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Abstract 

Cancer is imposing a worldwide health concern with alarming morbidity and mortality 

rates. Its burden stems from its increasing incidence along with depletion of efficient 

therapeutic options. Current conventional anticancer therapies; surgery, radiotherapy 

and chemotherapy are barely effective with deleterious side effects that ruin patients' 

quality of life. There is a paradigm shift in the interest of pharmaceutical industry 

towards a new class of peptide based drugs offering more selectivity, easier synthesis, 

wider safety profile and lower cost of manufacture. Anticancer peptides (ACPs) have 

gained interest in the last few decades due to their intrinsic properties such as 

cationicity and small size enabling them to be selective and effective anticancer agents. 

In our study, we made use of the publicly available databases of ACPs and the Red Sea 

metagenomics data, generated during AUC/KAUST Red Sea microbiome project.  Our 

experimental design consists of two phases; in silico analysis followed by in vitro 

validation of the computational results. In silico analysis resulted in a set of peptide 

hits from our library that share similar composition to ACPs. One hit was submitted for 

further in silico prediction of structure and function. The sequence was then chemically 

synthesized for subsequent in vitro functional assessment through cytotoxicity assay 

(MTT assay), apoptosis/necrosis detection assay (Annexin/PI assay) and RNA 

expression analysis of Caspase 3.The cancer cell lines used were U2OS, HepG2, 

MCF7 and HeLa. The peptide showed evident, yet variable, dose dependent 

cytotoxicity in all tested cell lines. Membranolysis and Apoptosis could be concluded 

as possible mechanisms of action from the results of annexin assay and RT-PCR that 

showed overexpression of Caspase 3 in peptide treated U2OS cells. Our results, despite 

being consistent and in line with each other, more investigative techniques should be 

done for confirmation and elucidation of the molecular mechanism of action of our 

peptide lead. 
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Chapter 1 

Literature review & Study objectives 

 

review: . Literature1.1 

 

   1.1.1. Cancer burden: 

There is no debate over the health and economic burdens that cancer yields both at the 

patient and community levels in developing and developed countries as well. Cancer 

encompasses a large group of diseases affecting any organ of the body causing 

uncontrollable cellular proliferation that is commonly metastasizing far from its 

original tissue and resisting treatment ("What Is Cancer?", 2016). 

    Cancer incidence is not restricted to any age group, gender or race. Cancer related 

mortality rate is surpassing cardiac disease related one within the coming few years. 

According to World Health Organization (WHO) and International Agency of 

Research on Cancer (IARC), there were 14.1 million new cancer cases, 8.2 million 

deaths and 32.6 million people living with cancer worldwide in 2012 with expectancy 

of the annual incidence rate to rise to 22 million cases before 2030 (de Martel et al., 

2012). 

    Current cancer treatments include surgery, chemotherapy, radiotherapy and the 

recently introduced immunotherapy and biologics. The limited efficiency of current 

conventional onco-therapeutic options together with emerging resistance of cancer 

cells to a wide range of chemotherapeutic drugs add up a recent challenge to the 

burden of cancer (Chen et al., 2014). 

    Surgery is still the primary treatment approach for most solid malignancies. 

However, some tumors are inoperable due to anatomical inaccessibility, aggressive 

tumor nature invading adjacent tissues or risk of injury to a nearby vital unaffected 

structure. Radiotherapy is restrained in practical use by a certain exposure dose limit 

beyond which normal tissues are wrecked (Riedl et al., 2011). 
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    The problem with chemotherapy, despite its relative efficacy especially for 

advanced cases, stems from its uncontrolled bio-distribution and lack of effective 

selection of malignant cells rather than normal cells. This treatment option is said to 

transform a deadly cancer into a chronic disease with more survival years, slower 

clinical deterioration and evident side effects such as bone marrow suppression, 

alopecia and mucositis which all interfere with patients' quality of life (Riedl et al., 

2011). 

    Moreover, cancer cells developed several multiple drug resistance (MDR) 

mechanisms that enabled them to tolerate those chemotherapeutic drugs rendering 

many cancers resistant to therapy (Perez-Tomas, 2006). Given all these drawbacks of 

the available cancer treatment options in a time where the number of cancer victims is 

increasing every day, is an alarm for the need of a new alternative stand-alone or 

adjuvant cancer therapy. Such a new therapy should be of comparable efficacy if not 

higher and with a wider safety profile. 

 

1.1.2. Peptide based drugs: 

The pharmaceutical industry is in continuous search for drug lead molecules that are 

of high potency, paramount safety and low manufacture cost. During the last few 

decades, peptides were mined for new lead competitors in the pharmaceutical market. 

Most drugs entering the market during the 20
th

 century were developed in what can be 

called "chemistry dominated era". Those drugs are almost all small molecule drugs 

with a molecular weight cutoff of 500 daltons (Newman &Cragg., 2012). 

    The small size of such drugs grants them adequate oral bioavailability, efficient 

membrane permeabilization, metabolic stability and low cost of synthesis. On the 

other hand, this small size renders them non target selective causing side effects. 

Protein based drugs or biologics e.g. insulin and monoclonal antibodies have been 

introduced with the advance in molecular biology tools and recombinant protein 

expression technology in the latter half of the 20
th

 century. Their large size (>5000 

daltons) renders them finely specific for their targets on the cost of inadequate 

membrane permebailization, high cost of synthesis, poor oral bioavailability and 

metabolic instability, (Craik et al., 2013). 
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    Peptide leads have been the focus of the pharmaceutical R&D process because they 

simply fill the gap in molecular weight and properties between small molecule drugs 

and protein biologics. Like biologics, they can bind with high specificity to their 

molecular targets with few side effects. Their smaller size makes them more 

membrane penetrable, less immunogenic and more amenable to chemical synthesis 

with lower cost of manufacture than biologics (Craik et al., 2013, Uhlig et al., 2014). 

    Furthermore, they display a broad range of targets due to multiple mechanisms of 

action. They are less toxic than small molecules due to low accumulation in tissues 

because of their susceptibility to proteolytic degradation. Being discoverable from 

various natural sources along with their structural and biological diversities offer a 

rich source for peptide drug lead design and development. Finally, they are amenable 

to site specific modifications which make them good candidates for tailored dugs with 

desired therapeutic properties in the era of personalized medicine (Craik et al., 2013). 

    This paradigm shift in pharmaceutical interest towards peptides is hindered by 

some technical and financial challenges. Large scale peptide synthesis still needs 

cheaper methods to be developed. Natural peptides typically possess poor absorption, 

distribution, metabolism and excretion (ADME) properties. Methods to modify 

peptides to overcome their low systemic availability and high clearance still need to 

be optimized. Cyclizations, L-aa substitution with D-aa and modification of N &C 

termini have shown some desirable effects on peptide stability (Craik et al., 2013, Di, 

2015).  

