
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

2-1-2017

Decentralized algorithm of dynamic task allocation for a swarm of Decentralized algorithm of dynamic task allocation for a swarm of

homogeneous robots homogeneous robots

Maha AlShawi

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
AlShawi, M. (2017).Decentralized algorithm of dynamic task allocation for a swarm of homogeneous
robots [Master's Thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/36

MLA Citation
AlShawi, Maha. Decentralized algorithm of dynamic task allocation for a swarm of homogeneous robots.
2017. American University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/36

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/36?utm_source=fount.aucegypt.edu%2Fetds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/36?utm_source=fount.aucegypt.edu%2Fetds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

The American University in Cairo

School of Sciences and Engineering

Decentralized Algorithm of Dynamic Task Allocation for a

Swarm of Homogeneous Robots

By

Maha Hasan AlShawi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Robotics, Control and Smart Systems (RCSS)

Under supervision of:

Dr. Mohamed Shalan

Associate Professor, Computer Science and Engineering (CSCE)

July, 2017

i

DECLARATION

I declare that this thesis is my work and that all used references are cited and properly

indicated.

Maha Hasan AlShawi

ii

ACKNOWLEDGMENTS

First, I thank God for providing me with the power to be able to finish my thesis and

manage to cross all the obstacles that I have been through during my study time.

Then, I would like to thank my supervisor Dr. Mohamed Shalan for his dedication to get

many ideas implemented, through the digestion and redirection of the crazy ideas I came

up with. I do appreciate a lot his support when I first proposed the hybrid DPSO/SA

approach. I have my first experience in providing a complete research and publication

under his supervision. Thanks for his continuous technical support and comments, during

various design phases.

My deepest gratitude goes to Prof. Amal Esawi; the associate dean of graduate studies at

AUC who made my master life easier by just being there. Due to her loyalty, sincerity, her

generous support, encouragement and guidance, I have continued this work till the end.

Thanks for her inspiration.

I would like to extend thanks to many colleagues who generously supported me a lot in the

past few years. My appreciation goes to Rana, Heba, Amr Morsy, Abdullah, Mahmoud

Elfar, Mohamed Shalaby, Amr Elhenawy, Ahmed Samir, Ahmed Zahran, and Louis. I do

really wish them all the best in their career and life.

Also, I have to mention all those close friends, who have been always there when I needed

them most, or those who interacted with me almost on daily basis, I mean: Nada, Wessam,

Alaa, Omnia, and Sahar.

Eman Helal; my mother has been a steady, silent soldier in my background lousy life.

Without her dedication and perfection, I would never be able to do those many things I

have done during the past few years. I have also to show gratitude to my father, sister Nada

and my brothers who always believe in me. My extended family, Fatma, Sara, Ahmed,

Abdullah, Areej, Morooj, and Basma, I hope they excuse me for being away when they

needed me most.

Second, beyond the call of duty, I have to appreciate my luck to gain two grants, research

grant and conference grant throughout my study time, which are supported by Yousef

Jameel Science and Technology Research Center.

Thanks to Dr. Florin and Dr. Yousra, for providing me with a greater insight on the big

picture, results, and analysis. I have to acknowledge that I have learned from them both a

lot in my proposal defense.

iii

ABSTRACT

The current trends in the robotics field have led to the development of large-scale swarm

robot systems, which are deployed for complex missions. The robots in these systems must

communicate and interact with each other and with their environment for complex task

processing.

A major problem for this trend is the poor task planning mechanism, which includes both

task decomposition and task allocation. Task allocation means to distribute and schedule a

set of tasks to be accomplished by a group of robots to minimize the cost while satisfying

operational constraints. Task allocation mechanism must be run by each robot, which

integrates the swarm whenever it senses a change in the environment to make sure the

robot is assigned to the most appropriate task, if not, the robot should reassign itself to its

nearest task.

The main contribution in this thesis is to maximize the overall efficiency of the system by

minimizing the total time needed to accomplish the dynamic task allocation problem. The

near-optimal allocation schemes are found using a novel hybrid decentralized algorithm for

a dynamic task allocation in a swarm of homogeneous robots, where the number of the

tasks is more than the robots present in the system. This hybrid approach is based on both

the Simulated Annealing (SA) optimization technique combined with the Discrete Particle

Swarm Optimization (DPSO) technique.

Also, another major contribution in this thesis is the formulation of the dynamic task

allocation equations for the homogeneous swarm robotics using integer linear

programming and the cost function and constraints are introduced for the given problem.

Then, the DPSO and SA algorithms are developed to accomplish the task in a minimal

time. Simulation is implemented using only two test cases via MATLAB. Simulation

results show that PSO exhibits a smaller and more stable convergence characteristics and

SA technique owns a better quality solution.

Then, after developing the hybrid algorithm, which combines SA with PSO, simulation

instances are extended to include fifteen more test cases with different swarm dimensions

to ensure the robustness and scalability of the proposed algorithm over the traditional PSO

and SA optimization techniques.

Based on the simulation results, the hybrid DPSO/SA approach proves to have a higher

efficiency in both small and large swarm sizes than the other traditional algorithms such as

Particle Swarm Optimization technique and Simulated Annealing technique. The

simulation results also demonstrate that the proposed approach can dislodge a state from a

local minimum and guide it to the global minimum. Thus, the contributions of the

proposed hybrid DPSO/SA algorithm involve possessing both the pros of high quality

solution in SA and the fast convergence time capability in PSO.

iv

Also, a parameters' selection process for the hybrid algorithm is proposed as a further

contribution in an attempt to enhance the algorithm efficiency because the heuristic

optimization techniques are very sensitive to any parameter changes.

In addition, Verification is performed to ensure the effectiveness of the proposed algorithm

by comparing it with results of an exact solver in terms of computational time, number of

iterations and quality of solution. The exact solver that is used in this research is the

Hungarian algorithm.

This comparison shows that the proposed algorithm gives a superior performance in almost

all swarm sizes with both stable and small execution time. However, it also shows that the

proposed hybrid algorithm's cost values which is the distance travelled by the robots to

perform the tasks are larger than the cost values of the Hungarian algorithm but the

execution time of the hybrid algorithm is much better.

Finally, one last contribution in this thesis is that the proposed algorithm is implemented

and extensively tested in a real experiment using a swarm of 4 robots. The robots that are

used in the real experiment called Elisa-III robots.

v

TABLE OF CONTENTS

DECLARATION.. i

ACKNOWLEDGMENTS .. ii

ABSTRACT .. iii

LIST Of TABLES .. xi

ACRONYMS ... xii

NOMENCLATURE ... xiv

1 Introduction ... 1

1.1 Robotics... 1

1.2 Swarm Robotics .. 8

1.2.1 Swarm robotics properties.. 10

1.3 Autonomous Rescue Swarm Robotics Application ... 11

1.3.1 Challenges in search and rescue application .. 14

1.4 Foraging Problem .. 15

2 Dynamic Task Allocation .. 18

2.1 Dynamic Task Allocation Problem Definition .. 18

2.2 Problem Formulation (Minimal Time Dynamic Task allocation)... 21

3 Thesis Statement and Methodology .. 24

3.1 Thesis Statement... 24

3.2 Methodology ... 24

4 Algorithms For Solving Dynamic Task Allocation Problem .. 27

4.1 First Taxonomy .. 28

4.1.1 Behavioral approach ... 28

4.1.2 Market Laws approach .. 28

4.1.3 Bio-Inspired approach ... 31

vi

4.2 Second Taxonomy ... 34

4.2.1 Centralized approach ... 34

4.2.2 Distributed approach ... 35

4.3 Third Taxonomy .. 37

4.3.1 Single-robot task approach .. 37

4.3.2 Multi-robot task approach ... 37

4.4 Discrete Combinatorial Optimization Techniques .. 40

4.4.1 Combinatorial discrete applications .. 41

4.4.2 PSO limitation in solving discrete combinatorial problem ... 43

4.5 Optimization Techniques for Solving DTA Problem .. 47

4.5.1 Particle Swarm Optimization technique .. 49

4.5.2 Simulated Annealing technique .. 58

5 Minimal Time Dynamic Task Allocation Through Hybrid DPSO/SA Algorithm .. 66

5.1 Hungarian Algorithm ... 66

5.1.1 Cost matrix representation ... 69

5.2 PSO .. 79

5.2.1 DPSO .. 80

5.3 SA .. 92

5.3.1 SA parameters' selection ... 93

5.4 DPSO/SA .. 96

5.4.1 DPSO/SA pseudo code ... 98

5.4.2 DPSO/SA parameters' selection .. 101

5.4.3 LPSO VS. GPSO... 102

6 Results and Discussion ... 105

6.1 Introduction .. 105

vii

6.2 Methodology ... 105

6.2.1 Initial population of DPSO ... 106

6.2.2 Local searching ability of SA .. 106

6.2.3 DPSO/SA decentralization .. 106

6.3 Parameters' Optimization ... 107

6.3.1 Initial temperature 'T0' .. 107

6.3.2 Cooling rate ' λ ' .. 108

6.3.3 Inertia weight 'w' ... 109

6.3.4 Acceleration constants 'c1, c2' .. 109

6.4 Simulation Results and Comparisons .. 110

6.4.1 DPSO vs. SA ... 110

6.4.2 Comparison between the proposed hybrid algorithm vs. other techniques 117

6.5 Simulation using Eliza-3 robots ... 128

6.5.1 The controller .. 128

6.5.2 Elisa-3 robot .. 130

6.5.3 Experiment implementation .. 130

6.5.4 Communication overhead evaluation .. 140

7 Conclusion and Future Work ... 148

7.1 Conclusion ... 148

7.2 Future Work .. 150

References .. 152

viii

LIST Of FIGURES

FIGURE 1.1: ATHLETE ROBOT [2]. .. 4

FIGURE 1.2: IROBOT [3]. ... 4

FIGURE 1.3: RESCUE ROBOTS [4]. ... 5

FIGURE 1.4: MILITARY AUTOMOBILE ROBOTS [5] ... 5

FIGURE 1.5: AN MQ-9 REAPER DURING A TRAINING MISSION (FLYING ROBOT DRONE) [6] .. 6

FIGURE 1.6: FARM ROBOTS [4]. .. 6

FIGURE 1.7: CAR ASSEMBLED BY ROBOTS [4]. .. 7

FIGURE 1.8: HUMANOID ROBOT [4]. ... 7

FIGURE 1.9: UNDERWATER ROBOTS [4]. ... 8

FIGURE 1.10: SSPS TOWER [11]. .. 14

FIGURE 4.1: ARCHITECTURE OF THE RELATIONSHIP AMONG TASKS ... 37

FIGURE 4.2: FIRST AND LAST ITERATIONS IN PSO [57]. .. 50

FIGURE 4.3: PSO POSITION UPDATE.. 51

FIGURE 4.4: PSO GLOBAL BEST UPDATE OVER DIFFERENT ITERATIONS [57]. ... 52

FIGURE 4.5: PSO TOPOLOGIES [57]. ... 52

FIGURE 4.6: FLOWCHART OF THE PARTICLE SWARM OPTIMIZATION TECHNIQUE ... 53

FIGURE 4.7: SIMULATED ANNEALING TECHNIQUE DEMONSTRATION [59]. ... 59

FIGURE 4.8: SIMULATED ANNEALING COST FUNCTION [60]. .. 60

FIGURE 4.9: LOCAL MINIMUM VS. GLOBAL MINIMUM [60]. .. 61

FIGURE 4.10: SIMULATED ANNEALING FLOWCHART [60]. .. 64

FIGURE 5.1: COMPLEXITY FUNCTIONS .. 67

FIGURE 5.2: PSO EXAMPLE [78]. .. 102

FIGURE 5.3: NEIGHBORING TOPOLOGY [79]. .. 104

FIGURE 6.1: PSO SOLUTION RESULTING AFTER 500 ITERATIONS IN THE FIRST STUDY CASE 112

FIGURE 6.2: SA SOLUTION RESULTING AFTER 500 ITERATIONS IN THE FIRST STUDY CASE. .. 112

ix

FIGURE 6.3: PSO SOLUTION RESULTING AFTER 500 ITERATIONS IN THE SECOND STUDY CASE. 113

FIGURE 6.4: SA SOLUTION RESULTING AFTER 500 ITERATIONS IN THE SECOND STUDY CASE. 113

FIGURE 6.5: PSO VS. SA PERFORMANCE FOR THE FIRST CASE STUDY .. 116

FIGURE 6.6: PSO VS. SA PERFORMANCE FOR THE SECOND CASE STUDY ... 116

FIGURE 6.7: STANDARD DEVIATION OF THE DPSO/SA, SA, AND DPSO. ... 124

FIGURE 6.8: CONTROLLER'S CONCEPTUAL STATE DIAGRAM. .. 129

FIGURE 6.9: STARTING 1ST ROBOT FROM THE REFERENCE POINT (0,0) ... 131

FIGURE 6.10: STARTING THE 2ND ROBOT FROM THE REFERENCE POINT (0,0) ... 131

FIGURE 6.11: STARTING THE 3RD ROBOT FROM THE REFERENCE POINT (0,0) ... 132

FIGURE 6.12: STARTING THE 4TH ROBOT FROM THE REFERENCE POINT (0,0) ... 132

FIGURE 6.13: THE SEARCHING ROBOT SEARCHES FOR VICTIMS .. 133

FIGURE 6.14: SEARCHING FOR VICTIMS .. 133

FIGURE 6.15: THE RESCUE ROBOT SEARCHES FOR VICTIMS .. 133

FIGURE 6.16: THE RESCUE ROBOT FINDS A VICTIM ... 134

FIGURE 6.17: THE RESCUE ROBOT SEARCHES FOR MORE VICTIMS .. 134

FIGURE 6.18: THE CLOSEST RESCUER TO THE VICTIM FINDS THE VICTIM .. 134

FIGURE 6.19: THE RESCUER TRANSPORTS THE VICTIM TO THE RESCUE ZONE ... 135

FIGURE 6.20: THE FIRST RESCUER STARTS FROM THE REFERENCE POINT (0,0) ... 136

FIGURE 6.21: THE SECOND RESCUER STARTS FROM THE REFERENCE POINT (0,0) ... 137

FIGURE 6.22: THE TWO RESCUER TURNS INTO SLEEP MODE AT RANDOM LOCATION ... 137

FIGURE 6.23: THE TWO SEARCHING ROBOTS START SEARCHING FOR VICTIMS RANDOMLY ... 137

FIGURE 6.24: THE RIGHT SEARCHING ROBOT FINDS A VICTIM ... 138

FIGURE 6.25: THE LEFT SEARCHING ROBOT FINDS A VICTIM ... 138

FIGURE 6.26: THE SEARCHING ROBOT CONTINUE SEARCHING FOR MORE VICTIMS ... 138

FIGURE 6.27: THE TOW RESCUERS FIND THE VICTIMS DETECTED BY THE SEARCHING TEAM 139

FIGURE 6.28: THE RESCUE ROBOTS TRANSPORT THE VICTIMS TO THE RESCUE ZONE .. 139

FIGURE 6.29.COMMUNICATION BETWEEN THE ROBOTS AND PC... 140

x

FIGURE 6.30. OVERALL STRUCTURE OF THE MESSAGE SENT BY ROBOT ID TO THE RF BASE STATION. 141

FIGURE 6.31: STRUCTURE OF THE MESSAGE SENT BY THE RF BASE STATION TO ROBOT ID .. 142

FIGURE 6.32: STRUCTURE OF THE MESSAGE SENT BY ROBOT ID TO THE RF BASE STATION. 142

FIGURE 6.33: PACKET FORMAT OF THE MESSAGES FROM AND TO THE ROBOTS. .. 143

xi

LIST Of TABLES

TABLE 5.1. EXAMPLE OF SYSTEM WITH 3 ROBOTS AND 3 TASKS. .. 68

TABLE 5.2: EXAMPLE OF SYSTEM WITH 4 ROBOTS AND 4 TASKS .. 73

TABLE 5.3: MATRIX OF 3 ROBOTS AND 3 TASKS ... 77

TABLE 6.1.ALLOCATION SOLUTION FOR THE FIRST CASE STUDY .. 111

TABLE 6.2.ALLOCATION SOLUTION FOR THE SECOND CASE STUDY .. 111

TABLE 6.3: SIMULATION EXPERIMENT DATA FOR THE FIRST CASE STUDY .. 114

TABLE 6.4: SIMULATION EXPERIMENT DATA FOR THE SECOND CASE STUDY .. 115

TABLE 6.5: SIMULATION RESULTS .. 118

TABLE 6.6: GEOMETRICAL MEAN OF DIFFERENT SWARM SIZES .. 119

TABLE 6.7: SA STANDARD DEVIATION ... 121

TABLE 6.8: DPSO STANDARD DEVIATION .. 122

TABLE 6.9: DPSO/SA STANDARD DEVIATION .. 123

TABLE 6.10: TRANSMISSION COMMUNICATION OVERHEAD .. 146

TABLE 6.11: RECEPTION COMMUNICATION OVERHEAD .. 146

xii

ACRONYMS

TA Task Allocation

DTA Dynamic task allocation

MTDTA Minimal Time Dynamic Task Allocation

PSO Particle Swarm Optimization

DPSO Discrete Particle Swarm Optimization

SA Simulated Annealing

DPSO/SA Hybrid Discrete Particle Swarm Optimization/Simulated Annealing

DPSO Discrete Particle Swarm Optimization

TS Taboo Search

GA Genetic Algorithm

AC Ant Colony

ABC Artificial Bee Colony

UAV Unmanned aerial vehicle

CRASAR Center for Robot-Assisted Search and Rescue

ASyMTRe Automated Synthesis of Multi-Robot Task Solutions through Software Reconfiguration

SR Single-robot tasks

MR Multi-robot tasks

NP Non-deterministic polynomial-time

LED Light Emitting Diode

IR Infrared

xiii

DC Direct current

RF Radio Frequency

SPI Serial Peripheral Interface

ISM Industrial, Scientific and Medical band basis

NI necessary information

MATLAB MATrix LABoratory

xiv

NOMENCLATURE

n Number of robots

m Number of tasks

A Allocation

T Temperature

T0 Initial temperature

tk current temperature value

tk-1 previous temperature value

Tend End temperature value

w Inertia weight

wmax Max inertia weight

wmin Min inertia weight

I Current iteration

Imax Max iteration

Imin Min iteration

pbest Personal best solution

Gbest Global best solution

lbest Local best solution

V Velocity

X Particle position

c1 Acceleration constant 1

c2 Acceleration constant 2

maxit Maximum number of iterations

cnt counter

rg Refresh Gap

xv

rand Random function

μ Mean

σ Represents the standard deviation

C Distance between robot and task

Q Number of allocations

λ Cooling rate parameter

∆Xmax The difference between the fitness value of the worst solution and the initial solution

p1 Acceptance rate of the worst new solution

Cold SA current state

Cnew SA new state

E(s) SA new fitness value

E(s') SA previous fitness value

D Difference between the SA's current fitness value and previous fitness value

E Explore state

B Back state

R Retrieve state

Ni Number of prey of i type

T Total number of robots

λ The rate by which objects were found in the environment by a single robot

K The probability for a single robot to find the nest

φi The incoming rate per second of prey of type i

εi The probability constant over time for a prey of type i to disappear

μi The inverse of the average time required to retrieve a prey of type i

ρ The probability to give up an ongoing retrieval

β The probability for a robot to return to nest

xvi

γ The probability for a robot to leave the nest and look for prey

πi The probability to take a prey of type i upon encounter

1

 Chapter 1

 Introduction

In this chapter, a brief introduction about robotics and swarm robotics in general is presented.

Then, the foraging problem is addressed. After that, a mapping of the experimental scenarios into

the real application of autonomous human rescuing after a semi-disaster happened is provided.

Finally, the thesis outline is provided.

1.1 Robotics

The history of robotics [1] embeds computers, electronics, communications and mechanics

technology. Thus, it can be considered as an interdisciplinary trend of these fields. Robotics

nowadays represents one of the human's outstanding contributions and one of the major attempts

for human to improve electronics and artificial life.

Although robotics can be considered as the main achievement of the 20th century, their corner

stone starts long away in history. From all the beginning, superstitions were diffused through

people about connecting the exceptional power of human with the artificial intelligence life.

Since 270 before century Egyptians and Greeks attempts to perform easy tasks using mechanical

machines. Nowadays, children's toys and other essential machines used in our daily life are

automated using electronic devices.

Researchers are now more attracted in the building of artificial machines that own some

intelligence to work autonomously, as the speed of improvements in the robotics and computer-

engineering fields is extremely fast. Nowadays, robotics almost engage in a huge number of

applications, they are involved in everything in our life such as exploration, military applications,

police work, space field and medication industry.

To be fair, it is worth to mention that robotics field is not new as many people assume, however

the origins of the robotics field [1] were started from 1250. In 1250, the first humanoid robot was

implemented. Also, during the period from 1250 to 1950, the robots development field was

transferred to be used more in entertainment field instead of serious domains.

http://www.edgefxkits.com/robotics-projects/

2

A set of main stops [1] in robotics history in the 20th century can be addressed as follows:

1. In 1942, three rules were formulated and accepted for robots to be legally manufactured:

1.1. Robots cannot be harmful to human being even during their operation. Also, Human

is permitted to damage them if a harmful situation happened for him/her.

1.2. If human gives a robot a command, which might contradict with the robotics first

low, the robot should follow it.

1.3. A robot should protect its survival in case this defense does not contradict with the

robotics' first and second laws.

2. In 1956, the first company for robots' development was build.

3. In 1959, MIT confirmed the computer assisted manufacturing.

4. In 1961, the first automated robot was released online in a General Motors automobile

plant.

5. The most outstanding year was 1963, as the first automatic robotic arm was developed

mainly for the handicapped disable people.

These inventions [1], which are listed above was the first inventions in the field but not the only.

Many inventions are developed too especially after the robotic arm. Through years, there were

many surprising grants for human beings in the robotics field.

Branches that are involved in the robotics' establishment include:

Unlike other domains in engineering, robotics is a new multi-disciplinary field. The major

domains, which are involved in the establishment of the robotics field include:

1. Mechanical Engineering: provides robotics field with the design, structure and

machinery.

3

2. Electrical Engineering: Provides robotics field with the main control function and the

artificial intelligence actions.

3. Computer Engineering: Provides robotics field with the implementation of robots'

movements and sensing capabilities.

Classification of Robots:

Robots [1] are classified according to the design of the robots and the number of applications

they can be involved in. Thus, robots can be categorized into three main classes:

 Simple design Robotics - This class includes automated machines of mostly simple

design. The main target for such machines is just to help human beings, such as Washing

Machine.

 Middle design Robotics – The main development in this class over the previous one is

that the robots can be programmed but only once. They also own a more sophisticated

circuit with sensors included and they mainly can execute multiple tasks, such as the

newly sophisticated multi-function washing machine.

 Complex design Robotics - In this class, robots can be programmed multiple times.

They also include very complex digital circuits, such as PCs and laptops.

Robotics types and applications:

One of the major trends in technologies for the past one hundred years is robotics field. Also,

people became more aware and knowledgeable about technology and robotics due to the world-

wide movies' industry and the global media. Nowadays, the number of tasks that can be executed

by robots in different fields is progressively increasing. Some of these applications [1] can be

outlined as follows:-

1. Space robots – tele-operated Robotic arms are used to construct a space station or to

launch a satellite. These robots could be controlled remotely by human. Another example

could be the ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer); which is a

4

six-limbed robotic lunar rover test-bed. ATHLETE is a test bed for various systems that

could be used for lunar or Martian exploration. As can be seen from figure 1.1, each of

the ATHLETE‟s six limbs has six degrees of freedom. For general traveling purposes, the

ATHLETE rolls on its six wheels but if it encounters more rugged and extreme terrain, it

has the ability to lock each wheel into place and walk using its limbs.

 Figure 1.1: ATHLETE robot [2].

2. Domestic or household robots – Robotics and electronic systems could be utilized

currently in lots of applications in home to provide more prosperity to people's life. For

example, they could be used in home security system, automatic system for doors and

windows, and turning on and off electrical devices like A/C and lights. Examples that are

more sophisticated are robotic vacuum cleaners (see figure 1.2), robotic pool cleaners,

and robotic sweepers.

Figure 1.2: irobot [3].

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

5

3. Exploration robots – Robots can be deployed in dangerous semi-destroyed site after a

disaster as an earthquake happened which could be harmful for human beings to get

inside in an attempt to rescue victims, see figure 1.3. Another example could be the

observation of the atmosphere within a volcano site.

Figure 1.3: Rescue robots [4].

4. Military Robots – As shown in figure 1.4 and 1.5, Robots are used nowadays in the

modern armed force especially the flying robot drones, see figure 1.5. A common

example on using robots in army could be using the airplane and automobiles in

transmitting bombs, petroleum, or bullets (see figure 1.4). Other more sophisticated

example could be using robots to clear minefields.

Figure 1.4: Military automobile robots [5]

http://www.edgefxkits.com/war-field-spying-robot-with-night-vision-wireless-camera-by-android-applications

6

Figure 1.5: An MQ-9 reaper during a training mission (flying robot drone) [6]

5. Farm robots – collecting crops could be done nowadays using autonomous robots, see

figure 1.6. In addition, they could help workers to nourish and milk their cattle remotely.

 Figure 1.6: Farm robots [4].

6. The Car Industry (Industrial robots) – Lots of cars' assembling and manufacturing

process could be performed smoothly using robotic arms, see figure 1.7. Some of other

tasks that could be performed easily using robots are painting, welding, sorting, bending,

cutting, and lifting. They could also be used in the food industry to carry out jobs such as

cutting and trimming of food like fish, beef, chicken or lamb.

https://en.wikipedia.org/wiki/MQ-9_Reaper

7

 Figure 1.7: Car assembled by robots [4].

7. Medical robots – Robots could be used in medical field to help nurses to lift patients

while keeping their backbones in a straight position so that they could reduce the pain. In

addition, a power-facilitated suit was invented in Japan, which could make it easier for

the nurses to lift the patients.

8. Entertainment robots – these robots are very interactive and can be used for children's

education. For example, there is a robot developed by SONY that could react to your

voice commands, they also could move around freely, and even hold your luggage, see

figure 1.8.

 Figure 1.8: Humanoid robot [4].

9. Hobby and competition robots – These robots are designed mainly by students and can

be used in competitions between students, such as the line follower competition.

8

10. Underwater Robots - Finally, underwater robots can be used to discover and gather

essential information to be used by military, see figure 1.9.

 Figure 1.9: Underwater robots [4].

To sum up, it is better to use robots in recurring jobs, so that human could save their time and

efforts for innovative, imaginative, and multifaceted tasks.

1.2 Swarm Robotics

The current trends in the robotics field have led to the development of swarm robotics systems.

Swarm robotics is a new approach to the coordination of multi-robot systems, which consist of

large numbers of mostly simple physical robots. It is supposed that a desired collective behavior

emerges from the interaction between the robots and the interaction of robots with the

environment. This approach emerged in the field of artificial swarm intelligence as well as the

biological study of insects, ants and other fields in the nature, where a swarm behavior occurs.

Most swarm intelligence researches are inspired from how the nature swarms, such as social

insects, fishes or mammals, interact with each other in the swarm in real life.

The research on the swarm robotics is to study the design of large amount of relatively simple

robots, their physical body and their controlling behaviors. The individuals in the swarm are

normally simple, small and low cost to take the advantage of a large population. A key

component of the system is the communication between the agents in the group, which is

normally local, and guarantees the system to be scalable and robust.

9

A plain set of rules at individual level can produce a large set of complex behaviors at the swarm

level. The rules of controlling the individuals are abstracted from the cooperative behavior in the

nature swarm. The swarm is distributed and de-centralized, and the system shows high

efficiency, parallelism, scalability and robustness.

The potential applications of swarm robotics include the tasks that demand the miniaturization,

like distributed sensing tasks in micro machinery or the human body. In addition, the swarm

robotics can be suited to the tasks that demand the cheap designs, such as mining task or

agricultural foraging task. The swarm robotics can be also involved in the tasks that require large

space and time cost, and are dangerous to the human being or the robots themselves, such as

post-disaster relief, target searching, military applications, etc.

As an emerging research area, the swarm intelligence has attracted many researchers' attention

since the concept was proposed in 1980s [7]. It now becomes an interdisciplinary frontier and the

focus of many disciplines including artificial intelligence, economics, sociology, biology, etc. It

was observed a long time ago that some species survive in the cruel nature taking the advantage

of the power of swarms, rather than the wisdom of individuals. The individuals in such swarm

are not highly intelligent, yet they complete the complex tasks through cooperation and division

of labor and show high intelligence as a whole swarm, which is highly self-organized and self-

adaptive.

Swarm intelligence is a soft bionic of the nature swarms, i.e. it simulates the social structures and

interactions of the swarm rather than the structure of an individual in traditional artificial

intelligence. The individuals can be regarded as agents with simple and single abilities. Some of

them have the ability to evolve themselves when dealing with certain problems to make better

compatibility. A swarm intelligence system [7] usually consists of a group of simple individuals

autonomously controlled by a plain set of rules and local interactions. These individuals are not

necessarily unwise, but are relatively simple compared to the global intelligence achieved

through the system. Some intelligent behaviors never observed in a single individual would soon

emerge when several individuals begin cooperating or competing.

http://www.sciencedirect.com/science/article/pii/S221491471300024X#bib23

10

The swarm can complete the tasks that a complex individual can do while having high

robustness, flexibility and with low cost. Swarm intelligence takes the full advantage of the

swarm without the need of centralized control and global model, and provides a great solution

for large-scale sophisticated problems, such as using autonomous swarm of robots in mining or

rescuing applications.

Most swarm intelligence researches [8] are inspired from how the nature swarms, such as social

insects, fishes or mammals, interact with each other in the swarm in real life. These swarms

range in size from a few individuals living in the small natural areas to highly organized colonies

that may occupy the large territories and consist of more than millions of individuals. The group

behaviors emerging in the swarms show great flexibility and robustness, such as path planning,

nest constructing, task allocation and many other complex collective behaviors in various nature

swarms.

