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Abstract 

With the global push towards having thinner silicon solar cells, the bowing problem arising 

from the thermal mismatch between the Aluminum electrode and the Silicon wafer in the 

cell becomes more critical. The thinner the cells the more the bowing and the higher the 

probability of cracking and hence yield losses and lower cell efficiency. The main objective 

of this work was to explore the effect of introducing CNT into the composition of the Al 

paste in order to reduce the Coefficient of Thermal Expansion (CTE) of the resulting 

composite and hence reduce the bowing problem. Two types of samples were produced: 

Cylindrical and Wafer samples. The first consisted of 26 compacted and sintered at 500oC 

powders of the following consistencies: Un-Milled Al, Milled Al, 2%, 5% and 10% CNT-

Al. CTE was measured by a Dilatometer DIL 801, TA instruments device. Electrica l 

Performance was measured for the same samples via varying the voltage and measuring 

the current, then calculated the resistance taking the latter as an indicator for the Resistivity. 

In both tests, it was found that the 10% CNT-Al samples gave the highest results: in terms 

of CTE, it resulted in around 20% reduction, and in case of electrical performance, it 

increased the resistivity by around 3.8%. For the wafer samples, Un-Milled Al, Milled Al 

and 10% CNT-Al powder-based pastes were prepared using a patented recipe that was 

modified for the current work, and then the pastes were printed using Spin Coating 

technique on 9 wafers which were heated at 160oC for around 3 hours. A Contactless Wafer 

Geometry Gauge device was used to measure the bow and warp. Bow results were 

inconclusive, however the warping revealed promising results as it was clearly shown that 

the 10% CNT-Al paste caused the lowest warp per unit thickness of paste printed, average 

warp to Al paste layer thickness ratios for all 3 pastes were 0.59, 0.35 and 0.24 for the Un-

Milled Al, Milled Al and 10% CNT-Al pastes respectively. SEM images of the Top & 

cross-sectional views of the wafer showed that while the Un-Milled Al and 10% CNT-Al 

wafers provided an almost uniform layer, the thickness of the layer of the Milled Al paste 

was relatively irregular due to employing irregular techniques of printing and un-even 

powder particle size.  
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Chapter 1 

Introduction 

1.1. General Setting 

Nowadays, there is a global trend towards switching from depending on fossil fuels as a source of 

energy to renewable energy sources like solar and wind energy. Naturally, this resulted in a need 

to make the renewable energy economical (the goal is to reach a cost of $1/Watt) (Hilali et al, 

2007), and in the case of solar energy, this was translated more specifically into reducing the 

thickness of silicon wafers used in manufacturing solar cells. This was based on two fundamenta l 

reasons:  

1. The silicon wafer constitutes a major part of the cost function of producing a solar panel, 

estimated to be more than 50% of the total manufacturing cost of the solar cell (Soon-gil 

et al, 2010), (Kim et al, 2005). 

2. Reducing the wafer thickness will reflect positively on the electrical efficiency of the solar 

panel (T. Koval et al, 1996). 

Currently, the solar wafers have a thickness ranging from 270-200 µm, and the goal is to go down 

to 150 µm cell (Soon-gil et al, 2010). At 100 µm, it is assumed that the max theoretical efficiency 

for a given Silicon solar cell will be attained, which is around 30% (Bowden et al, 2000). 

 

 

 

 

 

 

Figure 1 Main Layers of the Silicon Solar Cell, figure adopted from http://www.pbs.org/wgbh/nova/solar/insi-nf.html 
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It is important to note that a typical solar cell has the following five main layers in this order from 

top to bottom, see Figure 1 and Figure 2: 

1. Encapsulate: a glass or a transparent layer that protects the cell 

2. Front Contact (Conductor Strips) 

Found on top of the silicon wafer (Front Side), and is mainly made up of silver paste. It 

acts as the negative electrode of the cell. 

3. Anti-reflective Coating 

4. Silicon wafer  

5. Rear/Back Electrode (Metal Backing) 

Found on the lower side of the wafer (Back Side), and is mainly made up of Aluminum 

paste. It acts as the positive electrode of the cell. 

 

Figure 2 Layered view of the Silicon Solar Cell. Figure adopted from Schwenke, Thomas; “Solar energy / Solar photovoltaics / 

Photovoltaic effect (3D animation)”, 2011, https://www.youtube.com/watch?v=1gta2ICarDw&feature=related 
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1.2. Manufacturing a Solar Cell 

Metal pastes are screen-printed above and below the Silicon wafer. After printing the pastes, there 

comes another step where the silicon wafer plus the Aluminum (Al) and Silver (Ag) pastes are co-

fired together in a belt furnace (usually an infrared furnace is used for the firing step) according to 

a certain firing profile, see Figure 3, where the wafer moves from one zone to another (each zone 

has its own predefined temperature) at a relatively high speed which can be as high as 500 cm per 

min (Soon-gil et Al., 2010). This step is crucial to fix the Aluminum and Silver metals to the silicon 

wafer, hence constituting the positive and negative electrodes respectively of the solar cell. In a 

typical firing profile, the wafer is to be subjected to a high temperature of around 700oC to 900oC, 

way beyond the Aluminum melting point of 660oC, but the extent of that exposure is limited to a 

time frame of a few seconds to some minutes (Rose et al, 2007), the total firing process taking 

typically around from 1 to 5 minutes (Brenner et Al., 2013). After the accelerated heating to 900oC, 

there follows a rapid cooling down to room temperature. As depicted in Figure 3, the Targray 

company, which is famous for manufacturing Al pastes, has a typical firing profile depicted on 

their website indicating that the duration of the co-firing step does not exceed 2 min, with the 

actual firing taking around 0.5 - 1 min, and the rest is just cooling. 

 

Figure 3 "A typical firing profile". Figure adopted from Targray Co. site,  

http://www.targray.com/solar/crystalline-cell-materials/aluminum-paste 
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During the co-firing stage, the Al paste melts. A fraction 

of this melted Al that is next to the Si wafer dissolves some 

of the Silicon wafer forms forming a liquid eutectic layer, 

see Figure 4 and Figure 5. Of course the thickness of such 

a layer depends on the variables of the firing stage, such 

as the total duration of heating or the temperatures of the 

heating zones. As the temperature of the firing stage 

decreases and the resulting eutectic mixture starts to cool 

down, a layer that is rich in Aluminum dopant starts to grow out of the Silicon (van Amstel et al, 

2009). This layer is referred to as the “Back Surface Field (BSF)” layer, which increases the solar 

cell efficiency in converting energy (Brenner et Al., 2013) as it reduces the “effective minor ity 

carrier recombination velocity”, which in turn increases the solar cell operational efficiency (Soon-

gil et Al., 2010). It is worth noting that it is believed that at least a 20 µm thick layer of Aluminum 

is required to create an operational BSF layer (Soon-gil et Al., 2010). Due to the fact that this is a 

direct reaction between Al and Si (solid-solid), it occurs much quicker than a dopant diffus ion 

process, hence having a BSF layer is much favored (Soon-gil et Al., 2010).  

Figure 4 Model of cross-sectional view of the solar 

cell showing different layers of the rear side of the 

wafer. Figure adopted from Amstel et al (2011) 

Figure 5 SEM Cross-sectional View of a 200µm thick Solar Cell showing the 5 different cell layers, front side to the left (Silver Finger) and rear side at the 

right (Al Bulk Layer). Figure adopted from Amstel et al (2011) 
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1.3. Identifying the Problem: Solar Cell Bowing 

As part of the main process of cell assembly, the co-firing is followed by later soldering of the 

solar panel. Since both processes include heat application hence both are contributing mainly to 

the bowing of the solar cell, see Figure 6, which can be described as such: 

The bowing problem occurs due to the thermal mismatch between the Silicon (Si) and Aluminum 

(Al). The coefficient of thermal expansion (CTE) can be defined as “as the fractional increase in 

length per unit rise in temperature” (ASM International, 2002). The CTE of the Silicon (Si) is 4 x 

10-6 oC-1 and for the Al it is 23x10-6 oC-1 (Soon-gil et Al, 2010), meaning that for a given increase 

of 1oC in temperature, Al of the back side electrode will expand roughly around 6 times more than 

the Silicon wafer to which it is attached. This will lead to the overcoming of the bending stress of 

the wafer and bowing thus occurs (Schneider et al, 2001).  

Thus, in a nutshell, the solar cell will suffer from bowing deformation as the back Al side will tend 

to stretch more than the silicon wafer, as depicted in Figure 6 and Figure 7, resulting in a concave-

warped wafer.  

 

 

 

 

 

 

 

 

 

Figure 6 A 160 µm bowed thick solar cell. Figure adopted from Bunkenburg et 

Al, "Enabling thin wafers for today’s high efficiency silicon solar cells” 
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“Bowing (cell Warpage) is defined as the maximum deflection height of the center of the fired cell 

at room temperature when measured upon a flat surface” (Brenner et al, 2013). In Figure 7, the 

bow is described as concave, as the direction of deflection is inward towards the center of the 

wafer, i.e. the wafer is caving in, hence the deflection is described as “concave”. 

 

Figure 7 Schematic diagram depicting the behavior of a Si wafer with a metallic contact on its lower/backside. Figure adopted 

from Hilali et Al., 2007, “Bow in screen-printed back-contact industrial silicon solar cells” 

This information combined with the growing 

trend towards having thinner and larger silicon 

wafer means that the bowing problem will only 

become more pronounced, for instance, it was 

found that standard wafers of thickness around 

300 µm and area of 125 x 125 mm develop a 

bow of less than 0.5 mm, but that bow can 

increase more than 10 times for wafers of 200 

µm thickness. The bow for a wafer of 98 cm2  

area is shown in Figure 8 (Schneider et al, 2001). 

1.4. Why is Bowing a Problem?  

First of all, the bowing deformation is permanent, meaning that the wafer does not return to its 

original straight shape after some time (certain proposed de-bowing techniques will be discussed 

later in the literature review section). If extra relatively-expensive flattening techniques are 

applied, this would affect the final cost of producing the cell. 

Second, this bow jeopardizes the structural integrity of the wafer, as it results in the formation of 

residual stresses in the solar panel which makes it susceptible to fracture (Amstel et al, 2009). 

Figure 8 The resulting bow for a given wafer thickness, 

comparing theoretical and experimental results. Wafers 

used had a surface area of 98 cm2 (Schneidere et al, 2001) 
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Furthermore, the bow makes it difficult to handle solar cells during the lamination step in the 

assembly of the panel, and might cause breakage of the cell as well. Cracks and fractures in the 

solar cells result in decreasing the level of efficiency of the solar panels throughout its operational 

lifetime.  

Since there is a global push towards reducing the thickness of silicon wafers which shall result in 

the amplification of the negative consequences of the bowing problem, hence with such an urgent 

need to go thinner, the bowing problem represents an obstacle that would impede such efforts, 

hence the urgent need to attend to it as soon as possible. 

1.5. Carbon Nanotubes (CNT) 

CNTs are basically layers of Graphene 

“rolled” into cylinders, where each Carbon 

atom is joined to another 3 ones via Covalent 

bonds (Esawi, 2014). These cylinders have a 

very small diameter, that can be as low as a 

few nm, while their length can be several 100 

million times longer, i.e. in the cm scale. 

CNT, Figure 9, combine properties from both 

Diamond and graphite (Esawi, 2014), such as high thermal conductivity (Deng et al, 2007), high 

Electrical conductivity (comparable to copper), large current-carrying density (Kaushik et al, 

2015), a very low Coefficient of Thermal Expansion (Yosida, 2000), and high tensile strength. See 

table 1 for detailed information about CNT properties.  

There are 3 main classifications of CNT, in terms of structure (Figure 10): 

i. Single-Walled CNTs  (SWNT) 

ii. Double-Walled CNTs (DWNT) 

iii. Multi-Walled CNTs  (MWNT) 

Figure 9 Physical Appearance of Carbon nanotubes, figure 

adopted from Microphase Ltd., 

http://www.microphase.jp/e/e_product0201.html 



8 

 

 

Figure 10 Types of CNT Structures: a. SWNT, b. DWNT, c. MWNT. Figure adopted from (Kaushik et al, 2015) 

As can be seen in Figure 10, the main difference between the various structures of the CNT is the 

number of concentric tubes; SWNT has only 1 tube, DWNT has 2 and so forth. SWNT has a 

diameter of around 1-2 nm, and a length of around 0.2-5 µm, the radial distance between one 

concentric tube to the next is around 0.36 nm and in the case of the MWNT, the concentric tubes 

are united together by Van der Waals forces (Esawi, 2014) 

Table 1 Basic Properties of CNTs 

Property Magnitude 

Coefficient of Thermal Expansion (CTE) 0 (Yosida, 2000), 

Current-Carrying density + 103MA/cm2 (Kaushik et al, 2015) 

Tensile Strength 30-100 GPa (Liu et al, 2012) 

Young’s Modulus (SWNT) +1000 GPA (Kaushik et al, 2015) 

Young’s Modulus (MWNT)  270-950 GPa (Coleman et al, 2006) 

The properties of the CNT are several times better than the most-commonly used materials 

strength-wise, thermally and electrically, as explained before, and hence the range of possibilit ies 

of combining CNT with other materials to form composites with improved properties is infinite. 

Note: There are two methods to produce MWNT: Arc and Chemical Vapor Deposition. The first 

technique produces CNT of higher quality than the second. Thus based on Coleman et al (2006), 

MWNT produced by arc method had a Young’s modulus of around 270-950 GPA while MWNT 

produced by Chemical Vapor Deposition technique had a lower range (estimated to be around 300 

GPa) due to the presence of more defects. 



9 

 

Chapter 2 

Literature Review 

There have been many approaches towards addressing the bowing problem, these can be 

summarized as such: 

2.1 Adding Antimony Oxide 

Kim et al (2012) developed an Al paste to be used in the Solar Cell production. This paste had an 

active ingredient added, the Antimony Oxide, to reduce the resulting bow in solar panels and 

improve its electrical performance. In the patent, the inventors sought to compare between 

different paste compositions. First, 5 pastes were prepared containing Antimony Oxide, the 

differences lay in varying the amounts of its main constituents which were:  

1. Al Powders    (≈74% of total weight) 

2. Organic Vehicle    (≈23-24.25%) 

3. Dispersant     (≈ 0.5%) 

4. Glass Frits, Leaded and Lead-Free (≈1-2%) 

5. Antimony Oxide   (≈0.25-0.75%) 

A second set of 8 pastes were prepared where in the first 6 Antimony Oxide was replaced by either 

the Organic Vehicle, Glass frits or a combination of both. In the remaining 2 pastes, the organic 

vehicle was reduced to be replaced by glass frits and Antimony Oxide.  

The sintering of the solar panels stage occurred over 6 Zones of different temperatures: 500oC, 

550oC, 650oC, 730oC, 820oC and 910oC, with the wafers moved from one zone to the next at a belt 

speed of 220 rpm.  

In addition to checking the bow generated and the Electrical performance of the paste in terms of 

“Photoelectric conversion efficiency”, Bead generation was observed and a Hot Water test – 

dipping the panel before the sintering stage in a hot water bath of 70oC- was done to check for any 

bubble generation which would indicate that the electrode was not stable or has high affinity to 

react with humidity in the air. Based on these four tests, the 13 pastes (set 1 + set 2) were compared 
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together. It was found that the pastes containing Antimony Oxide in the following amounts: 0.25-

0.75% of total paste weight had the least bow (1.5 mm and less versus 4-6.5 mm for the other 

pastes) and the best electrical properties, no bead generation and successfully passed the hot water 

test. However, in the case of the pastes containing above the 0.75% level (2 pastes were developed 

containing 1 and 1.5% of the total weight Antimony Oxide), they did not pass the hot water test, 

and hence the reliability of the electrode was jeopardized. 

2.2 Adding Fly Ash to Al 

Rohatgi et al (2006) considered adding fly ash to the Al to reduce the resulting composite’s CTE, 

given that the CTE of the fly ash is around 6.1 x 10-6 C-1. CTE samples of a diameter of 6 mm and 

a length of 50 mm were prepared. The percentage volume of the fly ash cenospheres of the total 

composite volume was estimated to be around 64%, with a particle size in the range of 100-150 

µm (a sieve was used). Infiltration pressure technique was applied to make the composite, 2 

variables were changed: time and pressure. Infiltration time had 2 levels of variation: 3 and 7 min, 

and the Infiltration Pressure variable had 2 levels: 35 and 62 kPa. To remove the stresses, after the 

infiltration, the CTE samples were annealed at a temperature of 340oC for 2 hours. Then using a 

Dilatometer device, the linear thermal expansion was measured for a temperature range from 30 

to 400oC. Once at 400oC, the samples were held at that temperature for 10 min and then the device 

shutdown and the samples were left to cool in the device on their own. The CTE test was done 

twice to investigate the effect of the thermal cycling on the composite. The average recorded CTE 

value of the samples was around 12 x 10-6 C-1. Furthermore, it was found that the samples with 

longer infiltration time and pressure had a lower CTE. This is due to the fact that the less the voids 

present between the particles, the lower the CTE of the developed composite. The higher the 

pressure applied and the longer the duration of this applied pressure, the lower the presence of 

voids and hence the lower the CTE of the composite, 16% less than that with longer time and 

higher pressure, according to the study. Finally, it was also noted that the second thermal cycle 

had slightly increased the recorded CTE, which was attributed to the yielding effect due to thermal 

mismatch between the fly ash (cenosphere) and the Al. 
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2.3 Adding Silicon Di-Oxide 

Rose et al (2007) presented a patent describing how to make a low-bow Al paste, introducing 

Silicon Di-Oxide (SiO2) as the active ingredient that would reduce the overall bending of the wafer. 

The paste generally consisted of the Organic Vehicle (around 24-25% of total paste weight), the 

Al powders (around 75%), the active agent and glass frits. 

In this study, 2 main sets of samples were prepared: 

Set 1 had 8 different Al pastes, with 2 active ingredients: Crystalline and Amorphous SiO2, 4 

samples each. No glass frits were contained in these pastes. The wafers used were 5 inch square, 

270 µm thick. The pastes were printed and fired in a furnace with 4 firing zones with the following 

different temperatures: 450oC, 520oC, 575oC and 950oC. the speed of the moving belt was set at 

2150 mm/min.  It was found that compared to the control, both the Amorphous and the Crystalline 

forms of SiO2 reduced the bowing, however, the bow was most significant in the case of 

Amorphous SiO2. The critical level of SiO2 is 0.3% of the total paste weight. It was found that 

above this level, the electrical performance deteriorated for the Amorphous form, and below it, 

there was no much significant change in the electrical performance for both the amorphous and 

crystalline forms. Furthermore, when comparing all the results, it was found that adding less than 

the critical level of SiO2 in the amorphous form to the paste resulted in a much reduced bow 

compared to the crystalline paste, and the electrical efficiency was not much affected.  