    Many peptide drugs have been in the market for decades representing 2% of the 

drug market e.g. Cyclosporin-A (CS-A) (11- aa) as an antifungal and 

immunosuppressant agent. Many others are still in the preclinical and clinical stages 

of the drug development pipeline. Others are still under basic research such as the 

Anticancer peptides (ACPs) (Di , 2015) 

    Accommodating new chemical and molecular biology tools and skills to efficiently 

design and optimize peptide based drug leads is becoming increasingly essential. 

Nonetheless, it mustn't be ignored that developing statistical and in silico models for 

exploitation of the publicly available databases of current knowledge about peptide 

drugs and for predicting their properties prior to synthesis would greatly enhance the 

next wave of peptide drug leads (Uhlig et al., 2014). 
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1.1.3. Anticancer peptides (ACPs): 

The attention to peptides as potential anticancer agents was drawn from some studies 

of antimicrobial peptides (AMPs) showing varying degree of activity against tumor 

cells (Hoskin &Ramamoorthy, 2008). The interest in understanding AMPs arouse in 

order to develop new alternative resistance-free antimicrobial therapies after the 

illegitimate use of antibiotics in the last 50 years inducing a worldwide problem of 

microbial resistance (Reddy, Yedery, & Aranha, 2004). 

    Antimicrobial peptides constitute one of the weapons of innate immunity in almost 

all eukaryotes. They are small molecules of low antigenicity. Generally, AMPs are 

cationic, amphipathic with a high proportion of hydrophobic residues. The ability of 

these small cationic molecules to disrupt bacterial membranes depends on their 

biophysical properties such as their amphipathicity, hydrophobicity, size, secondary 

structure and most importantly the non-specific electrostatic interaction with the 

anionic lipid rich microbial membrane (Huang et al., 2014). 

    The rapid non-specific mechanism of membrane permeation and subsequently cell 

death offers marked potency, selectivity and abrupt changes that the cell machinery 

can't simultaneously endure to produce a resistant membrane (Chen et al., 2014). 

AMPs, either natural or synthetic, didn't only show activity against bacterial cells but 

their activity was also reported against fugal, protozoal, viral and cancer cells (Gaspar, 

Veiga, & Castanho, 2013). 

    Anticancer peptides (ACPs) exert their cytotoxic activities in a similar way to 

AMPs. AMPs and ACPs share the same biophysical properties knowing that most 

ACPs are originally AMPs or synthetic AMP analogs. The increased net surface 

negative charge is a shared molecular feature of bacterial and tumor cells, relative to 

healthy normal cells. Hence, ACPs and AMPs can also be said to share the same 

molecular principle of cytotoxicity and selectivity (Gaspar, Veiga, & Castanho, 2013). 

    The ability of ACPs to selectively recognize and lyse tumor cells is still researched 

for the mechanistic details of the cellular death event. Kinetics of cancer cell killing 

involve membranolytic and non-membranolytic modes of action. However, the non- 

receptor mediated membrane lysis events still best explain the rapid and selective 

ACPs induced cytotoxicity (Epand, n.d, 2016). 
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    In 2009, Iwaski et al. provided a proof of the role of phosphatidyl serine (PS) 

density, a main lipid component of cancer cell membrane, to anticancer activity of 

ACPs stressing on the proposed concept of electrostatic interaction (Iwaski et al., 

2009). Other membrane features that aid ACP cytotoxicity are increased membrane 

fluidity allowing easy destabilization of the membrane along with its increased 

surface area due to more numerous microvilli allowing exposure to higher number of 

ACP molecules (Sok et al., 2002).  

    There are different modes of action that can explain the mechanism of membrane 

disruption. It occurs either through pore formation (torroidal and barrel stave model), 

thinning and membrane dissolution (detergent-like Carpet model), lipid peptide 

domain formation or membrane depolarization (Fig.1) (Papo & Shai, 2005). 

Membranolysis involves mitochondrial membrane disruption as well releasing 

initiators of apoptosis which can explain the late death events with some ACP 

examples (Constance &Lim., 2012). 

    From a structural point of view, there is an evident structural diversity in the AMPs 

and ACPs studied up till now. Certain ACP specific aa and dipeptide composition 

frequency is observed as well (Tyagi et al., 2013). The conformation of most ACPs 

fall either into the α-helical (e.g. Cecropins) or the β-sheet structure (e.g. Defensins). 

Structure activity relationship (SAR) studies so far have demonstrated that peptide-

membrane interaction depends on and affects the 2ry structure acquired by the 

peptide. 

 

Figure 1: Various models of membrane permeation by ACPs. Adapted with 

permission from/: http://crdd.osdd.net/raghava/anticp. 
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    Wang and Zhang found that the α-helical conformation of MPI-1, a synthetic 

analog of the AMP Polybia-MPI extracted from Polybia Paulista wasp venom, was 

essential for its membranolytic anticancer activity (Wang et al., 2008, wang et al., 

2009b, Zhang et al., 2010). In 2014, Chen et al. designed a series of α-helical cationic 

peptides with certain (IIKK) repeats that promoted α-helical conformation upon 

interaction with the negatively charged membranes. They found out that the α-helical 

conformation with a certain hydrophobic effect is essential for membrane 

permeablization. Peptides then got internalized initiated an apoptotic cascade (Chen et 

al., 2014). 

    Membrane disruption events are not always ensued with an apoptotic event. 

Dermaseptin B2, from tree frog Phyllomedusa bicolor , was found to induce some 

necrotic mechanisms following membrane lysis. That was confirmed through 

increased release of lactate dehydrogenase (LDH), propidium iodide (PI) staining and 

morphological studies using confocal microscopy (Van Zoggel., et al., 2012).  

CAMEL peptide, a synthetic hybrid peptide derived from the natural Hyalophora 

cecropia AMP; cecropin and Apis mellifera AMP; mellitin, is a necrosis inducing 

peptide that showed statistically significant in vivo tumor regression and relapse delay 

when combined with an Interleukin-12 carrying plasmid (Smolarczyk et al., 2010).  

    The direct membrane disrupting effect is not always the trigger for cell death 

induced by ACPs. LcfinB, isolated from cow's milk, is a known ACP that induces 

membrane pore formation with subsequent loss of membrane integrity and peptide 

internalization. LcfinB-induced membrane damage caused necrosis of human 

neuroblastome and mouse fibrosarcoma cells (Eliassen et al., 2006). On the other 

hand, LcfinB induced reactive oxygen species (ROS) generation and subsequent 

mitochondrial mediated apoptosis in human breast and leukemia cells (Mader, 2005). 

    Human neutrophil peptides 1-4 (HNPs 1-4) are a group of defensive peptides 

(Defensins) released from the neutrophils in response to microbial infections. Their 

anticancer properties have been investigated for a long time. HNP-1 was found to 

have dual mechanism of action through damaging cell membrane and causing DNA 

strand break (Gera and Lichtenstein, 1991). That was recently confirmed as a 

mechanism of action in prostate cancer cells (Gasper et al., 2015). On the other hand, 

Wang et al. reported that expressing HNP-1 in breast and colon cancer cells induced 
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cellular death via recruiting dendritic cells eliciting an immune response (Wang et al, 

2009c). 