The individuals in the nature swarm show very poor abilities, yet the complex group behaviors

can emerge in the whole swarm, such as migrating of bird crowds and fish schools, and foraging

of ant and bee colonies. It is tough for an individual to complete the task itself, even a human

being without certain experiences finds it difficultly, but a swarm of animals can handle it easily.

Researchers observed the intelligent group behaviors emerging from a group of individuals with

poor abilities through local communication and information transmission.

1.2.1 Swarm robotics properties

Swarm robotics has been used a lot in recent years due to their unique advantages and properties.

These properties could be listed as follows:

Robustness:

 If a set of robots leave to recharge, to be maintained, or for any other reasons, the system

will not be affected that much and it will continue towards finishing the whole tasks.

http://www.sciencedirect.com/science/article/pii/S221491471300024X#bib1

11

Scalability:

 Each particle in the swarm is separated from the other particles, and communicates with

all of them and with the environment. This communication is not a global communication

as each robot communicates only with its neighborhood. This characteristic enables the

swarm to adapt to any change like, adding more robots or removing some robots without

any damage in the whole process.

Energy efficiency:

 In swarm robotics, a large number of robots which are small in size and simple in design

are deployed. Therefore, only small-size batteries are needed, that’s why the cost of

energy is much lower than that of a single but complicated-design robot.

Economist:

 As we said previously, the particles in the swarm robotics is small and simple in design

with very limited capabilities, which make them very cheap. Thus, they could be produced

easily in huge amounts with low cost.

Parallelism:

 There could be a set of targets “set of tasks”, which should be implemented by different

robots concurrently. This could significantly save effort and time.

1.3 Autonomous Rescue Swarm Robotics Application

Nowadays swarm robotics is being utilized in different application domains of both real

applications and academic research. For example, underwater and automatic space exploration

can be considered as promising applications in this field. However, in this section, we are going

to map our experimental scenarios into the search and rescue application within semi-destroyed

site after a disaster like an earthquake that is dangerous for human to get inside in an attempt to

search and rescue victims.

12

The first 24 hours after a natural or man-made disaster [9] are the most critical for the survival of

victims. Unfortunately, this is also the time, when the fewest resources are available to rescuers.

This research describes the potential for using a swarm of autonomous mobile robots to help the

first responders to a disaster site focus their search for victims on those areas with the highest

probability of finding survivors. Specifically, we are trying to present a scenario for deploying

autonomous rescue robots' swarm at a semi-disaster site.

In this thesis, we explore the problem of robots allocation using a real world search and rescue

group of robots, which is divided into two teams, searching team and rescue team. In our

scenario, dedicated „searching‟ robots must find victims, and the 'rescue' team transports them to

a designated rescue zone. Each rescue robot tries to transport its allocated victim. It is also worth

to mention that the system has no prior knowledge either about the number of rescue robots or of

the number of the victims. Thus, the objective of such an application is to show that the system

could:

I. Inspect victims located in the semi-disaster environment.

II. Efficiently assign robots to victims.

III. Finally, carry out victims successfully to the designated rescue zone.

Survival studies of earthquake victims [9] showed that the survival rate drops from 81 % for

those victims rescued during the first 24 hours to 37% in the next 24 hours. Unfortunately, for a

large-scale disaster, the resources available to rescuers, both personnel and equipment, are likely

to be limited as it takes time for rescue teams to be mobilized and deployed to the disaster site.

For this reason, a tool that could be deployed by the first responders to a disaster that would

highlight locations of potential victims and hazards without the need for scarce human operators

would appear to be a valuable asset to the on-scene incident commander. Therefore, an

autonomous rescue robot swarm would be most useful during the critical first hours after a

disaster occurs.

Stormont [9] suggested that the swarm robots should be inexpensive enough to enable wide

spread prepositioning. The first responders to a disaster should activate and deploy the rescue

13

swarm robots. The swarm could search through as much of the site as the robots can reach and

highlight areas containing victims that the rescue robots could focus on first and highlight

potential hazards to be avoided.

Also, Stormont [9] mentioned that the robots would need to be small enough that they would not

pose a threat to human in the scene (either by becoming obstacles or by causing a structural

collapse), inexpensive enough that they would not need to be recovered, and operate only for a

limited time before deactivating (which wouldn't be a problem for battery-operated robots).

However, stormont also [9] stated that small robots could also present challenges of their own

such as in locomotion, sensing capability, and processing power. By maintaining redundant

communications paths, the robots in the swarm can spread out into the disaster area to form an

ad-hoc sensor network to detect victims and hazards, and then rescue those victims.

Grady and Rahmani [10, 11] declared that robustness and flexibility are two main characteristics

that should be found in the robots to be used in such an application. There are two primary ways

to build this type of systems either self-reconfigurable robotics or collective robotics. The main

focus in this thesis is upon a novel hybrid algorithm, which can be categorized under collective

robotics approach in which multi robots commonly collaborate with each other and with the

environment to accomplish the required job.

They [10, 11] mentioned that in self-configurable field, by joining one or more small

components together, a very complex element with a very high degree of freedom could be built.

Self-reconfigurable robot has the capability to deal with complex problems through reshaping

itself into legged robot or a snake-like structure. Swarm robots should have the ability to get

across rough terrains as well as through narrow passages and cavities. Articulated rovers are

commonly used for navigation through rough terrain conditions.

Also, Rahmani [11] announced that self-assembling robotics has lots of usages especially in

space. For example, installation of a 10km long SSPS1 (Figure 1.10) costs more than 2500 hours

14

of astronaut space walk and more than $5 billion cost. A feasible strategy could be used to let

most of the jobs done by the self-assembled robots and critical jobs done by astronauts.

Figure 1.10: SSPS tower [11].

1.3.1 Challenges in search and rescue application

Rahmani [11] stated that there are different harmful situations that might damage the robots in

the search and rescue application such as fire, water, large obstacles, explosions, fissures, deep

vertical holes, small pebbles, large rocks, wires, walls, long tubes, compact blocks or even other

agents within the disaster field. For example, Sometimes robots need to be introduced into small

holes, and once inside they need to overcome large gaps, to descend a vertical duct ending in a

large void, and finally to pass in other narrow passageways. Thus, to pass successfully through

such situation, robots have to be very adaptable versatile depending on the situation they face.

Due to the high likelihood of robots' damaging within the unstable and unstructured arena,

robustness is one of the most important characteristics in swarm search and rescue application.

The control system must be able to work properly and continue its execution under any situation

even if a considerable part of the system is damaged. Redundancy is a promising technique [11]

that enables the system to have less dependency to a failure of a particular part of the whole

system. The swarm must be robust enough to deal with the inevitable loss of robots in the

swarm. In this research, a hybrid approach, which concentrates on a distributed control to

employ redundancy, is proposed.

15

Rahmani [11] reported that while centralized control is suitable for systems with infrequent

failure such as communication networks, distributed control is used a lot in the systems that

require high fault tolerant, such as search and rescue application in extreme harsh environment

using swarm robotics system.

Also, it was notified by Rahmani [11] that since any human operator usually has very restricted

and limited perception from the arena in which the robot is navigating, thus pure tele-operating

system is not sufficient to provide an acceptable performance of remote controlling. In addition,

the sensing capability is limited by time delay. Therefore, autonomous control, which based on

sensors that are mainly used for sensing the system's internal state allows performing the job

efficiently and raises the system's capabilities.

The small robots advocated in this research tend to have poor odometry because the distance the

robots move is only evaluated by dividing the speed of the robot over the time it moves to reach

the new position and there is no feedback like encoders to enhance the accuracy of the readings.

Moreover, it is extremely hard in the highly unstructured rescue environment to have high

quality odometry even if we depend on encoders. Thus, as a future work, the swarm robots must

attempt to determine their relative pose to some landmark using sensors that are more

sophisticated or camera.

Also, Robin Murphy of the Center for Robot-Assisted Search and Rescue (CRASAR) [9] made

the observation that "rescue workers refuse to consider fully autonomous systems designed to act

as 'yes/no there's something down there' search devices. However, this skepticism regarding

autonomous robot swarms and their integration into the rescue workers' hierarchy is

understandable and well justified nowadays given the current capabilities of autonomous rescue

robots.

1.4 Foraging Problem

A huge number of applications are involved in swarm robotics to make use of its significant

characteristics, such as, post-disaster relief, geological survey, military applications, UAV

16

controlling, cooperative transportation, and mining. Swarm robotics is very promising in the

applications, which contain environmental danger to human.

The focus of this research is upon a specific problem called the foraging problem. This problem

[12] can be considered as one of the most significant problems in swarm robotics field because

most of the swarm robotics applications somehow include this type of issue. For example, in the

mining application, we need to inspect the environment for the mines first and then transport

them from place to place and this is specifically called foraging. Same could be seen in search

and rescue application and agriculture application and so on.

So, the cooperative foraging problem [13] can be illustrated as a team of robots that need to

transport a set of objects, which are scattered in the arena to their final destination. The final

destination of the objects called the nest. To be more precise, in this research we are trying to

solve the assignment of the objects on the robots to transport them to the nest in an optimized

way.

These set of objects can be one of two types [14], either a single-robot object, which needs only

one robot to carry it from its current location to the nest or a multi-robot task, which requires at

least two robots working simultaneously in order to retrieve the object to its final destination.

Therefore, the foraging task [13] can be addressed as a searching job followed by a

transportation job. Each job consists of a number of tasks. Each robot in the foraging problem

has to decide whether it would explore a new object or it is going to transport an explored object

to the nest.

 Also, if the robot chooses the transportation job, it has also to decide which one of the scattered

objects it should select to return to the nest. The robot choice is not random. However, each robot

chooses the most appropriate object to maximize the overall performance of the group. Also, it is

worth to mention that, the DTA problem in a cooperative foraging scenario with shared task

execution by multiple robots is an NP-hard problem.

17

Finally, the thesis structure can be outlined as follows. First, chapter one presents an introduction

in robotics and swarm robotics in general. In addition, the properties of swarm robotics are listed.

Also, a brief introduction about the foraging problem and optimization techniques, which are

used in this thesis to tackle the DTA problem, is provided. Finally, a mapping between our

experimental scenarios and a real application (search and rescue application) is illustrated in

chapter one. Then, dynamic task allocation problem is introduced and a mathematical model of

the problem is formulated in chapter two.

After that, chapter 3 provides a literature review for a set of techniques and results for solving the

dynamic task allocation problem in swarm robotics field. After that, chapter 4 focuses on the

thesis statement and the methodology. Furthermore, Chapter 5 presents the design and

implementation phases of the proposed hybrid algorithm. In addition, the framework, which is

used to discretize the Particle Swarm Optimization technique, is also addressed in this chapter.

Moreover, chapter 6 discusses both the simulation and the real experiment results. Finally,

chapter 7 presents the conclusion and the future works.

18

 Chapter 2

 Dynamic Task Allocation

In this chapter, the dynamic task allocation problem, which we are trying to tackle, is well

defined within the framework of the foraging problem. Also, a mathematical model for the

dynamic task allocation problem is formulated using integer linear programming.

2.1 Dynamic Task Allocation Problem Definition

Over the past few years, task allocation (TA) [15] has emerged as one of the most common

issues that need to be optimized in the swarm robotics' field. Since in almost all swarm robotics

applications there are a number of tasks that need to be performed by a group of robots, we need

an optimized way by which we can assign those tasks to the robots in order to accomplish the

whole job in a perfect way. Thus, TA problem can be considered as one of the most important

direction in multi-robot systems nowadays.

So, TA problem [15] can be broadly defined as follows, given a set of tasks, a set of robots, that

can perform those tasks, and an objective function, that measures the performance efficiency of

different combinations of robots in performing tasks, a suitable matching or allocation needs to

be found between the set of tasks and the group of robots, which optimizes the value of the

objective function while satisfying operational constraints. The task allocation problem specifies

the allocation rules used by the robots in such a scenario to perform the tasks in an efficient

manner.

Dynamic Task Allocation (DTA) [16] implies that robots have no prior knowledge about the

number of robots, the number of tasks, and the temporal and spatial distribution of tasks in the

environment. However, they should communicate periodically with each other to adapt online to

the environment. Minimal Time Dynamic Task Allocation (MTDTA) seeks to allocate tasks

dynamically to the robots while minimizing the total time needed to accomplish the whole task.

19

With technical progress and the declining cost of robotic mobility, interest in this area of

applications has grown significantly in recent years. The DTA problem [16] is encountered in

different application domains of multi-robot systems including human rescuing, demining,

warehousing, toxic waste cleanup, collection of terrain samples, cooperative transportation,

autonomous exploration and mapping, distributed monitoring and surveillance, etc.

Since, we have just said that the minimal time dynamic task allocation (MTDTA) problem can

be addressed as the allocation of a set of tasks to a group of robots to perform the whole job in a

minimal time. Thus, The MTDTA algorithm can be described as follows:

let

T = {t1, t2, …, tm}

Equation (2-1)

be the set of task identifiers to be allocated to the robots in the swarm, and let

R = {r1, r2, …, rn}

Equation (2-2)

be the set of robots‟ identifiers in the robotic swarm. Therefore, the problem is composed of m

valid tasks and n robots. The swarm allocation is represented by:

A = {a1, a2, … , an}

Equation (2-3)

where aj identifies the task allocated to robot rj. Hence, the solution of the minimal time dynamic

task allocation problem is achieved by finding an allocation A*, which represents the allocation

of the group of n robots to the set of m tasks in a minimum completion time of the whole tasks.

The number of available allocations between a set of tasks and a group of robots [16] is one of

the most important characteristics while dealing with the dynamic task allocation in swarm

robotics. The number of allocations Q depends on the number of robots and the number of tasks.

20

If the robots in the swarm are heterogeneous, the number of allocations Q is defined by equation

(2-4):

Q = 𝑇𝑖
𝑅𝑖

𝑛

𝑖=1

= 𝑇1
𝑅1 × 𝑇2

𝑅2 × 𝑇𝑛
𝑅𝑛 ,

Equation (2-4)

Where R is the number of robots in the swarm, n is the number of groups to which those robots

belong, where a group of robots Ri is responsible for performing the set of tasks Ti. Hence, if the

robots in the swarm are homogeneous and we only have one group in the swarm, then the

number of allocations Q is defined as expressed in equation (2-5) [15]:

𝑄 = 𝑇𝑅

Equation (2-5)

In this research, a minimal time dynamic task allocation algorithm in swarm robotics is designed

and implemented. The allocation decisions procedures are taken by using a hybrid algorithm

combined both the Discrete Particle Swarm Optimization (DPSO) technique and Simulated

Annealing technique.

The hybrid DPSO/SA is a stochastic algorithm based on swarm intelligence that can be applied

to search iteratively for a solution for optimization problems within the search space. Each

particle in the swarm updates the position in which it is located and the velocity by which the

particle travels in the environment in each iteration of the algorithm.

The algorithm uses every collected data from the environment, which is provided by the robots'

sensors, like infrared proximity sensors and ground sensors in order to come up with the optimal

allocations. In the first step, the environment information should be gathered. Then, the

transportation time required by each robot to carry out each task must be calculated. After that,

the optimal paths for all subtasks should be selected.

21

2.2 Problem Formulation (Minimal Time Dynamic Task allocation)

The Minimal Time Dynamic Task Allocation of a set of tasks among homogenous robots in

swarm robotics system is a minimization problem that should satisfy specific constraints. Hence,

this problem [17] can be considered as a constrained optimization problem. The multi-robot task

assignment problem in which every task should be allocated to only one robot, and each robot

must assign itself to exactly one task, can be considered as an instantaneous assignment instance.

This problem is well known as the single-task robots, single-robot tasks problem. More

officially, given a set of n available robots R = {r1, r2, . . . , rn}, a set of m available tasks T =

{t1, t2, . . . , tm}, and let C = (Cij)n×m be the cost matrix, where Cij represents the cost of

allocating robot i to transport task j, then the target is to find a one-to-one mapping which

minimizes the overall cost.

Let Xij be a binary variable denote the allocation of a robot i to a task j, so that Xij is equal to 1

if robot i is assigned to task j and 0 if unassigned. Therefore an assignment matrix can be

presented as in equation (2-6):

X = (Xij)n×m =
𝑋11 ⋯ 𝑋1𝑚

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑚

Equation (2-6)

Also, taken into consideration that the allocation problem [17] is a one-to-one mapping, so there

must be only one element equals 1 in each row and each column of the matrix X and the rest of

the elements should be 0s.

The target of the optimization technique is to find a feasible solution, which minimizes the

objective function. There are many parameters that could be minimized depending on the

requirements of the problem itself, for example, the cost that need to be minimized could be the

traveled distance, energy consumption, or execution time. In the MTDTA, the selected objective

is to minimize the distance the robots travelled in order to transport the tasks from their current

location to the nest. In other words, during performing the tasks, J defined as the distance

22

travelled by all the robots to accomplish all the tasks in the search space at any given time

instance. It is also worth to mention that the time to complete the task would also be minimized

as the distance minimized because all the robots are moving with a constant speed [18]. The

constrains which must be satisfied during the optimization can be outlined as follows:

1. A specific number of robots carry out the inspection, and the rest of the robots engage in

the transportation job. If no objects need to be transported at any time instant, the robots

which are responsible for the transportation turnover to the sleep mode in order to save as

much power as we can.

2. A robot cannot be assigned to more than one task at the same time.

3. Each task is executed only once with exactly one robot.

Now, the optimization of the multi-task assignment problem can be formulated in terms of an

integer linear programming as follows [17]:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑅, 𝑇 = 𝑚𝑖𝑛 𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=0,𝑗≠𝑖

𝑛

𝑖=0

Equation (2-7)

Subject to:

 𝑋𝑖𝑗

𝑚

𝑗=0

= 1, ∀𝑖 ∈ 𝑛,

Equation (2-8)

 𝑋𝑖𝑗

𝑛

𝑖=0

= 1, ∀𝑗 ∈ 𝑚,

Equation (2-9)

𝑥𝑖𝑗 ≥ 0, xij = 0,1 ∀𝑖 ∈ 𝑛,

Equation (2-10)

23

where Equation (2-7) represents the objective function which is used to minimize the travelled

distance, and xij gives a primal variable. Therefore, the problem [17] as an outcome of the

constraint matrix's structure turns into an integer problem and xij = {0, 1} implies that if the

robot i is assigned to the task j, then the value of the xij is one, otherwise zero. Also, these

constraints guarantee that a robot cannot be assigned to two tasks at the same time and a task

cannot be executed by to two robots simultaneously which guarantees that every task is executed

only once.

24

 Chapter 3

 Thesis Statement and Methodology

In this chapter, both the thesis statement and methodology for this research are addressed.

3.1 Thesis Statement

Although using global optimization techniques in solving discrete optimization problems like

DTA problem, provides a prominent convergence characteristics, and using local optimization

techniques yields better quality solution due to the probabilistic jumping mechanism, however,

using a hybrid approach which combines both local and global searching capabilities could result

in outstanding performance (the minimal time in which the whole tasks is accomplished in the

DTA problem) since it increases the scalability, stability, and efficiency of the swarm.

3.2 Methodology

The main steps that are followed to accomplish this research could be summarized as follows:

 Implement a discrete version from the Particle Swarm Optimization technique, test it on a

set of different swarm sizes and compare it with the Simulated Annealing technique.

 Formulate the dynamic task allocation problem using integer linear programming, and

provide an exact solution to the problem using the Hungarian algorithm as an exact

solver.

 Design and implement a hybrid approach which combines both the Discrete Particle

Swarm Optimization technique and the Simulated Annealing technique.

 Simulate the proposed algorithm using MATLAB on different problem dimensions to

prove the scalability of the proposed algorithm.

 Compare the execution time and fitness values between both the exact solver and the

proposed meta-heuristics optimization techniques.

 Deploy and test the proposed hybrid algorithm into a real system using 4 Elisa-III robots.

25

 Tune the proposed algorithm's parameters to enhance the performance of the system and

to improve the accuracy of the outcomes.

 Evaluate the total communication overhead, and the system throughput while

transmitting and receiving packets between the robots and the base station.

In details, Simulated Annealing technique was used in some contexts to achieve a minimal time

dynamic task allocation solution in swarm robotics. Therefore, a discrete version from the

Particle Swarm Optimization technique is implemented, tested, validated and compared in this

research with the Simulated Annealing technique. A comparison between SA and DPSO is

performed in terms of computational time, number of iterations needed and quality of solution to

demonstrate the robustness and efficiency of the DPSO algorithm in such an optimization

problem.

Two case studies are considered while comparing the DPSO and the SA techniques to prove the

proficiency of the DPSO over the SA algorithm in small swarm sizes. The first study-case is

implemented by introducing 7 robots to transport 10 prey to the nest, while the second study-case

is implemented using 10 tasks and 20 robots.

In addition, a novel hybrid approach that fuses the DPSO technique with the SA technique is also

implemented and tested using larger problem dimensions. Then, this approach is compared with

both the Discrete Particle Swarm Optimization and the Simulated Annealing technique

independently to highlight the advantages and disadvantages that could result from combining

DPSO with SA. This comparison also investigates the challenges that could be addressed using

the proposed algorithm such as getting trapped into a local optimal solution problem, time

complexity problem, and scalability problem.

About 15 different swarm sizes are tested in this simulation using all the three algorithms to

investigate the scalability and robustness of each one of them and to show the superiority of the

proposed algorithm in comparison with the other traditional optimization techniques (SA and

DPSO techniques). These study-cases range from 7 robots and 10 tasks to 2000 robots and 3500

tasks.

26

Moreover, the DTA linear equations are formulated using integer linear programming. Then,

using these linear equations, the Hungarian algorithm is used as an exact solver in order to

provide an exact solution to the problem. After that, a comparisons in terms of the execution time

and quality of solutions are performed between the exact solver and the other optimization

techniques. Also, the exact solutions of the Hungarian algorithm are used as a model to

normalize the outcomes from the other techniques.

Furthermore, the hybrid DPSO/SA algorithm is deployed and extensively tested into a real

system using 4 Elisa-III robots. The robots' peripherals are examined first to make sure

everything is working properly. Thus, all the sensors such as ground sensors, the infrared

proximity sensors, the 3-axis accelerometer are tested. Also, peripherals like the transceiver

module, the infrared emitter and receiver, the dc motors, the central RGB LED, and the green

LEDs are all examined to make sure that they are ready to be used.

In the real experiment, objects are scattered randomly in the environment at distinctive positions

and they are perceived by the robots' ground sensors. Also, the Infrared sensors are used for

collision avoidance.

Finally, the communication overhead in the real experiment is evaluated in both the transmitter

side and the receiver side to make sure that there is enough throughput for the robots to exchange

information periodically during the experiment.

27

 Chapter 4

 Algorithms For Solving Dynamic Task Allocation Problem

In this chapter, the most commonly used taxonomies for the classification of optimization

techniques in terms of research and publications are addressed and examples from literature

review for each taxonomy are outlined. Then, we address the discrete optimization techniques

that could be used for solving discrete optimization problems and some applications on these

discrete problems are outlined. Also, challenges that could face such discrete optimization

technique are illustrated and solutions from the literature are summarized. After that, the most

outstanding optimization techniques in solving the dynamic task allocation problem are

introduced which are the Simulated Annealing technique and the Particle Swarm Optimization

technique.

At the beginning, it is worth to mention that discrete optimization problems like the DTA

problem [19] are showed up extensively in applications related to computer science and

engineering. The heuristic optimization techniques' significant has increased a lot in last decades.

They can be considered as a very good and flexible candidate for solving the real life problems,

as they are most commonly non-differentiable and nonlinear. Thus, the design of a stable

efficient algorithm for finding near global minimum solution has attracted the attention of many

researchers in the last few years.

Recently, several algorithms have been proposed in the literature for solving discrete

optimization problems. Based on the taxonomy presented by Zhang and Liu [8], the

classification of algorithms is implemented according to either its behavioral approach, market

laws or bio-inspired approach.

28

4.1 First Taxonomy

4.1.1 Behavioral approach

In the behavioral approach, tasks to be executed are differentiated in groups, called behavioral

groups. Groups have a set of tasks to be executed, which have a relation between them. One of

the most common used behavioral algorithms is ASYMTRE presented by Tang and Parker [20].

4.1.2 Market Laws approach

Algorithms based on market laws aim at maximizing the income (information, speed), while

minimizing costs (convergence, communication time). For example, as cited by Guerrero and

Oliver [21], a market laws based algorithms in which the system is partially inspired by auction

and thresholds-based methods and tries to determine the optimum number of robots that are

needed to solve specific tasks, or sub-goals, in order to minimize the time needed to complete all

tasks. Since the time to perform tasks by robots is considered to be much less than robot

navigation times between tasks, so the order in which robots perform tasks is important. Thus,

the distance between two subsequent tasks needs to be minimized and as a result, the navigation

time would be minimized. The algorithm constraints were as follows:

1. Same task cannot be allocated to the same robot more than once.

2. The total number of robots allocated to perform a task equals the demand for the task.

While, the cost functions‟ mathematical equations were as follows:

𝑚𝑖𝑛 (𝑝𝑟𝑖
0 − 𝑝𝑇𝑟𝑖

1 + 𝑝𝑇𝑗 − 𝑝𝑇𝑘

(𝑇𝑗 ,𝑇𝐾)∈𝐴(𝑅)

)

𝑟𝑖∈𝑅

Equation (4-1)

Subject to:

𝑇𝑗 ≠ 𝑇𝐾 , ∀ 𝑇𝑗 , 𝑇𝐾 ∈ 𝐴 𝑅

Equation (4-2)

29

and

| 𝐴 𝑅 | = 𝑑𝑇𝑖 , 𝐴 𝑅 = 𝑇𝑖 ∀ 𝑇𝑖

Equation (4-3)

Another example proposed by Zhang et al. [22] is a Stochastic Clustering Auction solution,

which uses a Markov chain search process along with Simulated Annealing. This is the first time

in which a stochastic auction technique is used along with a global optimization technique. A

swapping movements and transfers among tasks‟ groups, which are allocated to distinct robots is

the main principle in this technique in which both the downhill movements and uphill

movements are taken into consideration, in order to reach the global minima and avoid the local

ones. The essential difference in this algorithm is that, after reaching a proper convergence, the

algorithm performance could slide slightly in the small region between the global optimum and a

random solution, which is tuned based on the Simulated Annealing technique. The cost function

for this algorithm was chosen to be “Minimizing the time taken to accomplish the tasks or the

mission length (the total distance traveled)”. Also, the cost functions‟ mathematical equations

were as follows:

min
𝐴

𝐶(𝐴)

Equation (4-4)

𝐶 𝐴 = 𝑐𝑠(𝑎𝑠)

𝑘

𝑠=1

Equation (4-5)

Where cs(as) is the minimum cost for robot hs to complete the set of tasks as.

𝐶 𝐴𝑖

 𝑠,𝑝
 = 𝐶 𝐴 + 𝑐𝑠 𝑎𝑠

 −𝑖 − 𝑐𝑠 𝑎𝑠 + 𝑐𝑝 𝑎𝑝
 +𝑖 − 𝑐𝑝 𝑎𝑝 𝑆𝑖𝑛𝑔𝑙𝑒 𝑀𝑜𝑣𝑒

𝐶 𝐴𝑖 ,𝑗
 𝑠,𝑡 = 𝐶 𝐴 + 𝑐𝑠 𝑎𝑠

 −𝑖,+𝑗
 − 𝑐𝑠 𝑎𝑠 + 𝑐𝑡 𝑎𝑡

 +𝑖 ,−𝑗
 − 𝑐𝑡 𝑎𝑡 𝐷𝑢𝑎𝑙 𝑀𝑜𝑣𝑒

Equation (4-6)

30

One more example is the heuristic search-based task allocation algorithm formulated by

Nagarajan and Thondiyath [23] for the task processing in heterogeneous multiple robot system,

by maximizing the efficiency in terms of both communication and processing cost. The cost

function in this algorithm was chosen to be the summation of static overhead cost of robots,

assignment cost or execution cost, and the communication cost between the dependent tasks, if

they are assigned to different robots. While the optimization constraints were:

a. Each task is allocated to only one robot.

b. The capability of robots to cover all tasks must be guaranteed.

c. The precedence relation between the tasks must be taken into consideration. If there is a

precedence, time for task I must be before time for task j.

Therefore, the mathematical equations for the objective function were defined as follows:

𝑍 = 𝑆𝑘

𝑚

𝑘=1

𝑁

𝑖=1

𝑋𝑖𝑘 + 𝑆𝑘𝑅𝑐𝑘𝑋𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

+ 𝐸𝑖𝑘𝑋𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

 + 𝑃𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑘𝑋𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁−1

𝑖=1

 + 𝑃𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑘𝑋𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁−1

𝑖=1

Equation (4-7)

Subjected to constraints:

 𝑋𝑖𝑘

𝑀

𝑘=1

= 1 , 𝑖 = 1,2, …… , 𝑁

Equation (4-8)

31

Where Xik implies task i is allocated to robot k then the value is 1 else 0.

4.1.3 Bio-Inspired approach

One of the most trend techniques, which are used to solve dynamic task allocation problem is the

bio-inspired techniques, which have been used a lot in recent years in terms of research and

publications. These techniques are derived from social insect‟s behavior like bees and ants. A set

of beneficial properties, such as flexibility and self-arrangement property are existed in the

Particle Swarm Optimization technique.

As mentioned by Krieger et al. [24], it is shown that a higher level of energy could be maintained

in sets of robots, which use ant-inspired optimization techniques than in single robots. They

could also forage more expeditiously.

Liu et al. [18] have presented approach that is based on artificial bee colony algorithm to address

dynamic task assignment problems in multi-agent cooperative systems. Also, Liu et al. [18] have

enhanced an optimal assignment method based on a task-swap mechanism. They have proposed

an algorithm in which local search processes are executed simultaneously without any

connections among these processes. In addition, this technique is totally decentralized in which

messages‟ broadcast and a multi-hop communication would never be used. The solutions

resulted from the local processes is related to a shortest path routing problem on a graph subject

to the network topology. This conclusion was resulted after the analysis of the formulation by

using the uncommon tools from the group and the optimization duality theories.

