; Lau, W.J.; Yuliwati, E.; 

Abdullah, M. S. Morphological and separation performance study of polysulfone/ titanium 

dioxide(PSF/TiO2) ultrafiltration membranes for humic acid removal. Desalination 273, 85–

92 (2011). 

126 Zhao, S.; Wang, P.; Wang, C.; Sun, X.; Zhang, L. Thermostable PPESK/TiO2 

nanocomposite ultrafiltration membrane for high temperature condensed water treatment. 

Desalination 299, 35–43 (2012). 

127 Louie, J.S.; Pinnau, I.; Ciobanu, I.; Ishida, K.P.; Ng, A.; Reinhard, M. Effects of polyether–

polyamide block copolymer coating on performance and fouling of reverse osmosis 

membranes. J. Membr. Sci. 280, 762–770 (2006). 

128 Kim, S.H.; Kwak, S.-Y.; Sohn, B.-H.; Park, T.H. Design of TiO2 nanoparticle self- 

assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to 

solve biofouling problem. J. Membr. Sci. 211, 157–165 (2003). 

129 Yu, J.C.; Yu, J.; Hoa, W.; Zhao, J. Light-induced super-hydrophilicity and photocatalytic 

activity of mesoporous TiO2 thin films. J. Photochem. Photobiol. A 148, 331-339 (2002). 

130 Rong, M.Z.; Zhang, M.Q.; Ruan, W.H. Surface modification of nanoscale fillers for 

improving properties of polymer nanocomposites: a review. J. Mater. Sci. Technol. 22, 787–

796 (2006).  

131 Yang, Y., Zhang, H., Wang, P., Zheng, Q., Li, J., The influence of nano-sized TiO2 fillers on 

the morphologies and properties of PSF UF membrane. J. Membr. Sci. 288, 231-238 (2007). 

132 Teow, Y.; Ahmad, A.; Lim, J.; Ooi, B. Studies on the surface properties of mixed‐matrix 

membrane and its antifouling properties for humic acid removal. J. Appl. Polym. Sci. 128, 

3184–3192 (2013). 

133 Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, M.J.; Kim, J.; Van der Bruggen, B. 

Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, 

morphology, and fouling resistance of PES–TiO2 membranes. J. Colloid Interf. Sci. 363, 540–

550 (2011). 

134 Mulder,  J. Basic Principles of Membrane Technology, Kluwer Academic Publishers, 383 

(1996). 

135 Kim, I.C.; Lee, K.H.; Tak, T.M. Preparation and characterization of integrally skinned 

uncharged polyetherimide asymmetric nanofiltration membrane. J. Membr. Sci. 183, 235–

247 (2001). 



111 
 

                                                                                                                                                                     

136 Wu, G.; Cui, S.G.L.; Xu, Y. Preparation and characterization of PES/TiO2 composite 

membranes. Appl. Surf. Sci. 254, 7080–7086 (2008). 

137 Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification 

of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES 

ultrafiltration membranes. J. Membr. Sci. 378, 73– 84 (2011). 

138 Cao, X.; Ma, J.; Shi, X.; Ren, Z. Effect of TiO2 nanoparticle size on the performance of 

PVDF membrane Appl. Surf. Sci.. 253, 2003-2010 (2006). 

139 Chen, Z.; Deng, M.; Chen, Y.; He, G.; Wu, M.; Wang, J. Preparation and performance of 

cellulose acetate/polyethyleneimine blend microfiltration membranes and their 

applications. J. Membr. Sci. 235, 73–86 (2004). 

140 Shin, S.J.; Kim, J.P.; Kim, H.J.; Jeon, J.H.; Min, B.R. Preparation and characterization of 

polyethersulfone microfiltration membranes by a 2-methoxyethanol additive. Desalination. 

186, 1–10 (2005). 

141 Sun, H.; Liu, S.; Ge, B.; Xing, L.; Chen, H. Cellulose nitrate membrane formation via phase 

separation induced by penetration of non-solvent from vapor phase. J. Membr. Sci. 295,  2–

10 (2007). 

142 Caquineau. H.; Menut, P.; Deratani, A.; Dupuy, C. Influence of the Relative Humidity on 

Film Formation by Vapor Induced Phase Separation. Polym. Eng. Sci. 43(4), 798-808 (2003). 

143 Menut, P.; Pochat-Bohatier, C.; Deratani, A.; Dupuy, C.; Guilbert, S. Structure formation 

of poly (ether-imide) films using non-solvent vapor induced phase separation: relationship 

between mass transfer and relative humidity. Desalination. 145, 11-16 (2002). 

