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ABSTRACT 

The current trends in the robotics field have led to the development of large-scale swarm 

robot systems, which are deployed for complex missions. The robots in these systems must 

communicate and interact with each other and with their environment for complex task 

processing.  

A major problem for this trend is the poor task planning mechanism, which includes both 

task decomposition and task allocation. Task allocation means to distribute and schedule a 

set of tasks to be accomplished by a group of robots to minimize the cost while satisfying 

operational constraints. Task allocation mechanism must be run by each robot, which 

integrates the swarm whenever it senses a change in the environment to make sure the 

robot is assigned to the most appropriate task, if not, the robot should reassign itself to its 

nearest task. 

The main contribution in this thesis is to maximize the overall efficiency of the system by 

minimizing the total time needed to accomplish the dynamic task allocation problem. The 

near-optimal allocation schemes are found using a novel hybrid decentralized algorithm for 

a dynamic task allocation in a swarm of homogeneous robots, where the number of the 

tasks is more than the robots present in the system. This hybrid approach is based on both 

the Simulated Annealing (SA) optimization technique combined with the Discrete Particle 

Swarm Optimization (DPSO) technique.  

Also, another major contribution in this thesis is the formulation of the dynamic task 

allocation equations for the homogeneous swarm robotics using integer linear 

programming and the cost function and constraints are introduced for the given problem. 

Then, the DPSO and SA algorithms are developed to accomplish the task in a minimal 

time. Simulation is implemented using only two test cases via MATLAB.  Simulation 

results show that PSO exhibits a smaller and more stable convergence characteristics and 

SA technique owns a better quality solution. 

Then, after developing the hybrid algorithm, which combines SA with PSO, simulation 

instances are extended to include fifteen more test cases with different swarm dimensions 

to ensure the robustness and scalability of the proposed algorithm over the traditional PSO 

and SA optimization techniques.  

Based on the simulation results, the hybrid DPSO/SA approach proves to have a higher 

efficiency in both small and large swarm sizes than the other traditional algorithms such as 

Particle Swarm Optimization technique and Simulated Annealing technique. The 

simulation results also demonstrate that the proposed approach can dislodge a state from a 

local minimum and guide it to the global minimum. Thus, the contributions of the 

proposed hybrid DPSO/SA algorithm involve possessing both the pros of high quality 

solution in SA and the fast convergence time capability in PSO. 
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Also, a parameters' selection process for the hybrid algorithm is proposed as a further 

contribution in an attempt to enhance the algorithm efficiency because the heuristic 

optimization techniques are very sensitive to any parameter changes.  

In addition, Verification is performed to ensure the effectiveness of the proposed algorithm 

by comparing it with results of an exact solver in terms of computational time, number of 

iterations and quality of solution. The exact solver that is used in this research is the 

Hungarian algorithm.  

This comparison shows that the proposed algorithm gives a superior performance in almost 

all swarm sizes with both stable and small execution time. However, it also shows that the 

proposed hybrid algorithm's cost values which is the distance travelled by the robots to 

perform the tasks are larger than the cost values of the Hungarian algorithm but the 

execution time of the hybrid algorithm is much better. 

Finally, one last contribution in this thesis is that the proposed algorithm is implemented 

and extensively tested in a real experiment using a swarm of 4 robots. The robots that are 

used in the real experiment called Elisa-III robots. 
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       Chapter 1 

 Introduction 

In this chapter, a brief introduction about robotics and swarm robotics in general is presented. 

Then, the foraging problem is addressed. After that, a mapping of the experimental scenarios into 

the real application of autonomous human rescuing after a semi-disaster happened is provided. 

Finally, the thesis outline is provided. 

1.1 Robotics  

The history of robotics [1] embeds computers, electronics, communications and mechanics 

technology. Thus, it can be considered as an interdisciplinary trend of these fields. Robotics 

nowadays represents one of the human's outstanding contributions and one of the major attempts 

for human to improve electronics and artificial life. 

Although robotics can be considered as the main achievement of the 20th century, their corner 

stone starts long away in history. From all the beginning, superstitions were diffused through 

people about connecting the exceptional power of human with the artificial intelligence life. 

Since 270 before century Egyptians and Greeks attempts to perform easy tasks using mechanical 

machines. Nowadays, children's toys and other essential machines used in our daily life are 

automated using electronic devices.  

Researchers are now more attracted in the building of artificial machines that own some 

intelligence to work autonomously, as the speed of improvements in the robotics and computer-

engineering fields is extremely fast. Nowadays, robotics almost engage in a huge number of 

applications, they are involved in everything in our life such as exploration, military applications, 

police work, space field and medication industry. 

To be fair, it is worth to mention that robotics field is not new as many people assume, however 

the origins of the robotics field [1] were started from 1250. In 1250, the first humanoid robot was 

implemented. Also, during the period from 1250 to 1950, the robots development field was 

transferred to be used more in entertainment field instead of serious domains. 

http://www.edgefxkits.com/robotics-projects/
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A set of main stops [1] in robotics history in the 20th century can be addressed as follows:  

1.  In 1942, three rules were formulated and accepted for robots to be legally manufactured: 

1.1. Robots cannot be harmful to human being even during their operation. Also, Human 

is permitted to damage them if a harmful situation happened for him/her. 

1.2. If human gives a robot a command, which might contradict with the robotics first 

low, the robot should follow it.  

1.3. A robot should protect its survival in case this defense does not contradict with the 

robotics' first and second laws.   

2. In 1956, the first company for robots' development was build. 

3. In 1959, MIT confirmed the computer assisted manufacturing. 

4. In 1961, the first automated robot was released online in a General Motors automobile 

plant. 

5. The most outstanding year was 1963, as the first automatic robotic arm was developed 

mainly for the handicapped disable people. 

These inventions [1], which are listed above was the first inventions in the field but not the only. 

Many inventions are developed too especially after the robotic arm. Through years, there were 

many surprising grants for human beings in the robotics field.  

Branches that are involved in the robotics' establishment include:  

Unlike other domains in engineering, robotics is a new multi-disciplinary field. The major 

domains, which are involved in the establishment of the robotics field include: 

1. Mechanical Engineering: provides robotics field with the design, structure and 

machinery. 
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2. Electrical Engineering: Provides robotics field with the main control function and the 

artificial intelligence actions.  

3. Computer Engineering: Provides robotics field with the implementation of robots' 

movements and sensing capabilities.  

Classification of Robots: 

Robots [1] are classified according to the design of the robots and the number of applications 

they can be involved in. Thus, robots can be categorized into three main classes:  

 Simple design Robotics - This class includes automated machines of mostly simple 

design. The main target for such machines is just to help human beings, such as Washing 

Machine. 

 Middle design Robotics – The main development in this class over the previous one is 

that the robots can be programmed but only once. They also own a more sophisticated 

circuit with sensors included and they mainly can execute multiple tasks, such as the 

newly sophisticated multi-function washing machine. 

 Complex design Robotics - In this class, robots can be programmed multiple times. 

They also include very complex digital circuits, such as PCs and laptops. 

Robotics types and applications: 

One of the major trends in technologies for the past one hundred years is robotics field. Also, 

people became more aware and knowledgeable about technology and robotics due to the world-

wide movies' industry and the global media. Nowadays, the number of tasks that can be executed 

by robots in different fields is progressively increasing. Some of these applications [1] can be 

outlined as follows:- 

1. Space robots – tele-operated Robotic arms are used to construct a space station or to 

launch a satellite. These robots could be controlled remotely by human. Another example 

could be the ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer); which is a 
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six-limbed robotic lunar rover test-bed. ATHLETE is a test bed for various systems that 

could be used for lunar or Martian exploration. As can be seen from figure 1.1, each of 

the ATHLETE‟s six limbs has six degrees of freedom. For general traveling purposes, the 

ATHLETE rolls on its six wheels but if it encounters more rugged and extreme terrain, it 

has the ability to lock each wheel into place and walk using its limbs. 

 

 

 Figure 1.1: ATHLETE robot [2]. 

 

2. Domestic or household robots – Robotics and electronic systems could be utilized 

currently in lots of applications in home to provide more prosperity to people's life. For 

example, they could be used in home security system, automatic system for doors and 

windows, and turning on and off electrical devices like A/C and lights. Examples that are 

more sophisticated are robotic vacuum cleaners (see figure 1.2), robotic pool cleaners, 

and robotic sweepers. 

 

Figure 1.2: irobot [3]. 

https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
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3. Exploration robots – Robots can be deployed in dangerous semi-destroyed site after a 

disaster as an earthquake happened which could be harmful for human beings to get 

inside in an attempt to rescue victims, see figure 1.3. Another example could be the 

observation of the atmosphere within a volcano site. 

 

 

Figure 1.3: Rescue robots [4]. 

 

4. Military Robots – As shown in figure 1.4 and 1.5, Robots are used nowadays in the 

modern armed force especially the flying robot drones, see figure 1.5. A common 

example on using robots in army could be using the airplane and automobiles in 

transmitting bombs, petroleum, or bullets (see figure 1.4). Other more sophisticated 

example could be using robots to clear minefields. 

 

 

Figure 1.4: Military automobile robots [5] 

http://www.edgefxkits.com/war-field-spying-robot-with-night-vision-wireless-camera-by-android-applications


6 

 

 

Figure 1.5: An MQ-9 reaper during a training mission (flying robot drone) [6] 

 

5. Farm robots – collecting crops could be done nowadays using autonomous robots, see 

figure 1.6. In addition, they could help workers to nourish and milk their cattle remotely. 

 

 

 Figure 1.6: Farm robots [4]. 

 

6. The Car Industry (Industrial robots) – Lots of cars' assembling and manufacturing 

process could be performed smoothly using robotic arms, see figure 1.7. Some of other 

tasks that could be performed easily using robots are painting, welding, sorting, bending, 

cutting, and lifting. They could also be used in the food industry to carry out jobs such as 

cutting and trimming of food like fish, beef, chicken or lamb. 

 

https://en.wikipedia.org/wiki/MQ-9_Reaper
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 Figure 1.7: Car assembled by robots [4]. 

 

7. Medical robots – Robots could be used in medical field to help nurses to lift patients 

while keeping their backbones in a straight position so that they could reduce the pain. In 

addition, a power-facilitated suit was invented in Japan, which could make it easier for 

the nurses to lift the patients. 

8. Entertainment robots – these robots are very interactive and can be used for children's 

education. For example, there is a robot developed by SONY that could react to your 

voice commands, they also could move around freely, and even hold your luggage, see 

figure 1.8. 

 

 

 Figure 1.8: Humanoid robot [4]. 

 

9. Hobby and competition robots – These robots are designed mainly by students and can 

be used in competitions between students, such as the line follower competition.  
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10. Underwater Robots - Finally, underwater robots can be used to discover and gather 

essential information to be used by military, see figure 1.9. 

 

 

 

 Figure 1.9: Underwater robots [4]. 

 

To sum up, it is better to use robots in recurring jobs, so that human could save their time and 

efforts for innovative, imaginative, and multifaceted tasks. 

1.2 Swarm Robotics 

The current trends in the robotics field have led to the development of swarm robotics systems. 

Swarm robotics is a new approach to the coordination of multi-robot systems, which consist of 

large numbers of mostly simple physical robots. It is supposed that a desired collective behavior 

emerges from the interaction between the robots and the interaction of robots with the 

environment. This approach emerged in the field of artificial swarm intelligence as well as the 

biological study of insects, ants and other fields in the nature, where a swarm behavior occurs. 

Most swarm intelligence researches are inspired from how the nature swarms, such as social 

insects, fishes or mammals, interact with each other in the swarm in real life. 

The research on the swarm robotics is to study the design of large amount of relatively simple 

robots, their physical body and their controlling behaviors. The individuals in the swarm are 

normally simple, small and low cost to take the advantage of a large population. A key 

component of the system is the communication between the agents in the group, which is 

normally local, and guarantees the system to be scalable and robust. 
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A plain set of rules at individual level can produce a large set of complex behaviors at the swarm 

level. The rules of controlling the individuals are abstracted from the cooperative behavior in the 

nature swarm. The swarm is distributed and de-centralized, and the system shows high 

efficiency, parallelism, scalability and robustness. 

The potential applications of swarm robotics include the tasks that demand the miniaturization, 

like distributed sensing tasks in micro machinery or the human body. In addition, the swarm 

robotics can be suited to the tasks that demand the cheap designs, such as mining task or 

agricultural foraging task. The swarm robotics can be also involved in the tasks that require large 

space and time cost, and are dangerous to the human being or the robots themselves, such as 

post-disaster relief, target searching, military applications, etc. 

As an emerging research area, the swarm intelligence has attracted many researchers' attention 

since the concept was proposed in 1980s [7]. It now becomes an interdisciplinary frontier and the 

focus of many disciplines including artificial intelligence, economics, sociology, biology, etc. It 

was observed a long time ago that some species survive in the cruel nature taking the advantage 

of the power of swarms, rather than the wisdom of individuals. The individuals in such swarm 

are not highly intelligent, yet they complete the complex tasks through cooperation and division 

of labor and show high intelligence as a whole swarm, which is highly self-organized and self-

adaptive. 

Swarm intelligence is a soft bionic of the nature swarms, i.e. it simulates the social structures and 

interactions of the swarm rather than the structure of an individual in traditional artificial 

intelligence. The individuals can be regarded as agents with simple and single abilities. Some of 

them have the ability to evolve themselves when dealing with certain problems to make better 

compatibility. A swarm intelligence system [7] usually consists of a group of simple individuals 

autonomously controlled by a plain set of rules and local interactions. These individuals are not 

necessarily unwise, but are relatively simple compared to the global intelligence achieved 

through the system. Some intelligent behaviors never observed in a single individual would soon 

emerge when several individuals begin cooperating or competing.  

http://www.sciencedirect.com/science/article/pii/S221491471300024X#bib23
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The swarm can complete the tasks that a complex individual can do while having high 

robustness, flexibility and with low cost. Swarm intelligence takes the full advantage of the 

swarm without the need of centralized control and global model, and provides a great solution 

for large-scale sophisticated problems, such as using autonomous swarm of robots in mining or 

rescuing applications. 

Most swarm intelligence researches [8] are inspired from how the nature swarms, such as social 

insects, fishes or mammals, interact with each other in the swarm in real life. These swarms 

range in size from a few individuals living in the small natural areas to highly organized colonies 

that may occupy the large territories and consist of more than millions of individuals. The group 

behaviors emerging in the swarms show great flexibility and robustness, such as path planning, 

nest constructing, task allocation and many other complex collective behaviors in various nature 

swarms. 