The assignment problem was formulated using a pair of linear equations. The cost minimization

formulation called the primal program P(R, T):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑅, 𝑇 = 𝑐𝑖𝑗𝑥𝑖𝑗 ,

𝑖∈𝑅,𝑗 ∈𝑇

Equation (4-9)

32

Subject to:

 𝑥𝑖𝑗 = 1

𝑗∈𝑇

, ∀𝑖 ∈ 𝑅,

Equation (4-10)

 𝑥𝑖𝑗 = 1

𝑖∈𝑅

, ∀𝑗 ∈ 𝑇,

Equation (4-11)

𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝑅, 𝐽 ∈ 𝑇,

Equation (4-12)

where each xij represents a primal variable. Because of the structure of the constraint matrix, the

problem turns into an integer problem and eventually each xij should equal 0 or 1 in the solution

when solved via some combinatorial optimization algorithm.

The constraints:

 𝑥𝑖𝑗 = 1

𝑗

Equation (4-13)

and

 𝑥𝑖𝑗 = 1

𝑖

Equation (4-14)

This constraint guarantees that a robot cannot be assigned to two tasks at the same time and a

task cannot be allocated to two robots simultaneously.

33

Momen and Sharkey [25] have evolved The ant‟s behavior of switching tasks in order to meet

the changing demand to increase their ability to respond to task demand effectively. Nedjah et al.

[15] have proposed a distributed control algorithm inspired by the Particle Swarm Optimization

implemented to perform dynamic task allocation in a swarm robotics environment. The fitness

evaluation of an allocation A is implemented by an objective function f(A), defined by equation

(3-15):

𝑓 𝐴 =
 |𝐶 𝑖 − 𝐶𝐴[𝑖]|𝑇

𝑖=1

𝑇
 ,

Equation (4-15)

where T represents the whole number of task, C represents the desired quantity of robots

allocated to each task, according to a desired rate, and CA represents the quantity of robots

allocated to each task, according to A.

Finally, Tsalatsanis et al. [26] have derived Fuzzy-logic-based utility functions. These utility

functions are used to assign a group of robots to a set of tasks through determining the robots‟

capabilities to implement a task in real time by using a bounded look ahead control technique,

which based on the main rules of discrete event supervisory control theory. The cost function

that was used in this algorithm is maximizing the overall performance of the robot team. Robot‟s

abilities such as endurance, designer‟s choice, cost of the robot, number and types of sensors, the

distance a robot has to travel to perform a task, the cost of assigning a robot to a task and

efficiency can be described as fuzzy variables. The utility function value of the events {start_ jk}

is equal to the ability of Robot j to perform Task k. In other words,

u(σ) = 𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑗𝑘 , where 𝜎 ∈ start _ jk}

Equation (4-16)

Both the designer‟s choice and the robot‟s efficiency depend on the robot‟s firmness. Thus, the

designer‟s choice is high and the robot‟s efficiency is high when the robot‟s firmness is large,

then the capability of the robot j to implement the task k is high. While, the designer‟s choice is

34

medium and the robot‟s efficiency is medium, when the robot‟s firmness is acceptable. In this

case, the capability of robot j to implement task k is medium. Finally, the designer‟s choice is

low and the robot‟s efficiency is low, when the robot‟s firmness is small, then the ability of robot

j to implement the task k is low.

4.2 Second Taxonomy

Whenever an alteration is sensed in the environment, a task allocation process needs to be

performed between the robots and the tasks. In this case, the task allocation process is considered

to be a dynamic process. The centralized approach can be considered as a fast solution to this

type of problem. However, if a quite preferable solution is needed, a distributed assignment

technique will be better. No centralized leader or controller is needed in this approach, and that is

why tasks‟ scheduling in swarm robotics must be performed because of this distribution process.

However, one of the main disadvantages, that result from this decentralization is that problem

complexity is increased, because the robot view in the environment becomes limited.

4.2.1 Centralized approach

In centralized approach, there is a leader or central unit which is responsible for tasks assignment

to the robots. Gigliotta et al. [27] have evolved a dynamic task allocation rules by

communicative interactions in a group of homogeneous robots. They focused on the

development of a team of robots in which one and only one individual robot (the ‟leader‟) must

differentiate its communicative attitude from that of all the others (‟non-leaders‟). The robots

evolve their capabilities to distinguish their roles by the discrimination of their signals. The

leader robot has to maximize the value of its communicative signal, while all other robots have

to minimize their signals‟ value. The leader robot tends to send high signal‟s value, while the

non-leaders tend to send a low signal‟s value. The fitness of a group of robot was calculated in

the following way. The average of the differences between the output signal of the current leader

which has the maximum value and the output signals of all other non-leader robots was

calculated every iteration. A number of trials need to be implemented. At the end, the average of

the calculated value for all iterations of all the trials can be considered as the fitness value.

35

Formally, this is how fitness value was calculated:

𝐹 =
 𝑀𝑎𝑥 − 𝑂𝑖

𝑁
𝑖

𝐶
𝑗

𝐶(𝑁 − 1)
 ,

Equation (4-17)

where the number of robots in each group represented by N, such as 10. While, the total number

of iterations of each individual called C, such as 1000 iterations * 40 trials = 40000. Also, the

signal‟s value of the current leader is Max and the signal‟s value of robot j is Oj .

4.2.2 Distributed approach

In distributed approach, there is no central unit to take care of the task allocation. So, each robot

in the swarm has to identify the task it must perform. Brutschy et al. [13] have developed a self-

organized method for allocating the individuals of a swarm to tasks that are sequentially

interdependent. The proposed method does neither rely on global knowledge nor centralized

components. Moreover, it does not require the robots to communicate.

De Mendonça et al. [16] have proposed a simple yet efficient distributed control algorithm to

implement dynamic task allocation in a robotic swarm, in which every robot in the swarm has to

identify the task it must perform. The swarm task assignment is represented by A = {a1; a2;…;

aρ}, wherein aj identifies the task assigned to robot identified by idj. Note that given a task

assignment, say A, it is possible to set counters associated with it, which denoted as CA, as

described in the following equation:

𝐶𝑗 = 𝐶𝐴 𝑡𝑗 = ∅ 𝑎𝑟 , 𝑡𝑗 ,

𝑝

𝑟=1

Equation (4-18)

36

Wherein function ∅ is defined as follows:

∅ 𝑎𝑟 , 𝑡𝑗 =
1 𝑖𝑓 𝑎 = 𝑡;
0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

Equation (4-19)

Thus, at the end of the construction, the counter set CA would reflect the distribution of the

robots as assigned to each task and defined by assignment A. Solving the dynamic task allocation

problem consists of finding the task assignment A* = {a*1; a*2;…; a*ρ}, that verifies:

∀ 𝑡𝑗 ∈ 𝑇 𝑎𝑛𝑑 ∀ 𝑝𝑗 ∈ 𝑃.

Equation (4-20)

Keshmiri and Payandeh [12] have presented the percentile values of the distributional

information of the tasks to reduce the task space into a number of subgroups that are equal to the

number of robotic agents.

Liu et al. [17] have enhanced an optimal assignment method with a decentralized leadership.

They have proposed an algorithm in which local search processes are executed simultaneously

without any connections among these processes. In addition, this technique is totally

decentralized in which messages‟ broadcast and a multi-hop communication would never be

used.

Zhang et al. [28] have established hierarchical allocation architecture for the set of robots in the

population. Two algorithms are implemented in this hierarchy. First, a simple self-reinforcement

learning model is utilized in the top level of the hierarchy which turned the initially identical

particles into specialists for distinctive task types by using the social insects‟ method. This

method gives a robust and flexible labor‟s division as can be seen from figure 4.1. However,

when the single type of task is considered in the lower level of the hierarchy, the Ant-colony

technique is implemented to solve the task assignment issue. A local communication technique is

used to share information among robots to avoid using a leading or a centralized device.

37

Figure 4.1: Architecture of the relationship among tasks

4.3 Third Taxonomy

In addition, taxonomy in [29] by Gerkey and Matarić has classified tasks in dynamic task

allocation problems into single-robot tasks (SR) and multi-robot (MR) tasks.

4.3.1 Single-robot task approach

A single-robot task requires only one robot to perform a specific task. This dynamic task

allocation problem is an NP (non-deterministic polynomial-time) hard optimization problem.

4.3.2 Multi-robot task approach

However, a multi-robot task has to be cooperatively carried out by several robots. Dynamic task

allocation problems with multi-robot tasks are strongly NP-hard and the complexity significantly

depends on the number of multi-robot tasks and the number of robots required by each multi-

robot task.

Campo and Dorigo [30] have identified an efficient multi-foraging behavior, where is efficiency

defined as a function of the energy that is spent by the robots during exploration and gained

38

when a prey is retrieved to the nest. A set of differential equations was used to model the flows

of robots exchanged among the states as follows:

𝑑𝐸

𝑑𝑡
= −𝛽𝐸 + 𝛾𝐼 + (−𝜋𝑖𝐸𝑁𝑖𝜆 + 𝜇𝑖𝑅𝐼)

2

𝑖=1

Equation (4-21)

𝑑𝐵

𝑑𝑡
= +𝛽𝐸 − 𝐾𝐵

Equation (4-22)

𝑑𝐼

𝑑𝑡
= +𝐾𝐵 − 𝜆𝐼

Equation (4-23)

𝑑𝑅𝑖

𝑑𝑡
= 𝜋𝑖𝐸𝑁𝑖𝜆 − 𝜇𝑖𝑅𝑖 − 𝑝𝑅𝑖 ∀𝑖 ∈ 1,2

Equation (4-24)

𝑑𝑁𝑖

𝑑𝑡
= 𝜑𝑖 − 𝜋𝑖𝐸𝑁𝑖𝜆 − 𝜀𝑖𝑁𝑖 + 𝑝𝑅𝑖 ∀𝑖 ∈ 1,2

Equation (4-25)

Where the number of robots in Explore state is referred as E, and the number of robots in the

Back state is referred as B. Robots in the Back state is going to the nest in order to have some

rest and recharge their batteries. In addition, the number of robots in the Rest state is referred to

l, the number of robots in Retrieve state is referred as Ri, in which “i” is the prey‟s type, and the

number of prey which have the type i in the environment is referred as Ni. While, the total

number of robots in the experiment is referred as T, the rate by which objects were found in the

environment by a single robot is referred as λ, and the probability for a single robot to find the

nest is referred as K. Moreover, φi is the incoming rate per second of prey of type i, while the

probability constant over time for a prey of type i to disappear is referred as εi . In addition, μi is

39

the inverse of the average time, required to retrieve a prey of type i, the probability to give up an

ongoing retrieval is referred as ρ, the probability for a robot to return to nest is referred as β,

γ is the probability for a robot to leave the nest and look for prey, and finally the probability to

take a prey of type i upon encounter is referred as πi.

Dasgupta [31] has developed an algorithm in which each task required multiple robots to share

the task‟s execution to complete the task. A set of heuristics that can be used by the algorithm

were described to select the order of the tasks so that the tasks are performed in an efficient

manner.

Liu and Kroll [14] have discussed that, it is more challenging to allocate a huge set of tasks to a

group of robots if the tasks are tightly coupled than if the tasks is loosely coupled. For example,

it is more challenging to find a suitable allocation for tasks that need the cooperation of at least

two robots in order to carry out the task concurrently. The resulting complexity is due to the

environmental temporal and spatial constraints. Moreover, the task assignment complexity rises

exponentially with growing the number of task‟s types.

Liu and Kroll [14] have focused on multi-robot task allocation in inspection problems with both

single- and two robot tasks. They have proposed a novel Mimetic algorithm combining a genetic

algorithm with two local search schemes. The optimization parameter that is used in this research

is the Completion time of all tasks. The optimization was done with the following constraints:

 N robots carry out the inspection.

 Every subtask is executed only Once.

 Each robot starts and ends at the home base.

 Robots must be different for the same task.

 All robots in the same task must work together to accomplish the task successfully.

 No one robot assigned to two tasks at the same time.

 Finally, tasks, assigned to robots must be executable.

In addition, the optimization mathematical equations that were used are as follows:

40

𝐽 = max
𝐾𝜖{1,…,𝑁𝑅 }

 𝐶𝑖𝑗𝑘 𝑋𝑖𝑗𝑘

𝑁𝑃

𝑗=0,𝑗≠𝑖

𝑁𝑃

𝑖=0

Equation (4-26)

Subject to:

 𝑋0𝑗𝑘

𝑁𝑃

𝑗=0

𝑁𝑅

𝑘=1

= 𝑁𝑅

Equation (4-27)

 𝑋𝑖𝑗𝑘

𝑁𝑃

𝑗=0,𝑗≠𝑖

𝑁𝑅

𝑘=1

= 1 ∀𝑖, 𝑖 = 0,1, …… . , 𝑁𝑅

Equation (4-28)

 𝑋0𝑗𝑘

𝑁𝑝

𝑗=1

= 𝑋𝑖0𝑘

𝑁𝑝

𝑖=1

 , ∀𝑘, 𝑘 = 0,1, …… . , 𝑁𝑅

Equation (4-29)

4.4 Discrete Combinatorial Optimization Techniques

Since, the dynamic task allocation problem demands the allocation of N robots to M tasks given

the distance matrix (C) between the robots' positions and the tasks' locations; the target is to find

the allocation, which results in a minimum cost. The minimal time dynamic task allocation could

be mathematically outlined as follows:

𝑓 𝑅, 𝑇 = 𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=0,𝑗≠𝑖

𝑛

𝑖=0

Equation (4-30)

41

where N represents the total number of implemented robots, M is the number of currently

detected tasks, Cij represents the distance between robot i and task j, and xij ={0,1} implies task i

is allocated to robot j. The dynamic task allocation problem is considered to be an NP hard

problem and is believed to be one of the most complex optimization problems; particularly for

large swarm size (n > 100).

4.4.1 Combinatorial discrete applications

In the literature, local search techniques like Simulated Annealing and Tabu Search are located

to be more effective than the global searching techniques for solving the dynamic task allocation

problem. Many applications in real life can be classified under the discrete DTA category such

as, facility layout problems.

4.4.1.1 Facility layout problem

As can be identified in [32], in the facility layout problem, an optimal location of facilities must

be chosen with an objective of minimizing the estimate cost of transportation while considering

certain constrains such as preventing the placement of hazardous materials near housing or the

placement of the facility close to the other competitors' facilities.

4.4.1.2 Scheduling problem

Another example could be the scheduling problem as defined in [33], in which a finite number of

resources with different processing power should allocate themselves to various tasks of different

processing time, while trying to minimize the total time to accomplish the whole tasks. The

whole tasks will be accomplished when the processing of all tasks is completed using the

available resources. In most real-life problems, the problem is introduced as a dynamic problem

(online scheduling). Hence, the task must be introduced to the algorithm for the tasks' allocations

decision process to be taken online.

4.4.1.3 Travelling salesman problem

Also, one of the most well-known applications is travelling salesman problem as specified in

[34], in which all the cities should be visited exactly once using the shortest way and the

42

algorithm must returns back again to the first city visited after the tour. In this problem, the

distances among cities and a list of cities locations are given to be able to find the shortest tour.

4.4.1.4 Maximum clique problem

Maximum clique problem is also one of the most famous optimization problems in the field of

information sciences as clarified in [35]. It is a discrete computational problem, which aims at

finding a collection of vertices which are all adjacent to each other. This is also termed

as complete sub graphs in a full graph.

In addition, various formulations established based on how to choose the cliques and what are

the knowledge and data we have about each clique. For example, finding all the optimal cliques

that cannot be magnified more, finding the most optimal clique among all the other cliques

which contains the maximum number of vertices, trying to find out a solution to the decision

issue by checking if a given clique is bigger than a specific size, and listing the most weighted

cliques in a given weighted graph, are the most commonly used formulations in the maximum

clique problem.

4.4.1.5 Bin packing problem

Another popular problem is the bin-packing problem where as set of containers or bins must be

filled with objects that have various volumes as explained in [36]. The packing must be done in

such a way that tries to minimize the used number of containers. This problem considered to be a

combinatorial NP-hard in the discrete complexity theory.

 Many alternatives found in this problem such as linear bins packing problem, packing by cost,

packing by weight problem and 2D bins packing problem, etc. The applications for the bins

packing problem include, weight capacity constraints trucks' loading, generating media file

backups, bins' fill up, and technology mapping in Field-programmable gate array semiconductor

chip design.

The bin-packing problem can be also considered as a special category from the cutting stock

problem as mentioned in [36]. There is also another problem similar to the bins packing problem

https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Semiconductor_chip
https://en.wikipedia.org/wiki/Semiconductor_chip
https://en.wikipedia.org/wiki/Cutting_stock_problem
https://en.wikipedia.org/wiki/Cutting_stock_problem
https://en.wikipedia.org/wiki/Cutting_stock_problem

43

called the knapsack problem. However, there is only 1 container and every object is specified by

a volume and a value instead of just a volume in the knapsack problem. This problem aims at

maximizing the objects' value that could fill in the container.

4.4.1.6 Graph partitioning problem

One last example is graph partitioning which is defined in [37] as information symbolized in the

form of a graph G = (V,E), in which V represents vertices and E represents edges. In such

problem, we must be able to divide a specific graph into a set of small partitions with given

properties. For example, a k-way problem divides a large vertex graph into k smaller groups. The

smaller the number of edges among the various groups the better the partition is.

Examples from the computer engineering field include, minimizing the wires among the

electronic devices, which try to connect the backboard and optimizing the layout of the digital

signal processors' memory. Moreover, a more significant application could be the analysis of the

reaction chemistry.

4.4.2 PSO limitation in solving discrete combinatorial problem

As I mentioned before, it is proven that meta-heuristics optimization techniques are fascinating

options to solve the dynamic task allocation problem. Through the last decade, various natural

based meta-heuristics optimization techniques have been used by Benlic [38, 39] to solve the

dynamic task allocation problem. Also, a lot of hybrid and memetic techniques that combine

both local searching approaches with a natural swarm based techniques were proposed and

proven to be very robust and efficient.

Mangat, Kulkarni, and AlRashidi [40, 41, 42] showed that almost all of these approaches need to

be adapted to fulfill the requirements of these combinatorial discrete optimization problems and

lots of researchers spend lots of effort and time to be able to find adequate solution to these

combinatorial problems. However, Particle Swarm Optimization technique, which has proven to

give a superior performance in lots of continuous applications, has not received similar attention

at the combinatorial discrete direction.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

44

They also illustrated [40, 41, 42] that the superiority of the Particle Swarm Optimization

technique over the other natural-based techniques is due to its simplicity. Since the Particle

Swarm Optimization technique is not inherently discrete in its basic canonical shape, it is not the

most suitable choice to be applied to solve the discrete optimization problem, specially the

dynamic task allocation problem. This problem is the reason after always applying the Particle

Swarm Optimization technique in lots of continuous domain applications and avoiding using it

with the discrete domain.

In the dynamic task allocation problem in swarm robotics, each robot has to assign itself to the

nearest and most appropriate task of the all the other tasks in the problem. However, unlike the

ant colony optimization technique which is inherently discrete in its basic form, PSO cannot be

applied to the allocation problem directly in its known form as it is not inherently discrete.

Hafiz and Abdennour [43] explained that the Euclidian-distance-based learning concept that is

used in PSO while updating the values of the particles' positions and velocities is the essential

cause behind this restriction. If the Particle Swarm Optimization technique or any of its

alternatives are to be used to solve the dynamic task allocation problem, it is radical to develop

and apply a different learning technique than the Euclidean distance-based learning concept. This

area can be considered as an enormous untapped prospect.

In order to be able to use the already accumulated researchers' efforts, which are previously

developed within the continuous domain of the Particle Swarm Optimization, a new learning

concept must be introduced along with the fundamental framework of the Particle Swarm

Optimization. The social learning concept by sharing the particles' experience is the core process

in the Particle Swarm Optimization technique.

The basic idea of the Particle Swarm Optimization technique remains stable and firm from the

very beginning. However, as specified by Hafiz and Abdennour [43], a lot of refinements and

invariants have been introduced to Particle Swarm Optimization through the last decade. The

focus of most of these improvements was on the experience-sharing concept such as the learning

exemplar, the neighborhood topology, or the parameter control. At any given iteration, the basic

45

update equations for the particles in the PSO can be given using equation (3-31) and equation (3-

32).

4.4.2.1 Challenge

As can be shown from equation (3-31) and equation (3-32), the distance is the base for the

learning concept in the Particle Swarm Optimization. The cognition experience and the social

experience are both used to determine the next step for the particle. The Euclidean distance

between the current position of the particle itself and the learning exemplar represents its next

move. The particles start moving in the direction of the learning exemplars in order to minimize

the Euclidean distance.

While the particles' searching procedure, new promising regions could be found within the

search space. Since the Euclidean distance cannot be used as a fitness function in the discrete

problems like dynamic task assignment, thus the considerable challenge of this type of problem

is to find another fitness measure than the Euclidean distance.

4.4.2.2 Solutions from literature

In order to solve this problem, various alternatives of binary versions from the fundamental

Particle Swarm Optimization [43] have been proposed. The main difference among these

alternatives is the methods by which the updated position is generated from the velocity as

appeared in [44, 45, 46].

Kennedy and Eberhart have developed a binary version from the basic version of the PSO

(1997). In this Particle Swarm Optimization's binary version, the velocity reflects the particle‟s

probability of changing the position state instead of the speed by which the particle moves

towards the target.

Also, the rank-based approach is another alternative to discretize the Particle Swarm

Optimization which has been developed by Liu [47]. The word “discretize PSO” means a

special version from PSO that could be used to solve the combinatorial discrete problems. In this

approach, the fundamental updating rules for both the position and the velocity kept unchanged.

46

Thus, in order to find a new feasible solution, the velocity value is used to give a ranking to the

dimension of the new state. However, since the ranking based concept doesn't necessarily give

an indication to the quality of solution in the dynamic task allocation problem, it is not suitable

for this type of problems.

In [48], another variant for Discrete Particle Swarm Optimization is also proposed in 2003, in

which the velocity represents the probability of swapping with the learning exemplar and each

particle indicates a permutation. However, in this approach, either the social or cognition

learning capability is lost, since the swapping can be applied with only one learning exemplar,

either the personal best or the global best. Furthermore, this approach restricts the swarm's

searching ability because only one swap can be done for each particle.

One last popular approach is to rely on the set-based approach to discretize PSO, which is

commonly used in data mining problems for attribute choices. A two-dimensional array

represents the velocity and an attribute set indicates the position, were used in [49]. However, the

technique is not generic and was specially developed for the problem of attribute choice.

In addition, another set-based variant was proposed by Neethling and Engelbrecht [50] where the

new position of the particle is calculated using the personal best, the global best, and another

random variable depending on three various probabilities. However, these techniques suffers

from limitation in the searching ability. The mathematical operators that are used within the

updating rules of the velocity in the Discrete Particle Swarm Optimization have also been

redefined by Clerc [51] to be used in the travelling salesman problem.

In [52, 53], the same redefined operators are utilized in the multi-dimensional problem of

Knapsack. Despite of the generality of these approaches, they result in increasing the complexity

of an otherwise quite simple Particle Swarm Optimization technique.

4.4.2.3 Limitations of previous discretization techniques

The common restriction of these previous techniques is that they are not generic and each one of

them is specifically designed as a special algorithm to find a solution to a special category of

47

problems. Hence, they lose the advantage of utilizing the already existing research efforts that

have been discovered through years of improving the Particle Swarm Optimization technique's

performance in the continuous domain.

As discussed by Hafiz [43], it is essential to try to maintain the simplicity of the Particle Swarm

Optimization technique while implementing a discretized version from PSO to be able to find

solutions to combinatorial discrete optimization problems in a simple way. However, those

previous techniques add some sort of complexity to the simple structured classical PSO

technique.

4.5 Optimization Techniques for Solving DTA Problem

DTA in homogeneous swarm robotics is a typical non-polynomial (NP) optimization problem. In

order to find an optimum or a near optimum solution for nonlinear problems, two major

categories could be followed in [54]. The first one based on the mathematical formulation, such

as integer linear programming, mix-integer programming, nonlinear programming. It is well-

known that exact solvers used to solve optimization problems are fast, deterministic, and can

obtain exact solutions. However, it is unsuitable for large size problems, because the exponential

time complexity for exact search methods on large size NP-hard problems cannot be altered.

Also, the most obvious cons for this category are that it mainly demands that the problem could

be formulated as mathematical equations.

In addition, the algorithm required for such a problem should be a mathematical derivative

technique, such as the modified one's assignment method and Hungarian algorithm. This type of

techniques is quite reliable in the sense that they have been implemented and used for decades

now as marked in [19]. The most promising mathematical method to solve the MTDTA is called

the Hungarian method. However, this technique is only suitable for small size problems science

it is time-consuming.

The second category contains the local and global meta-heuristic optimization algorithms.

Heuristic techniques such as Tabu Search, Genetic Algorithm, Particle Swarm Optimization, Ant

Colony, and Simulated Annealing has been studied and developed heavily in the past few years

48

for solving various optimization problems. Shieh [19] declared that some of these techniques are

in the form of probabilistic discrete heuristics, with local search abilities and others with global

search capabilities.

However, one of the common disadvantages of these techniques as identified by Wang and Liu

[54] is that it always gets trapped in a local optimum solution and it could only reach the global

optimum solution in some special cases in which the swarm sizes are small. In 2001, Wang and

Zhang [55] proposed a hybrid optimization algorithm based on a combination of both Genetic

Algorithm and Simulated Annealing.

Also, One of the best algorithms that, has been implemented efficiently through years to find

solution for lots of complex problems is genetic algorithm. However, many shortages have been

detected in GA's performance in the last decade. These deficiencies have been showed up in a

highly epistatic objective function's efficiency in which highly correlated optimization variables

are considered.

In addition, Shieh, Kuo and Chiang [19] illustrated that because of the availability of similar

structures in the population chromosomes, the mutation and crossover procedures suffers many

deficiencies too. Moreover, the fitness values become larger at the evolutionary process end.

Also, the GA's early convergence reduces its search ability and thereby decreases the algorithm

performance, which results in a higher chance of becoming trapped in a local minimum solution.

Recently, the Particle Swarm Optimization technique has been the prime technique committed

by many researchers [19] as a global searching algorithm due to its fast convergence and

simplicity. It has been used to find solutions for many real time problems. By using PSO, many

issues, which could be found in the old greedy algorithms can be easily eliminated, such as the

restrictions in the variables' continuity and the restrictions in the acceptance of some forms of

fitness functions. PSO has been verified to be one of the most promising algorithms to solve

nonlinear continuous optimization problems.

49

Generally, PSO algorithm owns a better convergence time because it is a global parallel

optimization technique. However, similar to the case of GA, the prime cons of the PSO is its

early convergence that may happen when the global best and local best particles got trapped into

a local optimum solution in the search space. Shieh, Kuo and Chiang [19] explained that the

main reason for the problem is the tendency of the particles to move towards its near local

optimum solution in the search space. Thus, most of the particles tend to gather in a very small

search space, and they own a very weak global searching capability.

On the contrary, one of the most essential properties in SA is its probabilistic jumping

characteristic, termed as the metropolis process. This process could be controlled by adapting the

temperature parameter. It has been demonstrated by Shieh, Kuo and Chiang [19] that the SA

algorithm could easily find the global minimum solution given that a proper parameters'

selection is provided. Thus, a hybrid PSO/SA algorithm is developed in this thesis. The

prominent characteristic of this innovative hybrid technique, which combines both DPSO and

SA is the ability to find higher quality solution within a small and stable convergence time.

Thus, this section is dedicated to provide a background on both PSO and SA, which are both

going to be used to build the proposed novel hybrid approach. So, in the next two subsections,

the definition, flowchart, pseudo code, advantages and disadvantages for each one of those two

techniques are addressed.

4.5.1 Particle Swarm Optimization technique

First, the Particle Swarm Optimization (PSO) technique which is inspired by the birds‟ swarming

or fish‟s schooling patterns was developed by Russell Eberhart and James Kennedy in 1995 [56].

At the very beginning, computer software simulations of birds swarming around food sources

were implemented by those scientists, then later they determined how could this algorithm been

utilized on optimization problems.

Derivative from social insect‟s behavior, the swarm intelligence approach presents some

praiseworthy characteristics, such as self-organizing capacity and flexible behavior to

environmental changes. Swarm intelligence are now widely used for solving various applications

50

due to good global and local search capability, e.g. for traveling salesman problems with hotel

selection, for staff scheduling in airport security service, for fast rescheduling of multiple

workflows, for the optimal winner determination problem, and for vehicle routing problems.

PSO is really a very straightforward technique as specified by [56] despite how much it might

appear complex. As can be seen from figure 4.2, a set of variables‟ values are altered to become

closer to the variable whose value is the nearest to the target‟s value after a hundreds of cycles.

For example, if a swarm of birds flocking around a specific position in which a hidden target,

like a food source could be sniffed. The nearest bird to the target tweets loudly and the remaining

ones run towards its direction. When any of the other flocking birds becomes closer to the food

source than the previous bird, it tweets loudly and the remaining birds swing in its direction.

Once one of the birds reaches exactly to the position of the target, all the birds stop. This

technique is very straightforward and thus its implementation is very easy.

Figure 4.2: First and last iterations in PSO [57].

Three global variables need to be taken into consideration carefully during the algorithm run:

 The nearest particle to the goal, “Global best”

 The criteria in which the algorithm must stop “Stopping criteria”, such as a maximum

number of iterations

 The goal, "target"

51

As can be seen from figure 4.3, three variables could be used to describe each particle:

1. The personal best, which denotes the best position ever the particle pass through.

2. The position, which indicates the particle current solution.

3. The velocity, that represents the amount by which the position is going to be changed.

Figure 4.3: PSO position update.