144 Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. Membrane formation via phase 

separation induced by penetration of non-solvent from vapor phase II. Membrane 

morphology. J. Appl. Polym. Sci. 74, 171–178 (1999). 

145 Park, H.C.; Kim, Y.P.; Kim, H.Y.; Kang, Y.S. Membrane formation by water vapor induced 

phase inversion. J. Membr. Sci. 156, 169 (1999). 

146 Altinkaya, S.A.; Yenal, H.; Ozbas, B. Membrane formation by dry-cast process Model 

validation through morphological studies. J. Membr. Sci.  249, 163–172 (2005). 

147 Tsai, H.A.; Kuo, C.Y.; Lin, J.H.; Wang, D.M.; Deratani, A.; Pochat-Bohatier, C.; Lee, K.R.; 

Lai, J.Y. Morphology control of polysulfone hollow fiber membranes via water vapor induced 

phase separation. J. Membr. Sci. 278, 390–400 (2006). 

148 Tanaka, H. Viscoelastic phase separation, J. Phys.: Condens. Matter. 12,  207 (2000). 



112 
 

                                                                                                                                                                     

149 Gao, L.; Tang, B.; Wu, P. An experimental investigation of evaporation time and the 

relative humidity on a novel positively charged ultrafiltration membrane via dry–wet phase 

inversion. J. Membr. Sci. 326, 168–177 (2009). 

150 Menut, P.; Suc, Y.S.; Chinpa, W.; Pochat-Bohatier, C.; Deratani, A.; Wang, D.M.; Huguet, 

P.; Kuo, C.Y.; Lai, J.Y.; Dupuy, C. A top surface liquid layer during membrane formation using 

vapor-induced phase separation (VIPS): Evidence and mechanism of formation. J. Membr. 

Sci. 310, 278–288 (2008) 

151 Bouyer, D.; Werapun, W.; Pochat-Bohatiera, C.; Deratani, A. Morphological properties 

of membranes fabricated by VIPS process using PEI/NMP/water system: SEM analysis and 

mass transfer modeling. J. Membr. Sci. 349, 97–112 (2010) 

152 Pinnau, I.; Korosa, W.J. Qualitative Skin Layer Formation Mechanism for Membranes 

Made by Dry/ Wet Phase Inversion. J. Polym. Sci. Pol Phys. 31, 419-427 (1993) 

153 Brown, G.L. Formation of films from polymer dispersions J. Polym. Sci., 22,423-434 

(1956) 

154 Ismail, A.F.; Ng, B.C.; Abdul Rahman, W.A.W.; Effects of shear rate and forced 

convection residence time on asymmetric polysulfone membranes structure and gas 

separation performance. Sep. Purif. Technol. 33, 255-272 (2003) 

155 Yip, Y.; McHugh, A.J. Modeling and simulation of non-solvent vapor-induced phase 

separation. J. Membr. Sci. 271, 163–176 (2006) 

156 Khare, V.P.; Greenberg, A.R.; Krantz, W.B. Vapor-induced phase separation effect of the 

humid air exposure step on membrane morphology Part I. Insights from mathematical 

modeling. J. Membr. Sci. 258, 140–156 (2005) 

157 Morgan, P.W. Condensation polymers: by interfacial and solution methods, Polym. Rev. 

10, 19–64 (1965) 

158 Cadotte, J.E.; Cobian, K.E.; Forester, R.H.; Petersen, R.J. Continued evaluation of in situ-

formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB-

253193, (1976) 

159 Wang, K.Y.; Chung, T.S. Fabrication of polybenzimidazole (PBI) nanofiltration hollow 

fiber membranes for removal of chromate. J. Membr. Sci. 281, 307–315 (2006) 

160 Boussu, K.; Van der Bruggen, B.; Vandecasteele, C. Study of the characteristics and the 

performance of self-made nanoporous polyethersulfone membranes. Polymer. 47, 3464–

3476 (2006) 



113 
 

                                                                                                                                                                     

161 Sotto, A.; Rashed, A.; Zhang, R.-X.; Martínez, A.; Braken, L.; Luis, P.; Van der Bruggen, B. 

Improved membrane structures for seawater desalination by studying the influence of 

sublayers. Desalination. 287, 317–325 (2012) 

162 Oh, N.W.; Jegal, J.; Lee, K.H. Preparation and characterization of nanofiltration 

composite membranes using polyacrylonitrate (PAN). II. Preparation and characterization of 

polyamide composite membranes. J. Appl. Polym. Sci. 80, 2729–2736 (2001) 

