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Abstract

The vehicle-to-vehicle (V2V) communications channels are highly time-varying, making

reliable communication difficult. This problem is particularly challenging because the

standard of the V2V communications (IEEE 802.11p standard) is based on the WLAN

IEEE 802.11a standard, which was designed for indoor, relatively stationary channels; so

the IEEE 802.11p standard is not customized for outdoor, highly mobile non-stationary

channels.

In this thesis,We propose Channel estimation and tracking algorithms that are suitable

for highly-time varying channels. The proposed algorithms utilize the finite alphabet

property of the transmitted symbol, time domain truncation, decision-directed as well

as pilot information. The proposed algorithms improve the overall system performance

in terms of bit error rates, enabling the system to achieve higher data rates and larger

packet lengths at high relative velocities. Simulation results show that the proposed

algorithms achieve improved performance for all the V2V channel models with different

velocities, and for different modulation schemes and packet sizes as compared to the

conventional least squares and other previously proposed channel estimation techniques

for V2V channels.
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Chapter 1

Introduction

1.1 Motivation

To realize many future applications in the vehicular communication that vary from

simple safety messages and infotainment to autonomous driving, a robust network of

connected vehicles is desired. Vehicle-to-vehicle (V2V) communications enable vehicles

to stay connected to each other and react to any exchange of information.

V2V communication is a part of the intelligent transportation system that promises to

increase road safety and take the driving experience to a next level where the driver

can see far beyond what he usually used to see; drivers will be able to get safety mes-

sages and alerts of expected road hazards. Moreover V2V communication can reduce

traffic jams and decrease road accidents by various applications [2] [3] such as traffic

light optimal speed advisory, cooperative forward collision warning, hazardous location

V2V notifications and remote wireless diagnosis. Futuristic V2V applications envision

autonomous driving where the driver’s role is just to enjoy the smooth ride.

In order to take advantage of all these upcoming applications, a robust way of commu-

nication between vehicles must be established. Accurate and reliable channel estimation

is critical to the overall system performance, and in V2V communications the main

challenge to system performance is the extremely time varying channel characteristics

due to vehicular high speeds and the high mobility of the environment around including

scatterers.

Although the fourth generation standard of mobile cellular networks can support high

speeds, vehicular networks are a different story as it has two major challenges rather

than only speed. First safety applications cannot withstand high delay coming from the

round trip of the fourth generation (from the mobile to the base station and vice versa).

1
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Second even non safety applications need fast connection setup with the base station

because of the small time the car takes within the coverage area of a certain base station.

Also the V2V environment is much more challenging than the cellular environment as

both the transmitter and the receiver are moving as well as the scatterers.

The IEEE 802.11p standard (referred to as Dedicated Short Range Communication

(DSRC)) is the officially implemented standard for the V2V communications. DSRC

is a variant of the well-known standard IEEE 802.11a with few changes such as band-

width and operating frequency. 802.11a is the WLAN standard which was developed

for relatively stationary environment applicable for the indoor use. That is why trying

to enhance the system performance while complying with the 802.11p standard is very

challenging in the highly dynamic V2V channels.

The DSRC system is one of the fundamental building blocks of the US Department

of Transportations’ vehicle infra-structure integration (VII) initiative. VII envisions

a nation-wide system in which intelligent vehicles communicate with each other and

the transportation infra-structure. The purpose is to provide new services that ensure

significant safety, mobility and commercial benefits. In many ways, the deployment of

VII could reduce highway fatalities and improve the quality of life.
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1.2 Literature Review

The majority of work done in channel estimation algorithms for OFDM systems in

highly dynamic environments is independent of any specific standard while some work

has been done on the channel estimation and tracking for the IEEE 802.11p standard,

but the performance did not reach yet the satisfactory levels able to realize V2V critical

applications.

The performance study in [4] indicated that conventional channel estimation is not a

suitable choice for DSRC applications. In order to improve the performance of DSRC

systems, it is necessary to track the rapid fluctuation of the channel response within the

packet duration.

In [5], several equalization schemes were developed to closely track the V2V channel

and thus decrease the packet error rate (PER). Through a set of empirical experiments,

it was shown that the PER could be decreased using the spectral temporal averaging

(STA) instead of the conventional least square estimator (LS). However, this scheme

depends on the knowledge of radio environment that is hard to obtain in practice so

fixed values are used instead which degrades the performance.

Also in [6], a dynamic equalization scheme was described that decreases the PER from

one vehicle to another. A hardware implementation of this scheme was described to

illustrate its implementation feasibility. This improved equalization was extended to

all of the data rates available in the standard and showed how PER and throughput

depend on packet length, payload size, and data rate. The complexity of this scheme is

considerably high as decision directed channel estimation is carried out depending on the

feedback from the viterbi decoder then it goes all the way back through convolutional

encoder, bit interleaver, modulation and pilot insertion until a channel estimate could

be made.

In [7], an advanced receiver scheme was proposed that uses decision directed channel

estimation complemented with channel smoothing to reach satisfactory performance

at the expense of huge increase in computational complexity due to multiplication of

large matrices and also the proposed complexity reduction techniques cause performance

degradation.

A survey on IEEE 802.11p current channel estimation and tracking algorithms is pre-

sented in [8], and a novel channel estimation algorithm, that outperforms the previously

proposed schemes, as this scheme exploits data symbols to construct pilots and channel

correlation between successive symbols. On the other hand more improvements and

performance gains could be achieved as explained below.
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In [9], techniques to improve the accuracy of the initial channel estimates were presented.

However, this techniques are suitable only for WLAN stationary environments as the

V2V short coherence time cancels out any improvement achieved in the initial channel

estimates and a tracking algorithm is needed to update the initial channel estimates to

be able to track the channel variations.

In [10], channel estimation and tracking is done using decision directed feedback by

decoding the data symbols and re-modulating them in order to get channel estimates

throughout the packet duration. Viterbi decoding and re-modulation of OFDM symbols

make the application of this technique costly.

In [11], vehicle speed, signal to noise ratio and packet length are exploited to closely

track the channel variations using data symbols.

On the other hand, in [12] a design of a more efficient physical layer is presented using

time domain differential OFDM. Although this technique is suitable for mobile environ-

ments, it requires changes in the IEEE 802.11p standard.

1.3 IEEE 802.11p Vs IEEE 802.11a

DSRC physical layer (IEEE 802.11p) [13] was originally adopted from IEEE 802.11a

[14] standard, which uses an OFDM physical layer. Through the use of a guard interval,

OFDM can mitigate intersymbol interference due to multipath fading. However, IEEE

802.11a was designed for stationary indoor environments with low delay spread. Wireless

access vehicular environments (WAVE) involve dense urban centers, which tend to have

high delay spreads that would exceed the length of the guard time in IEEE 802.11a.

For this reason, the symbol duration was doubled, and so, inherently, the guard time

was also doubled from 0.8 to 1.6ms. Because 802.11p is a packet-based transmission,

channel estimation is done by transmitting known training symbols at the beginning of

each packet. The channel is estimated only once for each packet and is used to equalize

the whole packet. Because of the time varying channel nature, coupled with the fact that

the 802.11p standard does not limit the packet length, the channel estimate performed

for each packet can be quickly outdated. In addition, the 802.11p standard only uses

four pilot subcarriers in each OFDM symbol. These pilot subcarriers are not spaced

close enough to reflect channel variation in the frequency domain. Therefore, the main

challenge is to identify an accurate way for updating the channel estimate over the entire

packet length while sticking to the standard.

The major drawback of IEEE 802.11a is that it was designed for stationary environ-

ments. Conventional IEEE 802.11a receivers initially estimate the channel response
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Table 1.1: Physical layer implementations Comparison [1] in IEEE 802.11a and IEEE
802.11p.

based on a known preamble in the packet header. The channel response is assumed to

be relatively static for the entire packet duration; therefore, the entire packet is compen-

sated based on the initial channel estimate. On the other hand, V2V communications

have a small coherence time and a narrow coherence bandwidth due to the fact that the

transmitter, receiver and the scatterers are all in motion. Due to these characteristics,

channel estimation is not an easy job as the channel varies vastly during the same packet

duration.