The position of the particle can be in any form. It could be one dimension, two dimensions, or

three dimensions. For example, the position of the birds in the previous example of the swarming

birds is in the form of (X, Y, Z), where X is the x-dimension coordinate, Y is the y-dimension

coordinate, and Z is the z-dimension coordinate. Each bird in the swarm keeps trying to come

closer to the global best bird, which is the nearest one to the food source. The position sequence

or coordinate keeps changing until it reaches to the same position of the target as explained by

Hu [56].

The velocity value determines how much the particle‟s position is far from the target‟s position.

The velocity becomes larger, if the particle is far away from the target. However, the more the

particle comes closer to the target, the more the particle‟s velocity decreased. If the particle‟s

position matches the target‟s position, its velocity becomes zero. By considering the previous

birds‟ example, the birds that is far away from the food source have to fly faster to the best

particle, and that‟s why its velocity is always larger which gives it more power to reach to the

target. To sum up, the velocity represents how much is the range between the particle position

and the target position and thus how fast the particle needs to travel to reach the target exactly.

52

Each particle's pBest value only indicates the closest the data has ever come to the target since

the algorithm started.

The gBest value only changes when any particle's pBest value comes closer to the target than

gBest. Through iterations of the algorithm, gBest gradually moves closer and closer to the target

until one of the particles reaches the target, see figure 4.4.

Figure 4.4: PSO global best update over different iterations [57].

A different set of topologies or neighborhoods can be used with PSO algorithms‟ populations as

discussed in [57]. These topologies could be used to simplify and divide the whole population

into simpler groups. Each one of these subsets contains a set of particles (two or more) which are

pre-decided to cooperate and they often share the same part of the search space. To reach the

global minima and avoid getting stuck in local minima, it is often better to use topologies.

Examples of these topologies can be shown in figure 4.5.

Figure 4.5: PSO topologies [57].

53

Figure 4.6: Flowchart of the Particle Swarm Optimization technique

54

As can be seen from figure 4.6, the PSO algorithm steps are as the follows:

 First, a random allocation is chosen for each particle in the swarm A0.

 Then, the personal best (Apbest) and the global best (Agbest) for each particle is initialized

to be equal to its own initial position.

 Then, the algorithm starts to iterate for a specific number of iterations (maxit).

 The fitness value of each particle allocation is calculated according to the objective

function, which is the minimum distance from each robot to its corresponding task

(Euclidean distance).

 Then, comparison is made between the current calculated fitness value for each particle

and the previous calculated best fitness. If the new allocation fitness is smaller, it is

chosen as the particle personal best. Then, the smallest fitness among all the particles is

chosen as the global best.

 After that, the particle, which has the global best allocation, sends its allocation to the

other particles.

 Furthermore, each particle calculates the velocity, which it uses to move towards its new

allocation according to the velocity‟s update equation of the PSO as specified in equation

(3-31).

𝑣 = 𝑤 × 𝑣 + 𝑐1 × 𝑟𝑎𝑛𝑑 × 𝑝𝑏𝑒𝑠𝑡 − 𝑥 + 𝑐2 × 𝑟𝑎𝑛𝑑 × 𝑔𝑏𝑒𝑠𝑡 − 𝑥

Equation (4-31)

Where, constants c1 and c2 is chosen to be 2, and rand is a random number from 0 to 1.

 Then, the new position or allocation for each particle is updated using equation (3-32).

𝑥 = 𝑥 + 𝑣

Equation (4-32)

 Finally, if the number of iterations reaches the maximum iteration, the algorithm stops.

Then, each robot begins its task execution according to the global best allocation solution

found in A*. If not, steps from 4 to 9 are repeated.

55

After designing the flowchart, the pseudo code for the PSO is developed as follows:

a) Main code

 1: Initialization (Nt, Nr);

 2: While it ≤ maxit {

 3: Personal best update (A, Apbest, Agbest);

 4: Global best update (Pbest);

 5: Global best allocation diffusion (idgbest);

 6: Calculate particle’s velocity;

 7: Update particle’s position;

 8: }

 9: Execute;

b) Initialization

 Input: Nt, Nr

 Output: A, Apbest, Agbest

 1: For i = 1 to Nr {

 2: A[i] = random generator (1, …, Nt);

 3: }

 4: Apbest = A, Agbest = A;

c) Personal best update

 Input: A, Apbest, Agbest

 Output: Pbest

 1: Calculate fitness value f (A);

 2: if f (A) ≤ f (APbest) {

 3: Apbest = A;

 4: }

 5: msg ← (id, f(APbest)); send fitness value to all other robots

 6: For every other robot {

56

 7: Exchange the fitness value;

 8:}

 9: For i = 1 → Nr {

 10: Pbest[i] = f(APbest) for robot id = i;

 11: }

d) Global best update

 Input: Pbest

 Output: idgbest

 1: idgbest = 1;

 2: Pbestmin = Pbest [1];

 3: for i = 2 → Nr {

 4: if Pbestmin > Pbest[i] {

 5: idgbest = i;

 6: Pbestmin = Pbest[i];

 7: }

 8: }

e) Global best allocation diffusion

 Input: idgbest

 Output: Agbest

 1: if idgbest is my id {

 2: Send (Agbest);

 3: }

 4: Else {

 5: Receive (Agbest);

 6: }

The collective behaviors of social insects, such as the honeybee‟s dance, the wasp‟s nest

building, the construction of the termite mound, or the trail following of ants, were considered

for a long time strange and mysterious aspects of biology. In the most recent years, it has been

57

deduced that particles do not need precise information or a complex representation of this

information to generate such complex attitudes. In the search space, the particles do not have

exact knowledge about the whole population. The particles reach to their destination without the

need to be coordinated by a single leader. However, the information about the swarm and the

environment is shared among all the particles. All the particles need to cooperate with each other

in order to accomplish the whole task and no particle could finish its task on its own as

determined by Navarro and Matía [7].

Social insects are able to exchange information, and for instance, communicate the location of a

food source, a favorable foraging zone or the presence of danger to their mates. This interaction

between the individuals is based on the concept of locality, where there is no knowledge about

the overall situation. The implicit communication through changes made in the environment is

called stigmergy. Insects modify their behaviors because of the previous changes made by their

mates in the environment. This can be seen in the nest construction of termites, where the

changes in the behaviors of the workers are determined by the structure of the nest as stated by

Navarro and Matía [7].

Navarro and Matía [7] have mentioned that the particles communicate among each other and

with the environment in order to form a social arrangement. The information, which is resulted

from this cooperation, is distributed along the population and thus a complex tasks that cannot be

solve with a single particle can be accomplished in this way. These global attitudes are described

as self-organizing attitudes. The complex attitudes which results from the communications

among very simple single particles can be explained by the self-organization theories, which are

mainly, deduced from physics and chemistry domains. Positive feedback, negative

feedback, randomness, and multiple interactions are the four main principles, which produce the

self-organization behavior.

Some properties seen in social insects as desirable in multi-robotic systems are:

 Flexibility, the swarm must be able to create different solutions for different tasks, and be

able to change each robot role depending on the needs of the moment.

58

 Scalability, the robot swarm should be able to work in different group sizes, from few

individuals to thousands of them.

 Robustness, the robot swarm must be able to work even if some of the individuals fail, or

there are disturbances in the environment.

4.5.2 Simulated Annealing technique

Simulated Annealing (SA) is a probabilistic technique for approximating the global optimum of

a given function. Specifically, it is a meta-heuristic to approximate global optimization in a

large search space. SA is one of the most proper techniques if we deal with a discrete search

space, such as the problem of choosing the order of cities to be visited by tours in order to

minimize the overall cost. Geltman [58] specified that if an approximate global minima is require

more than an accurate local minima and the time to find the solution is a limited amount of time,

SA is preferred than other existing optimization techniques like ant-colony.

The name of the technique is inspired from the annealing process of the metal, which involves

heating and controlled cooling of a metal to decrease their defects and increase its crystals‟ size.

Thermodynamic free energy controls these two properties. To sum up, both the temperature and

the thermodynamic free energy are affected by Heating and cooling the material.

Geltman [58] illustrated that accepting bad solutions is an essential characteristic of meta-

heuristics as it helps to explore new regions in the search space in order to find the most

optimum solution. The slow cooling of the metal can be translated as a slow reduction in the

probability of how much could we accept bad solutions while exploring the search space. The

energy function which need to be minimized and the state of some physical systems are similar

to the internal energy of the system in that state. The target is to translate the system from an

initial state with a high energy to another state, which has less amount of internal energy.

The SA algorithm could decide to leave its current solution and move to a neighboring solution

at each iteration, if and only if the neighboring solution drives the system for more stability state

in which the internal energy of the system is decreased. The stopping criteria could be either the

https://en.wikipedia.org/wiki/Probabilistic_algorithm
https://en.wikipedia.org/wiki/Global_optimum
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Global_optimization
https://en.wikipedia.org/wiki/Mathematical_optimization#Optimization_problems
https://en.wikipedia.org/wiki/Thermodynamic_state
https://en.wikipedia.org/wiki/Physical_system
https://en.wikipedia.org/wiki/Internal_energy

59

arrival to an acceptable state for the application or the arrival to a maximum number of

iterations. Thus, the stopping criteria often depend on the application itself, see figure 4.7.

Figure 4.7: Simulated Annealing technique demonstration [59].

Geltman [58] discussed that a predetermined well-defined way must be used in order to drive the

system from the current state to the neighboring state. A permutation of a visited city is a very

common method for states‟ changes, which is always used in the traveling salesman problem.

Swapping any two successive cities, reverse the order of any number of successive cities, or

choose a specific city and insert it between two successive cities are examples of common

methods that could be used to determine a new neighboring state. The predetermined common

way, which is decided to be used in choosing the new neighboring state, is referred to as a

“move” and each move resulted in a distinctive new neighbor. It is better for the moves to be

chosen to change as minimum part as it could in order to preserve the system stability and

change only the worse part. For example, the connections between the cities are the states of the

systems in the traveling salesman problem.

One of the most common issues in the optimization problems is that the algorithm could get

stuck in a local minimum and never reaches to the global optimum solution. Therefore, sometime

while searching for new solution, a worse solution could be accepted to explore new search

https://en.wikipedia.org/wiki/Traveling_salesman_problem

60

spaces as the final best solution is found after a tour of different neighbors in which some of

them could be bad solutions. Some old heuristics, the algorithm moves only to a better solution.

However, this way the algorithm could reach a state some times in which no better solutions are

found. This does not mean that no better solution could be found at all. However, it means that

the system gets stuck in a local minimum. If a worse solution is accepted sometimes in order to

avoid local minimum and the run time of the algorithm is infinite, most probable the global

optimum would be found.

However, by comparing the SA algorithm with the other technique, why to choose SA:

Genetic algorithm, hill climbing, ant-colony, clustering auction, and more are very common

optimization algorithms. However, most of them get stuck in a local optimum and never reaches

the global optimum. What Distinguish SA is that it has a technique by which SA sometimes

accept worse solutions in order to avoid local optimum and explore new areas from the search

space.

You can visualize this by imagining a 2D graph like the one shown in figure 4.8. X-coordinate

represents the system states “solutions”, and the Y-coordinate represents how good that solution

is.

Figure 4.8: Simulated Annealing cost function [60].

61

At the beginning, optimization algorithms produce an initial state randomly. Then, the algorithm

searches for a neighbor, which owns a better solution. If a better state is found, it moves to this

state. However, the algorithm stops if no more better states can be found around.

This actually makes sense. However, Busetti [60] showed that it could lead to a local optimum

solution rather than the global optimal one. As shown in figure 4.9, the left yellow star is the

optimal solution at the beginning. Then, the green right star, which is a local minimum solution,

is found. Once a simple algorithm finds this solution, it will never move to any other solution

because all its neighbors are larger solutions.

Figure 4.9: Local minimum vs. global minimum [60].

SA sometimes moves to a new random solution, which is worse with a probability function in

order to avoid getting stuck into a sub-optimal. In addition, it tries not to get much away from its

current state because the target may be nearby. Regardless of the starting point of the algorithm,

this technique capable of tracking the best solution and attain the optimal state at the end.

Here is a really high-level overview, see figure 4.10. It skips some very important details, which

will be gotten to in a moment.

62

The algorithm steps:

 At the beginning, a new state must be produced randomly.

 By choosing a specific fitness function for the problem, find the fitness value for this first

state.

 Produce another neighboring state randomly.

 Find its fitness value too.

 Then, a comparison has to be made:

 The algorithm leaves the current state to the new state, if Cnew < Cold.

 The algorithm may decide to move and may not, if Cnew > Cold.

 Continue executing the previous steps 3-5 until finding a proper state with a reasonable

fitness value or until the number of iterations reach its maximum value.

Let‟s break it down:

 At the beginning, a new state must be produced randomly.

It must be chosen randomly; it does not have to be an optimal choice or ever a quite good

solution. Any one of the available states could be chosen.

 Find the fitness value for this first state.

Depending on your problem, this cost function is calculating the total number of meters the

robots travel. Calculating the cost of each solution is often the most expensive part of the

algorithm, so it pays to keep it simple.

 Produce another neighboring state randomly.

The new generated state must be distinct from the old one in only one change, for example, two

elements from the old state could be swapped or a single element could be removed from its

place and inserted between two successive elements. "Neighboring" means there is only one

thing that differs between the old solution and the new solution.

63

 Find its fitness value too.

Use the previous fitness function, which has been used to calculate the fitness value for the first

state. It should be used for the rest of the problem.

 If Cnew < Cold: take a step to the new state

Move to the new state if its fitness value is better than the fitness value of the previous state. In

this case, the system becomes more stable and therefore happier as it becomes closer to the bet

state. Preserve this state as the main state for the next cycle.

 If Cnew > Cold: maybe move to the new solution

The system always avoids moving to the new state, which is worse than the previous state. In

this case, the system gets stuck in a local minimum and would never reaches to the global

optimal solution. In order to escape from getting stuck in a sub-optimal solution, the algorithm

could sometimes choose the worse state. A probability of whether to accept the new state or not

must be calculated which is referred to as the (acceptance probability).

After that, a comparison between this probability and a generated random number must be done

to decide whether to accept it or not.

In order to calculate the acceptance probability value, the temperature current value, the current

fitness, the new fitness and a random number between zero and one are needed. The random

number is a probability to choose whether to move to the new state or wait in the old state.

For example:

 0.0: 100% stay in the old solution because it is better than the new one.

 1.0: 100% move the new solution because it is better than the old one.

 0.5: move with probability 50%. Therefore, it may move and may not.

64

Figure 4.10: Simulated Annealing flowchart [60].

After that, a comparison between the randomly generated number and the acceptance probability

has to be done and the algorithm moves to the new state if the random number is smaller.

As defined by equation (3-33), this equation is typically used for the acceptance probability is:

𝒂 = 𝐞 𝐂𝐨𝐥𝐝−𝐂𝐧𝐞𝐰 /𝐓

Equation (4-33)

65

In the previous equation, the acceptance probability is referred to as a, the variation between the

current fitness and the new fitness is referred to as (Cold−Cnew), the temperature is referred to

as T, and e is 2.71828.

The previous equation is a part of SA, which was inspired by the metal annealing process. This

equation characterize the process of heating the metal to increase the temperature of the internal

energy and increase the speed of the internal particles, and then cooling it down slowly. After

cooling down the temperature, the particles‟ speed start decreasing and the metal internal energy

start also to decrease. This process is used by the Computer engineering researchers, by which

the algorithm moves from a higher fitness state to another lower fitness state.

Hence, it could be concluded from the SA‟s equation that the acceptance probability becomes:

A. Lower when the current state is better than the new state.

B. Lower when the temperature decreases.

C. Greater than one if the current state has a worse fitness than the new state. In this case,

α=1 is used to avoid having a probability greater than 100%.

Thus, as reported by Busetti [60] the algorithm tends to accept worse solutions at the beginning

when the temperature is high. In addition, if two bad moves exist, the algorithm tends to choose

the one with the better fitness.

66

 Chapter 5

 Minimal Time Dynamic Task Allocation Through Hybrid

DPSO/SA Algorithm

In this thesis, we propose a hybrid DPSO/SA algorithm that fuses the concept of SA algorithm

with the discrete DPSO algorithm to overcome the imperfections of both SA and DPSO. SA is

used to promote the DPSO's local searching capability. The hybrid algorithm not only possesses

the pros of DPSO and SA but also omits the cons of both of them such as the local minima

problem in DPSO and the slow convergence time of SA technique.

Therefore, in the next four sections, we start with the design and implementation of the

Hungarian algorithm as an exact solver for the MTDTA problem. Then, the DPSO technique is

developed followed by SA technique and we end up with the implementation of the proposed

hybrid DPSO/SA approach.

5.1 Hungarian Algorithm

One of the best optimization techniques that could make advantage of the special structure of the

MTDTA problem and provide an exact solution to the problem is the Hungarian method. This

exact solver is used as a model to compare between the hybrid PSO/SA algorithm with both

classical DPSO and SA techniques.

Basically, the exact solution resulted from applying this technique is used to normalize the

outcomes from the other techniques and then we classify these outcomes into three categories,

small swarm size, medium swarm size, and large swarm size to provide more readable and clear

results.

This combinatorial optimization algorithm could find solution to the MTDTA problem in a

polynomial time. However, the time complexity for the large size problem is significantly large

as mentioned in [61]. This method is basically based on previous works done be the Hungarian

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Polynomial_time

67

mathematicians: Dénes Kőnig and Jenő Egerváry [62]. The algorithm was implemented and

published by Kuhn [63] in 1955, and Kuhn was the one who called it the "Hungarian algorithm".

In 1957, the Hungarian algorithm has been revised by Munkres [64], and he noticed that the

algorithm is substantially sufficient. After that, the algorithm became well known as "Munkers

assignment algorithm". The Hungarian algorithm basically had time complexity of O(n^4) in the

big O notation. Figure 5.1 shows various time complexity functions in the big O notation.

Figure 5.1: Complexity functions

The big O notation [65] is a well-known method used for evaluating the run time of algorithms.

It can be considered as a way to differentiate between the performance of various techniques in

solving a specific problem. In the big O notation, the algorithms' runtime is addressed in terms of

https://en.wikipedia.org/wiki/D%C3%A9nes_K%C5%91nig
https://en.wikipedia.org/wiki/Jen%C5%91_Egerv%C3%A1ry
https://en.wikipedia.org/wiki/Harold_Kuhn
https://en.wikipedia.org/wiki/James_Munkres

68

how quickly it grows relative to the input, as the input gets arbitrarily large. Let's illustrate this

more:

1. It is extremely hard to determine the accurate runtime of a specific algorithm since there

are a set of external factors that may have a direct impact on the time the algorithm takes

to run a given function such as the other programs run at the same times on the computer,

and the processor's speed. Thus, the big O notation evaluates how quickly the algorithm's

runtime grows instead of the exact runtime.

2. ALSO, in the big O notation we calculate the runtime growth using the size of the input

instead of an exact number.

3. For big O analysis, we concern more about things that grows fastest as the input grows,

because everything else is quickly eclipsed as the input gets very large.

For example:

Assume that we have a swarm system consists of three robots and three tasks as shown in table

5.1. The robots termed as R1, R2, and R3, and the tasks termed as T1, T2, and T3. Each one of

the robots should assign itself to one of the available tasks. However, the robots require paying

differently for the various tasks because both the robots and the tasks exist at different locations.

The goal is to find the best allocation among the robots and tasks such that the cost should be

minimum.

The problem can be declared as a matrix of the costs (distances) between the robots and tasks.

For example, as can be seen from table 5.1, cell (1,1) represents the cost of assigning the robot

number 1 to the task number 1, cell (1,2) represents the distance between the robot number 1 and

the task number 2 and so on.

Table 5.1. Example of system with 3 robots and 3 tasks.

 Tasks
 robots

T1 T2 T3

R1 2 m 3 m 3 m

R2 3 m 2 m 3 m

R3 3 m 3 m 2 m

https://en.wikipedia.org/wiki/Matrix_(mathematics)

69

The minimum solution of 6m is obtained by applying the Hungarian algorithm on the previous

example. This solution is obtained by allocating robot 1 to task 1, robot 2 to task 2, and robot 3

to task 3.

5.1.1 Cost matrix representation

Problem definition: Given a collection of tasks and a set of robots, M * N matrix including the

cost of allocating each robot to each task is set up. Thus, the goal is to find out the minimum cost

for the allocation problem.

At the beginning, the matrix, which represents the problem, is formulated as follows:

𝑎1 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 𝑏4
𝑐1 𝑐2 𝑐3 𝑐4
𝑑1 𝑑2 𝑑3 𝑑4

where a, b, c and d represent the robots which need to be allocated to task 1, task 2, task 3 and

task 4. The costs of allocating robot a to task 1, task 2, task 3 and task 4 are termed as a1, a2, a3,

and a4, respectively. Same definition is applied for the other rows. As specified in [66], by

considering the problem formulation and the constraints, each task should be allocated to only

one robot and each robot should be assigned to just one task.

Steps for solving the assignment problems using the Hungarian algorithm can be outlined as

follows:

Step 1:

First, a set of operations should be implemented on the matrix as identified in [67]. We have to

start by choosing the smallest element in each row and subtract all the row's elements from that

number. Now, at least there is one zero in each row and may be more if the smallest number in

the row is replicated in more than one element. Now, we should attempt to allocate tasks to

70

robots such that each robot is performing just one task. The matrix below demonstrate this step

in which the allocated tasks are represented by the zeroes.

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
𝑐1 0 𝑐3 𝑐4
𝑑1 𝑑2 0 𝑑4

Step 2

In some cases, we could find out that no possible assignment could be applied to the matrix after

the previous step. Below is an example of such a case.

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
0 𝑐2 𝑐3 𝑐4
𝑑1 0 𝑑3 𝑑4

At this stage and as there is no suitable assignment could be performed, because by looking at

the previous matrix it could be easily figured out that the first task could be assigned as an

optimal task for both the first and the third robots and this can't be happened because it

contradicts the problem constraint. Also, task 3 couldn't be efficiently performed by any of the

active working robots. Therefore, as mentioned by Ghadle and Muley [68], this issue can be

solved by repeating the previous step but considering the columns instead of rows. So, the

minimum element at each column must be determined and all elements of this column must be

subtracted from this element. Then, the robots-tasks assignment should be attempted.

Now, if an assignment is possible, the robots should be assigned to tasks and the algorithm

terminates. However, if still no possible assignment exists, then we have to proceed to the next

step as illustrated in [66].

Step 3

At this step, a minimum number of rows and columns, which could cover all zeros in the matrix

should be marked. The steps to attain this can be summarized as follows:

71

1. First, all possible allocations should be considered as follows:

 The zero in the first row is allocated. However, the zero in the third row should be

eliminated because each task must be assigned to only one robot. Another

alternative could be to assign the zero in the third row and eliminate the zero in

the first one instead.

 The zero in the second row is allocated.

 No tasks are allocated in the third row because the only zero is eliminated.

 The fourth row has two possible allocations. So, any one of them could be

allocated and the other zero should be eliminated.

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
0 𝑐2 𝑐3 𝑐4
𝑑1 0 0 𝑑4

2. Second, the marking step:

 Mark all rows with no allocations; in this case, the third row is marked.

 All columns that own zeros in the marked row should be marked too. In this case,

column one is marked.

 All rows, which own allocations in the latter marked columns, should be marked

too. In this case, the first row is marked.

 Repeat the previous steps for all rows that are not allocated.

x

0 a2 a3 a4 x

b1 b2 b3 0

0 c2 c3 c4 x

d1 0 0 d4

3. The drawing step: At this step, all unmarked rows and marked columns should be

covered with lines.

72

x

0 a2 a3 a4 x

b1 b2 b3 0

0 c2 c3 c4 x

d1 0 0 d4

There are a lot of other techniques that could be used to determine the minimum number of rows

and columns that could cover all zeros in the matrix. This method is the simplest one of them.

Step 4

Now, determine the smallest number from the uncovered area. Then, subtract this number from

all uncovered elements and add it to all elements, which are covered twice.

Finally, steps 3 and 4 should be repeated until a possible allocation could be found. To obtain

this condition, the minimum number of rows and columns, which covers all zeros should be

equal to the number of robots (rows).

Note that, as explained in [66], if the number of robots is larger than the number of tasks, extra

number of columns should be added and filled with dummy values. These dummy values could

be the maximum number in the whole matrix or the infinity value.

Example

In this example, we have four tasks need to be assigned to four robots, only one task could be

assigned for each robot and only one robot could perform every task, see table 5.2. The

following matrix represents the cost of allocating each task for each robot and the target is to

minimize the cost needed for assigning the entire tasks. This assignment problem is solved using

the Hungarian algorithm as explained in [68].

73

Table 5.2: Example of system with 4 robots and 4 tasks

 T1 T2 T3 T4

R1 82 83 69 92

R2 77 37 49 92

R3 11 69 5 86

R4 8 9 98 23

Step 1, the minimum element in each row of the matrix must be selected and written at the right

hand side of the matrix. Then, this element should be subtracted from all the elements in the row.

This process should provide at least one zero at each row. For example, the smallest number in

first row is 69. This number is written in the right hand side. Then, we have to subtract 69 from

the first rows' elements, which give us zero at the third column. Same process should be applied

for the remaining rows.

 T1 T2 T3 T4

R1 13 14 0 23 69

R2 40 0 12 55 37

R3 6 64 0 81 5

R4 0 1 90 15 8

After that, we have to check, if an assignment could be achieved at this step. Unfortunately, by

looking at the previous table, task 4 could not be assigned to any of the available active robots.

So, we have to proceed to the next step.

Step 2, now the minimum element in each column must be selected and written below the

matrix. Then, this element should be subtracted from all elements in the column in order to make

sure that we own at least one zero in each column. In this example, the minimum element in the

fourth column is 15. Thus, it is subtracted from each element in this column. Now, we are sure

that we have at least one zero in each row and one zero at each column. However, we have to

74

check if there are suitable assignments for the entire tasks. This could be done by calculating the

minimum number of lines that could be drawn to cover all the zeros in the matrix.

 T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

 15

Step 3, in order to calculate the minimum number of lines needed to cover all zeros in the matrix,

all rows that don't have a suitable allocation must be crossed out. So, since task 3 cannot be

assigned to the third robots as it has been already assigned to robot 1, then the third row is

crossed out. Also, as column three has a zero at third row, it should be crossed out too. Finally,

all the rows, which own a zero at the third column, should be crossed out too. Thus, row one is

crossed out.

Now, the entire crossed columns and the uncrossed rows are covered. Since the minimum

number of line, which covers all zeroes in the matrix smaller than the number of rows, we have

to proceed to the next step.

 T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step4: now, the minimum number from the uncovered area should be selected. After that, it

should be subtracted from the uncovered area, and added to the double covered area. Then, we

have to check if the entire tasks could be assigned to the robots or not. If yes, stop the algorithm

75

and calculate the overall assignment cost. If not, repeat step 3 and 4 again until a suitable

assignment could be found for all the robots in the swarm.

 T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

The covered zeros in the previous matrix are the minimum allocations.

 T1 T2 T3 T4

R1 82 83 69 92

R2 77 37 49 92

R3 11 69 5 86

R4 8 9 98 23

Finally, since task 3 is assigned to robot 1, task 2 is assigned to robot 2, task 1 is assigned to

robot 3, and task 4 is assigned to robot 4, then the total cost for this optimal allocation is

(69+37+11+23=140).

In this thesis, the optimal solution to the dynamic task allocation problem is found within

milliseconds using the Hungarian algorithm in both small and medium swarm sizes (from 7

robots till 90 robots). The Hungarian code is implemented using MATLAB. The dynamic task

allocation Problem is basically a special category of the transportation problem, which is a

special case of another case called the transportation problem, which is a special case of

the minimum cost flow problem, which in turn is a special case of the linear integer

programming. Although the optimal solution to any of these problems could be found using the

https://en.wikipedia.org/wiki/Transportation_problem
https://en.wikipedia.org/wiki/Minimum_cost_flow_problem
https://en.wikipedia.org/wiki/Linear_program
https://en.wikipedia.org/wiki/Linear_program

76

general simplex method, it is better to use certain algorithms for each category, which designed

specifically to take the advantage of its special structure.

Many techniques are developed to solve the dynamic task allocation problem. The Hungarian

algorithm is one of these algorithms that have the ability to find an optimal solution to the linear

assignment problem within time complexity bounded by a polynomial expression of the number

of robots (N). In addition, auction algorithm and simplex algorithm are other method that could

be used in this kind of problems. However, when a very large swarm size is considered,

a heuristics optimization technique with randomization like Simulated Annealing, Genetic

Algorithm and Particle Swarm Optimization could be a better option to solve the problem and

find a near optimal solution within a reasonable time.

Singh [69] states that many decision-making problems where the target is to allocate a collection

of resources to a finite number of tasks to gain a maximum profit or to achieve a minimum cost

are referred to as the assignment or dynamic task allocation problem.

To sum up, the pseudo code for Hungarian Algorithm could be outlined as follows:

Start

 1: Subtract each row's elements from the smallest number in the row;

 2: Subtract each column's elements from the smallest number in the column;

Check assignment possibility by drawing lines to cover all zeros in the

matrix

 3: If (the number of lines = the number of robots)

 4: {

 5: Perform the allocation;

 6: }

 7: If (drawn lines < number of robots)

 8: {

 9: Subtract the smallest number of the uncovered area from all the

 uncovered elements and add it to elements that are covered twice;

 10: }

https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Parallel_algorithm

77

 11: Repeat the last two steps until a proper allocation is obtained;

End

Another numerical example:

The following matrix contains the cost values of assigning three robots to three tasks as shown in

table 5.3, and it is required to find the optimal allocation among robots and tasks in order to

minimize the overall cost.

Table 5.3: Matrix of 3 robots and 3 tasks

Step 1: subtract 250 from the first rows elements, 350 from the second row's elements, and 200

from the third row's elements.