The individuals in the nature swarm show very poor abilities, yet the complex group behaviors 

can emerge in the whole swarm, such as migrating of bird crowds and fish schools, and foraging 

of ant and bee colonies. It is tough for an individual to complete the task itself, even a human 

being without certain experiences finds it difficultly, but a swarm of animals can handle it easily. 

Researchers observed the intelligent group behaviors emerging from a group of individuals with 

poor abilities through local communication and information transmission. 

1.2.1 Swarm robotics properties 

Swarm robotics has been used a lot in recent years due to their unique advantages and properties. 

These properties could be listed as follows: 

Robustness: 

 If a set of robots leave to recharge, to be maintained, or for any other reasons, the system 

will not be affected that much and it will continue towards finishing the whole tasks.  

 

http://www.sciencedirect.com/science/article/pii/S221491471300024X#bib1
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Scalability: 

 Each particle in the swarm is separated from the other particles, and communicates with 

all of them and with the environment. This communication is not a global communication 

as each robot communicates only with its neighborhood. This characteristic enables the 

swarm to adapt to any change like, adding more robots or removing some robots without 

any damage in the whole process.  

Energy efficiency: 

 In swarm robotics, a large number of robots which are small in size and simple in design 

are deployed. Therefore, only small-size batteries are needed, that’s why the cost of 

energy is much lower than that of a single but complicated-design robot. 

Economist: 

 As we said previously, the particles in the swarm robotics is small and simple in design 

with very limited capabilities, which make them very cheap. Thus, they could be produced 

easily in huge amounts with low cost. 

Parallelism: 

 There could be a set of targets “set of tasks”, which should be implemented by different 

robots concurrently. This could significantly save effort and time. 

1.3 Autonomous Rescue Swarm Robotics Application  

Nowadays swarm robotics is being utilized in different application domains of both real 

applications and academic research. For example, underwater and automatic space exploration 

can be considered as promising applications in this field. However, in this section, we are going 

to map our experimental scenarios into the search and rescue application within semi-destroyed 

site after a disaster like an earthquake that is dangerous for human to get inside in an attempt to 

search and rescue victims.  
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The first 24 hours after a natural or man-made disaster [9] are the most critical for the survival of 

victims. Unfortunately, this is also the time, when the fewest resources are available to rescuers. 

This research describes the potential for using a swarm of autonomous mobile robots to help the 

first responders to a disaster site focus their search for victims on those areas with the highest 

probability of finding survivors. Specifically, we are trying to present a scenario for deploying 

autonomous rescue robots' swarm at a semi-disaster site. 

In this thesis, we explore the problem of robots allocation using a real world search and rescue 

group of robots, which is divided into two teams, searching team and rescue team. In our 

scenario, dedicated „searching‟ robots must find victims, and the 'rescue' team transports them to 

a designated rescue zone. Each rescue robot tries to transport its allocated victim. It is also worth 

to mention that the system has no prior knowledge either about the number of rescue robots or of 

the number of the victims. Thus, the objective of such an application is to show that the system 

could:  

I. Inspect victims located in the semi-disaster environment. 

II. Efficiently assign robots to victims. 

III. Finally, carry out victims successfully to the designated rescue zone. 

Survival studies of earthquake victims [9] showed that the survival rate drops from 81 % for 

those victims rescued during the first 24 hours to 37% in the next 24 hours. Unfortunately, for a 

large-scale disaster, the resources available to rescuers, both personnel and equipment, are likely 

to be limited as it takes time for rescue teams to be mobilized and deployed to the disaster site. 

For this reason, a tool that could be deployed by the first responders to a disaster that would 

highlight locations of potential victims and hazards without the need for scarce human operators 

would appear to be a valuable asset to the on-scene incident commander. Therefore, an 

autonomous rescue robot swarm would be most useful during the critical first hours after a 

disaster occurs. 

Stormont [9] suggested that the swarm robots should be inexpensive enough to enable wide 

spread prepositioning. The first responders to a disaster should activate and deploy the rescue 
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swarm robots. The swarm could search through as much of the site as the robots can reach and 

highlight areas containing victims that the rescue robots could focus on first and highlight 

potential hazards to be avoided.  

Also, Stormont  [9] mentioned that the robots would need to be small enough that they would not 

pose a threat to human in the scene (either by becoming obstacles or by causing a structural 

collapse), inexpensive enough that they would not need to be recovered, and operate only for a 

limited time before deactivating (which wouldn't be a problem for battery-operated robots).  

However, stormont also [9] stated that small robots could also present challenges of their own 

such as in locomotion, sensing capability, and processing power. By maintaining redundant 

communications paths, the robots in the swarm can spread out into the disaster area to form an 

ad-hoc sensor network to detect victims and hazards, and then rescue those victims. 

Grady and Rahmani [10, 11] declared that robustness and flexibility are two main characteristics 

that should be found in the robots to be used in such an application. There are two primary ways 

to build this type of systems either self-reconfigurable robotics or collective robotics. The main 

focus in this thesis is upon a novel hybrid algorithm, which can be categorized under collective 

robotics approach in which multi robots commonly collaborate with each other and with the 

environment to accomplish the required job. 

They [10, 11] mentioned that in self-configurable field, by joining one or more small 

components together, a very complex element with a very high degree of freedom could be built. 

Self-reconfigurable robot has the capability to deal with complex problems through reshaping 

itself into legged robot or a snake-like structure. Swarm robots should have the ability to get 

across rough terrains as well as through narrow passages and cavities. Articulated rovers are 

commonly used for navigation through rough terrain conditions.  

Also, Rahmani [11] announced that self-assembling robotics has lots of usages especially in 

space. For example, installation of a 10km long SSPS1 (Figure 1.10) costs more than 2500 hours 
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of astronaut space walk and more than $5 billion cost. A feasible strategy could be used to let 

most of the jobs done by the self-assembled robots and critical jobs done by astronauts. 

 

 

Figure 1.10: SSPS tower [11]. 

 

1.3.1 Challenges in search and rescue application  

Rahmani [11] stated that there are different harmful situations that might damage the robots in 

the search and rescue application such as fire, water, large obstacles, explosions, fissures, deep 

vertical holes, small pebbles, large rocks, wires, walls, long tubes, compact blocks or even other 

agents within the disaster field. For example, Sometimes robots need to be introduced into small 

holes, and once inside they need to overcome large gaps, to descend a vertical duct ending in a 

large void, and finally to pass in other narrow passageways. Thus, to pass successfully through 

such situation, robots have to be very adaptable versatile depending on the situation they face. 

Due to the high likelihood of robots' damaging within the unstable and unstructured arena, 

robustness is one of the most important characteristics in swarm search and rescue application. 

The control system must be able to work properly and continue its execution under any situation 

even if a considerable part of the system is damaged. Redundancy is a promising technique [11] 

that enables the system to have less dependency to a failure of a particular part of the whole 

system. The swarm must be robust enough to deal with the inevitable loss of robots in the 

swarm. In this research, a hybrid approach, which concentrates on a distributed control to 

employ redundancy, is proposed.  
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Rahmani [11] reported that while centralized control is suitable for systems with infrequent 

failure such as communication networks, distributed control is used a lot in the systems that 

require high fault tolerant, such as search and rescue application in extreme harsh environment 

using swarm robotics system. 

Also, it was notified by Rahmani [11] that since any human operator usually has very restricted 

and limited perception from the arena in which the robot is navigating, thus pure tele-operating 

system is not sufficient to provide an acceptable performance of remote controlling. In addition, 

the sensing capability is limited by time delay. Therefore, autonomous control, which based on 

sensors that are mainly used for sensing the system's internal state allows performing the job 

efficiently and raises the system's capabilities. 

The small robots advocated in this research tend to have poor odometry because the distance the 

robots move is only evaluated by dividing the speed of the robot over the time it moves to reach 

the new position and there is no feedback like encoders to enhance the accuracy of the readings. 

Moreover, it is extremely hard in the highly unstructured rescue environment to have high 

quality odometry even if we depend on encoders. Thus, as a future work, the swarm robots must 

attempt to determine their relative pose to some landmark using sensors that are more 

sophisticated or camera.  

Also, Robin Murphy of the Center for Robot-Assisted Search and Rescue (CRASAR) [9] made 

the observation that "rescue workers refuse to consider fully autonomous systems designed to act 

as 'yes/no there's something down there' search devices. However, this skepticism regarding 

autonomous robot swarms and their integration into the rescue workers' hierarchy is 

understandable and well justified nowadays given the current capabilities of autonomous rescue 

robots.  

1.4 Foraging Problem 

A huge number of applications are involved in swarm robotics to make use of its significant 

characteristics, such as, post-disaster relief, geological survey, military applications, UAV 
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controlling, cooperative transportation, and mining. Swarm robotics is very promising in the 

applications, which contain environmental danger to human.  

The focus of this research is upon a specific problem called the foraging problem. This problem 

[12] can be considered as one of the most significant problems in swarm robotics field because 

most of the swarm robotics applications somehow include this type of issue. For example, in the 

mining application, we need to inspect the environment for the mines first and then transport 

them from place to place and this is specifically called foraging. Same could be seen in search 

and rescue application and agriculture application and so on.  

So, the cooperative foraging problem [13] can be illustrated as a team of robots that need to 

transport a set of objects, which are scattered in the arena to their final destination. The final 

destination of the objects called the nest. To be more precise, in this research we are trying to 

solve the assignment of the objects on the robots to transport them to the nest in an optimized 

way. 

These set of objects can be one of two types [14], either a single-robot object, which needs only 

one robot to carry it from its current location to the nest or a multi-robot task, which requires at 

least two robots working simultaneously in order to retrieve the object to its final destination.  

Therefore, the foraging task [13] can be addressed as a searching job followed by a 

transportation job. Each job consists of a number of tasks. Each robot in the foraging problem 

has to decide whether it would explore a new object or it is going to transport an explored object 

to the nest. 

 Also, if the robot chooses the transportation job, it has also to decide which one of the scattered 

objects it should select to return to the nest. The robot choice is not random. However, each robot 

chooses the most appropriate object to maximize the overall performance of the group. Also, it is 

worth to mention that, the DTA problem in a cooperative foraging scenario with shared task 

execution by multiple robots is an NP-hard problem.  
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Finally, the thesis structure can be outlined as follows. First, chapter one presents an introduction 

in robotics and swarm robotics in general. In addition, the properties of swarm robotics are listed. 

Also, a brief introduction about the foraging problem and optimization techniques, which are 

used in this thesis to tackle the DTA problem, is provided. Finally, a mapping between our 

experimental scenarios and a real application (search and rescue application) is illustrated in 

chapter one. Then, dynamic task allocation problem is introduced and a mathematical model of 

the problem is formulated in chapter two.  

After that, chapter 3 provides a literature review for a set of techniques and results for solving the 

dynamic task allocation problem in swarm robotics field. After that, chapter 4 focuses on the 

thesis statement and the methodology. Furthermore, Chapter 5 presents the design and 

implementation phases of the proposed hybrid algorithm. In addition, the framework, which is 

used to discretize the Particle Swarm Optimization technique, is also addressed in this chapter. 

Moreover, chapter 6 discusses both the simulation and the real experiment results. Finally, 

chapter 7 presents the conclusion and the future works. 
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       Chapter 2 

 Dynamic Task Allocation 

In this chapter, the dynamic task allocation problem, which we are trying to tackle, is well 

defined within the framework of the foraging problem. Also, a mathematical model for the 

dynamic task allocation problem is formulated using integer linear programming.  

2.1 Dynamic Task Allocation Problem Definition 

Over the past few years, task allocation (TA) [15] has emerged as one of the most common 

issues that need to be optimized in the swarm robotics' field. Since in almost all swarm robotics 

applications there are a number of tasks that need to be performed by a group of robots, we need 

an optimized way by which we can assign those tasks to the robots in order to accomplish the 

whole job in a perfect way. Thus, TA problem can be considered as one of the most important 

direction in multi-robot systems nowadays.  

So, TA problem [15] can be broadly defined as follows, given a set of tasks, a set of robots, that 

can perform those tasks, and an objective function, that measures the performance efficiency of 

different combinations of robots in performing tasks, a suitable matching or allocation needs to 

be found between the set of tasks and the group of robots, which optimizes the value of the 

objective function while satisfying operational constraints. The task allocation problem specifies 

the allocation rules used by the robots in such a scenario to perform the tasks in an efficient 

manner.  

Dynamic Task Allocation (DTA) [16] implies that robots have no prior knowledge about the 

number of robots, the number of tasks, and the temporal and spatial distribution of tasks in the 

environment. However, they should communicate periodically with each other to adapt online to 

the environment. Minimal Time Dynamic Task Allocation (MTDTA) seeks to allocate tasks 

dynamically to the robots while minimizing the total time needed to accomplish the whole task.  
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With technical progress and the declining cost of robotic mobility, interest in this area of 

applications has grown significantly in recent years. The DTA problem [16] is encountered in 

different application domains of multi-robot systems including human rescuing, demining, 

warehousing, toxic waste cleanup, collection of terrain samples, cooperative transportation, 

autonomous exploration and mapping, distributed monitoring and surveillance, etc.  

Since, we have just said that the minimal time dynamic task allocation (MTDTA) problem can 

be addressed as the allocation of a set of tasks to a group of robots to perform the whole job in a 

minimal time. Thus, The MTDTA algorithm can be described as follows:  

let  

T = {t1, t2, …, tm} 

Equation (2-1) 

be the set of task identifiers to be allocated to the robots in the swarm, and let 

R = {r1, r2, …, rn} 

Equation (2-2) 

be the set of robots‟ identifiers in the robotic swarm. Therefore, the problem is composed of m 

valid tasks and n robots. The swarm allocation is represented by: 

A = {a1, a2, … , an} 

Equation (2-3) 

where aj identifies the task allocated to robot rj. Hence, the solution of the minimal time dynamic 

task allocation problem is achieved by finding an allocation A*, which represents the allocation 

of the group of n robots to the set of m tasks in a minimum completion time of the whole tasks.  