IEEE 802.11a usually uses the full clocked mode with 20 MHz bandwidth, while IEEE

802.11p usually uses the half clocked mode with 10 MHz bandwidth. And this implies

the 802.11p signal more robust against fading, the carrier spacing is reduced by half and

the symbol length is doubled. In addition to that the IEEE 802.11p operates in the 5.9

GHz frequency bands.
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1.4 Thesis Contribution

In this thesis, we propose three different channel estimation and tracking algorithms

tailored to deal with the pilot structure of the 802.11p standard as well as V2V channel

characteristics. In the first algorithm, we implement a semi-blind channel estimation

algorithm benefiting from the finite alphabet property of the transmitted symbols. In

the second algorithm, we propose to use decision directed channel estimation combined

with time domain truncation to alleviate some of the effects of error propagation. In

the third algorithm, the pilot information and the high correlation characteristic of

the channel response between adjacent subcarriers are exploited to track the channel

variations in a simple intuitive way leading to a low complexity algorithm that is easy

to implement.

1.5 Thesis Organization

In Chapter 2, we present a background overview of the OFDM system as well as the

IEEE 802.11p OFDM model, transmitter components and receiver components.

Chapter 3 presents the V2V channel characteristics, the standard channel model and

the channel scenarios adopted for the simulation.

Chapter 4 constitutes the major contribution of the thesis, in which we consider the

design of different channel estimation algorithms. Besides, the basic equalization scheme

that is typical of IEEE 802.11a standard. Also simulation results are presented for

performance comparison.

In chapter 5, we present the thesis conclusion and some directions for future research.



Chapter 2

System Model

2.1 OFDM Background

Multi-Carrier Modulation (MCM) is the main idea behind OFDM. MCM is achieved by

splitting the input bit stream into different parallel bit streams to transmit the data,

each of these parallel streams has lower bit rate, these sub-streams are used to modulate

different carriers as shown in Fig. 2.1.

The Military radio links were the first to use MCM in the late 1950s and the early

1960. In 1966 Chang’s patent introdused the main idea of OFDM which is a special

form of MCM with densely spaced subcarriers and overlapping spectra. The use of

steep bandpass filters was limited after the introduction of OFDM as they were used to

completely separate each sub-carrier spectrum while in OFDM the sub-carriers’ spectra

Figure 2.1: Block Diagram of MCM transmitter.

7
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Figure 2.2: Baseband transmitter model.

are overlapped in contrast to conventional analogue FDMA systems. Although, carri-

ers spectrum overlap in OFDM systems, time domain waveforms must be chosen to be

mutually orthogonal. Fast Fourier transform is applied on the input stream to acheive

the required orthogonality. The introduction of OFDM sytems into real systems was de-

layed due to implementation aspects. Powerful digital signal processors were required to

meet the real time FFT complexity. Moreover, highly stable oscillators and linear power

amplifiers were needed to achieve orthogonality between various subcarriers. Since the

beginning of the 1990s OFDM gained a lot of interest as the many of the implementation

issues became solvable [15]. The motivation behind OFDM system is the advantages

when data is transmitted through a fading channel. The maximum delay spread is one of

the most important parameters characterizing fading channel, and as OFDM transmit-

ters split the input bit stream into various parallel bit streams so the symbol duraction

is increased and consequently the relative delay spread will decrease.

2.1.1 IEEE 802.11p OFDM model

The IEEE 802.11p [13] and IEEE 802.11a [14] standards are working in the 5 GHz ISM

as well as making use of the OFDM transmission scheme and having similar physical

layers. Fig.2.2 shows the basic base-band transmitter model of both standards. The

convolutional encoder, the interleaver and the mapper behaviors are determined by the

rate parameter that indicates the transmission rate. Various modulation schemes and

code rates are shown in table 2.1 for different rates of both standards. A brief description

of various basic blocks of the OFDM transmitter is given below.
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Table 2.1: Rate Dependant Parameters.

Figure 2.3: Scrambler Block Diagram.

Scrambler : The scrambler is mainly used to randomize the input bits, in order to achieve

same bit probability at the output. Fig. 2.3 shows the scrambler’s block diagram. A

pseudo random generator is used to initialize the state parameters x0, .....x6 to non zero

value.

Convolutional encoder : Channel coding is done firstly by the convolutional encoder. Fig.

2.4 shows it’s structure. To increase system immunity against noise, correlation between

several consecutive bits is introduced assuming no correlation between the bits and noise.

On the receiver side, this correlation is exploited by the decoder to extract the bits from

noise. Interleaver : To protect the the data against bursty channel errors, the second

part of the channel coding is done at in the interleaver. In order to recover the original
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Figure 2.4: Convolution Encoder Block Diagram.

Figure 2.5: Mapper Block Diagram.

bits from a noisy signal, correlation in done to consecutive bits using the convolutional

encoder but if the noise hit these consecutive bits we won’t be able to recover the original

bits correctly. That’s why the interleaver is used to transmit consecutive coded bits into

non consecutive subcarriers to make the signal immune to bursty errors of the channel.

Mapper : This block is used to map the input bits to one of the following amplitude

modulation schemes : BPSK, QPSK, 16-QAM, 64-QAM. The block takes a group of

coded and interleaved bits to generate groups of 48 complex values as shown in Fig. 2.5.

OFDM transmission block : The transmitted information is loaded on 64 sub-carriers
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enumerated K = −32, ...,+31 , but not all of the 64 sub-carriers contain user infor-

mation. There are only 48 subcarriers used for carrying data information, while 12

subcarriers are used as guard band to reduce the adjacent channel interference at po-

sitions k = [−32,−27]union[+27,+31] and the middle subcarriers at position k = 0

is set to zero to avoid RF problems, and the remaining 4 subcarriers at the positions

K = −21,−7,+7,+21are used as pilots needed in some operations at the receiver side

such as channel estimation as discussed later in chapter 4.

IFFT : DFT/IDFT is implemented using FFT/IFFT algorithm as the total number of

subcarriers is a power of 2.

Cyclic prefix : To Compensate for the channel delay spread the last part of the signal is

inserted in the beginning of the signal. The cyclic prefix duration must be larger than

multipath delay spread. The orthogonality of the carriers is not affected by the cyclic

prefix.

2.2 Transmitter Components

In a WAVE channel, deep fades may cause a long sequence of errors, which may render

the decoder ineffective. In order to alleviate symbol correlation, the encoded bits are

scrambled with a block interleaver. The length of the block interleaver corresponds to

one OFDM data symbol. The dimension of the block depends on the modulation scheme

selected. The available digital modulation schemes include the Gray-coded constellations

of binary phase-shift keying (BPSK), QPSK, 16-QAM and 64-QAM. The interleaved bits

are digitally modulated and divided into 48 sub-channels with four fixed pilot tones. The

parallel data are then multiplexed into a 64-point inverse fast fourier transform (IFFT).

The output of IFFT, is then converted to high speed serial data. Finally, the cyclic

prefix is added.

2.3 Receiver Components

At the receiver, shown in Fig. 2.7, the cyclic prefix is removed from the received signal.

The parallel data are demultiplexed into the FFT, yielding the following output in the

frequency domain

Yn(k) = Hn(k)Sn(k) + Zn(k), (2.1)

where Y (k) and S(k) denote the FFT of the received and transmitted OFDM data

symbols, respectively, n represents the symbol index, k represents the subcarrier number,
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Figure 2.6: IEEE 802.11p Transmitter Components.
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Figure 2.7: IEEE 802.11p Receiver Components.

Hn(k) represents the channel response and Zn(k) represents the additive white Gaussian

noise (AWGN). After demultiplexing, the data are compensated, digitally demodulated,

deinterleaved and finally decoded using the Viterbi algorithm.

Conventional IEEE 802.11 systems assume that the channel has time-invariant fading,

which means that the channel response remains constant for the entire packet duration.