163 Singh, P.S.; Joshi, S.V.; Trivedi, J.J.; Devmurari, C.V.; Rao, A.P.; Ghosh, P.K. Probing the 

structural variations of thin film composite RO membranes obtained by coating polyamide 

over polysulfone membranes of different pore dimensions. J. Membr. Sci. 278, 19–25 (2006) 

164 Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on 

polyamide–polysulfone interfacial composite membranes. J. Membr. Sci. 336, 140–148 

(2009) 

165 Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of lag time in interfacial polymerization on 

polyamide composite membrane with different hydrophilic sub layers. Desalination. 284, 

32–41 (2012) 

166 Pendergast, M.M.; Ghosh, A.K.; Hoek, E.M.V. Separation performance and interfacial 

properties of nanocomposite reverse osmosis membranes. Desalination. 308, 180–185 

(2013) 

167 Cho, Y.H.; Han, J.; Han, S.; Guiver, M.D.; Park, H.B. Polyamide thin-film composite 

membranes based on carboxylated polysulfone microporous support membranes for 

forward osmosis. J. Membr. Sci. 445, 220–227 (2013) 

168 Wang, K.Y.; Chung, T.; Amy, G. Developing thin-film-composite forward osmosis 

membranes on the PES/SPSf substrate through interfacial polymerization, AIChE 58(3), 770–

781 (2012) 

169 Han, G.; Chung, T.-S.; Toriida, M.; Tamai, S. Thin-film composite forward osmosis 

membranes with novel hydrophilic supports for desalination. J. Membr. Sci. 423, 543–555 

(2012) 

170 Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite 

membrane: A review. Desalination. 287, 190–199 (2012) 

171 Kong, C.L.; Kanezashi, M.; Yamomoto, T.; Shintani, T.; Tsuru, T. Controlled synthesis of 

high performance polyamide membrane with thin dense layer for water desalination. J. 

Membr. Sci. 362, 76–80 (2010) 



114 
 

                                                                                                                                                                     

172 Wei, X.Y.; Wang, Z.; Chen, J.; Wang, J.X.; Wang, S.C. A novel method of surface 

modification on thin-film-composite reverse osmosis membrane by grafting hydantoin 

derivative. J. Membr. Sci. 346, 152–162 (2010) 

173 Rao, A.P.; Joshi, S.V.; Trivedi, J.J.; Devmurari, C.V.; Shah, V.J. Structure–performance 

correlation of polyamide thin film composite membranes: effect of coating conditions on 

film formation. J. Membr. Sci. 211, 13–24 (2003) 

174 Ghosh, A.K.; Jeong, B.H.; Huang, X.F.; Hoek, E.M.V. Impacts of reaction and curing 

conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 

311, 34–45 (2008) 

175 Hydranautics LFC, Hydranautics. Retrieved from 

<http://www.membranes.com/index.php?pagename=lfc> accessed on June 2015 

176 GE Product Literature, General Electric. Retrieved from 

<http://www.gewater.com/lib/prod lit/index.jsp> accessed on June 2015 

177 Reverse Osmosis and Nanofiltration Elements, Dow FilmTec. Retrieved from 

<http://www.dowwaterandprocess.com/products/ronf.htm.> accessed on June 2015 

178 Soroush, A.; Barzin, J.; Barikani, M.; Fathizadeh, M. Interfacially polymerized polyamide 

thin film composite membranes: Preparation, characterization and performance evaluation. 

Desalination. 287, 310–316 (2012) 

179 Zhang, R.-X.; Vanneste, J.; Poelmans, L.; Sotto, A.; Wang, X.-L.; Van der Bruggen, B. 

Effect of the Manufacturing Conditions on the Structure and Performance of Thin-Film 

Composite Membranes. J. Appl. Polym. Sci. 125, 3755-3769 (2012) 

180 Petersen, R.J. Composite reverse-osmosis and nanofiltration membranes. J. Membr. Sci. 

83, 81 (1993) 

181 Kuehne, M.A.; Song, R.Q.; Li, N.N.; Petersen, R.J. Flux enhancement in TFC RO 

membranes. Environ. Prog. 20, 23 (2001) 

182 Zworykin, V.K.; Hillier, J.; Snyder, R.L. Scanning electron microscope. Am. Soc. Test. 

Mater. 117, 15-23 (1942) 

183 Wang, Y.; Petrova, V. Nanotechnology research methods for foods and bioproducts. 
First Edition, John Wiley & Sons, 103-126 (2012) 

184 Wang, Y.; Padua, G.W. Formation of zein microphases in ethanol-water. Langmuir 26, 
12897-12901 (2010) 

http://www.membranes.com/index.php?pagename=lfc
http://www.gewater.com/lib/prod%20lit/index.jsp
http://www.dowwaterandprocess.com/products/ronf.htm.