The number of available allocations between a set of tasks and a group of robots [16] is one of 

the most important characteristics while dealing with the dynamic task allocation in swarm 

robotics. The number of allocations Q depends on the number of robots and the number of tasks. 
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If the robots in the swarm are heterogeneous, the number of allocations Q is defined by equation 

(2-4): 

Q =  𝑇𝑖
𝑅𝑖

𝑛

𝑖=1

=  𝑇1
𝑅1 × 𝑇2

𝑅2 × 𝑇𝑛
𝑅𝑛   , 

Equation (2-4) 

Where R is the number of robots in the swarm, n is the number of groups to which those robots 

belong, where a group of robots Ri is responsible for performing the set of tasks Ti. Hence, if the 

robots in the swarm are homogeneous and we only have one group in the swarm, then the 

number of allocations Q is defined as expressed in equation (2-5) [15]: 

𝑄 =  𝑇𝑅  

Equation (2-5) 

In this research, a minimal time dynamic task allocation algorithm in swarm robotics is designed 

and implemented. The allocation decisions procedures are taken by using a hybrid algorithm 

combined both the Discrete Particle Swarm Optimization (DPSO) technique and Simulated 

Annealing technique.  

The hybrid DPSO/SA is a stochastic algorithm based on swarm intelligence that can be applied 

to search iteratively for a solution for optimization problems within the search space. Each 

particle in the swarm updates the position in which it is located and the velocity by which the 

particle travels in the environment in each iteration of the algorithm.  

The algorithm uses every collected data from the environment, which is provided by the robots' 

sensors, like infrared proximity sensors and ground sensors in order to come up with the optimal 

allocations. In the first step, the environment information should be gathered. Then, the 

transportation time required by each robot to carry out each task must be calculated. After that, 

the optimal paths for all subtasks should be selected. 
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2.2 Problem Formulation (Minimal Time Dynamic Task allocation) 

The Minimal Time Dynamic Task Allocation of a set of tasks among homogenous robots in 

swarm robotics system is a minimization problem that should satisfy specific constraints. Hence, 

this problem [17] can be considered as a constrained optimization problem. The multi-robot task 

assignment problem in which every task should be allocated to only one robot, and each robot 

must assign itself to exactly one task, can be considered as an instantaneous assignment instance. 

This problem is well known as the single-task robots, single-robot tasks problem. More 

officially, given a set of n available robots R = {r1, r2, . . . , rn}, a set of  m available tasks T = 

{t1, t2, . . . , tm}, and let C = (Cij )n×m be the cost matrix, where Cij represents the cost of 

allocating robot i to transport task j, then the target is to find a one-to-one mapping which 

minimizes the overall cost.  

Let Xij  be a binary variable denote the allocation of a robot i to a task j, so that Xij is equal to 1 

if robot i is assigned to task j and 0 if unassigned. Therefore an assignment matrix can be 

presented as in equation (2-6): 

X =  (Xij )n×m =  
𝑋11 ⋯ 𝑋1𝑚

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑚

  

Equation (2-6) 

Also, taken into consideration that the allocation problem [17] is a one-to-one mapping, so there 

must be only one element equals 1 in each row and each column of the matrix X and the rest of 

the elements should be 0s. 

The target of the optimization technique is to find a feasible solution, which minimizes the 

objective function. There are many parameters that could be minimized depending on the 

requirements of the problem itself, for example, the cost that need to be minimized could be the 

traveled distance, energy consumption, or execution time. In the MTDTA, the selected objective 

is to minimize the distance the robots travelled in order to transport the tasks from their current 

location to the nest.  In other words, during performing the tasks, J defined as the distance 
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travelled by all the robots to accomplish all the tasks in the search space at any given time 

instance. It is also worth to mention that the time to complete the task would also be minimized 

as the distance minimized because all the robots are moving with a constant speed [18]. The 

constrains which must be satisfied during the optimization can be outlined as follows:  

1. A specific number of robots carry out the inspection, and the rest of the robots engage in 

the transportation job. If no objects need to be transported at any time instant, the robots 

which are responsible for the transportation turnover to the sleep mode in order to save as 

much power as we can. 

2. A robot cannot be assigned to more than one task at the same time.  

3. Each task is executed only once with exactly one robot. 

Now, the optimization of the multi-task assignment problem can be formulated in terms of an 

integer linear programming as follows [17]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑅, 𝑇 = 𝑚𝑖𝑛   𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=0,𝑗≠𝑖

𝑛

𝑖=0

 

Equation (2-7) 

Subject to: 

 𝑋𝑖𝑗

𝑚

𝑗=0

= 1,           ∀𝑖 ∈ 𝑛, 

Equation (2-8) 

 𝑋𝑖𝑗

𝑛

𝑖=0

= 1,           ∀𝑗 ∈ 𝑚, 

Equation (2-9) 

𝑥𝑖𝑗  ≥ 0,    xij  =  0,1    ∀𝑖 ∈ 𝑛,  

Equation (2-10) 
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where Equation (2-7) represents the objective function which is used to minimize the travelled 

distance, and xij  gives a primal variable. Therefore, the problem [17] as an outcome of the 

constraint matrix's structure turns into an integer problem and xij  = {0, 1} implies that if the 

robot i is assigned to the task j, then the value of the xij   is one, otherwise zero. Also, these 

constraints guarantee that a robot cannot be assigned to two tasks at the same time and a task 

cannot be executed by to two robots simultaneously which guarantees that every task is executed 

only once.  
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        Chapter 3 

 Thesis Statement and Methodology 

In this chapter, both the thesis statement and methodology for this research are addressed. 

3.1 Thesis Statement 

Although using global optimization techniques in solving discrete optimization problems like 

DTA problem, provides a prominent convergence characteristics, and using local optimization 

techniques yields better quality solution due to the probabilistic jumping mechanism, however, 

using a hybrid approach which combines both local and global searching capabilities could result 

in outstanding performance (the minimal time in which the whole tasks is accomplished in the 

DTA problem) since it increases the scalability, stability, and efficiency of the swarm. 

3.2 Methodology 

The main steps that are followed to accomplish this research could be summarized as follows: 

 Implement a discrete version from the Particle Swarm Optimization technique, test it on a 

set of different swarm sizes and compare it with the Simulated Annealing technique. 

 Formulate the dynamic task allocation problem using integer linear programming, and 

provide an exact solution to the problem using the Hungarian algorithm as an exact 

solver. 

 Design and implement a hybrid approach which combines both the Discrete Particle 

Swarm Optimization technique and the Simulated Annealing technique. 

 Simulate the proposed algorithm using MATLAB on different problem dimensions to 

prove the scalability of the proposed algorithm. 

 Compare the execution time and fitness values between both the exact solver and the 

proposed meta-heuristics optimization techniques. 

 Deploy and test the proposed hybrid algorithm into a real system using 4 Elisa-III robots. 
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 Tune the proposed algorithm's parameters to enhance the performance of the system and 

to improve the accuracy of the outcomes. 

 Evaluate the total communication overhead, and the system throughput while 

transmitting and receiving packets between the robots and the base station.  

In details, Simulated Annealing technique was used in some contexts to achieve a minimal time 

dynamic task allocation solution in swarm robotics. Therefore, a discrete version from the 

Particle Swarm Optimization technique is implemented, tested, validated and compared in this 

research with the Simulated Annealing technique. A comparison between SA and DPSO is 

performed in terms of computational time, number of iterations needed and quality of solution to 

demonstrate the robustness and efficiency of the DPSO algorithm in such an optimization 

problem. 

Two case studies are considered while comparing the DPSO and the SA techniques to prove the 

proficiency of the DPSO over the SA algorithm in small swarm sizes. The first study-case is 

implemented by introducing 7 robots to transport 10 prey to the nest, while the second study-case 

is implemented using 10 tasks and 20 robots.  

In addition, a novel hybrid approach that fuses the DPSO technique with the SA technique is also 

implemented and tested using larger problem dimensions. Then, this approach is compared with 

both the Discrete Particle Swarm Optimization and the Simulated Annealing technique 

independently to highlight the advantages and disadvantages that could result from combining 

DPSO with SA. This comparison also investigates the challenges that could be addressed using 

the proposed algorithm such as getting trapped into a local optimal solution problem, time 

complexity problem, and scalability problem.  

About 15 different swarm sizes are tested in this simulation using all the three algorithms to 

investigate the scalability and robustness of each one of them and to show the superiority of the 

proposed algorithm in comparison with the other traditional optimization techniques (SA and 

DPSO techniques). These study-cases range from 7 robots and 10 tasks to 2000 robots and 3500 

tasks.  
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Moreover, the DTA linear equations are formulated using integer linear programming. Then, 

using these linear equations, the Hungarian algorithm is used as an exact solver in order to 

provide an exact solution to the problem. After that, a comparisons in terms of the execution time 

and quality of solutions are performed between the exact solver and the other optimization 

techniques. Also, the exact solutions of the Hungarian algorithm are used as a model to 

normalize the outcomes from the other techniques. 

Furthermore, the hybrid DPSO/SA algorithm is deployed and extensively tested into a real 

system using 4 Elisa-III robots. The robots' peripherals are examined first to make sure 

everything is working properly. Thus, all the sensors such as ground sensors, the infrared 

proximity sensors, the 3-axis accelerometer are tested. Also, peripherals like the transceiver 

module, the infrared emitter and receiver, the dc motors, the central RGB LED, and the green 

LEDs are all examined to make sure that they are ready to be used.  

In the real experiment, objects are scattered randomly in the environment at distinctive positions 

and they are perceived by the robots' ground sensors. Also, the Infrared sensors are used for 

collision avoidance. 

Finally, the communication overhead in the real experiment is evaluated in both the transmitter 

side and the receiver side to make sure that there is enough throughput for the robots to exchange 

information periodically during the experiment. 
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        Chapter 4 

 Algorithms For Solving Dynamic Task Allocation Problem  

In this chapter, the most commonly used taxonomies for the classification of optimization 

techniques in terms of research and publications are addressed and examples from literature 

review for each taxonomy are outlined. Then, we address the discrete optimization techniques 

that could be used for solving discrete optimization problems and some applications on these 

discrete problems are outlined. Also, challenges that could face such discrete optimization 

technique are illustrated and solutions from the literature are summarized. After that, the most 

outstanding optimization techniques in solving the dynamic task allocation problem are 

introduced which are the Simulated Annealing technique and the Particle Swarm Optimization 

technique.  

At the beginning, it is worth to mention that discrete optimization problems like the DTA 

problem [19] are showed up extensively in applications related to computer science and 

engineering. The heuristic optimization techniques' significant has increased a lot in last decades. 

They can be considered as a very good and flexible candidate for solving the real life problems, 

as they are most commonly non-differentiable and nonlinear. Thus, the design of a stable 

efficient algorithm for finding near global minimum solution has attracted the attention of many 

researchers in the last few years.  

Recently, several algorithms have been proposed in the literature for solving discrete 

optimization problems. Based on the taxonomy presented by Zhang and Liu [8], the 

classification of algorithms is implemented according to either its behavioral approach, market 

laws or bio-inspired approach.  
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4.1 First Taxonomy 

4.1.1 Behavioral approach 

In the behavioral approach, tasks to be executed are differentiated in groups, called behavioral 

groups. Groups have a set of tasks to be executed, which have a relation between them. One of 

the most common used behavioral algorithms is ASYMTRE presented by Tang and Parker [20].  

4.1.2 Market Laws approach 

Algorithms based on market laws aim at maximizing the income (information, speed), while 

minimizing costs (convergence, communication time). For example, as cited by Guerrero and 

Oliver [21], a market laws based algorithms in which the system is partially inspired by auction 

and thresholds-based methods and tries to determine the optimum number of robots that are 

needed to solve specific tasks, or sub-goals, in order to minimize the time needed to complete all 

tasks. Since the time to perform tasks by robots is considered to be much less than robot 

navigation times between tasks, so the order in which robots perform tasks is important. Thus, 

the distance between two subsequent tasks needs to be minimized and as a result, the navigation 

time would be minimized. The algorithm constraints were as follows: 

1. Same task cannot be allocated to the same robot more than once. 

2. The total number of robots allocated to perform a task equals the demand for the task. 

While, the cost functions‟ mathematical equations were as follows: 

𝑚𝑖𝑛  ( 𝑝𝑟𝑖
0 − 𝑝𝑇𝑟𝑖

1  +   𝑝𝑇𝑗 − 𝑝𝑇𝑘 

(𝑇𝑗 ,𝑇𝐾)∈𝐴(𝑅)

)

𝑟𝑖∈𝑅

 

Equation (4-1) 

Subject to: 

𝑇𝑗  ≠  𝑇𝐾                     , ∀ 𝑇𝑗 , 𝑇𝐾 ∈ 𝐴 𝑅  

Equation (4-2) 
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and  

| 𝐴 𝑅 | = 𝑑𝑇𝑖           ,  𝐴 𝑅 =  𝑇𝑖        ∀ 𝑇𝑖  

Equation (4-3) 

Another example proposed by Zhang et al. [22] is a Stochastic Clustering Auction solution, 

which uses a Markov chain search process along with Simulated Annealing. This is the first time 

in which a stochastic auction technique is used along with a global optimization technique. A 

swapping movements and transfers among tasks‟ groups, which are allocated to distinct robots is 

the main principle in this technique in which both the downhill movements and uphill 

movements are taken into consideration, in order to reach the global minima and avoid the local 

ones. The essential difference in this algorithm is that, after reaching a proper convergence, the 

algorithm performance could slide slightly in the small region between the global optimum and a 

random solution, which is tuned based on the Simulated Annealing technique. The cost function 

for this algorithm was chosen to be “Minimizing the time taken to accomplish the tasks or the 

mission length (the total distance traveled)”. Also, the cost functions‟ mathematical equations 

were as follows: 

min
𝐴

𝐶(𝐴) 

Equation (4-4) 

𝐶 𝐴 =  𝑐𝑠(𝑎𝑠)

𝑘

𝑠=1

 

Equation (4-5) 

Where cs(as) is the minimum cost for robot hs to complete the set of tasks as. 