Hence the following assumption is made; at the signal compensator, all of subsequently

received data symbols of the packet are compensated by the initial estimated channel

response. A conventional WLAN system receiver cannot be applied to vehicular envi-

ronments, so the receiver has to be modified to incorporate an accurate channel tracking

technique. The design modifications will be limited to the receiver alone.
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V2V Channel Modeling

3.1 Introduction

Knowledge of the V2V propagation channel is essential for the design and performance

evaluation of the whole V2V system. In the past, most of the research efforts were

directed towards studying the channel characterization between a static base station and

a mobile device as the case of cellular communication systems. As deep understanding

of the vehicular channel characterization is of a great importance for simulation and

performance enhancements, V2V channel measurement campaigns were conducted in

a different environments for the possible V2V scenarios and it turned out that the

V2V channel is absolutely different from the popular cellular channels in terms of both

frequency and time selectivity as well as the fading statistics.

In 2006 when the IEEE 802.11p standard, which is a part of the Wireless Access in

Vehicular Environments (WAVE), was published, a lot of research interest all over the

world was directed towards studying the V2V channels as well as different channel models

were derived based on various measurement campaigns. V2V channel modeling efforts

could be found in [16], [17], [18], [19], [20]. In this thesis, the channel model proposed

in [21] [22] is the adopted channel model.

3.2 Propagation Characteristics of Mobile Radio Channels

[23]

In an ideal radio channel, the received signal would consist of only a single direct path

signal, which would be a perfect reconstruction of the transmitted signal. However, in a

real channel the signal is modified during transmission. The received signal consists of a

13
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combination of attenuated, reflected, refracted, and diffracted replicas of the transmitted

signal. On top of all this, the channel adds noise to the signal and can cause a shift in

the carrier frequency if either of the transmitter or receiver is moving (Doppler Effect).

Understanding of these effects on the signal is important because the performance of a

radio system is dependent on the radio channel characteristics.

3.2.1 Attenuation

Attenuation is the drop in the signal power when transmitting from one point to another.

It can be caused by the transmission path length, obstructions in the signal path, and

multipath effects. Any objects which obstruct the line of sight of the signal from the

transmitter to the receiver, can cause attenuation. Shadowing of the signal can occur

whenever there is an obstruction between the transmitter and receiver. It is generally

caused by buildings and hills, and is the most important environmental attenuation

factor. Shadowing is the most severe in heavily built up areas, due to the shadowing

from buildings. However, hills can cause a large problem due to the large shadow they

produce. Radio signals diffract off the boundaries of obstructions, thus preventing total

shadowing of the signals behind hills and buildings. However, the amount of diffraction

is dependent on the radio frequency used, with high frequencies scatter more than low

frequency signals. Thus high frequency signals, especially, Ultra High Frequencies (UHF)

and microwave signals require line of sight for adequate signal strength, because these

scatter too much. To overcome the problem of shadowing, transmitters are usually

elevated as high as possible to minimize the number of obstructions.

3.2.2 Multipath Effects

3.2.2.1 Rayleigh Fading

In a radio link, the RF signal from the transmitter may be reflected from objects such as

hills, buildings, or vehicles. This gives rise to multiple transmission paths at the receiver.

The relative phase of multiple reflected signals can cause constructive or destructive

interference at the receiver. This is experienced over very short distances (typically at

half wavelength distances), which is given the term fast fading. These variations can

vary from 10-30dB over a short distance. The Rayleigh distribution is commonly used

to describe the statistical time varying nature of the received signal power. It describes

the probability of the signal level being received due to fading.
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3.2.2.2 Frequency Selective Fading

In any radio transmission, the channel spectral response is not flat. It has dips or

fades in the response due to reflections causing cancellation of certain frequencies at the

receiver. Reflections off near-by objects (e.g. ground, buildings, trees, etc) can lead to

multipath signals of similar signal power as the direct signal. This can result in deep

nulls in the received signal power due to destructive interference. For narrow bandwidth

transmissions if the null in the frequency response occurs at the transmission frequency

then the entire signal can be lost. This can be partly overcome in two ways. By

transmitting a wide bandwidth signal or spread spectrum as in the case of CDMA, any

dips in the spectrum only result in a small loss of signal power, rather than a complete

loss. Another method is to split the transmission up into many carriers carrying low

rate data, as is done in a COFDM/OFDM

3.2.2.3 Delay Spread

The received radio signal from a transmitter consists of typically a direct signal plus

signals reflected off object such as buildings, mountains, and other structures. The

reflected signals arrive at a later time than the direct signal because of the extra path

length, giving rise to a slightly different arrival time of the transmitted pulse. The signal

energy confined to a narrow pulse is spreading over a longer time. Delay spread is a

measure of how the signal power is spread over the time between the arrival of the first

and last multipath signal seen by the receiver. In a digital system, the delay spread can

lead to inter-symbol interference. This is due to the delayed multipath signal overlapping

symbols that follows. This can cause significant errors in high bit rate systems, especially

when using time division multiplexing (TDMA). As the transmitted bit rate is increased

the amount inter symbol interference also increases. The effect starts to become very

significant when the delay spread is greater then 50% of the bit time.

3.3 V2V Channel Uniqueness

There are fundamental reasons for which the vehicular channel is totally different from

the cellular channel and the indoor channel. First, both the transmitter, the receiver

as well as the scatterers are moving so this implies wide delay spread and fast varying

channel impulse response. Second, the transmitting and the receiving antennas are at

the same height which implies that scattering can occur at the transmitter side and the

receiver side as well, and the propagation lies on the horizontal plane within a short

communications range (less than 100 m). Third, the vehicular channel suffers from
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long delay spread if compared with the indoor channel which may cause inter symbol

interference. Fourth, the frequency operation range of vehicular communications is 5.9

GHz so the signal suffers from higher path loss than cellular systems operating at 700-

2100 MHz.

3.4 V2V Channel Characterization

V2V channel characteristics are investigated in [24] - [33]. In a wireless channel, signal

propagation from the transmitter to the receiver can take several paths and each path

suffers from several reflections, diffractions and attenuation. At the receiver side, the

different attenuated, delayed and phase shifted versions of the transmitted signal are

added up to compose the received signal. The channel impulse response is interpreted as

the superposition of all the multipath components. Due to the motion of the transmitter,

the receiver and the scatterers the V2V channel characteristics are time varying as well

as the channel impulse response. So in order to have a reliable channel model we have

to work with a large sequence of channel impulse responses which is not an easy task to

do. That is why several statistical channel metrics were derived to represent a compact

channel characterization. Path loss, fading statistics, delay spread and Doppler spread

are the main statistical channel metrics.

Table 3.1: 802.11p standard channel models

Scenario
Distance
between the
Tx & Rx (m)

Velocity
(Km/hr)

Doppler Shift
(Hz)

Excess
Delay
(µS)

V2V
Expressway Oncoming

300-400 104 1000-1200 0.3

V2V
Urban Canyon Oncoming

100 32-48 400-500 0.4

RTV
Suburban Street

100 32-48 300-500 0.7

RTV
Expressway

300-400 104 600-700 0.4

V2V
Expressway
same direction with wall

300-400 104 900-1150 0.7

RTV
Urban Canyon

100 32-48 300 0.5
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3.4.1 Scenario Description

3.4.1.1 V2V Expressway Oncoming

Two vehicles moving with speed 65 mi/h in a highway without a middle wall

3.4.1.2 V2V Urban Canyon Oncoming

Two vehicles moving with speed 20-30 mi/h in a dense traffic area.

3.4.1.3 RTV Suburban Street

A 6.1 meter high antenna placed near an intersection with target range of 100 m. The

receiver vehicle moving at speed 20-30 mi/h in the antenna range from the four possible

directions.

3.4.1.4 RTV Expressway

A half dome 6.1 meter high antenna placed off a side of a expressway with target range

of 100 m. The receiver vehicle moving at speed 65 mi/h approaching the antenna from

the both directions of the expressway.