 T1 T2 T3

R1 0 150 100

R2 50 250 0

R3 0 200 50

Step 2: subtract 0 from the first column's elements, 150 from the second column's elements, and

0 from the third column's elements.

 T1 T2 T3

R1 0 0 100

R2 50 100 0

R3 0 50 50

 T1 T2 T3

R1 250 400 350

R2 400 600 350

R3 200 400 250

78

Step 3: draw minimum number of lines to cover all zeros in the matrix. Since the number of lines

equal three (the number of robots), then an optimal allocation is attained.

 T1 T2 T3

R1 0 0 100

R2 50 100 0

R3 0 50 50

Step 4: if there is only one zero in a row, assign it immediately to the robot. However, if there are

more than one zero in the row, postponed the allocation of this robot till the end.

 T1 T2 T3

R1 0 0 100

R2 50 100 0

R3 0 50 50

After assigning all the robots to their corresponding tasks, start calculating the overall cost for

the selected assignments.

 T1 T2 T3

R1 250 400 350

R2 400 600 350

R3 200 400 250

The overall cost in this case equals (400+350+200=950).

79

5.2 PSO

Particle Swarm Optimization (PSO) is a parallel population-based optimization technique

proposed by Kennedy and Ebehart [70], that was stimulated by the collective attitude of

organisms such as fishes' schooling and birds' flocking. Particle Swarm Optimization technique

can be used to solve difficult large-size optimization problems.

Shieh, Kuo and Chiang [19] clarified that the PSO search process imports the swarming idea by

which a specific fitness function could be optimized using a collection of particles. Through the

communications and the co-operations among individuals, the particles tend to move in the

direction of the best optimal solution. This algorithm tries to simulate the group behavior of birds

and animals.

In addition, Shieh, Kuo and Chiang [19] reported that the decision-making in PSO is similar to

the decision-making process done by human. The process of human learning and cultural

transition based on two main sources of learning: learning from the human own experience itself

and learning from other peoples' experience. This learning process is the basis for the human

decision making process.

Both the fast convergence and the simple parallel structure of the PSO can be considered as its

preferable characteristics as illustrated by Shieh, Kuo and Chiang [19]. The main procedures for

the PSO algorithm are as follows: at the beginning, the swarm particles are generated randomly

using a uniform distribution and these individuals represents a possible solution within the search

space. Then, by using both the personal best for each particle in the swarm and the global best

among all the particles, each individual could decide the direction and the speed by which it

should move to a new position. After a finite number of iterations, the particle swarm would take

a fancy towards the minimum solution.

Wang and Liu [54] explained that the main difference between the Particle Swarm Optimization

and the other meta-heuristics techniques is that Particle Swarm Optimization technique utilized

the physical location and movements of the particles in the swarm to update itself. It also has a

80

well-balanced and adaptable technique to promote and adapt via collaborating with the global

best and personal best particle in the swarm, while other techniques like genetic algorithm

utilizes genetic operators such as mutation and crossover. Another advantage of PSO is its

simplicity in coding and its consistency in performance.

Wang and Liu [54] also notified that the Particle Swarm Optimization technique is somehow

comparable to the evolutionary algorithms, and it is initialized by a random population of

different particles. Every particle in the swarm moves in the multi-dimensional search space with

a particular direction and speed named velocity. Based on the cognition experience of the

particle itself and the social experience of the whole swarm, the velocity is iteratively adapted.

The new position for each particle is also adjusted every iteration using equation (3-31) and

equation (3-32).

As presented in [54], in Equation (3-31), the first portion indicates the old velocity's inertia. The

second portion represents the cognition experience, which indicates the experience gained by the

particle itself. While, the last portion denotes the particle's social experience, which indicates the

experience gained from the communication and interaction with the other particles in the swarm.

You could refer to both the main implementation steps for the Particle Swarm Optimization

technique and the pseudo code in (section 3.5.1).

Fitness function

The evaluation of the performance of the candidate solutions within the swarm is done using the

fitness function. Function f: s --> R+ generally represents the fitness (where s represents a group

of candidate solutions and R+ represents the positive real values set) as stated in [54]. In the

dynamic task allocation problem, the objective of the fitness function is particularly the distance

travelled by the robots in the swarm.

5.2.1 DPSO

Hafiz and Abdennour [43] announced that due to the significance of the dynamic task allocation

in many real-life applications plus the complexity of this problem, it has drawn the attention of

81

considerable research efforts in most recent years. Roughly, most of the evolutionary and natural

based optimization techniques have been tried to solve the dynamic task allocation problem such

as, genetic algorithm, ant colony technique, the artificial bee colony technique, etc. In addition, a

huge number of local meta-heuristics optimization techniques have been applied to solve this

problem like, Simulated Annealing, Tabu Search technique, Hill Clamping, etc.

Although, the PSO technique can be considered as one of the most promising techniques in the

swarm robotics' field and in other distinctive applications, it actually has not received the

researcher's attention in the dynamic task allocation problem as the other meta-heuristic

techniques did. The reason behind this could be attributed to the Euclidian-distance based

learning concept in the Particle Swarm Optimization technique's structure as proposed by Hafiz

and Abdennour [43]. This problem makes the Particle Swarm Optimization, in its inherently

continuous basic form, inappropriate for discrete optimization problems.

5.2.1.1 PSO probabilistic learning mechanism

In this thesis, a probability-based approach is applied as a learning concept for the Particle

Swarm Optimization instead of the Euclidian-distance based learning concept. So, a general

structure to discretize the Particle Swarm Optimization is attained in order to be able to

implement the Particle Swarm Optimization in its combinatorial form on the problem in our

hands, which is inherently discrete problem. In addition, comparisons with other local meta-

heuristic approaches are presented in this thesis.

5.2.1.2 PSO discretization

The procedures needed to discretize the Particle Swarm Optimization are outlined in this section.

In addition, both the particles' position and velocity updating rules are introduced with a number

of illustrative examples.

5.2.1.2.1 DPSO position representation

The particles in this algorithm are represented using a particular permutation. The simplicity of

the encoding scheme of the particles' position is the main reason for the algorithm superiority. In

82

this scheme, the particle is represented as a row of a number of elements. Every element number

or dimension in the particle indicates a robot and every value recorded in each element denotes

the corresponding task.

Example, assume that we have four robots and four tasks, and the particle is represented as {4 3

2 1} which denotes that the 4th task is allocated to the 1st robot, the 3rd task is allocated to the

2nd robot, the 2nd task is allocated to the 3rd robot, and the first task is allocated to the 4th robot.

5.2.1.2.2 DPSO velocity encoding

However, the velocity encoding scheme is different because each velocity element indicates the

probability of choosing a specific task to a given robot and so on. The discrete version from the

Particle Swarm Optimization that has been developed by Kennedy and Eberhart [71] applies a

similar approach. However, in this technique, according to which task is going to be assigned for

which robot, a specific map in the form of matrix is created for each particle, which represents

the particles' velocity.

According to each particle's performance, a velocity is calculated for each particle in every

iteration. For example, in order to get familiar with the update procedures of the velocity assume

that we have a dynamic task allocation problem with n robots and m tasks. Thus, in this case the

velocity map for each particle is introduced as an n*m matrix as follows:

𝑣 =
𝑝11 ⋯ 𝑝1𝑚
⋮ ⋱ ⋮

𝑝𝑛𝑚 ⋯ 𝑝𝑛𝑚

where p indicates the probability of choosing a particular task for a specific robot. For example,

every ith row has m elements pij, where j equals {1, 2,, m}, and each one of those elements

indicates the probability of selecting a jth task for an ith robot.

Through the iterations, the particles continue learning new experience from both the social

learning process and the cognition learning process. As a result, the velocity is updated for each

83

particle in every iteration. Based on this algorithm, by finding a profitable allocation of the task

to a given robot, the learning operation is successfully accomplished.

The learning process to allocate various tasks to a group of robots is done as proposed by Hafiz

and Abdennour [43] using various exemplars such as global best, personal best and local best

particles. As the beneficial allocations give further promising results, the probability of their

choice is raised through the update operation. An operator called a set difference operator and

termed as, setdiff, needs to be calculated In order to determine the profitable components from

the learning exemplar. The setdiff operator of both x and y particles can be calculates as follows:

setdiff x, y = {e ∈ x and e ɇ x ∩ y}

Equation (5-1)

Four steps are necessary to accomplish the update procedure for the velocity as explained by

Hafiz and Abdennour [43]. First, using the setdiff operator, the profitable tasks allocations must

be calculated from the learning exemplars. According to the evaluation of these beneficial

allocations, a set of probabilities are calculated as a second step. After that, as a third step, the

performance for each particle is calculated against the swarm and then a comparison must be

done between the current fitness value and the previous one. Finally, probabilities based on its

position are updated according to the performance of each particle.

An illustrative example is provided in order to get familiar with the update procedure of the

velocity. Assume a dynamic task allocation problem with four tasks, m=4 and four robots, n=4.

Then, assume that an allocation for a specific particle xi equals {4 3 2 1}, while the global best

allocation equals {2 3 4 1} and the personal best allocation equals {3 4 2 1}. So, the operator,

setdiff must be generated in order to accomplish the process of the learning from exemplars.

𝑆1 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 pbesti, xi = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 3 4 2 1 , 4 3 2 1 = {3 4 0 0}

Equation (5-2)

84

while,

𝑆2 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 gbesti, xi = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 2 3 4 1 , 4 3 2 1 = {2 0 4 0}

Equation (5-3)

where S1 indicates the cognition experience, and S2 indicates the social experience and 0

represents the null value. Then, as a second step in the learning procedures, after the recognition

of the beneficial allocations, the probability of choosing these allocations must be raised.

By applying this step on the corresponding example here, the social learning experience, S2, tells

us that allocating the second and fourth tasks to the first and third robots is most likely to afford

substantial outcomes. In addition, the cognition learning experience, S1, indicates that allocating

the third and fourth tasks to the first and second robots, respectively, are profitable. In order to

apply these learning results, the first step is to convert the position vector xi and the two learning

experiences S1 and S2 to a matrix of n × m dimension according the following rule:

𝜆𝑖𝑗 𝑥 =
1, 𝑖𝑓 𝑥𝑖 = 𝑗
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

Equation (5-4)

Based on equation (5-4), the learning experience sets and the position matrices can be calculated

as follows:

𝜆 𝑥𝑖 = 𝜆 {4 3 2 1} =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Equation (5-5)

𝜆 𝑆1 = 𝜆 {3 4 0 0} =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

Equation (5-6)

85

𝜆 𝑆2 = 𝜆 {2 0 4 0} =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

Equation (5-7)

Then, the update process for the ith particle's velocity is accomplished as follows:

 vi = vi + (c1 r1 ∗ 𝜆(S1)) + (c2 r2 ∗ 𝜆(S2))

=

𝑃11 𝑃12 + 𝑐2𝑟2 𝑃13 + 𝑐1𝑟1 𝑃14
𝑃21 𝑃22 𝑃23 𝑃24 + 𝑐1𝑟1
𝑃31 𝑃32 𝑃33 𝑃34 + 𝑐2𝑟2
𝑃41 𝑃42 𝑃43 𝑃44

Equation (5-8)

As can be shown from equation (5-8), the probability of the profitable allocations is raised

according to the learning sets. So, there are rises in the values of p12, p34 (from social learning)

and p13 and p24 (from cognitive learning) by the c1r1 and c2r2 coefficients, respectively.

After calculating the effect of the social learning and the cognition learning on the velocity

update equation. Now, the third step is concerned with the contribution of the particle itself to the

velocity update equation as illustrated in [43]. Thus, the probability of a specific particle is raised

when the current fitness value of the particle is better than the fitness value of its previous

position. If no enhancement is detected in the particle fitness value, then the probability has to be

reduced in order to increase the exploration capability of the algorithm. Both the inertia weight

and the improvement rate in the fitness value of the particle determine the decrease and increase

amount in the probability of the velocity matrix. The update process in particle number i can be

evaluated as follows:

86

∆𝑖 =

 + 𝑤 ∗ 𝛿𝑖 , 𝑖𝑓

𝑓𝑖
𝑡−1

𝑓𝑖
𝑡 < 1

 − 𝑤 ∗ 𝛿𝑖 , 𝑖𝑓
𝑓𝑖

𝑡−1

𝑓𝑖
𝑡 ≥ 1

Equation (5-9)

where δi = 1− (
fi
t

max (F
t)

), fi
t and fi

t−1 represent the fitness value for the particle number i in the

current and previous iterations. Also, F
t represents a vector contains the fitness values for the

whole swarm in the current iteration.

Finally, evaluate the velocity using the following equation (5-10) in order to update the

probabilities of the previous position.

𝑣𝑖 = 𝑣𝑖 + (𝛥𝑖 ∗ 𝜆(𝑥𝑖)) =

𝑃11 𝑃12 + 𝑐2𝑟2 𝑃13 + 𝑐1𝑟1 𝑃14 + 𝛥𝑖
𝑃21 𝑃22 𝑃23 + 𝛥𝑖 𝑃24 + 𝑐1𝑟1
𝑃31 𝑃32 + 𝛥𝑖 𝑃33 𝑃34 + 𝑐2𝑟2

𝑃41 + 𝛥𝑖 𝑃42 𝑃43 𝑃44

Equation (5-10)

It is essential to note that all the previous steps could be briefly summarized using the following

update equation:

𝑣𝑖 = ∆𝑖 × 𝜆(𝑥𝑖) + c1 r1 ∗ 𝜆(𝑆1) + c2 r2 ∗ 𝜆(𝑆2)

Equation (5-11)

From the previous equation, it can be shown that the update equation for the velocity in this

discretized version of the Particle Swarm Optimization technique is similar to that of the

continuous normal version of the PSO. Thus, the previous efforts that were spent by researcher

on improving the original Particle Swarm Optimization is preserved as has been declared in [43].

87

Now, the algorithm steps for updating the particles' velocity can be outlined as follows:

1. Calculate the setdiff learning experience.

𝑆1 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓(pbesti, xi)

𝑆2 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑔𝑏𝑒𝑠𝑡, 𝑥𝑖)

2. Calculate current position impact on the velocity update value, Δi.

3. Finally, calculate the velocity according to equation (5-11).

5.2.1.2.3 Position evaluation

The evaluation of the position demands choosing a task from the m available tasks to be

allocated to each robot. To achieve this, the fundamental idea of the Particle Swarm

Optimization that has been proposed by Kennedy and Eberhart is extended to utilize the

probability of the velocity within this framework. The velocity values indicate the learning

experience that is accumulated from both the social and the cognition learning process through

the whole searching time. The velocity matrix must be turned into a probability matrix first,

using equation (5-12), before calculating the particle's new position as explained by Hafiz and

Abdennour [43].

 𝑛𝑣𝑖 =

𝑣11

 𝑣𝑖𝑗4
𝑗=1

𝑣12

 𝑣𝑖𝑗4
𝑗=1

𝑣13

 𝑣𝑖𝑗4
𝑗=1

𝑣14

 𝑣𝑖𝑗4
𝑗=1

𝑣21

 𝑣𝑖𝑗4
𝑗=1

𝑣22

 𝑣𝑖𝑗4
𝑗=1

𝑣23

 𝑣𝑖𝑗4
𝑗=1

𝑣24

 𝑣𝑖𝑗4
𝑗=1

𝑣31

 𝑣𝑖𝑗4
𝑗=1

𝑣32

 𝑣𝑖𝑗4
𝑗=1

𝑣33

 𝑣𝑖𝑗4
𝑗=1

𝑣34

 𝑣𝑖𝑗4
𝑗=1

𝑣41

 𝑣𝑖𝑗4
𝑗=1

𝑣42

 𝑣𝑖𝑗4
𝑗=1

𝑣43

 𝑣𝑖𝑗4
𝑗=1

𝑣44

 𝑣𝑖𝑗4
𝑗=1

Equation (5-12)

88

So, the velocity matrix in equation (5-12) should be normalized, and it can be used as an index to

calculate the new particles' position as proposed in Hafiz and Abdennour [43]. The elements in

every row of the previous velocity matrix indicate the probabilities of selecting m tasks for a

specific robot that owns the index of this row. For example, the probabilities for selecting the m

tasks to the ith robot are represented in the ith row of the velocity matrix. The evaluation of the

new position demands selecting a single task for each robot. Thus, it is required to choose a

single element from every row of the velocity matrix.

In the dynamic task allocation problem, it is important to check the validity of the new evaluated

position solution. In some cases, same task may be allocated to more than one robot while using

the proposed framework in the new position evaluation. For example, when two or three robot is

assigned to perform the same task, this gives a non-feasible allocation to the dynamic task

allocation problem. It is essential to ensure that each robot has a unique allocation to a specific

task in order to make sure that we have a valid solution.

Hafiz and Abdennour [43] specified that three steps need to be followed while evaluating the

new position for every particle in order to get over this problem. The choice of a specific task for

each robot based on various source set in every step. The velocity is the 1st source set, the

current position of the particle is the 2nd source set, and the universal set is the third and last

source set. The universal source set holds the whole tasks (m tasks).

5.2.1.2.3.1 Position evaluation pseudo code

Now, the pseudo code for the new position evaluation can be summarized as follows:

1: Calculate the normalized velocity;

2: Initialize the position vectors by assigning zeroes to all elements,

pos={0};

3: for i= 1 to m

4: Choose the largest task probability within the ith row and allocate

it to the ith location of the particle's new position vector, pos;

5: end

89

6: Assign zero to the repetitive elements of the position vector;

7: If there are zero elements in the position

8: Determine the zero elements in the position vector;

9: Substitute these elements with their corresponding elements from the

previous position vector;

10: End

11: Assign zero to the repetitive elements in the position;

12: If there are zero elements in the position vector

13: Determine the zero elements in the position vector;

14: Substitute these elements with their corresponding elements from the

universal set;

15: End

16: Update the particle's position xi=pos;

Next is an illustrative example on the update process of the position in order to familiarize

ourselves more with these procedures. Let the velocity matrix vi of the particle xi after the

velocity update operation is given as:

 𝑣𝑖 =

0.54 0.36 1.27 0.64
0.58 0.42 0.87 1.52
0.71 0.04 1.82 0.94
2.44 0.53 1.05 0.88

In order to find a probability of choice for every element in the matrix, the velocity matrix needs

to be normalized first:

 𝑛𝑣𝑖 =

0.19 0.13 0.45 0.23
0.17 0.12 0.26 0.45
0.2 0.01 0.52 0.27
0.5 0.11 0.21 0.18

So, this normalized matrix is utilized as the main and 1st source set for the new position

evaluation to the particle number i. The largest element among all the probabilities in each row is

chosen for the position vector, POS. So, in this case, POS = {3 4 3 1}T. Then, the validity of the

90

POS solution must be checked, and just the unique allocation could be accepted and preserved in

the new position vector. Since the third task is allocated to the first and third robots

simultaneously, zero should be allocated in the 3rd element. Thus, the position vector POS

becomes {3 4 0 1}T.

Then, the elements with the zero value are determined. After that, the previously determined zero

elements are allocated with the corresponding tasks from the current position vector which

represents the 2nd source set in order to accomplish the new position evaluation. So, the current

position of the particle which is equal to {4 3 2 1} must be checked out in order to allocate

another task to the 3rd element. Since, the use of the current position to allocate the 3rd element

gives a valid solution which is {3 4 2 1}T, it is enough to be used and the universal source set is

not necessarily. Finally, the ith particle's new evaluated position is evaluated to be: xi = POS =

{3 4 2 1}.

It is worthily mentioned that a valid solution could also be found using only the velocity without

referring to both the current position and the universal set and limit ourselves with the

membership mapping as proposed by Pang et al. [72] and Liu et al. [73, 74]. However, this

method results in a lower quality solution since some smaller probability values could be

involved in the evaluated position vector.

5.2.1.3 DPSO pseudo code

Now, the complete pseudo code to solve the dynamic task allocation problem based on the

discretized version of the PSO could be summarized as follows:

The initialization step:

 1: Initialize the algorithm's parameters, w, c1, c2, refresh gab

(rg), and the stagnation count (cnt).

 2: Initialize the particles' positions randomly, {x1, x2,,

xi,, xn}.

 3: Initialize the particles' velocity using normal distribution

[0,1].

91

 4: Calculate the fitness value for all particles in the swarm, and

initialize the personal best and the global best to be equal to

the initial position of the particles.

The evaluation step:

 1: For i =1 to maxit

 2: If cnt >= rg // stagnation detected

 3: Reinitialize the particles' velocity;

 4: cnt=0;

 5: End

 6: Update the weight, w(i) = w0 -
 𝑤0−𝑤𝑓 ∗ 𝑖

𝑚𝑎𝑥𝑖𝑡
 ;

 7: For j= 1 to n

 8: Calculate the ith particle's velocity;

 9: Calculate the ith particle's position;

 10: End

 11: Calculate the fitness values;

 12: Save the previous fitness values for the whole swarm;

 13: Calculate the new position's fitness value;

 14: Update the personal and the global best positions;

 15: Increase the stagnation counter if the global best

 kept unchanged, cnt = cnt + 1;

 16: End

5.2.1.4 DPSO parameters' setting

One of the most essential parameters to improve the searching capabilities of the Particle Swarm

Optimization technique as announced by Wang and Liu [54] is the inertia weight w. A big inertia

weight increases the exploration capabilities of the algorithm by opening the research within new

areas whereas a kind of small inertia weight increases the exploitation capabilities via precise

searching within the same current area.

92

Thus, an appropriate choice of the value of the inertia weight results in a sufficient balance

between the global exploration and the local exploitation, and leads to a kind of less number of

iterations to discover an efficient outcome as clarified in [54]. Therefore, reducing the inertia

weight linearly from a kind of large value to a small value through the path of the Particle Swarm

Optimization run, leads to increase the global search capability of the algorithm at the beginning

of the search process, while increasing the local search capability close to the termination of run.

Actually, in this thesis the inertia weight is chosen to be as follows:

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
∗ 𝐼

Equation (5-13)

where wmin represents the inertia weight's final value, wmax represents the inertia weight's

initial value, Imax represents the maximum number of iterations, and I indicates the current

iteration number.

5.3 SA

Hasan, Locatelli, and Mitra [75, 76, 77] explained that unlike the steepest descent method,

Simulated Annealing technique can be considered as a local meta-heuristic searching algorithm

that uses a mechanism to avoid getting trapped into a local minimum solution. It adapts a

metropolis approach, which is a random probabilistic acceptance technique, which enables some

worse solutions to be selected as a next step with a specific probability.

The molecular movement in materials over the annealing process is stimulated using the SA

algorithm. If there is enough time for the molecules during the cooling process to move, they will

move towards the highest stability and lowest energy state. The annealing operation can be

implemented in a mathematical way to find the global optimum solution, which is correlated

with the highest stability state by applying the probability acceptance technique of the metropolis

mechanism and disturbance technique.

93

Simulated Annealing confirmed its superiority through years in solving many combinatorial

discrete problems. Simulated Annealing technique's steps can be summarized as follows:

1. Another solution from the neighborhood of the current solution(s) is selected.

2. The fitness value for this new solution is evaluated since the fitness will change for sure

when the solution changes.

3. After that, the difference between the new and current solutions' fitness is calculated,

D=E(s') _ E(s).

4. Then, the new solution is unconditionally accepted if D < 0.

5. However, the new solution is accepted with a probability of exp(-D/t) where t represents

the temperature, if D > = 0.

It is worth to mention also that, the algorithm begins with a high temperature value, and

decreased progressively until ending with a very small value close to zero. The algorithm runs

for a given number of iterations at every temperature value. These iterations are called the

temperature length. Finally, the algorithm stops after finishing a specific number of iterations or

after satisfying the end condition.

5.3.1 SA parameters' selection

A great attention must be given to the parameters' selection of the Simulated Annealing

technique since it has essential consequences on the efficiency of the algorithm's performance.

Better outcomes could be found out of a slow searching. However, it could lead to worse

convergence characteristics. Thus, it is always a compromise between both of them. Parameters'

choice somehow depends on the characteristics of the problem itself.

There is a collection of essential parameters associated with the SA algorithm, such as the

disturbance mechanism, cooling process, initial condition and equilibrium condition. Shieh, Kuo

and Chiang [19] clarified that by the proper adjustment of these parameters, the quality of the

outcomes of the algorithm and the algorithm performance could be significantly enhanced.

94

5.3.1.1 Initial condition choice

During the optimization process and especially at the beginning of the searching procedure, it is

preferred to accept some bad solutions with a high probability in order to increase the

exploration function of the algorithm. Therefore, it is better to choose a high temperature at the

beginning. If a very small initial temperature is selected, there will be a high possibility for the

algorithm to be trapped into a local minimum solution.

On the other hand, if a very high initial temperature is selected, the algorithm's time complexity

will be extremely large. Thus, through years of experience, it has been discovered by Wang and

Liu [54] that, by choosing an initial temperature equals to the maximum difference between two

neighboring solutions from the whole solutions set, it could lead to better convergence time and

cost value. In addition, Shieh, Kuo and Chiang [19] reported that a multiple of this largest

difference could be also a very good choice for the initial temperature value. However, it is better

to keep it in a reasonable value, not too large and not too small.

5.3.1.2 Establishing a disturbance mechanism

The disturbance process is one of the most significant parts in the SA algorithm because most of

the convergence time is spent in the metropolis mechanism and it has an essential effect on the

performance of the algorithm and the quality of solution. Thus, it is necessary to have a tight

control over the disturbance process to be able to find a good solution.

The main function of the disturbance mechanism is to search for a feasible solution within the

neighborhood of the current solution. Then, the metropolis process decides whether to accept this

worse neighboring solution with a certain probability or not. This mechanism gives SA the

ability to jump out of a local minimum solution.

However, it could also steer the searching process towards a direction, which is in the opposite

direction of the global optimal solution, which in turns could raise the time complexity of the

algorithm as illustrated in [19].

95

5.3.1.3 Equilibrium condition determination

The state of the system at a certain temperature in which there is no more energy flow is called

the equilibrium condition. This means that, the energy flow in the system becomes insignificant

after a finite number of disturbances during the algorithm run. This process is referred to as the

acceptance rate, and it can be formulated as follows:

Acceptance rate =
Total number of acceptance

Total number of disturbances

Equation (5-14)

When a disturbance mechanism produces a new neighboring state to the current state, the

metropolis mechanism decides whether to accept this new state or not. The total number of

acceptance in the previous equation should be increased by one, if the new state is accepted.

After a finite number of disturbances, the acceptance rate would indicate the amount by which

the algorithm does accept new worse solutions. Therefore, stepping forward to a new

temperature depends on the equilibrium condition of the system.

If the system reach to the equilibrium condition at a certain temperature and the system is not

changing that much anymore, this means that the acceptance rate is very small "near zero", and

the system should step forward to the next temperature. However, it has been explained by

Shieh, Kuo and Chiang [19] that if the system is still in an active state and there are many

disturbances occurs which means that the acceptance rate is near to one, the system should

continue processing at this temperature until an equilibrium state is obtained.

5.3.1.4 Method of cooling

As the Simulated Annealing simulates the annealing process, then the cooling rate must be

reduced in accordance with the decrease in the temperature similar to what happened in physics.

Hence, the temperature is progressively reduced during the Simulated Annealing operation.

Shieh, Kuo and Chiang [19] specified that this process helps the system to be transferred from an

active state to an equilibrium stable state. In other words, the system should be cooled faster at

the beginning of the annealing process and cooled slower during the advanced stages.

96

The equation tk = λ tk-1 is a great selection to determine the temperature value at each iteration

since it satisfies a compromise between a good quality solution and fast convergence time. Of

course, according to the previous equation, the temperature decreased faster when the cooling

rate parameter λ is small.

5.3.1.5 Temperature length

The temperature length indicates the number of runs which taken place at each iteration with the

same temperature value. The best choice for this parameter is the number of the neighborhood

for a specific solution.

5.3.1.6 Temperature end parameter

The last essential parameter in the Simulated Annealing algorithm is the temperature end

parameter (tend). Wang and Liu [54] reported that this parameter is used to stop the algorithm

when the current temperature value becomes less than the temperature end value. It is worth to

mention that tend is always selected to be a very small value.

5.4 DPSO/SA

Both the exploration and exploitation searching properties are required to be able to find a global

or near global minimum solution as has been clarified by Shieh, Kuo and Chiang [19]. The

exploring characteristic is essential for applying the search process across the whole search space

to be able to find the area in which the global optimum solution exists. The exploiting

characteristic is also significant in order to apply a gradient search mechanism in a certain local

area to search within this region for the global optimum solution.

The use of both the exploring and the exploiting techniques together enhances the searching

ability to be done in the whole search space and provides a way of jumping out of a certain local

minimum solution, thereby enhancing the ability of exploring the global minimum solution.

However, nothing in the heuristics searching techniques could guarantee finding out the global

minimum solution. One of the most obvious disadvantages of the PSO technique is that if there

97

are a local and a global optimum solution in a certain objective function, and taboth of them are

separated from each other with a specific distance. Then, if the initial random generated

population is closer to the local optimal solution than the global optimal one, the particles'

personal and global best will move towards the local optimal solution and it will lose the ability

to jump out of this local optimum solution. Hence, it will lose the global searching capability.

Moreover, the speed of convergence towards the final stages of iterations becomes obviously

slow.

In addition, the DPSO technique is a problem-independent algorithm. This means that the only

information pertinent to the problem itself that is required while searching for the solution is the

fitness function. This characteristic provides more simplicity and robustness for the DPSO

algorithm than the other optimization techniques. However, the DPSO also suffers from the

disadvantage of the possibility of being trapped in a local optimum solution especially when the

problem to be solved is quite complex because at the end of the day it is a stochastic heuristic

searching technique. Another disadvantage could be the reduction of the global search

capabilities at the final iteration in the algorithm.