    Other non-membranolytic mechanisms of ACPs include inhibition of tumor 

neovascularization (Koshimaki et al., 2009). Leuschner et al. used a 15 aa segment 

derived from chorionic gonadotropin as a mechanism for targeting cells expressing 

receptors for chorionic gonadotropin/Luteinizing hormone (CG/LH) in hormone 

dependent prostate and breast cancer respectively (Leuschner, 2005). Different 

mechanisms of ACPs are demonstrated in figure 2. 

    The different potencies and mechanisms of action adopted by the same peptide in 

different types of cancers can be explained by the differential expression pattern of 

negatively charged lipid molecules on the surface of different neoplastic cells which 

might condition the engagement and conformation of the interacting peptide dictating 

its preference to kill specific cancer cells. This elucidates the possibility that the 

mechanism of action depends on the cell type (Eliassen et al., 2006, Gasper et al., 

2015). 

 

 

Figure 2: Different mechanisms of action of ACPs. ACPs' activity can be due to a 

membranolytic mechanism, followed by apoptosis or necrosis, or a non-

membranolytic mechanism such as a mediated immune response or DNA synthesis 

inhibition. Adapted and modified from (Gaspar, Veiga, & Castanho, 2013).  
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    The future of peptides as an oncotherapy is still met by some challenges. The 

concept of peptides being amenable to sequence manipulation during synthesis in 

order to end up having certain structural conformation and biophysical properties  

should be dealt with caution to have balanced equilibrium between different 

characters and maintaining potency and selectivity (Gaspar, Veiga, & Castanho, 

2013). 
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1.2. Study Objectives: 

This study had two main objectives: 

1. Computational scanning of the Red Sea metagenomics library, created during 

AUC/KAUST Red Sea expeditions in 2008 & 2010, for sequence hits that show 

composition similarity to known experimentally verified ACPs. Computational 

structure and function prediction of one hit that shows adequate score and properties 

and presumably would act as an anticancer peptide (ACP). 

2. Validation of the in silico results through in vitro experiments that would prove or 

deny the in silico result using chemically synthesized peptide hit. Experiments include 

cytotoxicity assay (MTT assay) against 4 cancer cell lines and one normal cell line, 

apoptosis and necrosis detection assay (Annexin/PI assay) and RNA expression 

analysis (RT-PCR) of Caspase 3; a known apoptosis marker. 
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Chapter 2 

Materials & Methods: 

2.1. Computational Analysis: 

2.1.1. Red Sea Metagenomics Library scanning: 

Scanning the Red Sea Metagenomics library, created at AUC after the Red Sea 

expedition in spring 2010 in collaboration with KAUST, was inherited after Tyagi et 

al.  (Tyagi et al., 2013). Positive and negative examples of ACPs were required. One 

set of experimentally validated ACPs was retrieved from publicly available AMP 

databases such as the antimicrobial databases (APD) and (APD2) (Wang, 2004, Wang 

et al., 2009a), the collection of antimicrobial peptides (CAMP) (Waghu et al., 2014) 

and the database of Anuran defense peptides (DADP) (Novkovic et al., 2012). 

Another set of AMPs with no known anticancer activity was recruited, from the same 

databases, for comparison. 

    A preliminary investigation of all possible one amino acid (aa) and oligopeptide 

frequencies was done for the 2 datasets. Certain 1 aa and dipeptide (2 aa) frequencies 

were naturally observed in each dataset, creating a narrow standard error from their 

mean, indicating that the reported frequencies are almost consistent within each 

dataset. Thus, one aa and 2 aa composition were used as input features when 

comparing the 2 datasets for selecting only those recognizing ACPs (t- test, p < 0.05, 

Bonferroni multiple testing correction). A sliding window of an increasing size 

(minimum 5 aa) was used to generate peptides from metagenomic reads and 

assemblies. Each generated peptide had the ACPs' specific amino acid and dipeptide 

frequencies measured and scored accordingly. 

    A set of 59 peptide sequences with various scores and lengths was generated. 

Furthermore, the generated peptides were searched for Hidden Markov Models 

(HMMs) (Eddy, 1998) confirmed for the experimentally validated ACPs.  Then, they 

were fed into an online tool "AntiCP" (Institute of microbial technology, Chandigarh, 

India) for confirming their prediction as ACPs (http://crdd.osdd.net/raghava/anticp) 

(Tyagi et al., 2013). 

http://crdd.osdd.net/raghava/anticp


11 
 

    Out of the 59 sequences, a homeodomain sequence (PF00046.24) of 30 aa was 

chosen for synthesis. A short sequence (AAEK), corresponding to 2 Alanines, 

Glutamate and a Lysine, was added to the 30 aa homeodomain peptide sequence 

outside the HMM domain as a means to increase its hydrophobicity and charge and 

hence its penetrability. The new 34 aa sequence 

(AAEKEFIKYPYPTPLQYQQLATRLKVEKKLVRRW) was again validated as an 

ACP using AntiCP webserver provided by (Tyagi et al., 2013) 

(http://crdd.osdd.net/raghava/anticp). The sequence was alone aligned against the 

downloaded ACP dataset and the non-redundant protein database of PDB and 

SwissProt using online BLastp (NCBI, NIH) (Altschul et al., 1990). 

 

2.1.2. In silico prediction of structure & function of the sequence: 

 Raghava group provide more online servers that aid the development of peptide drugs 

especially anticancer ones. The half-life of the peptide sequence in an intestine-like 

environment could be predicted using "HLP" webserver 

(http://www.imtech.res.in/raghava/hlp/) (Sharma et al., 2014). Then, the sequence was 

analyzed for toxicity using "Toxinpred" webserver which contains more than 1800 

toxic peptides (http://osddlinux.osdd.net/raghava/toxinpred/) (Gupta et al., 2014). 

Finally, aligning the sequence against a database of human apoptotic proteins within 

cancer context was done using "ApoCanD" webserver 

(http://crdd.osdd.net/raghava/apocand/) (Kumar & Raghava, 2016). 

    Using some other available online tools, the structure and function of the chosen 

sequence was predicted. Using I-tasser server, provided by Zhang lab; University of 

Michigan (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) (Zhang., 2008, Yang & 

Zhang, 2015), the 3D structure of the sequence could be predicted along with 

identifying top templates to which the sequence shows high structural identity. Using 

COACH & COFACTOR, which are other tools provided by the same webserver, the 

ligand binding site & biological function annotation of the peptide could be predicted 

respectively. 