3.4.1.5 V2V Expressway

Two vehicles moving with speed 65 mi/h in a highway with 300-400 m separation and

a middle wall between oncoming lanes

3.4.1.6 RTV Urban Canyon

A 6.1 meter high antenna placed near an urban intersection with target range of 100 m.

The receiver vehicle moving at speed 20-30 mi/h in the antenna range.

3.4.2 Simulated Channel model

In our simulations, we adopted the standard 802.11p channel models in [34], where six

channel models are defined for different vehicular scenarios as shown in Table 3.1 and the

type of model we consider is the tapped-delay line, where each tap process is described
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as by a Doppler power spectral density (PSD) having Rayleigh fading and the channel

impulse response has 8 taps.



Chapter 4

Channel Estimation

4.1 Channel Estimation Fundamentals

Channel state information is the channel properties of the communication link that

describe how the signal propagates from the transmitter to the receiver as it suffers

from scattering, fading and power decay. Knowing this kind of information is a must at

the receiver side in order to compensate for these channel effects and be able to extract

the transmitted data.

Channel estimation and tracking is crucial for achieving reliable communication as chan-

nel conditions vary and instantaneous channel estimates are needed to track these vari-

ations.

The channel effects are like a filter. Channel estimation is to estimate the filter coefficient

through received signal and other known information (such as modulation type and

channel characteristics)

There are two approaches of designing the channel estimation module for the IEEE

802.11p standard. First approach needs structure modification of the standard as found

in [35] - [37]. the second approach remain the standard structure as found in [38] - [42].

Channel estimation algorithms can be classified into three categories; training-based,

blind, and semi-blind algorithms [43]. For time varying channels, training-based schemes

require the frequent transmission of training sequences which can result in wasting the

system resources. On the other hand, blind channel estimation techniques rely on the

statistical properties of the information sequences to estimate the channel coefficients.

However, they are in general computationally expensive and suffer from low convergence

speed. Semi-blind channel estimation techniques strike a balance between computational

complexity and consuming the system resources.

19
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4.2 Simulation Environment

The design and performance of conventional DSRC systems are discussed in [44], [45],

[46]. Since the conventional DSRC system is not feasible for WAVE, we propose receiver

modifications that enable the system to achieve acceptable performance under high

velocities, high data rates and large packet lengths. DSRC physical layer was simulated

using MATLAB. The BER is the performance measure of the system. In each simulation,

the BER was calculated based on the transmission of 10000 packets under varying SNRs

and velocities. The initial focus is to test the performance limitations under the worst

case scenario, which is a fading channel with no LOS (i.e. Rayleigh fading channel),

maximum doppler and packet size.

4.2.1 Simulation Parameters

The systems were simulated with varying SNR, velocity, packet lengths and modulation

scheme (i.e. data rate). The focus was placed on the effects of envelope fading, since the

delay spread issues were resolved by the extension of the guard interval. The simulation

range of SNR was taken from 0 to 30 dB. The maximum simulated velocity was 104

km/h. The packet lengths were ranging from 10 to 200 OFDM data symbols per packet.

4.2.2 Performance of proposed designs against conventional design

A thorough comparison between the conventional least squares and the proposed designs

is presented as BER plots. A plethora of results were produced; however, only few plots

are presented as examples without loss of generality. The figures presented show the BER

plots for BPSK, QPSK and 16 QAM, Several V2V and RTV scenarios with different

OFDM symbols per packet ranging from 10 to 200 for BPSK, 50 for QPSK and 25 for

16QAM.
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4.3 Block Type Pilot Channel Estimation

Under the assumption of slow fading channel, block type pilot channel estimation is done

in OFDM systems by periodically inserting pilots into all subcarriers of OFDM symbols

within a specific period of time. At the receiver side, channel estimation is performed

using the received signals, pilots and may or may not need certain knowledge about

the channel statistics. These channel estimates are used for equalization for all the up

coming OFDM symbols in the same packet until another pilot symbol is received.

4.3.1 Least Squares Estimator

As a bench mark, least squares estimator is used to estimate the channel using the

two similar preamble symbols sent before the data symbols at the beginning of each

packet. The first two received symbols YP1 and YP2 are divided by the known training

sequence XP where P refers to preamble then averaged to get the channel estimate for

all subcarriers given by

ĤLS(k) =
YP1(k) + YP2(k)

2XP (k)
, (4.1)

where ĤLS(k) is the least squares channel estimate on the kth subcarrier. LS estimators

are low complexity estimators that don’t need any knowledge about the channel statistics

but suffer from high mean square error. The IEEE 802.11a standard uses this estimate to

compensate for the channel effects for all the upcoming data symbols in the same packet,

where the channel is assumed to be constant throughout the whole packet length; this

can not be a valid assumption in the case of the 802.11p as the channel varies significantly

from one symbol to another due to fast varying environment dynamics specially at very

high vehicular speed and even at low vehicle speed. In V2V channels, the LS estimate

will be outdated after few symbols and cannot support the maximum size packets defined

by the standard or even relatively large packets.

4.3.2 Minimum Mean Square Error Estimator

Using the channel second order statistics, MMSE estimators achieve the minimum mean

square error. The MMSE channel estimates are derived using equations derived in [47].

Under the assumption that the channel vector h is Gaussian and uncorrelated with the

channel noise z

GMMSE = RhyRyy
−1y, (4.2)
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Rhy = E[hyH ] = RhhF
HXH , (4.3)

RY Y = E[yyH ] = XFRhhF
HXH + σ2IN , (4.4)

HMMSE = FFT (GMMSE) (4.5)

where X denotes known data S, F is the DFT matrix, Rhy is the cross covariance

between h and y, Ryy is the auto-covariance of vector y and Rhh is the auto-covariance

of vector h and σ2 is the noise variance. From the channel model in [34],the channel has

8 taps in the time domain so Rhh could be formulated by inserting ones in the first 8

diagonal elements of a 64x64 zeros matrix assuming that all of the taps have the same

power.

The MMSE estimator provides much better performance than the LS estimators, espe-

cially under low SNR conditions at the expense of higher computational complexity; due

to matrix inversion during each execution.

4.3.3 Decision Directed Tracking (DDT)

In order to track the fast varying channel during the same block, DDT is used to improve

the performance [48]. The initial channel estimate is calculated using LS or MMSE

estimators, then the channel is updated for the following OFDM symbols in the same

block by demodulating the symbol based on the previous channel estimate then using

the demodulated symbol to get the updated channel(Decision directed will be illustrated

more later in this chapter).
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4.3.4 Performance Comparison

Decision directed tracking enables the algorithm to track large packets but still the

performance at fast varying environments is not acceptable.

The algorithms are simulated in both stationary and vehicular environments (200 Hz

and 1000 Hz maximum doppler respectively ), also different packet sizes where used.

The results show that the MMSE estimator achieve the best performance in station-

ary environments with small packets, while it’s performance decreases vastly in fast

varying environments with large packets. Hence, MMSE is not suitable for vehicular

communications.
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Figure 4.1: BPSK Bit Error Rate, maximum doppler=200Hz and 10 OFDM symbol
per packet.
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Figure 4.2: BPSK Mean Square Error, maximum doppler=200Hz and 10 OFDM
symbol per packet.
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Figure 4.3: BPSK Bit Error Rate, maximum doppler=200Hz and 100 OFDM symbol
per packet.
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Figure 4.4: BPSK Bit Error Rate, maximum doppler=500Hz and 100 OFDM symbol
per packet.
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Figure 4.5: BPSK Bit Error Rate, maximum doppler=1000Hz and 10 OFDM symbol
per packet.
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4.4 Comb Type Pilot Channel Estimation

Pilots are uniformly inserted in each transmitted OFDM sysmbol but with certain sub-

carriers separated from each other. Channel estimation is done by trying to estimate the

channel in data subcarriers depending on the LS channel estimates of pilot subcarriers

and any other channel statistics available as well as the received signals.

In order to track the channel variations in the time and frequency domains, the pilots

must be spaced in a way to sample the channel fulfilling the the Nyquist criteria to be

able to equalize the received signal.