Thus the second set of wafer samples was prepared. The wafers used this time were 6 inch square 

180 µm thick wafers, with the same firing profile as before. 8 samples were prepared, the paste 

had glass frit this time. The composition of the glass frits was: SiO2, ZrO2, B2O3, ZnO, MgO, 

TiO2, Na2O, Li2O and Bi2O3. By varying the percentage weight of the glass and SiO2, the electrical 

performance and the resulting bow could be improved. It was found that glass frits did increase 

the electrical efficiency: compared to a control, by having 0.5% of the weight to be glass, and no 

SiO2, the electrical efficiency was increased by 1%, and in another sample adding both the frits 

and SiO2, by around 0.15 – 0.25%, had a significant effect on the bow.  
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2.4 Comparing commercially-available Al-Pastes 

Bähr et al (2005) studied different commercially available pastes, some labeled as low-bow pastes, 

comparing them with regards to the bowing and electrical performance, and thus the one that 

caused the least bow was selected. The pastes used either contained lead or were water soluble. 

Standard multi-crystalline silicon wafers were used, the wafers had the following size 

specifications:  

Square side length 100, 125, 150 and 156 mm, Thicknesses: 90, 100, 150, 200, and 310 µm. As 

for the results, by varying the Al paste used, a min bow ranging from 0.7 to 1.5 mm was achieved 

for solar cells of thickness 150 µm, with average electrical efficiency of 14%. Below such 

thickness, losses in Voltage and Current densities were observed. For a 100 µm thin solar cell, a 

2mm bow was observed, and the highest noted electrical efficiency was 13.9%, i.e. the electrical 

efficiency had not drastically differed from the that of the 150 µm thick cells.  

2.5 Altering Design Parameters 

Amstel et al. (2011) studied the Al on the rear side in terms of its microstructure and mechanica l 

properties. Nano-indentation was used to estimate the Young’s modulus of the Al-Si particles, and 

the measurements of the bow were used to determine the overall Young’s modulus, taking into 

account the effect of the paste on the development of the bow. Such knowledge thus helps in 

defining the mechanical limits of the solar panel, and hence designs could be improved  

accordingly. Youngs’ modulus of Al-Si particles and that of the rear side were found to be 72 and 

43 GPa respectively. 

2.6 Using Pb and Cd free Al Pastes 

Caroll et al. (20th European PV Conference, 2005) presented another indirect attempt: The study 

aimed at developing Pb & Cd-free Al paste via reducing the amount of lead frit in it. One of the 

lead-free pastes developed showed promising results with respects to the bowing effect. Using 5 

inch solar wafers with a 180 µm thickness, 4 pastes were compared: 1 paste had lead, and the 

others were lead-free. For a given firing range from 850 to 950oC, the bowing effect of one of the 

lead-free pastes (given the name G4) decreased as the firing temperature was increased, and it 

became less pronounced than the bow of the conventional lead-containing paste (G1), at one point 
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went as low as 0.750 mm versus 2.114 mm at a temperature of 925oC.  The efficiency of G4 was 

noted for the same firing temperature range, and it was found to be very close to that of G1, which 

was around 14%. Note: The same experiment was repeated with larger wafers: 6 inch 210 µm 

thick wafers, however, the bowing of G4 this time did not decrease, but it remained hovering in 

the range from 0.402 to 0.473 mm, which the author had pinned for further investigating. 

Kim et al (2005) had a similar approach, worked on producing a lead-free low bow Al paste via 

varying its constituents, such as the size of the metal powder particles, chemistry of the glass, the 

organic vehicle, morphology and the additives used. The prepared pastes were screen printed on 

the wafers with a 200 mesh screen, varying the quantity of paste printed from 0.055 to 0.035 grams 

per square inch. The wafers were then co-fired with the silver paste on the front side and the Al 

paste on the backside. The wafers were passed through 3 firing zones: 780oC, 830oC and 930oC, 

each had a length of 7.5, 15 and 7.5 inches respectively, wafers were moved at a belt speed of 2 

inches per second. Bowing test was performed with a drop dial gauge after the wafers had Al paste 

printed on them and were fired as described before. For testing the electrical performance, IV curve 

was used to determine the resistance from the slope. Wafers used had the following dimensions : 

5” x 5” x thickness, the latter was 235 and 180 µm (2 sets of wafers with different thicknesses). 

There was no information provided on the formulation of the paste but only that three main ones 

were prepared: A, B and C. A had lead while the others did not. Incidentally, Paste A caused the 

most bow compared to Pastes B and C, each developed an 0.8, 0.6 and 0.4 mm bow respectively 

in a 235 µm - thick wafer. 

2.7 De-bowing 

Bunkenburg et al (Despatch Industries) presented a simple “thermal de-bowing” step which was 

added after the co-firing process to release the stresses and hence reduce the bow created. Standard 

156 x 156 mm wafers were used, the thickness varying as such: 140, 160 and 180 µm. Commercia l 

Al paste was used with no specific optimizations. Just after the firing process was finished in the 

“Despatch” furnace, the cell bow was measured via putting it on a glass panel and averaging the 

measurements of different points of the wafer (corners and center of sides). The thermal de-bowing 

process came next, the cells were put in a Despatch IL-RTS where they were cooled down rapidly 

to -55oC and then heated back again to 20oC, the process took around 50 seconds with the wafers 
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being moved at a belt speed of 3700 mm/min. This was repeated for all 3 wafer categories with 

the different thicknesses described above, keeping in mind that the firing and the de-bowing 

thermal processes were kept constant all along. Again, the bow was measured immediately after 

this step and it was found to be as follows: For the 140 µm wafers, the de-stressing method 

removed up to 65.7% of the bow. For the 160 µm wafers, 71.3% of the bow was removed, and 

finally for the 180 µm wafers 75.4% of the bow was removed. A device called “Pasan I-V tester” 

was used to measure the electrical performance of the solar cells after the firing step and once 

again after the de-bowing step. It was found that there was no overall change in the electrical 

efficiency of the cell due to the de-bowing process. On the downside, however, it was found that 

there was a re-bowing effect due to heating again at a step designed to simulate a worst-case 

scenario of the soldering step which normally follows the firing process when manufacturing the 

solar cells. In this worst-case scenario test, the wafers were heated to a temperature of 250oC for 5 

seconds (the wafers reached a peak temperature of 266oC). The grow reformed by 77.5% 96.0% 

and 111.6% for the 140, 160 and 180μm thick wafers respectively. Also, the bow was measured 

at certain intervals of time: after 15,20 and 30 days of the original de-bowing treatment. It was 

found that the bow reformed and continued to grow again till the 15th day at which it leveled off 

for the 140 and 160 µm wafers, and leveled off on the 20th day for the 180 µm wafer. On the 20th 

day the bow had increased by 17.2%, 17.3% and 129.1% for the 140, 160 and 180μm thick wafers 

respectively. 

Other aspect of the study was to observe the effect of varying the thickness of the Al paste layer. 

It was found that they were positively related: as the paste amount deposited (and hence thickness 

per wafer) was increased from 1.59 to 1.79 grams (12.58% increase), the average bow was found 

to have increased from 6.53 to 8.51 mm respectively, an increase of 28.82% in measured bow 

length. The study also observed the effect of using commercial “low-bow” pastes to reduce the 

bow, and it was found that a noticeable reduction was observed for the 3 wafer thicknesses, 

recording a min of 57% bow reduction for the 160µm wafers and a max of 70% for the 180 µm 

wafers. 

Zhang et al (2009) followed a similar strategy by cooling down the wafer after the firing process 

in a refrigerator to -60oC then back to room temp. A set of strain gauges was used to measure the 
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strain during and after the cooling process. This process of sub-cooling was used to remove the 

elastic strain developed and hence “de-bow” the wafer. 

2.8 Lowering CTE via developing CNT-Al composites 

There have been a lot of studies focusing on studying the mechanical behavior of CNT composites, 

however, very few did study the thermal behavior.  

The following three consecutive studies -Tang et al 2004, Deng et al 2006, Liu et al 2012- focused 

on adding CNT to Al in order to reduce the CTE of the resulting composite. The three studies 

focused mainly on the following applications: packaging materials (for electronic devices) and 

aerospace structures, with each study building on the one before as presented below in a 

chronological order. The analysis behind this is that the CNT have a very low coefficient of 

expansion, almost equal to zero (Tang et al, 2004), and hence when combined with Al it would act 

as a hindering agent for expansion. It is worth noting that all 3 studies concentrated mainly on 

measuring the CTE reduction, and their work was directed towards fulfilling the demand 

for other applications other than that of the bowing problem of the solar cells described 

before, hence their work neither included measuring solar cell bow nor measuring the 

electrical performance of resulting CNT-Al composite; the relevance of each shall be 

explained later in the following section. 

Tang et al. (2004) mixed Nano Al particles with single walled Nano tubes (SWNT), which were 

purified first. The percentage of the SWNT in the mixture was varied from 0 to 20 % of the total 

volume. TEM was used to ensure that the SWNT were homogenously dispersed in the mixture by 

soaking both the Al powder with the CNT in alcohol, then subjected the mixture to a 30-min 

ultrasonic rotation session. Later, the resulting mixture was dried and compacted under a pressure 

of 1.5 GPa into discs of the following dimensions: Diameter 8 mm, height 1 mm. With the init ia l 

compaction taking place at room temp, later consolidation occurred at 380 C, and at slightly less 

pressure of 1 GPa, the consolidation phase took 30 min. A dilatometer was used to take the CTE 

measurements at an interval of 50oC, with the heating rate being 5oC/min for a total temperature 

range of 20 to 250oC. This range was chosen as it is the same as the working temperature range 

for the electronic packaging material, which was the main application this study was focusing on. 

The results of the CNT-Al samples were contrasted against Al (coarse-grained) and Silicon (single 
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crystal). The deduction was that as the CNT content in the mixture was increased, the CTE value 

decreased; the CTE of the 15% CNT-Al sample had a value which was around 25% of the CTE of 

course-grained Al, and as a general conclusion it was found that adding CNT up to 15% of the 

volume of the mixture can lead to around 65% reduction in the CTE. It is worth noting that the 

20% CNT-Al sample led to a reverse effect: instead of having an even more-reduced CTE value, 

the CTE actually increased, which was attributed to agglomeration of the CNT, i.e. the tendency 

of the CNT to stick together, and not become evenly dispersed within the mixture. 

Deng et al. (2006) worked on multi-walled carbon nanotubes (MWNTs). 1% of the total weight of 

the composite fabricated in this study was MWNTs which was added to 2024 Al matrix. Nitric 

acid was used to purify and disperse the MWNT. All samples in the study were fabricated by cold 

pressing then hot extrusion, the final samples having cylindrical shape of the followin g 

dimensions: 6mm (diameter) and 25mm (height). CNT dispersion was checked using field 

emission scanning electron microscope (FESEM) via examining the pull-out length of the CNT 

and relating these observations with the interfacial strength between the CNTs and the Al matrix 

surrounding it, which were found to be well in the case of the 1% MWNT composite. CTE 

measurements were taken at a range between 25 to 400oC using a Thermomechanical Analyzer 

device (TMA). These measurements were contrasted against the measurements of 2 control 

samples: Pure Al and 2024 Al matrix. It was found that the 1% MWNT-Al composite resulted in 

the lowering of the CTE by 12% as compared to the Pure Al sample, and 11% against the 2024 Al 

matrix, these CTE results were reported at a temperature of 50oC.  

Liu et al. (2012) investigated the effect of having 1.5% and 4.5% of the total volume of the sample 

to be CNT on the tensile properties and the CTE. The samples were fabricated as follows: the CNT 

were mixed with 2009Al powder, the latter acting as the matrix for the composite, in a “bi-axis 

rotary mixer”, the rotation speed was 50 rpm, and it lasted for 8 hours. The CNT content was of 

course changed according to the sample being fabricated, in one case it was 1.5% of the total 

volume, and in another it was 4.5%. As for the control sample, it was a 2009Al one with no CNT 

content in it. The powders were then cold compacted, followed by a degassing stage, then came 

the hot compression into cylindrical billets which had the following dimensions: a diameter of 55 

mm and a length of 50 mm. A new mixing technique was adopted in this study: The Friction stir 

processing (FSP), where a tool is rotated and moved over a specific region resulting in much 
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deformation which ensures thorough mixing is achieved. Following the hot pressing step 

mentioned before, the powders were hot forged at a temperature of 450oC into 10 mm-long disc 

plates, which were later subjected to FSP, the tool rotational speed being 1200 rpm, and the 

translation speed being 100 mm/min. the output is then further T4-treated, and SEM and TEM was 

used to check the CNT distribution within the composite. Finally, the thermal samples were 

prepared by machining the FSP output into cylinders of the following dimensions: 5 mm diameter, 

20 mm length. The device used for measuring the CTE was Dil 402 PC, the heating rate was 

5oC/min, and the thermal range for taking the measurements was from 20 to 200oC. It was found 

out that the CNT were properly dispersed within the matrix following the FSP step, and that the 

SEM and TEM showed no CNT cluster formations, however, non-severe CNT damage was 

reported. As for the CTE, the 1.5 % volume CNT-2009Al sample resulted in a reduction of 9.3% 

in the CTE, and the 4.5 % volume CNT sample reduced the CTE by 29%. These experimenta l 

results were compared to those obtained by 2 mathematical models: Rule of mixtures (ROM) and 

Schapery’s model, the latter was found to be more spot-on with regards to agreement with the 

experimental results obtained, while ROM was found to be a bit overestimating. Schapery’s model 

attributes the reduction in CTE to be due mainly to the large interface area between the CNT and 

the Al matrix, hence the CNT were able to constrain the thermal strain and thus lower the overall 

composite CTE.  
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Chapter 3 

Objectives 

3.1 Need for investigation 

In all the literature reviewed, so far the introduction of CNT-Al into the solar cell structure has not 

been investigated at all. True, the effect of lowering the CTE of the Al by introducing CNTs has 

been investigated, as shown in (Tang 2004, Deng 2006, Liu 2012), however, none of these studies 

were directed at the solar cell application, which extend beyond the lowering of the CTE of the Al 

in the cell to include the examination of the Electrical performance and bow development of the 

solar cell as well. 

3.2 Purpose and scope of the study 

The general objective of this study was to reduce the bowing problem of the Silicon solar cell via 

replacing the Al powders used in the paste printed on the back electrode of the solar cell with Al-

CNT composite. Such a composite shall be tested, as shall be mentioned later on, to check that it 

could fully act as a substitute for the original Al metal paste. The scope will be limited to testing 

the: 

i. Thermal performance in terms of quantifying CTE reduction resulting from the 

introduction of CNTs. 

ii. Electrical performance in terms of the effect of introducing CNTs on the resistivity. 

iii. Bow/Warp development due to the introduction of CNT to the Al paste composition 

3.3 Justification/value  

Creating a composite paste product that could reduce the bowing problem of the solar panels means 

increasing the efficiency of solar panels and aiding the attempts towards reducing solar panel 

thickness, hence sustaining the world’s quest towards developing a true efficient and a developed 

solar energy industry, as well as economically providing solar energy to the masses. Furthermore, 

such a boom in solar energy industry will decrease the Carbon emissions released into the air which 

means reducing the contribution to the global warming problem, a good step on the road to easing 

the transition towards having a green industry and ultimately a green-oriented global society.  
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Chapter 4 

Materials & Experimental Procedure 

4.1 Roadmap 

Before each major part of this chapter, a basic brief explanation and a representation of the main 

subsections shall be discussed. This was done in order to make it easier for the reader to follow 

the experimental steps, many as they may be, and get an understanding of the overall procedure as 

a whole. The general layout was depicted in Figure 11, and a more detailed representation was 

provided for Parts 1 and 2 as shall be presented later on. 

 

Figure 11 Roadmap of Methodology Section 
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4.2 Part 1: Cylindrical Samples  

Check Figure 12 to view a graphical representation of the main sections of part 1. 

I. Cylindrical Samples - Fabrication  

A set of 26 samples of compacted Al powders and CNT were fabricated.  

Powders used were: 

i. Un-Milled Al powder   (5 Samples) 

ii. Milled  Al powder   (6 Samples) 

iii. 2%  CNT- Al powder  (6 Samples) 

iv. 5%  CNT- Al powder  (5 Samples) 

v. 10%  CNT- Al powder  (4 Samples) 

II. Testing 

1. Measured the CTE of the compacted cylindrical samples using a Dilatometer. 

2. Measured the Electrical performance of the samples in terms of Resistivity. A DC 

generator device was used, and the Resistivity was determined accordingly. 

 

Figure 12 Roadmap of Part 1 of Methodology section – Cylindrical Samples 
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4.2.1. Cylindrical Samples - Fabrication 

Step 1: Powder Weighing 

The Aluminum and CNT powders 

were accurately weighed in the glove 

box, see Figure 13 and Figure 14, 

which was filled with Argon, an inert 

gas that provides a clean (dust-free) 

safe working environment; Argon 

prevents Al powders from quickly 

reacting with the air and forming an 

oxide layer, as well as it prevents the 

powders from bursting into flames 

when they were removed after milling, the latter being a high energy process that shall be described 

later on in more detail. Al powders were supplied by Al-Poco, APS- 45 µm, and the CNTs were 

supplied by Thomas Swan in the UK. They were MWNT, with an average diameter of 12-20 nm 

and a length of tens of µm.  

