
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

6-1-2015

ADR-Miner: An Ant-based data reduction algorithm for ADR-Miner: An Ant-based data reduction algorithm for

classification classification

Ismail Mohamed Anwar Abdel Salam

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Abdel Salam, I. (2015).ADR-Miner: An Ant-based data reduction algorithm for classification [Master's
Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/130

MLA Citation
Abdel Salam, Ismail Mohamed Anwar. ADR-Miner: An Ant-based data reduction algorithm for
classification. 2015. American University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/130

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/130?utm_source=fount.aucegypt.edu%2Fetds%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/130?utm_source=fount.aucegypt.edu%2Fetds%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

The American University in Cairo

School of Sciences and Engineering

ADR-Miner - An Ant-Based Data

Reduction Algorithm for Classification

A Thesis Submitted to

Department of Computer Science and Engineering

In partial fulfilment of the requirements for

the degree of Master of Science

By

Ismail M. Anwar

Under the Supervision of

Dr. Ashraf M. Abdelbar

May, 2015

The American University in Cairo

ADR-Miner - An Ant-Based Data Reduction Algorithm for

Classification

A Thesis Submitted by

Ismail Mohamed Anwar Abdel Salam

To the Master of Science in Computer Science Program

March / 2015

In partial fulfillment of the requirements for

The degree of Master of Science

Has been approved by

Thesis Committee Supervisor/Chair

Affiliation

Thesis Committee Reader/Examiner

Affiliation

Thesis Committee Reader/Examiner

Affiliation

Thesis Committee Reader/External Examiner

Affiliation

Dept. Chair/Director Date Dean Date

Acknowledgements

I would like to start by thanking Dr. Ashraf Abdelbar for his guidance

and patience, for without them this work would not have been possible. I

would also like to thank my family and friends for their unyielding support

throughout the entire process. To all those who helped me complete this

thesis, I sincerely thank you and will forever cherish your support.

iii

iv

Abstract

Classification is a central problem in the fields of data mining and machine

learning. Using a training set of labeled instances, the task is to build a

model (classifier) that can be used to predict the class of new unlabeled

instances. Data preparation is crucial to the data mining process, and its

focus is to improve the fitness of the training data for the learning algo-

rithms to produce more effective classifiers. Two widely applied data prepa-

ration methods are feature selection and instance selection, which fall under

the umbrella of data reduction. For my research I propose ADR-Miner, a

novel data reduction algorithm that utilizes ant colony optimization (ACO).

ADR-Miner is designed to perform instance selection to improve the predic-

tive effectiveness of the constructed classification models. Two versions of

ADR-Miner are developed: a base version that uses a single classification

algorithm during both training and testing, and an extended version which

uses separate classification algorithms for each phase. The base version of the

ADR-Miner algorithm is evaluated against 20 data sets using three classifica-

tion algorithms, and the results are compared to a benchmark data reduction

algorithm. The non-parametric Wilcoxon signed-ranks test will is employed

to gauge the statistical significance of the results obtained. The extended

version of ADR-Miner is evaluated against 37 data sets using pairings from

v

five classification algorithms and these results are benchmarked against the

performance of the classification algorithms but without reduction applied

as pre-processing.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classifica-

tion, Data Reduction.

vi

Contents

Acknowledgements iii

1 Introduction 1

2 Background 7

2.1 Ant Colony Optimization . 7

2.1.1 The Ant Colony Optimization Meta-heuristic 9

2.1.2 ACO Algorithms . 14

2.1.3 Convergence . 20

2.2 Data Reduction . 22

2.3 Classification . 25

2.3.1 k-Nearest Neighbor . 26

2.3.2 C4.5 . 27

2.3.3 Naive Bayes . 30

3 Related Work 33

3.1 Ant Colony Optimization . 33

3.2 Data Reduction . 36

4 The ADR-Miner Algorithm 41

vii

4.1 The Construction Graph . 42

4.2 The ADR-Miner Overall Algorithm 44

4.3 Solution Creation . 46

4.4 Quality Evaluation and Pheromone Update 49

5 Implementation 51

5.1 ADR-Miner . 51

5.2 WEKA Integration . 56

6 Experimental Approach 61

6.1 Performance Evaluation and Benchmarking 62

6.2 Effects of Using Different Classifiers During Reduction and

Testing . 64

7 Experimental Results 67

7.1 Performance Evaluation and Benchmarking 67

7.2 Effects of Using Different Classifiers During Reduction and

Testing . 70

8 Conclusions and Future Work 101

8.1 Conclusions . 101

8.2 Future Work . 104

Appendix - Pairing Results (Alternate View) 109

Bibliography 111

viii

List of Figures

2.1 An example of instance selection performed on a data set with

two classes. 24

4.1 The ADR-Miner Construction Graph 43

5.1 Materialization of the construction graph in ADR-Miner and

the sliding window of validity during solution construction. . . 53

5.2 Class Diagram of ADRMinerDR, AntColony, Ant and Con-

structionGraph. 55

5.3 Disassembly of the weka.dll file. Performed by the Microsoft

IL DASM tool. 58

5.4 Class diagram of IClassifier, WekaClassifierBase and all de-

rived classifiers. 59

7.1 1-Nearest Neighbor (1-NN) - 1-Nearest Neighbor (1-NN) Results 71

7.2 1-Nearest Neighbor (1-NN) - Näıve Bayes (NB) Results 72

7.3 1-Nearst Neighbor (1-NN) - Ripper (JRip) Results 73

7.4 1-Nearest Neighbor (1-NN) - C4.5 (J48) Results 74

7.5 1-Nearest Neighbor (1-NN) - Support Vector Machine (SMO)

Results . 75

ix

7.6 Näıve Bayes (NB) - 1-Nearest Neighbor (1-NN) Results 76

7.7 Näıve Bayes (NB) - Näıve Bayes (NB) Results 77

7.8 Näıve Bayes (NB) - Ripper (JRip) Results 78

7.9 Näıve Bayes (NB) - C4.5 (J48) Results 79

7.10 Näıve Bayes (NB) - Support Vector Machine (SMO) Results . 80

7.11 Ripper (JRip) - 1-Nearest Neighbor (1-NN) Results 81

7.12 Ripper (JRip) - Näıve Bayes (NB) Results 82

7.13 Ripper (JRip) - Ripper (JRip) Results 83

7.14 Ripper (JRip) - C4.5 (J48) Results 84

7.15 Ripper (JRip) - Support Vector Machine (SMO) Results . . . 85

7.16 C4.5 (J48) - 1-Nearest Neighbor (1-NN) Results 87

7.17 C4.5 (J48) - Näıve Bayes (NB) Results 88

7.18 C4.5 (J48) - Ripper (JRip) Results 89

7.19 C4.5 (J48) - C4.5 (J48) Results 90

7.20 C4.5 (J48) - Support Vector Machine (Support) Results 91

7.21 Support Vector Machine (SMO) - 1-Nearest Neighbor (1-NN)

Results . 92

7.22 Support Vector Machine (SMO) - Näıve Bayes (NB) Results . 93

7.23 Support Vector Machine (SMO) - Ripper (JRip) Results . . . 94

7.24 Support Vector Machine (SMO) - C4.5 (J48) Results 95

7.25 Support Vector Machine (SMO) - Support Vector Machine

(SMO) Results . 96

x

List of Tables

7.1 Experimental Results - Predictive Accuracy % (Size Reduction

%) . 68

7.2 Results of the Wilcoxon Signed-Rank Test. The ADR-Miner

algorithm (paired with a classifier) is compared against the

performance of a reducer. 70

7.3 Baseline Predictive Accuracy (%) Results for the Classification

Algorithms Without Data Reduction 97

7.4 Average Rankings of Predictive Accuracy 98

7.5 Size Reduction (%) Results 99

7.6 Best Performing Combinations 100

8.1 g−h Pairing-based Predictive Accuracy (%) Results for ADR-

Miner . 110

xi

xii

Chapter 1

Introduction

Data mining is the process of extracting insightful knowledge from large

quantities of data either in an automated or a semi-automated fashion [19],

[34]. Data mining techniques have been traditionally divided into four cate-

gories: classification, clustering, regression and association rule mining. Clas-

sification techniques analyze a given data set and attempt to learn the re-

lationship between the input attributes in the data set and a categorical

class label. This relationship is then used to build a model that can be used

to predict the class label of unforeseen instances. Since the classes for the

instances used to build the model are known beforehand, classification is con-

sidered to be a form of supervised learning. Clustering is in direct contrast

with classification in that it analyzes data sets that have no known class

associated with the instances in those data sets. The aim of clustering is to

uncover hidden relationships between instances in the data sets being ana-

lyzed. In essence, a clustering algorithm will attempt to group the instances

in the data set being analyzed into naturally occurring classes, where the

instances assigned to a group are ”similar” to one another and ”dissimilar”

1

CHAPTER 1. INTRODUCTION

to members in other groups. Depending on the clustering algorithm, cluster

membership may vary from mutual exclusivity to supporting membership to

multiple clusters at the same time. Similarity or dissimilarity in clustering is

defined by a distance function - a function that returns the distance between

two instances in a data set. As the class labels are not known beforehand,

clustering is considered to be a form of unsupervised learning. Regression

(and other numerical techniques) are used to build models capable of pre-

dicting unseen values in data series that are continuous in nature. Finally,

association rule mining analyzes data sets in search of frequently occurring

patterns within its instances and attempts to encode these findings in the

form of rules. The rules can be used to predict the occurrence of related

items when one or more items that are frequently associated with them are

detected.

As the work presented in this dissertation is related to classification, let us

revisit it and formally define classification. Given a set of labeled instances,

the aim of a classification algorithm is to learn the relationship between the

input attributes and the label and encode this information as a model. The

label associated with each instance defines the class to which the instance

belongs, and has to be categorical in nature. If the label is continuous in

fashion, then the data mining task used to build models for this label is

usually identified as belonging to the regression family of algorithms. The

model, as mentioned earlier is used to identify the class of instances that

have not been seen by the classification algorithm before. The data set used

to learn the model is usually known as the training set. Many techniques

have been developed over time to perform classification, and these include

2

CHAPTER 1. INTRODUCTION

decision trees, classification rules, probabilistic graphical models, instance-

based learning, neural networks and support vector machines [5], [8], [25],

[34].

With the increasing availability of affordable computational power, abun-

dant cheap storage, and the fact that more and more data are starting their

life in native digital form, more and more pressure is put on classification

algorithms to extract effective and useful models. Real world data sets are

frequently rife with noisy, erroneous, outlier, miss-labeled and irrelevant data.

These can be harmful to the classification algorithm and, in turn, may affect

the predictive power of the produced classification models. In an attempt to

remedy these maladies, the data presented to the algorithm for the purposes

of training is put through a phase that either removes instances, attributes or

both before the actual learning process. This pre-processing phase is known

as data reduction. Not only does the data reduction process aim to improve

the predictive effectiveness of the produced classifiers by removing the at-

tributes and instances that can be misleading to the learning algorithm, it

also decreases the size of the training set presented to the algorithm by keep-

ing only the most representative instances. The benefits of having a reduced

set to work with is two-fold: learning using a smaller volume of data is faster,

and the maintenance overhead is diminished.

Ant colony optimization (ACO) [7], [15], [16] is a search meta-heuristic

inspired by the behavior of real ants as they forage for food. By observing

the ants, it was noted the ants are capable of converging on the shortest

path between their nest and the closest food source without any means of

central coordination. This emergent behavior displayed by the ants is used

3

CHAPTER 1. INTRODUCTION

to develop a meta-heuristic that utilizes the same underlying mechanisms to

tackle combinatorial optimization problems. Since its introduction, ACO has

shown a successful track record with combinatorial optimization problems in

multiple fields of application, and has since been extended to handle other

types of problems, including data mining problems [38].

In this dissertation I introduce ADR-Miner: an ant-inspired algorithm

designed to do data reduction. ADR-Miner adapts ACO to perform data

reduction via instance selection with the sole purpose of improving classifier

effectiveness. The objective of ADR-Miner is to process a given data set and

arrive at the minimum set of instances to use that produces the model with

the highest classifier effectiveness. The ADR-Miner algorithm is introduced

here in two versions: a base version and an extended one. The base version of

ADR-Miner will use a single classification algorithm during both its training

and testing phases. The extended version on the other hand will use two

separate classification algorithms, one per each phase of the algorithm.

The base version of ADR-Miner will be evaluated using three well known

classification algorithms and against 20 data sets from the well-known UCI

Machine-Learning repository. The results obtained will be benchmarked

against the performance of another data reduction algorithm: the Iterative

Case Filtering (ICF) algorithm [11]. Statistical significance in the results

will be established using the non-parametric Wilcoxon Signed-Rank test.

The extended version of ADR-Miner will be evaluated using all the possible

pairings between five classification algorithms and against 37 data sets from

the UCI repository. The results obtained are then benchmarked against the

performance of the five classification algorithms without data reduction.

4

CHAPTER 1. INTRODUCTION

The rest of this dissertation is structured as follows. Chapter 2 provides

a brief introduction to ACO, Data Reduction and Classification. Chapter

3 provides a review the previous work done with ACO and Data Reduc-

tion. Chapter 4 presents an in depth explanation of ADR-Miner and its

components. Chapter 5 covers the technical details of implementing the

ADR-Miner algorithm. Chapter 6 covers the experimental approach used to

evaluate ADR-Miner, with the results obtained being interpreted in Chapter

7. Finally, I round things off in Chapter 8 with my conclusions and suggested

avenues of further research.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background

In this chapter, we go through the concepts of ACO, classification and data

reduction. These form the core concepts whose intersection is the main

impetus behind the development of ADR-Miner.

2.1 Ant Colony Optimization

Ant colony optimization (ACO) is a search meta-heuristic that is designed to

tackle combinatorial optimization problems. First described by Dorigo et al

in 1992 [4], ACO is inspired by the behavior observed in multiple species of

ants as they forage for food. As the ants forage for food, the scouts would first

wander around the opening of the nest looking for a viable food source. As

the scouts locate one, they would carry food back to the nest. Over time, it is

observed that the ants out searching for food would converge on the shortest

path between the nest and the closest food source. This behavior is not

explicitly wired into the psyche of the individual ants. Instead, the ants only

follow a simple set of rules and the resultant property of the ants following

7

CHAPTER 2. BACKGROUND

these rules is that the colony displays the capacity of finding the shortest path

between it and the closest food source. An individual ant would first start out

at the nest, and wander randomly around it favoring paths that have the scent

of food. As soon as an ant locates a source of food, it would carry a portion of

the food back to the nest. While the ant travels back and forth between the

nest and food source, it deposits a chemical, known as a pheromone, along its

trail. New ants setting out from the nest would then probabilistically favor

paths that contain both scents of pheromone and food on them versus those

which do not. As time passes, the pheromone evaporates. Longer paths to

the food would have a larger percentage of the pheromone deposited on them

evaporate versus shorter paths due to the amount of time an ant takes to

traverse this course. As more and more ants find the shortest of the paths

favorable, more ants would take this path, all the while depositing pheromone

on it further reinforcing its selection in the future. Eventually, all the ants

that set out to search and obtain food adopt the shortest path due its highest

concentration of pheromone and abandon all the other paths. This emergent

behavior of being able to converge on the shortest path between the nest and

the food source is what drove Dorigo et al to adapt it into a search meta-

heuristic that can be used to solve combinatorial optimization problems.

Over the next few subsections, well will cover how the behavior observed

in real life ants was adapted into the ACO search meta-heuristic and some

of the most common ACO algorithms in chronological order of development.

8

CHAPTER 2. BACKGROUND

2.1.1 The Ant Colony Optimization Meta-heuristic

Before describing the ACO meta-heuristic, let us first deconstruct it into a

set of constituent components:

• A construction graph: This is a representation of the search space that

the ants would course in search of a solution. The construction graph

is basically a translation of the problem being solved into a form that

can be used by the ants. Composed of a set of vertices and edges con-

necting them, the construction graph’s vertices represent components

that when combined with other vertices in the graph would form a

valid solution to the problem being solved. For example, if we are try-

ing to solve the Traveling Salesman Problem (TSP), a given instance

of the problem would be translated into a construction graph where

the nodes or cities in the instances are directly translated to vertices

and the roads connecting them are translated in the edges connecting

them. An ant could then start at a city, and construct a valid solution

by continuously selecting the next city/vertex to visit till it returns to

its starting point. The vertices in a construction graph are also known

as decision components, since the ants have to decide to either include

or exclude it by choosing whether to visit it or not.

• A fitness function: This is a function that is used to gauge how well a

proposed solution performs in the context of the problem being solved.

This is problem specific, and would vary depending on the problem

being tackled, whether it is a minimization or maximization type prob-

lem. The fitness function is used by the meta-heuristic to determine

the fitness of the solutions presented by the ants, and is employed

9

CHAPTER 2. BACKGROUND

to determine the best solution encountered throughout the run of the

meta-heuristic (and thus return it as the solution to the problem being

solved) and is sometimes employed during the pheromone update pro-

cedure as elaborated further below. Using TSP as an example, a valid

fitness function would be one over the length of the route proposed.

• A colony of ants: This is a collection of agents that share no means of

direct communication with each other and that follow a simple set of

rules. These rules dictate the behavior of these agents as they course

the construction graph in search of valid solutions.

• A transition probability function: This a function that calculates the

probability for a given decision component on the construction graph

for selection from another node on the same graph. This is extensively

used in the Construct Solution() sub-procedure in the meta-heuristic

as will be explained shortly.

• A pheromone update scheme: This describes how the pheromone trails

are updated by the ants as they traverse the construction graph, and

how the pheromone evaporates over time.

The overall meta-heuristic shared by most ACO algorithm can be glimpsed

in Algorithm 1. The meta-heuristic begins by initializing its parameters and

the colony. Depending on the implementation of the meta-heuristic, this can

include setting the total number of iterations to be performed, the number of

ants in the colony, the number of iterations after which the meta-heuristic is

considered to have converged among other possible parameters. The meta-

heuristic then enters its main loop (lines 5-9), that only exits when a pre-

10

CHAPTER 2. BACKGROUND

defined set of stopping criteria are satisfied. Again, these stopping criteria

will depend on the particular implementation of the meta-heuristic, and can

range from simple criteria such as exhausting a preset number of iterations

to more complex schemes such as detecting stagnation after a number of

restarts. Within the main loop, the meta-heuristic goes through three steps:

having the ants in the colony construct solutions, applying local search and

updating the pheromone trails.

The first step within the main loop is for each ant within the colony

to construct a solution (line 6). This is further expanded in the Con-

struct Solutions() sub-procedure (lines 12-22). To construct a solution, an

ant would first start at a node within the construction graph. The beginning

node code be a random one or a specific one depending on the problem being

solved. From there, the ant would continuously check all feasible neighbors,

select the next component from the feasible neighbors and traverse to se-

lected component. Once reaching a node with no feasible neighbors, then

the ant has basically traversed the construction graph and built a solution.

At this point it returns the route it has taken as the solution proposed by

that particular ant. Since the selection of components is probabilistic, before

a ant selects a node, it will first calculate the probabilities for each node in

the feasible neighborhood using the transition probability function and then

stochastically select one with a bias towards those with a higher probability.