The IEEE 802.11p standard uses subcarriers numbered from -26 to 26, where the zero

frequency subcarrier is not used as well as unused sub carriers from -32 to -27 and from

27 to 31 which are used as a guard band. Only 4 pilots exist in the following subcarriers

-21,-7,7 and 21 each OFDM symbol. The remaining 48 subcarriers are used for data

transmission.

The pilots are used for frequency offset tracking. Although, the pilots are not enough to

estimate the channel variations, but some information about the channel is better than

nothing. Comb Type Pilot channel estimation use the information about the channel at

the pilots’ location to be able to update the channel estimate to track channel variations

during the same OFDM symbol.

4.4.1 Pilot Interpolation Estimator

First, each received symbol is demodulated. Second,the demodulated values at pilot’s

positions are extracted and LS channel estimation is done on these subcarriers

Hp(k) =
Yp(k)

Xp(k)
. (4.6)

Third, the channel estimates at all other subcarriers are calculated by interpolation and

it was found by experimentation that using the mean of the pilots’ channel estimates at

the endpoints instead of extrapolating gives more reasonable results

Ĥp = [mHpHP
TmHp ]

T . (4.7)

There are several types of interpolation linear,nearest neighbor, cubic spline, piece-

wise cubic hermite and cubic interpolation and depending on the channel statistics the

suitable technique should be chosen.
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Last, time averaging is done to smooth the channel transition from one symbol to another

and to decrease the effect of erroneous channel estimates.

Ht =

(
1− 1

α

)
Ht−1 +

1

α
Hup (4.8)

where α is the forgetting factor.

ŜT,t(k) =
SR,t(k)

Ht(k)
. (4.9)

4.4.2 Co-Pilot Interpolation Estimator

Relying only on interpolation between pilots is not efficient as the the pilots provided

for the IEEE 802.11p standard are not sufficient to sample the channel in frequency

domain. Data decision feedback is used to estimate the channel on non pilot subcarriers

assuming that the data is demodulated correctly. In order to combat the unreliability of

this assumption, three techniques are done to make the channel estimates more reliable

and accurate. First,Redundancy is achieved by using several data subcarriers to calculate

channel estimate at each subcarrier. Second,averaging multiple channel measurements

to reduce the effect of noise and erroneous channel estimates. Third, Depending on

the channel variation whether it is slow or fast, the channel update rate is adjusted

accordingly in order to cancel out the effect of erroneous channel estimates by putting

more weight on previous estimates and prevent sudden changes in case of slow channel

characteristics. On the other hand, if the update rate is too slow the estimator won’t be

able to track fast channel variations. That’s why the update rate must be chosen very

carefully depending on the channel coherence time.

Co-Pilot interpolation estimator is done by forming evenly spaced copilots from the

data information in subcarriers. Following are the steps needed to perform the channel

estimation and tracking. First, symbol demodulation is done after equalization using

the previous channel estimate

ŜT,t(k) =
SR,t(k)

Ht−1(k)
. (4.10)

Second, an initial channel estimate is calculated using the received symbol and the

demodulated data obtained

H(k) =
SR,t(k)

X(k)
. (4.11)
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Third, copilots are formed by linear combination of channel estimates of the data sub-

carriers in its vicinity as shown below

Hcp(λ) =

β∑
k=−β

wkH(λ+ k) (4.12)

where wk represents the weights given to each subcarrier.

Fourth, The necessary copilots are extracted to form an evenly spaced pilots and copilots

then they pass through an interpolation circuit. By comparison it was found that L = 3

copilot spacing is better than L = 7 and the weights used are w1 = W−1 = 0.25 and

w0 = 0.5

Hcp(λ) =

1∑
k=−1

wkH(λ+ k) = 0.25H(λ− 1) + 0.5H(λ) + 0.25H(λ+ 1). (4.13)

Also note that pilot subcarriers are intuitively could take higher weights than regular

copilots.

Last, the output of the interpolation circuit is used to update the moving average in

time in order to get the channel estimates needed for equalization

Ht =

(
1− 1

α

)
Ht−1 +

1

α
Hup. (4.14)

4.4.3 Spectral Temporal Averaging (STA)

To be able to track the time varying channels characteristics, the STA technique was

presented in [5]. STA is based on the correlation between each subcarrier and its neigh-

boring subcarriers in the frequency domain as well as the time correlation between

successive OFDM symbols. STA is done as follows. First, the LS estimate ĤLS is used

as an initial estimate then data decision feedback is done by demodulating the first data

symbol compensated by the LS initial estimate as follows

Ŝt(k) =
Yt(k)

Ĥt−1(k)
(4.15)

where Ŝt(k) is the equalized symbol at subcarrier k and time t, Yt(k) is the received

symbol at subcarrier k and time t and Ĥt−1(k) is the channel estimate of the previous

symbol. A more accurate channel estimate is calculated using the demodulated data as
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shown below

Ĥt(k) =
Yt(k)

X̂t(k)
(4.16)

where X̂t(k) is the demodulated symbol from Ŝt(k). The frequency domain correlation

between neighboring subcarriers is exploited by the below formula

Hup, t(k) =

β∑
i=−β

WiĤt(k + i) (4.17)

where Hup, t is the updated channel estimate based on the correlation between neigh-

boring subcarriers, β is the window size where the weighted average takes place and Wi

is the weight of each subcarrier in the window. Then the time domain averaging is done

as follows

HSTA, t =

(
1− 1

α

)
HSTA, t−1 +

1

α
Hup, t (4.18)

where α is called the forgetting factor and it is optimized based on the maximum Doppler

of the channel. These parameters are adjusted according to the varying channel char-

acteristics however this is not an easy job in practice so these parameters are optimized

offline then fixed for simplicity with sacrifice in terms of performance degradation.
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4.4.4 Performance Comparison

Spectral Temporal averaging and Co-pilot interpolation algorithm achieve good perfor-

mance at stationary environments even with relatively large packets, However fails to

track channel variation at high doppler environments.

Pilot interpolation is the most suitable algorithm in the comb type for dynamic envi-

ronments but still a lot can be achieved.
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Figure 4.6: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.
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Figure 4.7: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.
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Figure 4.8: BPSK Bit Error Rate, maximum doppler=1000Hz and 50 OFDM symbol
per packet.
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Figure 4.9: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM symbol
per packet.
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Figure 4.10: BPSK Mean Square Error, maximum doppler=500Hz and 100 OFDM
symbol per packet.
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4.5 Blind Channel Estimation

In literature, blind channel estimation techniques are used only if the channel is static

over a long enough period to achieve a reliable statistical behavior of the received signals.

That is why totally blind estimation techniques are unusable in fast fading channels.

The insufficient pilots in the IEEE 802.11p OFDM symbols motivated the use of semi-

blind techniques. Applying the suitable techniques along with the pilot information and

channel characteristics is promising.

4.5.1 Finite Alphabet

Using the work of [49],

S(i) = [S(iM), S(iM + 1), ...., S(iM +M − 1)]T (4.19)

where S(i) is the information stream, i is the OFDM symbol index and M is the number

of subcarriers in the OFDM symbol.

The output in the frequency domain is as equation (2.1), repeated for convenience

Y (i,m) = H(ρm)S(i,m) + Z(i,m) (4.20)

where m is the subcarrier index, Z is the Gaussian noise. Under the following assump-

tions: 1.Symbols are drawn from a finite alphabet set of size Q; S(i,m) ∈ {Sq}Qq=1

2.Symbols are equiprobable; Pr(s(i,m) = εq) = 1/Q, for q = 1, 2, ..., Q 3.Noise is zero

mean complex circular Gaussian and independent of s(i,m).

Clearly,

ΠQ
q=1[S(i,m)− Sq] = 0 (4.21)

where S(i,m) must be ∈ of the Sq’s.

Working with the product of terms, we obtain

SQ(i,m) + α1S
Q−1(i,m) + ...+ αQ = 0 (4.22)

where αi’s are the polynomial coefficients. αi’s are constellation dependent.