 
𝐶  𝐴𝑖

 𝑠,𝑝 
 = 𝐶 𝐴 +  𝑐𝑠 𝑎𝑠

 −𝑖  − 𝑐𝑠 𝑎𝑠  +  𝑐𝑝 𝑎𝑝
 +𝑖  − 𝑐𝑝 𝑎𝑝     𝑆𝑖𝑛𝑔𝑙𝑒 𝑀𝑜𝑣𝑒

𝐶 𝐴𝑖 ,𝑗
 𝑠,𝑡  = 𝐶 𝐴 +  𝑐𝑠  𝑎𝑠

 −𝑖,+𝑗  
 − 𝑐𝑠 𝑎𝑠  +  𝑐𝑡  𝑎𝑡

 +𝑖 ,−𝑗 
 − 𝑐𝑡 𝑎𝑡   𝐷𝑢𝑎𝑙 𝑀𝑜𝑣𝑒

  

Equation (4-6) 
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One more example is the heuristic search-based task allocation algorithm formulated by 

Nagarajan and Thondiyath [23] for the task processing in heterogeneous multiple robot system, 

by maximizing the efficiency in terms of both communication and processing cost. The cost 

function in this algorithm was chosen to be the summation of static overhead cost of robots, 

assignment cost or execution cost, and the communication cost between the dependent tasks, if 

they are assigned to different robots. While the optimization constraints were:  

a. Each task is allocated to only one robot. 

b. The capability of robots to cover all tasks must be guaranteed.  

c. The precedence relation between the tasks must be taken into consideration. If there is a 

precedence, time for task I must be before time for task j. 

Therefore, the mathematical equations for the objective function were defined as follows: 

 

𝑍 =   𝑆𝑘

𝑚

𝑘=1

𝑁

𝑖=1

𝑋𝑖𝑘 +    𝑆𝑘𝑅𝑐𝑘𝑋𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

+    𝐸𝑖𝑘𝑋𝑖𝑘

𝑀

𝑘=1

𝑁

𝑖=1

 

      +    𝑃𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑘𝑋𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁−1

𝑖=1

 

       +    𝑃𝑟𝑖𝑗𝐶𝑖𝑗𝑋𝑖𝑘𝑋𝑗𝑘

𝑀

𝑘=1

𝑁

𝑗=1

𝑁−1

𝑖=1

 

Equation (4-7) 

Subjected to constraints: 

 𝑋𝑖𝑘

𝑀

𝑘=1

= 1         , 𝑖 = 1,2, …… , 𝑁 

Equation (4-8) 
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Where Xik implies task i is allocated to robot k then the value is 1 else 0. 

4.1.3 Bio-Inspired approach 

One of the most trend techniques, which are used to solve dynamic task allocation problem is the 

bio-inspired techniques, which have been used a lot in recent years in terms of research and 

publications. These techniques are derived from social insect‟s behavior like bees and ants. A set 

of beneficial properties, such as flexibility and self-arrangement property are existed in the 

Particle Swarm Optimization technique.    

As mentioned by Krieger et al. [24], it is shown that a higher level of energy could be maintained 

in sets of robots, which use ant-inspired optimization techniques than in single robots. They 

could also forage more expeditiously.  

Liu et al. [18] have presented approach that is based on artificial bee colony algorithm to address 

dynamic task assignment problems in multi-agent cooperative systems. Also, Liu et al. [18] have 

enhanced an optimal assignment method based on a task-swap mechanism. They have proposed 

an algorithm in which local search processes are executed simultaneously without any 

connections among these processes. In addition, this technique is totally decentralized in which 

messages‟ broadcast and a multi-hop communication would never be used. The solutions 

resulted from the local processes is related to a shortest path routing problem on a graph subject 

to the network topology. This conclusion was resulted after the analysis of the formulation by 

using the uncommon tools from the group and the optimization duality theories.  

The assignment problem was formulated using a pair of linear equations. The cost minimization 

formulation called the primal program P(R, T): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑅, 𝑇 =  𝑐𝑖𝑗𝑥𝑖𝑗  ,

𝑖∈𝑅,𝑗 ∈𝑇

 

Equation (4-9) 
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Subject to: 

 𝑥𝑖𝑗 = 1

𝑗∈𝑇

,           ∀𝑖 ∈ 𝑅, 

Equation (4-10) 

 𝑥𝑖𝑗 = 1

𝑖∈𝑅

,           ∀𝑗 ∈ 𝑇, 

Equation (4-11) 

𝑥𝑖𝑗  ≥ 0,    ∀𝑖 ∈ 𝑅, 𝐽 ∈ 𝑇, 

Equation (4-12) 

where each xij  represents a primal variable. Because of the structure of the constraint matrix, the 

problem turns into an integer problem and eventually each xij  should equal 0 or 1 in the solution 

when solved via some combinatorial optimization algorithm.  

The constraints: 

 𝑥𝑖𝑗 = 1

𝑗

        

Equation (4-13) 

and 

 𝑥𝑖𝑗 = 1

𝑖

   

Equation (4-14) 

This constraint guarantees that a robot cannot be assigned to two tasks at the same time and a 

task cannot be allocated to two robots simultaneously.  
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Momen and Sharkey [25] have evolved The ant‟s behavior of switching tasks in order to meet 

the changing demand to increase their ability to respond to task demand effectively. Nedjah et al. 

[15] have proposed a distributed control algorithm inspired by the Particle Swarm Optimization 

implemented to perform dynamic task allocation in a swarm robotics environment. The fitness 

evaluation of an allocation A is implemented by an objective function f(A), defined by equation 

(3-15): 

𝑓 𝐴 =  
 |𝐶 𝑖 − 𝐶𝐴[𝑖]|𝑇

𝑖=1

𝑇
 , 

Equation (4-15) 

where T represents the whole number of task, C represents the desired quantity of robots 

allocated to each task, according to a desired rate, and CA represents the quantity of robots 

allocated to each task, according to A. 

Finally, Tsalatsanis et al. [26] have derived Fuzzy-logic-based utility functions. These utility 

functions are used to assign a group of robots to a set of tasks through determining the robots‟ 

capabilities to implement a task in real time by using a bounded look ahead control technique, 

which based on the main rules of discrete event supervisory control theory. The cost function 

that was used in this algorithm is maximizing the overall performance of the robot team. Robot‟s 

abilities such as endurance, designer‟s choice, cost of the robot, number and types of sensors, the 

distance a robot has to travel to perform a task, the cost of assigning a robot to a task and 

efficiency can be described as fuzzy variables. The utility function value of the events {start_ jk} 

is equal to the ability of Robot j to perform Task k. In other words, 

u(σ)  =   𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑗𝑘          , where     𝜎 ∈  start _ jk}   

Equation (4-16) 

Both the designer‟s choice and the robot‟s efficiency depend on the robot‟s firmness. Thus, the 

designer‟s choice is high and the robot‟s efficiency is high when the robot‟s firmness is large, 

then the capability of the robot j to implement the task k is high. While, the designer‟s choice is 
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medium and the robot‟s efficiency is medium, when the robot‟s firmness is acceptable. In this 

case, the capability of robot j to implement task k is medium. Finally, the designer‟s choice is 

low and the robot‟s efficiency is low, when the robot‟s firmness is small, then the ability of robot 

j to implement the task k is low. 

4.2 Second Taxonomy 

Whenever an alteration is sensed in the environment, a task allocation process needs to be 

performed between the robots and the tasks. In this case, the task allocation process is considered 

to be a dynamic process. The centralized approach can be considered as a fast solution to this 

type of problem. However, if a quite preferable solution is needed, a distributed assignment 

technique will be better. No centralized leader or controller is needed in this approach, and that is 

why tasks‟ scheduling in swarm robotics must be performed because of this distribution process. 

However, one of the main disadvantages, that result from this decentralization is that problem 

complexity is increased, because the robot view in the environment becomes limited. 

4.2.1 Centralized approach 

In centralized approach, there is a leader or central unit which is responsible for tasks assignment 

to the robots. Gigliotta et al. [27] have evolved a dynamic task allocation rules by 

communicative interactions in a group of homogeneous robots. They focused on the 

development of a team of robots in which one and only one individual robot (the ‟leader‟) must 

differentiate its communicative attitude from that of all the others (‟non-leaders‟). The robots 

evolve their capabilities to distinguish their roles by the discrimination of their signals. The 

leader robot has to maximize the value of its communicative signal, while all other robots have 

to minimize their signals‟ value. The leader robot tends to send high signal‟s value, while the 

non-leaders tend to send a low signal‟s value. The fitness of a group of robot was calculated in 

the following way. The average of the differences between the output signal of the current leader 

which has the maximum value and the output signals of all other non-leader robots was 

calculated every iteration. A number of trials need to be implemented. At the end, the average of 

the calculated value for all iterations of all the trials can be considered as the fitness value.  
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Formally, this is how fitness value was calculated: 

𝐹 =
  𝑀𝑎𝑥 − 𝑂𝑖

𝑁
𝑖

𝐶
𝑗

𝐶(𝑁 − 1)
 , 

Equation (4-17) 

where the number of robots in each group represented by N, such as 10. While, the total number 

of iterations of each individual called C, such as 1000 iterations * 40 trials = 40000. Also, the 

signal‟s value of the current leader is Max and the signal‟s value of robot j is Oj . 

4.2.2 Distributed approach 

In distributed approach, there is no central unit to take care of the task allocation. So, each robot 

in the swarm has to identify the task it must perform. Brutschy et al. [13] have developed a self-

organized method for allocating the individuals of a swarm to tasks that are sequentially 

interdependent. The proposed method does neither rely on global knowledge nor centralized 

components. Moreover, it does not require the robots to communicate.  

De Mendonça et al. [16] have proposed a simple yet efficient distributed control algorithm to 

implement dynamic task allocation in a robotic swarm, in which every robot in the swarm has to 

identify the task it must perform. The swarm task assignment is represented by A = {a1; a2;…; 

aρ}, wherein aj identifies the task assigned to robot identified by idj. Note that given a task 

assignment, say A, it is possible to set counters associated with it, which denoted as CA, as 

described in the following equation: 

𝐶𝑗 = 𝐶𝐴 𝑡𝑗  =  ∅ 𝑎𝑟 , 𝑡𝑗  ,

𝑝

𝑟=1

 

Equation (4-18) 
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Wherein function ∅ is defined as follows: 

∅ 𝑎𝑟 , 𝑡𝑗  =  
1       𝑖𝑓  𝑎 = 𝑡;
0     𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

Equation (4-19) 

Thus, at the end of the construction, the counter set CA  would reflect the distribution of the 

robots as assigned to each task and defined by assignment A. Solving the dynamic task allocation 

problem consists of finding the task assignment A* = {a*1; a*2;…; a*ρ}, that verifies: 

∀ 𝑡𝑗 ∈ 𝑇  𝑎𝑛𝑑    ∀ 𝑝𝑗  ∈ 𝑃. 

Equation (4-20) 

Keshmiri and Payandeh [12] have presented the percentile values of the distributional 

information of the tasks to reduce the task space into a number of subgroups that are equal to the 

number of robotic agents.  

Liu et al. [17] have enhanced an optimal assignment method with a decentralized leadership. 

They have proposed an algorithm in which local search processes are executed simultaneously 

without any connections among these processes. In addition, this technique is totally 

decentralized in which messages‟ broadcast and a multi-hop communication would never be 

used.  

Zhang et al. [28] have established hierarchical allocation architecture for the set of robots in the 

population. Two algorithms are implemented in this hierarchy. First, a simple self-reinforcement 

learning model is utilized in the top level of the hierarchy which turned the initially identical 

particles into specialists for distinctive task types by using the social insects‟ method. This 

method gives a robust and flexible labor‟s division as can be seen from figure 4.1. However, 

when the single type of task is considered in the lower level of the hierarchy, the Ant-colony 

technique is implemented to solve the task assignment issue. A local communication technique is 

used to share information among robots to avoid using a leading or a centralized device. 
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Figure 4.1:  Architecture of the relationship among tasks 

 

4.3 Third Taxonomy 

In addition, taxonomy in [29] by Gerkey and Matarić has classified tasks in dynamic task 

allocation problems into single-robot tasks (SR) and multi-robot (MR) tasks.  

4.3.1 Single-robot task approach 

A single-robot task requires only one robot to perform a specific task. This dynamic task 

allocation problem is an NP (non-deterministic polynomial-time) hard optimization problem.  

4.3.2 Multi-robot task approach 

However, a multi-robot task has to be cooperatively carried out by several robots. Dynamic task 

allocation problems with multi-robot tasks are strongly NP-hard and the complexity significantly 

depends on the number of multi-robot tasks and the number of robots required by each multi-

robot task.  

Campo and Dorigo [30] have identified an efficient multi-foraging behavior, where is efficiency 

defined as a function of the energy that is spent by the robots during exploration and gained 
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when a prey is retrieved to the nest. A set of differential equations was used to model the flows 

of robots exchanged among the states as follows: 

𝑑𝐸

𝑑𝑡
= −𝛽𝐸 + 𝛾𝐼 +  (−𝜋𝑖𝐸𝑁𝑖𝜆 + 𝜇𝑖𝑅𝐼)

2

𝑖=1

 

Equation (4-21) 

𝑑𝐵

𝑑𝑡
= +𝛽𝐸 − 𝐾𝐵 

Equation (4-22) 

𝑑𝐼

𝑑𝑡
= +𝐾𝐵 −  𝜆𝐼 

Equation (4-23) 

𝑑𝑅𝑖

𝑑𝑡
= 𝜋𝑖𝐸𝑁𝑖𝜆 − 𝜇𝑖𝑅𝑖 −  𝑝𝑅𝑖          ∀𝑖 ∈  1,2  

Equation (4-24) 

𝑑𝑁𝑖

𝑑𝑡
= 𝜑𝑖 − 𝜋𝑖𝐸𝑁𝑖𝜆 − 𝜀𝑖𝑁𝑖 +  𝑝𝑅𝑖          ∀𝑖 ∈  1,2  

Equation (4-25) 

Where the number of robots in Explore state is referred as E, and the number of robots in the 

Back state is referred as B. Robots in the Back state is going to the nest in order to have some 

rest and recharge their batteries. In addition, the number of robots in the Rest state is referred to 

l, the number of robots in Retrieve state is referred as Ri, in which “i” is the prey‟s type, and the 

number of prey which have the type i in the environment is referred as Ni. While, the total 

number of robots in the experiment is referred as T, the rate by which objects were found in the 

environment by a single robot is referred as λ, and the probability for a single robot to find the 

nest is referred as K. Moreover, φi is the incoming rate per second of prey of type i, while the 

probability constant over time for a prey of type i to disappear is referred as εi . In addition, μi is 
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the inverse of the average time, required to retrieve a prey of type i, the probability to give up an 

ongoing retrieval is referred as ρ, the probability for a robot to return to nest is referred as β, 

γ is the probability for a robot to leave the nest and look for prey, and finally the probability to 

take a prey of type i upon encounter is referred as πi. 