 

 

 

  

Figure 13 Glovebox: Exterior View 

Figure 14 Glovebox: Interior View, electric balance and gloves. 
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The powders were added according to required final composition as follows: 

Table 2 Sample Preparation: Powder Weights - Al and CNT Per One Stainless Steel / Milling Container 

Sample CNT powder weight 

per container (grams) 

Al powder weight 

per container (grams) 

 Process Control Agent  

(µL/milling Container) 

Un-Milled Al - 29.54 ± 0.05 - 

Milled Al - 29.54 ± 0.05 265 

2 % CNT-Al 0.59  28.95 ± 0.05 165 

5 % CNT-Al 1.48  28.06 ± 0.05 50 

10 % CNT-Al 2.95  26.59 ± 0.05 30  

 

Using the electronic balance available inside the glovebox, see Figure 14, the Al and the equivalent 

amount of required CNTs powders were weighed for each sample, as shown in Table 2. As shall 

be explained in the following section, a stainless steel container was used to contain the powders, 

usually 2 containers were prepared per one sample (more shall be explained about the containers 

in the following section). It is worth noting that the numbers in Table 2 were used to prepare the 

powders for one container only. The Un-Milled Al powders indicate that the Al powders were used 

as given, without any further processing or milling applied to them 

Note: the main function of the Process Control Agent (PCA is Ethanol of high purity grade.) was 

to maintain the balance between cold welding and re-fractioning processes that occur during high 

energy ball milling, hence helps in maintaining the particle size distribution so that it prevents 

coarsening. 
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Step 2: Powder Dispersion - Milling  

High Energy Ball Milling can be described as 

a process that involves powder processing in 

its solid state. Basically, a stainless steel 

container, Figure 15, was used to contain the 

powders. Inside, there were 42 stainless steel 

balls that have a diameter of 10 mm, and an 

overall mass of 147.69 grams. The machine 

has a main sun gear, Figure 16, that rotates in 

one direction, while the containers - the 

planets - rotate with the sun gear in the 

opposite direction along their own axes, i.e. the sun rotates anti-clockwise, and the planets rotate 

clockwise, see Figure 17. To maintain machine balance as it rotates at a high speed, it is worth 

noting that a pair of identical stainless steel clamps and containers containing the exact amount of 

powders must be placed at opposite ends of the main rotating sun gear. 

 

 

 

  

Figure 15 Stainless Steel Ball Milling Container and Clamp 

Figure 16 Stainless Steel container holders (Left) in Planetary Ball Milling Machine (Right) 
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The reason why one resorted to ball milling 

to mix the powders instead of simple mixing, 

for example using a Turbula mixer, was that 

the CNTs have a very small size and thus 

they tend to cluster together and 

agglomerate. Ball milling helps disperse the 

CNTs homogeneously together as the Al and 

CNT powders were put together in the 

stainless steel containers with the 42 

stainless steel balls which start moving 

around at a high speed hitting the powders and 

breaking any clusters, Figure 17. 

Since the ball milling is a high energy process, thus to prevent heat build-up inside the containers 

the machine was set on an automatic program that would have it working for 10 min, then to 

remain inactive for twice the period, i.e. 20 min, and so forth. So, for a total hour of actual milling, 

the machine worked 3 hours; 1-hour milling and 2 hours resting. 

Milling Parameters 

The speed of rotation of the containers  400 RPM 

The relative ball weight to powder ratio  5:1 respectively 

Total Milling Time     3 hours 

Actual Milling Time     1 hour  

Figure 17 "High Energy Plaetary Grinding Action of Planetary 

Mills", figure adopted from Esawi, "MENG 530: 

Nanostructured Materials", 2014 
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Step 3: Powder Transfer 

After ball milling, the stainless steel containers were taken back to 

the glove box, where the tightly sealed milling containers were 

opened and the powders transferred to tightly-sealed glass jars as 

shown in Figure 18. It was important to take this step inside the glove 

box’s inert gas environment as it will: 

1. Prevent the powders from bursting into flames given that the 

ball milling process is a high energy one that adds 

considerable energy to the powders due to the rapid severe 

collisions that takes place inside the milling containers 

2. Prevents the oxidization of the Al powders which would 

affect their properties. 

Step 4: Consolidation Process 

i. Compaction 

Powders were then transferred into a die, 

which has a cylindrical cavity. Uniaxia l 

loading was then applied according to the 

following specifications: 35 bars for 1 

hour at room temperature. Such pressure 

was achieved via employing a Hydraulic 

press machine, as shown in  Figure 19. 

The output of this step is called a “Green 

Compact”, which is simply the powders 

compacted into a cylindrical shape. Note: 

Before moving on to the next step, the 

Sintering, the extrusion tool/adaptor was 

attached to the die (this shall be explained 

later in the Extrusion step in more detail) 

 

Figure 19 Hydraulic Press Machine 

Figure 18 Glass Jar used in 

powder transfer to compaction 

machine 

Force 

Applied 

Die & 

Powders 
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ii. Sintering 

The die with the powders compacted inside it 

were then transferred to be put inside the loops of 

an electric heating coil, Figure 20, and then the 

coil and die were covered in a white heat 

insulator, Figure 21. The powders were left to 

heat at a high temperature for around an hour; The 

electric heating coil automatically adjusted the 

temperature to be on average 500 ± 10oC. A 

thermocouple was used to provide feedback of the 

sample temperature to the controller. Note: The 

electric heater device was properly calibrated 

before being used. 

 

 

  

Figure 21 Sintering Step: Left: the electric coil with the die inside and covered by white 

insulator. Right: Electric Heater Controller 

Figure 20 Electric Heating Coil - Sintering Step 
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iii. Extrusion 

As mentioned before, prior to the sintering step, an extrusion 

adaptor/tool, Figure 22, was attached to the die using screws, 

so that right after the sintering step was done, the sintered 

powders were extruded at a ratio of 4:1, and the extrudate, 

Figure 23, had a final diameter of around 10 mm. This was 

achieved by putting the die plus the attached extrusion 

adapter on the Hydraulic press, and using a cylindrical ram, 

the compressed and now-sintered powders were pushed out 

of the die through the extrusion tool/adaptor.  

iv. Cooling 

The extruded sample was left protruding out of the extrusion tool to slowly cool at room 

temperature till the following morning, a duration of roughly around 15-20 hours. Such slow 

cooling was advised in order to avoid any extra hardening of the sample that may turn it perhaps 

too brittle to the extent that it could break easily upon attempting to get it out of the die. Figure 23 

depicts the extrudate after its removal from the die next day. Final extrudate diameter was 10 mm 

and length was roughly around 80-90 mm. 

 

Figure 23 Extrudate sample after being removed from the die. 

  

Figure 22 Extrusion tool to be attached 
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Step 5: Machining 

The extrudate was then machined using the lathe machine, into 

2 or 3 smaller cylinders, see Figure 24. The final diameter was 

specified based on the indicated Dilatometer device sample 

parameters that will be used in the next stage. Thus, the 

samples were machined into the following dimensions:  

Diameter: 4.5 mm Length: 15 mm  

Around 2 extrudates of each powder category were produced, i.e. the five steps mentioned above 

were repeated at least 10 times (Twice per powder composition). A total of 26 small cylindrical 

samples were produced (some extrudates were irregular and yielded only 2 cylindrical samples, 

such as in the case of the 10% CNT-Al sample, which was always brittle and broke upon extraction 

from the die in step 4) 

i. Un-Milled Al  5 Samples 

ii. Milled  Al  6 Samples 

iii. 2%  CNT- Al 6 Samples 

iv. 5%  CNT- Al 5 Samples 

v. 10%  CNT- Al  4 Samples 

  

Figure 24 Cylindrical Samples: Extrudate 

machined into these small cylinders 
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4.2.2. Cylindrical Samples - Testing 

The Dilatometer 

The device used to measure the CTE of different samples was the dilatometer: DIL 801, TA 

instruments, Figure 25. The system has the device plus a data capturing and a software analysis 

package. The device can be used to measure expansion of solid materials in air, inert gas or 

vacuum. It can cover a temperature range of -160oC to over 2000oC and CTE accuracy of 0.03 x 

10-6 K-1 (“TA Instruments-Dilatometry” manual) 

 

 

 

 

Test 1: Measured CTE 

1. The length and the diameter of the 

cylindrical sample was measured once 

again using a Vernier caliper and was 

recorded into the PC software controlling 

the device 

2. Each sample was put inside the sample tray 

of the dilatometer, see Figure 26. 

3. The device heater was turned on. The heating rate was set to be 5oC /min. 

Heating range was set to be from ambient temperature to around 490oC.  

The heating rate was adopted from the literature (Tang et al, 2004), and the heating limit of around 

490oC was set to avoid reaching a critical stage where Al will start to melt and damage the device. 

The resolution of the data recording process was set to be very high, meaning that the data were 

recorded at every small change in temperature (around 0.1-0.2oC), however, for the sake of 

convenience, the CTE readings were shown here at steps of 10oC. 

Figure 26 Dilatometer Sample Tray, adopted from “TA 

Instruments – Dilatometry” manual 

Figure 25 DIL 801, “TA Instruments – Dilatometry” manual 
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Test 2: Measured Electrical Resistance 

The same samples used in CTE 

measurements were used in the electrical 

resistivity measurements. The device used 

was a simple HP DC generator, Figure 27. 

The setup is shown in Figure 28, where the 

cylindrical sample was connected to the 

generator via crocodile wires. Electrica l 

resistivity is defined as:   

Resistivity =  
𝐑𝐞𝐬𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐗 𝐀𝐫𝐞𝐚

𝐋𝐞𝐧𝐠𝐭𝐡
 

Since the area and the length of the samples were almost identical, therefore via measuring the 

resistance, one could get a good indicator of the electrical performance of the samples in terms of 

their resistivity. Resistance was indirectly measured via varying the voltage and measuring the 

corresponding current (I) reading, as shall be explained. 

 

 

 

 

  

Figure 27 DC Generator used in Electrical Resistivity Measurement 

Figure 28 Electrical Resistivity measurement device setup (Left), A Sample connected at its ends by crocodile wires (Right) 
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The steps for determining the resistivity of the 26 cylindrical samples are:  

1. Connected the two ends of a cylindrical sample via 2 crocodile wires to the positive and 

negative terminals of the DC generator, Figure 28. 

2. Varied the voltage from 100 to 1600 mV, at increments of 100 mV and recorded the 

corresponding value of the current. The reason behind choosing the 1600 mV as the upper 

limit for the range of testing was because it was noted that beyond it, the crocodile wires 

heat up and the resistance values changed considerably afterwards; they started to decrease 

quickly and became very unstable. 

3. After the range was covered, the generator was switched off, the wires were left to cool 

and then the sample was replaced with the next one. It is worth noting that, like in the case 

of taking the CTE readings, the recorded current readings were randomly taken, meaning 

that no specific pattern was adopted. 

4. Voltage - Current curves for each of the 26 samples were plotted and the resistance of each 

sample was obtained from the slope of its corresponding trend line. 

5. The resistances of each powder category was compared to the other in order to get an idea 

about the effect of adding CNT on the electrical resistivity. For further details, kindly check 

the Results section later on. 
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4.3 Part 2: Wafer Samples  

See Figure 29 to view a graphical representation of the main sections of part 2 

1. Prepared Al powder-based pastes using the following powders: 

i. Un-Milled Al Powder: (named: Paste 1) 

ii. Milled Al Powder  (named: Paste 2) 

iii. 10% CNT-Al Powder  (named: Paste 3) 

2. Printed Al paste on the backside of a set of 9 Silicon wafer samples: 

i. Un-Milled Al Paste    (Printed on 3 Silicon wafers) 

ii. Milled Al Paste   (Printed on 3 Silicon wafers) 

iii. 10% CNT-Al Paste   (Printed on 3 Silicon wafers) 

3. Measured the bow and warp of the silicon wafers before and after heat application. A 

“Contactless Wafer Geometry Gauge” device was used 

  

Part 2

Wafer Samples

I . Fabrication

I. Al  Paste 
Preparation

1. Prepared Al 
Powders

2. Prepared 
Organic Vehicle

3. Mixed OV & 
Al  Powders

4. Extracted the 
Paste

II. Wafer 
Preparation

1. Spin-Coated 
with  Al  Paste

2. Heated/Fired 
at 160C

I I . Testing

Bow & Warp

readingsContactless 
Wafer 

Geometry 
Guage

Firing - 700 C 
Test

SEM Imaging

Figure 29 Roadmap of Part 2 of Methodology section – Wafer Samples 
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4.3.1 Al Paste Preparation 

Original Al Paste recipe 

The recipe for the Al paste preparation was adopted from a patent by Kim et Al. (2012). The main 

recipe outlined in the work goes as follows: 

1. Al powder 

Constitutes 74% of the total weight of the paste, particle size can be in the range of Nano 

or a Micro meter scale. 

2. Antimony Oxide 

Considered to be the proposed active agent that will act on reducing the overall CTE of the 

Al composite 

3. Organic Vehicle 

Constitutes around 24% of the total weight of the paste, and is used to allow the mixing 

and the printing of the paste. It is usually made up of: 

i. Binder resin: Ethyl Cellulose 

ii. Solvents:  Terpineol and  

Butyl Carbitol Acetate or BCA (diethylene glycol monobutyl ether 

acetate).  

The ratio of Ethyl Cellulose: Terpineol: BCA is 1:4.5:4.5 in terms of their 

respective weights. 

4. Glass Frit 

Can be lead-based or lead-free. The one used in the main recipe was Lead-based glass frit 

with a ratio of 1% of the total weight of the paste. Its use is optional. 

5. Dispersant 

Can be either of the following acids - stearic, palmitic, myristic, oleic acid, or Lauric acid. 

The weight could be around 0.5% of the total weight of the paste 

For the purpose of the current research, the original recipe was modified by limiting the 

constituents to include only: 

1. Al Powders  2.  Organic Vehicle: Binder and solvent 
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Experiments made using the original recipe resulted in mixtures that were found to be extremely 

viscous, and thus the printing of the paste on the wafer was unsuccessful, resulting only in a dry 

smudge on the wafer (given the available printing resources that shall be described later in the 

following section).  

Thus it was important to experiment in order to come up with a less viscous mixture that could 

still hold the Al powders and be easily printed afterwards. Hence, after many trials during which 

the ratios of the constituents of the organic vehicle as well as the ratio of the organic vehicle to the 

Al powders used were changed, the modified version of the original patented recipe for the Al 

paste was adopted. 
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Modified Al Paste recipe  

 

 

 

 

 

 

 

Figure 30 shows a graphical representation of the constituents of the modified Al-paste recipe. 

1. Al powder 

Constitutes around 40% (instead of 74%) of the total weight of the paste, particle size can 

be in the range of Nano or a Micro meter scale. 

2. CNT 

CNT replaced Antimony Oxide as the active agent in such a way that of the 40% 

constituting the Al powders mentioned above, 10% were to be replaced with CNT, if a 

CNT-Al paste was to be prepared. However, if the user wishes to have a pure Al paste, 

without CNT, then the 40% of the total paste weight allocated to the powders will be only 

Al powders. 

3. Organic Vehicle (OV) 

Constitutes around 60% (instead of 24%) of the total weight of the paste as follows: 

i. Binder resin:  Ethyl Cellulose 

ii. Solvents:  Terpineol and BCA 

The relative weight ratios of the Ethyl Cellulose to the Terpeneol & BCA are: 3.1:20:20 

respectively. These together form 60% of the total paste weight.  

Al Paste

Powders 
(40%)

Al CNT

Organic 
Vehicle (60%)

Ethyl 
Cellulose

4.32%

Terpeneol

27.84%

BCA

27.84%

Figure 30 Modified Al Paste Recipe 
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It was found that preparing 85g of the paste was enough to cover 3 wafers, as shall be later shown, 

i.e. 51g of OV and 34g of powders were mixed together to give the amount of paste needed to 

prepare 3 wafers, see Table 3 

Table 3 For 85g of paste produced, these were the weight amounts of the OV and the Powders according to the modified recipe 

 

Note 

In reality, the 51 g of the OV was made 52g to account for the milling process that may cause 

evaporation of the OV, as shall be shown later.   

Organic Vehicle Constituents (g) Paste Constituents (g) (g) 

Ethyl Cellulose Terpineol BCA OV (Sum) Powders Total 

3.67 23.67 23.67 51 34 85 
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Step 1: Preparing the Powders 

The following powders were prepared: 

1. Un-Milled Al  34g see Figure 31 

2. Milled Al  34g see Figure 32 

3. 10% CNT-Al  34g see Figure 33 

The procedure for preparing the powders was the same as the one mentioned earlier for preparing 

the cylindrical samples, except in the case of the 10% CNT-Al powders, the PCA was not used 

this time. According to the recipe, a total of 34g of each of these powders were required, hence 2 

milling containers were used, each yielding around 27-29g of powders per stainless steel container. 

In the case of the 10% CNT-Al powders, which tended to stick to the milling container from inside  

(which can be attributed to not using the PCA) forming a very strong layer, this led to a decrease 

in the yield of the milling container to become around 17-18g of powders. 

 
Figure 31 SEM image of the Un-Milled Al Powders 
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Figure 33 SEM image of the 10% CNT- Al Powders 

Figure 32 SEM image of the Milled Al Powders 
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Observations 

It is worth noting that the average particle size for the Un-Milled Al powders (estimated to be 

around 60 µm), Figure 31, was lower than that of the Milled Al (around +120 µm), as shown from 

the dimensions on the SEM image in Figure 32. The 10% CNT-Al powders, Figure 33, however 

were showing particles of relatively large and small sizes (150-300 µm and around 20 µm 

respectively). This was attributed to the partial disintegration of the particles during milling due to 

time limitations. It is worth noting that the smaller the particle size, the easier the mixing of the 

paste later on.  
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Step 2: Preparing the Organic Vehicle 

To ensure consistency throughout the experimental process, a large amount of the OV was 

prepared in advance. From this OV stock all subsequent Al paste formulations (Un-Milled Al, 

Milled Al and 10% CNT-Al pastes) were prepared. The OV recipe followed is outlined in Table 4 

OV Recipe for bulk OV production below. These were the same ratios as those in Table 3 for the 

Ethyl Cellulose, BCA and Terpineol, however, the bulk amount prepared now was 431g and not 

just 51g as before. 

Table 4 OV Recipe for bulk OV production 

OV Constituents Ethyl Cellulose Terpineol BCA 

Weight Ratio (g) 31 200±0.05 200±0.05 

A powerful kitchen blender (800 Watt) with sharp blades, was used to ensure the quick and 

thorough dissolving of the Ethyl Cellulose in the Terpineol + BCA mixture. This method of mixing 

was resorted to after many hours of fruitless high energy milling, as the Ethyl Cellulose is a very 

sticky material that tends to stick to the balls of the milling container rather than break and dissolve .  

The OV was prepared as follows: 

1. In a glass beaker, 31g of Ethyl Cellulose were measured 

2. The jug of the blender was put on a highly sensitive digital balance (hundredth of a gram) 

and the reading was zeroed. 

3. Using a medical syringe, the respective weights of Terpineol and the BCA, see Table 4, 

were added directly into the jug. 

4. The jug was attached to the blender motor and the mixing was started. 

5. While mixing the Terpineol and the BCA, small amounts of Ethyl Cellulose were added 

gradually to ensure complete dissolving of the latter.  

6. The blending process did not stop till all the Ethyl Cellulose completely dissolved and the 

OV mixture became clear.  