On the other hand, it has been notified by Wang and Liu [54] that the searching capabilities of

the Simulated Annealing technique could be improved by the precise selection of the cooling

rate, and the problem of getting trapped into a local optimal solution could be restricted by

applying a specific acceptance rate. Thus, we thought of trying to limit the issue of the local

optimum solution and provide a better control for the searching ability through the careful design

of the cooling parameter and neighborhood topology structure of the Simulated Annealing

technique.

Thus, in this thesis, a hybrid algorithm is developed in order to try to address and solve the main

two problems of the PSO technique. Shieh, Kuo and Chiang [19] reported that when small

variations are applied to the temperature parameters of the SA technique, and an equilibrium

condition is obtained for every temperature value during the searching process, the SA technique

could have a probability of one for finding the global minima. Moreover, the SA algorithm owns

a great capability of being able to avoid becoming trapped into a local optimum solution due to

98

the metropolis process. However, SA has a disadvantage of a slow convergence time due to the

small temperature variations to ensure finding the good-quality solution after running the

algorithm.

The essential adjustment of the hybrid PSO/SA algorithm is that it fuses the parallel movement

structure of the PSO technique into the disturbance searching mechanism of the SA algorithm. In

this way, the algorithm can explore for solutions in more paths, increasing the probability that

the global optima could be found. In addition, the parallel processing capabilities of PSO reduces

calculation time. Also, a good quality solution could be easily found as a result of combining the

advantage of the global search ability of the SA algorithm with the fast convergence

characteristics of the PSO algorithm. Thus, this hybrid technique owns very easily realizable

characteristics.

5.4.1 DPSO/SA pseudo code

The most significant characteristics and properties of the hybrid PSO/SA are summarized in the

following notes:

Note1. Since the Particle Swarm Optimization technique owns a simple implementation and an

inherent parallel structure, just few adjustments are needed to develop the hybrid algorithm.

Note2. The hybrid PSO/SA algorithm could have both a powerful global exploration and local

exploitation abilities due to the dynamic adaptation of the temperature value of the SA. The

particles at the early steps in each temperature value own a high probability of accepting worse

solution as the next solution, which improve the exploration ability of the algorithm. Then,

through the iteration, the temperature becomes lower and the probability for accepting a worse

solution as the next solution is decreased which generates a balance between the global

exploration and the local exploitation behaviors. In addition, near the end of the iterations and as

the temperature becomes closer to zero, nearly no more worse solutions is accepted which

enhance the ability of exploiting the promising solutions in the optimal areas.

99

Note3. In the literatures [52, 53], there is a mathematical proof that the Simulated Annealing

algorithm could find the global optimum solution with a reasonable convergence time with a

probability equal one. On the contrary, Particle Swarm Optimization technique does not always

guarantee an optimal solution. Thus, the hybrid algorithm can be considered as a parallel

structure SA algorithm. As a result, the proposed algorithm guarantees finding the global optimal

solution with a probability equals to one and at the same time enhance the time complexity and

convergence characteristics due to its parallel structure.

Note4. Finally yet importantly, this hybrid PSO/SA algorithm could be used to optimize any

other problems due to its generality. In this research, the proposed hybrid algorithm is deployed

to optimize fifteen different swarm sizes to ensure its robustness and scalability.

Based on the above illustration, the complete Pseudo code for the hybrid DPSO/SA algorithm

can be outlined as follows:

Start

Step1. Initialization step

 1: Initialize position, velocity and number of population for each

 particle in the swarm;

 2: Calculate the fitness value for each particle;

 3: Initialize the personal best position with the initial position

 of the particle;

 4: Initialize the global best with the minimum particle in the

 swarm;

 5: Initialize the acceleration constants c1, c2;

 6: Initialize the inertia weight constants wmax, wmin;

 7: Initialize the maximum number of iteration constant;

 8: Initialize the initial temperature, temperature end and the

 cooling rate parameter for the SA technique;

Step2. Evaluation step

(2.1) PSO

 1: While (the termination condition is not satisfied)

100

 2: {

 3: Iteration++;

 4: Generate new position and velocity using Eqs.(11)and

 (12);

 5: Evaluate the new fitness values;

 6: Update the swarm {

 7: Adjust the personal best for each particle;

 8: Adjust the global best of the swarm;

 9: }

 10: }

(2.2) SA

 1: Initialize the algorithm's solution with the global best particle

 in the swarm.

 2: T = T0;

 3: While (T > Tend)

 4: {

 5: Find a new neighboring solution from the old one;

 6: Evaluate the fitness of the new neighboring solution;

 7: Calculate the fitness difference D = E(s') - E(s);

 8: If min[1,exp(-D/T)] > rand[0, 1]

 9: { Accept the new solution s';

 10: }

 11: Adjust the global optimum solution if the new solution is

 the best solution found so far;

 12: Update the temperature t = λ tk_1;

 13: }

Step3. Output the best solution and its fitness value.

End

It can be shown from the pseudo code that the algorithm begins with the PSO technique to find

an initial solution followed by the SA algorithm. If the Simulated Annealing part is cancelled,

101

the algorithm simply turned into a PSO algorithm. In addition, the algorithm can be turned into

the simple well-known SA algorithm if the PSO part is cancelled out or by setting the population

size of the swarm to one. Using this algorithm maintains the generality of both the SA and PSO.

Furthermore, by just modifying the fitness function within the algorithm, it could be utilized to

solve any other combinatorial discrete optimization problems.

5.4.2 DPSO/SA parameters' selection

Because of the shortage in the divergence within the final iterations of the search operation in the

Discrete Particle Swarm Optimization technique, it sustains from early convergence. Thus, it is

substantial to keep the variety within the swarm over the whole search space in order to find a

promising solution for NP-hard problems like the dynamic task allocation problem. There are

many methods to do so. One of the easiest ways to achieve this as proposed by Hafiz and

Abdennour [43] is to use the restart technique if stagnation happens.

The restart technique can be translated in this discretized version from the Particle Swarm

Optimization as velocity re-initialization for each particle in the swarm. This velocity re-

initialization increases the capability of exploration within the swarm, because the basic source

for the new position construction is the velocity. However, the only part, which is reinitialized in

the whole process, is the velocity, and neither the personal best nor the global best positions are

changed.

The notion of the refresh gap is utilized to solve the problem of the stagnation and all the

parameters, which are somehow involved with this concept, are calibrated. Therefore, various

refresh gaps' values are tried in the algorithm until a suitable value is detected. Furthermore, the

algorithm is tried on different swarm dimensions in order to make sure that the performance of

the algorithm becomes stable and unbiased.

The performance of the algorithm is observed while adjusting the refresh gap's value to be five,

ten, twenty-five, fifty and one hundred percent of the total number of iteration. We figure out

that the refresh gab has a considerable effect on the outcomes of the algorithm.

102

A large number of restarts are permitted if a small refresh gap is chosen which of course results

in a preferable performance. However, if a large refresh gap is selected, the performance of the

algorithm becomes worse. Also, no restarts is supplied if the refresh gap is given the value of

100% of iterations. The best performance is achieved by setting the refresh gap within the range

of 30 percent of the total number of iterations.

5.4.3 LPSO VS. GPSO

It is very substantial to make some sort of compromise between the exploitation ability and the

exploration ability of the swarm in order to increase the robustness of the algorithm, see figure

5.2. Many efforts have been spend in last recent years in an attempt to find a solution to the issue

of the algorithm early convergence. It has been clarified by Hafiz and Abdennour [43] that these

efforts can be divided into categories according to either the used learning exemplars, the way

the information exchanged among particles (neighborhood topology), or the use of different

parameters control.

Figure 5.2: PSO example [78].

103

The basic idea behind the Particle Swarm Optimization technique is to seek for learning and

gaining experience through the exchange of information among the particles in the swarm. The

way by which the particles within the smarm share the information has a direct influence on the

outcomes of the algorithm. The proposed algorithm in this thesis is based on the global approach

with the star topology where the global best particle in the whole swarm shares its information

with all the other particles in the swarm. By using this topology, the convergence time of the

algorithm becomes very fast. However, there is an increasing possibility for the algorithm to get

trapped into a local minimal solution.

This problem actually is solved using the proposed algorithm by combining the Simulated

Annealing with the global version of the Particle Swarm Optimization technique. As discussed

earlier, Simulated Annealing has the ability to avoid getting trapped into a local optimal solution

using its metropolis technique. Also, the refresh gap approach is applied into the proposed

algorithm to ensure that the algorithm could easily reach the global optimal solution and avoid

the local optimal one. Thus, there is no need to use a local neighborhood topology and it is better

to use the generic global Particle Swarm Optimization technique in order to increase the

algorithm convergence capability.

Some researchers solve this issue by restricting the knowledge sharing among the particles to a

limited number of particles instead of the whole swarm via using one of the most common

neighborhood topologies. The most commonly used topology in terms of research and

publications, is the local best approach. This approach decreases the algorithm's possibility of

being trapped into a local minimal solution since it increases the exploration capabilities of the

particle in the swarm through the reduction of the speed of the knowledge sharing among the

particles in the swarm.

In this approach, instead of learning from the global best particle within the whole swarm

particles, the particles start learning from the local best particle within its neighborhood. Figure

5.3 shows some of the most commonly used neighborhood topologies. It is actually very easy to

apply the Discrete Particle Swarm Optimization framework to this approach. The steps for

104

discretization remain the same except the part of evaluating the learning sets. The learning sets

could be modified as follows:

1. Determine the best particle in the local neighborhood. Then, choose it as the local best

solution to be used for the velocity evaluation.

2. 𝑆1 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑝𝑏𝑒𝑠𝑡, 𝑥𝑖)

3. 𝑆2 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑙𝑏𝑒𝑠𝑡, 𝑥𝑖)

However, the method by which the position is evaluated, is the same for all different approaches.

Figure 5.3: Neighboring topology [79].

Despite of the simplicity of applying a local neighborhood topology to the swarm, and the

advantages, that could be achieved out of using this approach, like increasing the exploration

capabilities of the particles within the swarm. However, it is better to use the global star

neighborhood topology to gain the advantage of the fast convergence meanwhile increasing the

exploration capabilities using SA technique with the metropolis mechanism and the concept of

the refresh gab.

105

 Chapter 6

 Results and Discussion

This chapter discusses the outcomes from both the simulation and the real experiment. Also, the

proposed algorithm parameters are precisely chosen using a suitable delicate method. Finally yet

importantly, the communication overhead and the overall throughput for the system are

evaluated.

6.1 Introduction

The simulation is implemented using MATLAB to prove the efficiency of the proposed hybrid

DPSO/SA algorithm in solving the minimal time dynamic task allocation problem in swarm

robotics. The specifications for the platform which is used in the simulation are as follows:

1. Intel core i7 processor 2.4 GHZ.

2. 8 GB RAM.

The results of the proposed algorithm are compared with both the SA algorithm and the DPSO

algorithm as heuristic algorithms and with the Hungarian algorithm as an exact solver. Fifteen

various swarm dimensions are used to compare between the algorithms' performance. Due to the

randomness in most of the meta-heuristic algorithms, they obtain a different solution every time

the algorithm runs. Thus, each swarm instance is replicated 50 times and the arithmetic mean is

calculated in order to ensure the stability of the results. The prime parameters that are used for

the comparisons are the quality of solution, the execution time of the algorithm, and the stability

of the algorithm. To ensure the fairness during the simulation among all the four algorithms, all

of them continue running until an equilibrium state is obtained.

6.2 Methodology

This thesis proposes a hybrid PSO/SA algorithm, which fuses the concept of SA algorithm to

overcome the PSO algorithm's imperfections. SA is used to promote the PSO's local search

capability. The hybrid algorithm not only possesses the pros of PSO and SA but also omits the

cons of both of them.

106

The basic concept of the DPSO algorithm is introduced in the main framework of the hybrid

PSO/SA algorithm. Thus, a finite number of initial particles' velocities and positions are

generated and they kept updated through iterations. Then, after a specific number of iterations,

the SA algorithm takes the global best solution and starts performing local search operations.

The SA continues processing repeatedly until the satisfaction of the termination condition.

The most significant properties of the proposed algorithm can be highlighted in the following

notes:

6.2.1 Initial population of DPSO

Since Meng, Zhang and Fan [80] clarified that it is better to raise the degree of randomness at the

beginning of the process to maintain the diversity of the population, thus the PSO/SA algorithm

starts with a randomly generated candidate solutions (particles).

6.2.2 Local searching ability of SA

In the hybrid PSO/SA algorithm, SA runs after an optimal solution is found by DPSO. As the

SA's temperature decreasing, the algorithm only searches within the neighborhood of the current

best solution. Then, when the new solution found by the algorithm is better than the previous

one, the algorithm would accept it without any conditions. However, if the new solution is worse

than the previous one, the algorithm will accept it with a certain probability. This process is

continued till the temperature of the algorithm declines under a certain temperature.

Hafiz and Abdennour [43] illustrated that unlike PSO, SA operates on a single solution. The

working solution is updated by performing a move (swapping of solution elements) in each

iteration. The reason for choosing SA specifically to combine it with the DPSO is that Simulated

Annealing technique is inherently discrete unlike the DPSO and it is interesting to study and

compare between the searching behaviors of two such different techniques.

6.2.3 DPSO/SA decentralization

The proposed algorithm is decentralized which means that neither a global knowledge, nor

messages‟ broadcast nor a multi-hop communication would ever be used. There is no central unit

107

to take care of the task allocation, and each individual in the swarm has to identify the task it

must perform via the communication with only their neighbors. This decentralization is essential

to avoid the restrictions that could result from the communication range limitations.

It is also essential to mention that, the simulation in this research is an offline simulation, so that

the robots and objects positions are predetermined prior to the simulation run. However, the real

experiment is performed online and the robots and objects positions and the population size

could change repeatedly during the experiment.

6.3 Parameters' Optimization

Since the parameters of the heuristic optimization techniques affect both the quality of solution

and the performance of the algorithm as declared by Shieh, Kuo and Chiang [19], they have to be

precisely chosen using a suitable delicate method. It has been demonstrated in [19] that the

efficiency of both the DPSO and the SA algorithms significantly depends on five main

parameters. These parameters are c1, c2, T0, λ, w.

The simulation in this research is done for 7, 15, 30, 40, 50, 60, 70, 80, 90, 100, 500, 600, 800,

1000, and 2000 swarm sizes. Each case of theses swarm sizes is replicated 50 times. The

parameter value, which obtains the highest performance, is chosen for the algorithm. Each one of

the five parameters is tested independently while keeping the other five parameters constant.

This process continues until a suitable value is found, then same procedures are replicated to find

proper values for the other five parameters.

First, to select the optimal value for the initial temperature, simulations are implemented with

different values for the initial temperature. In this step, the other parameters' values, which are

not optimized, yet should be kept constant.

6.3.1 Initial temperature 'T0'

Due to the change in the value of the initial temperature, the initial acceptance rate of the hybrid

algorithm is also affected. As shown in equation (6-1), this acceptance rate guarantees that the

algorithm searches for the solution globally in the whole search space, and helps the global best

and personal best solution to jump out of the local optimum solution. Thus, it is good to

108

sometimes accept worse solutions to avoid getting trapped into a local optimum solution, thereby

enhance the exploration property for the algorithm. This fixed acceptance probability that is used

for accepting new worse solutions are termed as the metropolis acceptance rule.

Time could be wasted in exploring new unnecessarily regions when a very high initial

temperature is selected. On the contrary, the algorithm becomes very slow and large number of

iterations is needed to find a suitable solution if a very low initial temperature is selected. Thus,

the time complexity increases. Therefore, the simulation is run with different values of initial

temperature ranging from 1 to 100 with an increase by 10 in the proceeding runs. The best

performance and quality of solutions are detected using an initial temperature of 100.

P1 = 𝐞
−∆𝐗𝐦𝐚𝐱

𝐓𝟎

Equation (6-1)

where

T0, initial temperature

∆Xmax , the difference between the fitness value of the worst solution and the initial

solution

P1, acceptance rate of the worst new solution

6.3.2 Cooling rate ' λ '

The acceptance rate close to the end of iterations is affected by the value of λ. If the value of λ is

very small close to the end of the iterations, the algorithm could get trapped into a local minima

and lose the ability of jumping out of this local minimum solution which may enforce us to rerun

the algorithm until reaching a reasonable global minima. This problem results in raising the time

complexity of the algorithm. Therefore, the simulation is run with different values of λ ranging

from 0.4 to 0.95 with an increase by 0.05 in the proceeding runs. The best performance and

quality of solution are detected using a cooling parameter value of 0.9.

109

6.3.3 Inertia weight 'w'

The momentum weight of the hybrid PSO/SA algorithm affects the amount of reference to a new

particle's solution in comparison with the reference to the old one. Thus, the larger the

momentum weight is, the larger effect of the old solution is considered. In the last few years,

researchers have observed that it is better to dynamically reduce the value of the inertial weight

as the iterations proceed. It is also found that a better performance and a better quality of solution

could be yielded from a maximum inertial weight of 0.9 and a minimum inertial weight of 0.4.

6.3.4 Acceleration constants 'c1, c2'

The parameters of learning factors, c1 and c2 affect the moving speed in the direction of the

global and personal best as notified by Wang and Zheng [56]. The larger the learning factors

are, the bigger steps the particles take towards best solutions locally and globally. Through

simulations and experiments, it is detected that better outcomes could be obtained by setting the

value of c1 to 2 and the value of c2 to 2.

To sum up, the parameter constants are chosen to be as follows:

SA's parameter:

1. T0 = 100.

2. λ = 0.95.

PSO's parameter:

1. c1=c2=2.

2. wmax = 0.9.

3. wmin = 0.4.

4. Population size=25.

5. Maximum number of iterations depends on the problem dimension.

110

6.4 Simulation Results and Comparisons

6.4.1 DPSO vs. SA

In our simulation, we first compare between DPSO and SA techniques. So, this comparison is

going to be presented in this section before extending our problem dimension to include an

increasing number of swarm sizes.

So, in this section only two study-cases are considered. Since we need to have at least more than

two robots in the environment to be considered as a swarm, Thus, in the first study-case, we

started with only 7 robots and 10 tasks as the smallest swarm size in our simulation. In such case,

only 7 tasks were allocated while the remaining 3 tasks were waiting in the waiting list. The

algorithm is executed periodically. Thus, if any robot finished its allocated task, left for

recharging or new tasks were explored which need to be allocated, the algorithm should calculate

a new allocation for the robots in the swarm. We start the simulation with 7 robots since we have

in the lab only 7 robots, so we considered it the minimum swarm size.

Then, we increased the swarm size gradually to test the algorithms' behaviors in different

problem dimensions. So, in the second study-case, we considered 10 robots and 20 tasks. Thus,

only 10 tasks were allocated at the beginning. The allocation for each particle in the swarm is

represented as a raw with a number of elements equals to the number of robots in the swarm and

the number, which is written in each cell, represents the task allocated to the corresponding

robot.

For example, let the task allocation be as shown in the second row of table 6.1. The first row is

just an identifier for the robot number to which the corresponding underneath task is allocated. In

this case, task 3 is allocated to robot 1, task 5 is allocated to robot 2, task 8 is allocated to robot 3,

task 2 is allocated to robot 4, task 9 is allocated to robot 5, task 4 is allocated to robot 6, and task

1 is allocated to robot 7. This allocation is corresponding to the first case study.

111

Table 6.1.Allocation solution for the first case study

r1 r2 r3 r4 r5 r6 r7

t3 t5 t8 t2 t9 t4 t1

Another example on the allocation corresponding to the second case study is as shown in table

6.2. 20 tasks are allocated to 10 robots. Therefore, task 6 is allocated to the robot 1, task 14 is

allocated to the robot 2, task 9 is allocated to the robot 3, task 11 is allocated to the robot 4, task

2 is allocated to the robot 5, task 19 is allocated to the robot 6, task 3 is allocated to the robot 7,

task 17 is allocated to the robot 8, task 8 is allocated to the robot 9, and task 5 is allocated to the

robot 10.

Table 6.2.Allocation solution for the second case study

r1 r2 r3 t4 r5 r6 r7 r8 r9 r10

t6 t14 t9 t11 t2 t19 t3 t17 t8 t5

In this simulation, tasks were displayed as yellow circles, while robots were represented as red

squares to be able to differentiate between tasks and robots. Allocations between robots and tasks

are addressed as a black line extended from each robot to its allocated task. Figure 6.1 and 6.2

show the best solution A* resulting after 500 iterations for both PSO and SA, respectively.

Figure 6.1 show that PSO gives a better allocation as each robot is assigned to its nearest task.

However, in figure 6.2, some robots select a far task rather than the nearest one.

Simulation results corresponding to the second case study are shown in figure 6.3 and 6.4 for

PSO and SA, respectively. If the distance between the robots and their corresponding tasks is

tracked in both cases, it could be easily explored that the distance traveled by robots in figure 6.3

is much smaller than the traveled distance in figure 6.4.

112

Figure 6.1: PSO solution resulting after 500 iterations in the first study case

Figure 6.2: SA solution resulting after 500 iterations in the first study case.

113

Figure 6.3: PSO solution resulting after 500 iterations in the second study case.

Figure 6.4: SA solution resulting after 500 iterations in the second study case.

114

A comparison about the MTDTA performance is made between PSO and SA. Both of them are

executed for 100, 200, 300, 400, and 500 iterations and the corresponding algorithm run time for

each case is also calculated.

Table 6.3 and 6.4 show the results from the first and second case studies, respectively. It can be

deduced from table 6.3 that the distance travelled using PSO is smaller than that of the SA in

almost all cases and the gap between the PSO‟s and SA‟s fitness kept increasing till reaching its

maximum value after 500 iterations. For example, the difference between the travelled distance

by the robots in PSO and SA after 100 iterations equals (207.9 cm - 165.4 cm= 42.5 cm).

However, the difference after 500 iterations equals (199.6 cm - 128.6 cm= 71 cm). Furthermore,

it can be shown that after 150 iterations, SA‟s fitness gets trapped in a local minimum at 199.6

cm and it never changes. However, PSO‟s fitness kept changing until reaching the global

minimum value at 128.6 cm.

Table 6.3: Simulation experiment data for the first case study

Optimization

technique

Number of

iterations

Algorithm

run time

Distance travelled

by robots

PSO

100 4.9 sec 165.4 cm

200 5.8 sec 157.7 cm

300 9.5 sec 153.5 cm

400 9.6 sec 143.2 cm

500 14.6 sec 128.6 cm

SA

100 14.3 sec 207.9 cm

200 18.9 sec 199.6 cm

300 18.9 sec 199.6 cm

400 24.1 sec 199.6 cm

500 23.8 sec 199.6 cm

115

By looking at table 6.4, it can be figured out that the PSO‟s travelled distance (419.3 cm) is

smaller than that of the SA (426.7 cm) for small number of iterations. However, when the

number of iterations increases above 250, the PSO‟s travelled distance which is (356.5 cm)

becomes larger than that of the SA which is (250.9 cm). Moreover, in this case study, the PSO‟s

fitness value gets trapped in a local minimum at 356.5 cm after 400 iterations, while the SA‟s

fitness value kept decreasing until reaching the global minimum solution at 250.9 cm.

Table 6.4: Simulation experiment data for the second case study

Optimization

technique

Number of

iterations

Algorithm run

time

Distance travelled

by robots

PSO

100 7 sec 431.9 cm

200 6.4 sec 419.3 cm

300 14.1 sec 411.8 cm

400 12.7 sec 356.5 cm

500 20.8 sec 356.5 cm

SA

100 19.1 sec 444.3 cm

200 27.5 sec 426.7 cm

300 25.3 sec 384.2 cm

400 32 sec 319.2 cm

500 31.6 sec 250.9 cm

In the first case study, it can also be seen from figure 6.5 that no matter how much we increase

the number of iterations, the cost function gives the same results after 200 iterations. From this

observation, it can be concluded that the algorithm based on the Simulated Annealing was

trapped into a local minimum. Whether, the algorithm based on the Particle Swarm Optimization

technique kept decreasing until it reached its global minimum after 500 iterations. So, it is better

to use the algorithm based on Particle Swarm Optimization for a small number of populations.

116

However, in the second case study, it can be seen from figure 6.6 that if we need a fast

performance, it is better to use Particle Swarm Optimization technique but it will only give a

local minimum solution. To have a global minimum solution, it is better to use Simulated

Annealing technique. However, the performance of the algorithm would be very slow.

Figure 6.5: PSO vs. SA performance for the first case study

Figure 6.6: PSO VS. SA performance for the second case study

To sum up, it can be observed by looking at figure 6.5 and 6.6 that it is always recommended to

use the PSO technique than the SA technique for a swarm with a small number of robots and

tasks (1st case study). However, if the swarm size is large (2nd case study), techniques‟

117

preference depends on the number of iterations. Thus, it is a compromise between a global

optimal solution that takes long time to be detected, and a good but not optimum solution that

could be found faster.

6.4.2 Comparison between the proposed hybrid algorithm vs. other techniques

Since the main objective of this work is to design a hybrid discretized algorithm combines both

Particle Swarm Optimization and Simulated Annealing techniques, it is essential to compare the

performance of the proposed algorithm with the other traditional algorithms. The proposed

hybrid DPSO/SA, DPSO, SA, and the Hungarian algorithms are implemented and executed to

test a suite of fifteen different swarm dimensions problems to see the effect of dimensionality on

the algorithm's performance.

For fair comparison, the problem instances are selected to be generated randomly for all different

problem dimensions. Also, all the simulations were carried out on the same platform (MATLAB

2016, Windows PC with Intel core i7 processor and 8GB RAM). In addition, each technique runs

50 times and each one of them is allowed to run for the same number of iterations in each

specific problem dimension, especially the Simulated Annealing and the hybrid DPSO/SA

techniques. Table 6.5 presents the outcomes acquired from applying each algorithm on the

various swarm dimensions. Each problem instance is executed for 50 times and the average is

evaluated.

In table 6.5, the comparison is made between the four algorithms; Hungarian, DPSO/SA, DPSO,

SA. The convergence time and the fitness values (distance travelled by robots in the swarm) are

evaluated in two columns for each one of these algorithms. From table 6.5, it is obvious that, as

expected, the proposed hybrid algorithm outperforms both the DPSO and SA algorithms in

almost all cases. Also, the convergence time for the proposed algorithm is always better than that

of the discrete PSO algorithm. However, it is clear that Simulated Annealing algorithm gives

better execution time than both the hybrid and the Discrete Particle Swarm Optimization

algorithm.

118

Table 6.5: Simulation results

Robots Tasks
Search

Space

Hungarian Hybrid DPSO SA

Cost

(cm)

Time

(sec)

Cost

(cm)

Time

(sec)

Cost

(cm)

Time

(sec)

Cost

(cm)

Time

(sec)

7 10 100 127.84 0.34 127.84 1.3 127.84 1.3 152.05 1.74

15 20 100 213.83 0.39 213.83 12.02 215.43 14.6 293.12 2.2

30 45 135 172 0.08 300 19.3 313 50 358 3.5

40 60 180 231 0.03 544 25.8 708 52 602 5.3

50 75 225 293 0.05 669 29.9 940 55 678 5.2

60 90 270 353.6 0.05 858 44.3 1882 55 977 7

70 105 315 414.3 0.04 1210 57.1 2866 60 1441 7

80 120 360 478.1 0.06 1362 69.7 3906 70 1990 7

90 135 405 541.6 0.07 1757 83.6 4952 90 2591 7

100 150 450 603.9 0.9 2438 105.2 6891 110 2766 7

500 1000 3000 2697 90 55368 182 659377 177 90328 24

600 900 2700 3581 120 63715 185.1 317352 193 82715 31.9

800 1200 3600 4794 330.7 125948 102.6 1064833 235 159669 34.5

1000 1500 4500 5921 520 223204 130.9 2138035 298 305243 37

2000 3000 9000 11819 1509 1191864 341 8722822 347 1351566 42

In this research, since the Hungarian algorithm gives us the exact solution for the problem, it is

used as a model to enable us to compare between the different algorithms. To make the results

more readable, the outcomes from all the algorithms are normalized, by dividing each

algorithms' cost values in all dimensions by the Hungarian algorithm cost values.

Then, the various swarm dimensions are classified into three categories in order to simplify the

comparisons between the algorithms, see table 6.6. In each category, we evaluate the geometrical

mean of the normalized fitness values and the convergence time for each one of the optimization

techniques.

Therefore, table 6.6 lists the time complexity and the fitness values for each algorithm. It has 8

columns corresponding to the fitness values and the time complexity for Hungarian, hybrid

DPSO/SA, DPSO, and SA, respectively. The best result for each instance is highlighted using

boldface. Also, the geometrical mean for each category is listed.

119

Table 6.6: Geometrical mean of different swarm sizes

Robots Tasks
Search

Space

Hungarian Hybrid DPSO SA

Cost

(cm)

Time

(sec)

Cost

(cm)

Time

(sec)

Cost

(cm)

Tim

(sec)

Cost

(cm)

Time

(sec)

7 10 100 127.84 0.34 1 1.3 1 1.3 1.2 1.74

15 20 100 213.83 0.39 1 12.02 1 14.6 1.4 2.2

30 45 135 172 0.08 1.7 19.3 1.8 50 2.1 3.5

40 60 180 231 0.03 2.4 25.8 3.1 52 2.6 5.3

50 75 225 293 0.05 2.3 29.9 3.2 55 2.3 5.2

Small swarm size geometrical mean 1.56 11.8 1.78 19.3 1.84 3.3

60 90 270 353.6 0.05 2.4 44.3 5.3 55 2.8 7

70 105 315 414.3 0.04 2.9 57.1 6.9 60 3.5 7

80 120 360 478.1 0.06 2.9 69.7 8.2 70 4.2 7

90 135 405 541.6 0.07 3.2 83.6 9.1 90 4.8 7

100 150 450 603.9 0.9 4 105.2 11.4 110 4.6 7

Medium swarm size geometrical mean 3 68.9 7.9 74.4 3.9 7

500 1000 3000 2697 90 20.5 182 244.5 177 33.5 24

600 900 2700 3581 120 17.8 185.1 88.6 193 23.1 31.9

800 1200 3600 4794 330.7 26.3 102.6 222.1 235 33.3 34.5

1000 1500 4500 5921 520 37.7 130.9 361.1 298 51.6 37

2000 3000 9000 11819 1509 100.8 341 738 347 114.4 42

Large swarm size geometrical mean 32.5 148 264 242 43.3 33.3

Geometrical mean 5.3675 49.4 15.5 70.4 6.7763 9.1

Thus, as can be seen for the small swarm sizes, the hybrid approach gives a better performance

than both the Simulated Annealing and DPSO algorithms. Also, the geometrical mean for the

Discrete Particle Swarm Optimization which equals 1.78 cm, is less than that of the Simulated

Annealing which gives geometrical mean of 1.84 cm.