Dasgupta [31] has developed an algorithm in which each task required multiple robots to share 

the task‟s execution to complete the task. A set of heuristics that can be used by the algorithm 

were described to select the order of the tasks so that the tasks are performed in an efficient 

manner.  

Liu and Kroll [14] have discussed that, it is more challenging to allocate a huge set of tasks to a 

group of robots if the tasks are tightly coupled than if the tasks is loosely coupled. For example, 

it is more challenging to find a suitable allocation for tasks that need the cooperation of at least 

two robots in order to carry out the task concurrently. The resulting complexity is due to the 

environmental temporal and spatial constraints. Moreover, the task assignment complexity rises 

exponentially with growing the number of task‟s types.  

Liu and Kroll [14] have focused on multi-robot task allocation in inspection problems with both 

single- and two robot tasks. They have proposed a novel Mimetic algorithm combining a genetic 

algorithm with two local search schemes. The optimization parameter that is used in this research 

is the Completion time of all tasks. The optimization was done with the following constraints:  

 N robots carry out the inspection. 

 Every subtask is executed only Once.  

 Each robot starts and ends at the home base.  

 Robots must be different for the same task.  

 All robots in the same task must work together to accomplish the task successfully.  

 No one robot assigned to two tasks at the same time. 

 Finally, tasks, assigned to robots must be executable.  

In addition, the optimization mathematical equations that were used are as follows: 



40 

 

𝐽 = max
𝐾𝜖{1,…,𝑁𝑅  }

  𝐶𝑖𝑗𝑘 𝑋𝑖𝑗𝑘

𝑁𝑃

𝑗=0,𝑗≠𝑖

𝑁𝑃

𝑖=0

 

Equation (4-26) 

Subject to: 

  𝑋0𝑗𝑘

𝑁𝑃

𝑗=0

𝑁𝑅

𝑘=1

= 𝑁𝑅  

Equation (4-27) 

  𝑋𝑖𝑗𝑘

𝑁𝑃

𝑗=0,𝑗≠𝑖

𝑁𝑅

𝑘=1

= 1          ∀𝑖, 𝑖 = 0,1, …… . , 𝑁𝑅  

Equation (4-28) 

 𝑋0𝑗𝑘

𝑁𝑝

𝑗=1

=  𝑋𝑖0𝑘

𝑁𝑝

𝑖=1

 ,          ∀𝑘, 𝑘 = 0,1, …… . , 𝑁𝑅  

Equation (4-29) 

4.4 Discrete Combinatorial Optimization Techniques 

Since, the dynamic task allocation problem demands the allocation of N robots to M tasks given 

the distance matrix (C) between the robots' positions and the tasks' locations; the target is to find 

the allocation, which results in a minimum cost. The minimal time dynamic task allocation could 

be mathematically outlined as follows:  

𝑓 𝑅, 𝑇 =   𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=0,𝑗≠𝑖

𝑛

𝑖=0

 

Equation (4-30) 
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where N represents the total number of implemented robots, M is the number of currently 

detected tasks, Cij represents the distance between robot i and task j, and xij  ={0,1} implies task i 

is allocated to robot j. The dynamic task allocation problem is considered to be an NP hard 

problem and is believed to be one of the most complex optimization problems; particularly for 

large swarm size (n > 100).  

4.4.1 Combinatorial discrete applications 

In the literature, local search techniques like Simulated Annealing and Tabu Search are located 

to be more effective than the global searching techniques for solving the dynamic task allocation 

problem. Many applications in real life can be classified under the discrete DTA category such 

as, facility layout problems. 

4.4.1.1 Facility layout problem 

As can be identified in [32], in the facility layout problem, an optimal location of facilities must 

be chosen with an objective of minimizing the estimate cost of transportation while considering 

certain constrains such as preventing the placement of hazardous materials near housing or the 

placement of the facility close to the other competitors' facilities.  

4.4.1.2 Scheduling problem 

Another example could be the scheduling problem as defined in [33], in which a finite number of 

resources with different processing power should allocate themselves to various tasks of different 

processing time, while trying to minimize the total time to accomplish the whole tasks. The 

whole tasks will be accomplished when the processing of all tasks is completed using the 

available resources. In most real-life problems, the problem is introduced as a dynamic problem 

(online scheduling). Hence, the task must be introduced to the algorithm for the tasks' allocations 

decision process to be taken online.  

4.4.1.3 Travelling salesman problem 

Also, one of the most well-known applications is travelling salesman problem as specified in 

[34], in which all the cities should be visited exactly once using the shortest way and the 
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algorithm must returns back again to the first city visited after the tour. In this problem, the 

distances among cities and a list of cities locations are given to be able to find the shortest tour.  

4.4.1.4 Maximum clique problem 

Maximum clique problem is also one of the most famous optimization problems in the field of 

information sciences as clarified in [35]. It is a discrete computational problem, which aims at 

finding a collection of vertices which are all adjacent to each other. This is also termed 

as complete sub graphs in a full graph.  

In addition, various formulations established based on how to choose the cliques and what are 

the knowledge and data we have about each clique. For example, finding all the optimal cliques 

that cannot be magnified more, finding the most optimal clique among all the other cliques 

which contains the maximum number of vertices, trying to find out a solution to the decision 

issue by checking if a given clique is bigger than a specific size, and listing the most weighted 

cliques in a given weighted graph, are the most commonly used formulations in the maximum 

clique problem.  

4.4.1.5 Bin packing problem 

Another popular problem is the bin-packing problem where as set of containers or bins must be 

filled with objects that have various volumes as explained in [36]. The packing must be done in 

such a way that tries to minimize the used number of containers. This problem considered to be a 

combinatorial NP-hard in the discrete complexity theory. 

 Many alternatives found in this problem such as linear bins packing problem, packing by cost, 

packing by weight problem and 2D bins packing problem, etc. The applications for the bins 

packing problem include, weight capacity constraints trucks' loading, generating media file 

backups, bins' fill up, and technology mapping in Field-programmable gate array semiconductor 

chip design.  

The bin-packing problem can be also considered as a special category from the cutting stock 

problem as mentioned in [36]. There is also another problem similar to the bins packing problem 

https://en.wikipedia.org/wiki/Clique_(graph_theory)
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called the knapsack problem. However, there is only 1 container and every object is specified by 

a volume and a value instead of just a volume in the knapsack problem. This problem aims at 

maximizing the objects' value that could fill in the container.  

4.4.1.6 Graph partitioning problem 

One last example is graph partitioning which is defined in [37] as information symbolized in the 

form of a graph G = (V,E), in which V represents vertices and E represents edges. In such 

problem, we must be able to divide a specific graph into a set of small partitions with given 

properties. For example, a k-way problem divides a large vertex graph into k smaller groups. The 

smaller the number of edges among the various groups the better the partition is.  

Examples from the computer engineering field include, minimizing the wires among the 

electronic devices, which try to connect the backboard and optimizing the layout of the digital 

signal processors' memory. Moreover, a more significant application could be the analysis of the 

reaction chemistry.  

4.4.2 PSO limitation in solving discrete combinatorial problem 

As I mentioned before, it is proven that meta-heuristics optimization techniques are fascinating 

options to solve the dynamic task allocation problem. Through the last decade, various natural 

based meta-heuristics optimization techniques have been used by Benlic [38, 39] to solve the 

dynamic task allocation problem. Also, a lot of hybrid and memetic techniques that combine 

both local searching approaches with a natural swarm based techniques were proposed and 

proven to be very robust and efficient.  

Mangat, Kulkarni, and AlRashidi [40, 41, 42] showed that almost all of these approaches need to 

be adapted to fulfill the requirements of these combinatorial discrete optimization problems and 

lots of researchers spend lots of effort and time  to be able to find adequate solution to these 

combinatorial problems. However, Particle Swarm Optimization technique, which has proven to 

give a superior performance in lots of continuous applications, has not received similar attention 

at the combinatorial discrete direction.  

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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They also illustrated [40, 41, 42] that the superiority of the Particle Swarm Optimization 

technique over the other natural-based techniques is due to its simplicity. Since the Particle 

Swarm Optimization technique is not inherently discrete in its basic canonical shape, it is not the 

most suitable choice to be applied to solve the discrete optimization problem, specially the 

dynamic task allocation problem. This problem is the reason after always applying the Particle 

Swarm Optimization technique in lots of continuous domain applications and avoiding using it 

with the discrete domain.  

In the dynamic task allocation problem in swarm robotics, each robot has to assign itself to the 

nearest and most appropriate task of the all the other tasks in the problem. However, unlike the 

ant colony optimization technique which is inherently discrete in its basic form, PSO cannot be 

applied to the allocation problem directly in its known form as it is not inherently discrete.  

Hafiz and Abdennour [43] explained that the Euclidian-distance-based learning concept that is 

used in PSO while updating the values of the particles' positions and velocities is the essential 

cause behind this restriction. If the Particle Swarm Optimization technique or any of its 

alternatives are to be used to solve the dynamic task allocation problem, it is radical to develop 

and apply a different learning technique than the Euclidean distance-based learning concept. This 

area can be considered as an enormous untapped prospect.  

In order to be able to use the already accumulated researchers' efforts, which are previously 

developed within the continuous domain of the Particle Swarm Optimization, a new learning 

concept must be introduced along with the fundamental framework of the Particle Swarm 

Optimization. The social learning concept by sharing the particles' experience is the core process 

in the Particle Swarm Optimization technique.  

The basic idea of the Particle Swarm Optimization technique remains stable and firm from the 

very beginning. However, as specified by Hafiz and Abdennour [43], a lot of refinements and 

invariants have been introduced to Particle Swarm Optimization through the last decade. The 

focus of most of these improvements was on the experience-sharing concept such as the learning 

exemplar, the neighborhood topology, or the parameter control. At any given iteration, the basic 
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update equations for the particles in the PSO can be given using equation (3-31) and equation (3-

32). 

4.4.2.1 Challenge 

As can be shown from equation (3-31) and equation (3-32), the distance is the base for the 

learning concept in the Particle Swarm Optimization. The cognition experience and the social 

experience are both used to determine the next step for the particle. The Euclidean distance 

between the current position of the particle itself and the learning exemplar represents its next 

move. The particles start moving in the direction of the learning exemplars in order to minimize 

the Euclidean distance.  

While the particles' searching procedure, new promising regions could be found within the 

search space. Since the Euclidean distance cannot be used as a fitness function in the discrete 

problems like dynamic task assignment, thus the considerable challenge of this type of problem 

is to find another fitness measure than the Euclidean distance.  

4.4.2.2 Solutions from literature 

In order to solve this problem, various alternatives of binary versions from the fundamental 

Particle Swarm Optimization [43] have been proposed. The main difference among these 

alternatives is the methods by which the updated position is generated from the velocity as 

appeared in [44, 45, 46].  

Kennedy and Eberhart have developed a binary version from the basic version of the PSO 

(1997). In this Particle Swarm Optimization's binary version, the velocity reflects the particle‟s 

probability of changing the position state instead of the speed by which the particle moves 

towards the target.  

Also, the rank-based approach is another alternative to discretize the Particle Swarm 

Optimization which has been developed by Liu [47].  The word “discretize PSO” means a 

special version from PSO that could be used to solve the combinatorial discrete problems. In this 

approach, the fundamental updating rules for both the position and the velocity kept unchanged. 
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Thus, in order to find a new feasible solution, the velocity value is used to give a ranking to the 

dimension of the new state. However, since the ranking based concept doesn't necessarily give 

an indication to the quality of solution in the dynamic task allocation problem, it is not suitable 

for this type of problems. 

In [48], another variant for Discrete Particle Swarm Optimization is also proposed in 2003, in 

which the velocity represents the probability of swapping with the learning exemplar and each 

particle indicates a permutation. However, in this approach, either the social or cognition 

learning capability is lost, since the swapping can be applied with only one learning exemplar, 

either the personal best or the global best. Furthermore, this approach restricts the swarm's 

searching ability because only one swap can be done for each particle.  

One last popular approach is to rely on the set-based approach to discretize PSO, which is 

commonly used in data mining problems for attribute choices. A two-dimensional array 

represents the velocity and an attribute set indicates the position, were used in [49]. However, the 

technique is not generic and was specially developed for the problem of attribute choice.  

In addition, another set-based variant was proposed by Neethling and Engelbrecht [50] where the 

new position of the particle is calculated using the personal best, the global best, and another 

random variable depending on three various probabilities. However, these techniques suffers 

from limitation in the searching ability. The mathematical operators that are used within the 

updating rules of the velocity in the Discrete Particle Swarm Optimization have also been 

redefined by Clerc [51] to be used in the travelling salesman problem.  

In [52, 53], the same redefined operators are utilized in the multi-dimensional problem of 

Knapsack. Despite of the generality of these approaches, they result in increasing the complexity 

of an otherwise quite simple Particle Swarm Optimization technique.  

4.4.2.3 Limitations of  previous discretization techniques 

The common restriction of these previous techniques is that they are not generic and each one of 

them is specifically designed as a special algorithm to find a solution to a special category of 
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problems. Hence, they lose the advantage of utilizing the already existing research efforts that 

have been discovered through years of improving the Particle Swarm Optimization technique's 

performance in the continuous domain.  

As discussed by Hafiz [43], it is essential to try to maintain the simplicity of the Particle Swarm 

Optimization technique while implementing a discretized version from PSO to be able to find 

solutions to combinatorial discrete optimization problems in a simple way. However, those 

previous techniques add some sort of complexity to the simple structured classical PSO 

technique. 

4.5 Optimization Techniques for Solving DTA Problem 

DTA in homogeneous swarm robotics is a typical non-polynomial (NP) optimization problem. In 

order to find an optimum or a near optimum solution for nonlinear problems, two major 

categories could be followed in [54]. The first one based on the mathematical formulation, such 

as integer linear programming, mix-integer programming, nonlinear programming. It is well- 

known that exact solvers used to solve optimization problems are fast, deterministic, and can 

obtain exact solutions. However, it is unsuitable for large size problems, because the exponential 

time complexity for exact search methods on large size NP-hard problems cannot be altered. 

Also, the most obvious cons for this category are that it mainly demands that the problem could 

be formulated as mathematical equations.   

In addition, the algorithm required for such a problem should be a mathematical derivative 

technique, such as the modified one's assignment method and Hungarian algorithm. This type of 

techniques is quite reliable in the sense that they have been implemented and used for decades 

now as marked in [19]. The most promising mathematical method to solve the MTDTA is called 

the Hungarian method. However, this technique is only suitable for small size problems science 

it is time-consuming.  