For PSK J = Q & αJ = 1 and all of the other αi’s= 0, where J is the smallest index of

non zero coefficient αi.

J = 2 for BPSK and J = 4 for QPSK,16 QAM and any higher order QAM.
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Under the first two assumptions,

E[SJ(i,m)] =
−J
Q
αJ 6= 0. (4.23)

For PSK E[SJ(i,m)] = −J
Q αJ = −1 deterministically for any S(i,m).

Since we deal with complex noise

E[Zn(i,m)] = 0, ∀ n > 0. (4.24)

Taking the expectation of (4.20)

E[Y J(i,m)] = HJρmE[SJ(i,m)]. (4.25)

Substituting E[SJ(i,m)] with −JQ αJ according to (4.23)

HJ(ρm) =
−Q
JαJ

E[Y J(i,m)]. (4.26)

We need to get h(l) from HJρm.

Let βTJ = [β0, ...., βJL]

HJ(ρm) = HJ(Z) |Z=ρm= (β0, ...., βJLZ
−JL) |Z=ρm . (4.27)

To get βTJ , we need JL + 1 equations for JL + 1 distinct values of ρm, so selecting

M ≥ JL + 1 allows to find βTJ uniquely. Also, HJ(Z) =
∑J

i=0 LβiZi we can determine

HJ(Z) on entire complex plane as HJ(Z) contains all roots of H(Z) with multiplicity

J . Eventually, we can extract the L roots to form H(Z).

ĤJ(ρm) =
−Q
JαJ

(
1

I

I−1∑
i=0

Y J(i,m)

)
,m ∈ [0.M − 1]

= VJβJ

(4.28)

where I is the total number of blocks, VJ =
√
MFM (:, 1 : JL+1), FM is the DFT matrix

of size M and βJ = 1
M V

H
J .

Relying on equations 4.20 and 4.28 sufficient information is provided to recover the

channel vector h = [h(0), ..., h(L)]T .
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4.5.1.1 FA

Starting from the frequency domain, channel estimation could be done as follows

Ĥ(ρm) = λm[ĤJ(ρm)]
1
J (4.29)

where λm ∈ expj(
sπ
J

)nJ−1
n=0 is the corresponding scalar ambiguity in taking the J th root.

To resolve these ambiguities, exhaustive search is done over all JM possible vectors

ˆ̃
h1 = [λ0[ĤJ(ρ0)]

1
J , ......, λM−1[ĤJ(ρM−1)]

1
J ]T . (4.30)

The corresponding time domain vector is computed as follows

ĥ1 = V †1
ˆ̃
h1 =

1

M
V H

1
ˆ̃
h1 (4.31)

where V1 is a scaled version of the first L+ 1 columns of FFT matrix

V1 =
√
MFM (:, 1 : L+ 1). (4.32)

Channel estimates are then found by minimizing the Euclidean distance

ĥ = arg min
ĥ1

||β̂J − ĥ1 ∗J ĥ1||. (4.33)

Since the channel order L < M .

To obtain the time domain channel estimate
ˆ̃
h1, select N̄ elements from

ˆ̃
h1 and form a

new N̄x1 vector ˜̄h.

So now we only need to search overJ N̄ instead of all JM possible vectors, where N̄ ≥ L+1

chosen to form equispaced subcarriers.

ĥ1 = V̄ T ˜̄h (4.34)

where V̄ is constructed from V1 by keeping only the corresponding N̄rows.
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4.5.1.2 Sliding Window

In order to decrease the effect of the additive noise, block averaging is done. We form

a sliding window (rectangular shape of sizeW ) channel estimates by averaging only the

W most recently received blocks Y (i)Ii=I−W+1.

A trade-off exist between reduced variance estimation and enhanced tracking capability

in the window size choice.

ĤJ(k) = γ
1

I

I−1∑
i=0

Y J(i; k) (4.35)

where γ is a constant used to remove the data effect from the channel estimates.

4.5.1.3 Over Estimated Channel Order L=10,N=12

According to [34] the time domain channel model for V2V communication has 8 taps.

We can try over estimating the channel order and study it’s effect. Also the effect of

increasing N̄ depending on the following condition N̄ ≥ L + 1 must be studied as in

order to decrease the algorithm complexity N̄ = L + 1 is used. The simulation results

shows the effect of increasing both of the above parameters.

4.5.1.4 Time Truncation

In order to exploit the time domain channel characteristics of the V2V environment,

time truncation is used to boost the channel estimation and tracking capabilities as

well as resolving the phase ambiguities of the channel frequency response. Truncating

the channel estimates in the time domain higher than the 8th tap defined by the V2V

channel model and then back and forth between the frequency and time domains until

convergence. The effect of channel noise ( and thus channel estimation error) in the

frequency domain are reflected as higher number of taps in the time domain that is why

truncating the channel impulse response enhance channel estimation performance.

It was found by simulation that this loop converges after a few number of iterations so

it could be fixed at only two iterations. On the other hand, this technique increases

the channel tracking capabilities even with a coarse initial estimate in a highly dynamic

environment.

Each iteration entails one M point IFFT and one M point FFT . As M = 64, so this

technique has a low computational complexity for the IEEE 802.11p standard.

The phase ambiguities are resolved by searching over J candidate phase values as follows
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Hfreq(k) = arg min
λm[ĤJ (k)]1/J

||Hfreq(k)− λm[ĤJ(k)]1/J || (4.36)

where Hfreq(k) is the initial channel estimates in the frequency domain and ĤJ is the

received signal raised to the J th power to eliminate the data effect.

htime = IFFT (Hfreq), (4.37)

Hfreq = FFT (htime(1 : 8)), (4.38)

then the pilots majority rule is used again as the channel estimates may converge at

wrong polarity.

4.5.1.5 Finite Alphabet with Time Truncation (FA-TT) Algorithm

A new semi-blind channel estimation algorithm is presented based on the previous blind

channel estimation techniques. Due to the fast varying channel characteristics, trying to

track the channel variations using the two long training sequences and the LS estimates

would not be able to do the job. That is why blind channel estimation techniques would

be a key to estimate the channel more accurately. Totally blind channel estimation

techniques in [49] will not solve the phase ambiguities in the channel estimates and

therefore cannot be used for data equalization. Moreover, the semi-blind application

of the algorithm in [49] is able only to track the slow channel variations and when

the channel varies with time a significant SNR loss occurred and to decrease this loss

frequent training is needed along with long bursts of data which is not applicable if we

are trying to be complaint to the 802.11p standard.

In the proposed technique we exploit the pilots information in each OFDM symbol to

determine the channel polarity and also the number of channel taps in time domain is

exploited to boost the performance by time domain channel truncation technique.

The initial channel estimates are obtained based on the finite alphabet property of the

transmitted data symbols as follows [49]

ĤJ(k) = γ
1

I

I−1∑
i=0

Y J(i; k) (4.39)

where J equals 2 in case of BPSK and 4 in all higher order constellations, γ is a constant

used to remove the data effect from the channel estimates so γ equals to 1 for BPSK,
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-1 for QPSK but for higher order constellations it must be calculated for each symbol

as the reciprocal of the symbol raised to the J th power, I is the block size and Y is the

received symbol at the kth subcarrier at time i. In the new algorithm a block size of 3

OFDM symbols is used to decrease the noise effect and also be able to track the fast

channel variations. Then

Φ = IFFT(ĤJ). (4.40)

If we ignore the noise ĤJ is the perfect channel raised to the J th power and the Φ is

the J-fold convolution of the perfect channel in the time domain so Φ could be used as

reference in case of noisy channel estimates.

An exhaustive search over all the combinations of any eight equally spaced subcarriers

is done in order to get the 8-tap channel in the time domain then a J-fold convolution is

calculated and the distance between Φ and each of the Q8 combinations, where Q is the

constellation size, is calculated and the minimum distance will be the initial estimate

for our algorithm as shown below

Ĥ1 = λm[ĤJ(k)]1/J (4.41)

where λm is the corresponding scalar ambiguity when taking the J th root (which can be

resolved later using the 4 pilot symbols in each OFDM symbol).