7. The OV was then stored in a tightly sealed glass container. 

8. For extra precaution, the mixture was left overnight (around 12-15 hours) to further ensure 

that all the Ethyl Cellulose has properly dissolved before any of it was used. 
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Step 3: Mixing the OV & Al Powders 

Following the preparation of the 2 main constituents of the Al Paste: the OV and the Al Powders 

were combined in a stainless steel milling container, Figure 34, and then milled together to 

properly dissolve the powders in the OV prepared. Note: Anytime the OV was used, the whole 

stock was transferred from the glass container to the blender to be thoroughly mixed for a few 

minutes. After taking the required amount, the OV was returned back to the glass container to be 

stored again. 

The following were the amounts added per stainless steel milling container (see Table 5): 

Table 5 Mixing ratios of the paste constituents per milling container 

Al-Paste Constituents OV  Al-Powders 

Weight Ratio (g) 52±0.1 34±0.05 

 

The milling process parameters are: 

i. Duration:  30 min 

ii. Rotational Speed: 250 rpm 

iii. 42 Stainless steel balls / container 

Note: According to the modified recipe, the 

ratio of the OV and the powders to the total 

weight of the paste should be 60 to 40 to 100 

respectively, i.e. the weight of the OV in the 

paste should be 1.5 times the weight of the 

powders, so one would have to add to the 34 

g of the Al powders a 1.5 x 34 = 51g of OV, 

however, an additional gram of OV was 

added to account for any evaporations of the 

OV due to the high temperature that results 

from the milling process.  

Figure 34 The Organic Vehicle (OV) inside the milling container 



42 

 

The milling speed was set to be 250 rpm instead of 400 rpm as it was noticed from the 

experimentation phase that high milling speeds and durations created a lot of heat inside the milling 

container which caused the OV to evaporate and hence reduced the viscosity of the extracted paste. 

So, after several trials, it was found that the above-mentioned parameters produced a well-mixed 

paste with an acceptable level of viscosity. 

Step 4: Extracting the Paste 

Following the milling step, the paste was 

transferred into a tightly sealed glass jar, the same 

as that used earlier to store the Al powders. This 

extraction process was done using a funnel and a 

sieve, Figure 35, to avoid any spills while 

transferring the paste, and to extract as much paste 

as possible. The paste extracted from one milling 

container had a total volume of much more than 

30 mL of paste, more than enough to cover 3 

wafers.  

It is extremely important to note that the paste 

should be used within hours of processing, for it 

tends to split into phases after being left overnight, 

meaning that part of the OV becomes separated 

from the thicker denser phase of wet powders (Al powders + some OV). This splitting can be 

reversed by thorough mixing again, however, due to the fact that milling is a high energy process, 

extra milling might lead to evaporating the OV which may increase its viscosity and hence make 

the spreading of the paste over the silicon wafer later on harder to achieve. Also, since the amounts 

of Al paste prepared were not large, and - as just mentioned - that the paste tends to stick to 

surfaces, thus the process of transfer from the jar to the milling container and back again to re-mix 

the paste will lead to further losses in the paste amount. The splitting could perhaps be attributed 

to the fact that the OV in the modified recipe developed specifically for this study was present in 

Figure 35 Transferring the paste from the milling container 

to the glass jar 
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much more quantity than the recommended amount in the original recipe, hence the excess would 

simply separate from the rest of the OV that had already mixed with the powders. 

The output of this step was three glass sealed glass jars containing 3 types of Al pastes: 

1. Un-Milled Al powder-based paste (Paste 1)  

2. Milled Al powder-based paste (Paste 2)   Figure 36 

3. 10% CNT - Al powder-based paste (Paste 3)   Figure 37   

 

 

 

 

 

 

 

 

 

Note there is a color difference between each paste: the milled Al paste, Figure 36, had a silver 

shiny appearance, while due to the presence of CNT, the 10% CNT-Al paste had a black shade, 

Figure 37. 

  

Figure 36 Milled Al powder-based paste 

Figure 37 10% CNT-Al powder-based paste 
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4.3.2 Silicon Wafer Sample Preparation 

The wafers were obtained from Addison Engineering Inc., with the following basic specifications : 

Resistivity: 4-6 Ohm-cm 

Grade:  Prime 

Diameter: 6 inches 

Thickness: 625 ± 25 µm  
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Step 1: Spin Coating – Al Paste 

Following the preparation of the three main Al pastes 

mentioned in the previous section, the next step was to 

spread the paste over a silicon wafer. The technique 

followed to do that was the “Spin Coating technique ”. 

Basically, the spinner device, see Figure 38, has a 

circular platform which can rotate according to a 

predefined program.  

The spin coating step went as follows: 

1. A silicon wafer was mounted on the device 

which uses a vacuum pump to fix the silicon 

wafer in a contactless fashion. The wafer was 

put in the center of the mounting platform via 

following the guidelines drawn on it. The 

polished side was set to point downwards, so 

that the paste would be printed on the backside of the wafer; the unpolished side. 

2. Using a medical syringe, 10 ml of the paste prepared earlier was measured and then added 

at the center of the silicon wafer. Each jar of the 3 pastes developed in the previous step 

provided enough paste to cover up to 3 wafers. 

3. Before spinning, the paste drop was left to settle on the center of the wafer for a brief period 

(30 to 90 seconds). This was done to avoid the paste spluttering when rotated at a high 

speed. 

4. The spinning program was initiated; its parameters were: 

i. Accelerate from 0 to 650 rpm in 10 seconds 

ii. Total duration of spinning was 10 seconds i.e. the wafer will accelerate from 0 to 

650 rpm in 10 seconds then stop once the 650 rpm was achieved.  

5. Process was repeated 9 times; 3 times per each of the 3 Al Paste jars produced before, 

resulting in 9 coated silicon wafers. 

  

Spinning 

Platform 

Figure 38 Spin Coater Device 
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Notes regarding the Spin Coating Step 

The parameters of the spinning program were set based on experimentations with the paste 

compositions and the spreading quality. It was found that at very high speeds (+1000 rpm), the 

paste did not cover all the wafer which may be attributed to perhaps problems in the spinning 

mechanism not being 100% horizontal or that the paste itself splits and its wet contents fly off the 

wafer. 

In the case of the first 3 prepared samples using paste 1, the spinning program was not strictly 

adopted, it was rather based on short bursts of the program combined with visual feedback to 

determine if the paste has completely covered the wafer. For the remaining 6 samples developed 

from pastes 2 and 3, the spinning program was identical and was strictly applied. This rather 

affected the thickness of the layer spread, as shall be shown in later results, of the first 3 wafers 

but otherwise, in all cases, the paste was spread all over the wafer, see Figure 39. 

  

Figure 39 Spin Coating Al Paste: Early Trial. Coated Wafer on 

Spinning Stage/Platform 

Spinning 

Platform 
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Step 2: Firing the Wafer Samples (160oC) 

This step is the equivalent of the co-firing stage in the real industrial process of manufactur ing 

solar panels. Basically, the 9 samples were transferred into a furnace, where a heating program 

was initiated. The program parameters were defined as follows: 

1. Gradual heating from room temperature to 160oC, in around 1 hour. 

2. Stay at 160oC for 3 hours and 15 min. Visual inspection showed that after around 2 hours 

of heating at 160oC, the samples seemed dry, however, the heating phase was extended by 

further 75 min to ensure complete dryness. 

3. Total recorded heating time was 4 hours, 15 min. 

As mentioned earlier, it is worth reminding once again that the co-firing process can go up to 

900oC for a period of 1 to 5 min. The reasons why a similar firing profile was not adopted here 

are: 

1. In the real co-firing process, the wafer moves from one firing zone to another at a high belt 

speed, a process which requires special belt furnaces not available at AUC. 

2. The wafers naturally required relatively more time to dry than the average wafer developed 

in the industry because: 

i. The layer of the Al paste coated on the wafer was much thicker than that of the 

industry, the former being around 120 µm versus the latter being 40-20 µm. This 

was because the methods adopted for printing the Al paste were unconventiona l; 

unlike those used in the industry due to a limitation in available resources. 

ii. The modified paste used here had more OV, a liquid, than the Al powders.  

3. A sample was tried with heating at 900oC, however, it failed. The Aluminum melted and 

collected in small visible spherical beads on the wafer surface. This was because in the 

industry, the wafers stay at the 900oC for a very brief period as it moves from one zone to 

another. 

The spin coater device used did cover the wafer with paste, however it was noted that not all the 

paste was homogeneously distributed, as shall be shown later in the Results section. This led to 

the fact that some parts of the wafer dried faster than the others. Before settling on the above-
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mentioned heating parameters, some samples were independently heated at 100oC, 150oC and 

200oC. It was noted that samples heated more than 200oC, even for a small period of time, showed 

some powdering on the surface, indicating that the Al powders were not properly sticking to the 

wafer surface. Hence, to ensure the complete evaporation of the OV at a suitable heat gradient, it 

was recommended that, based on the experimental testing performed, the heating profile described 

above to be adopted, that the temperature of the heating should not go beyond 200oC. 

Figure 40 shows that the Un-Milled Al Samples (first row) had a dull silver color, while the Milled 

Al Samples (second row) had a rather shining silver color, and the 10% CNT-Al samples had an 

almost black-grey color (third row). The color differences may not be fully apparent due to the 

printing quality, in reality there was a noticeable difference though between all 3 categories. 

 

Figure 40 The 9 wafers after the heating and SEM sample cutting step 
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4.3.3 Silicon Wafer Sample Testing 

The device used to measure the bows and the warps generated in the silicon wafers due to heating 

is called “Contactless Wafer Geometry Gauge”, Model “MX 203-8-37”, see Figure 41. It has a 

resolution of up to 0.1 µm, and can handle 150 mm and 200 mm wafers with 21 and 37 measuring 

points respectively, Figure 42. 

 

Figure 41 “Contactless Wafer Geometry Gauge”, Model MX 203-8-37. Figure adopted from Eichhorn Hausmann "MX 203-8-37 

Contactless Wafer Geometry Gauge"  

  
Figure 42 Plot of the measuring sensor points for the 150 mm and 200 mm wafer sizes. Figure adopted from Eichhorn 

Hausmann "MX 203-8-37 Contactless Wafer Geometry Gauge"  
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Step 1: Preparing Wafer Samples  

During the spin coating step, some minimal amounts of the paste got on the other side of the wafer 

while it was being removed from the spin coater device. After heating, it was noticed that these 

smudges dried on the opposite side of the wafer and hence required cleaning. Acetone was used to 

remove these dried smudges, so that in the end the polished (front) side of the wafer was clean, 

and the un-polished (back) side or the lower side of the wafer was covered with a dried layer of Al 

paste as intended.  

Step 2: Measured Thickness, Bow and Warp – Before and After Wafer Firing 

The silicon wafer samples were measured for bow, warp and thickness using the Contactless Wafer 

Geometry Gauge device twice: once before printing the Al paste, and another time afterwards, so 

that the difference would represent the effect of the co-firing of the wafer with the paste coated on 

it. 

The wafer was inserted into the device drawer with the polished side facing upwards, and the 

backside with the paste on it was downwards. The device has 2 plates each having a set of 

contactless capacitive sensors that basically measure the distance to the surface of the wafer which 

was inserted in between the plates. The device took less than a few seconds to provide a reading, 

then the wafer was replaced by the next one and so forth. This process was repeated for all 9 

wafers. 

The following geometrical characteristics were measured: 

1. The average thickness 

2. The bow in X and Y dimensions 

3. The total warp of the wafer 

Each of these characteristics was explained in more detail in the following pages, in order to get a 

better understanding of the readings presented in the results section. 
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1. The Average thickness 

 

Figure 43 shows how the variables outlined below were measured. Note that there is a set of 

sensors above and below the wafer.  

Top(i):  is the distance from the top sensor to the wafer surface, see figure 39 

Bottom(i): is the distance from the bottom sensor to the wafer surface 

TotDist: is the total distance between both sensors 

LThk  Local Thickness: Thk(i) = TotDist – [ Top(i) + Bottom(i)] 

AvgThk Average Thickness = 
∑ 𝑇ℎ𝑘(𝑖)

𝑛
 

  i.e. summation of all the local thickness readings over their number. 

StdThk  Standard Thickness: Standard Deviation of the mean thickness 

Figure 43 How the local thickness of a wafer is measured: Contactless Wafer Geometry Gauge device. Figure 

adopted from Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004. 
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2. The Bow in X and Y dimensions 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

According to the device manual, see Figure 44 and Figure 45: 

Bow(X) = 𝐶 − 
𝐴+𝐵

2
    Bow(Y) = 𝐶 − 

𝐷+𝐸

2
   

X-axis 

Y-axis 

Figure 44 Top View: Main points on the wafer for Bow-X and Bow-Y measurements. 

Figure adopted from Contactless Wafer Geometry Gauge Manual, Eichhorn 

Hausmann, 2004 

Figure 45 Cross-sectional View: How Bow-X is measured, Contactless Wafer Geometry Gauge device. Figure adopted 

from Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004 
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3. The Total Warp of the Wafer 

 

Figure 46  How the local and total warps of a wafer were measured: Contactless Wafer Geometry Gauge device. Figure adopted 

from Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004 

 

A best fit plane is computed using the “least squares fit algorithm”, Figure 46, and the deviations 

of the surface of the wafer with respect to this plane were the local warp values. There were 

deviations above and below the line, the max ones above and below the plane were called “max + 

local warp” and “max - local warp” respectively. The total warp is defined as the “sum of the 

absolute values of those 2 extrema” (“Contactless Wafer Geometry Gauge” manual, Eichhorn 

Hausmann GmbH, 2004) 

Step 3: SEM Sample Preparation 

To get a better understanding of the behavior of the paste, it was necessary to get SEM images of 

the top and cross-sectional views of the wafers. Since the SEM cannot contain large wafers in its 

compartment, hence it was required that part of the wafer should be cut to get an “SEM sample”. 

So, of the 9 wafers prepared, 1 was chosen from each category; thus 3 wafers were cut using a 

simple diamond pen cutter to get 3 small rectangular pieces (around 1 cm x 1 cm).  
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Chapter 5 

Results & Discussion 

5.1 Roadmap 

The chapter was divided into two main parts: 

Part 1: Cylindrical Samples  (see Figure 47) 

I. CTE  

II. Electrical Resistance 

Part 2: Wafer Samples (see Figure 64) 

I. Bow & Warp 

II. SEM Images 

III. Firing Test (700oC) 

In section 5.1, the CTE and the electricity measurements (volt and current) for all 5 sample 

categories (The Un-Milled Al, Milled Al, 2% CNT-Al, 5% CNT-Al, and 10% CNT-Al) were 

represented in graphs.  

Another subsection was added to the CTE and electrical resistance sections; the normaliza t ion 

subsection. This is basically a section that offers a summarized view of all the representative 

sample readings, the latter were normalized, so that it would be easier to get a picture about the 

situation in one glimpse. 

Note  

For full CTE and Electrical measurements, check Appendix A and B, respectively. For the sake of 

reporting the results in a simple compact form, the readings were approximated to the nearest unit, 

i.e. for example: the last CTE value reported in the 20s temperature range (e.g. 29.99) was taken 

to be the CTE value at a temperature of 30oC, and so forth.  
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5.2 Part 1: Cylindrical Samples  

 

Figure 47 Outline of different sections of Part 1 of the Results & Discussion Chapter: Cylindrical Samples Part 

 

Figure 47 is an outline of the first part of the results and discussion chapter, showing the different 

subsections so it would be easier for the reader to have an overview of the whole chapter.   

Part 1

Cylindrical Samples

1. CTE

I. Un-Milled  Al

II. Milled Al

III. 2% CNT-Al

IV. 5% CNT-Al

V. 10% CNT-Al

VI. Normalized Data

VII. Mathematical 
Model

ROM Schapery

2. Electrical 
Resistance

I. Un-Milled  Al

II. Milled Al

III. 2% CNT-Al

IV. 5% CNT-Al

V. 10% CNT-Al

VI. Normalized Data
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5.2.1 Cylindrical Samples: CTE 

I. Un-Milled Al Samples 

 

Figure 48 Un-Milled Al Cylindrical Samples: CTE Readings 

II. Milled Al Samples 

 

Figure 49 Milled Al Cylindrical Samples: CTE Readings 
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III. 2% CNT-Al Samples 

 

Figure 50 2% CNT- Al Cylindrical Samples: CTE Readings 

IV. 5% CNT-Al Samples 

 

Figure 51 5% CNT-Al Cylindrical Samples: CTE Readings 
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V. 10% CNT-Al Samples 

 

Figure 52 10% CNT-Al Cylindrical Samples: CTE Readings 

Observations 

Figure 48 to and including Figure 52 represent the CTE readings for individual samples of each 

powder category. Looking at any of these curves, starting from 100oC it is noticeable that the 

readings were all more or less clustered in a tight band, with little or no anomalies or outlier curves 

or exceptions. Taking into consideration that all CTE readings of the 26 cylindrical samples were 

randomly taken, this reflects positively on the precision of the results. 

Also, comparing the graphs together, it seems that as the CNT content of the sample was increased 

from 0 to 10%, the CTE was reduced, as shall be shown in the next sections. 
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VI. Normalized Data 

Figure 53 shows the CTE values for some of the selected samples for the temperature range from 

100-490oC. This was done prior to normalization of the data. 

 

Figure 53 shows the CTE readings which were influenced by 2 variables:  

i. The effect of the milling process  

ii. The effect of the CNT addition 

The CTE readings were then normalized to omit the milling effect, (the milled Al readings were 

taken to be the “Control”) hence enabling direct comparison between the remaining samples to 

investigate the effect of adding CNT on CTE reduction alone, see Figure 54. 
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Figure 54 . Normalized CTE Values for the Representative Cylindrical Samples 

Observations: Normalized CTE Values 
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powder weight as CNT has resulted in a max decrease in the samples’ CTE by almost 20% 

compared to the CTE of the Milled Al sample readings.  

3. The slope of the 10% CNT-curve was much higher than that of any of the other curves, so 

this supports another fact that the CNT addition increases the CTE change /oC factor for 

the composite developed. 

These observations agree with the main theory which states that since CNT has a lower CTE than 

that of Al, hence the former will not expand as much per a unit degree of temperature rise as will 

the Al. As mentioned earlier, according to the literature the CTE of the Al is 23x10-6 oC-1 (Soon-

gil et Al, 2010), and in a study conducted by Tang et al (2004), it was found that the CTE of the 

coarse-grained and also the nano-sized Al to be ranging from 20-26x10-6 oC-1 for a temperature 

range of 100-250oC, while in Figure 53 the CTE readings due to CNT addition was found to be in 

the range of 15-18x10-6 oC-1 for the same temperature range, i.e. around 20-30% CTE reduction 

was recorded compared to the Al CTE values recorded by Tang et al (2004). Thus, in essence the 

CNT did act as a hindering agent of Al expansion. A final note: it seems that the full hindering 

effect of the CNT was not achieved right away, but rather at a later temperature, in Figure 54 

above, it was around 350-400oC. However, this should not pose a problem as the specific problem 

addressed here; the co-firing process of the Si wafers to produce solar cells, reaches temperatures 

much higher than this – even if for a brief period of time.  
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VII. Mathematical Modeling 

Table 6 shows the average values for the CTE readings obtained by the Dilatometer for the 26 

cylindrical samples, further information about the table was provided in the next page. 