 

 

http://crdd.osdd.net/raghava/anticp
http://www.imtech.res.in/raghava/hlp/
http://osddlinux.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/apocand/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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2.2. Peptide synthesis: 

The 34 aa peptide was synthesized using FlexPeptide™ technology (Genscript, USA), 

purified using High performance liquid chromatography (HPLC). The peptide was of 

>95% purity and delivered aliquoted in a lyophilized powder form. Sterile filtered 

phosphate buffered solution (PBS) was used to dissolve the peptide.  Using the 

molecular calculator on Genscript Company's website, these characteristics of the 

peptide were determined: 

 

Chemical formula: C197H312N52O49                        M. Wt: 4192.92 Daltons 

Charge: +5 (Cationic)                                                   

 

2.3. Cell culture: 

The cell lines used were HepG2, MCF7, HeLa & U2OS. Both MCF7, a human breast 

adenocarcinoma cell line, and HepG2, a human liver cancer cell line, were purchased 

from Vacsera, Egypt. HeLa, a human cervical cancer cell line, & U2OS, a human 

osteosarcoma cell line, were both gifts from Dr. A. kakarougkas (Biology 

Department, AUC). HepG2 was maintained in RPMI-1640 (Sigma Aldrich, USA) and 

the other 3 cell lines were maintained in DMEM (Dulbecco’s Modified Eagle 

Medium) (Gibco, USA) supplemented with 10% Fetal bovine serum (FBS) (Gibco, 

USA) and 5% Penicillin-streptomycin antibiotic (Gibco, USA). 

 

    Cells were incubated in a humidified CO2 incubator (ShelLab, USA) adjusted at 

37
o
C and 5% CO2. They were regularly split at 70-80% confluence. Cells were 

routinely examined using an inverted microscope (Olympus IX70, USA) to detect any 

morphologic changes or contamination. Viable cell counting was done for all the cells 

using the Trypan blue staining method via haemocytometer (Hausser Scientific, 

USA). It was a mandatory step before seeding for the MTT and annexin V/ Propidium 

iodide (PI) assay. 

 

 

https://www.google.com.eg/search?q=lyophilized&spell=1&sa=X&ved=0ahUKEwi98KrcibrMAhVHLhoKHUXYDqoQvwUIGCgA
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2.4. Cytotoxicity assay (MTT assay) 

After counting, cells (HepG2, MCF7, HeLa &U2OS) were seeded in 96-well plates 

(Greiner Bio-one, Germany) at a density of 2x10
4
 viable HepG2 cells/ well and 1x10

4
 

viable cells/well for other cell lines. They were left for overnight incubation before 

peptide treatment. Serial concentrations of the peptide drug (1, 10, 100, 300, 500 

ug/ml) were used to treat cells. Triplicates of each condition were run, unless 

otherwise specified. Fresh media was used to prepare the peptide drug serial dilutions. 

     In each plate, untreated cells exposed only to fresh media were used as control 

cells and their absorbance values were used as the 100% viability. Additionally, some 

cells in each experiment were treated with fresh media along with the solvent, used 

for preparing the peptide drug (PBS), in an equivalent volume for the highest 

concentration of the peptide drug in order to check whether any resultant cytotoxicity 

would be due to the peptide or its solvent. 

     Cells were left incubated with the peptide for 24 hours before removing the drug 

and adding MTT. MTT (Serva, 11 Germany) is a yellow chemical tetrazolium 

compound; 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide. It reacts 

with the mitochondrial dehydrogenase enzymes of viable cells producing purple 

precipitate. 20ul MTT (5mg/ml) along with 100ul fresh media were added to each 

well and incubated for 3-4 hours. 

     Then, the media with the MTT were removed and the formed crystals in each well 

were solubilized using 100ul Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA). 

Absorbance was measured using a microplate reader FLUOstar OPTIMA (BMG 

LabTech, Germany). Cell vialbilty was then determined depending on the absorbance 

values (at 492nm) of the test cells as a percentage of the control untreated cells (100% 

viability). 

    The IC50 of the peptide (Median inhibitory concentration that kills 50% of the 

cells) was calculated using Grpahpad Prism version 5.0 (www.graphpad.com) 

(Haeley, 2005). It was calculated depending on the mean of cellular viability 

percentages for the tested concentrations after log transformation of data of three 

independent experiments (unless otherwise specified). Parallel experiments using 

cisplatin as a standard cytotoxic drug was done for each cell line as a positive control 

example of cytotoxicity. Serial concentrations of cisplatin (0.5, 1, 2, 4, 8, 16& 32 

ug/ml) were used. 

http://www.graphpad.com/
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2.5. Cancer cell selectivity: 

In order to test for the selectivity of the peptide, its cytotoxic activity was tested on 

L929 (mouse normal fibroblast cell lines) using MTT assay in the same technique 

used for the cancer cell lines using the following concentrations (0.01, 0.1, 1, 10 

&100ug/ml). Cisplatin activity against L929 was also assessed using the same 

concentration range used with the cancerous cell lines. 

 

2.6. Annexin V/ Propidium Iodide (PI) assay: 

All the following experiments were done on U2OS cells since it is the only cell line 

that gave a well-defined statistically significant dose dependent cytotoxicity pattern in 

three independent experiments. Annexin V/PI assay was performed according to 

manufacturer's protocol (Thermofischer, USA) and adapted for imaging fluorescent 

microscopy (Olympus IX70, USA).  

 

      Death was induced by incubating 33×10
4 

U2OS cells in one well of a 6 well plate, 

after an overnight seeding, with 200ug/ml of the peptide drug for 24 hours. 

Calculations were optimized according to the seeding density and surface area for a 6 

well plate. Equal number of untreated U2OS cells was seeded in another well in the 

same plate to be used as negative control. 

 

     The cells were washed by PBS, trypsinized by quenching and finally centrifuged to 

get a cell pellet. After trypsinization, 20ul of cell suspension was used for counting 

using trypan blue to determine viability percentage of the treated and untreated cells. 

The pellet was then resuspended in a volume of 1X annexin binding buffer that would 

allow to have a cell count of 1x10
5
 cells in 15ul cell suspension to be properly 

deposited onto a glass slide, covered with a cover slip and visualized under the 

microscope. 

 

     For each 100ul cell suspension, 10ul Annexin V conjugate (Alexa flour) and 1 ul 

of PI working solution was added, incubated at room temperature in the dark for 15 

minutes and then visualized under the microscope using the appropriate filters. The 

fluorophore (Alexa flour AnnexinV conjugate) is a strong green fluorescent dye 

excited by blue light (488nm) with an emission spectrum similar to FITC (530nm).  
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Red fluorescent nucleic acid binding PI can be excited using green light (535nm) and 

emits at 617nm. 

 

2.7. Reverse Transcription-PCR (RT-PCR) 

Total RNA was extracted using Trizol (Invitrogen, USA) as per manufacturer's 

protocol from peptide (IC50; 100.5 ug/ml) treated U2OS cells and control untreated 

cells. Extraction of RNA was followed by a quantification step in order to use 

constant concentration throughout the experiments. cDNA synthesis ensued using 

Revert ID™ First Strand cDNA synthesis kit (Fermentas, USA). PCR experiment for 

Caspase 3 was done using the following primers F. Primer 

(GACCATACATGGGAGCAAGT)                    R. Primer (ATCCGTACCAGAGCGAGA). 