ĥinit = arg min
ĥ1

||Φ− ĥ1 ∗J ĥ1|| (4.42)

where ĥ1 = IFFT(Ĥ1) and ∗J denotes the J-fold convolution; then the 8-tap channel

estimates ĥ1 are FFT processed to be converted to 64-subcarrier frequency response

H1 = FFT(ĥ1). (4.43)

Majority rule is used to solve the polarity ambiguity of the channel impulse response (as

the distance of the channel and its negative value is the same; can not be resolved using

equation (4.42) only) by comparing the initial channel estimates (H1) of the 4 pilot

symbols with their LS channel estimates. And if the majority of the pilots LS channel

estimates have the same polarity as the pilots’ initial channel estimates so no change

in the initial channel estimates’ polarity. Otherwise, the polarity of all initial channel

estimates must be inverted.

The phase ambiguities of the channel frequency response are resolved by modifying the

channel of each subcarrier according to equation (12) and truncating the IFFT of the

channel in the time domain by removing the taps after the eighth tap then iterate until
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there is no change in the subcarriers coefficients.

ĤFA−TT = arg min
λm[ĤJ (k)]1/J

||Ĥ − λm[ĤJ(k)]1/J || (4.44)

where Ĥ = FFT(ĥinit). Then the pilots majority rule is used again as the channel

estimates may converge at wrong polarity.

It was found by simulation that this loop converges most of the time after only two

iterations so we can fix it at 2. The problem with this algorithm is that the computational

complexity increases vastly as the modulation order increases which makes it practical

only for the BPSK case.



Chapter 4. Channel Estimation 40

4.5.1.6 Performance Comparison

Simulation results show that over estimating the number of channel taps in the time

domain in order to get a better initial estimate decrease the performance of the algorithm

as well as

The use of the sliding window technique increase the performance of the FA-TT algo-

rithm with 3-5 dBs. Both algorithm achieve a very good performance in terms of overall

bit error rate for low and high mobility environments with all packet sizes.
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Figure 4.11: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.
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Figure 4.12: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.
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Figure 4.13: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.
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Figure 4.14: BPSK Bit Error Rate, maximum doppler=1000Hz and 200 OFDM
symbol per packet.
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4.5.2 Pilot Aided

Pilot aided schemes in general are discussed in [50, 51, 52, 53].

4.5.2.1 fixed pilots’ response Time Truncation

In order to benefit from the channel information at the pilots’ subcarriers and also to

make sure that channel response truncation in the time domain won’t affect the channel

estimates at the pilots’ positions, this algorithm was developed keeping that in mind.

The initial channel estimates are calculated based on the finite alphabet property as

described before. The only difference in this algorithm is that in the time truncation

process, we make sure that the channel estimates at pilots’ positions are kept unchanged.

4.5.2.2 Low Complexity FA

The complexity of the FA algorithm is directly proportional to J N̄ ≥ JL+1 which makes

the algorithm affordable only for low order channels as well as limited constellation sizes.

To decrease the complexity, pilot tones are used. As a result of this we only need to

search over J N̄−NP where NP is the number of pilots in the OFDM symbols.

4.5.2.3 Pilot Interpolation-TT

For the sake of a low complexity algorithm, Pilot Interpolation-TT algorithm was devel-

oped. The initial channel estimate is calculated by interpolating the channel estimates

at the pilots’ positions then this initial estimate is further enhanced by time truncation

iterations.

4.5.2.4 Previous-TT

The training sequences are used in this algorithm to provide the time truncation process

with an initial channel estimate and after the first OFDM symbol, the channel estimates

of the previous OFDM symbol are used to initialize the time truncation iterations for

the coming OFDM symbol.
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4.5.2.5 Performance Comparison

Simulations results shows that using the pilots to decrease the algorithm complexity by

searching over only 24 combinations vastly degrades the performance, also fixing the

channel response at pilots’ positions in time truncation iterations has bad impact on

performance.

Pilot interpolation and Previous Symbol CR-TT algorithms have good performance at

stationary environments with relatively large packets but when the doppler values go

beyond 500 Hz, the algorithms fail to track the channel variations.
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Figure 4.15: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.
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Figure 4.16: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.
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Figure 4.17: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.
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Figure 4.18: BPSK Bit Error Rate, maximum doppler=1000Hz and 200 OFDM
symbol per packet.
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4.6 Semi Blind Channel Estimation

4.6.1 Minimum Distance Estimator

By digging deeper into the IEEE 802.11p standard, and trying to find a simple algo-

rithm that can solve the performance issue at highly mobile environment, the proposed

algorithm was developed intuitively keeping complexity and performance in mind. This

estimator has a low computational complexity and the ability to track fast channel vari-

ations by exploiting the channel estimates at the four pilots in every OFDM symbol

as well as the high correlation characteristic of the channel response between adjacent

subcarriers .

First the 48 data subcarriers are divided into four groups. Each group has the pilot

subcarier in the middle.

Starting from the pilot position, the channel estimates of the neighboring subcarrier

are determined based on the minimum Euclidean distance between the pilot channel

estimate and the possible channel responses of its neighboring subcarrier according to

the below equations (depending on the relative location to the pilot, if the subcarrier is

on the rightside of the pilot use equation (4.45) otherwise use equation (4.46)).

Using the estimated channel response of the neighboring subcarrier to estimate the

subcarrier next to it and so on until all the neighboring subcarriers in the pilot’s group

are scanned and then we move on to the second pilot position.

Hfreq(k + 1) = arg min
λm[Ĥ(k+1)]

||Hfreq(k)− λm[Ĥ(k + 1)]||, (4.45)

Hfreq(k − 1) = arg min
λm[Ĥ(k−1)]

||Hfreq(k)− λm[Ĥ(k − 1)]|| (4.46)

where λm is the corresponding ambiguity in the channel response based on the con-

stellation used in data transmission ( λm ∈ {±1} for BPSK and λm ∈ {±1,±j} for

QPSK).

4.6.2 Minimum Distance Estimator with time truncation

To enhance the tracking capabilities of the Minimum Distance Estimator, time trunca-

tion is done to exploit the information about the channel taps in the time domain. The
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Minimum distance estimator provides the time truncation algorithm with the initial es-

timate, time truncation iterations enable the estimator to track fast channel variations

more closely and yet the complexity of the overall estimator is still low.

4.6.3 Sliding Time Truncation

This Algorithm provides an initial estimate with a reduced noise variance to the time

truncation estimator.

Noise variance reduction is done by a simple rectangular sliding window as described

before in section 4.4.1.2.
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4.6.4 Performance Comparison

Minimum distance and Minimum distance with time truncation algorithms achieve a

very good performance in stationary environments and also are able to track fast channel

variations in vehicular environments even with very large packet sizes.

The low computational complexity of both algorithms makes them suitable for V2V

applications which require fast yet efficient algorithms to meet the critical timing limits

of safety real time applications.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Constellation size=2

 

 

Perfect Channel
MD
MD−TT
Sliding−TT

Figure 4.19: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.
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Figure 4.20: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.
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Figure 4.21: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.
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Figure 4.22: BPSK Bit Error Rate, maximum doppler=1000Hz and 200 OFDM
symbol per packet.
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4.7 Decision Directed Channel Estimation

Decision-directed channel estimation was extensively covered in literature [54, 55, 56, 57,

58, 59, 60], and has been demonstrated to have an advantage over pilot aided schemes in

terms of performance and bandwidth efficiency. On the other hand, in order to design

decision-directed channel estimation, a decision feedback of desired data is needed and

error propagation is one of the major problems that should be avoided when using

decision-directed channel estimation specifically at low SNR. A wrong decision due to

noise or channel fading can result in an unreliable channel estimate. As a result, signal

compensation produces more errors in data that produce another wrong decision. This

results in the loss of the entire packet.