Table 6 Experimental Results: Average CTE Readings recorded by the Dilatometer 

 Average Values: CTE x 10-6 oC-1 

Temp/oC Un-Milled Al Milled Al 2% CNT-Al 5% CNT Al 10% CNT Al 

50 13.497 13.080 12.694 12.123 11.346 

100 18.444 17.775 17.226 15.929 14.580 

150 20.568 19.795 19.231 17.658 16.084 

200 21.723 21.091 20.488 18.757 17.018 

250 22.547 22.039 21.361 19.541 17.724 

300 23.194 22.785 22.075 20.218 18.327 

350 23.799 23.410 22.713 20.819 18.837 

400 24.410 24.033 23.317 21.395 19.316 

450 25.047 24.633 23.923 22.001 19.850 

490 25.574 25.072 24.373 22.437 20.222 

Table 6 shall be used as the main source of information for both mathematical models to be 

employed in this research: 

i. Rule of Mixtures (ROM) 

ii. Schapery’s Model 

Note 

Since the CTE value of the Al changes with temperature, as shown in Table 6, one cannot use a 

single value for the CTE of the matrix in the mathematical model. Thus, the CTE values of the 

Milled Al in the second column were used, and the mathematical model equations were applied to 

each temperature step, i.e. at 50oC, the value entered for the CTE of the matrix was 13.080 x 10-6 

oC-1, at 100oC 17.775 x 10-6 oC-1, and so forth generating every time a predicted set of CTE values 

for the 2%, 5% and 10% CNT-Al.  
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Rule of Mixtures 

∝𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =∝𝐶𝑁𝑇  𝑉𝐶𝑁𝑇 + ∝𝑀𝑎𝑡𝑟𝑖𝑥  (1 − 𝑉𝐶𝑁𝑇 ) 

Variables - ROM 

∝𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒  CTE of the resulting composite (Desired Output) 

∝𝐶𝑁𝑇   CTE of the CNT 

∝𝑀𝑎𝑡𝑟𝑖𝑥   CTE of the matrix, which was the Al in this case 

𝑉𝐶𝑁𝑇   Volume fraction of the CNT with respect to the total sample Volume. 

 

Input - ROM 

∝𝐶𝑁𝑇   assumed to be equal to “0” 

∝𝑀𝑎𝑡𝑟𝑖𝑥  See Table 6, used second column of Milled Al CTE values 

𝑉𝐶𝑁𝑇  the weight fractions of the CNT used throughout this report were converted to 

volume fractions to be used in the ROM equations, see table 3 

Table 7 Weight fractions of CNT converted to Volume fractions of total sample Volume 

 

 

 

Note 

 In the following pages, the table headings of the CNT samples were still stated according to their 

weight fractions. This was done only to maintain consistency throughout the report. 

Weight % Volume % 

2 2.97 

5 7.32 

10 14.29 
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Schapery’s Model 

 

∝𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  
𝐸𝐶𝑁𝑇 ∝𝐶𝑁𝑇 𝑉𝐶𝑁𝑇 + 𝐸𝑀𝑎𝑡𝑟𝑖𝑥 ∝𝑀𝑎𝑡𝑟𝑖𝑥 (1 − 𝑉𝐶𝑁𝑇)

𝐸𝐶𝑁𝑇𝑉𝐶𝑁𝑇 +  𝐸𝑀𝑎𝑡𝑟𝑖𝑥 (1 −  𝑉𝐶𝑁𝑇 )
 

 

“E”  refers to Young’s Modulus 

“∝”  refers to CTE  

“V”  refers to volume fraction 

 

Input - Schapery 

𝐸𝐶𝑁𝑇   300 GPa 

𝐸𝑀𝑎𝑡𝑟𝑖𝑥  EAl = 69 GPa 

∝𝐶𝑁𝑇   “0” 

∝𝑀𝑎𝑡𝑟𝑖𝑥  same as that used in ROM model, see table 1: “Milled Al” column 

𝑉𝐶𝑁𝑇   same as that used in ROM model, see table 3 

Note: 𝐸𝐶𝑁𝑇  was valued at 300 GPa as based on the study conducted by Coleman et al (2006) it was 

found that there was a lot of variation in the reported magnitudes of Young’s Modulus of MWNT 

produced by Chemical Vapor Deposition method; one study reported a range of 12-50 GPa, 

another reported a value of 450 GPa (the variation was attributed to the fact that the amount of 

defects in MWNT played a role in the determination of the magnitude of Young’s modulus). Hence 

based on these numbers, and taking into account the variations between the two ranges, the  

Young’s modulus of the MWNT used was estimated to be around 300 GPa. 
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Output – ROM 

Table 8 and Table 9 have the CTE values generated by ROM and Schapery’s models respectively 

Table 8 ROM-generated CTE Values 

 ROM Model: CTE-generated values (x 10-6 oC-1) 

Temp /oC 2% CNT Al 5% CNT Al 10% CNT Al 

50 13.096 12.509 11.569 

100 17.896 17.094 15.809 

150 19.957 19.063 17.630 

200 21.078 20.134 18.620 

250 21.877 20.897 19.326 

300 22.505 21.497 19.881 

350 23.092 22.058 20.399 

400 23.685 22.624 20.923 

450 24.303 23.214 21.469 

490 24.814 23.703 21.921 

Output – Schapery 

Table 9 CTE- generated values by Schapery's Model 

 Schapery’s Model: CTE-generated values (x 10-6 oC-1) 

Temp /oC 2% CNT Al 5% CNT Al 10% CNT Al 

50 11.544 9.738 7.584 

100 15.687 13.233 10.307 

150 17.470 14.737 11.478 

200 18.614 15.702 12.229 

250 19.450 16.407 12.779 

300 20.109 16.963 13.211 

350 20.661 17.428 13.574 

400 21.210 17.892 13.935 

450 21.739 18.338 14.283 

490 22.127 18.665 14.537 
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Figure 55, Figure 56, and Figure 57 represent the experimental CTE values in Table 6 compared 

against the predicted CTE values by the ROM and Schapery models (in Table 8 and Table 9 

respectively) for the following samples 2%,5% and 10% CNT-Al respectively: 
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Figure 55 2% CNT-Al CTE Values: Experimental & Predicted (ROM, Schapery) 

Figure 56 5% CNT-Al CTE Values: Experimental & Predicted (ROM, Schapery) 
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Observations 

1. The ROM-generated values seem to highly agree with the CTE readings obtained from the 

dilatometer. The deviations noted were very small, averaging around 0.467 x 10-6 oC-1, and 

not exceeding 0.750 x 10-6 oC-1 

2. The experimental CTE readings seem to lie between an upper limit (ROM) and a lower 

limit (Schapery’s values). 

3. The hypothesis that the CTE was reduced due to CNT addition was theoretically proved, 

as shown in Figure 55, Figure 56, and Figure 57, the CTE values calculated decreased as 

the CNT content of the samples increased. 

4. Schapery’s values were relatively much lower than those of the experimental. In fact, the 

more the CNT content in the samples, the more the deviation was noted. This could be 

attributed to the milling process which breaks down the CNT from long tubes to much 

shorter ones, hence reducing the interface area and thus the restraining effect was reduced 

accordingly. Also, Schapery’s values were calculated using ECNT  = 300 GPa, which may 

not be the exact value of the Young’s Modulus of the MWNT. When the value was changed 

to 100 GPa, Schapery’s values were almost an exact fit to the experimental ones. Thus 

more investigation into the true value of ECNT is required. As mentioned before, according 

to Coleman et al (2006), the magnitude of the modulus was reported to be either 12-50 or 

450 GPa depending on the level of the defects present in the CNT. 
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5.2.2 Electrical Resistance 

Considerations 

The readings obtained for the resistance of each and every sample as shown in the next pages do 

not only represent the resistance of the samples, but they also represent the resistance involved in 

the crocodile wires connecting the sample to the device. Thus, the readings obtained here were not 

meant to present the exact resistance of the samples, but rather were for comparison purposes only, 

i.e. comparing the resistance value obtained for each and every sample category, i.e. while 1.47 

Ohms is in fact a large value for the resistance of an Al sample, it is worth noting that these readings 

were not taken for their face value but rather to be compared to one another; comparing the 

resistance value for Milled Al to that of 2% CNT-Al, 5% CNT-Al sample and so forth.  

So, in a nutshell the method could be described as such: The voltage was varied and the 

current was measured. The resistance was hence calculated and compared for each category. 

The resistance values were used directly as an indicator for the resistivity (since all 26 

cylindrical samples had identical dimensions), which in turn was taken to be a measure for 

the electrical performance of the wafer samples. 

The reason why this method was applied was that the resources available were very limited and 

the devices were not designed to handle the cylindrical samples. Having said that, it is worth noting 

once more that all the electrical measurements were randomly taken to avoid any possible 

unexpected factors playing a role in the results. 

See full Electric readings in Appendix B 

Note  

The sample designation in the CTE test is different than that in the electrical resistivity test, i.e. 

Milled Al Sample A in CTE readings is not necessarily the Milled Al Sample A in the electrical 

resistivity test.   
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I. Un-Milled Al Samples 

 

 

Figure 58 Voltage-Current readings for Un-Milled Al cylindrical samples 

 

II. Milled Al Samples 

 

 

Figure 59 Voltage-Current curve for Milled Al cylindrical samples 
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III. 2% CNT-Al Samples 

 

 

Figure 60 Voltage-Current curve for 2% CNT-Al cylindrical samples 

IV. 5% CNT-Al Samples 

 

Figure 61 Voltage-Current curve for the 5% CNT-Al cylindrical samples 
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V. 10% CNT-Al Samples 

 

Figure 62 Voltage-Current curve for the 10% CNT-Al cylindrical samples 

 

Observations 

As in the CTE results, it is worth noting that the Figure 58 to and including Figure 62 show that 

all the samples Current readings under the same category were tightly clustered into a single line, 

e.g. in Figure 58 the Un-Milled Al sample readings were grouped together in a tight band to the 

extent that one could only see a single straight line instead of several, and so forth. Only perhaps 

in the case of the 10% CNT-Al samples, Figure 62, where it can be observed that one of the samples 

represented an outlier, while the remaining 3 samples were less clustered than their counterparts 

in other sample categories, but nonetheless they were still grouped in a relatively tight band. This 

reflects positively on the precision of the results. 
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VI. Normalized Data 

The voltage - current (I) data of selected representative samples were plotted and from the trendline 

of each curve the resistance was determined, as shown in Table 10. These values were then 

normalized by taking the Milled Al reading as the control (base) reading, hence neutralizing the 

effect of the milling on the resistance of the resulting composite, and focusing only on the effect 

of CNT addition on the resistance values, see Figure 63 

Table 10 Resistance Readings of non-Normalized Resistance Values 

 Selected Representative Samples 

 Un-Milled Al Milled Al 2% CNT-Al 5% CNT-Al 10% CNT-Al 

Sample E F A E C 

Resistance (Ohm) 1.475 1.469 1.469 1.471 1.524 

 

 

Figure 63 Graphical Representation of Data in Table 13. Normalized Electrical Resistance Readings for the Cylindrical 

Representative Samples 

  

99

100

101

102

103

104

Un-Milled Al Milled Al 2% CNT-Al 5% CNT-Al 10% CNT-Al

N
o

rm
a

li
za

ti
o

n
 (%

)

Normalized Resistance Readings For the Representative 
Samples



73 

 

Observations: Normalized Results 

Looking at Table 10 and Figure 63, one could observe the following: 

i. Milling Effect 

Comparing the Un-Milled Al and Milled Al bars, it was clear that the milling process 

did have a very slight effect on the resistance of the sample, reducing it by around 0.4%. 

This effect may be attributed to the fact that when the Al powders were milled, the 

small particles were fused together into larger ones creating larger grains with less 

boundaries, hence reflecting positively on lowering the resistance. Regardless, the 

effect was rather small here but is worth investigating and definitely taking into 

consideration if longer milling hours were applied in the future. 

ii. CNT Effect 

Comparing the bars of the Milled Al and the other CNT-containing samples (i.e. the 

2%, 5% and 10% CNT-Al bars), it was clear that the addition of CNT had a negative 

effect on the resistance of the samples: While in the case of the 2% and 5% CNT-Al 

samples the effect was rather subtle; in both cases a noted increase in resistance was 

0.014% and 0.191% respectively, while in the case of the 10% CNT Al sample the 

effect was much more pronounced; the noted increase in resistance was 3.793%. As 

mentioned earlier, these results should not be taken for their actual values but rather as 

a comparative indicator to relate the effect of adding CNT on the overall resistivity of 

the Al mixture. In this case, the indicated increase in resistance naturally means that 

resistivity would follow suit, since all the 26 samples have identical dimensions. At 

first, this seems counterintuitive as one would expect that the addition of Carbon, which 

was an excellent conductor, to a composite would reflect positively on the overall 

conductivity. However, upon further inspection, it becomes easier to understand why 

this has occurred: 

When the CNT were milled, their relatively long lengths were shortened. The relative ly 

larger Al particles were fused with the small short CNT particles, hence adding to the 

boundaries in between the grains. The increase in boundaries led to an increase in 

resistance, i.e. increasing interface resistance. This was most noticeable however in the 



74 

 

10% CNT-Al sample because there might have been some agglomeration of the CNT 

despite the milling process which may have required more time to fully disperse all of 

the CNT in the mixture.  

Furthermore, it is worth noting that during the fabrication of the cylindrical samples, 

the powders were sintered at 500oC. According to Esawi et al (2010) and Ci et al (2006), 

Nano-scaled Aluminum Carbide may have formed at the interface layer between the 

CNT and Al, which may have of course reflected on the electrical conductivity of the 

composite. 
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5.3 Part 2: Wafer Samples 

 

Figure 64 Outline of Part 2 of the Results & Discussion Chapter: Wafer Samples Part 

 

Figure 64 shows an outline of the second part of the Results and Discussion chapter, which has the 

readings obtained from tests performed (in chapter 4) on the wafer samples this time.  
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5.3.1 Bow & Warp: Readings 

Before Al Paste coating and firing (160oC) 

Table 11 Thickness, Bow and Warp readings for the wafers before Al Paste application 

Al Paste used 

Wafer 

# 

Average  

Thickness 

(µm) 

Standard  

Deviation  

(µm) 

Bow 

X-Axis 

(µm) 

Bow 

Y-Axis 

 (µm) 

Total  

Warp  

(µm) 

  1 596.65 0.58 -0.59 -1.29 4.16 

Un-Milled Al 2 598.14 0.69 1.47 -2.4 6.73 

  3 603.75 0.65 1.65 0.25 5.7 

  4 601.2 0.66 1.6 -1.66 5.9 

Milled Al  5 600.64 0.5 -1.25 -2.21 4.03 

 6 603.64 0.6 -0.01 0.16 4.61 

  7 602.06 0.55 0.78 -3.56 9.03 

10% CNT-Al 8 601.97 0.59 0.44 -0.99 4.47 

 9 601.85 0.64 -0.17 -0.56 4.76 

Table 11 contains the thickness, bow and warp readings for all 9 Silicon wafers before the printing 

of Al paste step, i.e. dry wafers stage. Thus this means that a value of the average thickness 

indicates that of the thickness Silicon wafer itself, without any paste layer on it. It is worth noticing 

that the bow and warp readings were relatively low almost even close to zero. This was natural 

since there has been no Al printed and no firing hence no bow has developed yet. Kindly note that 

a positive value for the bow indicates a concave bow, as shown in Figure 65 (“concave bow”: the 

wafer has bowed “inwards”; the direction of deflection went from the flat surface and inwards 

towards the center of the wafer) 

 

Figure 65 A concave bow, figure adopted from Hilali et Al., 2007, “Bow in screen-printed back-contact industrial silicon solar 

cells”  
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After Al Paste coating and Firing (160oC) 

Table 12 Thickness, Bow and Warp readings for the wafers after Al Paste application and firing (160oC) 

Al Paste used 

Wafer 

# 

Average 

Thickness 

(µm) 

Standard 

Deviation 

(µm) 

Bow 

X-Axis 

(µm) 

Bow 

Y-Axis 

 (µm) 

Total 

Warp 

(µm) 

  1 715.1 25.81 50.44 23.77 64.31 

Un-Milled Al 2 670.86 10.16 32.18 22.5 46.52 

  3 721.45 15.19 68.04 55.61 88.87 

  4 735.34 21.92 19.14 -3.36 57.68 

Milled Al 5 737.6 21.89 -4.71 8.29 51.5 

  6 732.1 20.55 20.07 14.19 44 

  7 725.37 15.95 21.29 9.54 40.63 

10% CNT-Al 8 718.15 14.68 -0.75 -6.03 29.18 

  9 722.99 14.52 19.05 15.36 44.21 

Table 12 shows the same readings as in Table 11, but this time the wafers had Al paste 

coated/printed on them and the wafers were fired at 160oC for more than 3 hours.  