How the ants calculate the probability for each node in their feasible neigh-

bors and then proceeds to select one is governed by the implementation’s

transition probability function and therefore will differ from one implemen-

tation to the other. The transition probability function is a function of two

11

CHAPTER 2. BACKGROUND

values: heuristic information available locally to the ants (η) and the amount

of pheromone available at each node (τ). Going with our example of TSP,

one possible value of η could be 1 divided by the distance from each node to

the next, giving favor of selection towards node that are closer by.

The second step within the main loop of the meta-heuristic is the appli-

cation of local search. Here, an attempt is made to improve the fitness of the

solutions returned by the ants via the application of a local search algorithm.

The algorithm would search in the immediate vicinity of the solution for one

with a higher fitness. If such a solution is found, then it would replace the so-

lution presented by the ant, otherwise no change is made. This is an optional

step, and depending on implementation, it may or may not be applied.

The third and final step within the meta-heuristic’s main loop is the

process of updating the pheromone trails. This is done over two phases.

First, the ants within the colony would deposit pheromone on the routes they

have selected throughout the construction graph. Which ants get to deposit

pheromones and how much pheromone is deposited depends on the particular

implementation of the meta-heuristic. Generally speaking, the amount of

pheromone deposited is usually tied to the fitness of the solutions presented

by ants, whether in terms of defining which ants get to deposit pheromones

on their routes, or the amount of pheromone deposited per trail. To gauge

the fitness of a solution, the meta-heuristic uses the fitness function that is

deployed along with the implementation and would therefore differ depending

on the type of the problem being solved. Second, the pheromone trails are

allowed to evaporate, and as with the process of depositing pheromones is

governed by the implementation. Both the deposit and evaporate mechanics

12

CHAPTER 2. BACKGROUND

Algorithm 1 General ACO Meta-heuristic

1: procedure ACO Metaheuristic()

2: set parameters

3: initialize colony

4: initialize pheromone trails to τθ

5: repeat

6: Construct Solutions()

7: Apply Local Search() . This step is optional.

8: Update Pheromone Trails()

9: until stopping criteria are satisfied

10: return best solution encountered

11: end procedure

12: procedure Construct Solutions()

13: for each ant in colony do

14: xant ← xant ∪ Initial Component

15: while valid nodes still exist for ant in construction graph do

16: N ← get feasible neighbors for ant

17: P ← Get probabilities for each node in N

18: d← Select Component Probabilistically(N ,P)

19: xant ← xant ∪ d

20: end while

21: end for

22: end procedure

13

CHAPTER 2. BACKGROUND

of the meta-heuristic form part of the pheromone update scheme of the meta-

heuristic.

Once the main loop exits, the meta-heuristic returns the best solution

encountered. This is the general meta-heuristic that is adhered to by most

implementations, and the implementations discussed next are some such ex-

amples. For a deeper treatment of the meta-heuristic, the reader is referred

to [17].

2.1.2 ACO Algorithms

The number of ACO algorithms has been growing steadily since their in-

troduction in the early 1990’s, with extensions and applications emerging for

various optimization and data mining problems. In the following subsections,

we cover the following algorithms: Ant System, the first and quintessential

ACO algorithm on which meta-heuristic is based; and MAX −MIN Ant

System, an extension on which ADR-Miner is based; Ant Colony System;

AS-Rank and Antabu. For a broader coverage of the ACO algorithms, the

reader is referred to [15]–[17], [32].

Ant System

The first of the ACO algorithms, Ant System was developed in 1992 [4]. Ant

System follows the basic structure of the meta-heuristic described earlier

and is in fact what lead to its development. In Ant System, the transition

probability function to move from node i to node j at time t is defined by

14

CHAPTER 2. BACKGROUND

the following equation:

pkij(t) =

ταij(t)η

β
ij(t)∑

u∈Nk
i
(t)
ταij(t)η

β
ij(t)

if j ∈ N k
i (t)

0 if j /∈ N k
i (t)

(2.1)

where

• τij represents the amount of pheromone deposited on the trail linking

node i to node j

• ηij represents the a priori effectiveness of moving from node i to node

j

• α and β represent bias towards pheromone and heuristic information

respectively

• N represents the feasible neighborhood for node i at time t

An ant at node i would first get its feasible neighborhood N . The feasible

simply represents the nodes the ant can visit next without violating any

problem specific constraints. For each node j in the neighborhood, the ant

would calculate the probability pij and the use Roulette Wheel Selection to

pick a node j from the neighborhood to move to.

The pheromone evaporation and update procedure for Ant System are

performed using the following formulas:

τij(t)← (1− ρ)τij (2.2)

τij(t+ 1) = τij(t) +4τij(t) (2.3)

with

4τij(t) =

nk∑
k=1

4τ kij(t) (2.4)

15

CHAPTER 2. BACKGROUND

where

4τij(t) =

Q

f(xk(t))
if link(i, j) ∈ xk(t)

0 otherwise

(2.5)

Here, ρ represents an evaporation factor and ranges between 0 and 1. After

evaporation has been applied, the ant solutions are inspected and for each

link in the graph:

• Get all ants that have link(i, j) as part of their solution (xk(t)).

• For each ant in the cohort that include link(i, j) in their solutions,

deposit pheromone in proportion to the quality of the solutions attained

(Equation 2.5). Q is a constant that is set by the user, and Equation

2.5 assumes a minimization problem. For a maximization problem,

Qf(xk(t)) is used instead.

Ant System was first employed by Dorigo et al to solve the Traveling

Salesman and the Quadratic Assignment problems, and the algorithm has

shown to be successful. The algorithm was later extended, for example by

allowing a number of elite ants to deposit an extra amount of pheromones,

and was the basis of the ACO meta-heuristic as we know it.

MAX −MIN Ant System

The MAX−MIN Ant System is an extension of the Ant System algorithm,

and was designed to tackle a specific issue: stagnation. During experimen-

tation with Ant System, it was observed the ants would sometimes converge

early on a path in the construction graph that might not be optimal and get

stuck on a local minima. To remedy this situation, the original Ant System

was altered in the following manner:

16

CHAPTER 2. BACKGROUND

• Only one ant is allowed to deposit pheromone: The current iteration

best or the global best.

• The pheromone levels on the links in the graph are bounded to be

between τmin and τmax.

• Upon initialization, pheromone levels are set to τmax. This is in con-

trast with the Ant System algorithm where the pheromone levels where

initialized to zero or a small random figure.

• If and when the algorithm reaches stagnation, the pheromone levels are

reset to τmax.

There are a number of ways to set the values for τmin and τmax. One way

is to set the values for the bounds as static values at the beginning of the

algorithm run. Another way, would be to use the following equations based

on the best estimation available of the optimal solution:

τmax(t) = (
1

1− ρ
)

1

f(x̂(t))
(2.6)

τmin(t) =
τmax(t)(1−

√
p̂nG)

(nG/2− 1)
√
p̂nG

(2.7)

where

• f(x̂(t)): the fitness of the best solution encountered so far. This could

be the iteration best or the global best.

• p̂: the probability of finding the best solution. This is a user set pa-

rameter and p̂ must be less than 1 so that τmin could take on a value

greater than zero.

• nG: the total number of nodes in the graph.

17

CHAPTER 2. BACKGROUND

Note that since τmax depends on the best solution found so far, this makes it

time dependent. This results in both bounds for τ being dynamic and adjust

throughout the run of the algorithm.

Ant Colony System

Ant colony system (ACS) is an extension of Ant System that was devel-

oped by Dorigo and Gambardella in an attempt to improve performance and

achieve a better balance between exploration and exploitation. ACS dif-

fers from Ant System on three aspects: the transition probability function,

pheromone maintenance and the introduction of the use of candidate lists.

ACS uses Equation 2.8 as its transition probability function. r0 is a user

paremeter set between 0 and 1, while r is a random number generated such

that r ∈ U(0, 1). Using this scheme, an ant will occasionally favor making a

greedy decision to select the node with the highest pheromone and heuristic

values within its feasible neighborhood. At times when r is greater than r0,

then ant would select its next step based on Equation 2.1, but with α preset

to 1.

P (i, j) =

arg maxu∈N kj (t){τiu(t)η

β
iu(t)} if r ≤ r0

J otherwise

(2.8)

The pheromone trails in ACS are only updated by the best ant, and as in

MMAS, this could either be the iteration best or the global best. To hasten

evaporation, and promote exploration within the colony, a little amount of

pheromone is removed every time an ant visits a node within the graph. Also,

as in MMAS, the pheromone levels are bounded between a minimum and a

18

CHAPTER 2. BACKGROUND

maximum level to stave off early convergence on local minima.

Candidate lists are preferred nodes to be visited next given an ants posi-

tion, and influence how an ant transitions from one node to the next within

the graph. Given a choice to select a node, an ant would first inspect the

candidate list for choices and make a selection there, before looking into the

rest of the feasible neighborhood. Members in the candidate list are usually

sorted from highest utility to least, and a candidate list is always less than

feasible neighborhood in terms of size.

AS-Rank

AS-Rank is a relatively straight forward extension to Ant System, with mod-

ifications introduced to how pheromones are updated, using elitist ants and

only allowing the best ant to deposit an extra amount of pheromone. The

pheromone update rule in AS-Rank is modified into the following:

τij(t+ 1) = (1− ρ)τij(t) + ne4 τ̂ij(t) +4τ rij(t) (2.9)

where

4τ̂ij(t) =
Q

f(x̂(t))
(2.10)

4τ rij(t) =
ne∑
σ=1

4τσij(t) (2.11)

4τσij(t) =

(ne−σ)Q
f(xσ(t))

if (i, j) ∈ xσ(t)

0 otherwise

(2.12)

19

CHAPTER 2. BACKGROUND

Here, σ represents rank is assigned from 1 to n to the ants from the fittest

to the least fit. ne represents the number of elite ants used. By using rank,

the elite ants get to deposit pheromone in proportion to their fitness.

Antabu

Kaji et al have introduced a version of AS that use Tabu search during the

local search step, as well as factor in the fitness of the current path, best

solution and worst solution encoutnered so for into the process of updateing

the pheromone trails. The pheromone update function now becomes:

τij(t+ 1) = (1− ρ)τij(t) + (
ρ

f(xk(t))
)(
f(x−(t))− f(xk(t))

f(x̂(t))
) (2.13)

where xk, x−(t) and x̂(t) stand for the fitness of the current ant’s solution,

the best solution encountered so far and the worst solution encountered so

far respectively.

2.1.3 Convergence

Is the ACO meta-heuristic guaranteed to arrive at a solution? The ques-

tion of convergence is usually the first theoretical question that asserts itself

whenever a new meta-heuristic is introduced. When speaking of convergence

in relation to a stochastic meta-heuristic designed to tackle combinatorial op-

timization, we usually consider two types of convergence: value convergence

and solution convergence. Value convergence is concerned with quantifying

the probability that the meta-heuristic will arrive at an optimal solution at

least once throughout its lifetime. Solution convergence is concerned with

quantifying the probability that the meta-heuristic will keep arriving at the

20

CHAPTER 2. BACKGROUND

same optimal solution over and over again. As the ACO meta-heuristic is

very broad in its definition, it renders itself difficult for this type of analy-

sis. Instead of trying to arrive at a convergence proof for the overall meta-

heuristic, researchers have instead opted to find proofs for specific models

based on the ACO meta-heuristic, and we discuss one such proof over the

next few paragraphs. As for the aspect of speed of convergence, no current

measures provide an estimation for the various ACO algorithms, and one

would have to resort to empirical evaluation and extensive testing to arrive

at such measures.

Among the first proofs of convergence provided for an ACO algorithms is

the one provided by Stützle and Dorigo for the MIN −MAX Ant System

(MMAS) [14]. The proof is developed under the following assumptions on

the MMAS algorithm:

• τmin < f(π∗), where π∗ represents the optimal solution.

• β = 0, i.e. there is no dependence on heuristic information while

constructing the solutions.

• Only the global best is allowed to deposit pheromone on its trail.

• The amount of pheromone deposited is proporional to the quality of

the solution, in this case π∗.

With these stipulations in place, Stützle and Dorigo were able to prove the

following:

• The probability of finding the optimal solution at least once is P ∗ ≥ 1−ε

and that this probability approaches one given a large enough number

21

CHAPTER 2. BACKGROUND

of iterations and a relatively small non-zero error rate ε

lim
t→∞

P ∗(t) = 1 (2.14)

• Once an optimal solution is found, the algorithm will only need a lim-

ited number of steps before the trail associated with the optimal solu-

tion will have pheromone levels that are higher than any other possible

trail. From that point forward, the probability of any ant of finding

this optimal solution will be P ∗ ≥ 1− ê(τmin, τmax).

By providing a schedule that slowly decreases τmin to 0, all ants in the colony

will build the optimal solution τ ∗ once it is found. This in essence provides a

solution convergence proof that complements the value convergence proof just

presented. With slight adjustments, these proofs hold when we reintroduce

the reliance on heuristic information while building solutions as well providing

similar proofs to the Ant Colony System (ACS) algorithm. This, of course, is

a brief discussion of these proofs. For a more fuller discussion that includes

how these proofs were arrived at, the reader is directed to [14], [31]

2.2 Data Reduction

As mentioned earlier, data reduction is a vital preprocessing task for ma-

chine learning and data mining schemes, and its significance lies in that it

removes noisy, outlier and other data from the training data set that can be

detrimental or misleading to the algorithm learning a model. In addition to

improving accuracy, it also reduces the size of the training set before it is pre-

sented to the machine learning algorithm. The use of a reduced training set

results in shorter training times for eager-learning classification algorithm,

22

CHAPTER 2. BACKGROUND

such as induction decision trees, classification rules and probabilistic models.

For lazy-learning algorithms, such as nearest neighbor(s), the reduced data

set decreases the time needed for arriving at the class of a new instance in

question. In addition, a smaller data set would require less resources for

storage and maintenance.

Data reduction employs a number of techniques, including instance se-

lection, feature selection, replacing the data set with a representative model

and encoding the data set to arrive at a ”compressed” representation of the

data set amongst others[9]. Since an in depth treatment of the various data

reduction techniques is beyond the scope of this proposal, I will choose to

focus instead on both feature and instance selection, the latter of which has

a specific significance to my proposal.

Feature selection is the process of selecting a subset of the attributes

associated with the data for usage and ignoring the rest. The objective

here is to arrive at the minimum set of attributes that can be used without

upsetting the class distribution in the original data set, or be close to it as

possible. Attributes that considered for exclusion are usually those which

are redundant or whose values are random in relation to the data classes

and as such will not contribute any statistically significant information to

the machine learning or data mining model being built. Using a reduced

attribute set to build such models also has the added benefit that the models

are more comprehensible to human operators versus employing the entire set

of attributes.

Instance selection is analogous to attribute selection, but instead of find-

ing the minimum set of attributes it attempts to find the minimum set of

23

CHAPTER 2. BACKGROUND

(a) Original set. (b) Interim set. (c) Final set.

Figure 2.1: An example of instance selection performed on a data set with

two classes.

instances within the data set that can be used. The focus with instance se-

lection is to rid the data set of outlier (which are usually detrimental to the

quality of the model being built), superfluous and noisy instances. Instance

selection can either start with an empty set and continuously add instances

from the data set till it satisfies the objective of finding the minimum repre-

sentative set, or start with the full set of instances in the data set and whittle

it down to the most representative instances. Another technique that can be

deployed is to replace a cluster of instances with a representative (sometimes

also known as a prototype instance), which may or may not be a natural

instance from the original data set. An example of a how an instance se-

lection might proceed to achieve data reduction can be seen in Figure 2.1.

Research in instance selection stretches as far back as the 1970’s with the

advent of Wilson editing, and a survey of such algorithms is presented in the

next chapter.

24

CHAPTER 2. BACKGROUND

2.3 Classification

Classification is a data mining and machine learning field that focuses on

building models that are capable of predicting the class of a given case. In

particular, classifier models attempt to predict the categorical label or class

of the case being studied. Given a set of labeled instances, a classification

algorithm will try to capture the mapping between the attributes of the

instances within the set and their respective class. Once this mapping has

been captured it is used to build a model, which can take the form of a set of

rules; a decision tree or a statistical model among others, which in turn is then

used to predict the class of unforeseen instances. The set of instances used

to build the model is usually known as a training set. Since the training set

is labeled, i.e. the class of each instance is known beforehand, classification

is considered to be a form of supervised learning. This is in contrast to

other data mining schemes that build models from instances where no known

class is present a priori, such as clustering. The effectiveness of a classifier is

evaluated using a data set different from the training set, known as the testing

test, and the performance of the classifier can be gauged using a number of

metrics. The most common metric used for gauging classifier performance is

accuracy, and it is simply the number of instances from the testing set that

were classified correctly out of the total number of instances in the testing set.

Over the next few subsections, we will examine three of the most common

classification algorithms. For a broader coverage of classifiers, the reader is

referred to [9], [19], [34].

25

CHAPTER 2. BACKGROUND

2.3.1 k-Nearest Neighbor

First developed in the 1950’s, the k-Nearest Neighbor classifier is considered

to be of the earliest classification algorithms. Based on learning by compar-

ison, a k-Nearest Neighbor Classifier will attempt to classify a new instance

based on the nearest representative(s) in a set of maintained instances. Each

instance of the maintained set will have n attributes and a class label. Given

a new instance to classify, the classifier will go over its set of maintained

instances, also known as the training set, and find the k-nearest neighbors.

The proximity between instances is defined by a distance function which

measures the distance between two instances by aggregating the differences

between each of the n attributes for the two instances being compared. Once

located, the k-nearest neighbors then vote on the class of the new instance

by counting the number of instances per class. The class with the majority

count then gets assigned to the new instance.

dist(X1,X2) =

√√√√ n∑
i=1

(x1i − x2i)
2 (2.15)

An example of a distance function that is commonly used with the k-

Nearest Neighbor classifier is the Euclidean distance, seen in Equation 2.15.

Handling numerical attributes is straight forward, as the difference for each

positional pair of numerical attributes is measured, squared, aggregated and

the square root of the sum is returned. Before applying the distance measure,

numerical attributes are usually normalized so as not to allow the numerical

range of the attribute to skew the measure. For categorical attributes, the

difference is considered to be one if their values do not match, and zero

otherwise. The rest of the equation would apply without modification.

26

CHAPTER 2. BACKGROUND

In the original version of the classifier, the distance measure is applied

to the attributes of the instance without weighing. This made the classifier

susceptible to noisy or irrelevant attributes. To remedy this, extensions were

introduced that allowed the weighing of the attributes within the distance

function, as well as the cleansing of noisy data.

2.3.2 C4.5

Developed by J. Ross Quinlan [5] as an extension to an earlier algorithm, the

C4.5 is a greedy tree induction algorithm that recursively divides the training

set into smaller and smaller sections, where each section is dominated by a

particular class. Moving down the tree, each node leads to its children based

on value ranges of one particular attribute. The general workings of a typical

decision tree induction algorithm can be seen in Algorithm 2.