4.7.1 Constructed Data Pilots (CDP) Estimator

Exploiting the correlation between adjacent symbols the CDP estimator achieves a

higher performance than STA at high SNR. The CDP estimator consists of four steps,

the last two steps are the different ones from the STA. First, the CDP estimator uses

the channel response of the previous symbol to update the channel estimate as follows

Ŝi(k) =
Yi(k)

HCDP,i−1(k)
. (4.47)

Second, data pilots ˆXi(k) are constructed by demodulation of the equalized symbol.

then an initial is calculated using LS estimation

Ĥi(k) =
Ŝ(k)

ˆXi(k)
. (4.48)

Third, Ĥi(k) and HCDP,i−1(k) are used separately to equalize the previous symbol as

shown

Ŝ
′
i−1(k) =

Ŝi−1(k)

Ĥi(k)
, (4.49)

Ŝ
′′
i−1(k) =

Ŝi−1(k)

ĤCDP,i−1(k)
. (4.50)

Fourth, A Comparison between the demodulated data from equation 4.49 and equation

4.50 ( X̂i−1(k)
′
& X̂i−1(k)

′′
) is done. Depending on the high correlation between adjacent
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data symbols, if X̂i−1(k)
′ 6= X̂i−1(k)

′′
therefore X̂i(k) is not correct and HCDP,i(k) =

HCDP,i−1(k) . Otherwise, HCDP,i(k) = Hi(k).

The only exception to the previous equations is that for the first data symbol received

Ŝi−1(k) equals the second long training symbol and ˆXi−1(k)
′′

) is the known transmitted

pilots in the frequency domain.

4.7.2 Iterative Decision Directed Estimator

This Algorithm depends on decision directed channel estimation. After equalizing the

received symbol using Ŝ(i,m) = Y (i,m)

Ĥ0(ρm)
, Channel estimation and symbol estimation

steps are applied repeatedly until possible convergence.

At low SNR, the performance of the algorithms degrades as the symbol by symbol

detection has poor performance.

4.7.3 Decision Directed with Time Truncation (DD-TT) Algorithm

In this section a novel semi blind channel estimation and tracking algorithm is proposed

for highly dynamic V2V environments.

In our algorithm, we use decision directed channel estimation to get an initial estimate

then a simple time truncation is done. A detailed explanation of the algorithm is listed

as follows.

1. We will start with the LS estimate ĤLS as an initial estimate then channel equalization

of the first data symbol is done by the LS initial estimate as follows

Ŝt(k) =
Yt(k)

Ĥt−1(k)
(4.51)

where Ŝt(k) is the equalized symbol at subcarrier k and time t, Yt(k) is the received

symbol at subcarrier k and time t and Ĥt−1(k) is the channel estimate of the previous

symbol.

2. A further modification is done using the demodulated data to get a more accurate

channel estimates as shown below

Hinit, t(k) =
Yt(k)

X̂t(k)
(4.52)

where X̂t(k) is the demodulated symbol from Ŝt(k).



Chapter 4. Channel Estimation 54

3. A much better estimate is obtained using the time truncation technique.

The coefficients of each subcarrier is modified according to equation (15) then truncating

the channel in the time domain by removing any existing taps rather than the first 8

taps defined by the V2V channel model, so any extra taps must equal to zero. And

then iterate starting from equation (15) until there is no change in the subcarriers’

coefficients. Each iteration requires only one 64-point FFT and one 64-point IFFT. And

since the channel estimates converges most of the time after only 2 iterations, Thus time

truncation technique has low complexity.

ĤDD−TT = arg min
λm[ĤJ (k)]1/J

||Hinit, t − λm[ĤJ(k)]1/J || (4.53)

where Ĥ(k) = Yt(k). Then the pilots majority rule is used to ensure correct channel

polarity as in the FA-TT algorithm.

This algorithm is simple to implement and its performance is independent of neither

the packet size nor the vehicle velocity and on the other hand it gives the best per-

formance reached compared to previous channel estimation techniques used for V2V

communications.

The reason behind this performance gain is noise cancellation by calculating the initial

channel estimate using the demodulated data and also exploiting the pilots’ information

to determine the channel polarity with a great degree of confidence using the majority

rule. Moreover, exploiting the number of taps of the V2V channel model gives the high

performance boost to the algorithm. Besides the fact that estimating the channel taps

depends only on the channel of the previous symbol as well as the current one makes

the algorithm able to track the channel fast variations.
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4.7.4 Performance Comparison

CDP and iterative-DD algorithms didn’t meet the expected performance levels and fails

to track the channel responce even at low mobility enviroments.

Decision Directed Time Truncation achieve a very good performance with low compu-

tational complexity for highly mobile environments and large packet sizes.
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Figure 4.23: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.
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Figure 4.24: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.
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Figure 4.25: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.
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Figure 4.26: BPSK Bit Error Rate, maximum doppler=1000Hz and 200 OFDM
symbol per packet.
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Figure 4.27: BPSK Bit Error Rate, maximum doppler=500Hz and 100 OFDM symbol
per packet.

4.8 Discussion

Thus, the proposed schemes achieve BER performance beyond the reach of the con-

ventional schemes. In summary, simulation results showed that the proposed scheme

reduces the BER at all modulation schemes for all channel models and all packet sizes.

Fig. 4.27 through Fig. 4.31 show the BER performance of the different channel estima-

tion and tracking algorithms. We can clearly see some significant performance gains of

the proposed DD-TT and MD-TT as compared to the STA algorithm of [5].
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Figure 4.28: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.
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Figure 4.29: BPSK Bit Error Rate, maximum doppler=1000Hz and 200 OFDM
symbol per packet.
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Figure 4.30: QPSK Bit Error Rate, maximum doppler=1000Hz and 50 OFDM symbol
per packet.
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Figure 4.31: 16QAM Bit Error Rate, maximum doppler=1000Hz and 25 OFDM
symbol per packet.
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Figure 4.32: BPSK Bit Error Rate, maximum doppler=200Hz and 50 OFDM symbol
per packet.

FA-TT, MD-TT and DD-TT are the most powerful algorithms for three reasons and

Fig.4.32 to Fig. 4.35 show the following:

First, the three algorithms achieve very high performance for low mobile environments

as well as fast varying channels.

Second, the algorithms withstand different packet sizes and achieve a very good perfor-

mance even for large packet sizes.

Last, both the MD-TT and DD-TT have low computational complexity even for higher

constellation sizes and that is why these two algorithms are more suitable for implemen-

tation than the FA-TT algorithm.
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Figure 4.33: BPSK Bit Error Rate, maximum doppler=500Hz and 50 OFDM symbol
per packet.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Constellation size=2

 

 

Perfect Channel
LS−DD
FA−TT
STA
DD−TT
MD−TT

Figure 4.34: BPSK Bit Error Rate, maximum doppler=1000Hz and 50 OFDM symbol
per packet.
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Figure 4.35: BPSK Bit Error Rate, maximum doppler=1000Hz and 100 OFDM
symbol per packet.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this Thesis, we have presented several channel estimation and tracking algorithms

for the V2V channels. A finite alphabet with time truncation (FA-TT), a decision-

directed with time truncation (DD-TT) and minimum distance with time truncation

(MD-TT) channel estimators were proposed for the 5.9 GHz DSRC receiver. The algo-

rithms achieve very high performance for low mobile environments as well as fast varying

channels even for large packet sizes. The designed channel estimators were compared

to conventional and other previously proposed channel estimators using simulation un-

der V2V channel models. The receivers with DD-TT and MD-TT estimators improved

BER performance in all modulation schemes, namely BPSK, QPSK and 16-QAM. The

receiver with the designed estimators achieved performances that were not at all possible

with conventional estimators. The proposed DD-TT and MD-TT designs were shown

to be very effective and practical for WAVE applications, since it is simple, compliant

with the IEEE802.11p standard and did not require extensive hardware complexity.

5.2 Future Work

Although the proposed receiver design achieved a higher performance than any other con-

ventional receiver but a lot more is expected by applying different estimation techniques

for the IEEE 802.11p standard and compare their performance in the V2V environment.

Besides, a hardware implementation of DD-TT and MD-TT schemes are required to

illustrate their implementation feasibility.
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