In addition, for the medium swarm sizes, it is obvious that the hybrid approach gives a

geometrical mean of 3 which outperforms both the DPSO and Simulated Annealing outcomes.

Also, it is important to notice in this case that Simulated Annealing performs better than Discrete

Particle Swarm Optimization since the geometrical means for both SA and DPSO are 3.9 and

7.9, respectively.

120

Furthermore, for the large swarm sizes, the geometrical mean for the proposed hybrid algorithm

is 32.5 cm, which is also better than the geometrical mean for both SA and DPSO. Also, the table

indicates that, in this case the result of Simulated Annealing technique which is 43.3 is a way

better than the result of the Discrete Particle Swarm Optimization which is 264.

Finally, if we were to evaluate and compare all the algorithms in general for all the swarm sizes,

it is also very clear from the last row in table 6.6, that the proposed hybrid approach outperforms

all the other algorithms. We can see that, the geometrical means for the hybrid DPSO/SA,

Discrete Particle Swarm Optimization and Simulated Annealing are 5.4, 15.5 and 6.8,

respectively.

To sum up, we could say that it is always recommended to use the hybrid DPSO/SA approach

than the other two algorithms for almost all problem dimensions. However to be fair, we should

say that the Simulated Annealing execution time is better than the execution time of the proposed

hybrid approach.

Also, it could be noticed that regardless of how bad the Discrete Particle Swarm Optimization

performs when compared with the hybrid DPSO/SA and the Simulated Annealing approaches, it

is worth to mention that it performs better than the Simulated Annealing algorithm in case of

small swarm sizes. However, it never gives better results than the proposed hybrid approach even

in small problem dimensions.

Finally yet importantly, we could say that in most of the cases, the hybrid DPSO/SA provides the

best outcome followed by Simulated Annealing algorithm; whereas the Discrete Particle Swarm

Optimization performed rather inadequately.

Actually, these results are somehow identical to the earlier observations by Loiola [81], which

denotes that for the combinatorial discrete dynamic task allocation problems, the local searching

techniques like the Simulated Annealing algorithm, which could be considered as algorithms

with solution modification techniques, are more efficient, powerful and are likely to provide

better results than algorithms with population-based approaches, such as the Particle Swarm

121

Optimization and other social behavior meta-heuristic techniques. This conclusion can lead us to

refer to the superiority of our proposed memetic algorithm.

6.4.2.1 Performance analysis

The standard deviations for all the algorithms are also evaluated in order to measure the stability

of the outcomes of the hybrid DPSO/SA, PSO and SA approaches, see tables 6.7, 6.8 and 6.9.

6.4.2.1.1 SA

Table 6.7 shows the arithmetic mean, geometrical mean, and more important the standard

deviation after running the SA for 100 times.

Table 6.7: SA standard deviation

Swarm Size
Number

of tasks

Search

Space

Number of

iterations
CPU time

Arithmetic

Mean

Geometrical

Mean

Standard

Deviation

7 10 100 100 1.7 81.8 81.7 1.7889

15 20 100 200 2.2 206.4 204.1 33.5

30 45 135 300 3.5 673 668.5 87.8

40 60 180 400 5.3 1241 1236 122.1

50 75 225 400 5.2 2278 2277 242

60 90 270 400 7 3415 3405 308.1

70 105 315 500 7 5176 5171 261.6

80 120 360 500 7 6262 6261 156.5

90 135 405 2000 7 8553 8547 402

100 150 450 2500 7 10680 10660 597.5

500 750 2250 8000 24 48283 48283 2422

600 900 2700 9000 31.9 56999 56976 1807.1

800 1200 3600 10000 34.5 107640 107610 3333.8

1000 1500 4500 12000 37 168068 168000 5726.3

2000 3000 9000 15000 42 152605 152530 5727

It can be shown from the table that the standard deviation for the algorithm increases as the

problem dimension increases. This conclusion actually makes sense because the mean values

increase as the problem dimension increases and as a result the standard deviation increases too.

122

For example, when the swarm size equals 7 (small swarm size), it can be seen that the mean

equals 81 and the standard deviation is 1.8. However, when the problem dimension increases to

2000 robots, the mean increases to 152605 and as a result, the standard deviation increases to

5727.

6.4.2.1.2 DPSO

Table 6.8 shows the arithmetic mean, geometrical mean, and more important the standard

deviation after running the Discrete Particle Swarm Optimization for 100 times. It can also be

shown from the table that the standard deviation for the algorithm increases as the problem

dimension increases. For example, when the number of robots equals 7 (small swarm size), it can

be seen that the mean equals 109 and the standard deviation is 17.9. However, when the problem

dimension increases to 2000 robots (large swarm size), the mean increases to 878576 and as a

result, the standard deviation increases to 2903.3.

Table 6.8: DPSO standard deviation

Swarm Size
Number

of tasks

Search

Space
CPU time

Arithmetic

Mean

Geometrical

Mean

Standard

Deviation

7 10 100 1.3 109.1 107.8 17.8789

15 20 100 14.6 179.4000 178.2286 20.8231

30 45 135 50 362.3 360.2547 40.4531

40 60 180 52 531.9 528.4047 50.9358

50 75 225 55 2707.7 2706.2651 78.8278

60 90 270 55 3956.6 3947.7605 86.5927

70 105 315 60 6229.2 6223.9 97.2949

80 120 360 70 7419.8 7416.7 105.9184

90 135 405 90 9757.3 9752.4 157.9694

100 150 450 110 12090.8 12078.7 244.4212

500 750 2250 177 54693 54665 1648.6

600 900 2700 193 74418 74418 2781.3

800 1200 3600 235 136590 136580 2367

1000 1500 4500 298 218123 218120 2859

2000 3000 9000 347 878576 878580 2903.3

123

6.4.2.1.3 DPSO/SA

Similarly, table 6.9 shows the arithmetic mean, geometrical mean, and more important the

standard deviation after running the proposed hybrid DPSO/SA algorithm for 100 times. It can

be shown from the table that the standard deviation for the algorithm increases as the problem

dimension increases. For example, when the number of robots equals 7 (small swarm size), it can

be seen that the mean equals 80 and the standard deviation is 2.3. However, when the problem

dimension increases to 2000 robots (large swarm size), the mean increases to 150590 and as a

result, the standard deviation increases to 3339 too.

Table 6.9: DPSO/SA standard deviation

Swarm Size
Number

of tasks

Search

Space

Number of

iteration
CPU time

Arithmetic

Mean

Geometrical

Mean

Standard

Deviation

7 10 100 300 1.3 80.3 80.3 2.3

15 20 100 400 12.02 179.6 179.1 16.7

30 45 135 500 19.3 380.5 380.1 21.9

40 60 180 800 25.8 556.5 556.2 23.3

50 75 225 1000 29.9 726.5 725.1 61.5

60 90 270 1200 44.3 1028 1026 79.1

70 105 315 1500 57.1 1245 1243 76

80 120 360 1800 69.7 1430 1427 93.9

90 135 405 2000 83.6 1710 1707 130.8

100 150 450 2500 105.2 1941 1927 287.5

500 750 2250 8000 182 34879 34877 452.5

600 900 2700 9000 185.1 45746 45744 454.6

800 1200 3600 10000 102.6 97583 97579 1168

1000 1500 4500 12000 130.9 149520 149510 1990

2000 3000 9000 13000 341 150587 150590 3339

In figure 6.7, the X-axis represents the problem's dimension and the Y-axis represents the

standard deviation. In addition, the blue bars in this figure indicate the outcomes of the hybrid

DPSO/SA algorithm, the green bars represent the results out of applying the Discrete Particle

124

Swarm Optimization technique, and finally the red bars denote the standard deviation of the

Simulated Annealing algorithm.

Therefore, by comparing the standard deviations of these three algorithms together, it can be

shown that the standard deviation of the hybrid DPSO/SA algorithm is better than that of both

the Discrete Particle Swarm Optimization and the Simulated Annealing techniques for almost all

various problem dimensions. It is also obvious that the Discrete Particle Swarm Optimization

gives smaller standard deviation than Simulated Annealing technique despite that the SA

algorithm performs better than the DPSO especially in the large swarm sizes. This actually

proves that the Discrete Particle Swarm Optimization technique always suffers from getting

stuck into a local optimum solution but it seems more stable than the Simulated Annealing

algorithm.

Figure 6.7: Standard deviation of the DPSO/SA, SA, and DPSO.

125

Thus, the previous remarks indicate that the proposed algorithm is more stable than the

traditional Discrete Particle Swarm Optimization and Simulated Annealing algorithm.

6.4.2.2 Scalability analysis

Table 6.5 and 6.6 show the outputs from running the simulations for the DPSO, SA, PSO/SA and

the Hungarian algorithm for the various 15 dimensions of the dynamic task allocation problem. It

can be clearly deduced that the proposed hybrid technique obtains higher performance than the

other classical DPSO and SA in almost all problem sizes.

The DPSO gives a better quality of solutions than the SA annealing in lower dimensional

problems. However, in both medium swarm sizes which ranges from 50 to 100 problem

dimensions and large swarm sizes which ranges from 500 to 2000 problem dimensions, it could

be found that SA produces better performance than the DPSO as the Discrete Particle Swarm

Optimization suffers from the disability of jumping out of local optimal solution in large swarm

sizes. These results prove that the hybrid algorithm overcomes the disadvantages of DPSO,

which suffers from the local minima and the SA, which suffers from poor convergence

characteristics. In addition, we can conclude that the proposed algorithm is more scalable than

both DPSO and SA algorithms.

6.4.2.3 Stability analysis

In order to compare between the proposed algorithms in different swarms' dimensions, it is better

to run each experiment for a number of times and then compare the results to obtain more stable

and robust performances. The average value after the 100 runs and the standard deviation are

calculated. As can be seen from equation (6-2), this equation is used to calculate the average in

which the outputs from a finite number of runs are summed up and then divided by the number

of runs, which equals to 100 in our case. As shown in equation (6-3) the difference between the

solutions obtained from different runs is calculated which is called the variance. A small value of

variance indicates that the algorithm is more stable and the differences between solutions from

different runs are small. On the contrary, a large value of variance, gives an indication of the

instability of the algorithm, which in turns indicates that it could be extremely hard to implement

this algorithm in real-systems.

126

µ =
1

n
 𝑥𝑖

𝑛

𝑖=1

Equation (6-2)

where

xi: represents solution produced after an entire run

n: represents the number of runs

and,

µ: represents the average

𝜎 =
1

𝑛
 (𝑥𝑖 − µ)2

𝑛

𝑖=1

Equation (6-3)

where

σ: represents the standard deviation

Table 6.7, 6.8 and 6.9 show the statistics of the standard deviation values using the 3 algorithms

while testing 15 various swarm dimensions. In order to prove that a specific algorithm is good

enough to be used in a real-life system, the standard deviation should be taken into account along

with the algorithm performance and the solutions' average values. The lower the standard

deviation is, the more stability the algorithm provides.

As can be seen from these tables, the proposed PSO/SA algorithm almost always gives smaller

standard deviation values than both the traditional DPSO and SA in almost all dimensions which

means that the hybrid PSO/SA algorithm is more stable than the traditional DPSO and SA

algorithms.

127

However, the comparison between the DPSO and SA shows that, at small and medium swarm

sizes, the standard deviation for both SA and DPSO is comparable. On the contrary, in the large

swarm sizes, the DPSO algorithm has smaller standard deviation than the SA algorithm. The

reason behind the outstanding performance and stability of the proposed hybrid algorithm is that

the SA allows the PSO/SA to globally explore for better solutions and avoid getting stuck into a

local optimum solution.

6.4.2.4 Convergence analysis

Based on the simulation results shown in previous sections, the convergence characteristics of

the DPSO is usually better than that of the SA. Also, it is clearly obvious that the quality of

solution for the SA is relatively higher than the DPSO especially for large swarm dimensions.

The proposed PSO/SA algorithm enhances both the searching capabilities over the global search

space, which in turns prevents local optimum solutions, and increases the efficiency of finding

the solution in lower convergence time.

6.4.2.5 Solution efficiency

It is fair enough to select the same stopping condition while comparing the efficiencies for a

number of algorithms in finding a good quality solution. In this work, two conditions are chosen.

If any of these two conditions are met, the algorithm stops and this specific point could be

considered as a convergence state. These two conditions are either reaching the maximum

number of iteration or the constancy of the solution for a certain number of iterations, which

indicates that the algorithm saturates and the solution stays unchanged. However, as indicated

from table 6.6, different number of iterations are selected for different problem dimensions,

because the algorithm takes time to saturate in larger problem dimensions.

Also, it can be clearly deduced that the mean values of the solutions of the hybrid algorithm are

also better than both the DPSO and the SA results. The reason behind this is that almost all

solutions found by the PSO/SA algorithm are near the global minimum solution. Thus, we

assume that the proposed hybrid PSO/SA algorithm is more efficient than both the DPSO and

SA alone.

128

6.5 Simulation using Eliza-3 robots

We implemented two experimental scenarios with real robots using the proposed hybrid

algorithm. All of the experiment scenarios contain 4 Eliza-3 robots divided into two teams, a

searching team (red team) and a rescue team (blue team). The searching team inspects the arena

to find victims and then the rescue team transports them to the designated rescue zone.

In the first scenario, only one robot is employed as a searching robot and the other 3 robots are

applied to be used as rescuers (see figure 6.12). While, in the second scenario, two robots are

used as searching robots and the other two robots are used as rescuers (see figure 6.21). We used

the RGB LED in the robots to distinguish between the two different teams. Red color is used to

denote the searching team while the blue color is dedicated as a reference to the rescue team.

As can be shown in figure 6.16, if one of the robots from the searching team finds a victim, its

color should be turned into green and pause for a second then turns back to red color and starts

searching randomly again for more victims (see figure 6.17). In addition, if one of the rescuers

allocates itself to transport a specific victim, it starts moving towards its allocated victim. When

the robot reaches to the victim's location, the 8 green LEDs around its body should be turned on

and the robot starts transporting the victim to the rescue zone, (see figure 6.18 and 6.19). After

that, the rescuer turns into the sleep mode again until the searching team finds more victims and

so on.

6.5.1 The controller

In this thesis, we propose a distributed algorithm that could efficiently tackle the problem of

victims' allocation in a search and rescue robotic system and then transport victims to the rescue

zone. A distributed algorithm is a promising choice for such an application that might suffer

from lots of failures while running since the robots are most probably navigating in an unstable

and unstructured arena. A set of essential questions regarding the control level are commonly

showed up if a distributed system is decided to be designed. Most of these questions have been

already answered throughout chapter 3 and 4. These questions include:

1. How the robots interact with each other?

129

2. How could we control distributed systems?

3. How should tasks be allocated to the available robots?

The desired behavior of our proposed controller is to locate and transport the victims to the

rescue zone. The proposed distributed controller is designed to utilize only local sensing and

communication capabilities. The control logic executed independently by each Eliza-3 robot is

shown in figure 6.8. The searching robots inspect the environment for victims by performing a

random walk with their red LED illuminated (Searching state). As indicated before, when one of

the searching robots detects a victim, it turns on the green led, pauses for a second and continue

searching for other victims in the environment. While, the closest rescuer to the victim moves

towards the victim to grip it (Rescuing state) and turns on the green LEDs around the robot's

body. Then, the rescuer starts transporting its allocated victim to the rescue zone.

Figure 6.8: Controller's conceptual state diagram.

130

6.5.2 Elisa-3 robot

Eliza-3 robots are smart swarm robots with a very high cognition abilities inspired from swarm

of birds when they transport objects to their nest. Each individual robot owns central RGB LED,

8 green LEDs around the robot's body, IR emitters, 8 IR proximity sensors, 4 ground sensors, 3-

axis accelerometer, RF radio for communication (Nordic Semiconductor nRF24L01+), micro

USB connector for programming, debugging and charging, IR receiver, 2 DC motors, top light

diffuser, and selector. Eliza-3 robot is designed with capability of communicating with the other

Eliza-3 robots, navigating smoothly in the environment using 2 differential wheels, and

providing monitoring information for data analysis on an external computer through

communicating with the base station.

Thus, our system consists of small, simple, but fully autonomous individuals that have the ability

of sensing, making decisions, and acting in the environment. They work individually as well as

collaborate with other units. There is not any centralized planning and control. The global task

execution is realized through robot-robot and robot-environment interactions.

6.5.3 Experiment implementation

As mentioned before, each experiment scenario is defined by the number of rescue robots, and

the number of searching robots. Both the searching and the rescue robots have no prior

knowledge of the experiment configuration. In this research, the two experiments are

implemented to show that our proposed hybrid DPSO/SA algorithm provides sufficient

performance and displays robustness and adaptability characteristics.

6.5.3.1 First scenario

We conducted this scenario using three rescue robots and one searching robot. In this

experiment, the system successfully allocated the nearest rescue robot to the found victim and

the victim is transported to the destination rescue zone. In this scenario, possible incorrect

behaviors could be allocating more than one rescue robot to the same victim or allocating the far

robot to the victim instead of the nearest ones. However, in this experiment, nothing wrong

http://www.nordicsemi.com/kor/Products/2.4GHz-RF/nRF24L01P

131

happened and the nearest rescuer allocated itself successfully to the inspected victim in the

environment.

In this experimental scenario, all robots start from the same starting point to have the same

reference in the arena. Figure 6.9 shows that the first rescue robot starts from our reference point

(0,0). Then, the second robot starts from the same reference point (see figure 6.10) followed by

the third and fourth robots (see figure 6.11 and 6.12).

Figure 6.9: Starting 1st robot from the reference point (0,0)

Figure 6.10: Starting the 2nd robot from the reference point (0,0)

132

Figure 6.11: Starting the 3rd robot from the reference point (0,0)

Figure 6.12: Starting the 4th robot from the reference point (0,0)

Then, as shown from figure 6.13, 6.14, and 6.15, the red searching robot starts searching for

victims in the arena. Once, the searching robot finds a victim as can be seen from figure 6.16, it

turns on its green led, stops for a second and then turns into the red color again and keeps

moving to search for other victims (see figure 6.17). The victims in our experiment is

represented as small black sheets to be easily detected by the robots' ground sensors as the

ground sensors in the bottom side of the robots could differentiate between different colors

efficiently. It reads values from 512 to 1023 and the smaller the value the darker the surface.

Finally, as can be shown from figure 6.18, the closest rescuer to the detected victim starts

moving towards it and turns on the 8 green LEDs whenever it reaches to the victim's location.

133

After it pauses for a second, it continues moving to the rescue zone to leave the victim there (see

figure 6.19).

Figure 6.13: The searching robot searches for victims

Figure 6.14: Searching for victims

Figure 6.15: The rescue robot searches for victims

134

Figure 6.16: The rescue robot finds a victim

Figure 6.17: The rescue robot searches for more victims

Figure 6.18: The closest rescuer to the victim finds the victim

135

Figure 6.19: The rescuer transports the victim to the rescue zone

6.5.3.1.1 First scenario results

In this scenario, we have 1 searching robots and 3 rescuers. The cost of allocating the nearest

rescuer to the explored victim is 10cm (correct allocation). However, if we considered the wrong

allocations by allocating any of the other two far robots to the victim, they would cost us either

29cm or 34cm. Note that the cost here is the distance between the robot and the victim. By

looking carefully to these results, we can see that the wrong allocation costs around 3 times more

than the cost of the right allocation. Since, our experiment works properly and the correct

allocation achieved, it costs us only 10cm to allocate the robot to the victim. In addition, it is

worth to mention that the execution time for the algorithm was 0.15 sec given that we only have

4 robots in our system.

6.5.3.2 Second scenario

We conducted the second scenario using two rescue robots and two searching robots. In this

experiment, the system successfully allocated the nearest rescue robot to each of the founded

victims and the victims were transported to the nest. Same as in the first experiment, possible

incorrect behaviors in this experiment could be allocating the two rescue robots to the same

victim or allocating a far robot to a given victim instead the nearest one. In addition, in this

experiment, everything works properly and nothing went wrong, and the rescuers allocated

themselves in the right way to the detected victims in the arena.

136

Unlike the implementation of the first scenario, in this scenario only the rescue robots start from

a single starting point to have the same reference point in the arena. However, the searching

robots started from other points on the right and left sides of our reference point. Hence, we

added a small value to the x-axis of the starting point of the searching robots. Figure 6.20 shows

that the first rescue robot starts from our reference point (0,0). Then, the second robot starts from

the same reference point (see figure 6.21). As shown in figure 6.22, the rescue robots turned into

the sleep mode at two different random locations waiting for victims to be found by the

searching team.

Then, as can be seen from figure 6.23, the red searching robots start searching for victims in the

arena. Once, the searching robot on the right side finds a victim (see figure 6.24), it turns on its

green led, stops for a second and then turns on the red color again and keeps moving to search

for other victims (see figure 6.26).

Similarly, when the other searching robot on the left side finds a victim, it turns on its green led,

stops for a second and then turns on the red led again and continues searching for other victims

(see figure 6.25 and 6.26).

After that, as can be shown from figure 6.27, the rescuers start moving towards the closest

victims and turn on the 8 green LEDs whenever they reach to the victims' location. Therefore,

the rescuer on the right side moves to the right victim and the rescuer on the left moves towards

the left victim. Finally, the robots pause for a second on the victims' locations and then continue

moving to the rescue zone to leave the victims there (see figure 6.28).

Figure 6.20: The first rescuer starts from the reference point (0,0)

137

Figure 6.21: The second rescuer starts from the reference point (0,0)

Figure 6.22: The two rescuer turns into sleep mode at random location

Figure 6.23: The two searching robots start searching for victims randomly

138

Figure 6.24: The right searching robot finds a victim

Figure 6.25: The left searching robot finds a victim

Figure 6.26: The searching robot continue searching for more victims

139

Figure 6.27: The tow rescuers find the victims detected by the searching team

Figure 6.28: The rescue robots transport the victims to the rescue zone

6.5.3.2.1 Second scenario results

In this scenario, we have 2 searching robots and 2 rescuers. The cost of allocating the right

rescuer to the right victim is 8cm (correct allocation), while the cost of allocating the right

rescuer to the left victim is 24cm (wrong allocation). In addition, the cost of allocating the left

rescuer to the left victim is 12cm (correct allocation), while the cost of allocating the left rescuer

to the right victim is 25cm (wrong allocation). Therefore, the correct allocation demands a total

cost of (8+12=20cm). However, the wrong allocation requires an overall cost of around

(24+25=49cm). By considering this small experiment, we can see that the cost of the wrong

allocation is almost more than twice the cost of the correct allocation. Since, our experiment

140

works properly and the valid allocation achieved, it costs us only 20cm to allocate the robots to

the victims. In addition, it is worth to mention that similar to the first scenario, the execution time

for the algorithm was 0.18 sec given that we only have 4 robots in our system.

6.5.4 Communication overhead evaluation

In this research, each robot is equipped with a transceiver module, suitable for wireless

communication with ultra-low power consumption in the communication range of Radio

Frequency (RF). The chip is designed to operate in the ISM radio band (Industrial, Scientific and

Medical band basis) of 2.4 GHz. Thus, the robots communicate with each other using RF via a

base station connected to a computer via USB. Likewise, the transceiver module, embedded in

the robot, communicates via SPI (Serial Peripheral Interface) with the microcontroller on the

robot's board and transfers data to and from the PC via wireless communication, as shown in

figure 6.29.

Figure 6.29.Communication between the robots and PC.

Each robot is identified by a unique address in the swarm. This address is stored in a specific

memory address of the robot EEPROM. Every message coming from the base station has a

destination address, which should coincide with one of the addresses of the robot in the swarm.

 Up on reception of a message, the robot compares the destination address of the received

message with its own address to assess whether it is intended by this message. If so, the message

is saved and interpreted by the robot.

141

The master PC, which continuously polls the slave base station, controls the communication

between the robots and the base station. The polling is performed on regular basis, which is a

restriction on the maximum speed of communication. To overcome this limitation, an optimized

protocol was implemented wherein the packet sent from the PC to the base station contains

commands to four robots simultaneously. The base station is responsible of separating the

received packet into four individual packets of 16 bytes each, before sending them to the

indicated destination address. The same procedure is followed during the reception from the

robots. In this case, the base station is responsible for receiving the packets of 4 robots,

assembles them into a single message of 64 bytes, and sends this message to the computer. This

procedure allows higher throughput communication, making it 4 times faster.

The packets generated by the robots to be transferred to the base station are composed of 16

bytes, as shown in figure 6.30(a). The first byte is used to identify the validity of the packet, the

following two bytes represent the sender address of the robot, and the fourth byte represents the

message type. Up to 255 different types of messages may exist during the communication

process. The remaining 12 bytes contain the payload of the message, which are the actual data to

be sent.

The structure of the message sent by the base station to a robot is shown in figure 6.30(b). It is

similar to the structure of the message shown in figure 6.30(a), it also consists of 16 bytes. The

first byte defines the validity, which validates the authenticity of the message sent by the base

station when it is received by the robot. Byte 14 defines the type of message, used when there are

more than one type of messages, and the last two bytes contain the destination address of the

robot. The remaining 12 bytes contain the payload of the message to be received by the robot.

Figure 6.30. Overall structure of the message sent by robot ID to the RF base station.

(a) From robot to RF base station. (b) From RF base station to robot.

142

Packet format - PC to radio to robot

The 16 bytes packet format is shown below in figure 6.31 (the number in the parenthesis

expresses the bytes):

Figure 6.31: Structure of the message sent by the RF base station to robot ID

Packet format - robot to radio to PC

The robot sends back to the base-station information about all its sensors every time it receives a

command; this is accomplished by using the "ack packet" feature of the radio module. Each

"ack" is 16 bytes length as shown in figure 6.32 and is marked with an ID that is used to know

which information the robot is currently transferring.

Figure 6.32: Structure of the message sent by robot ID to the RF base station.

Considering each packet received from the base station, the PC takes the four addresses and the

allocated tasks' information and composes a new package of 16 bytes. The first byte of this

143

package is the validity flag of the package to be verified by the robot upon reception, the 12

following bytes represent the address and the allocated tasks' information received, the

fourteenth byte is a sending signal enabler and the remaining two bytes contain the address of the

target robot. This package is replicated four times using four distinct robot addresses to compose

the message of 64 bytes to be sent to the base station to be transmitted to the destination

addresses. Thus, the same information (robot ID and task) is transmitted to four robots at a time

until all the robots of the swarm are encompassed.

The enabling signal generated and sent by the PC to robots of the swarm has the function of

managing the process of packet transmission from the robots to the PC. This signal enables the

transmission to a group of four robots to transmit at a time. Note that the transmission time for a

group of 4 robots depends on the total number of robots that compose the swarm. This

synchronization trick is an alternative to reduce the packet traffic, thus decreasing the chances of

packages being lost due to limited buffer size at the base station.

In the developed algorithm, the payload of the message generated by the robot and sent to the

base station consists solely of a byte that corresponds to the task currently allocated to this robot.

In order to compose the necessary information to be sent to the remaining robots of the swarm, a

robot includes its RFID. Thus, the information to be transferred to the robots has three bytes: two

bytes to identify the robot and one byte to identify the allocated task. The packet composition

during the communication between the robots is shown in figure 6.33.

Figure 6.33: Packet format of the messages from and to the robots.

144

When the base station detects the existence of new messages in the buffer, the packet is formed

of 64 bytes each, containing four messages. This packet is sent to a computer that interprets the

message contents, identifying the payload of each of the composed messages. Then, the task

informed in the payload of each of the four messages received and the two bytes identifying the

robot are extracted to form a new message to be sent a way to the robots. Thus, the new

generated message contains as a payload, the necessary information (NI) included in the four

messages received by the base station. The content of the message thus composed is then

replicated into four new messages, each one destined to a different target address. The four

messages generated form a packet to be routed back to the base station by computer. Upon

reception, the base station separates its content into four messages and sends them away to the

identified robots.

6.5.4.1 Transmission and reception overhead

Since our swarm system depends on a wireless communication, we have to calculate the

communication overheads in both the transmitter and receiver sides. In this project the

transmitter is the Atmel 2560 microcontroller connected with the RF radio for communication

(Nordic Semiconductor nRF24L01+), while the receiver is the base station which is connected to

the pc through USB connection.

This system is developed using Atmel 2560 microcontroller to which a wireless transceiver

called Nrf24L01 is connected. Atmel 2560 microcontroller is programmed via the AVR studio.

The nrf24l01 is connected to the microcontroller and communicates with it via SPI pins, namely

MOSI, MISO, SCK and 2 GPIOs for the ce and csn pins. Those are pins necessary for the correct

operation of the nrf24l01. Libraries called SPI.h, nRF24L01.h, and mirf.h are used to handle the

initializations and configurations of the registers in the nrf24l01 and the SPI related parameters

in the system. In addition, SPI.c, nRF24L01.c, and mirf.c are dedicated to handle the

implementation for these modules.

6.5.4.2 Real time analysis

This wireless system needs to be a hard real-time system, because the robots need to transmit

messages containing their coordinates, all their internal states and sensors values. Then, each

http://www.atmel.com/dyn/products/product_card.asp?part_id=3632
http://www.nordicsemi.com/kor/Products/2.4GHz-RF/nRF24L01P
http://www.atmel.com/dyn/products/product_card.asp?part_id=3632
http://www.atmel.com/dyn/products/product_card.asp?part_id=3632

145

robot receives the same message from the other robots. Since the robots continuously changing

their positions and hence all their internal states change, so they have to send and receive

messages in frequent basis.