The algorithm starts by creating the root node, which starts with the

entire training set of tuples and a list of attributes. It then checks to see if

all the tuples belong to the same class or if the attributes list is empty. If that

is the case then the node is assigned the majority class within the tuples and

is returned. Next, we get the splitting criteria through the use of an attribute

selection function. The attribute selection function inspects a collection of

tuples, along with a list of attributes, and decides on the best attribute to

split on along with the value ranges to use per branch. We then update the

attribute list based on the attribute that was selected for the splitting. For

each of the branches included in the splitting criteria we either add a leaf

node containing the majority class of the current node if the branch being

considered has no tuples or add an entire sub-tree based on the remaining

27

CHAPTER 2. BACKGROUND

Algorithm 2 Decision Tree Induction Algorithm

1: procedure GetTree(D, attributes list)

2: N ← new node

3: if attributes list = φ or class(∀x ∈ D) = C then

4: N.Class← GetMajorityClass(D)

5: return N

6: end if

7: split criterion← Attribute Selection(D, attributes list)

8: update attributes list

9: for j ∈ split criterion do

10: Dj ← Split(D, j)

11: if Dj is empty then

12: leaf ← GetMajorityClass(D)

13: N.Children← N.Children ∪ leaf

14: else

15: N.Children← N.Children ∪GetTree(Dj, attributes list)

16: end if

17: end for

18: return N

19: end procedure

28

CHAPTER 2. BACKGROUND

attributes and tuples associated with the branch being considered.

As mentioned earlier, the attribute selection function decides on the next

attribute to split on. The first function used by Quinlan is known as Infor-

mation Gain, and is defined as:

Gain(A) = Info(D)− InfoA(D) (2.16)

where

Info(D) = −
m∑
i=1

pilog2(pi) (2.17)

InfoA(D)
v∑
j=1

|Dj|
|D|
× Info(Dj) (2.18)

Equation 2.16 measures the gain in purity if an attribute A is used for

the split. Purity in this sense is attempting to have a set where all the tuples

share the same class, or have this set as homogeneous as possible. Equation

2.16 measures this gain by seeing how entropy in the original set D is reduced

by splitting on attribute A. Equation 2.17 attempts to measure the amount

of information required to classify a tuple in D encoded as bits (thus the

use of log2 in the function). This information is measured by averaging the

probabilities of an arbitrary tuple belonging to a class Ci. Once the entropy

associated with the original tuple set D, we then test the amount of entropy

that would removed by an attribute A using Equation 2.18. This function

does the same as the previous one but on a smaller scale: on the scale of the

tuple set that would result if we split on a value of the attribute at hand. To

split using Information Gain, we simply select the attribute that returns the

maximum gain. (To see Information Gain in action, the reader is referred to

[9])

29

CHAPTER 2. BACKGROUND

Using information gain had an issue that it was biased towards selecting

the attributes that had a large number of unique values such as a row iden-

tifier which would not have value in classification. To remedy this, Quinlan

introduced Gain Ratio, a successor of Information Gain and is the basis of

the C4.5 extension.

GainRatio(A) =
Gain(A)

SplitInfo(A)
(2.19)

where

SplitInfoA(D) = −
v∑
j=1

|Dj|
|D|
× log2(

|Dj|
|D|

) (2.20)

Note that Equation 2.20 takes into account the number of tuples in the

resultant set post split. By doing so, Gain Ratio favors those splits that

result in larger sets versus those which result in smaller sets, thus alleviating

the bias towards attributes with a large number of unique values.

2.3.3 Naive Bayes

The Naive Bayes classifier is a statistical classifer based on Bayes’ Theorem.

Although a relatively simple classifier, the Naive Bayes classifier has shown

to be competitive with some of the more sophisticated classifiers such as

decision tree induction and some forms of neural network classifiers. Over

the next few paragraphs, we will look into the basics of Bayes Theorem and

how it was used to form the classifier.

Bayes Theorem

Bayes Theorem was developed in the 18th century by one Thomas Bayes, a

pioneer in the works of probability and decision theory. Let X be a tuple of

30

CHAPTER 2. BACKGROUND

data described by n attributes. In the context of the theorem, X would be

considered ”evidence” of a fact. Let H be a hypothesis. In the context of

classification, such a hypothesis could be that X belongs to a specific class C.

In order to arrive at a classification, our aim would be to find out P(H|X),

i.e. that probability of X belonging to a specific class C given the values of

attributes in X .

P(H|X) is known as a posteriori probability ofH being conditioned on X .

Suppose for example that X represents a loan application with two attributes:

applicant employment status and applicant yearly income. Now suppose that

the values of these attributes were ”Employed” and ”≥ 100, 000”. For our

hypothesis, suppose that it would be whether the loan application is rejected

or approved. P(H|X) in this case would be whether a loan application

is approved or rejected knowing that the applicant’s employment status is

”Employed” and that his yearly income is ”≥ 100, 000”.

P(H) or P(X) are known as a priori probability since their measurement

is unconditional on the presence of other facts. This probability can be easily

calculated using basic information that is supplied from the data set being

analyzed.

Since our focus here is classificaiton, our aim is to calculate P(H|X) for

the various classes present with the X at hand. Bayes’ Theorem allows us to

estimate this probability using Equation 2.21.

P(H|X) =
P(X|H)P(H)

P(X)
(2.21)

31

CHAPTER 2. BACKGROUND

Classification Algorithm

Now that we have seen Bayes’ Theorem, let us see how it used to classify

tuples or instances.

1. Let T be a set of training data. Each tuple X in the training data is

made up of n attributes.

2. Let there be m classes in T , C1, C2, ..., Cm. The aim here would be to

get the maximize P(Ci|X). This can be calculated using Equation 2.21

3. Since the denominator in the Bayes equation (P(X)) is constant, we

only need to worry about maximizing the numerator, i.e. P(X|Ci)P(Ci).

4. Using the assumption of conditional independence, we can estimate

P(X|Ci) with

P(X|Ci) =
n∏
k=1

P(xk|Ci) (2.22)

where k represents the positional index of the attributes in X . If the

attribute being handled is categorical, then the estimation of probabil-

ity is a simple matter of counting occurrences and dividing by the total

number of instances in Ci. If the attribute is numerical however, then

we can safely assume that it follows a Gaussian distribution within the

data and the process of calculating its probability would involve cal-

culating the mean and variance for that attribute and then using the

Gaussian distribution function to estimate the probability.

5. After calculating the probabilities for a given X to belong to each of

the classes, we return the highest probability as the class label.

32

Chapter 3

Related Work

In this chapter, we will look into previous work done with ACO and Data

Reduction that is relevant to the research proposed in this article.

3.1 Ant Colony Optimization

Classically applied to combinatorial optimization problems, ACO has been

extended to tackle a number of other classes of problems, including ordering

problems, assignment problems, subset problems and grouping problems.

Since the research introduced in this thesis is related to classification, I will

focus on some of the applications of ACO in that field and would direct the

reader to [17] for a survey of ACO’s application in the aforementioned ones.

Ant-Miner [13] is the first ant-based classification algorithm, which aims

to build a list of classification rules from a training data set that can success-

fully be used to classify instances in an unforeseen data set. A classification

rule takes the form of:

IF < term1 AND term2 AND ... > THEN < class >

33

CHAPTER 3. RELATED WORK

where term refers to an assignment of a value to one attribute from the data

set. Before the ants can start building these rules, the search space must

first be converted into a construction graph. The nodes in the construction

graph in Ant-Miner are all the possible terms that can be extracted from the

data set, i.e all the possible value assignments that can be performed to the

attributes in the data set. These nodes are fully connected to each other.

To construct a solution, an ant will select one term from the set of nodes

pertaining to one particular attribute before moving on to the next. Once

the ant has selected a term per each attribute in the data set, then it has

completed building the antecedent part of the classification rule. To get the

consequent, the ant will get the majority vote for class on all the instances

that this rule applies to. After the rule is constructed, it will go through

a pruning phase that considers the impact of removing any of the terms in

the antecedent on the rule’s quality. If a term’s absence from the antecedent

does not negatively impact the rule’s quality, then it is removed. The ants

in Ant-Miner iteratively try to arrive at new rules, and only the best rule

per iteration is kept. A rule’s quality is judged based on its classification

effectiveness over the instances that it covers. Once a rule is accepted, the

instances covered by that rule are removed from the data set and the ants

will try to arrive at new rules from the remaining instances till the number of

uncovered instances falls under a prespecified threshold. As with any other

ACO-based algorithm, the ants are biased to selecting one node over the

other based on the heuristic information and pheromone levels associated

with that node. The heuristic information used here is information entropy

[5]. Information entropy attempts to measure the cost of describing the

34

CHAPTER 3. RELATED WORK

information provided by a given attribute assignment or term. Terms with

a high level of entropy, thus costing more to describe, are disliked and the

ants would be biased against selecting them. As for pheromone updates,

only the nodes associated with the last added rule have their pheromones

incremented, while all other nodes have their pheromone levels decreased

based on a predetermined evaporation schedule.

Since its introduction, a lot of extensions have been proposed for Ant-

Miner. These extensions either aimed to address limitations in the original

algorithm or improved the quality and precision of the rules that were pro-

duced by it, and include the following examples. The cAnt-Miner [26], [28]

extension allows Ant-Miner to handle attributes with continuous values, a

capability that was missing from the original design. The use of multiple

pheromone types [33], [39], [41], one per each class in the data set being pro-

cessed, resulted in improvements in the quality of the rules produced as well

as their simplicity. Freitas and Chan [20] have introduced an improved rule

pruning procedure that resulted in shorter rules, while improving the com-

putational time used while handing large data sets. Liu et al.[12] proposed

an improved function for calculating the heuristic value of the terms in the

construction graph, thus improving the quality of the rules produced by the

algorithm.

Boryczka and Kozak [29], [35] were able to use ACO to build classifiers

based on decision trees. The authors use the splitting rule from CART

(Classification and Regression Trees) to build a heuristic function which they

use in their new algorithm, dubbed ACDT. This function assigns higher

heuristic value to attributes that result in splits with the highest degree of

35

CHAPTER 3. RELATED WORK

homogeneity in the descendant nodes. ACDT was compared with CART and

Ant-Miner and has shown to produce favorable results.

Salama et al. [42], [43], [45] have adapted the ACO meta-heuristic to

build Bayesian Network based classifier. The ABC-Miner algorithm attempts

to build a Bayesian Augmented Naive-Bayes (BAN) classifier for the entire

data set. Empirical results show that ABC-Miner performed competitively

to state of the art algorithms that produced a similar classifier. Another

approach for building for building Bayesian Network based classifiers is to

build one network per class in the data set, and was also explored by the

authors of ABC-Miner. This approach was tested against the original ABC-

Miner algorithm, as well as start of the art algorithms, and has shown to

produce superior classification results in most cases.

More recently, ACO has been applied to the field of neural network based

classifiers. Liu et al. [22] introduced a hybrid ACO algorithm that uses BP

to optimize the weights on links between neurons in a feed forward neural

network. The ACOR algorithm [27] (which performs continuous optimiza-

tion) was adapted by Socha and Blum to train neural networks as classifiers

[18], [24]. Finally, Abdelbar and Salama introduced ANN-Miner [44], which

uses ACO to build multi-layered feed forward neural networks for use as

classifiers.

3.2 Data Reduction

One of the earliest algorithms for data reduction is Wilson editing [1], also

known as Editing Nearest Neighbor. This algorithm attempts reduction by

going through the instances and removing those that are incorrectly classified

36

CHAPTER 3. RELATED WORK

by their nearest neighbors, typically considering the three closest neighbors.

This has the effect of removing noisy instances that lie within the body of

homogeneous zones of a particular class, as well as smoothing the boundaries

between zones of different classes. Two known extensions of Wilson editing

are Repeated Edited Nearest Neighbor and All k-NN [2]. In RENN, Wil-

son editing is performed iteratively until no more instances can be removed

from the data set. All k-NN is similar to RNN, but increased k (the number

of nearest neighbors to consider) with each iteration. Both extensions pro-

vided higher accuracies than Wilson editing when paired with instance based

classifiers.

The IB family of algorithms are a group of incremental lazy learners

introduced by Aha et al in 1991 [3]. Two of these algorithms performed

reduction by means of instance selection, and therefore are of interest as

they fall in-line with this proposal’s main context. With IB2, a new case

is added to the set of maintained cases by the classifier if and only if it

cannot be correctly classified by the set already maintained. At the end of

the algorithm, the set that is used by the classifier then becomes our reduced

set. This makes IB2 susceptible to noisy instances, as they will always be

misclassified and thus added to the set of maintained cases by the classifier.

In an attempt to remedy the problem of noisy instances, IB3 enforces a policy

that removes instances from the maintained set if they contribute negatively

to the classification. This is done by keeping track of how well instances in

the maintained set classify instances in the training set. If that classification

has a statistically significant negative record, then the instance that produced

that record is removed from the set of maintained instances. IB3 has shown

37

CHAPTER 3. RELATED WORK

to have a higher accuracy than IB2 when tested in application and since both

IB2 and IB3 algorithms are incremental in nature, they are highly efficient

when compared to other reduction algorithms.

Wilson et al introduced the DROP family of reduction algorithms in [10].

DROP 1 performs reduction by considering whether removing an instance

would result in a misclassification of its neighbors. If that is not the case,

the instance is removed. The algorithms starts with the entire training set,

and for each instance in that set, it gets its nearest neighbors. The current

instance is added to each of the neighbors associates list, those instances

where the current instance can be found as a neighbor. It then considers

the following question using each instances and its associates: if the current

instance is removed from the neighborhood of each of its associates, would

that result in a misclassification, or would the associates be classified cor-

rectly without the influence of the current instance? If the removal of the

instance at hand results in a misclassification, then it is removed, otherwise

it is kept. The algorithm does this iteratively and the data set that remains

after this whittling is then the reduced data set. DROP 1 attempts to remove

noisy instances, since they will always cause a misclassification amongst their

neighbors. DROP 1 also has a bias to remove instances that are in the center

of class ”zones” as opposed to ones near the boundary, since these instances

are superfluous and the membership of any newly encountered instances to

the class zone can easily be inferred from the boundary instances. How-

ever, in the process of removing instances, DROP 1 may resolve to remove

a lot of instances around a noisy instance(s) that lies within the center of

a homogeneous region of a class before the noisy instances themselves are

38

CHAPTER 3. RELATED WORK

removed. DROP2 was designed with a measure that addresses this issue.

DROP 2 differs from DROP 1 in that during iterations, it will consider the

effect of leaving a considered instance on the misclassification of deleted in-

stances in pervious iterations as well as those who remain. DROP 2 also

adds an ordering to the process of removing instances. At the beginning of

each iteration it would sort the instances still being considered for reduction

by distance from their respective nearest enemy: an instance of a different

class. Instances are then considered for removal starting with those furthest

away from their enemies. DROP 3 adds preprocessing stage whereby Wilson

editing is performed on the data set before the algorithm proceeds. Since at

times this has shown be too aggressive, and in effect filtering out the entire

data set, DROP 4 adds a constraint to the preprocessing phase: An instance

promoted for removal by Wilson editing is only removed if doing so would

not cause a misclassification with its associates. Finally, DROP 5 differs from

DROP 2 in that it considers instances for removal in the reverse of the order

used in DROP 2. This means that instances that are closer to their enemies

are considered before those further away. This has the effect of smoothing

the class zone boundaries and removing central points more efficiently than

DROP 2.

Iterative Case Filtering, or ICF, is an algorithm devised by Mellish et al

[11] that achieves reduction over two phases. The first phase of the algorithm

performs regular Wilson editing, with a neighborhood size of 3 typically. The

second phase then builds two sets for each instance that still remains: a

reachable set and a coverage set. The reachable set are those instances that

include the current instance in their neighborhoods. The coverage set are

39

CHAPTER 3. RELATED WORK

those instances that have the current instance as a neighbor. In essence, the

reachable set are those instances that influence the classification of the cur-

rent instance, and the coverage set are those whose classification is influenced

by the current instance. After having built those sets, the algorithm then

removes those instances who have a reachable set larger than that of their

coverage set, for those instances are considered superfluous and their removal

would not affect the general accuracy of a model built on the remaining in-

stances. The ICF algorithm has proven to be an efficient reduction algorithm

when tested against a wide panel of data sets from UCI Machine Learning

repository.

40

Chapter 4

The ADR-Miner Algorithm

As alluded to earlier, the ADR-Miner adapts an ACO algorithm to perform

data reduction with an emphasis on improving a classifier’s predictive effec-

tiveness. In particular, given a training set, a testing set and a classification

algorithm, we want to see if we can achieve more accurate predictions if the

classifier is constructed using a reduced set then tested, as opposed to being

constructed using the raw training set.

Adapting the ACO algorithm to perform data reduction involves a num-

ber of steps:

1. Translating the problem into a search space that is traversable by the

ants, also known as a construction graph.

2. Defining the overall meta-heuristic that will be used to direct the ants

as they search the problem space.

3. Defining how an ant constructs a candidate solution (i.e., a reduced

set) while traversing the construction graph.

41

CHAPTER 4. THE ADR-MINER ALGORITHM

4. Defining the mechanics of evaluating the quality of such solutions and

updating the pheromone trails.

Over the next few sections, we will delve into the details associated with

these steps and in effect describe how we can adapt ACO to perform data

reduction via instance selection.

4.1 The Construction Graph

At the core of the ACO algorithm is the construction graph. This is a graph

of decision components that when a subset is chosen from by an ant forms

a solution to the problem being solved. Our main concern when tackling a

problem is how to translate the related search into a graph of decision com-

ponents with the stipulation that the graph contains subsets of the decision

components that form valid solutions to the problem being solved. Take for

example the traveling salesman problem, one of the first to be tackled by

ACO. In the traveling salesman problem, we are given a set of cities and

distances between them and asked to find the shortest route that visits all

the cities exactly once and return to the origin city. Translating such a prob-

lem into a construction graph would first lead us to building a graph where

the nodes represent the cities and vertices between the nodes would repre-

sent the distances among them. The nodes form decision components as at

each node, an ant would have to ”decide” which node to visit next whilst

maintaining the process of building a valid solution: not to revisit any cities

already visited. From this graph of cities and distances, an ant could start

at one node and iteratively decide which city to visit next till it returns to

origin. The graph in its current form can thus be considered a construction

42

CHAPTER 4. THE ADR-MINER ALGORITHM

Figure 4.1: The ADR-Miner Construction Graph

graph as it could possibly contain one or more valid routes connecting all the

cities. This graph was coined a ”construction” graph since the ants traverse

it one node after the next, iteratively deciding which node to visit next while

”constructing” a solution.

In our case, we are attempting to perform data reduction via instance

selection. Starting with a set of instances I, we want to arrive at a subset R ⊆

I that produces the best possible classifier effectiveness. Essentially, we have

to decide which instances from I are to be included in R, and that translates

into each instance having two decision components within the graph: dtruei

whose selection would imply the inclusion of the i-th instance in I, and

dfalsei whose selection would imply the exclusion of the i-th instance from I.

Selection between dtruei and dfalsei for the same value of i is mutually exclusive,

and an ant constructing a solution cannot include both in its selection.

The decision components of the graph conceptually take the form of a two

dimensional array, with a length of |I| and a depth of 2, signifying the choice

between inclusion and exclusion. A visual representation of the construction

graph can be seen here 4.1. A valid candidate solution can be built from this

construction graph by starting at the first node of the array, selecting either

the inclusion or exclusion nodes from the second dimension and then moving

onto the next node till the entire array is parsed.

43

CHAPTER 4. THE ADR-MINER ALGORITHM

4.2 The ADR-Miner Overall Algorithm

The overall procedure for ADR-Miner can be seen in Algorithm 3 We begin

by initializing the pheromones on all the decision components to the value of

1 (line 4). This includes both the components for inclusion and exclusion for

all instances in the data set to be reduced (i.e., the current trainingset).