Correction – Bow and Warp 

Table 13 Thickness, Bow and Warp readings for the wafer changes due to Al Paste application and firing (160oC) 

Al Paste 

Wafer 

# 

Average 

Thickness 

(µm) 

Standard 

Deviation 

(µm) 

Bow 

X-Axis 

(µm) 

Bow 

Y-Axis 

 (µm) 

Total 

Warp 

(µm) 

  1 118.45 25.23 51.03 25.06 60.15 

Un-Milled Al 2 72.72 9.47 30.71 24.9 39.79 

  3 117.7 14.54 66.39 55.36 83.17 

  4 134.14 21.26 17.54 -1.7 51.78 

Milled Al 5 136.96 21.39 -3.46 10.5 47.47 

  6 128.46 19.95 20.08 14.03 39.39 

  7 123.31 15.4 20.51 13.1 31.6 

10% CNT-Al 8 116.18 14.09 -1.19 -5.04 24.71 

  9 121.14 13.88 19.22 15.92 39.45 

Table 13 shows the difference between before and after the coating and firing processes, i.e. the 

readings in Table 12 minus those in Table 11. So, an average thickness value in Table 13 would 

reflect that of the newly printed Al paste layer alone. Similarly, the bow and warp values in Table 

13 were due only to the printing of the Al paste layer, as the effect of previous bows/warps that 

have pre-existed in the wafer before the printing and firing processes have now been excluded. 
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Averages: Thickness, Bow and Warp 

Table 14 Thickness, Bow and Warp Averages of the processed wafers 

                  Average Values (µm) 

Al Paste used Wafers # 

Average 

Thickness  

Standard 

Deviation 
Bow 

X-Axis 

Bow 

Y-Axis 

Total 

Warp 

Un-Milled Al 1, 2 and 3 102.96 16.41 49.38 35.11 61.04 

Milled Al 4,5 and 6 133.19 20.87 11.39 7.61 46.21 

10% CNT-Al 7,8 and 9 120.21 14.46 12.85 7.99 31.92 

Figure 66 is a graphical representation of the average values of bow X, Y and warp shown in Table 

14. Data generated in Table 14 Thickness, Bow and Warp Averages of the processed wafers were 

based on data obtained from Table 13. On the X-axis, the values 1, 2 and 3 represent the Un-Milled 

Al, Milled Al and 10% CNT-Al samples, respectively. 
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Observations 

I.  The Bowing 

Table 15 Bow and Warp Readings obtained from tables 16 and 17, all Bow and Warp readings summarized for convenience 

Al Paste 
used 

Wafer 
# 

Average 
Thickness 

(µm) 

Bow 
X-Axis 
(µm) 

Bow 
Y-Axis 
 (µm) 

Total 
Warp 
(µm) 

Average 
Bow-X 
(µm) 

Average 
Bow-Y 
(µm) 

Average 
Warp 
(µm) 

WTT 
Ratio 

  1 118.45 51.03 25.06 60.15     

Un-Milled Al 2 72.72 30.71 24.9 39.79 49.38 35.11 61.04 0.59 

  3 117.7 66.39 55.36 83.17     

  4 134.14 17.54 -1.7 51.78     

Milled Al 5 136.96 -3.46 10.5 47.47 11.39 7.61 46.21 0.35 

  6 128.46 20.08 14.03 39.39     

  7 123.31 20.51 13.1 31.6     

10% CNT-Al 8 116.18 -1.19 -5.04 24.71 12.85 7.99 31.92 0.24 

  9 121.14 19.22 15.92 39.45     

Having printed the Al paste and fired the wafers, it was expected that the bow would be: 

1. Having a concave shape, i.e. a positive reading from the device 

2. Relatively much smaller in magnitude in the case of the 10% CNT-Al paste than in the 

case of the 2 other pastes: Un-Milled and Milled Al pastes 

Observing the bow readings in Table 15 above, the overall values of the bow were positive, 

indicating that indeed the bow shape is concave. However, one could notice that there were few 

negative readings, indicating a convex bow in a given axis (note: if a reading is negative in the 

Bow-Y column, then this means that the bow along the Y-axis of the wafer has a convex shape, 

same goes for the Bow-X readings).  

Furthermore, when the bow values for the Milled Al and the 10% CNT-Al paste wafers were 

compared, one could see that the magnitudes of these readings were relatively close, without the 

expected reduction in the bow due to CNT addition as mentioned before. The bow averages of the 

10% CNT-Al wafers were in fact reported to be almost slightly higher than those of the Milled Al 

ones. 
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Finally, the bows developed by the Un-Milled Al paste were -in general- higher in magnitude than 

in the case of the other 2 paste samples, and they were all positive, which agrees with the 2 

expectations mentioned above.  

II.  The Warping 

In the case of the warp readings, which is another way of looking at the bow developed, they were 

a bit more conforming to the expectations. The warp results for the Un-Milled Al paste were higher 

than that of the Milled Al paste and that in turn were higher than those of the 10% CNT-Al paste, 

see Table 15. Naturally, the averages for the warp readings calculated followed suit 

In Table 15, the final column was headed by “WTT” ratio or “Warp to Thickness” ratio, which is 

basically the readings in the “Total Warp” column divided by those in the “Average Thickness” 

column, i.e. calculating the warp developed per unit thickness of the paste layer printed on the 

wafer. These ratios were 0.59, 0.35 and 0.24 for the Un-Milled Al, Milled Al and the 10% CNT-

Al pastes, respectively. This shows that despite the fact that there were differences in the 

thicknesses of the paste layer coating the wafers, on average warp developed due to a unit thickness 

of the 10% CNT-Al powder-based paste was lower than that for a unit thickness of the Un-Milled 

Al and Milled Al pastes. In fact, from the “WTT” column, it can be shown that the warp developed 

due to the 10% CNT-Al paste was around 30% less than that due to the Milled Al paste; a 

significant amount. 
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Interpretation 

So what would explain the differences between the bow and the warp readings? Why would the 

bow readings show that the 10% CNT-Al paste were not much better than the Milled Al readings, 

while the warp readings indicate something else? Looking back at the definition of Bow-X and 

Bow-Y, see Figure 69 and Figure 70, in the case of the Bow-X it is basically the difference the 

difference between three length measurements:  Bow(X) = 𝐶 − 
𝐴+𝐵

2
 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

X-axis 

Y-axis 

Figure 67 Top View: Main points on the wafer for Bow-X and Bow-Y measurements. Figure 

adopted from Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004 

Figure 68 Cross-sectional View: How Bow-X is measured, Contactless Wafer Geometry Gauge device. Figure adopted from 

Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004 
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If the spin coating method did not evenly distribute the paste all over the wafer, this might lead to 

some parts having more or less paste than the other. This would reflect on the bow in such regions 

and hence this might have led to lengths A and B being longer than C, giving a false result of a 

convex bow or a negative reading instead of a positive one. Indeed, just after spin coating and 

before removing the wafer from the stage, sometimes it was noticed that near the periphery of the 

wafer along its perimeter a thick layer of the paste would be accumulated there. Furthermore, the 

“Contactless Wafer Geometry Gauge” individual sensor local thickness readings per wafer proved 

this point, see Figure 69, Figure 70 and Figure 71, where the thickness value at the center was 

different from other points across the wafer itself, hence affirming the earlier hypothesis that the 

spin coating method did not homogeneously distribute the paste over the wafer. Note that there 

was a significant increase in the paste layer thickness at the periphery of the wafer, along its 

circumference. 

 

  

Figure 69 Wafer 1: Local thickness readings. Image adopted from Device Software 
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Figure 70 Wafer 4: Local thickness readings. Image adopted from Device Software 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71 Wafer 8: Local thickness readings. Image adopted from Device Software 
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Possible explanations for the differences in the thicknesses readings are: 

1. The spin coater rotating stage was not perfectly horizontal, which means that the 

rotating wafer was inclined.  

2. Wafer was not placed exactly on the center of the rotating stage. 

3. The Milled-Al and the 10% CNT-Al pastes contain particles of different sizes (see SEM 

images), so the pull of the centrifugal force on these particles was different, basically 

because the distance a particle moves depends on its size. This was most evident in the 

case of the Milled Al and the 10% CNT-Al wafers, as both of them had the exact same 

spinning program, and yet both set of samples yielded wafers with different paste layer 

thicknesses (check next section for SEM images of the Top and Cross-sectional views 

of the wafers) 

4. It could be that the sensor in a particular spot hit a large particle, an outlier that does 

not reflect the true thickness of the wafer at this region, as shall be shown in the SEM 

images later on, the surface of the wafer was not exactly uniform, there were many 

large and small particles clumped together thus causing the thickness to vary 

accordingly from one point to the next 

5. While transporting the wafer from the spinner to the furnace, any slight movement 

could easily shift the paste. This, however, may be cancelled out as the wafer was left 

to rest at a horizontal plane for more than 3 hours in the furnace, so the level of the 

paste would even out in the first couple of minutes. Of course, there might be a slight 

inclination in the platform upon which the wafer rests inside the furnace, which again 

would cause the thickness to be higher in some areas relative to other areas. 

Also, it is worth noting that while the wafers were transferred into the furnace, some slight smudges 

of the paste contaminated the other face of the wafer, the one that should not have any paste on it 

(this was discovered after the firing process was finished). Despite the fact that such contamina tion 

was very little, however, having paste on the upper and lower sides of the wafer might have led to 

disrupting the usual bowing profile, which could explain why sometimes there has been negative 

values or just low bowing readings; with expansion occurring on both sides, the bow developed 

would be cancelled out at this particular spot or just reduced in magnitude.  
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Needless to say that any mishandling of the wafers at any point in time may have led to the 

development or reduction of some bow readings, thus it was crucial to subject the wafers to as 

little human contact as possible. So the irregular coating could have led to an irregular bowing 

profile, and hence counter-intuitive readings. The warp on the other hand offers a better picture. 

Recalling the earlier explanation of how the warp was measured, see Figure 72: 

 

Figure 72  How the local and total warps of a wafer were measured: Contactless Wafer Geometry Gauge device. Figure adopted 

from Contactless Wafer Geometry Gauge Manual, Eichhorn Hausmann, 2004 

A best fit plane was calculated and the wafer’s deviations were determined with respect to this 

plane, these deviations whether above or below the plane were determined and were called Local 

Warps. The max deviations above and below were summed up to present the Total Warp. The key 

point was that this process does not happen along only 3 points like in the case of Bow-X or Bow-

Y, but rather local warps were calculated many times all over the wafer’s plane, hence the warp 

readings were relatively more reliable than the Bow readings, as the former covers a wider range 

of the wafer’s surface. 

Two Variables: Thickness & Powders 

In the case of the wafer experiments, 2 variables changed:  

i. Thickness of the Al layer deposited on the wafer. 

ii. Powder content of the paste printed on the wafer. 

Both variables affected the response being measured; the Warp readings. It is generally thought 

that the more the thickness of the Al paste layer, the more the bow and Warp developed. However, 

according to Schneider et al (2002), the composition of the paste has a higher effect on the bow 

than the thickness of the deposited paste layer.  
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Table 16 Comparing Average Thickness with Total Warp Readings 

 

Wafer # 
Average Thickness 

(µm) 
Total Warp 

(µm) 
 

Al Paste 

  2 72.72 39.79 

Un-Milled Al 3 117.7 83.17 

  1 118.45 60.15 

  6 128.46 39.39 

Milled Al 4 134.14 51.78 

  5 136.96 47.47 

  8 116.18 24.71 

10% CNT-Al 9 121.14 39.45 

  7 123.31 31.6 

Table 16 was generated from Table 15 which contains all readings of the bow and warp discussed 

earlier. The data in this table were re-arranged a little bit differently this time: In each of the 3 

categories of the paste, the samples were arranged ascendingly according to their average thickness 

recorded. The total warp developed does not seem directly related to the average thickness 

measured. By checking the average thickness readings, it was found that it was not necessary that 

the layer with the most thickness resulted in the highest warp.  

For instance, comparing wafers 4 & 5 or 9 & 7, the wafers had different thicknesses, but the 

resulting warp did not depend on the wafer with the thickest printed paste layer. Of course, there 

might be some underlying relation, however, it seems that indeed it is the composition that affects 

the warp more in the end.  

These points were based on average thickness results, which may not be the best data to analyze 

since it has just been proven that the printed layer thickness was not uniform across the wafer, 

however, it was the best available option given that the only other data provided by the device 

were not any better as they considered single points while the average thickness readings provided 

a more general picture. These interpretations combined with the calculations made in Table 15 

concerning the “WTT” data discussed earlier in the observations (Warp section) both strengthen 

the hypothesis that the layer thickness variable did not have the highest impact on the bow/warp 

generated.  
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5.3.2 SEM Images – Wafer Samples 

5.3.3.1 Top Views 

Low magnification: Un-Milled Al powder based paste: 49 X 

    

 

 

 

 

 

 

 

 

 

 

 

High magnification: Un-Milled Al powder based: 456 X  

  

Figure 73 SEM Image: Low Magnification Top View of Silicon Wafer – Un-Milled Al Powder-Based Paste 

Figure 74 SEM Image: High Magnification Top View of Silicon Wafer – Un-Milled Al Powder-Based Paste 
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Low magnification: Milled Al powder based paste – 49 X 

 

 

 

 

 

 

 

 

 

High magnification: Milled Al powder based paste – 456 X 

 

  

Figure 75 SEM Image: Low Magnification Top View of Silicon Wafer – Milled Al Powder-Based Paste 

Figure 76 SEM Image: High Magnification Top View of Silicon Wafer – Milled Al Powder-Based Paste 
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Low magnification: 10% CNT-Al powder based paste – 49 X 

 

 

 

 

 

 

 

 

 

 

 

 

 

High magnification: 10% CNT-Al powder based paste – 456 X 

   

Figure 77 : Low Magnification Top View of Silicon Wafer – 10% CNT-Al Powder-Based Paste 

Figure 78 : High Magnification Top View of Silicon Wafer – 10% CNT-Al Powder-Based Paste 
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Observations 

i. Un-Milled Al Wafer Sample – Figure 73 and Figure 74 

It has the smallest particles, with the casual appearance of some larger particles roughly double 

the size of the small particles mentioned before, particle sizes ranging from 20-50µm. The particles 

have not fused together forming a metallic strip: many “free particles” were observed.  

ii. Milled Al Wafer Sample – Figure 75 and Figure 76 

The particle size here was definitely larger than that of the Un-Milled Al sample, roughly 2 to 3 

times larger, 100-130µm with some larger particles of around 200µm. There seemed to be many 

particles of such size with some smaller ones attached to them. Again, the presence of free particles 

was noticed. The reason why the Milled Al particle size here was larger could be attributed to the 

milling process that clumps particles together. 

iii. 10% CNT-Al Wafer Sample – Figure 77 and Figure 78 

The low magnification image, Figure 77, shows a plane dominated by very small particles (Un-

Milled Al particle scale), a few small-sized ones (30µm) and even fewer larger ones, much larger 

than the Milled Al particle size, around 200-300 µm in size. Upon closer examination, Figure 78, 

it can be deducted that these smaller particles appear to be a large agglomeration of much smaller 

particles. Once more, the presence of free particles was noticed. 

Interpretation 

The explanation here is that during a regular milling process, the particles were constantly hit and 

hence strain-hardened, till a point was reached where the particle became so hard and brittle that 

it broke into smaller parts. The explanation of why these smaller parts were not completely 

dominating the scene in the SEM images of the Milled Al and the 10% CNT-Al samples is that 

there was a partial disintegration of the powders during the milling process, hence the presence of 

both large and small particles as described before. Thus it was recommended that in the future 

milling variables such as total milling duration or the amount of PCA used may be increased to 
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further break these large particles present and thus obtain a more uniform layer when printed over 

the wafer.  

As for the presence of the free particles, this can be attributed to the fact that the powders were not 

sintered at a high temperature, as in the case of the cylindrical samples, but rather the wafers were 

heated at a very low temperature, 160oC, which was much lower than the melting point of Al, 

while the industry operates at a temperature range that may go up to 900oC. Hence this did not 

lead to the melting of the powders and their fusing together to constitute a relatively compact single 

metallic strip. 

5.3.3.2 Cross-Sectional Views 

 

 

Figure 79 SEM Image: Cross-Sectional View of the Silicon Wafer: Un-Milled Al Powder-Based Paste 
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Figure 80 SEM Image: Cross-Sectional View of the Silicon Wafer: Milled Al Powder-Based Paste 

 

Figure 81 SEM Image: Cross-Sectional View of the Silicon Wafer: 10% CNT- Al Powder-Based Paste 
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Observations 

For the Un-Milled Al paste layer, Figure 79, it seems fairly uniform, with small deviations across 

the layer. For the Milled Al layer, Figure 80, things were the exact opposite in this case: there were 

huge deviations with the wafer surface resembling that of a mountainous terrain, with the 

appearance of some smaller particles partially fused with larger ones. In the case of the final wafer, 

the 10% CNT-Al layer –Figure 81- the layer has an overall appearance of a uniform layer, 

however, this cannot be compared to the uniformity depicted in the case of the Un-Milled Al layer, 

the latter showing much less deviations. There were definitely some ups and downs in the 10% 

CNT-Al layer, yet these as well were not as much as those of the Milled-Al layer.  Again the 

appearance of some smaller particles attached to larger ones can be seen here 
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5.3.3 Firing Test: 700oC 

Based on SEM images obtained from section 5.3.2, the Al layer in some cases was found to be 

irregular with the particles of the powders separated from one another. Thus the next step was to 

try to combine the Al particles together to form one metallic strip rather than acting as free agents 

on the surface. To do so, the wafers must be subjected to a temperature higher than that of the 

melting temperature of Al, i.e. 660oC.  

However, as mentioned before it was found that from previous tests that heating above 200oC will 

result in a powdering effect, i.e. the powders separate from the wafer due to the complete 

evaporation of the binder; the OV. This was probably due to the fact that the boiling point of some 

of the constituents of the OV was less than 250oC, and the recipe used to make the paste was a 

modified one, so combining these with a much prolonged firing curve (3 hours, 15 min), compared 

to the industry’s curve of max few minutes with the wafer ushered from one heating zone to the 

next; not staying for a long time at any zone. 

Thus, it was decided to test the theory out first on some samples taken from the wafers, and not 

heat all the 9 wafers at 700oC right away. So, from the 3 selected wafers from which the SEM 

rectangular samples were cut, the remaining parts of these specific wafers were taken to be further 

cut once again - using the diamond pen - to produce more than 20 rectangular strips of roughly the 

same surface area.  

Table 17 Rectangular Strips for the Firing Test 

Four sets of 3 rectangular strips were prepared as shown in Table 17 Rectangular Strips for the 

Firing Test. An oven was heated till around 710oC, then the oven was opened and a set was put 

inside for its corresponding duration, i.e. the 3 strips of set A were added together and left in the 

oven for 1 min, and then set A was removed from the oven, which was left for a couple of minutes 

Set Rectangular Strips Heating time at ≈ 700 C 

A Un-Milled Al Milled Al 10% CNT-Al 1 min 

B Un-Milled Al Milled Al 10% CNT-Al 5 min 

C Un-Milled Al Milled Al 10% CNT-Al 10 min 

D Un-Milled Al Milled Al 10% CNT-Al 20 min 
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to reach the desired temperature of 710oC. Afterwards, the oven was opened once again and set B 

was left inside for 5 min. This process was repeated for the remaining sets; C and D. The oven was 

heated to 710oC instead of 700oC to account for the opening and closing of the oven. 

I. Observations 

The heating of all sets A, B, C and D at 700oC has resulted, as was expected, in the powdering 

effect where the Al powders became very loose and simply broke free from the wafer, see Figure 

82 and Figure 83 . This effect was most pronounced in the case of the 10% CNT-Al strips.  