 

2.8. Computational assessment of OCT3 expression in studied cell lines: 

Genevestigator, a high performance search engine for gene expression studies was 

used (Hruz et al., 2008). The tool integrates thousands of manually curated published 

microarray and RNAseq data for a reference based visualization of gene expression in 

different biological contexts. OCT3 expression level was assessed in U2OS, HepG2, 

MCF7 &Hela cell lines. Deficiency of molecular data on OCT6 expression made the 

analysis of its expression level in different cell lines inapplicable.  

 

2.9. Data Analysis 

Statistical analysis was performed using Grpahpad Prism version 5.0 

(www.graphpad.com ) (Haeley, 2005). Graphical presentations were created using the 

same program. All results represent the mean ± SD of three independent experiments 

unless otherwise specified. One-way ANOVA was used for the statistical analysis of 

multiple groups and a single variable. Unpaired t-test was used for pairwise 

comparison. Results were deemed significant with P-value <0.05. 

 

    For RT-PCR experiment, densitometric analysis was done using Image-J (National 

Institute of Health, USA, http://www.imagej.nih.gov/ij). Band intensities was 

normalized to the intensities of the loading control (β-actin). 

 

 

 

http://www.graphpad.com/
http://www.imagej.nih.gov/ij
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Chapter 3 

 

Results: 

 

3.1. Computational analysis: 

 

Out of the generated list of 59 peptide sequences with in silico predicted anticancer 

activity, one 30 aa sequence with a homeodomain HMM-ID was chosen for 

subsequent in silico structure analysis, synthesis and in vitro functional assessment. 

The sequence was predicted as an ACP using the "AntiCP" webserver (Tyagi et al., 

2013) (Fig.3).The sequence was confirmed to be belonging to homeodomain protein 

family using Blastp (Fig.4) and HMMER online webtools (http://hmmer.org/). Nearly 

all resulting significant matches were homeodomain proteins of different species. 

Homeodomain is a well-known family of transcription factors involved in 

embryogenesis, cell differentiation and carcinogenesis in some instances (Sagan et al., 

2013). 

 

    When the sequence was alone blasted against the downloaded set of ACPs, it 

showed significant alignment with one ACP namely, Bacteriocin (Fig.5). When the 

sequence was analyzed for predicting its half-life in an intestine-like environment, its 

half-life was predicted to be nearly 1 second with normal stability (Fig.6) and when it 

was analyzed against a database of toxic peptides, it was predicted to be non-toxic 

(Fig.7). 

 

     The sequence showed significant alignment with multiple apoptotic proteins when 

fed into the Blastp tool of the apoptotic protein database "ApoCand". The aligned 

proteins include 17 different apoptotic proteins out of the 82 proteins of the database. 

The most significant of which are human BIRC2 (Baculoviral IAP repeat-containing 

protein 2, UniProtKB - Q13490), human tumor necrosis factor receptor superfamily 

member 1A (UniProtKB - P19438) and different caspases. Such proteins play 

different roles in the numerous apoptotic pathways some of which are caspase 

independent (Parthanatos). 

 

 

http://hmmer.org/
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Figure 3: Prediction of the peptide sequence as an ACP. The sequence was 

submitted to http://crdd.osdd.net/raghava/anticp/ and predicted ACP before and after 

addition of the newly introduced amino acids (AAEK). The sequence exhibits 

adequate amphipathic and hydrophobic properties of an ACP. 

 

 

 

 
 

Figure 4: Blastp Alignment of the peptide sequence against PDB & SwissProt. 

The sequence showed significant alignment with hundreds of homeoproteins of 

different species of which are human POU transcription factors. 

http://crdd.osdd.net/raghava/anticp/
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Figure 5: Blastp alignment of the peptide sequence against a set of 

experimentally verified ACPs. It shows significant alignment with one ACP 

sequence namely Bacteriocin. 

 

 

 

 

 

 

Figure 6: predicted half-life of the peptide . The tool states a short halflife of the 

peptide sequence (around 1 second), though with normal stability. 
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Figure 7: Predicted peptide toxicity. Peptide sequence was predicted to be non-

toxic. 

 

 

 

 

3.2. Peptide structure & function prediction: 

 

Using I-Tasser, the peptide sequence was predicted to be helical (Fig.8) with the 

predicted 3D model shown in Figure 9. Out of the templates showing highest structure 

identity to the peptide sequence, 1ocpA (Solution structure of OCT3 POU-

homeodomain (POU5F1), PDB hit) (Fig.10.A)& 2XSD (Crystal structure of the 

dimeric OCT6 (POU3F1), PDB hit)(Fig.10.B) were found to show the highest 

alignment score with the structure of the peptide sequence under study. 

 

    Using COACH, It was found to be nucleic acid binding which goes with the 

prediction of the sequence as a homeodomain (Fig.11).COFACTOR tool could do 

biological function annotation based on the anticipated 3D structure of the sequence. 

Using COFACTOR, the best hit showing highest score was for Antp (Antennapedia) 

which is a regulatory homeoprotein in Drosophilla that is implicated in developmental 
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regulatory pathways. Antennapedia is famous for its cell penetrating properties and 

many cell penetrating peptides (CPPs) make use of its structure to enhance their 

penetrability (Thoren et al., 2000). 

 

 

 

 

 

 

 

 

Figure 8: Predicted peptide 2ry structure. Using I-Tasser, the 2ry structure of the 

peptide sequence was found to be α-helices rich. 
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Figure 10: Structural alignment of the predicted model with OCT3 & OCT6. The 

TM-align tool of the I-Tasser server aligns the predicted model to all structures in the 

Protein Databank (PDB) library. (A) Structural alignment of the predicted model of 

the peptide (colored and helical) to OCT3 structure (violet ribbon). (B) Structural 

alignment of the predicted model of the peptide (Colored and helical) to OCT6 

structure (violet ribbon). 

Figure 9: Predicted 3D model of the peptide sequence using I-Tasser modeler.  

The image depicts the 3D anticipated helical conformation of the peptide sequence. 

A B 
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Figure 11: Ligand binding site prediction using COACH. (A) COACH tool of I-

Tasser server infers the function of the query peptide sequence since it builds its 

prediction on both sequence and structure features not only a global structural 

alignment. DNA could be computationally predicted as a binding ligand to the peptide 

with a good score. (B) The image depicts a model of the peptide binding to DNA 

which goes with its prediction as a homeodomain. The image is drawn by Chimera 

1.11.2rc.  