We then enter a repeat− until loop (lines 5 to 21) that is terminated when

either of the following criteria are reached: we exhaust max iterations num-

ber of iterations, or the colony has converged on a solution and no visible

improvement has been observed over conv iterations number of iterations,

where max iterations and conv iterations are external parameters.

Within each iteration t of this outer loop, each anta in the colony con-

structs a candidate solution Ra (line 7), that is, a reduced set of instances.

After a candidate solution is produced, a classification model Ma is con-

structed using the reduced set Ra and an input classification algorithm g

(line 8). The quality of model Ma is evaluated (line 9), and if it is higher

than that achieved by other ants in the current iteration t, it supplants an

iteration best solution Rtbest (lines 10 to 13).

After all the ants in the colony complete the building of their solutions,

the best ant in the iteration is allowed to update the pheromone trails based

on Rtbest. This complies with the pheromone update strategy of the MAX -

MIN Ant System [6], on which this algorithm is based. The iteration best

solution Rtbest will supplant the best-so-far solution Rbsf if it is better in

quality (lines 16 to 20). This process is repeated until the main loop exits,

at which point, the best-so-far solution, Rbsf , observed over the course of the

algorithm is returned as the output reduced set.

44

CHAPTER 4. THE ADR-MINER ALGORITHM

Algorithm 3 Pseudo-code of ADR-Miner.

1: g ← classification algorithm

2: I ← training set

3: InitializePheromones()

4: repeat

5: for a ← 1 to colony size do

6: Ra ← anta.CreateSolution(I)

7: Ma ← ConstructModel(g,Ra)

8: Qa ← EvaluateModelQuality(Ma)

9: if Qa > Qtbest then

10: Qtbest ← Qa

11: Rtbest ← Ra

12: end if

13: end for

14: UpdatePheromones(Rtbest)

15: if Qtbest > Qbsf then

16: Qbsf ← Qbest

17: Rbsf ← Rtbest

18: t← t+ 1

19: end if

20: until t = max iterations or Convergence(conv iterations)

21: return Rbsf ;

45

CHAPTER 4. THE ADR-MINER ALGORITHM

So far, the ADR-Miner algorithm uses a single classification algorithm

g throughout its operation. This algorithm is used during the reduction

phase to evaluate interim solution fitness (lines 7 - 8), and is implicitly used

to build the final model using Rbsf for use in testing. Decoupling these

two phases (reduction and testing), and allowing for different classification

algorithms to be used during each phase, an extended version of the ADR-

Miner algorithm can be seen in Algorithm 4. The first change that can be

seen in Algorithm 4 is the explicit initialization of two distinct classification

algorithms (g and h), and two data sets: one for training (I) and one for

testing (T). The g classification algorithm, along with the training set I, are

used during the training or reduction phase of the algorithm (lines 6 - 22) to

arrive at a final reduced set Rbsf . The final reduced set, Rbsf , is then used

with the h classification algorithm to build the final model Mfinal (line 23),

which in turn can be used with the testing set T to evaluate the algorithm.

These extensions allow us to experiment with the effects of using different

algorithm during the training and testing phases of the algorithm and noting

their impact on classifier effectiveness.

The parameters max iterations, colony size, and conv iterations

are set to 1000, 10, and 10 respectively.

4.3 Solution Creation

An overview of the solution construction process can be seen in Algorithm

5. Having mentioned it briefly in the previous section, each anta construct a

solution by first starting with an empty structure Ta (which represents the

ant trail) and incrementally appending decision components dvi from the con-

46

CHAPTER 4. THE ADR-MINER ALGORITHM

Algorithm 4 Extended ADR-Miner Algorithm

1: g ← classification algorithm 1

2: h ← classification algorithm 2

3: I ← training set;

4: T ← testing set;

5: InitializePheromones()

6: repeat

7: for a ← 1 to colony size do

8: Ra ← anta.CreateSolution(I)

9: Ma ← ConstructModel(g,Ra)

10: Qa ← EvaluateModelQuality(Ma, I)

11: if Qa > Qtbest then

12: Qtbest ← Qa

13: Rtbest ← Ra

14: end if

15: end for

16: UpdatePheromones(Rtbest)

17: if Qtbest > Qbsf then

18: Qbsf ← Qbest

19: Rbsf ← Rtbest

20: t← t+ 1

21: end if

22: until t = max iterations or Convergence(conv iterations)

23: Mfinal ← ConstructModel(h,Rbsf)

24: return Mfinal;

47

CHAPTER 4. THE ADR-MINER ALGORITHM

struction graph. In turn, the ant will consider the two decision components

(dtruei and dfalsei) for each instance i – with i ranging from 1 to |I| – and

select one from amongst them probabilistically using the following formula:

P (dvi) =
τ [dvi].η[dvi]

τ [dtruei].η[dtruei] + τ [dfalsei].η[dfalsei]
(4.1)

where τ represents the amount of pheromone, η represents the amount

of heuristic information associated with decision component dvi , and v can

either be true (inclusion) or false (exclusion). The heuristic value for dtrue

decision components is preset at 0.66, and for dfalse is preset at 0.33, which

gives a slight bias towards including instances. Decision components are

selected in this fashion and appended to the ant’s set until all instances have

been processed, at which point the contents of the set represent the solution

constructed by the ant.

Algorithm 5 Solution Construction

1: Ta ← φ . ant trail

2: Ra ← φ . reduced data set

3: for doi← 1 to |I|

4: dvi ← SelectDecisionComponent();

5: Ta ← Ta ∪ dvi
6: if dxi = dTruei then

7: Ra ← Ra ∪ Ii

8: end if

9: end for

10: return Ra

48

CHAPTER 4. THE ADR-MINER ALGORITHM

4.4 Quality Evaluation and Pheromone Up-

date

Since the main aim of performing data reduction is to improve the predictive

effectiveness of the classifier, the quality of a candidate solution produced by

an ant is evaluated by computing the predictive accuracy of the constructed

model M – using the reduced set – on the original training set. Accuracy is

a simple and yet popular predictive performance measure, and is computed

as:

accuracy =
|correct|
|data set|

, (4.2)

where correct is the set of correctly classified instances (using the classifier

model currently constructed) in the data set. Depending on which version

of the ADR-Miner algorithm we are using, and which phase we are in within

that version, the data set could either mean the training or testing set. The

higher the predictive accuracy, the better the classifier is performing.

As shown in both Algorithm 3 (line 14) and Algorithm 4 (line 16), only

the ant with the best solution Rtbest in the current iteration t is allowed to

deposit pheromone on the trail connecting the decision components chosen

by it. The trail Ttbest selected by the iteration-best ant will have its (decision

components’) pheromone values amplified by a factor equal to the quality of

solution attained, as follows:

τ [dvi] = τ [dvi] + (τ [dvi]×Qtbest) ∀dvi ∈ Ttbest (4.3)

To simulate pheromone evaporation, normalization is then applied on

each pair of solution components associated with each connection c in the

construction graph. This keeps the total pheromone amount on each pair

49

CHAPTER 4. THE ADR-MINER ALGORITHM

τ [dtruei] and τ [dfalsei] equal to 1, as follows:

τ [dvi] =
τ [dvi]

τ [dtruei] + τ [dfalsei]
∀i ∈ I (4.4)

50

Chapter 5

Implementation

In this chapter, we will discuss some of the work that went into the imple-

mentation of the ADR-Miner algorithms and how we were able to integrate

it with WEKA.

5.1 ADR-Miner

The ADR-Miner algorithms described in the previous chapter are imple-

mented using C# and Microsoft .NET. It is implemented as a Microsoft

Windows application that takes a set of configurations, a training data set

and a testing test and produces a set of results as text file. In what follows, we

will describe the data structures and classes used to materialize ADR-Miner

as was elaborated in Chapter 4.

Construction Graph

Although described as a two-dimensional array in the previous chapter, the

construction graph is implemented as a flattened list. For every instance

51

CHAPTER 5. IMPLEMENTATION

in the data set, the list will contain a pair of decision components: one for

inclusion and one for exclusion. The pairs are added to the list in order,

such that each adjacent set of nodes in a pair will correspond to the same

instance. During solution construction, the ants consider a choice between

the nodes in a pair before moving on and repeating till they have made a

choice per each pair in the list. The solution construction sub-procedure

will start by marking the first pair as valid, and the rest of the pairs as

invalid. After the ant makes its choice from among the pair, the procedure

will than mark those as invalid, mark the next pair as valid and maintain

the rest as invalid. An ant traversing the graph will continue to select and

add components to its own solution as long as there are valid pairs, and the

ant will terminate its solution construction process when there are no more

valid pairs to choose from. The construction graph and the sliding window

of validity are illustrated in figure 5.1.

Ants, The Colony and Reduction

The classes that form the core of the ADR-Miner algorithms are shown in

figure 5.2. First, we have the AntColony class: a class that is responsible

from initializing the colony, initializing the construction graph and managing

the run of the algorithm. This class is abstract though, and only the initial-

ization processes have been implemented. This initialization logic is available

in the class constructor and the Initialize method. The constructor sets the

basic parameters of the colony size and max iterations allowed. The Initial-

ize method initializes the construction graph and sets the initial pheromone

levels on the decision components within the graph. The rest of the methods

52

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Materialization of the construction graph in ADR-Miner and the

sliding window of validity during solution construction.

53

CHAPTER 5. IMPLEMENTATION

are materialized in the deriving class ACOMinerDR. AntColony was chosen

to be an abstract class to allow for any future implementations that might

choose to implement ACO models other than MIN −MAX Ant System as

the basis of ADR-Miner.

The ACOMinerDR is the main class that does the heavy lifting of im-

plementing the ADR-Mienr logic. The Work method is the main method

invoked by the logic responsible for running the various experiment batches.

The Work method has a main loop that runs from zero till the max iteration

count, and during each iteration it will allow all the ants in the colony to cre-

ate solutions, update the global best ant and the update all the pheromone

levels on the construction graph. As the ants construction their solution and

the algorithm updates the current global best and pheromone levels, they

will need a classifier to evaluate solution qualities. This classifier is provided

by the WEKA framework, but more on that in the next section. You might

have noticed that the class does not maintain a permanent collection of ants.

That is because beyond constructing the solutions during the main loop in

the Work method, the ants serve no other purpose. To save memory, the ants

are only instantiated just in time, where they construct the solution and after

which they are discarded. The only ants that we maintain references to are

the iteration’s current best and the global best.

Beyond the classes described above, there are a number of classes that

are responsible for running the experiment batches and collating the results.

These instantiate the ACOMinerDR class, supply it with a training data set,

a classifier (or two depending on which version of ADR-Miner is being run)

and invoke the Work method. Once the Work method is completed and we

54

CHAPTER 5. IMPLEMENTATION

Figure 5.2: Class Diagram of ADRMinerDR, AntColony, Ant and Construc-

tionGraph.

55

CHAPTER 5. IMPLEMENTATION

have the indices of the instances to remove, these are then used to create a

filter on the training data set to arrive at a reduced data set. The reduced

data set is used to train the current classifier and its effectiveness is evaluated

against a testing data set. The results of the evaluation are captured and

stored as a text file.

5.2 WEKA Integration

The ADR-Miner algorithms are data reduction algorithms that were intended

to improve the effectiveness of classifiers. In order to do so, ADR-Miner uses

classifiers as fitness functions, and post-run as part of the testing procedure.

Instead of reimplementing the classifiers from scratch, we instead opted to

utilize the classifiers in the WEKA suite. WEKA, short for Waikato Envi-

ronment for Knowledge Analysis, is an open-sourced collection of machine

learning libraries written in Java and developed at the University of Waikato,

New Zealand. With WEKA, one can perform a variety of data mining tasks,

including classification, clustering, association rule mining and regression.

As ADR-Miner is implemented using C# and Microsoft .NET technologies,

we first have to expose the WEKA APIs to the .NET runtime before we are

able to use them. In order to do so, we utilize the IKVM.NET project to

provide us with a .NET library that exposes the WEKA APIs and thus can

be used from the .NET runtime. The IKVM.NET project [36] is a .NET

implementation for the Java Virtual Machine (JVM) and Java core libraries.

In what follows are the steps taken to produce the .NET library:

• Download the latest IKVM binaries and source files archive. The

archive can be found here: http://sourceforge.net/projects/ikvm/files/

56

CHAPTER 5. IMPLEMENTATION

• Extract the IKVM archive.

• Navigate to the main binaries. These can be found under <Extracted

archive address>\bin.

• Execute the ikvmc.exe using the following parameters:

ikvmc.exe -target:library<WEKA installation folder>\weka.jar

This will produce a file called weka.dll, which is a .NET library equiv-

alent of the weka.jar.

Disassembling the file produced by the aforementioned procedure, we can

see that we get a number of namespaces under the root of ”weka” that contain

the logic for performing the various data mining tasks provided by the WEKA

framework (see figure 5.3). Of particular interest is the ”weka.classifiers”

namespace which contains the implementations of the various classifiers that

we are interested in.

The hierarchy of classes shown in figure 5.4 is built on top of the WEKA

code, and it is the main facilitator that allows ADR-Miner access to the var-

ious classifiers provided by WEKA. First, an interface called ”IClassifier” is

introduced. This interface provides an abstraction to all the classifiers that

ADR-Miner will interact with (be they from WEKA or not). The interface

has three methods: Build, Initialize and Test. Initialize allows the imple-

menting classifier to initialize itself using the parameters supplied. Build

trains the implementing classifier using a provided data set and set of indexes

that specify which instances to remove from the data set. Test assesses the

classifier’s accuracy using a provided testing data set. This interface is then

implemented by a base class that provides most of the basic functionality

57

CHAPTER 5. IMPLEMENTATION

Figure 5.3: Disassembly of the weka.dll file. Performed by the Microsoft IL

DASM tool.

58

CHAPTER 5. IMPLEMENTATION

Figure 5.4: Class diagram of IClassifier, WekaClassifierBase and all derived

classifiers.

59

CHAPTER 5. IMPLEMENTATION

for the Build and Test methods. Only the Initialize method is defined as

abstract, to enforce deriving classes to implement the Initialize method in

accordance to which classifier they represent. The WekaClassifierBase class

is then extended into five classes, each representing a different type of clas-

sifier. Each extending class implements the Initialize method according to

which classifier it represents using the property bag supplied as the method’s

sole parameter. This hierarchy not only cuts down on the amount of rework

that would be required when working with the various classifiers that we

use, but also allows us to dynamically expand ADR-Miner to support more

classifiers, be they from the WEKA framework or not.

60

Chapter 6

Experimental Approach

In this chapter, we describe how we will examine the impact of using ADR-

Miner on classifier effectiveness. We will begin by describing how we will

examine the impact of using the first version of the ADR-Miner algorithm

(Algorithm 3) on the effectiveness of produced classifiers, as well as how

we will compare its performance to an established reducer algorithm as a

benchmark. We will then go on to describe how we will explore the effect

of using different classifiers with the extended version of the ADR-Miner

algorith (Algorithm 4) and assess the influence such a scheme has on classi-

fier effectiveness. The results of obtained from these experiments and their

interpretation are presented in the next chapter.

61

CHAPTER 6. EXPERIMENTAL APPROACH

6.1 Performance Evaluation and Benchmark-

ing

We will begin our evaluation of the ADR-Miner algorithm using three well-

known classification algorithms: k-nearest neighbor classifier, C4.5 decision

tree induction algorithm, and the Ripper rule induction algorithm [19], [34].

In these experiments, we will use the WEKA [34] open source implemen-

tations of these algorithms (1-NN, J48 and JRip respectively). For each

classification algorithm g, we will compare the predictive effectiveness of the

classification models both before and after the application of the ADR-Miner

algorithm as a reducer. As a benchmark, we will utilize the Iterative Case

Filtering (ICF) algorithm [11] and compare our performance against its in

terms of predictive accuracy as well as size reduction. For this phase of the

evaluation, we will use 20 publicly available data sets from the the well-known

University of California at Irvine (UCI) data set repository [23].

The experiments are to be carried out using the well-known stratified ten-

fold cross validation procedure [19]. A ten-fold cross-validation procedure

consists of dividing the data set into ten partitions of cases, wherein each

partition has a similar number of cases and class distribution matching that

of the original. For each partition, the classification algorithm is run using the

remaining nine partitions as the training set and its performance is evaluated

using the unseen (hold-out) partition. Since the ADR-Miner algorithm is

stochastic in nature, it will be ran ten times using a different random seed

to initialize the search each time. As the ICF algorithm is deterministic, it

will be ran only once per classification algorithm for each iteration of the

62

CHAPTER 6. EXPERIMENTAL APPROACH

cross-validation procedure.

The non-parametric Wilcoxon Signed-Rank test [21] is to be used to com-

pare the predictive accuracy results of ADR-Miner to the results of the base

algorithm, as well as the results of ICF, where the samples are the data sets

and establish the statistical significance of the results if they are indeed so.

The Wilcoxon Signed-Rank Test is performed as follows:

• Let N be the total number of data sets.

• Let di be the difference in performance between two algorithms on the

ith data set within N .

• Rank the differences based on absolute value starting from one. Case

there is a tie, then all tied figures get an average value. For example, if

both algorithms tie for the first and second spot, then they each recieve

a rank of 1.5.

• Let R+ be the sum of ranks where the second algorithm did better than

the first.

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (6.1)

• Let R− be the sum of ranks where the second algorithm did worse than

the first.

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (6.2)

• If there is an odd number of cases where di = 0 then one is ignored.

The rest are split evenly between R+ and R−.

• Let T = min(R+, R−), i.e. the minimum between the two sums.

63

CHAPTER 6. EXPERIMENTAL APPROACH

• Most statistical references will have tabulations of the critical values of

T , and whether or not the null-hypothesis is rejected can be inferred

from these tabulations for the comparison of up to 25 data sets.

• For more than 25 data sets or samples, we calculate

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(6.3)

• The null hypothesis is rejected if z is less than -1.96 for a confidence

level of 0.05.

The Wilcoxon Signed-Rank test was chosen over the paired T-test due to it

being immune to the issues of needing the differences between the data sets

under examination being comparable (also known as requiring commensu-

rability); requiring a large sample size (at least around 30 data sets as the

paired T-test has assumptions on the underlying distribution of the samples

and these are only usually satisfied when the sample size is large enough)

and being prone to being affected by the presence of outliers, issues that

need to be resolved before using the paired T-test as a measure of statistical

significance.

6.2 Effects of Using Different Classifiers Dur-

ing Reduction and Testing

For our second phase of testing, we will switch our attention to the effect

of using different classifiers during the training and testing phases of the ex-

tended ADR-Miner algorithm (Algorithm 4) has on classifier effectiveness.

64

CHAPTER 6. EXPERIMENTAL APPROACH

To do so, we are going to evaluate the extended version of ADR-Miner using

pairings of the following classifiers for g and h: Support Vector Machines,

Naive Bayes, C4.5 decision tree induction, k-Nearest Neighbor and Ripper.

As with the previous section, we will use the WEKA open-source implemen-

tations of these classifiers, namely SMO, Naive-Bayes (NB), J48, 1-NN and

JRip. This evaluation will be performed using 37 data sets from the UCI

repository, and these data sets will prepared and used using the stratified

ten-fold cross validation as before.