The second category contains the local and global meta-heuristic optimization algorithms. 

Heuristic techniques such as Tabu Search, Genetic Algorithm, Particle Swarm Optimization, Ant 

Colony, and Simulated Annealing has been studied and developed heavily in the past few years 
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for solving various optimization problems. Shieh [19] declared that some of these techniques are 

in the form of probabilistic discrete heuristics, with local search abilities and others with global 

search capabilities.  

However, one of the common disadvantages of these techniques as identified by Wang and Liu 

[54] is that it always gets trapped in a local optimum solution and it could only reach the global 

optimum solution in some special cases in which the swarm sizes are small. In 2001, Wang and 

Zhang [55] proposed a hybrid optimization algorithm based on a combination of both Genetic 

Algorithm and Simulated Annealing.  

Also, One of the best algorithms that, has been implemented efficiently through years to find 

solution for lots of complex problems is genetic algorithm. However, many shortages have been 

detected in GA's performance in the last decade. These deficiencies have been showed up in a 

highly epistatic objective function's efficiency in which highly correlated optimization variables 

are considered.  

In addition, Shieh, Kuo and Chiang [19] illustrated that because of the availability of similar 

structures in the population chromosomes, the mutation and crossover procedures suffers many 

deficiencies too. Moreover, the fitness values become larger at the evolutionary process end. 

Also, the GA's early convergence reduces its search ability and thereby decreases the algorithm 

performance, which results in a higher chance of becoming trapped in a local minimum solution. 

Recently, the Particle Swarm Optimization technique has been the prime technique committed 

by many researchers [19] as a global searching algorithm due to its fast convergence and 

simplicity. It has been used to find solutions for many real time problems. By using PSO, many 

issues, which could be found in the old greedy algorithms can be easily eliminated, such as the 

restrictions in the variables' continuity and the restrictions in the acceptance of some forms of 

fitness functions. PSO has been verified to be one of the most promising algorithms to solve 

nonlinear continuous optimization problems. 



49 

 

Generally, PSO algorithm owns a better convergence time because it is a global parallel 

optimization technique. However, similar to the case of GA, the prime cons of the PSO is its 

early convergence that may happen when the global best and local best particles got trapped into 

a local optimum solution in the search space. Shieh, Kuo and Chiang [19] explained that the 

main reason for the problem is the tendency of the particles to move towards its near local 

optimum solution in the search space. Thus, most of the particles tend to gather in a very small 

search space, and they own a very weak global searching capability. 

On the contrary, one of the most essential properties in SA is its probabilistic jumping 

characteristic, termed as the metropolis process. This process could be controlled by adapting the 

temperature parameter. It has been demonstrated by Shieh, Kuo and Chiang [19] that the SA 

algorithm could easily find the global minimum solution given that a proper parameters' 

selection is provided. Thus, a hybrid PSO/SA algorithm is developed in this thesis. The 

prominent characteristic of this innovative hybrid technique, which combines both DPSO and 

SA is the ability to find higher quality solution within a small and stable convergence time.  

Thus, this section is dedicated to provide a background on both PSO and SA, which are both 

going to be used to build the proposed novel hybrid approach. So, in the next two subsections, 

the definition, flowchart, pseudo code, advantages and disadvantages for each one of those two 

techniques are addressed. 

4.5.1 Particle Swarm Optimization technique 

First, the Particle Swarm Optimization (PSO) technique which is inspired by the birds‟ swarming 

or fish‟s schooling patterns was developed by Russell Eberhart and James Kennedy in 1995 [56]. 

At the very beginning, computer software simulations of birds swarming around food sources 

were implemented by those scientists, then later they determined how could this algorithm been 

utilized on optimization problems. 

Derivative from social insect‟s behavior, the swarm intelligence approach presents some 

praiseworthy characteristics, such as self-organizing capacity and flexible behavior to 

environmental changes. Swarm intelligence are now widely used for solving various applications 
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due to good global and local search capability, e.g. for traveling salesman problems with hotel 

selection, for staff scheduling in airport security service, for fast rescheduling of multiple 

workflows, for the optimal winner determination problem, and for vehicle routing problems. 

PSO is really a very straightforward technique as specified by [56] despite how much it might 

appear complex. As can be seen from figure 4.2, a set of variables‟ values are altered to become 

closer to the variable whose value is the nearest to the target‟s value after a hundreds of cycles. 

For example, if a swarm of birds flocking around a specific position in which a hidden target, 

like a food source could be sniffed. The nearest bird to the target tweets loudly and the remaining 

ones run towards its direction. When any of the other flocking birds becomes closer to the food 

source than the previous bird, it tweets loudly and the remaining birds swing in its direction. 

Once one of the birds reaches exactly to the position of the target, all the birds stop. This 

technique is very straightforward and thus its implementation is very easy. 

 

Figure 4.2: First and last iterations in PSO [57]. 

 

Three global variables need to be taken into consideration carefully during the algorithm run: 

 The nearest particle to the goal, “Global best” 

 The criteria in which the algorithm must stop “Stopping criteria”, such as a maximum 

number of iterations 

 The goal, "target" 
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As can be seen from figure 4.3, three variables could be used to describe each particle: 

1. The personal best, which denotes the best position ever the particle pass through. 

2. The position, which indicates the particle current solution. 

3. The velocity, that represents the amount by which the position is going to be changed. 

 

Figure 4.3: PSO position update. 

 

The position of the particle can be in any form. It could be one dimension, two dimensions, or 

three dimensions. For example, the position of the birds in the previous example of the swarming 

birds is in the form of (X, Y, Z), where X is the x-dimension coordinate, Y is the y-dimension 

coordinate, and Z is the z-dimension coordinate. Each bird in the swarm keeps trying to come 

closer to the global best bird, which is the nearest one to the food source. The position sequence 

or coordinate keeps changing until it reaches to the same position of the target as explained by 

Hu [56]. 

The velocity value determines how much the particle‟s position is far from the target‟s position. 

The velocity becomes larger, if the particle is far away from the target. However, the more the 

particle comes closer to the target, the more the particle‟s velocity decreased. If the particle‟s 

position matches the target‟s position, its velocity becomes zero. By considering the previous 

birds‟ example, the birds that is far away from the food source have to fly faster to the best 

particle, and that‟s why its velocity is always larger which gives it more power to reach to the 

target. To sum up, the velocity represents how much is the range between the particle position 

and the target position and thus how fast the particle needs to travel to reach the target exactly. 
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Each particle's pBest value only indicates the closest the data has ever come to the target since 

the algorithm started. 

The gBest value only changes when any particle's pBest value comes closer to the target than 

gBest. Through iterations of the algorithm, gBest gradually moves closer and closer to the target 

until one of the particles reaches the target, see figure 4.4. 

 

Figure 4.4: PSO global best update over different iterations [57]. 

A different set of topologies or neighborhoods can be used with PSO algorithms‟ populations as 

discussed in [57]. These topologies could be used to simplify and divide the whole population 

into simpler groups. Each one of these subsets contains a set of particles (two or more) which are 

pre-decided to cooperate and they often share the same part of the search space. To reach the 

global minima and avoid getting stuck in local minima, it is often better to use topologies. 

Examples of these topologies can be shown in figure 4.5. 

 

Figure 4.5: PSO topologies [57]. 
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Figure 4.6: Flowchart of the Particle Swarm Optimization technique 
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As can be seen from figure 4.6, the PSO algorithm steps are as the follows: 

 First, a random allocation is chosen for each particle in the swarm A0. 

 Then, the personal best (Apbest) and the global best (Agbest) for each particle is initialized 

to be equal to its own initial position. 

 Then, the algorithm starts to iterate for a specific number of iterations (maxit). 

 The fitness value of each particle allocation is calculated according to the objective 

function, which is the minimum distance from each robot to its corresponding task 

(Euclidean distance).  

 Then, comparison is made between the current calculated fitness value for each particle 

and the previous calculated best fitness. If the new allocation fitness is smaller, it is 

chosen as the particle personal best. Then, the smallest fitness among all the particles is 

chosen as the global best. 

 After that, the particle, which has the global best allocation, sends its allocation to the 

other particles. 

 Furthermore, each particle calculates the velocity, which it uses to move towards its new 

allocation according to the velocity‟s update equation of the PSO as specified in equation 

(3-31). 

𝑣 = 𝑤 × 𝑣 + 𝑐1 × 𝑟𝑎𝑛𝑑 ×  𝑝𝑏𝑒𝑠𝑡 − 𝑥 +  𝑐2 × 𝑟𝑎𝑛𝑑 ×  𝑔𝑏𝑒𝑠𝑡 − 𝑥          

Equation (4-31) 

Where, constants c1 and c2 is chosen to be 2, and rand is a random number from 0 to 1. 

 Then, the new position or allocation for each particle is updated using equation (3-32). 

𝑥 = 𝑥 + 𝑣 

Equation (4-32) 

 Finally, if the number of iterations reaches the maximum iteration, the algorithm stops. 

Then, each robot begins its task execution according to the global best allocation solution 

found in A*. If not, steps from 4 to 9 are repeated. 
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After designing the flowchart, the pseudo code for the PSO is developed as follows: 

a) Main code 

  

 1: Initialization (Nt, Nr); 

 2: While it ≤ maxit { 

 3: Personal best update (A, Apbest, Agbest); 

 4: Global best update (Pbest); 

 5: Global best allocation diffusion (idgbest); 

 6: Calculate particle’s velocity; 

 7: Update particle’s position; 

 8: } 

 9: Execute; 

  

b) Initialization 

  

 Input: Nt, Nr 

 Output: A, Apbest, Agbest 

 1: For i = 1 to Nr { 

 2:  A[i] = random generator (1, …, Nt); 

 3: } 

 4: Apbest = A, Agbest = A; 

 

c) Personal best update 

 Input: A, Apbest, Agbest 

 Output: Pbest 

 1: Calculate fitness value f (A); 

 2: if f (A) ≤ f (APbest) { 

 3:  Apbest = A; 

 4: } 

 5: msg ← (id, f(APbest)); send fitness value to all other robots  

 6: For every other robot { 
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 7: Exchange the fitness value; 

 8:} 

 9: For i = 1 → Nr { 

 10: Pbest[i] = f(APbest) for robot id = i; 

 11: } 

d) Global best update 

 Input: Pbest 

 Output: idgbest 

 1: idgbest = 1;  

 2: Pbestmin = Pbest [1]; 

 3: for i = 2 → Nr { 

 4:  if Pbestmin > Pbest[i] { 

 5:  idgbest = i; 

 6:  Pbestmin = Pbest[i]; 

 7:  } 

 8: } 

e) Global best allocation diffusion 

  

 Input: idgbest 

 Output: Agbest 

 1: if idgbest is my id { 

 2: Send (Agbest); 

 3: } 

 4: Else { 

 5:  Receive (Agbest); 

 6: } 

The collective behaviors of social insects, such as the honeybee‟s dance, the wasp‟s nest 

building, the construction of the termite mound, or the trail following of ants, were considered 

for a long time strange and mysterious aspects of biology. In the most recent years, it has been 
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deduced that particles do not need precise information or a complex representation of this 

information to generate such complex attitudes. In the search space, the particles do not have 

exact knowledge about the whole population. The particles reach to their destination without the 

need to be coordinated by a single leader. However, the information about the swarm and the 

environment is shared among all the particles. All the particles need to cooperate with each other 

in order to accomplish the whole task and no particle could finish its task on its own as 

determined by Navarro and Matía [7]. 

Social insects are able to exchange information, and for instance, communicate the location of a 

food source, a favorable foraging zone or the presence of danger to their mates. This interaction 

between the individuals is based on the concept of locality, where there is no knowledge about 

the overall situation. The implicit communication through changes made in the environment is 

called stigmergy. Insects modify their behaviors because of the previous changes made by their 

mates in the environment. This can be seen in the nest construction of termites, where the 

changes in the behaviors of the workers are determined by the structure of the nest as stated by 

Navarro and Matía [7]. 

Navarro and Matía [7] have mentioned that the particles communicate among each other and 

with the environment in order to form a social arrangement. The information, which is resulted 

from this cooperation, is distributed along the population and thus a complex tasks that cannot be 

solve with a single particle can be accomplished in this way. These global attitudes are described 

as self-organizing attitudes. The complex attitudes which results from the communications 

among very simple single particles can be explained by the self-organization theories, which are 

mainly, deduced from physics and chemistry domains. Positive feedback, negative 

feedback, randomness, and multiple interactions are the four main principles, which produce the 

self-organization behavior. 

Some properties seen in social insects as desirable in multi-robotic systems are:  

 Flexibility, the swarm must be able to create different solutions for different tasks, and be 

able to change each robot role depending on the needs of the moment.  
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 Scalability, the robot swarm should be able to work in different group sizes, from few 

individuals to thousands of them. 

 Robustness, the robot swarm must be able to work even if some of the individuals fail, or 

there are disturbances in the environment.  

4.5.2 Simulated Annealing technique 

Simulated Annealing (SA) is a probabilistic technique for approximating the global optimum of 

a given function. Specifically, it is a meta-heuristic to approximate global optimization in a 

large search space. SA is one of the most proper techniques if we deal with a discrete search 

space, such as the problem of choosing the order of cities to be visited by tours in order to 

minimize the overall cost. Geltman [58] specified that if an approximate global minima is require 

more than an accurate local minima and the time to find the solution is a limited amount of time, 

SA is preferred than other existing optimization techniques like ant-colony. 

The name of the technique is inspired from the annealing process of the metal, which involves 

heating and controlled cooling of a metal to decrease their defects and increase its crystals‟ size. 

Thermodynamic free energy controls these two properties. To sum up, both the temperature and 

the thermodynamic free energy are affected by Heating and cooling the material. 

Geltman [58] illustrated that accepting bad solutions is an essential characteristic of meta-

heuristics as it helps to explore new regions in the search space in order to find the most 

optimum solution. The slow cooling of the metal can be translated as a slow reduction in the 

probability of how much could we accept bad solutions while exploring the search space. The 

energy function which need to be minimized and the state of some physical systems are similar 

to the internal energy of the system in that state. The target is to translate the system from an 

initial state with a high energy to another state, which has less amount of internal energy. 

The SA algorithm could decide to leave its current solution and move to a neighboring solution 

at each iteration, if and only if the neighboring solution drives the system for more stability state 

in which the internal energy of the system is decreased. The stopping criteria could be either the 
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arrival to an acceptable state for the application or the arrival to a maximum number of 

iterations. Thus, the stopping criteria often depend on the application itself, see figure 4.7. 