115 
 

                                                                                                                                                                     

185 Fang, Y.; Tolley, H.D.; Lee, M.L. Simple capillary flow porometer for characterization of 
capillary columns containing packed and monolithic beds.  J. Chromatogr. A, 1217, 6405–
6412 (2010)  

186 Jacobasch, H.J.; Grundke, K.; Schneider, S.; Simon, F. Surface Characterization of 
Polymers by Physico-Chemical Measurements.  J. Adhesion 4, 48 (1995) 

187 International Union of Pure and Applied Chemistry, Technical Report: Measurement 
and Interpretation of Electrokinetic Phenomena, Pure Appl.Chem., 77, 1753-1805 (2005) 

188 Gohy, J.F.; Varshney, S.K.; Jérôme, R. Water-Soluble Complexes Formed by Poly(2-
vinylpyridinium)-block-poly(ethylene oxide) and Poly(sodium methacrylate)-block-
poly(ethylene oxide) Copolymers. Macromolecules 34(10), 3361 (2001) 

189 Kumar, G.; Prabhu, K.N. Review of non-reactive and reactive wetting of liquids on 
surfaces. Adv. Colloid Interface Sci. 133, 61–89 (2007) 

190 Wulf, M.; Grundke, K.; Kwok, D.Y.; Neumann, A.W. Influence of different alkyl side 
chains on solid surface tension of polymethacrylatesJ. Appl. Polym. Sci. 77, 2493 (2000) 

191 Tadmor, R. Line energy and the relation between advancing, receding and Young 
contact angles. Langmuir 20(18), 7659–64 (2004) 

192 Young, T. An Essay on the Cohesion of Fluids. Trans. R. Soc. Lond. 95, 65-87 (1805)   

193. ElSherbiny, I. M.A.; Ghannam, R.; Khalil, A.S.G.; Ulbricht, M. Isotropic macroporous 
polyethersulfone membranes as competitive supports for high performance polyamide 
desalination membranes. J. Membr. Sci. 493, 782–793 (2015). 

194 Iritani, E.;  Katagiri, N.; Ishikawa, Y.; Cao, D-Q. Cake formation and particle rejection in 
microfiltration of binary mixtures of particles with two different sizes. Sep. Purif. Technol. 
123, 214–220 (2014) 

195 Zhao, Z.; Zheng, J.; Peng, B.; Li, Z.; Zhang, H.; C.Han, C.  A novel composite 
microfiltration membrane: Structure and performance. J. Membr. Sci. 439, 12–19 (2013) 

196 Zhuang, X.; Shi, L.; Jia, K.; Cheng, B.; Kang, W. Solution blown nanofibrous membrane for 
microfiltration.  J. Membr. Sci. 429, 66–70 (2013) 

197 Welty, J.R.; Wicks, C.E.; Wilson, R.E. Fundarnentals of Momentum. Heat and Mass 

Transfer. Third Edition, John Wiley & Sons, (1984) 

198 Shi, Q.; Ye, S.; Kristalyn, C.; Su, Y.; Jiang, Z.; Chen, Z. Probing molecular-level surface 

structures of polyethersulfone/Pluronic F127 blends using sum-frequency generation 

vibrational spectroscopy, Langmuir 24, 7939 (2008) 

http://dx.doi.org/10.1016/j.memsci.2015.05.064
http://dx.doi.org/10.1016/j.memsci.2015.05.064
http://dx.doi.org/10.1016/j.memsci.2015.05.064


116 
 

                                                                                                                                                                     

199 Suk, D.E.; Matsuura, T.; Park, H.B.; Lee, Y.M. Synthesis of a new type of surface 

modifying macromolecules (nSMM) and characterization and testing of nSMM blended 

membranes for membrane distillation, J. Membr. Sci. 277, 177 (2006) 

200 Maruf, S.H., Greenberg, A.R., Pellegrino, J., Ding Y. Fabrication and characterization of a 
surface-patterned thin film composite membrane. J. Membr. Sci. 452, 11–19 (2014) 


	Synthesis and characterization of efficient polyamide thin film nanocomposite membranes
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1592508243.pdf.QJdzh