To aid in comparing the results obtained, we will rank both the base

algorithms and all the pairings begotten from them. The average rank (be

it of a base algorithm or a pairing) is to be calculated by first computing

the rank of the entry on each data set individually. The individual rankings

are then averaged across all the data sets to obtain the overall average rank.

The lower the ranking, the better the algorithm or pairing is considered to

be performing. This should provide a clearer picture of the performance of

the pairings in terms of accuracy and how they compare to just using the

base algorithms for both phases of the algorithm.

65

CHAPTER 6. EXPERIMENTAL APPROACH

66

Chapter 7

Experimental Results

In this chapter, we will present the results obtained from both phases of

testing described in the previous chapter. The results will be presented in

their raw form, accompanied by insights observed and commentary on what

the results imply.

7.1 Performance Evaluation and Benchmark-

ing

Table 7.1 shows the average predictive accuracy (%) for each base classi-

fication algorithm g, ADR-Miner with the algorithm g (ADR-g) and ICF

with the algorithm g (ICF-g). Size reduction (which represents the percent-

age of the data set that was removed during reduction) is shown between

brackets below the provided accuracy results of both the ADR-Miner and

the ICF data reduction algorithms. Both the highest predictive accuracies

and highest reduction per algorithm g and data set are shown in boldface.

67

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.1: Experimental Results - Predictive Accuracy % (Size Reduction

%)

data set
1NN JRip J48

None ADR ICF None ADR ICF None ADR ICF

audiology
80.00 80.83 70.00 79.17 84.17 75.00 82.50 85.83 75.00

(14.73) (81.12) (18.88) (81.12) (18.88) (81.12)

breast-tissue
70.09 72.18 61.55 58.55 63.45 53.64 65.37 66.36 58.55

(15.00) (84.29) (15.71) (84.29) (16.59) (84.29)

car
61.81 63.33 73.04 87.66 89.59 78.36 92.98 92.87 83.10

(16.49) (86.42) (13.58) (86.42) (19.01) (86.42)

chess
84.53 86.04 87.89 99.00 99.18 97.77 99.47 99.43 98.02

(18.58) (92.89) (7.11) (92.89) (25.88) (92.89)

credit-a
81.02 81.58 86.09 85.51 85.65 85.07 85.80 85.07 84.78

(16.36) (87.86) (12.14) (87.86) (20.08) (87.86)

credit-g
71.50 72.10 71.90 72.20 70.40 69.10 69.60 70.70 70.20

(16.20) (90.57) (9.43) (90.57) (18.02) (90.57)

dermatology
94.53 95.26 92.09 88.01 91.30 79.80 94.00 93.99 89.93

(22.89) (87.58) (12.42) (87.58) (23.86) (87.58)

ecoli
81.31 81.72 83.98 81.86 82.16 77.66 83.66 82.78 83.39

(16.9) (89.29) (10.71) (89.29) (18.35) (89.29)

hepatitis
83.12 84.46 81.79 78.13 85.79 82.54 80.67 80.71 80.04

(18.13) (93.41) (6.59) (93.41) (16.92) (93.41)

horse
79.05 79.46 78.13 83.54 85.03 83.93 84.75 83.60 83.81

(16.89) (95.62) (4.38) (95.62) (29.18) (95.62)

ionosphere
87.38 87.67 83.63 89.66 89.39 85.34 90.24 88.52 89.07

(17.39) (97.18) (2.82) (97.18) (22.18) (97.18)

iris
95.33 96.31 95.33 92.00 94.67 89.33 94.67 94.00 89.33

(29.98) (73.56) (26.44) (73.56) (30.51) (73.56)

liver disorders
60.87 62.62 56.20 66.34 68.08 61.74 64.56 64.88 59.13

(14.75) (91.95) (8.05) (91.95) (17.68) (91.95)

lymphography
79.10 83.76 75.81 79.95 78.43 75.76 76.38 77.90 74.48

(16.81) (81.83) (18.17) (81.83) (18.02) (81.83)

s-heart
73.33 74.07 79.26 78.52 78.52 79.26 75.56 76.30 75.19

(16.21) (88.89) (11.11) (88.89) (18.35) (88.89)

soybean
88.62 90.00 85.52 83.10 83.79 74.48 83.11 84.48 75.17

(20.18) (70.76) (11.11) (70.76) (18.57) (70.76)

transfusion
61.55 62.22 71.74 73.91 72.82 72.95 73.78 71.82 74.18

(16.25) (95.37) (4.63) (95.37) (20.59) (95.37)

vertebral column 2
80.97 81.32 78.71 82.58 80.65 78.71 81.29 82.26 79.03

(16.74) (92.80) (7.20) (92.80) (20.39) (92.80)

vertebral column 3c
78.71 79.68 79.35 80.32 79.68 78.06 78.71 80.65 80.65

(15.70) (93.19) (6.81) (93.19) (17.89) (93.19)

voting
88.73 88.99 87.87 93.66 95.55 94.57 94.48 94.88 94.57

(20.99) (95.96) (6.81) (95.96) (29.08) (95.96)

68

CHAPTER 7. EXPERIMENTAL RESULTS

The results in Table 7.1 indicate the following. In 1-NN instance-based

learning, ADR-Miner achieved the highest predictive accuracies in 14 data

sets, compared to 6 for ICF. For the JRip classification algorithm, ADR-

Miner achieved the highest predictive accuracies in 13 data sets, compared

to 1 for ICF and 6 for no reduction at all. For the J48 classification algo-

rithm, ADR-Miner achieved a slight lead by achieving the highest predictive

accuracies in 11 data sets (one a tie with ICF), followed closely by no reduc-

tion with 8 data sets and trailed by ICF with 2 data sets. This shows that

the ADR-Miner has achieved the highest predictive accuracies overall when

compared to no reduction and ICF per classification algorithm, and that this

lead in accuracy comes with varying margins between the runner ups as was

just described.

As for size reduction, the ICF algorithm produced smaller data set sizes in

all the data set used in our experiments, compared to ADR-Miner. However,

as indicated in the predictive accuracy results, this seems to have come at the

expense of accuracy. It is evident that ICF seems to have removed training

instances that were actually needed for learning the classification models, as

it is shown that it has sacrificed accuracy for size (see results in Table 7.1).

Table 7.2 shows the results (p-values) of the Wilcoxon Signed-Rank test.

In the table, p-values that are less than or equal to the conventional 0.05

threshold are shown in boldface.

As can be seen from Table 7.2, statistically significant improvements in

classifier effectiveness have been attained with both the 1-NN and JRip al-

gorithms when compared with the base algorithms without reduction, as we

well as similarly significant results with JRip and J48 when compared against

69

CHAPTER 7. EXPERIMENTAL RESULTS

ADR-Miner - Classifier ADR-1NN ADR-1NN ADR-JRip ADR-JRip ADR-J48 ADR-J48

Reduction Algorithm None ICF None ICF None ICF

N 20 20 19 20 20 19

W+ 210.0 135.0 48.0 206.0 82.5 168.0

W− 0.0 75.0 142.0 4.0 127.5 22.0

Mean Difference 76.99 18.63 19.19 29.28 16.22 25.58

W 0.00 75.00 48.00 4.00 82.50 22.00

Mean(W) 105 105 95 105 105 95

Standard Deviation(W) 26.79 26.79 24.85 26.79 26.79 24.85

Critical Value for W 60 60 53 60 60 53

z -3.9199 -1.1200 -1.8914 -3.7706 -0.8400 -2.9377

p 0.00050 0.13136 0.02938 0.00008 0.20045 0.00164

Significant? Yes No Yes Yes No Yes

Table 7.2: Results of the Wilcoxon Signed-Rank Test. The ADR-Miner

algorithm (paired with a classifier) is compared against the performance of

a reducer.

ICF.

7.2 Effects of Using Different Classifiers Dur-

ing Reduction and Testing

Table 7.3 shows the predictive accuracy (%) of the classifiers without data

reduction as a baseline. Figures 7.1 through 7.25 show the accuracy results

of each pairing of classifiers post data reduction with the extended ADR-

Miner algorithm. The figures are labeled as ”g - h Results”, where the

first algorithm appearing in the figure caption represents g and the second

representing h (the classifier used during training and testing respectively).

An alternative view of the pairing results can be seen the Appendix.

70

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.41

audiology 80.83

automobile 73.64

breast-p 69.16

breast-tissue 67.18

breast-w 95.79

car 63.33

chess 86.04

credit-a 80.58

credit-g 69.00

cylinder 68.19

dermatology 94.26

ecoli 80.72

glass 68.92

hay 63.08

heart-c 53.83

heart-h 62.43

hepatitis 82.46

horse 78.46

iris 95.33

liver-disorders 62.62

lymphography 83.76

monks 57.09

mushrooms 100.00

nursery 42.91

parkinsons 94.89

pop 70.00

s-heart 74.07

soybean 90.00

thyroid 93.96

transfusion 62.22

ttt 67.37

vehicle 67.73

vertebral-2c 80.32

vertebral-3c 79.68

voting 88.99

zoo 98.75

Figure 7.1: 1-Nearest Neighbor (1-NN) - 1-Nearest Neighbor (1-NN) Results

71

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 77.73

audiology 85.00

automobile 57.52

breast-p 67.13

breast-tissue 66.18

breast-w 93.33

car 86.26

chess 87.86

credit-a 77.10

credit-g 74.90

cylinder 66.32

dermatology 97.81

ecoli 84.87

glass 48.57

hay 68.46

heart-c 56.77

heart-h 66.05

hepatitis 83.17

horse 78.53

iris 94.67

liver-disorders 54.74

lymphography 82.48

monks 61.09

mushrooms 95.38

nursery 90.40

parkinsons 71.68

pop 68.75

s-heart 84.44

soybean 88.28

thyroid 96.71

transfusion 70.26

ttt 69.16

vehicle 45.04

vertebral-2c 78.06

vertebral-3c 81.94

voting 85.94

zoo 93.75

Figure 7.2: 1-Nearest Neighbor (1-NN) - Näıve Bayes (NB) Results

72

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 93.93

audiology 78.33

automobile 71.71

breast-p 73.68

breast-tissue 58.82

breast-w 93.15

car 83.51

chess 99.06

credit-a 86.09

credit-g 73.60

cylinder 67.10

dermatology 87.95

ecoli 81.86

glass 67.00

hay 79.23

heart-c 55.48

heart-h 63.01

hepatitis 78.75

horse 86.44

iris 94.00

liver-disorders 69.58

lymphography 79.76

monks 57.09

mushrooms 99.96

nursery 96.45

parkinsons 82.11

pop 73.75

s-heart 77.78

soybean 83.79

thyroid 92.53

transfusion 73.99

ttt 97.37

vehicle 70.58

vertebral-2c 80.65

vertebral-3c 79.68

voting 92.89

zoo 97.50

Figure 7.3: 1-Nearst Neighbor (1-NN) - Ripper (JRip) Results

73

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 91.90

audiology 78.33

automobile 80.57

breast-p 73.21

breast-tissue 62.27

breast-w 95.79

car 92.05

chess 99.21

credit-a 85.51

credit-g 71.60

cylinder 73.79

dermatology 94.26

ecoli 83.36

glass 70.79

hay 63.08

heart-c 53.83

heart-h 67.06

hepatitis 79.33

horse 84.15

iris 92.67

liver-disorders 65.50

lymphography 77.10

monks 58.73

mushrooms 100.00

nursery 96.57

parkinsons 81.89

pop 75.00

s-heart 77.04

soybean 83.79

thyroid 91.60

transfusion 73.91

ttt 83.26

vehicle 69.39

vertebral-2c 81.94

vertebral-3c 81.29

voting 94.48

zoo 98.75

Figure 7.4: 1-Nearest Neighbor (1-NN) - C4.5 (J48) Results

74

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 85.74

audiology 88.33

automobile 71.21

breast-p 76.29

breast-tissue 58.73

breast-w 97.54

car 92.81

chess 95.69

credit-a 84.78

credit-g 74.60

cylinder 72.11

dermatology 95.88

ecoli 83.06

glass 56.58

hay 78.46

heart-c 55.77

heart-h 66.76

hepatitis 83.83

horse 80.99

iris 96.00

liver-disorders 58.28

lymphography 83.10

monks 62.55

mushrooms 100.00

nursery 93.08

parkinsons 85.08

pop 70.00

s-heart 84.44

soybean 90.00

thyroid 87.03

transfusion 71.74

ttt 98.42

vehicle 74.94

vertebral-2c 73.55

vertebral-3c 80.65

voting 94.26

zoo 98.75

Figure 7.5: 1-Nearest Neighbor (1-NN) - Support Vector Machine (SMO)

Results

75

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.18

audiology 77.50

automobile 69.26

breast-p 67.71

breast-tissue 67.27

breast-w 95.79

car 62.98

chess 85.38

credit-a 81.30

credit-g 70.60

cylinder 67.26

dermatology 93.45

ecoli 80.44

glass 68.86

hay 62.31

heart-c 52.81

heart-h 48.57

hepatitis 81.88

horse 79.34

iris 96.00

liver-disorders 61.72

lymphography 77.81

monks 57.64

mushrooms 100.00

nursery 43.28

parkinsons 92.34

pop 71.25

s-heart 74.07

soybean 86.21

thyroid 93.96

transfusion 62.74

ttt 67.58

vehicle 69.26

vertebral-2c 77.74

vertebral-3c 80.32

voting 88.64

zoo 98.75

Figure 7.6: Näıve Bayes (NB) - 1-Nearest Neighbor (1-NN) Results

76

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 88.71

audiology 85.00

automobile 61.93

breast-p 68.68

breast-tissue 65.45

breast-w 93.86

car 87.54

chess 88.96

credit-a 77.68

credit-g 74.80

cylinder 70.60

dermatology 97.26

ecoli 85.78

glass 59.37

hay 76.92

heart-c 56.44

heart-h 66.04

hepatitis 86.29

horse 79.96

iris 96.00

liver-disorders 64.02

lymphography 84.48

monks 63.45

mushrooms 96.02

nursery 91.00

parkinsons 74.29

pop 68.75

s-heart 83.70

soybean 88.62

thyroid 96.69

transfusion 71.49

ttt 72.63

vehicle 50.95

vertebral-2c 77.74

vertebral-3c 82.58

voting 85.98

zoo 96.25

Figure 7.7: Näıve Bayes (NB) - Näıve Bayes (NB) Results

77

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 93.83

audiology 79.17

automobile 71.24

breast-p 69.61

breast-tissue 62.18

breast-w 92.62

car 85.20

chess 99.09

credit-a 83.77

credit-g 73.80

cylinder 67.82

dermatology 88.57

ecoli 79.80

glass 65.14

hay 82.31

heart-c 54.47

heart-h 62.31

hepatitis 80.67

horse 84.11

iris 90.00

liver-disorders 67.82

lymphography 75.86

monks 62.18

mushrooms 99.96

nursery 96.40

parkinsons 84.61

pop 75.00

s-heart 77.04

soybean 81.38

thyroid 93.01

transfusion 72.89

ttt 97.79

vehicle 67.51

vertebral-2c 80.00

vertebral-3c 80.32

voting 93.68

zoo 91.25

Figure 7.8: Näıve Bayes (NB) - Ripper (JRip) Results

78

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 91.43

audiology 83.33

automobile 77.98

breast-p 69.13

breast-tissue 58.55

breast-w 92.44

car 91.81

chess 99.18

credit-a 85.51

credit-g 71.90

cylinder 73.79

dermatology 92.91

ecoli 81.60

glass 70.34

hay 65.38

heart-c 57.08

heart-h 66.42

hepatitis 79.38

horse 84.42

iris 91.33

liver-disorders 64.04

lymphography 77.14

monks 58.91

mushrooms 100.00

nursery 96.51

parkinsons 81.00

pop 75.00

s-heart 77.78

soybean 85.86

thyroid 93.44

transfusion 72.29

ttt 84.95

vehicle 72.11

vertebral-2c 81.29

vertebral-3c 79.35

voting 93.68

zoo 98.75

Figure 7.9: Näıve Bayes (NB) - C4.5 (J48) Results

79

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 84.38

audiology 90.83

automobile 68.24

breast-p 76.29

breast-tissue 57.73

breast-w 97.37

car 93.10

chess 95.53

credit-a 84.78

credit-g 73.20

cylinder 74.34

dermatology 96.45

ecoli 81.86

glass 51.75

hay 77.69

heart-c 55.76

heart-h 67.10

hepatitis 82.54

horse 81.78

iris 96.67

liver-disorders 58.56

lymphography 79.81

monks 63.64

mushrooms 100.00

nursery 93.01

parkinsons 84.61

pop 71.25

s-heart 83.33

soybean 88.62

thyroid 87.01

transfusion 71.74

ttt 98.42

vehicle 74.23

vertebral-2c 71.29

vertebral-3c 76.45

voting 93.91

zoo 96.25

Figure 7.10: Näıve Bayes (NB) - Support Vector Machine (SMO) Results

80

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 93.49

audiology 80.83

automobile 72.62

breast-p 67.16

breast-tissue 68.27

breast-w 94.91

car 63.27

chess 85.19

credit-a 80.72

credit-g 69.50

cylinder 68.94

dermatology 93.45

ecoli 79.79

glass 66.04

hay 58.46

heart-c 52.84

heart-h 46.51

hepatitis 80.58

horse 79.04

iris 95.33

liver-disorders 61.13

lymphography 79.05

monks 56.73

mushrooms 100.00

nursery 98.50

parkinsons 93.39

pop 71.25

s-heart 75.56

soybean 86.55

thyroid 95.78

transfusion 63.53

ttt 67.58

vehicle 68.08

vertebral-2c 77.10

vertebral-3c 78.39

voting 89.41

zoo 98.75

Figure 7.11: Ripper (JRip) - 1-Nearest Neighbor (1-NN) Results

81

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 79.20

audiology 84.17

automobile 58.05

breast-p 66.13

breast-tissue 67.27

breast-w 93.51

car 85.38

chess 87.67

credit-a 76.67

credit-g 74.50

cylinder 67.64

dermatology 98.09

ecoli 84.27

glass 47.95

hay 69.23

heart-c 56.74

heart-h 63.30

hepatitis 82.58

horse 79.41

iris 96.00

liver-disorders 54.46

lymphography 82.48

monks 61.27

mushrooms 95.24

nursery 94.40

parkinsons 71.18

pop 68.75

s-heart 84.07

soybean 87.59

thyroid 96.71

transfusion 70.05

ttt 69.89

vehicle 44.69

vertebral-2c 78.39

vertebral-3c 82.90

voting 85.98

zoo 96.25

Figure 7.12: Ripper (JRip) - Näıve Bayes (NB) Results

82

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.97

audiology 84.17

automobile 76.12

breast-p 69.21

breast-tissue 63.45

breast-w 94.20

car 89.59

chess 99.18

credit-a 85.65

credit-g 70.40

cylinder 73.25

dermatology 91.30

ecoli 82.16

glass 70.34

hay 74.62

heart-c 51.52

heart-h 64.74

hepatitis 85.79

horse 85.03

iris 94.67

liver-disorders 68.08

lymphography 78.43

monks 60.00

mushrooms 100.00

nursery 98.50

parkinsons 85.61

pop 72.50

s-heart 78.52

soybean 83.79

thyroid 90.69

transfusion 72.82

ttt 96.95

vehicle 71.15

vertebral-2c 80.65

vertebral-3c 79.68

voting 95.55

zoo 93.75

Figure 7.13: Ripper (JRip) - Ripper (JRip) Results

83

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 90.65

audiology 82.50

automobile 77.05

breast-p 72.16

breast-tissue 62.36

breast-w 91.91

car 91.11

chess 99.37

credit-a 85.51

credit-g 70.60

cylinder 71.90

dermatology 93.97

ecoli 81.89

glass 68.41

hay 66.92

heart-c 51.51

heart-h 66.13

hepatitis 81.96

horse 84.74

iris 95.33

liver-disorders 63.99

lymphography 79.86

monks 59.64

mushrooms 100.00

nursery 97.30

parkinsons 83.11

pop 72.50

s-heart 75.19

soybean 83.10

thyroid 93.48

transfusion 72.41

ttt 82.74

vehicle 71.99

vertebral-2c 80.32

vertebral-3c 80.32

voting 94.25

zoo 97.50

Figure 7.14: Ripper (JRip) - C4.5 (J48) Results

84

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 85.97

audiology 90.00

automobile 66.69

breast-p 76.29

breast-tissue 58.82

breast-w 97.02

car 92.63

chess 95.22

credit-a 84.64

credit-g 73.50

cylinder 72.48

dermatology 97.55

ecoli 82.75

glass 56.01

hay 77.69

heart-c 56.78

heart-h 65.41

hepatitis 84.46

horse 83.30

iris 94.67

liver-disorders 57.70

lymphography 85.19

monks 63.45

mushrooms 100.00

nursery 97.30

parkinsons 87.18

pop 72.50

s-heart 84.81

soybean 89.31

thyroid 88.42

transfusion 71.94

ttt 98.42

vehicle 73.99

vertebral-2c 78.39

vertebral-3c 75.81

voting 93.63

zoo 96.25

Figure 7.15: Ripper (JRip) - Support Vector Machine (SMO) Results

85

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.4 shows the average rankings of the results from the 25 pairings,

along with the base algorithms without reduction. The base algorithms here

are displayed on their own and not in the g − h format.