 

 

 

 

 

 

 

 

 

 

Note: The red circles indicate the areas where the powdering effect was most evident.  

Un-Milled 

Al  

Milled Al  

10% CNT-Al  

Un-Milled 

Al  

Milled Al  

 

10% CNT-Al  

Figure 82 Firing Test: Set A- 1 min 

Figure 83 Firing Test: Set B- 5 min 
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Rectangular strips where the powdering effect was most pronounced: 

10% CNT-Al powder-based paste sample (Figure 84 to Figure 87): 

 

   

   

Figure 85 10% CNT-Al Set B - 5 min 

Figure 86 10% CNT-Al Set C - 10 min Figure 87 10% CNT-Al Set D - 20 min 

Figure 84 10% CNT-Al Set A - 1 min 
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II. Interpretation 

Since the powdering effect was too overwhelming that the powders simply fell off the wafer, it 

was determined that further heating beyond the 200-250oC threshold with the current developed 

paste would be risking losing the samples.  

The question now would be why did the paste exhibit such a behavior at a relatively low 

temperature despite the fact that in the industry it is sometimes being heated to 900oC. A possible 

explanation could be that this was not the ideal paste composition. Given that the only available 

method to print the paste was the Spinner device – not the ideal device for coating as shown in 

section 5.3.1- one could not directly use the same patented paste recipe, and hence the modifica t ion 

could have led to the powdering effect due to the presence of so much OV, more than the usual 

fraction, which required hence a lot more time for evaporation, and this led to an increase in the 

duration of the firing process step. Furthermore, the paste composition was limited to a few 

components, ignoring the glass frits and the dispersants. All of these procedures resulted in mutant 

paste that was similar but not identical to the one recommended and actually implemented by the 

patent authors.  

As for the firing process, there was no way to duplicate it with the given resources, for it required 

movement from one temperature-controlled zone to the next at a relatively high belt speed, while 

the available resources included only 2 side-by-side furnaces that could not heat at a fast-enough 

rate to mimic the co-firing industrial process. Thus, the Al paste would not melt and then solidify 

to be fully attached to the rear-side of the wafer. 
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5.4 General Discussion 

In light of all the results obtained above, it is worth noting that while the bow values were not 

conclusive, the warp readings gave a promising indication towards confirming the hypothesis that 

CNT did reduce the CTE of the Al paste and hence CNT could be used as a bow-reducing agent 

in Al pastes.  

In the case of the cylindrical samples the powders were correctly sintered at a high temperature 

and the samples were fabricated using more reliable techniques than spin coating, the CTE results 

of these samples present a solid evidence that if processed correctly, the CNT-Al paste shall indeed 

succeed in reducing the bow. 

Unfortunately, in the current research this was not possible as the available resources in terms of 

devices was very limited. Also, in order to have the processing, printing, firing and measuring of 

the paste and its bow/warp at a technical facility, this would have cost much more than the 

dedicated funds for this study, hence the only alternative was to make the best with what was 

available at hand. 
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Chapter 6 

Conclusion & Future Work 

6.1 Conclusion 

There is a global need towards reducing the thickness of solar wafers and hence making solar 

energy more economical. With reducing the thickness, an already-existing problem becomes 

worse: the bowing problem which results due to a thermal mismatch between the Al layer on the 

rear side of the cell and the Silicon of the wafer. This study focused on replacing the Al paste used 

to make the rear-side electrode with an improved paste that would result in a reduced/eliminated 

bow in the cell; to improve the paste thermal characteristics, CNT were introduced. The following 

tests were performed: 

Cylindrical Samples test  

Powders were mixed by High Energy Ball Milling, sintered and then compacted to produce 

cylindrical samples of 4.5mm diameter, and a length of 15mm. 26 Samples were prepared of the 

following powder consistencies: Un-Milled Al, Milled Al, 2%, 5% and 10% CNT-Al (CNT 

percentages were by weight). The CTE of these samples was measured using a dilatometer, and it 

was found that the 10% CNT-Al samples caused the most reduction in CTE, by around 20%. This 

reduction was attributed to the hindering effect of the CNT on the Al metal expansion 

Next, the electrical performance of the same 26 samples was measured in terms of the electrical 

resistivity. The voltage was varied and the current was measured. Data for the 26 samples was 

recorded, and based on a set of representative samples the resistance was calculated for each of the 

5 sample categories. Resistance was taken to be a direct indicator of the Resistivity of the samples, 

since the cylindrical samples had identical dimensions. The results showed that adding CNT 

increased the resistance of the composite. At low levels, 2% and 5% CNT-Al, the effect was very 

minimal not exceeding 0.2% increase in composite resistance, but when 10% CNT was added, the 

effect increased to around 3.8%. The milling had a minimal effect, reducing the resistance by 

around 0.4%. It is believed that the more the CNT, the more the higher the interface resistance and 

hence the more the resistance to current (I) propagation. 
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Wafer Samples 

Al paste was prepared using a recipe found in a patent. The recipe had Animony oxide as the active 

agent that played the main role in CTE reduction. It was replaced by CNT as the recipe was 

modified for the purposes of the current research to be limited to the Organic Vehicle and the Al 

powders, the latter were: Un-Milled Al, Milled Al and 10% CNT Al.  

Three wafer samples for each category were prepared by spin coating the paste on them and firing 

them in a furnace at 160oC. The bow and warp of the wafers were measured before and after the 

coating and firing stages, and the difference in the values was reported accordingly.  It was found 

that the bow readings were not conclusive, showing the Milled Al and the 10% CNT-Al bows 

fairly close in magnitude.  

However, when the warp readings were compared, it was found that the CNT addition did have a 

much reduced effect on the warp development than the Milled Al or the Un-Milled Al pastes, this 

was evident when comparing the Warp to Thickness ratio, which was found to be 0.59, 0.35 and 

0.24 for the Un-Milled Al, Milled Al and the 10% CNT Al pastes respectively, meaning that per 

unit thickness of paste layer printed, the 10% CNT-Al paste resulted in a reduced warp than the 

other pure Al pastes. More emphasis was put on the warp values as the device considers more 

points when determining the total warp than when determining the bow, the latter requires only 3 

points of measurements. 

SEM images of the top and cross-sectional views of 3 of the wafers were taken in order to study 

the paste printing. In the case of the Un-Milled Al, the particles had almost a regular size, which 

was evident in the paste layer thickness being uniform, while in the case of the Milled Al, the layer 

thickness was not totally uniform with a lot of changes in the layer thickness being noted, and 

finally in the 10% CNT-Al, things were better than the Milled Al, but not like the case of the Un-

Milled Al, i.e. the layer thickness was to an extent uniform with few large particles that disrupted 

the layer uniformity. The reasons behind the irregularity in the layer thickness could be attributed 

to the spin coating device platform not being totally horizontal or that since the Milled Al and the 

10% CNT-Al did not disintegrate fully due to milling, then there had been particles of varying size 
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and hence the centrifugal force pulled the particles differently, resulting in a non-homogeneous 

distribution of the paste. 

Finally, a firing test was performed on a sample of the wafers. They were fired at 700oC for 1,5,10 

and 20 min. it was found that any firing above 700oC resulted in the separation of the powders 

from the wafer, which was attributed to the fact that the paste recipe was modified for the current 

research purposes, hence it was not fit for firing above 200oC, and that the appropriate firing profile 

could not be applied with the minimal resources available as this required special belt furnaces 

that were not available at AUC. 

This study is an exploratory one in the field of solar energy, hence it is safe to say that a lot 

more research needs to be done, as shall be later detailed. However, the main objective was 

to see if the CNT addition would work for the paste, and the tests detailed above confirmed 

this thermally and electrically. More work is required to solidify the bowing/warping results, 

but the available results are promising and worth investigating more in the future work.  
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6.2 Future Improvements 

The following improvements were suggested to be applied in the future. They have not been 

applied for the current research as either they were beyond the limited scope of the study or there 

were no resources available, and the alternative to go to professional facilities was expensive. In 

fact, one research facility in Germany offered to do the experimental work for around 5000 Euros, 

which was much beyond the available financial resources allocated for this work. 

1. Control Particle Size 

Like in the case of the Un-Milled powders, the particle sizes were constant, which when 

used in the paste to coat the wafer resulted in a uniform layer. It is advised in the future 

that Design of experiments techniques to be applied to control the resulting particle size of 

the Milled-Al and CNT-Al powders. This could be done by further varying the Milling 

speed, time and amount of PCA added. 

 

2. Screen Printing 

In the current research, the spin coating technique was resorted to as the resources available 

at AUC did not allow for any other alternative for printing. For future work, it is advised 

that the process should be repeated in an advanced facility with the proper resources to 

carry out the tests in a way similar to that performed in the industry 

 

3. Co-Firing  

Like in the case of the screen printing, the unavailability of resources of AUC did not allow 

the proper firing of the wafers, where only one heating zone was used with prolonged 

heating time, unlike in the industry where the wafer moves from one zone to the next at a 

high speed. 

 

4. Paste development 

Having fixed the screen printing issue, this would reflect on the paste used, as if one recalls, 

the main reason for modifying the paste recipe was to account for the spin coating step that 

would not have worked with viscous paste like that produced by the original recipe. Design 
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of experiments techniques could be applied to develop a paste with better printing and 

adherence properties, as well as to determine the least amount of CNT to be added to reduce 

the bow to an acceptable value. 

 

5. Check Wafer Efficiency 

A further step is suggested which is to actually use the solar cells with the modified pastes 

and to measure their new electrical efficiencies.  

 

6. Check Thermal conductivity 

Another aspect worth checking is the effect of adding CNT on the overall Therma l 

conductivity of the cell. It is a known issue that the efficiency of the solar cells decrease in 

hot environments, and that CNT have high thermal conductivity, thus the latter could 

improve the thermal conductivity of the former and hence accordingly increase its 

efficiency. This factor is worth investigating in the future work proposed for this research 

project.  
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Appendix A 

CTE Readings 

I. Un-Milled Al Samples 

Table 18 CTE readings for Un-Milled Al cylindrical samples 

  Un-Milled Al Samples: CTE (X 10-6 oC-1) 

Temp/C Sample A Sample B Sample C Sample D Sample E Average STD Dev  

30 10.55 12.60 12.52 3.69 4.51 8.77 4.35 

40 12.77 13.79 13.07 8.92 9.64 11.64 2.20 

50 14.44 15.44 14.59 11.21 11.81 13.50 1.87 

60 15.95 16.53 15.94 13.21 13.63 15.05 1.52 

70 16.83 17.46 16.87 14.66 14.96 16.16 1.26 

80 17.68 18.23 17.70 15.82 15.95 17.07 1.11 

90 18.40 18.82 18.41 16.74 16.71 17.82 1.01 

100 18.90 19.33 19.02 17.54 17.43 18.44 0.89 

110 19.41 19.72 19.54 18.24 18.03 18.99 0.79 

120 19.79 20.08 20.00 18.82 18.53 19.45 0.72 

130 20.13 20.55 20.40 19.32 18.95 19.87 0.70 

140 20.41 20.82 20.77 19.78 19.37 20.23 0.64 

150 20.71 21.12 21.09 20.17 19.74 20.57 0.60 

160 20.95 21.35 21.02 20.54 20.00 20.77 0.52 

170 21.16 21.56 21.32 20.86 20.30 21.04 0.49 

180 21.32 21.73 21.56 21.15 20.56 21.26 0.45 

190 21.51 21.91 21.83 21.45 20.79 21.50 0.44 

200 21.71 22.08 22.09 21.71 21.03 21.72 0.43 

210 21.86 22.22 22.33 21.97 21.24 21.92 0.43 

220 21.99 22.35 22.52 22.20 21.43 22.10 0.42 

230 22.10 22.45 22.71 22.41 21.60 22.25 0.43 

240 22.19 22.56 22.89 22.61 21.74 22.40 0.44 

250 22.32 22.66 23.05 22.79 21.91 22.55 0.44 

260 22.45 22.77 23.22 22.97 22.05 22.69 0.46 

270 22.55 22.86 23.37 23.14 22.20 22.82 0.47 

280 22.63 22.95 23.53 23.31 22.33 22.95 0.49 

290 22.73 23.04 23.67 23.46 22.47 23.08 0.50 

300 22.84 23.13 23.80 23.61 22.60 23.19 0.51 

310 22.93 23.23 23.95 23.75 22.72 23.32 0.52 

320 23.02 23.32 24.06 23.90 22.86 23.43 0.53 

330 23.14 23.42 24.20 24.03 23.00 23.56 0.54 

340 23.26 23.53 24.33 24.16 23.13 23.68 0.54 
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350 23.37 23.64 24.45 24.28 23.25 23.80 0.54 

360 23.48 23.75 24.56 24.42 23.38 23.92 0.54 

370 23.60 23.86 24.68 24.55 23.51 24.04 0.54 

380 23.73 23.98 24.81 24.67 23.64 24.17 0.54 

390 23.85 24.11 24.92 24.81 23.77 24.29 0.54 

400 23.97 24.22 25.04 24.93 23.89 24.41 0.54 

410 24.11 24.35 25.15 25.05 24.02 24.54 0.53 

420 24.26 24.48 25.26 25.19 24.14 24.67 0.52 

430 24.38 24.61 25.37 25.30 24.28 24.79 0.52 

440 24.51 24.74 25.50 25.43 24.39 24.91 0.52 

450 24.65 24.89 25.60 25.56 24.53 25.05 0.51 

460 24.79 25.03 25.73 25.68 24.67 25.18 0.50 

470 24.92 25.15 25.85 25.81 24.80 25.31 0.49 

480 25.06 25.29 25.97 25.94 24.94 25.44 0.48 

490 25.22 25.42 26.09 26.06 25.09 25.57 0.47 
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II. Milled Al Samples 

  Milled Al Samples: CTE (X 10-6 oC-1) 

Temp/C Sample A Sample B Sample C Sample D Sample E Sample F Average STD Dev 

30 12.09 12.62 12.19 4.89 3.94 5.99 8.62 4.08 

40 13.38 13.38 12.76 9.67 9.21 10.40 11.47 1.92 

50 14.77 14.52 14.32 11.49 11.27 12.12 13.08 1.62 

60 15.94 15.62 15.28 13.26 13.17 13.84 14.52 1.24 

70 16.73 16.49 16.22 14.47 14.38 14.93 15.54 1.06 

80 17.53 17.29 16.99 15.56 15.42 15.89 16.45 0.93 

90 18.11 17.90 17.59 16.40 16.30 16.67 17.16 0.80 

100 18.62 18.48 18.21 17.05 16.97 17.32 17.78 0.75 

110 19.10 18.97 18.65 17.66 17.59 17.89 18.31 0.68 

120 19.45 19.39 19.09 18.19 18.12 18.37 18.77 0.61 

130 19.81 19.74 19.46 18.65 18.51 18.82 19.16 0.57 

140 20.10 20.07 19.77 19.04 18.80 19.22 19.50 0.56 

150 20.39 20.38 20.10 19.39 18.92 19.60 19.80 0.59 

160 20.67 20.64 20.40 19.73 19.14 19.91 20.08 0.60 

170 20.89 20.88 20.70 20.02 19.45 20.22 20.36 0.57 

180 21.08 21.09 20.97 20.29 19.73 20.48 20.61 0.54 

190 21.29 21.30 21.23 20.56 19.99 20.74 20.85 0.53 

200 21.51 21.51 21.50 20.80 20.24 20.99 21.09 0.52 

210 21.70 21.71 21.71 21.03 20.49 21.22 21.31 0.50 

220 21.88 21.88 21.90 21.24 20.73 21.43 21.51 0.47 

230 22.03 22.05 22.08 21.42 20.95 21.63 21.69 0.45 

240 22.20 22.20 22.25 21.61 21.17 21.80 21.87 0.43 

250 22.35 22.35 22.40 21.78 21.37 21.97 22.04 0.41 

260 22.50 22.47 22.55 21.96 21.55 22.15 22.20 0.39 

270 22.64 22.62 22.70 22.12 21.73 22.30 22.35 0.38 

280 22.80 22.77 22.82 22.28 21.89 22.45 22.50 0.37 

290 22.92 22.90 22.97 22.43 22.04 22.61 22.64 0.36 

300 23.08 23.02 23.10 22.59 22.18 22.75 22.78 0.36 

310 23.21 23.16 23.22 22.57 22.33 22.88 22.90 0.38 

320 23.35 23.30 23.34 22.72 22.45 23.02 23.03 0.37 

330 23.47 23.42 23.48 22.86 22.57 23.15 23.16 0.37 

340 23.60 23.54 23.54 22.99 22.71 23.29 23.28 0.36 

350 23.73 23.68 23.68 23.13 22.83 23.42 23.41 0.36 

360 23.86 23.80 23.85 23.26 22.96 23.54 23.54 0.37 

370 23.98 23.92 23.99 23.38 23.08 23.67 23.67 0.37 

380 24.11 24.04 24.12 23.50 23.19 23.79 23.79 0.38 

390 24.24 24.17 24.24 23.63 23.31 23.92 23.92 0.38 

400 24.36 24.29 24.34 23.75 23.42 24.04 24.03 0.38 
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410 24.49 24.40 24.45 23.88 23.52 24.16 24.15 0.39 

420 24.61 24.52 24.57 24.01 23.63 24.29 24.27 0.39 

430 24.74 24.64 24.72 24.13 23.74 24.42 24.40 0.40 

440 24.87 24.76 24.83 24.25 23.84 24.54 24.52 0.40 

450 25.00 24.88 24.93 24.39 23.94 24.66 24.63 0.41 

460 25.11 25.02 25.05 24.51 24.03 24.79 24.75 0.42 

470 25.22 25.15 25.15 24.62 24.13 24.89 24.86 0.42 

480 25.34 25.27 25.25 24.73 24.21 25.01 24.97 0.44 

490 25.45 25.40 25.37 24.84 24.27 25.10 25.07 0.45 
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III. 2% CNT-Al Samples 

  2% CNT-Al Samples: CTE (X 10-6 oC-1) 