 

 

Figure 4.7: Simulated Annealing technique demonstration [59]. 

 

Geltman [58] discussed that a predetermined well-defined way must be used in order to drive the 

system from the current state to the neighboring state. A permutation of a visited city is a very 

common method for states‟ changes, which is always used in the traveling salesman problem. 

Swapping any two successive cities, reverse the order of any number of successive cities, or 

choose a specific city and insert it between two successive cities are examples of common 

methods that could be used to determine a new neighboring state. The predetermined common 

way, which is decided to be used in choosing the new neighboring state, is referred to as a 

“move” and each move resulted in a distinctive new neighbor. It is better for the moves to be 

chosen to change as minimum part as it could in order to preserve the system stability and 

change only the worse part. For example, the connections between the cities are the states of the 

systems in the traveling salesman problem. 

One of the most common issues in the optimization problems is that the algorithm could get 

stuck in a local minimum and never reaches to the global optimum solution. Therefore, sometime 

while searching for new solution, a worse solution could be accepted to explore new search 

https://en.wikipedia.org/wiki/Traveling_salesman_problem
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spaces as the final best solution is found after a tour of different neighbors in which some of 

them could be bad solutions. Some old heuristics, the algorithm moves only to a better solution. 

However, this way the algorithm could reach a state some times in which no better solutions are 

found. This does not mean that no better solution could be found at all. However, it means that 

the system gets stuck in a local minimum. If a worse solution is accepted sometimes in order to 

avoid local minimum and the run time of the algorithm is infinite, most probable the global 

optimum would be found. 

However, by comparing the SA algorithm with the other technique, why to choose SA: 

Genetic algorithm, hill climbing, ant-colony, clustering auction, and more are very common 

optimization algorithms. However, most of them get stuck in a local optimum and never reaches 

the global optimum. What Distinguish  SA is that it has a technique by which SA sometimes 

accept worse solutions in order to avoid local optimum and explore new areas from the search 

space. 

You can visualize this by imagining a 2D graph like the one shown in figure 4.8. X-coordinate 

represents the system states “solutions”, and the Y-coordinate represents how good that solution 

is. 

 

 

Figure 4.8: Simulated Annealing cost function [60]. 
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At the beginning, optimization algorithms produce an initial state randomly. Then, the algorithm 

searches for a neighbor, which owns a better solution. If a better state is found, it moves to this 

state. However, the algorithm stops if no more better states can be found around. 

This actually makes sense. However, Busetti [60] showed that it could lead to a local optimum 

solution rather than the global optimal one. As shown in figure 4.9, the left yellow star is the 

optimal solution at the beginning. Then, the green right star, which is a local minimum solution, 

is found. Once a simple algorithm finds this solution, it will never move to any other solution 

because all its neighbors are larger solutions. 

 

 

Figure 4.9: Local minimum vs. global minimum [60]. 

 

SA sometimes moves to a new random solution, which is worse with a probability function in 

order to avoid getting stuck into a sub-optimal. In addition, it tries not to get much away from its 

current state because the target may be nearby. Regardless of the starting point of the algorithm, 

this technique capable of tracking the best solution and attain the optimal state at the end. 

Here is a really high-level overview, see figure 4.10. It skips some very important details, which 

will be gotten to in a moment. 
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The algorithm steps: 

 At the beginning, a new state must be produced randomly. 

 By choosing a specific fitness function for the problem, find the fitness value for this first 

state. 

 Produce another neighboring state randomly. 

 Find its fitness value too. 

 Then, a comparison has to be made: 

 The algorithm leaves the current state to the new state, if Cnew < Cold. 

 The algorithm may decide to move and may not, if Cnew > Cold. 

 Continue executing the previous steps 3-5 until finding a proper state with a reasonable 

fitness value or until the number of iterations reach its maximum value. 

Let‟s break it down: 

 At the beginning, a new state must be produced randomly. 

It must be chosen randomly; it does not have to be an optimal choice or ever a quite good 

solution. Any one of the available states could be chosen. 

 Find the fitness value for this first state. 

Depending on your problem, this cost function is calculating the total number of meters the 

robots travel. Calculating the cost of each solution is often the most expensive part of the 

algorithm, so it pays to keep it simple. 

 Produce another neighboring state randomly. 

The new generated state must be distinct from the old one in only one change, for example, two 

elements from the old state could be swapped or a single element could be removed from its 

place and inserted between two successive elements. "Neighboring" means there is only one 

thing that differs between the old solution and the new solution. 
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 Find its fitness value too. 

Use the previous fitness function, which has been used to calculate the fitness value for the first 

state. It should be used for the rest of the problem. 

 If Cnew < Cold: take a step to the new state 

Move to the new state if its fitness value is better than the fitness value of the previous state. In 

this case, the system becomes more stable and therefore happier as it becomes closer to the bet 

state. Preserve this state as the main state for the next cycle. 

 If Cnew > Cold: maybe move to the new solution 

The system always avoids moving to the new state, which is worse than the previous state. In 

this case, the system gets stuck in a local minimum and would never reaches to the global 

optimal solution. In order to escape from getting stuck in a sub-optimal solution, the algorithm 

could sometimes choose the worse state. A probability of whether to accept the new state or not 

must be calculated which is referred to as the (acceptance probability).  

After that, a comparison between this probability and a generated random number must be done 

to decide whether to accept it or not. 

In order to calculate the acceptance probability value, the temperature current value, the current 

fitness, the new fitness and a random number between zero and one are needed. The random 

number is a probability to choose whether to move to the new state or wait in the old state.  

For example: 

 0.0: 100% stay in the old solution because it is better than the new one. 

 1.0: 100% move the new solution because it is better than the old one. 

 0.5: move with probability 50%. Therefore, it may move and may not. 
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Figure 4.10: Simulated Annealing flowchart [60]. 

 

After that, a comparison between the randomly generated number and the acceptance probability 

has to be done and the algorithm moves to the new state if the random number is smaller. 

As defined by equation (3-33), this equation is typically used for the acceptance probability is: 

𝒂 =  𝐞 𝐂𝐨𝐥𝐝−𝐂𝐧𝐞𝐰 /𝐓 

Equation (4-33) 
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In the previous equation, the acceptance probability is referred to as a, the variation between the 

current fitness and the new fitness is referred to as (Cold−Cnew), the temperature is referred to 

as T, and e is 2.71828. 

The previous equation is a part of SA, which was inspired by the metal annealing process. This 

equation characterize the process of heating the metal to increase the temperature of the internal 

energy and increase the speed of the internal particles, and then cooling it down slowly. After 

cooling down the temperature, the particles‟ speed start decreasing and the metal internal energy 

start also to decrease. This process is used by the Computer engineering researchers, by which 

the algorithm moves from a higher fitness state to another lower fitness state. 

Hence, it could be concluded from the SA‟s equation that the acceptance probability becomes: 

A. Lower when the current state is better than the new state. 

B. Lower when the temperature decreases. 

C. Greater than one if the current state has a worse fitness than the new state. In this case, 

α=1 is used to avoid having a probability greater than 100%.  

Thus, as reported by Busetti [60] the algorithm tends to accept worse solutions at the beginning 

when the temperature is high. In addition, if two bad moves exist, the algorithm tends to choose 

the one with the better fitness. 
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        Chapter 5 

 Minimal Time Dynamic Task Allocation Through Hybrid 

DPSO/SA Algorithm  

In this thesis, we propose a hybrid DPSO/SA algorithm that fuses the concept of SA algorithm 

with the discrete DPSO algorithm to overcome the imperfections of both SA and DPSO. SA is 

used to promote the DPSO's local searching capability. The hybrid algorithm not only possesses 

the pros of DPSO and SA but also omits the cons of both of them such as the local minima 

problem in DPSO and the slow convergence time of SA technique. 

Therefore, in the next four sections, we start with the design and implementation of the 

Hungarian algorithm as an exact solver for the MTDTA problem. Then, the DPSO technique is 

developed followed by SA technique and we end up with the implementation of the proposed 

hybrid DPSO/SA approach. 

5.1 Hungarian Algorithm 

One of the best optimization techniques that could make advantage of the special structure of the 

MTDTA problem and provide an exact solution to the problem is the Hungarian method. This 

exact solver is used as a model to compare between the hybrid PSO/SA algorithm with both 

classical DPSO and SA techniques.  

Basically, the exact solution resulted from applying this technique is used to normalize the 

outcomes from the other techniques and then we classify these outcomes into three categories, 

small swarm size, medium swarm size, and large swarm size to provide more readable and clear 

results.  

This combinatorial optimization algorithm could find solution to the MTDTA problem in a 

polynomial time. However, the time complexity for the large size problem is significantly large 

as mentioned in [61]. This method is basically based on previous works done be the Hungarian 

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Polynomial_time
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mathematicians: Dénes Kőnig and Jenő Egerváry [62]. The algorithm was implemented and 

published by Kuhn [63] in 1955, and Kuhn was the one who called it the "Hungarian algorithm".  

In 1957, the Hungarian algorithm has been revised by Munkres [64], and he noticed that the 

algorithm is substantially sufficient. After that, the algorithm became well known as "Munkers 

assignment algorithm". The Hungarian algorithm basically had time complexity of O(n^4) in the 

big O notation. Figure 5.1 shows various time complexity functions in the big O notation.  

 

 

Figure 5.1: Complexity functions 

 

The big O notation [65] is a well-known method used for evaluating the run time of algorithms. 

It can be considered as a way to differentiate between the performance of various techniques in 

solving a specific problem. In the big O notation, the algorithms' runtime is addressed in terms of 

https://en.wikipedia.org/wiki/D%C3%A9nes_K%C5%91nig
https://en.wikipedia.org/wiki/Jen%C5%91_Egerv%C3%A1ry
https://en.wikipedia.org/wiki/Harold_Kuhn
https://en.wikipedia.org/wiki/James_Munkres
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how quickly it grows relative to the input, as the input gets arbitrarily large. Let's illustrate this 

more: 

1. It is extremely hard to determine the accurate runtime of a specific algorithm since there 

are a set of external factors that may have a direct impact on the time the algorithm takes 

to run a given function such as the other programs run at the same times on the computer, 

and the processor's speed. Thus, the big O notation evaluates how quickly the algorithm's 

runtime grows instead of the exact runtime. 

2. ALSO, in the big O notation we calculate the runtime growth using the size of the input 

instead of an exact number. 

3. For big O analysis, we concern more about things that grows fastest as the input grows, 

because everything else is quickly eclipsed as the input gets very large.  

For example: 

Assume that we have a swarm system consists of three robots and three tasks as shown in table 

5.1.  The robots termed as R1, R2, and R3, and the tasks termed as T1, T2, and T3. Each one of 

the robots should assign itself to one of the available tasks. However, the robots require paying 

differently for the various tasks because both the robots and the tasks exist at different locations. 

The goal is to find the best allocation among the robots and tasks such that the cost should be 

minimum. 

The problem can be declared as a matrix of the costs (distances) between the robots and tasks. 

For example, as can be seen from table 5.1, cell (1,1) represents the cost of assigning the robot 

number 1 to the task number 1, cell (1,2) represents the distance between the robot number 1 and 

the task number 2 and so on. 

Table 5.1. Example of system with 3 robots and 3 tasks. 

               Tasks 
 robots 

T1 T2 T3 

R1 2 m 3 m 3 m 

R2 3 m 2 m 3 m 

R3 3 m 3 m 2 m 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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The minimum solution of 6m is obtained by applying the Hungarian algorithm on the previous 

example. This solution is obtained by allocating robot 1 to task 1, robot 2 to task 2, and robot 3 

to task 3.   

5.1.1 Cost matrix representation 

Problem definition: Given a collection of tasks and a set of robots, M * N matrix including the 

cost of allocating each robot to each task is set up. Thus, the goal is to find out the minimum cost 

for the allocation problem. 

At the beginning, the matrix, which represents the problem, is formulated as follows:  

 

𝑎1 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 𝑏4
𝑐1 𝑐2 𝑐3 𝑐4
𝑑1 𝑑2 𝑑3 𝑑4

  

where a, b, c and d represent the robots which need to be allocated to task 1, task 2, task 3 and 

task 4. The costs of allocating robot a to task 1, task 2, task 3 and task 4 are termed as a1, a2, a3, 

and a4, respectively. Same definition is applied for the other rows. As specified in [66], by 

considering the problem formulation and the constraints, each task should be allocated to only 

one robot and each robot should be assigned to just one task. 

Steps for solving the assignment problems using the Hungarian algorithm can be outlined as 

follows: 

 

Step 1: 

First, a set of operations should be implemented on the matrix as identified in [67]. We have to 

start by choosing the smallest element in each row and subtract all the row's elements from that 

number. Now, at least there is one zero in each row and may be more if the smallest number in 

the row is replicated in more than one element. Now, we should attempt to allocate tasks to 
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robots such that each robot is performing just one task. The matrix below demonstrate this step 

in which the allocated tasks are represented by the zeroes.  

 

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
𝑐1 0 𝑐3 𝑐4
𝑑1 𝑑2 0 𝑑4

  

Step 2 

In some cases, we could find out that no possible assignment could be applied to the matrix after 

the previous step. Below is an example of such a case. 

 

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
0 𝑐2 𝑐3 𝑐4
𝑑1 0 𝑑3 𝑑4

  

At this stage and as there is no suitable assignment could be performed, because by looking at 

the previous matrix it could be easily figured out that the first task could be assigned as an 

optimal task for both the first and the third robots and this can't be happened because it 

contradicts the problem constraint. Also, task 3 couldn't be efficiently performed by any of the 

active working robots. Therefore, as mentioned by Ghadle and Muley [68], this issue can be 

solved by repeating the previous step but considering the columns instead of rows. So, the 

minimum element at each column must be determined and all elements of this column must be 

subtracted from this element. Then, the robots-tasks assignment should be attempted. 

Now, if an assignment is possible, the robots should be assigned to tasks and the algorithm 

terminates. However, if still no possible assignment exists, then we have to proceed to the next 

step as illustrated in [66]. 

Step 3 

At this step, a minimum number of rows and columns, which could cover all zeros in the matrix 

should be marked. The steps to attain this can be summarized as follows:  
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1. First, all possible allocations should be considered as follows: 

 The zero in the first row is allocated. However, the zero in the third row should be 

eliminated because each task must be assigned to only one robot. Another 

alternative could be to assign the zero in the third row and eliminate the zero in 

the first one instead. 