From the ranking results in Table 7.4, that using ADR-Miner with SMO-

SMO for g − h has produced the best results on average. This is followed

by SMO without data reduction, ADR-Miner with 1-NN-SMO, ADR-Miner

with J48-SMO and finally ADR-Miner with JRip-JRip for fifth place. We

can observe from the top four results that using SMO as the classification

algorithm to train the final model has generally produced superior results

in terms of accuracy. This superiority comes at a cost though: incompre-

hensibility. SMO models are known for their effectivenesss, but the models

produced by the algorithm are incomprehensible to human operators. The

operators may opt to go with classifiers that generate models that are more

user friendly than SMO, such as JRip or J48 [30], [37], [40].

We can also observe another fact from Table 7.4. Pairings for given

algorithm while serving as h perform better than if that algorithm was used

on its own without reduction. The only exception to that observation is J48

algorithm which performs well on its own before being paired with another

while serving as h.

On the aspect of size reduction, we can see from Table 7.5 that the Naive-

Bayes classifier has achieved the highest average size reduction, followed by

SMO, J48, JRip and 1-NN. Note that for size reduction, we only consider

the reduction during the training phase (i.e. the reduction achieved when

the classifier is used as g), as the final model is built post reduction.

Tables 7.6a and 7.6b summarize the best pairings observed. Analyzing

86

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 93.95

audiology 77.50

automobile 72.19

breast-p 67.16

breast-tissue 68.09

breast-w 96.14

car 63.22

chess 85.85

credit-a 81.16

credit-g 69.90

cylinder 68.75

dermatology 94.26

ecoli 82.79

glass 69.33

hay 62.31

heart-c 52.52

heart-h 51.42

hepatitis 83.17

horse 79.69

iris 94.67

liver-disorders 61.15

lymphography 79.10

monks 57.45

mushrooms 100.00

nursery 43.13

parkinsons 95.42

pop 68.75

s-heart 74.81

soybean 88.62

thyroid 94.87

transfusion 62.08

ttt 67.37

vehicle 70.09

vertebral-2c 76.77

vertebral-3c 78.71

voting 88.03

zoo 98.75

Figure 7.16: C4.5 (J48) - 1-Nearest Neighbor (1-NN) Results

87

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 76.69

audiology 79.17

automobile 56.05

breast-p 64.63

breast-tissue 64.36

breast-w 93.33

car 86.43

chess 87.99

credit-a 77.83

credit-g 75.10

cylinder 66.51

dermatology 98.09

ecoli 85.18

glass 48.94

hay 71.54

heart-c 56.40

heart-h 65.37

hepatitis 83.21

horse 78.54

iris 96.00

liver-disorders 54.71

lymphography 81.14

monks 61.27

mushrooms 95.29

nursery 90.34

parkinsons 71.18

pop 72.50

s-heart 83.70

soybean 88.62

thyroid 97.64

transfusion 69.48

ttt 70.74

vehicle 45.04

vertebral-2c 78.71

vertebral-3c 82.26

voting 85.63

zoo 93.75

Figure 7.17: C4.5 (J48) - Näıve Bayes (NB) Results

88

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.16

audiology 75.83

automobile 72.76

breast-p 73.24

breast-tissue 55.82

breast-w 93.32

car 84.97

chess 98.84

credit-a 85.22

credit-g 70.00

cylinder 69.87

dermatology 88.27

ecoli 80.98

glass 65.55

hay 75.38

heart-c 54.47

heart-h 64.07

hepatitis 81.25

horse 83.30

iris 92.00

liver-disorders 65.45

lymphography 79.14

monks 60.18

mushrooms 99.96

nursery 96.41

parkinsons 86.11

pop 70.00

s-heart 77.78

soybean 84.14

thyroid 92.10

transfusion 73.79

ttt 97.37

vehicle 69.86

vertebral-2c 78.71

vertebral-3c 78.71

voting 93.96

zoo 85.00

Figure 7.18: C4.5 (J48) - Ripper (JRip) Results

89

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.98

audiology 85.83

automobile 84.33

breast-p 61.00

breast-tissue 66.36

breast-w 93.67

car 92.87

chess 99.43

credit-a 85.07

credit-g 70.70

cylinder 71.37

dermatology 93.99

ecoli 82.78

glass 68.82

hay 62.31

heart-c 51.44

heart-h 66.67

hepatitis 80.71

horse 83.60

iris 94.00

liver-disorders 64.88

lymphography 77.90

monks 54.55

mushrooms 100.00

nursery 96.78

parkinsons 86.16

pop 66.25

s-heart 76.30

soybean 84.48

thyroid 92.14

transfusion 71.82

ttt 85.79

vehicle 72.35

vertebral-2c 82.26

vertebral-3c 80.65

voting 94.88

zoo 96.25

Figure 7.19: C4.5 (J48) - C4.5 (J48) Results

90

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 85.98

audiology 89.17

automobile 65.31

breast-p 76.29

breast-tissue 55.82

breast-w 97.54

car 93.33

chess 95.22

credit-a 85.51

credit-g 73.90

cylinder 72.48

dermatology 97.27

ecoli 84.21

glass 55.15

hay 77.69

heart-c 56.75

heart-h 68.12

hepatitis 83.17

horse 80.73

iris 96.00

liver-disorders 57.98

lymphography 85.86

monks 63.64

mushrooms 100.00

nursery 93.05

parkinsons 86.13

pop 70.00

s-heart 85.19

soybean 90.00

thyroid 88.44

transfusion 71.74

ttt 98.42

vehicle 73.88

vertebral-2c 76.77

vertebral-3c 74.19

voting 93.82

zoo 98.75

Figure 7.20: C4.5 (J48) - Support Vector Machine (Support) Results

91

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 93.95

audiology 80.83

automobile 72.71

breast-p 67.68

breast-tissue 67.00

breast-w 95.26

car 63.27

chess 85.72

credit-a 78.84

credit-g 68.70

cylinder 67.82

dermatology 93.99

ecoli 82.18

glass 66.06

hay 60.00

heart-c 51.86

heart-h 48.53

hepatitis 84.50

horse 81.67

iris 96.00

liver-disorders 61.72

lymphography 79.14

monks 57.64

mushrooms 100.00

nursery 43.36

parkinsons 95.34

pop 70.00

s-heart 74.81

soybean 86.90

thyroid 95.78

transfusion 64.55

ttt 67.89

vehicle 67.72

vertebral-2c 80.97

vertebral-3c 80.32

voting 89.06

zoo 98.75

Figure 7.21: Support Vector Machine (SMO) - 1-Nearest Neighbor (1-NN)

Results

92

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 79.56

audiology 82.50

automobile 57.57

breast-p 66.13

breast-tissue 64.36

breast-w 92.80

car 86.61

chess 87.96

credit-a 76.96

credit-g 73.70

cylinder 69.30

dermatology 98.36

ecoli 85.80

glass 47.77

hay 73.08

heart-c 56.76

heart-h 65.69

hepatitis 83.21

horse 79.14

iris 96.00

liver-disorders 54.77

lymphography 81.90

monks 58.91

mushrooms 95.52

nursery 90.44

parkinsons 70.11

pop 71.25

s-heart 84.44

soybean 89.31

thyroid 97.16

transfusion 69.20

ttt 71.37

vehicle 45.14

vertebral-2c 78.39

vertebral-3c 82.58

voting 85.94

zoo 93.75

Figure 7.22: Support Vector Machine (SMO) - Näıve Bayes (NB) Results

93

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 94.06

audiology 80.83

automobile 71.79

breast-p 71.24

breast-tissue 59.45

breast-w 93.32

car 83.92

chess 99.21

credit-a 86.96

credit-g 71.10

cylinder 65.60

dermatology 87.71

ecoli 77.11

glass 61.91

hay 81.54

heart-c 54.48

heart-h 65.78

hepatitis 82.58

horse 84.48

iris 92.67

liver-disorders 61.43

lymphography 73.05

monks 60.73

mushrooms 99.98

nursery 96.58

parkinsons 87.16

pop 73.75

s-heart 79.26

soybean 83.79

thyroid 92.06

transfusion 73.65

ttt 98.21

vehicle 69.98

vertebral-2c 82.58

vertebral-3c 77.42

voting 92.89

zoo 91.25

Figure 7.23: Support Vector Machine (SMO) - Ripper (JRip) Results

94

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 92.02

audiology 84.17

automobile 76.14

breast-p 64.50

breast-tissue 62.18

breast-w 94.03

car 91.75

chess 99.21

credit-a 86.09

credit-g 70.60

cylinder 71.55

dermatology 93.98

ecoli 78.96

glass 72.18

hay 67.69

heart-c 50.85

heart-h 67.07

hepatitis 79.38

horse 84.17

iris 93.33

liver-disorders 64.71

lymphography 70.33

monks 58.73

mushrooms 100.00

nursery 96.36

parkinsons 84.08

pop 72.50

s-heart 78.89

soybean 83.10

thyroid 91.15

transfusion 72.04

ttt 82.32

vehicle 71.87

vertebral-2c 80.97

vertebral-3c 80.32

voting 93.77

zoo 97.50

Figure 7.24: Support Vector Machine (SMO) - C4.5 (J48) Results

95

CHAPTER 7. EXPERIMENTAL RESULTS

Data Set Accuracy

annealing 89.86

audiology 90.83

automobile 72.64

breast-p 74.76

breast-tissue 60.64

breast-w 97.72

car 93.39

chess 96.70

credit-a 84.78

credit-g 74.10

cylinder 73.96

dermatology 97.27

ecoli 86.04

glass 62.27

hay 74.62

heart-c 56.75

heart-h 69.12

hepatitis 83.21

horse 79.56

iris 96.00

liver-disorders 58.56

lymphography 81.19

monks 64.00

mushrooms 100.00

nursery 93.33

parkinsons 87.68

pop 70.00

s-heart 82.59

soybean 88.62

thyroid 88.87

transfusion 72.31

ttt 98.42

vehicle 73.88

vertebral-2c 83.55

vertebral-3c 83.23

voting 95.46

zoo 98.75

Figure 7.25: Support Vector Machine (SMO) - Support Vector Machine

(SMO) Results

96

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.3: Baseline Predictive Accuracy (%) Results for the Classification

Algorithms Without Data Reduction

data set 1-NN NB JRip J48 SMO

annealing 94.40 76.93 94.87 92.46 85.97

audiology 80.00 85.00 79.17 82.50 90.00

automobile 73.64 58.53 68.69 81.36 68.74

breast-p 67.18 64.58 75.79 71.08 76.29

breast-tissue 70.09 67.18 58.55 65.37 59.64

breast-w 95.61 93.50 94.20 94.91 97.90

car 61.81 85.91 87.66 92.98 93.51

chess 84.53 88.05 99.00 99.47 95.72

credit-a 81.02 77.10 85.51 85.80 84.93

credit-g 71.50 75.20 72.20 69.60 73.90

cylinder 68.75 66.70 64.29 74.50 73.22

dermatology 94.53 97.54 88.01 94.00 96.43

ecoli 81.31 85.47 81.86 83.66 83.35

Glass 68.90 49.52 66.54 68.50 58.46

hay 63.08 73.08 79.23 65.39 76.16

heart-c 52.52 56.42 55.15 51.21 56.43

heart-h 46.55 65.37 63.72 66.73 67.77

hepatitis 83.12 83.17 78.13 80.67 85.71

horse 79.05 77.96 83.54 84.75 81.51

iris 95.33 95.33 92.00 94.67 96.67

liver-disorders 60.87 55.89 66.34 64.56 58.56

lymphography 79.10 82.47 79.95 76.38 85.19

monks 56.73 62.73 60.36 61.46 63.64

mushrooms 100.00 95.77 100.00 100.00 100.00

nursery 36.75 90.37 96.93 97.18 93.12

parkinsons 95.42 70.13 88.76 88.16 87.16

pop 71.25 72.50 75.00 75.00 72.50

s-heart 73.33 84.82 78.52 75.56 84.45

soybean 96.70 79.94 94.10 96.59 92.60

thyroid 96.23 96.71 92.53 91.15 88.88

transfusion 61.55 70.07 73.91 73.78 71.75

ttt 67.37 70.63 98.00 85.58 98.42

vehicle 69.26 45.39 68.08 72.93 75.06

vertebral-2c 80.97 78.39 82.58 81.29 79.03

vertebral-3c 78.71 83.55 80.32 78.71 76.78

voting 88.73 85.94 93.66 94.48 92.97

zoo 98.75 93.75 95.00 97.50 98.75

97

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.4: Average Rankings of Predictive Accuracy

Entry Rank

SMO-SMO 9.58

SMO 10.66

1-NN-SMO 12.16

J48-SMO 12.19

JRip-JRip 12.36

J48 12.47

JRip-SMO 12.96

1-NN-J48 13.15

NB-SMO 13.91

JRip 14.04

NB-J48 14.38

J48-J48 14.38

JRip-J48 14.51

NB-NB 14.89

SMO-J48 15.66

1-NN-JRip 15.93

SMO-JRip 16.24

NB-JRip 17.31

J48-JRip 17.59

SMO-NB 17.66

SMO-1-NN 17.69

1-NN-1-NN 17.76

JRip-NB 18.05

J48-NB 18.34

NB 18.38

1-NN-NB 18.51

J48-1-NN 18.73

1-NN 18.84

NB-1-NN 19.23

JRip-1-NN 19.42

98

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.5: Size Reduction (%) Results

data set 1-NN NB JRip J48 SMO

annealing 19.93 20.57 21.13 21.79 19.18

audiology 14.73 16.6 15.16 18.88 16.28

automobile 14.53 18.54 17.94 18.05 18.1

breast-p 15.88 24.47 17.12 18.58 20.6

breast-tissue 15 19.54 17.75 16.59 23.98

breast-w 22.96 26.66 21.19 22.3 28.63

car 16.49 20.2 18.84 19.01 19.04

chess 18.58 20.8 19.58 25.88 19.99

credit-a 16.36 22.35 18.76 20.08 20.79

credit-g 16.2 19.06 19.98 18.02 19.31

cylinder 17.35 18.4 19.62 17.62 18.07

dermatology 22.89 27.23 21.07 23.86 26.32

ecoli 16.9 19.81 18.55 18.35 21.33

glass 13.97 19.02 16.37 16.16 17.58

hay 22.81 26.78 30.01 26.66 23.52

heart-c 12.73 17.42 18.34 16.21 17.45

heart-h 16.98 18.77 18.65 16.72 20.2

hepatitis 18.13 23.6 21.15 16.92 22.44

horse 16.89 20.29 19.66 29.18 21.22

iris 29.98 25.9 30.72 30.51 32.94

liver-disorders 14.75 20.64 18.5 17.68 17.55

lymphography 16.81 22.89 19.97 18.02 25.15

monks 16.48 32.98 17.59 17.93 19.04

mushrooms 33.5 33.37 33.64 33.09 19.46

nursery 17.28 19.87 23.5 19.32 19.67

parkinsons 28.27 27.41 20.74 21.25 26.1

pop 21.1 27.29 32.74 31.55 21.89

s-heart 16.21 21.36 19.3 18.35 22.06

soybean 20.18 20.57 16.75 18.57 21.88

thyroid 28.37 24.45 19.69 23.56 31.21

transfusion 16.25 25.38 21.02 20.59 21.88

ttt 16.2 34.17 21.08 19.19 18.92

vehicle 15.85 17.21 17.89 17.98 17

vertebral-2c 16.74 18.17 17.71 20.39 23.3

vertebral-3c 15.7 21.18 20.14 17.89 20.18

voting 20.99 24.33 25.32 29.08 28.42

zoo 31.49 30.25 21.78 25.47 33.51

99

CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.6: Best Performing Combinations

g Best Performing h

1-NN SMO

NB J48

JRip JRip

J48 SMO

SMO SMO

(a) Best for g

h Best Performing g

1-NN SMO

NB NB

JRip JRip

J48 NB

SMO SMO

(b) Best for h

for g (the classification algorithm used during training), we can see that SMO

showed up as the best performing h for three algorithms: 1-NN, JRip and

SMO itself. On the other hand, when analyzing for h (the classification algo-

rithm used during testing), we see that SMO and NB tie for two algorithms

each while JRip was the best performing when compared with itself.

100

Chapter 8

Conclusions and Future Work

In this chapter, we will summarize the conclusions that we have arrived at

through our work building ADR-Miner and round things off with suggestions

for possible avenues of future research.

8.1 Conclusions

In this dissertation, we introduced ADR-Miner: a data reduction algorithm

that utilizes ant colony optimization to perform data reduction via instance

selection. Ant colony optimization (ACO) is a search meta-heuristic that

was inspired from the foraging behavior observed in ants and that was orig-

inally designed to tackle combinatorial optimization problems but has since

been extended to tackle multiple other types of problems. Data reduction

is the process of removing erroneous, outlier, irrelevant and noisy data prior

to being presented to data mining and machine learning. The benefits of

data reduction are two fold: remove any data that might be detrimental to

the quality of the model being learned and reduce the amount of data to be

101

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

processed and maintained by the data mining or machine learning algorithm.

One common method of data reduction is instance selection, where the aim of

the reduction algorithm is to extract the minimum number of instances from

the original data set that can be used to build a data mining model with-

out sacrificing effectiveness. ADR-Miner adapts ACO to perform instance

selection with aim of improving the effectiveness of classification algorithm

models.