Temp/C Sample A Sample B Sample C Sample D Sample E Sample F Average STD Dev 

30 10.99 11.50 11.74 4.86 4.41 5.36 8.14 3.60 

40 12.63 12.73 12.71 9.47 9.09 8.88 10.92 1.95 

50 14.13 14.31 14.25 11.38 10.97 11.13 12.69 1.69 

60 15.03 15.38 15.22 13.13 12.76 13.03 14.09 1.24 

70 15.64 16.24 16.07 14.34 14.01 14.29 15.10 0.99 

80 16.41 16.99 16.74 15.33 14.94 15.24 15.94 0.87 

90 17.07 17.57 17.34 16.15 15.74 16.04 16.65 0.77 

100 17.66 18.06 17.80 16.77 16.40 16.66 17.23 0.70 

110 18.14 18.52 18.22 17.33 16.99 17.20 17.73 0.63 

120 18.57 18.92 18.59 17.81 17.49 17.59 18.16 0.60 

130 18.94 19.25 18.91 18.20 17.94 18.01 18.54 0.56 

140 19.27 19.59 19.26 18.58 18.32 18.40 18.90 0.53 

150 19.56 19.92 19.55 18.94 18.68 18.73 19.23 0.51 

160 19.83 20.18 19.80 19.27 19.03 19.04 19.53 0.48 

170 20.08 20.42 20.05 19.52 19.32 19.31 19.78 0.46 

180 20.32 20.61 20.28 19.78 19.59 19.57 20.02 0.44 

190 20.53 20.79 20.49 20.03 19.84 19.80 20.25 0.41 

200 20.79 21.03 20.72 20.26 20.09 20.04 20.49 0.41 

210 20.99 21.19 20.91 20.49 20.33 20.25 20.69 0.39 

220 21.17 21.35 21.09 20.69 20.54 20.44 20.88 0.37 

230 21.33 21.51 21.27 20.85 20.73 20.61 21.05 0.37 

240 21.49 21.63 21.44 21.02 20.90 20.78 21.21 0.35 

250 21.65 21.77 21.60 21.14 21.07 20.93 21.36 0.35 

260 21.80 21.92 21.75 21.26 21.26 21.09 21.51 0.35 

270 21.96 22.06 21.91 21.44 21.41 21.22 21.67 0.35 

280 22.11 22.19 22.06 21.58 21.56 21.37 21.81 0.35 

290 22.26 22.31 22.20 21.65 21.71 21.51 21.94 0.36 

300 22.40 22.46 22.34 21.77 21.85 21.63 22.08 0.36 

310 22.54 22.59 22.49 21.91 21.98 21.77 22.21 0.36 

320 22.68 22.71 22.64 22.01 22.12 21.89 22.34 0.37 

330 22.81 22.84 22.76 22.12 22.25 22.01 22.47 0.38 

340 22.94 22.96 22.90 22.23 22.38 22.11 22.59 0.39 

350 23.07 23.08 23.04 22.33 22.52 22.24 22.71 0.40 

360 23.20 23.20 23.18 22.44 22.64 22.34 22.84 0.40 

370 23.32 23.32 23.31 22.55 22.77 22.47 22.96 0.41 

380 23.46 23.44 23.45 22.66 22.89 22.58 23.08 0.42 

390 23.60 23.54 23.58 22.77 23.01 22.69 23.20 0.42 

400 23.73 23.67 23.70 22.87 23.13 22.81 23.32 0.43 
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410 23.85 23.77 23.83 22.98 23.26 22.92 23.43 0.43 

420 23.99 23.89 23.96 23.11 23.38 23.04 23.56 0.44 

430 24.11 24.00 24.11 23.22 23.49 23.16 23.68 0.45 

440 24.25 24.11 24.23 23.33 23.61 23.28 23.80 0.45 

450 24.39 24.23 24.35 23.45 23.73 23.39 23.92 0.45 

460 24.53 24.35 24.47 23.56 23.83 23.50 24.04 0.47 

470 24.67 24.45 24.59 23.68 23.95 23.61 24.16 0.47 

480 24.80 24.56 24.72 23.78 24.05 23.71 24.27 0.48 

490 24.93 24.66 24.84 23.87 24.13 23.81 24.37 0.50 
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IV. 5% CNT-Al Samples 

  5% CNT-Al Samples: CTE (X 10-6 oC-1) 

Temp/C Sample A Sample B Sample C Sample D Sample E Average STD Dev 

30 10.25 10.59 9.07 7.46 6.80 8.83 1.67 

40 11.52 11.46 10.55 10.27 10.00 10.76 0.70 

50 12.94 12.75 11.91 11.56 11.45 12.12 0.68 

60 13.94 13.70 13.19 12.91 12.76 13.30 0.50 

70 14.69 14.43 14.04 13.81 13.68 14.13 0.42 

80 15.35 15.11 14.84 14.44 14.50 14.85 0.39 

90 15.88 15.60 15.45 15.03 15.14 15.42 0.34 

100 16.35 16.06 15.98 15.57 15.68 15.93 0.31 

110 16.78 16.50 16.45 16.01 16.06 16.36 0.32 

120 17.15 16.84 16.86 16.41 16.44 16.74 0.32 

130 17.47 17.14 17.19 16.78 16.77 17.07 0.29 

140 17.75 17.43 17.52 17.09 17.10 17.38 0.28 

150 18.01 17.69 17.80 17.38 17.40 17.66 0.27 

160 18.24 17.94 18.06 17.64 17.65 17.91 0.26 

170 18.45 18.16 18.30 17.87 17.89 18.13 0.25 

180 18.66 18.39 18.52 18.08 18.11 18.35 0.25 

190 18.84 18.58 18.71 18.31 18.31 18.55 0.24 

200 19.02 18.80 18.92 18.53 18.52 18.76 0.23 

210 19.18 18.99 19.12 18.72 18.71 18.95 0.22 

220 19.34 19.17 19.28 18.90 18.87 19.11 0.22 

230 19.46 19.34 19.44 19.04 19.02 19.26 0.21 

240 19.54 19.50 19.59 19.19 19.18 19.40 0.20 

250 19.66 19.64 19.73 19.33 19.33 19.54 0.19 

260 19.76 19.80 19.86 19.48 19.47 19.67 0.19 

270 19.94 19.95 20.00 19.63 19.59 19.82 0.19 

280 20.05 20.09 20.12 19.76 19.73 19.95 0.19 

290 20.19 20.23 20.23 19.90 19.88 20.09 0.18 

300 20.33 20.36 20.37 20.01 20.02 20.22 0.19 

310 20.43 20.50 20.49 20.13 20.14 20.34 0.19 

320 20.57 20.63 20.61 20.24 20.26 20.46 0.19 

330 20.71 20.75 20.72 20.35 20.38 20.58 0.20 

340 20.84 20.88 20.84 20.46 20.50 20.70 0.20 

350 20.94 21.01 20.94 20.58 20.63 20.82 0.20 

360 21.08 21.13 21.05 20.69 20.75 20.94 0.21 

370 21.21 21.24 21.17 20.79 20.86 21.05 0.21 

380 21.33 21.36 21.28 20.90 20.97 21.17 0.22 

390 21.43 21.49 21.39 21.00 21.09 21.28 0.22 

400 21.54 21.60 21.50 21.11 21.22 21.40 0.22 
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410 21.66 21.74 21.62 21.21 21.34 21.51 0.23 

420 21.78 21.86 21.74 21.33 21.47 21.63 0.22 

430 21.88 21.99 21.86 21.44 21.63 21.76 0.22 

440 22.00 22.10 21.98 21.55 21.78 21.88 0.22 

450 22.10 22.24 22.09 21.65 21.92 22.00 0.22 

460 22.21 22.36 22.19 21.76 22.04 22.11 0.23 

470 22.32 22.49 22.30 21.85 22.17 22.23 0.24 

480 22.40 22.61 22.41 21.96 22.30 22.34 0.24 

490 22.48 22.73 22.51 22.03 22.44 22.44 0.25 
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V. 10% CNT-Al Samples 

  10% CNT-Al Samples: CTE (X 10-6 oC-1) 

Temp/C Sample A Sample B Sample C Sample D Average STD Dev 

30 8.30 10.02 8.92 8.71 8.99 0.73 

40 9.49 10.80 9.95 10.11 10.09 0.55 

50 10.82 11.99 11.05 11.51 11.35 0.52 

60 11.84 12.86 12.05 12.54 12.32 0.46 

70 12.60 13.50 12.76 13.22 13.02 0.41 

80 13.25 14.05 13.39 13.88 13.64 0.39 

90 13.78 14.50 13.85 14.42 14.14 0.37 

100 14.25 14.94 14.29 14.84 14.58 0.36 

110 14.66 15.26 14.66 15.20 14.94 0.33 

120 15.00 15.57 14.97 15.53 15.27 0.32 

130 15.47 15.81 15.24 15.81 15.58 0.28 

140 15.78 16.07 15.42 16.11 15.84 0.32 

150 16.03 16.32 15.64 16.35 16.08 0.33 

160 16.24 16.54 15.84 16.60 16.31 0.35 

170 16.41 16.73 16.03 16.82 16.50 0.36 

180 16.56 16.88 16.21 16.96 16.65 0.34 

190 16.74 17.04 16.40 17.17 16.84 0.34 

200 16.92 17.20 16.57 17.38 17.02 0.35 

210 17.08 17.32 16.75 17.55 17.18 0.34 

220 17.23 17.42 16.90 17.70 17.31 0.34 

230 17.36 17.54 17.04 17.85 17.45 0.34 

240 17.53 17.67 17.18 17.99 17.59 0.34 

250 17.66 17.81 17.32 18.11 17.72 0.33 

260 17.78 17.93 17.46 18.24 17.85 0.32 

270 17.90 18.05 17.59 18.37 17.98 0.32 

280 18.02 18.15 17.71 18.50 18.10 0.33 

290 18.14 18.26 17.84 18.63 18.22 0.32 

300 18.24 18.37 17.95 18.74 18.33 0.33 

310 18.34 18.48 18.06 18.85 18.43 0.33 

320 18.45 18.58 18.17 18.96 18.54 0.33 

330 18.55 18.66 18.26 19.07 18.64 0.33 

340 18.65 18.77 18.37 19.18 18.74 0.34 

350 18.75 18.85 18.47 19.27 18.84 0.33 

360 18.83 18.96 18.55 19.38 18.93 0.34 

370 18.91 19.05 18.65 19.48 19.02 0.35 

380 18.99 19.14 18.74 19.59 19.11 0.35 

390 19.08 19.24 18.85 19.70 19.22 0.36 

400 19.17 19.33 18.94 19.82 19.32 0.37 
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VI. Representative Samples: Non-Normalized CTE Data 

Table 19 CTE Values for the Representative Cylindrical Samples 

 

  

410 19.27 19.43 19.07 19.92 19.42 0.37 

420 19.36 19.54 19.18 20.03 19.53 0.37 

430 19.45 19.65 19.30 20.14 19.63 0.37 

440 19.54 19.75 19.42 20.27 19.75 0.37 

450 19.63 19.85 19.54 20.38 19.85 0.37 

460 19.71 19.94 19.66 20.50 19.95 0.38 

470 19.78 20.06 19.79 20.60 20.06 0.38 

480 19.84 20.15 19.90 20.70 20.15 0.39 

490 19.87 20.23 19.99 20.80 20.22 0.41 

 CTE x 10-6 oC-1 

 Un-Milled Al Milled Al 2% CNT-Al 5% CNT-Al 10% CNT-Al 

Temp/oC Sample B Sample F Sample E Sample C Sample B 

100 19.33 17.32 16.40 15.98 14.94 

150 21.12 19.60 18.68 17.80 16.32 

200 22.08 20.99 20.09 18.92 17.20 

250 22.66 21.97 21.07 19.73 17.81 

300 23.13 22.75 21.85 20.37 18.37 

350 23.64 23.42 22.52 20.94 18.85 

400 24.22 24.04 23.13 21.50 19.33 

450 24.89 24.66 23.73 22.09 19.85 

490 25.42 25.10 24.13 22.51 20.23 
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VII. Representative Samples: Normalized CTE Data 

Table 20 Normalized CTE Readings for the Representative Cylindrical Samples 

 Normalized CTE Readings as a %  – Representative Samples 

 Un-Milled Al Milled Al 2% CNT-Al 5% CNT-Al 10% CNT-Al 

Temp/oC Sample B Sample F Sample E Sample C Sample B 

100 111.61 100.00 94.65 92.27 86.26 

150 107.80 100.00 95.32 90.84 83.26 

200 105.19 100.00 95.74 90.13 81.95 

250 103.12 100.00 95.91 89.81 81.04 

300 101.68 100.00 96.05 89.56 80.77 

350 100.95 100.00 96.16 89.43 80.51 

400 100.76 100.00 96.21 89.44 80.41 

450 100.96 100.00 96.25 89.59 80.49 

490 101.26 100.00 96.12 89.66 80.58 
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Appendix B 

Electrical Resistance Readings 

 

I. Un-Milled Al Samples 

Table 21 Voltage-Current readings and Resistance Values for the Un-Milled Al cylindrical samples 

 Un-Milled Al Samples: Current (I: mA)  

Voltage (mV) A B C D E Average Std Dev 

100 77 77 77 77 78 77.20 0.45 

200 145 145 144 144 145 144.60 0.55 

300 212 212 211 212 212 211.80 0.45 

400 280 280 278 279 279 279.20 0.84 

500 347 347 345 347 347 346.60 0.89 

600 415 415 412 414 414 414.00 1.22 

700 482 482 478 481 481 480.80 1.64 

800 549 549 545 549 548 548.00 1.73 

900 616 616 612 616 615 615.00 1.73 

1000 683 683 678 683 681 681.60 2.19 

1100 750 749 745 748 747 747.80 1.92 

1200 816 816 810 814 813 813.80 2.49 

1300 882 882 876 881 879 880.00 2.55 

1400 947 947 942 946 945 945.40 2.07 

1500 1014 1013 1007 1012 1011 1011.40 2.70 

1600 1077 1078 1072 1076 1076 1075.80 2.28 

Resistance (Ohm) 1.4709 1.4711 1.4803 1.4729 1.4745 1.4739 0.00 
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II. Milled Al Samples 

Table 22 Voltage-Current readings and Resistance values for the Milled Al cylindrical samples 

 Milled Al Samples: Current (I: mA)  

Voltage (mV) A B C D E F Average Std Dev  

100 78 77 77 77 77 77 77.17 0.41 

200 145 144 144 144 145 145 144.50 0.55 

300 213 212 212 211 213 213 212.33 0.82 

400 281 278 279 279 280 280 279.50 1.05 

500 349 346 346 346 348 348 347.17 1.33 

600 417 413 413 413 415 415 414.33 1.63 

700 485 481 480 480 483 483 482.00 2.00 

800 552 548 547 547 550 550 549.00 2.00 

900 620 615 614 614 617 617 616.17 2.32 

1000 687 681 681 680 684 684 682.83 2.64 

1100 754 748 747 747 751 751 749.67 2.80 

1200 821 814 813 813 817 817 815.83 3.13 

1300 887 880 880 879 884 883 882.17 3.06 

1400 953 946 945 944 949 949 947.67 3.33 

1500 1018 1012 1009 1010 1015 1015 1013.17 3.43 

1600 1084 1077 1073 1075 1080 1080 1078.17 3.97 

Resistance (Ohm) 1.4626 1.4736 1.476 1.4759 1.4683 1.4685 1.4708 0.01 
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III. 2% CNT-Al Samples 

Table 23 Voltage-Current readings and Resistance values for the 2% CNT- Al cylindrical samples 

 2% CNT-Al Samples: Current (I: mA)  

Voltage (mV) A B C D E F Average Std Dev  

100 77 77 78 77 77 77 77.17 0.41 

200 145 144 146 144 145 144 144.67 0.82 

300 212 211 214 211 213 211 212.00 1.26 

400 280 278 282 278 281 279 279.67 1.63 

500 347 345 349 345 349 346 346.83 1.83 

600 415 412 417 413 417 413 414.50 2.17 

700 482 479 485 479 484 480 481.50 2.59 

800 550 546 553 546 552 547 549.00 3.10 

900 617 613 621 613 619 614 616.17 3.37 

1000 684 680 688 679 686 680 682.83 3.71 

1100 751 746 755 745 753 747 749.50 4.09 

1200 817 812 822 811 820 813 815.83 4.54 

1300 883 877 888 876 886 878 881.33 5.05 

1400 949 943 954 941 952 944 947.17 5.27 

1500 1015 1009 1020 1007 1018 1010 1013.17 5.27 

1600 1080 1074 1085 1071 1083 1075 1078.00 5.51 

Resistance(Ohm) 1.4687 1.4779 1.4607 1.48 1.464 1.4761 1.47 0.01 
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IV. 5% CNT-Al Samples 

Table 24 Voltage-Current readings and Resistance values for the 5% CNT-Al cylindrical samples 

 5% CNT-Al Samples: Current (I: mA)  

Voltage (mV) A B C D E Average Std Dev  

100 78 77 77 77 77 77.20 0.45 

200 145 145 144 145 145 144.80 0.45 

300 213 213 211 212 212 212.20 0.84 

400 281 281 278 280 280 280.00 1.22 

500 349 348 345 347 347 347.20 1.48 

600 416 416 412 415 415 414.80 1.64 

700 484 483 478 482 482 481.80 2.28 

800 551 551 545 550 549 549.20 2.49 

900 619 618 611 617 617 616.40 3.13 

1000 686 685 678 684 683 683.20 3.11 

1100 753 752 743 750 749 749.40 3.91 

1200 819 818 809 817 815 815.60 3.97 

1300 885 884 874 883 881 881.40 4.39 

1400 951 950 939 949 947 947.20 4.82 

1500 1015 1015 1004 1015 1013 1012.40 4.77 

1600 1080 1080 1068 1080 1078 1077.20 5.22 

Resistance (Ohm) 1.466 1.4672 1.4835 1.4689 1.4713 1.47 0.01 
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V. 10% CNT-Al Samples 

Table 25 Voltage-Current readings and Resistance values for the 10% CNT-Al cylindrical samples 

 10% CNT-Al Samples: Current (I: mA)  

Voltage (mV) A B C D Average   

100 71 75 75 77 74.50 2.52 

200 132 140 140 144 139.00 5.03 

300 193 206 205 211 203.75 7.63 

400 254 272 270 278 268.50 10.25 

500 316 338 334 344 333.00 12.06 

600 377 404 399 411 397.75 14.68 

700 438 469 464 478 462.25 17.17 

800 500 535 529 545 527.25 19.33 

900 561 601 594 611 591.75 21.65 

1000 622 666 659 677 656.00 23.85 

1100 682 731 723 743 719.75 26.47 

1200 743 796 787 808 783.50 28.34 

1300 803 860 851 874 847.00 30.82 

1400 863 924 915 939 910.25 33.02 

1500 923 988 978 1005 973.50 35.46 

1600 982 1052 1042 1069 1036.25 37.85 

Resistance/Ohm 1.6154 1.5084 1.5242 1.4836 1.5329 0.057482 

 


	Aluminum-carbon nanotube nanocomposite for silicon solar cell back metallization
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1592508243.pdf.ObEP4