 

A 

B 
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3.3. Cytotoxicity: 

All tested cell lines showed viability reduction when treated with increasing 

concentrations of the peptide. HepG2 cells showed dose dependent cytotoxicity in two 

independent experiments (Fig.12).U2OS cells showed dose dependent cytotoxicity in 

three independent experiments (Fig.13). Both MCF7 and HeLa (Fig.14) showed dose 

dependent viability reduction in one experiment with triplicates of each condition. 

 

     Images of U2OS peptide treated cells (Fig.15) show abnormal cellular morphology 

together with reduction of number of viable cells with increasing concentration of the 

peptide drug. Figure 16 shows a combined graph for viability reduction of all cell 

lines used.  Peptide IC50 value for HepG2 cells was calculated to be 132.4ug/ml. 

Peptide IC50 value for U2OS cells was calculated to be 100.5ug/ml. The IC50 for 

cisplatin treated HepG2 cells was 10.37ug/ml. 

 

 

 

Figure 12: Dose dependent cytotoxicity of peptide and cisplatin treated HepG2 

cells. Six replicates of each condition were tested. (A) One way ANOVA showed a 

statistical significant difference in viability between control cells (0 ug/ml) and both 

300ug/ml and 500ug/ml peptide treated cells at p <0.05. (B) Higher statistical 

difference in viability between control cells and (4, 8, 16 &32 ug/ml) cisplatin treated 

cells at P< 0.05 is noted. 

A B 
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Figure 13:   Dose dependent cytotoxicity of peptide treated U2OS cells. Eight 

replicates of each condition were tested. One way ANOVA showed a high statistical 

significant difference in viability between control cells (0ug/ml) and both 300ug/ml 

and 500ug/ml peptide treated cells at P <0.05. 

 

 

Figure 14: Dose dependent cytotoxicity of peptide treated HeLa and MCF7 cells. 

Three replicates of each condition were tested. One way ANOVA was used for 

statistical analysis with P<0.0.5. (A) Statistical significant difference in viability 

between control untreated cells and all concentrations tested. (B) Statistical significant 

difference in viability between control cells and 100ug/ml peptide treated cells and a 

higher significant difference between control cells and 300ug/ml and 500ug/ml 

peptide treated cells. 

A B 
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Figure 15: Morphological changes of U2OS cells upon peptide treatment. Control 

untreated cells (0ug/ml) show the normal morphology of U2OS cells being fusiform 

in shape with intact membrane.  At 100ug/ml cells started to be more elongated, 

sparse with shrunken volume (red arrows). At 300ug/ml, there was a noticeable 

bizarre appearance of the cells (lost normal architecture) (Green arrows). At 

500ug/ml, no normal U-2 OS cells can be noted in the field which is full of round 

dead cells and cells with shaggy/ragged membranes.   

 

Figure 16: Variable dose dependent reduction of viability in U2OS, HepG2, 

MCF7 & HeLa cell lines. Different sensitivity to peptide treatment of different cell 

lines is noted with variable dose dependent cytotoxicities. 

MCF7 

U2OS 
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3.4. Cancer cell selectivity 

 

Normal murine fibroblast cell line; L929 showed reduction of viability upon peptide 

treatment but not in a dose dependent manner. Evident cytotoxicity started at 

100ug/ml concentration (Fig.17A). No statistical significant difference was noted 

among different concentrations and control untreated cells and IC50 was predicted, 

using Prism 5, to be above the highest concentration tested. On the other hand, L929 

showed dose dependent cytotoxicity when treated with cisplatin with an IC50 value of 

21.8ug/ml (Fig. 17B). 

 
 

Figure 17: Effect of peptide and cisplatin on L929 cells. (A) No pattern of 

cytotoxicity could be observed with increasing concentrations of the peptide on L929 

cells. (B) L929 show statistically significant dose dependent reduction of viability 

when treated with cisplatin with an IC50 value of 21.8ug/ml. 

 

 

3.5. Annexin V/PI assay: 

 

Annexin, a human anticoagulant, has a high affinity to bind Phosphatidyl serine (PS) 

that gets externalized on the surface of early apoptotic cells. Thus, Alexa fluorophore 

conjugated Annexin can easily identify apoptotic cells by appearing green when 

excited by blue light. The red fluorescent DNA binding PI can't penetrate live or early 

apoptotic cells. It binds tightly to DNA of necrotic and late apoptotic cells staining 

them with red fluorescence when excited by green light. 

A B 
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     Untreated U2OS cells, showed low number of green, red and green/red cells as 

well as low fluorescence intensity (Fig. 18). Images of peptide treated U2OS cells 

shows that most of the cells, appearing in the field, are stained green as a sign of 

apoptosis. Red fluorescence was not detected alone, but it was always emitted along 

with green fluorescence indicating necrotic/apoptotic cells (Fig.19). Higher 

magnification images (20X) show morphological changes of some cells along with 

illustration of membrane disassembly into apoptotic bodies with no signal detected 

from completely disrupted cell (Fig. 20). 

 

 

Figure18: Annexin V/PI assay of untreated U2OS cells. The field shows low 

number of stained dead cells (White circles). 

 

Figure 19: Annexin V/PI assay of peptide treated U2OS cells (10X 

magnification). Field shows dominance of green stained cells indicating apoptotic 

cells. 
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Figure 20: Annexin V/ PI Assay of peptide treated U2OS cells (20X 

magnification). (A) Yellow circles highlight viable cells, green circles highlight 

apoptotic cells and red circles highlight apoptotic/necrotic cells. (B) Almost all of the 

cells in the filed shown are stained green indicating apoptosis. (C) Arrow point to 

budding from a disrupted cell that is most likely to be apoptotic bodies. It’s assumed 

that the cell is completely disrupted that it didn't take up any dye. 

A 

B

B 

C 
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3.6. RT- PCR 

Caspase 3 shows non-statistically significant higher expression in peptide treated 

U2OS cells versus control cells (Fig.21). β-actin was used as a housekeeping gene and 

it shows comparable expression in the 2 samples. 

 

 

Figure 21: RNA expression analysis of Caspase 3 in untreated vs peptide treated 

U2OS cells. It shows over expression in peptide treated cells 

 

 

 

3.7. Computational assessment of OCT3 expression in studied cell lines: 

 

Using the cell lines tool of Genevestigator, the expression level of OCT3 (POU5F1) 

could be visualized in a large collection of cell lines including U2OS, HepG2, MCF7 

& HeLa. Its expression level was found to vary among the cell lines under study 

(Fig.22). 
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Figure 22: OCT3 (POU5F1) expression level in U2OS, HepG2, MCF7 &HeLa 

cell lines. Computational analysis of OCT3 expression in different cell lines using 

Genevestigator webtool was done. It demonstrates highest OCT3 expression, among 

cell lines under study, in MCF7 and lowest in U2OS. HeLa and HeLa derived cell 

lines show slightly variable OCT3 expression, but still higher than that in U2OS. 
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Chapter 4 

Discussion 

 

4.1. Computational Analysis: 

The in silico prediction of the peptide sequence as a cationic, amphipathic, non-toxic 

and stable ACP was a strong start of the subsequent structure analysis and functional 

validation of the potential anticancer activity. Besides its online computational 

prediction as an ACP (Fig. 3), it showed significant alignment, using Blastp, with 

bacteriocins (Fig. 5) which encompass a family of bacterial cationic peptide toxins 

that have lately shown potent cytotoxic and apoptosis inducing effects in many cancer 

cells (Nguyen & Nguyen, 2016, Kaur & Kaur, 2015).  