In order to adapt ACO to perform data reduction, we had to go through

four steps: adapting the problem into a search space that can be traversed by

the ants in ACO, defining the mechanics of the overall meta-heuristic that

will be used to guide the ants as they traverse the search space, defining

how the ants construct solutions, defining how solution quality is gauged

and finally defining how pheromone trails are maintained and updated. In

order to translate the problem into a traversable search space, a graph is

constructed where each instance in the original set is represented by two

in the graph: one node whose selection would imply the inclusion of that

instance in the final set and another that implies its exclusion. Ants would

traverse the graph selecting one of the two mentioned nodes per instance, till

one node from the pair per instance has been selected for all instances in the

original set. The instances that have their inclusion component selected will

then make it in the reduced set. Each ant will do this, and only the ant with

the best performing solution is allowed to drop pheromone on the components

that make up its solution. As each ant contemplates a choice between two

nodes for a given instance, it will consider two items of information: the

amount of pheromone present on the node and the heuristic value associated

102

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

with picking that node. The ants iterate till they exhaust an iteration cap

or the converge on a solution. Two versions of the ADR-Miner algorithm

exist: one that uses the same classification algorithm for both training and

testing, one that use separate classification algorithms for each phase of the

algorithm.

The first version of the ADR-Miner algorithm was evaluated using three

classification algorithms (k-Nearest Neighbor, Ripper and C4.5) with 20 data

sets from the UCI Machine Learning repository, and its performance was

benchmarked against Iterative Case Filtering (ICF), another data reduction

algorithm. Results from this evaluation show that ADR-Miner has produced

statistically significant better predictive accuracy at the conventional 0.05

threshold compared to the base classification algorithms when used with

the k-Nearest Neighbor and Ripper algorithms. ADR-Miner also produced

statistically significant improvements in predictive accuracy when compared

to the ICF algorithm when paired with Ripper and C4.5 algorithms.

The extended version of the ADR-Miner algorithm (where two different

classification algorithms are used during training and testing) was evaluated

using five classification algorithms (Support Vector Machines, Naive-Bayes,

k-Nearest Neighbor, Ripper and C4.5) and against 37 data sets from the UCI

Machine Learning repository. Here, all possible pairings of the five classifi-

cation algorithms were tested, and their performance is compared to the five

classification algorithms without reduction. Results show that using pairings

of classification algorithms in ADR-Miner has generally had a positive im-

pact on the predictive accuracy when compared to using the base classifier

algorithms without any reduction.

103

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

The ADR-Miner algorithm in its current form can be considered an explo-

ration into adapting ACO to perform instance selection in particular, and

data reduction in general. Various improvements can be introduced to the

base ADR-Miner algorithm that would present it as a more competent data

reducer, and in the next few paragraphs we will discuss examples of such

improvements.

One of the improvements that can be introduced to ADR-Miner is to

use better inclusion or exclusion heuristics. The current heuristic used with

ADR-Miner only gave instances a higher bias towards inclusion, and the

pheromone feedback and fitness mechanisms were more relied on for exclu-

sion. To allow for the heuristic side of the transition probability equation 2.1

to play a bigger role, one could use a different heuristic that would provide

more apriori information towards the utility of keeping or removing a given

instance. Building on the work presented in the ”Related Work” chapter,

one could suggest using one or more of the following heuristcs:

• Wilson Ratio: This is a ratio that is based on the Wilson Editing algo-

rithm. First, for any given instance, one would retrieve the k nearest

neighbors and collate their votes towards the classification of the in-

stance at hand. The ratio then becomes the number of neighbors that

correctly classify the instance studied divided by k. The lower the value

of the ratio, the more undesirable the instance becomes and vice versa.

• Reach/Cover Ratio: This ratio is derived from the work of Brighton et

al [11] on Iterative Case Filtering (ICF). For every instance investigated

104

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

we calculate two numbers: The number of instances that have the one

investigated as their neighbor (Cover) and the number of instances

where the investigated one lies within their neighborhood (Reach). The

ratio is then calculated as Reach divided by Cover. The higher the value

of the ratio, the more undesirable the instance becomes and vice versa.

• Drop Count: This measure is based on Wilson et al work on the DROP

family of algorithms [10]. We start by considering the effect of remov-

ing a given instance from a neighborhood of k neighbors, where k is

small and odd. We then count the number of instances that would be

misclassified if the instance is removed. The higher the this number,

the Drop count, the more desirable it is to keep this instance and vice

versa.

The items on this list can be chained together to produce heuristics of a higher

confidence towards inclusion or exclusion. Of course, the items presented

on this list are for example and are by no means a comprehensive list of

all possibilities for the development of better heuristics. One could easily

envision new heuristics based on the work done in non-stochastic instance

reduction.

From the results, one could see that although ADR-Miner proved to be

superior in terms of accuracy, it was non-competitive in terms of size reduc-

tion. As such, one could improve the ADR-Miner algorithm in terms of size

reduction by the tackling the problem as a multi-objctive one: one that seeks

a compromise betwen optimizing for accuracy and optimizing for size reduc-

tion. As with any other multi-objective optimization problem, doing so with

ADR-Miner will produce not just one possible reduction scheme but instead

105

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

a set of possible solutions - those lying on the Pareto front or as close a pos-

sible an estimation of it. This would provide a user a choice among solutions

that are biased towards accuracy while sacrificing size reduction, those that

favor size reduction over accuracy or those that achieve a balance between

both. To achieve such an objective, one would shy away from aggregating

the fitness functions during implementation (as that would only produce one

solution lying on the front) and favor approaches based on dominance to get

a better estimation of the Pareto front.

So far, ADR-Miner has been solely focused on instance selection and

an obvious extension would be to add feature selection to the algorithm,

making it a more well-rounded data mining preprocessing task. Feature

selection is the process of removing features or attributes from the data set

prior to processing with similar objectives as instance selection: improving

the accuracy of the models produced and reducing the size of the data to be

handled. As with instance selection, the reduction process will be based on

both heuristic and stigmergic information that will be used by the ants in the

colony. As an example of heuristic information, one could use the information

gain ratio (Equations 2.16, 2.17 and 2.18) developed by Claude Shannon

during her work on information theory [9]. Using the information ratio,

the algorithm would be more biased to removing instances that relatively

remove less entropy from the data set. The process of feature selection could

be intertwined with instance selection in one of two schemes: as a phased

approach, where one process would work on the data set for a phase of

the entire run and then switch focus to the other, or as two independent

subswarms that occasionally exchange information regarding reduction on

106

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

either front of instances and attributes.

If ADR-Miner is to be used in a commercial context, then it would have

to deal with the fact that commercial applications deal with data sets that

change over time. Running the ADR-Miner algorithm over and over again

with every new change to the underlying data set would be computationally

expensive and unpractical. This leads us to another possible area of further

improvement to the algorithm: to change the algorithm to be dynamic, one

that adapts to changes in the data set as they occur and updating the filtered

data set accordingly. This would also need us to pair ADR-Miner with a

dynamic classifier as it would make no sense if we only update a data mining

preprocessing task to be dynamic only to end up retraining the classifier

over and over again, and lose any gains in computational expense. To allow

the ACO to cope with an ever changing search space, it would have to be

redesigned to be biased more towards exploration versus exploitation with

pheromone level updates that are triggered by changes in the underlying

data set. This can be done by giving higher values to β, as well as adding

a constant r0 in the transition probability function that provides a higher

bias towards the heuristic side of the equation. This, of course, is not the

only means of adapting the ACO meta-heuristic to cope with dynamic search

spaces, and other schemes can be found in [17]. Doing so, as well as keeping

an archive of previous best solutions and their components, would allow the

ADR-Miner to handle the dynamic nature of some commercial applications

of instance selection.

The improvements suggested so far aim to improve the competence of

ADR-Miner as a data reducer. These are by no means an exhaustive list,

107

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and one could imagine that an interested researcher can come up with other

means of improvements that did not occur to the author.

108

Appendix - Pairing Results

(Alternate View)

109

CHAPTER 8. APPENDIX - PAIRING RESULTS (ALTERNATE VIEW)

T
ab

le
8.