Moreover, the robots must send their messages within a specific period. It has to be deterministic

and meet all of its deadlines as unexpected behavior or delay of the transmission during the

mission cannot be tolerated. The reason why the deadlines are hard is that failure to meet just one

deadline would mean the delay or failure of the transmission of robot's information including the

proximity IR and ground sensors, which may cause the robot to fall from a cliff, collide with

obstacles, or even has wrong information about the other robots' coordinates. Therefore, missing

deadlines cannot be tolerated because it may cause the failure of our entire system and hence, the

hard real-time constraints are essential.

6.5.4.3 Transmission and reception instructions

Since the Atmel microcontroller runs at a clock = 8 MHz, therefore each instruction takes 1 / (8*

10^6), which is equal to 125 ns.

As mentioned above, the libraries used in this program are SPI.h, nRF24L01.h, and mirf.h to

support the communication between the Atmel microcontroller and the nrf24l01. The SPI.h

library sets the SPI clock by default to SYSCLK/4. This means that the SPI_CLOCK now runs at

8/4 = 2 MHz and hence is able to transmit one bit every 0.5 us. In our system, we send the

message byte by byte. This means that one byte could be transmitted over SPI within a total time

of 4 us. Table 6.10 and 6.11 show a list of the tasks in the system with the detailed instructions

and timings of each one.

6.5.4.4 Transmission side analysis

In the transmission side, the distance from the Atmel microcontroller on the robot's board to the

radio frequency module is not large, therefore the delay introduced from the wires connecting

them is negligible.

146

The default and most reliable air data rate for the nrf24l01 is 2 Mbps. So, to transmit the 8 bits of

the char, it would take 8/(2*10^6) = 4 us.

Table 6.10 shows the essential transmission side instructions and their timings to calculate the

total communication overhead in the transmission side.

Table 6.10: Transmission communication overhead

Instruction Time

Check for the data readiness 125 ns

16 commands for updating Ackpayload 2 us

Sending command (write payload) 125 ns

Delay due to transmission of a char between

the microcontroller and the nrf24L01 via SPI.
4 us

Air data rate 4 us

Total 10.25 us

6.5.4.5 Receiver side analysis

The usb_receive(RX_buffer, 16) instruction in the receiver side checks whether the RF channel

contains data ready to be read. If data is available, the nrf24l01, if in RX mode, can read it.

Table 6.11 shows the essential receiver side instructions and their timings to calculate the total

communication overhead in the receiver side.

Table 6.11: Reception communication overhead

Instruction Time

Check if there is data to be read 125 ns

Read the receiving data 125 ns

8 commands for updating sensor variables 1 us

Delay due to the reception of a char between

the microcontroller and the nrf24L01 via SPI.
4 us

Air data rate 4 us

Total 9.25 us

147

Therefore, it can be concluded that the system‟s total worst communication overhead taken to

transmit data from the robot and receive it in the base station = 9.25 us + 10.25 us = 19.5 us.

This time considers sending just one byte since the SPI sends byte by byte. However, the base

station could receive up to 4 messages at the same time in which each message consists of 16

bytes. Thus, total communication time for sending 4 messages from 4 different robots and

receiving them at the base station simultaneously = 16 * 4 * 19.5 us = 1248 us = 1.25 ms.

Since we have two ways communication, so same calculation should be applied for sending the

data from the base station and receiving it via 4 different robots simultaneously. Therefore, The

overall communication overhead = 2* 1.25 ms = 2.5 ms.

Finally, it is worth noting that the assumption that each instruction on the Atmel microcontroller

takes 125 ns is not very accurate. This is because the instructions we write on the AVR studio

represent more than one instruction in assembly, hence one instruction can be in fact split into

perhaps 2 or three instructions which in turn each takes 125 ns, so the delay would be larger than

the one which is calculated. However, since the microcontroller runs at a clock as fast as 8 MHz,

the time taken to execute one instructions is quite small, which means that even if the actual time

per instruction was four or five times more, the increase would still be in the order of

nanoseconds so the overall system would still meet its deadline.

To sum up, the entire communication overheads including the transmission and reception on the

robots and the base station happen within 2.5ms. Since, each message from a single robot is 16

bytes, thus the throughput is 46 bytes each 2.5 millisecond.

148

 Chapter 7

 Conclusion and Future Work

In this chapter, both the conclusion about the work that is done in this research and the future

work that could be carried out to extend and enhance our research in the future are addressed.

7.1 Conclusion

In this thesis, a mathematical model for the dynamic task allocation problem is formulated for a

swarm of homogeneous robots using linear integer programming. The task allocation decision

process is carried out independently by each robot in the swarm using a clear and straightforward

procedure to accomplish the whole tasks in a minimal time.

In addition, an efficient and applicable framework based on a probabilistic velocity

representation is implemented to discretize the Particle Swarm Optimization technique in order

to find solution to the dynamic task allocation problem, which is a discrete combinatorial

problem. All the substantial efforts and improvements that have been discovered through years

of working on developing the continuous version of the Particle Swarm Optimization technique

are retained and discrete PSO just builds the new framework over these original efforts.

In addition, two case-studies with different problem dimensions are simulated to compare

between a local searching technique (Simulated Annealing technique) and a global searching

technique with parallel population based structure (Particle Swarm Optimization technique). The

comparison is done in terms of both the quality of solution and the time complexity of the

algorithm. Basically, we did this simulation to highlights the pros and cons of both PSO and SA

and hence develop a more efficient, robust and scalable algorithm.

This simulation experiments prove that the Particle Swarm Optimization has a better

convergence characteristics due to its parallel structure. However, it suffers from the issue of

getting trapped into a local optimal solution and it loses the ability to reach the global optimal

solution.

149

On the other hand, the results also show that the Simulated Annealing algorithm provides us with

a better-quality solution due to the use of the metropolis mechanism, which determines whether

to accept some worse solutions or not using a specific probability function. This mechanism

enables the algorithm to jump out of any local optimal solution towards the global optimal

solution and hence finds better quality solution. However, it is worth to mention that this

algorithm suffers from bad convergence characteristics.

Thus, a novel flexible and simple hybrid algorithm combining both DPSO and SA optimization

technique is proposed to find solutions to the cons of both DPSO and SA. Actually, this

algorithm provides us with superior quality solutions with small and stable convergence time

because it utilizes the probabilistic jumping property of the SA to escape from local minimum

solutions, and to raise the particle's diversity. Thus, the DPSO/SA algorithm stretches the search

scope of the swarm to new unexplored areas, and promotes its global searching ability.

In the novel hybrid DPSO/SA algorithm, every particle gains experience from both its own best

solution and the global best solution. The inertial weigh and the acceleration constants c1 and c2

are tuned to control both the cognitive and social learning process via enhancing the performance

of the proposed algorithm. Also, a restart approach is provided to solve the stagnation problem in

the proposed algorithm.

Moreover, simulation scenarios are extended to a suite of 15 different swarm dimensions in order

to confirm the efficiency of the proposed algorithm through comparing it with both SA and

DPSO. In these extended simulation instances, the Hungarian algorithm which provides us with

the exact solutions is used as a model to normalize the outcomes from all the three optimization

techniques. Also, the algorithms' results are classified into 3 different categories, small swarm

size, medium swarm size and large swarm size to observe the algorithms' behavior in different

swarm sizes.

The simulation results provide an outstanding performance for the hybrid algorithm in almost all

problem dimensions. It significantly outperforms both the traditional Particle Swarm

Optimization technique and the Simulated Annealing algorithm due to its simplicity, stability,

ruggedness, high quality solutions, raised computational efficiency and stable convergence

150

characteristics. It is also worth to mention that, the proposed algorithm performance is closely

followed by the SA algorithm, which provides promising execution time results.

Moreover, it is pertinent to mention that the local searching approaches most probably provide a

better-quality solution than the global meta-heuristic techniques in the combinatorial discrete

problems. However, combining both the solution constructive techniques and the local searching

techniques as a single unit is proven to be very effective and is found to be more successful

compared with the traditional well-known local searching techniques.

Finally, we implement the proposed hybrid algorithm in a real system using 4 Eliza-3 robots.

After a chain of experiments' runs, the system achieves a stable performance and performs all

tasks efficiently.

Also, these experimental scenarios are mapped into a real application (human rescuing

application) which could be applied in a semi-destroyed site after a disaster like an earthquake

happened. In such situation, it is dangerous for human to get inside this site in an attempt to

rescue victims. So, we studied a scenario in which we could deploy a team of autonomous robots

to rescue those victims without the need for human operators' intervention.

Finally yet importantly, the communication overhead is evaluated in both transmission side and

receiver side and the throughput of the system is calculated to be 46 bytes each 2.5 millisecond.

7.2 Future Work

The focus in this research is upon the problems, which include only single-robot tasks.

Therefore, we could extend this work by taking into consideration two-robot tasks or more.

Actually, tightly coupled tasks add some sort of complexity to the problem whenever it is taken

into account. For example, it is more challenging to find a suitable allocation for tasks that need

the cooperation of at least two robots in order to carry out the task concurrently. The resulting

complexity is due to the environmental temporal and spatial constraints. Also, in this case, the

task assignment complexity rises exponentially with growing the number of task's types. So,

developing efficient approaches to deal with such complex problem could be a remarkable

contribution in the future.

151

In addition, due to our limited budget, we implement our algorithm using only a set of

homogeneous robots called Elisa-3 robots. So, these experiments could be extended in the future

to include heterogeneous robots, which of course would increase the complexity of the problem.

In this case, the mathematical model of the problem needs to be reformulated and the

optimization technique should be modified to suite the new problem's formulation and

constrains.

Also, robots with more sophisticated sensing capabilities like camera, laser and ultrasonic could

be used in the future. For example, e-puck robot could be involved which owns microphone,

camera, ultrasonic, optical sensor and accelerometer. All these different kind of sensors could be

utilized to raise the accuracy of the odometry data through applying the concept of sensor

diffusion.

Finally, robots' congestion could be taken into account in the future in order to help the robots to

avoid jammed locations in the environment and hence increase the efficiency and robustness of

the algorithm.

152

 References

[1]. Agarwal. T., “History of Robotics, Types and Latest Applicatios List of

Robots,” ElProCus - Electronic Projects for Engineering Students, 29-Mar-2016.

[Online]. Available: https://www.elprocus.com/robots-types-applications/. [Accessed: 25-

May-2017].

[2]. N.A.S.A. Administrator, “The ATHLETE Rover,” NASA, 29-Oct-2015. [Online].

Available : https : // www. nasa.gov/ multimedia/ imagegallery/ image_feature_748.html.

[Accessed: 30-Jul-2017].

[3]. Jones, J., "Robots at the tipping point: the road to iRobot Roomba", IEEE Robotics &

Automation Magazine 13 (1) (2006) 76-78.

[4]. Ranch. R., “Are You a Tesla Fan?,” Democratic Underground. [Online]. Available:

https://www.democraticunderground.com/1002901 9840. [Accessed: 25-May-2017].

[5]. Atherton, K. D., "unmanned ground vehicles", Popular Science, 2017. [Online].

Available: http://www.popsci.com/tags/unmanned-ground-vehicles. [Accessed: 20- Aug-

2017].

[6]. Kimball, D.G., “Arms Control Today,” U.S. Prepares to Arm Italian Drones | Arms

Control Association. [Online]. Available: https://www.armscontrol.org/ACT/2015_12/

News-Briefs/US-Prepares-to-Arm-Italian-Drones. [Accessed: 30-Jul-2017].

[7]. Navarro, I. and Matía, F., "An introduction to swarm robotics," ISRN Robotics (2013) 1–

10.

[8]. Zhang, Y. and Liu, S., "Survey of multi-robot task allocation," CAAI Transactions on

Intelligent Systems 3 (2) (2008) 115–120.

[9]. Stormont, D.P., "Autonomous rescue robot swarms for first responders", Proceedings of

the 2005 IEEE International Conference on Computational Intelligence for Homeland

Security and Personal Safety, Orlando, FL, USA, 2005, pp. 151-157.

[10]. Grady, R.O., Pinciroli, C., Grob, R., Christensen, A., Mondada, F., Bonani, M. and

Darigo, M., "Swarm-bots to the rescue", Advances in Artificial Life, Darwin Meets von

Neumann, Berlin Heidelberg, 2011, pp. 165-172.

153

[11]. Jennings, J.S., Whelan, G. and Evans, W.F., "Cooperative search and rescue with a team

of mobile robots." Advanced Robotics, 1997. ICAR'97. Proceedings., 8th International

Conference on. IEEE, Monterey, CA, USA, USA, 1997, pp. 193-200.

[12]. Keshmiri, S. and Payandeh, S., "Multi-robot, dynamic task allocation: a case

study", Intelligent Service Robotics 6 (3) (2013) 137-154.

[13]. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M. and Dorigo, M., "Self-organized task

allocation to sequentially interdependent tasks in swarm robotics", Autonomous Agents

and Multi-Agent Systems 28 (1) (2012) 101-125.

[14]. Liu, C. and Kroll, A., "Mimetic algorithms for optimal task allocation in multi-robot

systems for inspection problems with cooperative tasks", Soft Computing 19 (3) (2014)

567-584.

[15]. Nedjah, N., Mendonça, R. and Mourelle, L., "PSO-based Distributed Algorithm for

Dynamic Task Allocation in a Robotic Swarm", Procedia Computer Science, Vol. 51,

2015, pp. 326-335.

[16]. Mathias de Mendonça, R., Nedjah, N. and de Macedo Mourelle, L., "Efficient distributed

algorithm of dynamic task assignment for swarm robotics", Neurocomputing 172 (2016)

345-355.

[17]. Liu, L., Michael, N. and Shell, D., "Communication constrained task allocation with

optimized local task swaps", Autonomous Robots 39 (3) (2015) 429-444.

[18]. Liu, H., Zhang, P., Hu, B. and Moore, P., "A novel approach to task assignment in a

cooperative multi-agent design system", Applied Intelligence 43 (1) (2015) 162-175.

[19]. Shieh, H., Kuo, C. and Chiang, C., "Modified particle swarm optimization algorithm with

simulated annealing behavior and its numerical verification", Applied Mathematics and

Computation 218 (8) (2011) 4365-4383.

[20]. Tang, F. and Parker, L.E., "Automated synthesis of multi-robot task solutions through

software reconfiguration", in IEEE International Conference, Robotics and Automation

and ICRA, Barcelona, Spain, 2005, pp. 1501-1508.

[21]. Guerrero, J. and Oliver, G., "Multi-robot task allocation strategies using auction-like

mechanisms", in Artificial Intelligence Research and Development (2003) 111-122.

154

[22]. Zhang, K., Collins, E. and Shi, D., "Centralized and distributed task allocation in multi-

robot teams via a stochastic clustering auction", ACM Transactions on Autonomous and

Adaptive Systems 7 (2) (2012) 1-22.

[23]. Nagarajan, T. and Thondiyath, A., "An algorithm for cooperative task allocation in

scalable, constrained multiple robot systems", Intelligent Service Robotics 7 (4) (2014)

221-233.

[24]. Krieger, M., Billeter, J. and Keller, L., "Ant-like task allocation and recruitment in

cooperative robots", Nature 406 (2000) 992-995.

[25]. Momen, S. and Sharkey, A. J.C., "An ant-like task allocation model for a swarm of

heterogeneous robots", in Swarm Intelligence Algorithms and Applications Symposium

(2009) 31-38.

[26]. Tsalatsanis, A., Yalcin, A. and Valavanis, K.P., "Dynamic Task Allocation in

Cooperative Robot Teams", International Journal of Advanced Robotic Systems (2009)

1.

[27]. Gigliotta, O., Mirolli, M. and Nolfi, S., "Communication basesd dynamic role allocation

in a group of homogeneous robots", Natural Computing 13 (3) (2014) 391-402.

[28]. Zhang, D., Xie, G., Yu, J. and Wang, L., "Adaptive task assignment for multiple mobile

robots via swarm intelligence approach", Robotics and Autonomous Systems 55 (7)

(2007) 572-588.

[29]. Gerkey, B., "A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot

Systems", The International Journal of Robotics Research 23 (9) (2004) 939-954.

[30]. Campo, A. and Dorigo, M., "Efficient multi-foraging in swarm robotics", in Advances in

artificial, vol 4648. Springer, Berlin, Heidelberg, 2007, pp. 696-705.

[31]. Dasgupta, P., "Multi-Robot Task Allocation for Performing Cooperative Foraging Tasks

in an Initially Unknown Environment", in Innovations in Defence Support Systems -2,

Springer, Berlin Heidelberg (2011) 5-20.

[32]. Guha, S. and Khuller, S., “Greedy Strikes Back: Improved Facility Location

Algorithms,” Journal of Algorithms 31 (1) (1999) 228–248.

155

[33]. Karunakaran, D., Mei, Y., Chen, G. and Zhang, M., “Evolving dispatching rules for

dynamic Job shop scheduling with uncertain processing times”, IEEE Congress on

Evolutionary Computation (CEC) (2017).

[34]. Hoffman, K.L., Padberg, M. and Rinaldi, G., "Traveling salesman

problem", Encyclopedia of operations research and management science , Springer US

(2013) 1573-1578.

[35]. Östergård, P.R., “A fast algorithm for the maximum clique problem,” Discrete Applied

Mathematics 120 (1-3) (2002) 197–207.

[36]. Faroe, O., Pisinger, D. and Zachariasen, M., “Guided Local Search for the Three-

Dimensional Bin-Packing Problem”, INFORMS Journal on Computing 15 (3) (2003)

267–283.

[37]. Talbi, E.G. and Bessière, P., “A parallel genetic algorithm for the graph partitioning

problem,” Proceedings of the 5th international conference on Supercomputing - ICS, New

York, NY, USA, 1991, pp. 312-320.

[38]. Benlic, U. and Hao, J., "Breakout local search for the quadratic assignment

problem", Applied Mathematics and Computation 219 (9) (2013) 4800-4815.

[39]. Benlic, U. and Hao, J., "Memetic search for the quadratic assignment problem", Expert

Systems with Applications 42 (1) (2015) 584-595.

[40]. Mangat, V., "Survey on particle swarm optimization based clustering analysis", Swarm

and evolutionary computation, Springer Berlin Heidelberg 7269 (2012) 301-309.

[41]. Kulkarni, R. and Venayagamoorthy, G., "Particle Swarm Optimization in Wireless-

Sensor Networks: A Brief Survey", IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews) 41 (2) (2011) 262-267.

[42]. AlRashidi, M.R. and El-Hawary, M.E., "A survey of particle swarm optimization

applications in electric power systems", IEEE Transactions on Evolutionary Computation

13 (4) (2009) 913-918.

[43]. Hafiz, F. and Abdennour, A., "Particle Swarm Algorithm variants for the Quadratic

Assignment Problems - A probabilistic learning approach", Expert Systems with

Applications 44 (2016) 413-431.

156

[44]. Menhas, M., Wang, L., Fei, M. and Ma, C., "Coordinated controller tuning of a boiler

turbine unit with new binary particle swarm optimization algorithm", International

Journal of Automation and Computing 8 (2) (2011) 185-192.

[45]. Shen, M., Zhan, Z., Chen, W., Gong, Y., Zhang, J. and Li, Y., "Bi-Velocity Discrete

Particle Swarm Optimization and Its Application to Multicast Routing Problem in

Communication Networks", IEEE Transactions on Industrial Electronics 61 (12) (2014)

7141-7151.

[46]. Wang, L., Wang, X., Fu, J. and Zhen, L., "A Novel Probability Binary Particle Swarm

Optimization Algorithm and Its Application", Journal of Software 3 (9) (2008).

[47]. Liu, B., Wang, L. and Jin, Y., "An Effective PSO-Based Memetic Algorithm for Flow

Shop Scheduling", IEEE Transactions on Systems, Man and Cybernetics, Part B

(Cybernetics) 37 (1) (2007) 18-27.

[48]. Hu, X., Eberhart, R.C. and Shi, Y., "Swarm intelligence for permutation optimization: a

case study of n-queens problem", In Swarm intelligence symposium, SIS'03, Proceedings

of the 2003 IEEE, Indianapolis, IN, USA, USA, 2003, pp. 243-246.

[49]. Correa, E.S., Freitas, A.A. and Johnson, C.G., "A new discrete particle swarm algorithm

applied to attribute selection in a bioinformatics data set", Proceedings of the 8th annual

conference on Genetic and evolutionary computation, ACM, New York, NY, USA, 2006,

pp. 35-42.

[50]. Neethling, M. and Engelbrecht, A.P., "Determining RNA secondary structure using set-

based particle swarm optimization", Evolutionary Computation, CEC, Congress on. IEEE

(2006) 1670-1677.

[51]. Clerc, M., "Discrete particle swarm optimization, illustrated by the traveling salesman

problem", New optimization techniques in engineering, Springer (2004) 219-239.

[52]. Langeveld, J. and Engelbrecht, A.P., "A generic set-based particle swarm optimization

algorithm." International conference on swarm intelligence, ICSI, Cergy, France, 2011,

pp. 1-10.

[53]. Langeveld, J. and Engelbrecht, A., "Set-based particle swarm optimization applied to the

multidimensional knapsack problem", Swarm Intelligence 6 (4) (2012) 297-342.

157

[54]. Wang, D. and Liu, L., "Hybrid particle swarm optimization for solving resource-

constrained FMS", Progress in Natural Science 18 (9) (2008) 1179-1183.

[55]. Wang, L. and Zheng, D., "An effective hybrid optimization strategy for job-shop

scheduling problems", Computers & Operations Research 28 (6) (2001) 585-596.

[56]. Hu, X., “PSO Tutorial,” Particle Swarm Optimization: Tutorial. [Online]. Available:

http://www. swarmintelligence.org/tutorials.php. [Accessed: 14- Mar- 2017].

[57]. Gao, Y., Du, W. and Yan, G., "Selectively-informed particle swarm optimization",

Scientific article (2015). [Online]. Available: https://www.nature.com/articles/srep09295.

[Accessed: 21- Aug- 2017].

[58]. Geltman, K.E., “Simulated Annealing,”. [Online]. Available: http://katrinaeg.com/

simulated-annealing.html. [Accessed: 14- Mar- 2017].

[59]. Carr. R., “Simulated Annealing,” . [Online]. Available: http://mathworld.wolfram.com/

SimulatedAnnealing.html. [Accessed: 14- Mar- 2017].

[60]. Busetti, F., "Simulated annealing overview". [Online]. Available: http://www.

aiinfinance. com/saweb.pdf. [Accessed: 21- Aug- 2017].

[61]. Deepa, S., Nagarajan, D. and Palanikumar, R., "Solving Assignment Problem using

MATLAB", International Journal of Research Instinct 3 (2) (2016) 396-401.

[62]. Kuhn, H., "Variants of the hungarian method for assignment problems", Naval Research

Logistics Quarterly 3 (4) (1956) 253-258.

[63]. Kuhn, H., "The Hungarian method for the assignment problem", Naval Research

Logistics Quarterly 2 (1-2) (1955) 83-97.

[64]. Munkres, J., "Algorithms for the Assignment and Transportation Problems", Journal of

the Society for Industrial and Applied Mathematics 5 (1) (1957) 32-38.

[65]. Newton, D., "Learning Big O Notation With O(n) Complexity - DZone

Performance", dzone.com (2017). [Online]. Available:

https://dzone.com/articles/learning-big-o-notation-with-on-complexity. [Accessed: 21-

Aug- 2017].

[66]. Mills-Tettey, G.A., Stentz, A. and Dias, M.B., "The dynamic hungarian algorithm for the

assignment problem with changing costs", (2007).

http://www.aiinfinance.com/saweb.pdf
http://www.aiinfinance.com/saweb.pdf
http://www.aiinfinance.com/saweb.pdf

158

[67]. GCtronics, “Elisa-3,” [Online]. Available: http://www.gctronic. com/doc/index.

php/Elisa-3. [Accessed: 11- Jan- 2017].

[68]. Ghadle, K.P. and Muley, Y.M., "Travelling salesman problem with MATLAB

programming ", International Journal in Advance Applied Mathematics and Mechanics

(2) (3) (2015) 258 - 266.

[69]. SINGH, S., "A Comparative Analysis of Assignment Problem", IOSR Journal of

Engineering 2 (8) (2012) 01-15.

[70]. Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory",

in Proceedings of the Sixth International Symposium on Micro Machine and Human

Science , Nagoya, Japan, 1995, pp. 39-43.

[71]. Kennedy, J. and Eberhart, R.C., "A discrete binary version of the particle swarm

algorithm", Systems, Man, and Cybernetics, Computational Cybernetics and Simulation,

IEEE International Conference, Vol. 5, Orlando, FL, USA, 1997, pp. 4104-4108.

[72]. Pang, W., Wang, K.P., Zhou, C.G. and Dong, L.J., "Fuzzy discrete particle swarm

optimization for solving traveling salesman problem." Computer and Information

Technology, the Fourth International Conference on IEEE, Wuhan, China, 2004, pp.

796-800.

[73]. Liu, H.A. and Clerc, M., "An hybrid fuzzy variable neighborhood particle swarm

optimization algorithm for solving quadratic assignment problems", Journal of Universal

Computer Science 13 (9) (2007) 1309-1331.

[74]. Liu, H.A. and Zhang, J., "A particle swarm approach to quadratic assignment problems",

Soft computing in industrial applications (2007) 213-222.

[75]. Hasan, M., "Local search algorithms for the maximal planar layout

problem", International Transactions in Operational Research 2 (1) (1995) 89-10.

[76]. Locatelli, M., "Convergence Properties of Simulated Annealing for Continuous Global

Optimization", Journal of Applied Probability 33 (4) (1996) 1127.

[77]. Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A., "Convergence and Finite-Time

Behavior of Simulated Annealing", Advances in Applied Probability 18 (3) (1986) 747-

771.

159

[78]. Neshat, M., Sargolzaei, M., Nadjaran Toosi, A. and Masoumi, A., "Hepatitis Disease

Diagnosis Using Hybrid Case Based Reasoning and Particle Swarm Optimization",

Artificial Intelligence 2012 (2012) 1-6.

[79]. Brownlee. J., “Particle Swarm Optimization,” [Online]. Available:

http://www.cleveralgorithms.com/nature-inspired/swarm/pso.html. [Accessed: 21- Aug-

2017].

[80]. Meng, Q., Zhang, L. and Fan, Y., "A Hybrid Particle Swarm Optimization Algorithm for

Solving Job Shop Scheduling Problems", in Asian Simulation Conference, Vol. 644,

Springer Singapore, 2016, pp.71–78.

[81]. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P. and Querido, T., "A

survey for the quadratic assignment problem", European journal of operational research

176 (2) (2007) 657-690.

	Decentralized algorithm of dynamic task allocation for a swarm of homogeneous robots
	Recommended Citation
	APA Citation
	MLA Citation

	DECLARATION
	ACKNOWLEDGMENTS
	ABSTRACT
	LIST Of TABLES
	ACRONYMS
	NOMENCLATURE
	Introduction
	Robotics
	Swarm Robotics
	Swarm robotics properties

	Autonomous Rescue Swarm Robotics Application
	Challenges in search and rescue application

	Foraging Problem

	Dynamic Task Allocation
	Dynamic Task Allocation Problem Definition
	Problem Formulation (Minimal Time Dynamic Task allocation)

	Thesis Statement and Methodology
	Thesis Statement
	Methodology

	Algorithms For Solving Dynamic Task Allocation Problem
	First Taxonomy
	Behavioral approach
	Market Laws approach
	Bio-Inspired approach

	Second Taxonomy
	Centralized approach
	Distributed approach

	Third Taxonomy
	Single-robot task approach
	Multi-robot task approach

	Discrete Combinatorial Optimization Techniques
	Combinatorial discrete applications
	Facility layout problem
	Scheduling problem
	Travelling salesman problem
	Maximum clique problem
	Bin packing problem
	Graph partitioning problem

	PSO limitation in solving discrete combinatorial problem
	Challenge
	Solutions from literature
	Limitations of previous discretization techniques

	Optimization Techniques for Solving DTA Problem
	Particle Swarm Optimization technique
	Simulated Annealing technique

	Minimal Time Dynamic Task Allocation Through Hybrid DPSO/SA Algorithm
	Hungarian Algorithm
	Cost matrix representation

	PSO
	DPSO
	PSO probabilistic learning mechanism
	PSO discretization
	DPSO position representation
	DPSO velocity encoding
	Position evaluation
	Position evaluation pseudo code

	DPSO pseudo code
	DPSO parameters' setting

	SA
	SA parameters' selection
	Initial condition choice
	Establishing a disturbance mechanism
	Equilibrium condition determination
	Method of cooling
	Temperature length
	Temperature end parameter

	DPSO/SA
	DPSO/SA pseudo code
	DPSO/SA parameters' selection
	LPSO VS. GPSO

	Results and Discussion
	Introduction
	Methodology
	Initial population of DPSO
	Local searching ability of SA
	DPSO/SA decentralization

	Parameters' Optimization
	Initial temperature 'T0'
	Cooling rate ' λ '
	Inertia weight 'w'
	Acceleration constants 'c1, c2'

	Simulation Results and Comparisons
	DPSO vs. SA
	Comparison between the proposed hybrid algorithm vs. other techniques
	Performance analysis
	SA
	DPSO
	DPSO/SA

	Scalability analysis
	Stability analysis
	Convergence analysis
	Solution efficiency

	Simulation using Eliza-3 robots
	The controller
	Elisa-3 robot
	Experiment implementation
	First scenario
	First scenario results

	Second scenario
	Second scenario results

	Communication overhead evaluation
	Transmission and reception overhead
	Real time analysis
	Transmission and reception instructions
	Transmission side analysis
	Receiver side analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	References