 

    The peptide structure was predicted to be helical (Fig. 8 & 9) which goes with its 

prediction as an ACP as the helical conformation is characteristic of many studied 

ACPs and was confirmed essential for their interaction with the cancer cell membrane 

(Zhang et al., 2010, Chen et al., 2014). 

 

    The half-life of the peptide in an intestine like environment was computationally 

predicted to be nearly 1 second (Fig. 6) which is quite short and indicates its 

susceptibility to proteolytic degradation after systemic administration. Its stability 

should be further assessed using incubation with biological matrices e.g. blood, 

serum, stimulated gastric or intestinal fluid in order to observe its kinetic profile and 

degradation products (Di, 2015). However, from another point of view serum 

instability won't affect its topical or intralesional uses may be for various skin cancers. 

Predicting the peptide non-toxic (Fig. 7) favors any subsequent planned in vivo 

testing.  

 

     Aligning the peptide sequence to a homeodomain superfamily using Blastp (Fig. 4) 

and modeling its peptide structure against PDB, using I Tasser, and its significant 

alignment with OCT3 and OCT6 homeodomains (Fig. 10) confirm our in silico 

prediction of it as a homeodomain which gives a solid ground for our in silico results. 

Moreover, COACH predicted its ligand binding site to be DNA (Fig. 11) which is 

valid for the homeodomain family of transcription factors. 
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    COFACTOR annotated its biological function to Antennapedia (AntP); a regulatory 

homedomain in Drosophila (Fig. 12). AntP is famous now for its use as a fusion cell 

penetrating peptide (Penetratin) to carry cargo molecules to the interior of the cells 

(Thoren et al., 2000). Annotating the function of our peptide to Antp suggests it might 

easily penetrate to the inside of the cells. Following translocation into the cell, it may 

either initiate an intracellular death cascade or restore the function of downregulated 

or compete with an upregulated OCT3 or OCT6 according to the carcinogenic events 

in the studied cancer.  

 

    The sequence and structural similarity to OCT3 favors the peptide, if penetrable to 

the cell membrane, to be acting as a competitor to OCT3 that is found to be 

upregulated and involved in carcinogenesis of bone, liver, breast and cervix (Fujino et 

al., 2010, Dong et al., 2012, Wang et al., 2003, Wang et al, 2013a). 

 

4.2. Cytotoxicity 

 

The peptide exerted a cytotoxic effect against all tested cell lines (HepG2, U2OS, 

MCF7 and HeLa) in a dose dependent manner (Fig. 12, 13 & 14). The variable 

sensitivity of the cell lines (Fig.16) to peptide treatment using the same concentrations 

can be explained as previously discussed in the review chapter by the varied 

membrane lipid composition of each cell line which dictates peptide preference and 

affects its conformation upon contact with the membrane (Eliassen et al., 2006, 

Gasper et al., 2015). Another explanation might be the differential expression of 

OCT3 in studied cancers, which is predicted from computational analysis of 

microarray and RNAseq data (Fig. 22), if the proposed mechanism of action would be 

interference with OCT3 function. Performing Chromatin Immunoprecipitation (ChIP) 

assay may help prove this proposition.  

 

    Under low concentrations (1 & 10 ug/ml), U2OS and HepG2 showed comparable 

viability reduction (Fig. 16). Starting from 100 ug/ml concentration on, U2OS 

displayed more viability reduction than HepG2 (Fig. 16). This can be explained 

according to (Wang et al., 2013b) where it was found that there was a concentration 
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dependent variation in the anticancer activity of the peptide under study (temporin-

1CEa). 

 

    They found temporin-1CEa at certain low concentration, with its helical 

amphipathic conformation, to get bound to the cell membrane with subsequent loss of 

its integrity. At higher concentrations, it could initiate a caspase dependent apoptotic 

cascade. They concluded that accumulating concentrations of the peptide on the 

membrane above a certain threshold induces its damage with subsequent translocation 

of temporin to the inside of the cells initiating apoptosis and accelerating cell death. 

This might be the explanation for the increased sensitivity of U2OS to peptide 

concentrations≥100ug/ml more than HepG2 as it might had then displayed an 

additional mechanism of action in U2OS cells and not in HepG2 cells. 

 

    HeLa cells (Fig. 14A) show statistically significant viability reduction even at low 

concentrations that doesn't go much down as peptide concentrations go up. This might 

be explained by the peptide acting only through an early death inducing mechanism of 

action e.g. membrane damage and necrosis and so any additive concentrations would 

accumulate and wouldn't enhance its activity. MCF7 cells (Fig. 14B) show 

comparable viability reduction at low concentrations (1, 10, 100 ug.ml) that abruptly 

goes down at 300 & 500ug/ml concentrations. This might be due a dual mechanism of 

action of the peptide in MCF7 cells. 

 

     Illustrated in the review chapter two peptide examples (HNP-1 &Lcfin-B) acting 

through different mechanisms in different cancers. The difference in timing of each 

mechanism might explain the variability in cytotoxicity results in different cancer 

contexts. For example, peptides causing membrane disassembly would show faster 

cytotoxicity than those causing DNA damage or synthesis inhibition. Necrotic 

peptides show earlier results than those causing apoptosis. Thus, testing cytotoxicities 

at different incubation times and using a wider range of concentrations might provide 

a clue for the mechanism of action in each cell line. 

 

     An accurate way to assess selectivity is to monitor the IC50 of the peptide against 

a normal and a cancerous cell lines and to monitor the IC50 of a standard 

chemotherapeutic drug against the same cell lines. Then a selectivity index (SI) would 
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be calculated for each drug by dividing the IC50 of the normal cell line by that of the 

cancerous one. If the index of the experimental drug is higher than that of the standard 

drug, then it's likely to be a more selective potent drug candidate. 

 

    Peptide treated L929 cells (Fig.17A) showed unapparent pattern of cytotoxicity 

under the range of concentrations tested from which calculation of an IC50 denoted a 

wide range that would go higher than the highest concentration tested (100ug/ml). 

While a cisplatin SI could be calculated (Fig. 12B, 17B) as follows: 

 

                IC50 of cisplatin on L929 cells                   21.8 

 SI    =       =   = 2.1 

                IC50 of cisplatin on HepG2 cells                10.37 

 

     Since the IC50 of peptide treated HepG2 cells = 132ug/ml and apparently the IC50 

for peptide treated L929 cells would go much higher. We suppose its SI would be 

comparable if not higher to cisplatin. 