1:
g
−
h

P
ai

ri
n
g-

b
as

ed
P

re
d
ic

ti
ve

A
cc

u
ra

cy
(%

)
R

es
u
lt

s
fo

r
A

D
R

-M
in

er

1
-N

N
1
-N

N
1
-N

N
1
-N

N
1
-N

N
J
4
8

J
4
8

J
4
8

J
4
8

J
4
8

J
R

ip
J
R

ip
J
R

ip
J
R

ip
J
R

ip
N

B
N

B
N

B
N

B
N

B
S
M

O
S
M

O
S
M

O
S
M

O
S
M

O

D
a
t
a

S
e
t

1
-N

N
J
4
8

J
R

ip
N

B
S
M

O
1
-N

N
J
4
8

J
R

ip
N

B
S
M

O
1
-N

N
J
4
8

J
R

ip
N

B
S
M

O
1
-N

N
J
4
8

J
R

ip
N

B
S
M

O
1
-N

N
J
4
8

J
R

ip
N

B
S
M

O

a
n
n
e
a
li
n
g

9
4
.4
1

9
1
.9
0

9
3
.9
3

7
7
.7
3

8
5
.7
4

9
3
.9
5

9
4
.9
8

9
4
.1
6

7
6
.6
9

8
5
.9
8

9
3
.4
9

9
0
.6
5

9
4
.9
7

7
9
.2
0

8
5
.9
7

9
4
.1
8

9
1
.4
3

9
3
.8
3

8
8
.7
1

8
4
.3
8

9
3
.9
5

9
2
.0
2

9
4
.0
6

7
9
.5
6

8
9
.8
6

a
u
d
io

lo
g
y

8
0
.8
3

7
8
.3
3

7
8
.3
3

8
5
.0
0

8
8
.3
3

7
7
.5
0

8
5
.8
3

7
5
.8
3

7
9
.1
7

8
9
.1
7

8
0
.8
3

8
2
.5
0

8
4
.1
7

8
4
.1
7

9
0
.0
0

7
7
.5
0

8
3
.3
3

7
9
.1
7

8
5
.0
0

9
0
.8
3

8
0
.8
3

8
4
.1
7

8
0
.8
3

8
2
.5
0

9
0
.8
3

a
u
t
o
m

o
b
il
e

7
3
.6
4

8
0
.5
7

7
1
.7
1

5
7
.5
2

7
1
.2
1

7
2
.1
9

8
4
.3
3

7
2
.7
6

5
6
.0
5

6
5
.3
1

7
2
.6
2

7
7
.0
5

7
6
.1
2

5
8
.0
5

6
6
.6
9

6
9
.2
6

7
7
.9
8

7
1
.2
4

6
1
.9
3

6
8
.2
4

7
2
.7
1

7
6
.1
4

7
1
.7
9

5
7
.5
7

7
2
.6
4

b
r
e
a
s
t
-p

6
9
.1
6

7
3
.2
1

7
3
.6
8

6
7
.1
3

7
6
.2
9

6
7
.1
6

6
1
.0
0

7
3
.2
4

6
4
.6
3

7
6
.2
9

6
7
.1
6

7
2
.1
6

6
9
.2
1

6
6
.1
3

7
6
.2
9

6
7
.7
1

6
9
.1
3

6
9
.6
1

6
8
.6
8

7
6
.2
9

6
7
.6
8

6
4
.5
0

7
1
.2
4

6
6
.1
3

7
4
.7
6

b
r
e
a
s
t
-t

is
s
u
e

6
7
.1
8

6
2
.2
7

5
8
.8
2

6
6
.1
8

5
8
.7
3

6
8
.0
9

6
6
.3
6

5
5
.8
2

6
4
.3
6

5
5
.8
2

6
8
.2
7

6
2
.3
6

6
3
.4
5

6
7
.2
7

5
8
.8
2

6
7
.2
7

5
8
.5
5

6
2
.1
8

6
5
.4
5

5
7
.7
3

6
7
.0
0

6
2
.1
8

5
9
.4
5

6
4
.3
6

6
0
.6
4

b
r
e
a
s
t
-w

9
5
.7
9

9
5
.7
9

9
3
.1
5

9
3
.3
3

9
7
.5
4

9
6
.1
4

9
3
.6
7

9
3
.3
2

9
3
.3
3

9
7
.5
4

9
4
.9
1

9
1
.9
1

9
4
.2
0

9
3
.5
1

9
7
.0
2

9
5
.7
9

9
2
.4
4

9
2
.6
2

9
3
.8
6

9
7
.3
7

9
5
.2
6

9
4
.0
3

9
3
.3
2

9
2
.8
0

9
7
.7
2

c
a
r

6
3
.3
3

9
2
.0
5

8
3
.5
1

8
6
.2
6

9
2
.8
1

6
3
.2
2

9
2
.8
7

8
4
.9
7

8
6
.4
3

9
3
.3
3

6
3
.2
7

9
1
.1
1

8
9
.5
9

8
5
.3
8

9
2
.6
3

6
2
.9
8

9
1
.8
1

8
5
.2
0

8
7
.5
4

9
3
.1
0

6
3
.2
7

9
1
.7
5

8
3
.9
2

8
6
.6
1

9
3
.3
9

c
h
e
s
s

8
6
.0
4

9
9
.2
1

9
9
.0
6

8
7
.8
6

9
5
.6
9

8
5
.8
5

9
9
.4
3

9
8
.8
4

8
7
.9
9

9
5
.2
2

8
5
.1
9

9
9
.3
7

9
9
.1
8

8
7
.6
7

9
5
.2
2

8
5
.3
8

9
9
.1
8

9
9
.0
9

8
8
.9
6

9
5
.5
3

8
5
.7
2

9
9
.2
1

9
9
.2
1

8
7
.9
6

9
6
.7
0

c
r
e
d
it
-a

8
0
.5
8

8
5
.5
1

8
6
.0
9

7
7
.1
0

8
4
.7
8

8
1
.1
6

8
5
.0
7

8
5
.2
2

7
7
.8
3

8
5
.5
1

8
0
.7
2

8
5
.5
1

8
5
.6
5

7
6
.6
7

8
4
.6
4

8
1
.3
0

8
5
.5
1

8
3
.7
7

7
7
.6
8

8
4
.7
8

7
8
.8
4

8
6
.0
9

8
6
.9
6

7
6
.9
6

8
4
.7
8

c
r
e
d
it
-g

6
9
.0
0

7
1
.6
0

7
3
.6
0

7
4
.9
0

7
4
.6
0

6
9
.9
0

7
0
.7
0

7
0
.0
0

7
5
.1
0

7
3
.9
0

6
9
.5
0

7
0
.6
0

7
0
.4
0

7
4
.5
0

7
3
.5
0

7
0
.6
0

7
1
.9
0

7
3
.8
0

7
4
.8
0

7
3
.2
0

6
8
.7
0

7
0
.6
0

7
1
.1
0

7
3
.7
0

7
4
.1
0

c
y
li
n
d
e
r

6
8
.1
9

7
3
.7
9

6
7
.1
0

6
6
.3
2

7
2
.1
1

6
8
.7
5

7
1
.3
7

6
9
.8
7

6
6
.5
1

7
2
.4
8

6
8
.9
4

7
1
.9
0

7
3
.2
5

6
7
.6
4

7
2
.4
8

6
7
.2
6

7
3
.7
9

6
7
.8
2

7
0
.6
0

7
4
.3
4

6
7
.8
2

7
1
.5
5

6
5
.6
0

6
9
.3
0

7
3
.9
6

d
e
r
m

a
t
o
lo

g
y

9
4
.2
6

9
4
.2
6

8
7
.9
5

9
7
.8
1

9
5
.8
8

9
4
.2
6

9
3
.9
9

8
8
.2
7

9
8
.0
9

9
7
.2
7

9
3
.4
5

9
3
.9
7

9
1
.3
0

9
8
.0
9

9
7
.5
5

9
3
.4
5

9
2
.9
1

8
8
.5
7

9
7
.2
6

9
6
.4
5

9
3
.9
9

9
3
.9
8

8
7
.7
1

9
8
.3
6

9
7
.2
7

e
c
o
li

8
0
.7
2

8
3
.3
6

8
1
.8
6

8
4
.8
7

8
3
.0
6

8
2
.7
9

8
2
.7
8

8
0
.9
8

8
5
.1
8

8
4
.2
1

7
9
.7
9

8
1
.8
9

8
2
.1
6

8
4
.2
7

8
2
.7
5

8
0
.4
4

8
1
.6
0

7
9
.8
0

8
5
.7
8

8
1
.8
6

8
2
.1
8

7
8
.9
6

7
7
.1
1

8
5
.8
0

8
6
.0
4

g
la

s
s

6
8
.9
2

7
0
.7
9

6
7
.0
0

4
8
.5
7

5
6
.5
8

6
9
.3
3

6
8
.8
2

6
5
.5
5

4
8
.9
4

5
5
.1
5

6
6
.0
4

6
8
.4
1

7
0
.3
4

4
7
.9
5

5
6
.0
1

6
8
.8
6

7
0
.3
4

6
5
.1
4

5
9
.3
7

5
1
.7
5

6
6
.0
6

7
2
.1
8

6
1
.9
1

4
7
.7
7

6
2
.2
7

h
a
y

6
3
.0
8

6
3
.0
8

7
9
.2
3

6
8
.4
6

7
8
.4
6

6
2
.3
1

6
2
.3
1

7
5
.3
8

7
1
.5
4

7
7
.6
9

5
8
.4
6

6
6
.9
2

7
4
.6
2

6
9
.2
3

7
7
.6
9

6
2
.3
1

6
5
.3
8

8
2
.3
1

7
6
.9
2

7
7
.6
9

6
0
.0
0

6
7
.6
9

8
1
.5
4

7
3
.0
8

7
4
.6
2

h
e
a
r
t
-c

5
3
.8
3

5
3
.8
3

5
5
.4
8

5
6
.7
7

5
5
.7
7

5
2
.5
2

5
1
.4
4

5
4
.4
7

5
6
.4
0

5
6
.7
5

5
2
.8
4

5
1
.5
1

5
1
.5
2

5
6
.7
4

5
6
.7
8

5
2
.8
1

5
7
.0
8

5
4
.4
7

5
6
.4
4

5
5
.7
6

5
1
.8
6

5
0
.8
5

5
4
.4
8

5
6
.7
6

5
6
.7
5

h
e
a
r
t
-h

6
2
.4
3

6
7
.0
6

6
3
.0
1

6
6
.0
5

6
6
.7
6

5
1
.4
2

6
6
.6
7

6
4
.0
7

6
5
.3
7

6
8
.1
2

4
6
.5
1

6
6
.1
3

6
4
.7
4

6
3
.3
0

6
5
.4
1

4
8
.5
7

6
6
.4
2

6
2
.3
1

6
6
.0
4

6
7
.1
0

4
8
.5
3

6
7
.0
7

6
5
.7
8

6
5
.6
9

6
9
.1
2

h
e
p
a
t
it
is

8
2
.4
6

7
9
.3
3

7
8
.7
5

8
3
.1
7

8
3
.8
3

8
3
.1
7

8
0
.7
1

8
1
.2
5

8
3
.2
1

8
3
.1
7

8
0
.5
8

8
1
.9
6

8
5
.7
9

8
2
.5
8

8
4
.4
6

8
1
.8
8

7
9
.3
8

8
0
.6
7

8
6
.2
9

8
2
.5
4

8
4
.5
0

7
9
.3
8

8
2
.5
8

8
3
.2
1

8
3
.2
1

h
o
r
s
e

7
8
.4
6

8
4
.1
5

8
6
.4
4

7
8
.5
3

8
0
.9
9

7
9
.6
9

8
3
.6
0

8
3
.3
0

7
8
.5
4

8
0
.7
3

7
9
.0
4

8
4
.7
4

8
5
.0
3

7
9
.4
1

8
3
.3
0

7
9
.3
4

8
4
.4
2

8
4
.1
1

7
9
.9
6

8
1
.7
8

8
1
.6
7

8
4
.1
7

8
4
.4
8

7
9
.1
4

7
9
.5
6

ir
is

9
5
.3
3

9
2
.6
7

9
4
.0
0

9
4
.6
7

9
6
.0
0

9
4
.6
7

9
4
.0
0

9
2
.0
0

9
6
.0
0

9
6
.0
0

9
5
.3
3

9
5
.3
3

9
4
.6
7

9
6
.0
0

9
4
.6
7

9
6
.0
0

9
1
.3
3

9
0
.0
0

9
6
.0
0

9
6
.6
7

9
6
.0
0

9
3
.3
3

9
2
.6
7

9
6
.0
0

9
6
.0
0

li
v
e
r
-d

is
o
r
d
e
r
s

6
2
.6
2

6
5
.5
0

6
9
.5
8

5
4
.7
4

5
8
.2
8

6
1
.1
5

6
4
.8
8

6
5
.4
5

5
4
.7
1

5
7
.9
8

6
1
.1
3

6
3
.9
9

6
8
.0
8

5
4
.4
6

5
7
.7
0

6
1
.7
2

6
4
.0
4

6
7
.8
2

6
4
.0
2

5
8
.5
6

6
1
.7
2

6
4
.7
1

6
1
.4
3

5
4
.7
7

5
8
.5
6

ly
m

p
h
o
g
r
a
p
h
y

8
3
.7
6

7
7
.1
0

7
9
.7
6

8
2
.4
8

8
3
.1
0

7
9
.1
0

7
7
.9
0

7
9
.1
4

8
1
.1
4

8
5
.8
6

7
9
.0
5

7
9
.8
6

7
8
.4
3

8
2
.4
8

8
5
.1
9

7
7
.8
1

7
7
.1
4

7
5
.8
6

8
4
.4
8

7
9
.8
1

7
9
.1
4

7
0
.3
3

7
3
.0
5

8
1
.9
0

8
1
.1
9

m
o
n
k
s

5
7
.0
9

5
8
.7
3

5
7
.0
9

6
1
.0
9

6
2
.5
5

5
7
.4
5

5
4
.5
5

6
0
.1
8

6
1
.2
7

6
3
.6
4

5
6
.7
3

5
9
.6
4

6
0
.0
0

6
1
.2
7

6
3
.4
5

5
7
.6
4

5
8
.9
1

6
2
.1
8

6
3
.4
5

6
3
.6
4

5
7
.6
4

5
8
.7
3

6
0
.7
3

5
8
.9
1

6
4
.0
0

m
u
s
h
r
o
o
m

s
1
0
0
.0
0

1
0
0
.0
0

9
9
.9
6

9
5
.3
8

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

9
9
.9
6

9
5
.2
9

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

9
5
.2
4

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

9
9
.9
6

9
6
.0
2

1
0
0
.0
0

1
0
0
.0
0

1
0
0
.0
0

9
9
.9
8

9
5
.5
2

1
0
0
.0
0

n
u
r
s
e
r
y

4
2
.9
1

9
6
.5
7

9
6
.4
5

9
0
.4
0

9
3
.0
8

4
3
.1
3

9
6
.7
8

9
6
.4
1

9
0
.3
4

9
3
.0
5

9
8
.5
0

9
7
.3
0

9
8
.5
0

9
4
.4
0

9
7
.3
0

4
3
.2
8

9
6
.5
1

9
6
.4
0

9
1
.0
0

9
3
.0
1

4
3
.3
6

9
6
.3
6

9
6
.5
8

9
0
.4
4

9
3
.3
3

p
a
r
k
in

s
o
n
s

9
4
.8
9

8
1
.8
9

8
2
.1
1

7
1
.6
8

8
5
.0
8

9
5
.4
2

8
6
.1
6

8
6
.1
1

7
1
.1
8

8
6
.1
3

9
3
.3
9

8
3
.1
1

8
5
.6
1

7
1
.1
8

8
7
.1
8

9
2
.3
4

8
1
.0
0

8
4
.6
1

7
4
.2
9

8
4
.6
1

9
5
.3
4

8
4
.0
8

8
7
.1
6

7
0
.1
1

8
7
.6
8

p
o
p

7
0
.0
0

7
5
.0
0

7
3
.7
5

6
8
.7
5

7
0
.0
0

6
8
.7
5

6
6
.2
5

7
0
.0
0

7
2
.5
0

7
0
.0
0

7
1
.2
5

7
2
.5
0

7
2
.5
0

6
8
.7
5

7
2
.5
0

7
1
.2
5

7
5
.0
0

7
5
.0
0

6
8
.7
5

7
1
.2
5

7
0
.0
0

7
2
.5
0

7
3
.7
5

7
1
.2
5

7
0
.0
0

s
-h

e
a
r
t

7
4
.0
7

7
7
.0
4

7
7
.7
8

8
4
.4
4

8
4
.4
4

7
4
.8
1

7
6
.3
0

7
7
.7
8

8
3
.7
0

8
5
.1
9

7
5
.5
6

7
5
.1
9

7
8
.5
2

8
4
.0
7

8
4
.8
1

7
4
.0
7

7
7
.7
8

7
7
.0
4

8
3
.7
0

8
3
.3
3

7
4
.8
1

7
8
.8
9

7
9
.2
6

8
4
.4
4

8
2
.5
9

s
o
y
b
e
a
n

9
0
.0
0

8
3
.7
9

8
3
.7
9

8
8
.2
8

9
0
.0
0

8
8
.6
2

8
4
.4
8

8
4
.1
4

8
8
.6
2

9
0
.0
0

8
6
.5
5

8
3
.1
0

8
3
.7
9

8
7
.5
9

8
9
.3
1

8
6
.2
1

8
5
.8
6

8
1
.3
8

8
8
.6
2

8
8
.6
2

8
6
.9
0

8
3
.1
0

8
3
.7
9

8
9
.3
1

8
8
.6
2

t
h
y
r
o
id

9
3
.9
6

9
1
.6
0

9
2
.5
3

9
6
.7
1

8
7
.0
3

9
4
.8
7

9
2
.1
4

9
2
.1
0

9
7
.6
4

8
8
.4
4

9
5
.7
8

9
3
.4
8

9
0
.6
9

9
6
.7
1

8
8
.4
2

9
3
.9
6

9
3
.4
4

9
3
.0
1

9
6
.6
9

8
7
.0
1

9
5
.7
8

9
1
.1
5

9
2
.0
6

9
7
.1
6

8
8
.8
7

t
r
a
n
s
fu

s
io

n
6
2
.2
2

7
3
.9
1

7
3
.9
9

7
0
.2
6

7
1
.7
4

6
2
.0
8

7
1
.8
2

7
3
.7
9

6
9
.4
8

7
1
.7
4

6
3
.5
3

7
2
.4
1

7
2
.8
2

7
0
.0
5

7
1
.9
4

6
2
.7
4

7
2
.2
9

7
2
.8
9

7
1
.4
9

7
1
.7
4

6
4
.5
5

7
2
.0
4

7
3
.6
5

6
9
.2
0

7
2
.3
1

t
t
t

6
7
.3
7

8
3
.2
6

9
7
.3
7

6
9
.1
6

9
8
.4
2

6
7
.3
7

8
5
.7
9

9
7
.3
7

7
0
.7
4

9
8
.4
2

6
7
.5
8

8
2
.7
4

9
6
.9
5

6
9
.8
9

9
8
.4
2

6
7
.5
8

8
4
.9
5

9
7
.7
9

7
2
.6
3

9
8
.4
2

6
7
.8
9

8
2
.3
2

9
8
.2
1

7
1
.3
7

9
8
.4
2

v
e
h
ic

le
6
7
.7
3

6
9
.3
9

7
0
.5
8

4
5
.0
4

7
4
.9
4

7
0
.0
9

7
2
.3
5

6
9
.8
6

4
5
.0
4

7
3
.8
8

6
8
.0
8

7
1
.9
9

7
1
.1
5

4
4
.6
9

7
3
.9
9

6
9
.2
6

7
2
.1
1

6
7
.5
1

5
0
.9
5

7
4
.2
3

6
7
.7
2

7
1
.8
7

6
9
.9
8

4
5
.1
4

7
3
.8
8

v
e
r
t
e
b
r
a
l-
2
c

8
0
.3
2

8
1
.9
4

8
0
.6
5

7
8
.0
6

7
3
.5
5

7
6
.7
7

8
2
.2
6

7
8
.7
1

7
8
.7
1

7
6
.7
7

7
7
.1
0

8
0
.3
2

8
0
.6
5

7
8
.3
9

7
8
.3
9

7
7
.7
4

8
1
.2
9

8
0
.0
0

7
7
.7
4

7
1
.2
9

8
0
.9
7

8
0
.9
7

8
2
.5
8

7
8
.3
9

8
3
.5
5

v
e
r
t
e
b
r
a
l-
3
c

7
9
.6
8

8
1
.2
9

7
9
.6
8

8
1
.9
4

8
0
.6
5

7
8
.7
1

8
0
.6
5

7
8
.7
1

8
2
.2
6

7
4
.1
9

7
8
.3
9

8
0
.3
2

7
9
.6
8

8
2
.9
0

7
5
.8
1

8
0
.3
2

7
9
.3
5

8
0
.3
2

8
2
.5
8

7
6
.4
5

8
0
.3
2

8
0
.3
2

7
7
.4
2

8
2
.5
8

8
3
.2
3

v
o
t
in

g
8
8
.9
9

9
4
.4
8

9
2
.8
9

8
5
.9
4

9
4
.2
6

8
8
.0
3

9
4
.8
8

9
3
.9
6

8
5
.6
3

9
3
.8
2

8
9
.4
1

9
4
.2
5

9
5
.5
5

8
5
.9
8

9
3
.6
3

8
8
.6
4

9
3
.6
8

9
3
.6
8

8
5
.9
8

9
3
.9
1

8
9
.0
6

9
3
.7
7

9
2
.8
9

8
5
.9
4

9
5
.4
6

z
o
o

9
8
.7
5

9
8
.7
5

9
7
.5
0

9
3
.7
5

9
8
.7
5

9
8
.7
5

9
6
.2
5

8
5
.0
0

9
3
.7
5

9
8
.7
5

9
8
.7
5

9
7
.5
0

9
3
.7
5

9
6
.2
5

9
6
.2
5

9
8
.7
5

9
8
.7
5

9
1
.2
5

9
6
.2
5

9
6
.2
5

9
8
.7
5

9
7
.5
0

9
1
.2
5

9
3
.7
5

9
8
.7
5

110

Bibliography

[1] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using

edited data,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 2, no. 3, pp. 408–421, 1972.

[2] I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 6, no. 6, pp. 448–

452, 1976.

[3] D. Aha, D. Kibler, and M. Albert, “Instance-based learning algorithms,”

Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[4] M. Dorigo, “Optimization, learning and natural algorithms (in ital-

ian),” PhD thesis, Dipartimento di Elettronica, Politecnico di Milano,

Italy, 1992.

[5] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[6] T. Stützle and H. Hoos, “Max-min ant system and local search for the

traveling salesman problem,” Evolutionary Computation, IEEE Inter-

national Conference on, pp. 309–314, 1997.

[7] M. Dorigo, G. M. Caro, and L. M. Gambardella, “Ant algorithms for

discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

111

BIBLIOGRAPHY

[8] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge, UK:

Cambridge University Press, 2000.

[9] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd.

San Francisco, CA, USA: Morgan Kaufmann, 2000.

[10] D. Wilson and T. Martinez, “Reduction techniques for instance-based

learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 257–286,

2000.

[11] H. Brighton and C. Mellish, “Advances in instance selection for instance-

based learning algorithms,” Data Mining and Knowledge Discovery,

vol. 6, no. 2, pp. 153–172, 2002.

[12] B. Liu, H. Abbass, and B. McKay, “Density-based heuristic for rule

discovery with ant-miner,” 6th Australasia-Japan Joint Workshop on

Intelligent and Evolutionary Systems, pp. 180–184, 2002.

[13] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an

ant colony optimization algorithm,” IEEE Transactions on Evolution-

ary Computation, vol. 6, no. 4, pp. 321–332, 2002.

[14] T. Stützle and M. Dorigo, “A short convergence proof for a class of

ant colony optimization algorithms,” Evolutionary Computation, IEEE

Transactions on, vol. 6, no. 4, pp. 358–365, Aug. 2002.

[15] M. Dorigo and T. Stützle, “The ant colony optimization metaheuristic:

algorithms, applications, and advances,” in Handbook of Metaheuris-

tics. New York City, NY, USA: Springer, 2003, ch. 9.

112

BIBLIOGRAPHY

[16] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,

USA: MIT Press, 2004.

[17] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.

Chichester, West Sussex, England, UK: Wiley, 2005.

[18] K. Socha and C. Blum, “Training feed-forward neural networks with

ant colony optimization: an application to pattern classification,” in

5th International Conference on Hybrid Intelligent Systems (HIS ’05),

Washington, DC, USA: IEEE Computer Society, 2005, pp. 233–238.

[19] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,

1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

2005.

[20] A. Chan and A. A. Freitas, “A new classification-rule pruning proce-

dure for an ant colony algorithm,” in Artificial Evolution, ser. Lecture

Notes in Computer Science, vol. 3871, Berlin, Heidelberg: Springer,

2006, pp. 25–36.

[21] J. Demšar, “Statistical comparisons of classifiers over multiple data

sets,” Journal of Machine Learning Research, vol. 1, no. 7, pp. 1–30,

2006.

[22] Y. P. Liu, M. G. Wu, and J. X. Qian, “Evolving neural networks us-

ing the hybrid of ant colony optimization and bp algorithms,” in 3rd

International Conference on Advances in Neural Networks (ISNN’06),

Berlin, Heidelberg: Springer-Verlag, 2006, pp. 714–722.

113

BIBLIOGRAPHY

[23] A. Asuncion and D. Newman. (2007). Uci machine learning reposi-

tory, [Online]. Available: http : / / www . ics . uci . edu / ~mlearn /

MLRepository.html.

[24] K. Socha and C. Blum, “An ant colony optimization algorithm for

continuous optimization: application to feed-forward neural network

training,” Neural Computing & Applications, vol. 16, pp. 235–247, 2007.

[25] S. S. Haykin, Neural Networks and Learning Machines, 3rd. Upper

Saddle River, New Jersey, USA: Prentice Hall, 2008.

[26] F. Otero, A. A. Freitas, and C. Johnson, “Cant-miner: an ant colony

classification algorithm to cope with continuous attributes,” in Ant

Colony Optimization and Swarm Intelligence (ANTS’08), ser. Lecture

Notes in Computer Science, Berlin, Heidelberg: Springer, 2008, pp. 48–

59.

[27] K. Socha and M. Dorigo, “Ant colony optimization for continuous do-

mains,” European Journal of Operational Research, vol. 185, pp. 1155–

1173, 2008.

[28] F. Otero, A. A. Freitas, and C. Johnson, “Handling continuous at-

tributes in ant colony classification algorithms,” in IEEE Symposium on

Computational Intelligence in Data Mining (CIDM 2009), New York,

NY, USA: IEEE Press, 2009, pp. 225–231.

[29] U. Boryczka and J. Kozak, “Ant colony decision trees – a new method

for constructing decision trees based on ant colony optimization,” in

Computational Collective Intelligence. Technologies and Applications,

vol. 6421, Berlin, Heidelberg: Springer, 2010, pp. 373–382.

114

BIBLIOGRAPHY

[30] A. A. Freitas, D. Wieser, and R. Apweiler, “On the importance of

comprehensible classification models for protein function prediction,”

IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics, vol. 7, no. 1, pp. 172–182, 2010.

[31] M. Gendreau and Y. Potvin, “Ant colony optimization: overview and

recent advances,” in Handbook of Metaheuristics, 2nd. New York City,

NY, USA: Springer US, 2010, pp. 227–263.

[32] ——, Handbook of Metaheuristics, 2nd. New York City, NY, USA:

Springer US, 2010.

[33] K. Salama and A. Abdelbar, “Extensions to the ant-miner classifi-

cation rule discovery algorithm,” in 7th International Conference on

Swarm Intelligence (ANTS’10), ser. Lecture Notes in Computer Sci-

ence, Berlin, Heidelberg: Springer, 2010, pp. 167–178.

[34] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, 3rd. San Francisco, CA, USA: Morgan Kauf-

mann, 2010.

[35] U. Boryczka and J. Kozak, “An adaptive discretization in the acdt

algorithm for continuous attributes,” in Computational Collective In-

telligence. Technologies and Applications, vol. 6923, Berlin, Heidelberg:

Springer, 2011, pp. 475–484.

[36] J. Frijters. (2011). Ikvm.net project, [Online]. Available: http://www.

ikvm.net/.

[37] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens,

“An empirical evaluation of the comprehensibility of decision table,

115

BIBLIOGRAPHY

tree and rule based predictive models,” Decision Support Systems, vol.

51, no. 1, pp. 141–154, 2011.

[38] D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: swarm

intelligence for data mining,” Machine Learning, vol. 82, no. 1, pp. 1–

42, 2011.

[39] K. Salama, A. Abdelbar, and A. A. Freitas, “Multiple pheromone types

and other extensions to the ant-miner classification rule discovery al-

gorithm,” Swarm Intelligence, vol. 5, no. 3-4, pp. 149–182, 2011.

[40] A. A. Freitas, “Comprehensible classification models: a position paper,”

ACM SIGKDD Explorations, vol. 15, no. 1, pp. 1–10, 2013.

[41] K. Salama, A. Abdelbar, F. Otero, and A. A. Freitas, “Utilizing mul-

tiple pheromones in an ant-based algorithm for continuous-attribute

classification rule discovery,” Applied Soft Computing, vol. 13, no. 1,

pp. 667–675, 2013.

[42] K. Salama and A. A. Freitas, “Abc-miner+: constructing markov blan-

ket classifiers with ant colony algorithms,” Memetic Computing, vol. 6,

no. 3, pp. 183–206, 2013.

[43] ——, “Learning bayesian network classifiers using ant colony optimiza-

tion,” Swarm Intelligence, vol. 7, no. 2-3, pp. 229–254, 2013.

[44] K. M. Salama and A. M. Abdelbar, “A novel ant colony algorithm for

building neural network topologies,” in 9th International Conference

on Swarm Intelligence (ANTS’14), ser. Lecture Notes in Computer

Science, vol. 8667, Berlin, Heidelberg: Springer, 2014, pp. 1–12.

116

BIBLIOGRAPHY

[45] K. Salama and A. A. Freitas, “Ant colony algorithms for constructing

bayesian multi-net classifiers,” Intelligent Data Analysis, 2014.

117

	ADR-Miner: An Ant-based data reduction algorithm for classification
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592508243.pdf._JZwy