 

     Mole, in chemistry, is the standard measurement of amount. Thus, converting the 

gram concentrations applied throughout this study into their molar equivalents would 

reveal another aspect of the cytotoxic activity of the peptide drug and cisplatin 

depending on the difference of their molar masses. The molar mass of the peptide 

drug equals 4192.9042 gm/mol and that of cisplatin equals 300.04 gm/mol.  

 

     Using available online molarity to mass converting calculators, we could find that 

the highest peptide concentration (500ug/ml) tested equals 119.2uM and the highest 

cisplatin concentration (32ug/ml) tested equals 106.6uM. The peptide IC50 on HepG2 

(132.8ug/ml) equals 31.6uM and the cisplatin IC50 on HepG2 cells (10.37ug/ml) 

equals 34.5uM which in terms of molarity is much higher than that of the peptide drug 

despite being much lower when calculated in grams.  

 

4.3. Apoptosis or Necrosis 

 

Morphological changes of peptide treated U2OS cells (Fig.15) show evident 

shrinkage of cells upon treatment with 100ug/ml but with preserved architecture. 
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300ug/ml peptide concentration caused more bizarre appearance with shredded 

membranes of a high proportion of cells. At 500ug/ml concentration, no intact cells 

could be noted. These changes are consistent with an apoptotic death event in which 

shrinkage and membrane disintegration are main key events. 

 

    Figure 18 shows a few necrotic/apoptotic cells in the field of control untreated 

U2OS cells compared to figure 19 and figure 20B, where almost all cells are stained 

green indicating apoptotic cells with very few green/red cells. Higher magnification, 

20X, (Fig. 20C) shows a cell ghost with disintegrated budding membrane into 

apoptotic bodies that did not even give a green signal, may be due to complete 

damage of its membrane. These results support an apoptotic mode of action. 

 

    The morphological changes depicted in figure 15 with absence of necrotic cell 

swelling, membrane blebbing and cellular rupture diverted our attention from necrosis 

as a possible mechanism of cell death. However, more electron microscope based 

morphological studies of apoptosis related nuclear and mitochondrial changes must be 

done to be more confident of apoptosis occurrence. Mitochondrial transmembrane 

potential and ATP level should be assessed. Fluorescence conjugated peptide would 

be a useful approach for investigating where it localizes inside the cell. 

 

4.4. RNA expression analysis 

 

 Increased expression of Caspase 3, an initiator caspase, in peptide treated U2OS cells 

(Fig.21) supports the apoptotic mode of action as well. However, being non-

statistically significant along with the complex molecular nature of apoptosis 

pathways indicates that more studies to confirm and detect which pathway was 

involved should be done. DNA laddering and expression of other effector caspases, 

apoptotic markers e.g. Bcl2, Bax, IAPs and proliferation markers should be done. 

 

     Wang et al., (2013b) demonstrated that Temporin-1CEa mediated its effect in a 

caspase dependent manner at certain concentrations and in a caspase independent 

manner at other concentrations. Since, in our case RNA expression analysis was done 

for IC50 treated U2OS cells, it's recommended to be done for cells at various dose 

conditions and various incubation times as well. 
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Conclusion & Future recommendations 

 

Conclusion 

 

In summary, we could conclude that we've developed a cationic amphipathic 

cytotoxic peptide with a potential to be developed into an ACP drug lead. The peptide 

has an in silico sequence and structural similarity to homeoproteins. Its cytotoxicity 

can be either due to a non-specific selective membranolytic effect on cancer cells 

being cationic helical and amphipathic, which supports its non-specific electrostatic 

interaction with cancer cell membranes, or another non-membranolytic mechanism. 

Moreover, we could conclude that most probably the peptide is adopting a different 

mechanism of action in each cell line and may be more than one in the same cell line.  

 

    The results could support two proposed mechanisms of action other than 

membranolysis. It might either compete with OCT3 function or be an apoptosis 

inducing peptide. Sequence and structural similarity to OCT3 homeodomain, being 

biologically annotated to AntP cell penetrating peptide together with the notion of 

OCT3 as an upregulated and carcinogenic effector in the studied cancers support the 

hypothesis that the peptide may be acting through competitive inhibition of OCT3.  

 

    The apoptotic mechanism of action is supported by the cytotoxicity results, evident 

annexin staining and over expression of Capsase 3 in peptide treated cells. No definite 

pathway could be outlined depending on this data. The in silico alignment of the 

peptide to several apoptotic proteins, implicated in different pathways, support the in 

vitro results. The non-statistical significant overexpression of Caspase 3 doesn't 

disprove our hypothesis since some apoptosis mechanisms are caspase independent 

(parthanatos). 
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Future recommendations: 

 

Developing a peptide drug is challenging but quite rewarding. In order to develop an 

effective and selective oncolytic peptide, precise data on its structure, biophysical 

properties and mode of action must be obtained. There is a long avenue of basic 

research and preclinical optimization to be done before a peptide can be claimed to be 

an ACP. 

 

     Bioinformaticians are doing a great effort to compile data about the newly 

introduced peptide based drugs in general and ACPs in particular into well-organized 

publicly available databases. Those web-servers are supported by user friendly tools 

to manipulate peptide sequence and predict its properties and hence its activity. It 

would be auxiliary to develop webservers for designing and modeling peptides against 

3D models of definite cellular targets (peptide specific docking servers) to optimize 

peptide based targeted therapy approaches. Moreover, softwares to predict enzymatic 

cleavage sites of peptides would greatly help directed modification strategies, during 

peptide synthesis, to optimize peptide stability. 

 

     There are upcoming duties for chemists interested in the field of ACPs to develop 

cheap and efficient methods to modify peptide sequences in a way that would 

overcome the obstacles of peptide serum instability and rapid plasma clearance. 

However, these modifications should not disturb the basic required conformation and 

properties essential for the anticancer activity of the peptide. 

 

    The future of the field of ACPs is highly dependent on how successfully growing 

the basic research errand. Precise structure determination tools such as mass 

spectrometry and nuclear magnetic resonance should be available for every ACP 

oriented research. More imaging tools such as scanning electron microscope, 

transmission electron microscope and confocal microscope should be at hand for 

accurate determination of the cellular death morphologic events. 
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     Cytotoxicity analysis at different time points and a wider concentration range 

should be investigated for early and late cellular death modes of actions. The peptide 

should be tested against a bigger panel of cell lines. Analysis of cytotoxicity using 

more than one assay such as MTT assay, LDH release assay....etc must be done. 

Testing the expression of apoptotic and necrotic markers, DNA fragmentation 

occurrence and other apoptotic studies must be a part of every research aiming to 

develop an ACP lead. 

 

     Finally, more confirmatory studies are essentially needed to confirm our 

preliminary results. More ACPs oriented studies are needed to exploit this rich source 

of selective, easy to synthesize and effective weapon to be added to the anticancer 

arsenal. 

. 
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