 The zero in the second row is allocated. 

 No tasks are allocated in the third row because the only zero is eliminated. 

 The fourth row has two possible allocations. So, any one of them could be 

allocated and the other zero should be eliminated. 

 

0 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 0
0 𝑐2 𝑐3 𝑐4
𝑑1 0 0 𝑑4

  

2. Second, the marking step: 

 Mark all rows with no allocations; in this case, the third row is marked. 

 All columns that own zeros in the marked row should be marked too. In this case, 

column one is marked. 

 All rows, which own allocations in the latter marked columns, should be marked 

too. In this case, the first row is marked. 

 Repeat the previous steps for all rows that are not allocated. 

 

x     

0 a2 a3 a4 x 

b1 b2 b3 0  

0 c2 c3 c4 x 

d1 0 0 d4  

 

3. The drawing step: At this step, all unmarked rows and marked columns should be 

covered with lines.  
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x     

0 a2 a3 a4 x 

b1 b2 b3 0  

0 c2 c3 c4 x 

d1 0 0 d4  

 

There are a lot of other techniques that could be used to determine the minimum number of rows 

and columns that could cover all zeros in the matrix. This method is the simplest one of them. 

Step 4 

Now, determine the smallest number from the uncovered area. Then, subtract this number from 

all uncovered elements and add it to all elements, which are covered twice. 

Finally, steps 3 and 4 should be repeated until a possible allocation could be found. To obtain 

this condition, the minimum number of rows and columns, which covers all zeros should be 

equal to the number of robots (rows). 

Note that, as explained in [66], if the number of robots is larger than the number of tasks, extra 

number of columns should be added and filled with dummy values. These dummy values could 

be the maximum number in the whole matrix or the infinity value. 

Example 

In this example, we have four tasks need to be assigned to four robots, only one task could be 

assigned for each robot and only one robot could perform every task, see table 5.2. The 

following matrix represents the cost of allocating each task for each robot and the target is to 

minimize the cost needed for assigning the entire tasks. This assignment problem is solved using 

the Hungarian algorithm as explained in [68]. 
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Table 5.2: Example of system with 4 robots and 4 tasks 

 T1 T2 T3 T4 

R1 82 83 69 92 

R2 77 37 49 92 

R3 11 69 5 86 

R4 8 9 98 23 

 

Step 1, the minimum element in each row of the matrix must be selected and written at the right 

hand side of the matrix. Then, this element should be subtracted from all the elements in the row. 

This process should provide at least one zero at each row. For example, the smallest number in 

first row is 69. This number is written in the right hand side. Then, we have to subtract 69 from 

the first rows' elements, which give us zero at the third column. Same process should be applied 

for the remaining rows. 

 

 T1 T2 T3 T4  

R1 13 14 0 23 69 

R2 40 0 12 55 37 

R3 6 64 0 81 5 

R4 0 1 90 15 8 

 

After that, we have to check, if an assignment could be achieved at this step. Unfortunately, by 

looking at the previous table, task 4 could not be assigned to any of the available active robots. 

So, we have to proceed to the next step. 

Step 2, now the minimum element in each column must be selected and written below the 

matrix. Then, this element should be subtracted from all elements in the column in order to make 

sure that we own at least one zero in each column. In this example, the minimum element in the 

fourth column is 15. Thus, it is subtracted from each element in this column. Now, we are sure 

that we have at least one zero in each row and one zero at each column. However, we have to 
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check if there are suitable assignments for the entire tasks. This could be done by calculating the 

minimum number of lines that could be drawn to cover all the zeros in the matrix. 

 

 T1 T2 T3 T4 

R1 13 14 0 8 

R2 40 0 12 40 

R3 6 64 0 66 

R4 0 1 90 0 

    15 

Step 3, in order to calculate the minimum number of lines needed to cover all zeros in the matrix, 

all rows that don't have a suitable allocation must be crossed out. So, since task 3 cannot be 

assigned to the third robots as it has been already assigned to robot 1, then the third row is 

crossed out. Also, as column three has a zero at third row, it should be crossed out too. Finally, 

all the rows, which own a zero at the third column, should be crossed out too. Thus, row one is 

crossed out.   

Now, the entire crossed columns and the uncrossed rows are covered. Since the minimum 

number of line, which covers all zeroes in the matrix smaller than the number of rows, we have 

to proceed to the next step. 

 

 T1 T2 T3 T4 

R1 13 14 0 8 

R2 40 0 12 40 

R3 6 64 0 66 

R4 0 1 90 0 

 

Step4: now, the minimum number from the uncovered area should be selected. After that, it 

should be subtracted from the uncovered area, and added to the double covered area. Then, we 

have to check if the entire tasks could be assigned to the robots or not. If yes, stop the algorithm 
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and calculate the overall assignment cost. If not, repeat step 3 and 4 again until a suitable 

assignment could be found for all the robots in the swarm. 

 

 T1 T2 T3 T4 

R1 7 8 0 2 

R2 40 0 18 40 

R3 0 58 0 60 

R4 0 1 96 0 

 

The covered zeros in the previous matrix are the minimum allocations. 

 

 T1 T2 T3 T4 

R1 82 83 69 92 

R2 77 37 49 92 

R3 11 69 5 86 

R4 8 9 98 23 

 

Finally, since task 3 is assigned to robot 1, task 2 is assigned to robot 2, task 1 is assigned to 

robot 3, and task 4 is assigned to robot 4, then the total cost for this optimal allocation is 

(69+37+11+23=140). 

In this thesis, the optimal solution to the dynamic task allocation problem is found within 

milliseconds using the Hungarian algorithm in both small and medium swarm sizes (from 7 

robots till 90 robots). The Hungarian code is implemented using MATLAB. The dynamic task 

allocation Problem is basically a special category of the transportation problem, which is a 

special case of another case called the transportation problem, which is a special case of 

the minimum cost flow problem, which in turn is a special case of the linear integer 

programming. Although the optimal solution to any of these problems could be found using the 

https://en.wikipedia.org/wiki/Transportation_problem
https://en.wikipedia.org/wiki/Minimum_cost_flow_problem
https://en.wikipedia.org/wiki/Linear_program
https://en.wikipedia.org/wiki/Linear_program
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general simplex method, it is better to use certain algorithms for each category, which designed 

specifically to take the advantage of its special structure. 

Many techniques are developed to solve the dynamic task allocation problem. The Hungarian 

algorithm is one of these algorithms that have the ability to find an optimal solution to the linear 

assignment problem within time complexity bounded by a polynomial expression of the number 

of robots (N). In addition, auction algorithm and simplex algorithm are other method that could 

be used in this kind of problems. However, when a very large swarm size is considered, 

a heuristics optimization technique with randomization like Simulated Annealing, Genetic 

Algorithm and Particle Swarm Optimization could be a better option to solve the problem and 

find a near optimal solution within a reasonable time. 

Singh [69] states that many decision-making problems where the target is to allocate a collection 

of resources to a finite number of tasks to gain a maximum profit or to achieve a minimum cost 

are referred to as the assignment or dynamic task allocation problem. 

To sum up, the pseudo code for Hungarian Algorithm could be outlined as follows: 

Start 

 1: Subtract each row's elements from the smallest number in the row; 

 2: Subtract each column's elements from the smallest number in the column; 

Check assignment possibility by drawing lines to cover all zeros in the 

matrix 

 3: If (the number of lines = the number of robots) 

 4:  {  

 5:  Perform the allocation; 

 6:  } 

 7: If (drawn lines < number of robots)   

 8:  {  

 9:  Subtract the smallest number of the uncovered area from all the  

  uncovered elements and add it to elements that are covered twice; 

 10: } 

https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Parallel_algorithm
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 11: Repeat the last two steps until a proper allocation is obtained; 

End 

Another numerical example:  

The following matrix contains the cost values of assigning three robots to three tasks as shown in 

table 5.3, and it is required to find the optimal allocation among robots and tasks in order to 

minimize the overall cost. 

 

Table 5.3: Matrix of 3 robots and 3 tasks 

 

 

Step 1: subtract 250 from the first rows elements, 350 from the second row's elements, and 200 

from the third row's elements. 

 

 T1 T2 T3 

R1 0 150 100 

R2 50 250 0 

R3 0 200 50 

 

Step 2: subtract 0 from the first column's elements, 150 from the second column's elements, and 

0 from the third column's elements. 

 

 T1 T2 T3 

R1 0 0 100 

R2 50 100 0 

R3 0 50 50 

 T1 T2 T3 

R1 250 400 350 

R2 400 600 350 

R3 200 400 250 
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Step 3: draw minimum number of lines to cover all zeros in the matrix. Since the number of lines 

equal three (the number of robots), then an optimal allocation is attained. 

 

 T1 T2 T3 

R1 0 0 100 

R2 50 100 0 

R3 0 50 50 

 

Step 4: if there is only one zero in a row, assign it immediately to the robot. However, if there are 

more than one zero in the row, postponed the allocation of this robot till the end.  

 

 T1 T2 T3 

R1 0 0 100 

R2 50 100 0 

R3 0 50 50 

 

After assigning all the robots to their corresponding tasks, start calculating the overall cost for 

the selected assignments. 

 

 T1 T2 T3 

R1 250 400 350 

R2 400 600 350 

R3 200 400 250 

 

The overall cost in this case equals (400+350+200=950). 
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5.2 PSO 

Particle Swarm Optimization (PSO) is a parallel population-based optimization technique 

proposed by Kennedy and Ebehart [70], that was stimulated by the collective attitude of 

organisms such as fishes' schooling and birds' flocking. Particle Swarm Optimization technique 

can be used to solve difficult large-size optimization problems.  

Shieh, Kuo and Chiang [19] clarified that the PSO search process imports the swarming idea by 

which a specific fitness function could be optimized using a collection of particles. Through the 

communications and the co-operations among individuals, the particles tend to move in the 

direction of the best optimal solution. This algorithm tries to simulate the group behavior of birds 

and animals. 

In addition, Shieh, Kuo and Chiang [19] reported that the decision-making in PSO is similar to 

the decision-making process done by human. The process of human learning and cultural 

transition based on two main sources of learning: learning from the human own experience itself 

and learning from other peoples' experience. This learning process is the basis for the human 

decision making process.  

Both the fast convergence and the simple parallel structure of the PSO can be considered as its 

preferable characteristics as illustrated by Shieh, Kuo and Chiang [19]. The main procedures for 

the PSO algorithm are as follows: at the beginning, the swarm particles are generated randomly 

using a uniform distribution and these individuals represents a possible solution within the search 

space. Then, by using both the personal best for each particle in the swarm and the global best 

among all the particles, each individual could decide the direction and the speed by which it 

should move to a new position. After a finite number of iterations, the particle swarm would take 

a fancy towards the minimum solution. 

Wang and Liu [54] explained that the main difference between the Particle Swarm Optimization 

and the other meta-heuristics techniques is that Particle Swarm Optimization technique utilized 

the physical location and movements of the particles in the swarm to update itself. It also has a 
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well-balanced and adaptable technique to promote and adapt via collaborating with the global 

best and personal best particle in the swarm, while other techniques like genetic algorithm 

utilizes genetic operators such as mutation and crossover. Another advantage of PSO is its 

simplicity in coding and its consistency in performance. 

Wang and Liu [54] also notified that the Particle Swarm Optimization technique is somehow 

comparable to the evolutionary algorithms, and it is initialized by a random population of 

different particles. Every particle in the swarm moves in the multi-dimensional search space with 

a particular direction and speed named velocity. Based on the cognition experience of the 

particle itself and the social experience of the whole swarm, the velocity is iteratively adapted. 

The new position for each particle is also adjusted every iteration using equation (3-31) and 

equation (3-32).  

As presented in [54], in Equation (3-31), the first portion indicates the old velocity's inertia. The 

second portion represents the cognition experience, which indicates the experience gained by the 

particle itself. While, the last portion denotes the particle's social experience, which indicates the 

experience gained from the communication and interaction with the other particles in the swarm. 

You could refer to both the main implementation steps for the Particle Swarm Optimization 

technique and the pseudo code in (section 3.5.1). 

Fitness function 

The evaluation of the performance of the candidate solutions within the swarm is done using the 

fitness function. Function f: s --> R+ generally represents the fitness (where s represents a group 

of candidate solutions and R+ represents the positive real values set) as stated in [54]. In the 

dynamic task allocation problem, the objective of the fitness function is particularly the distance 

travelled by the robots in the swarm. 

5.2.1 DPSO 

Hafiz and Abdennour [43] announced that due to the significance of the dynamic task allocation 

in many real-life applications plus the complexity of this problem, it has drawn the attention of 
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considerable research efforts in most recent years. Roughly, most of the evolutionary and natural 

based optimization techniques have been tried to solve the dynamic task allocation problem such 

as, genetic algorithm, ant colony technique, the artificial bee colony technique, etc. In addition, a 

huge number of local meta-heuristics optimization techniques have been applied to solve this 

problem like, Simulated Annealing, Tabu Search technique, Hill Clamping, etc. 

Although, the PSO technique can be considered as one of the most promising techniques in the 

swarm robotics' field and in other distinctive applications, it actually has not received the 

researcher's attention in the dynamic task allocation problem as the other meta-heuristic 

techniques did. The reason behind this could be attributed to the Euclidian-distance based 

learning concept in the Particle Swarm Optimization technique's structure as proposed by Hafiz 

and Abdennour [43]. This problem makes the Particle Swarm Optimization, in its inherently 

continuous basic form, inappropriate for discrete optimization problems.  

5.2.1.1 PSO probabilistic learning mechanism 

In this thesis, a probability-based approach is applied as a learning concept for the Particle 

Swarm Optimization instead of the Euclidian-distance based learning concept. So, a general 

structure to discretize the Particle Swarm Optimization is attained in order to be able to 

implement the Particle Swarm Optimization in its combinatorial form on the problem in our 

hands, which is inherently discrete problem. In addition, comparisons with other local meta-

heuristic approaches are presented in this thesis. 

5.2.1.2 PSO discretization 

The procedures needed to discretize the Particle Swarm Optimization are outlined in this section. 

In addition, both the particles' position and velocity updating rules are introduced with a number 

of illustrative examples. 

5.2.1.2.1 DPSO position representation  

The particles in this algorithm are represented using a particular permutation. The simplicity of 

the encoding scheme of the particles' position is the main reason for the algorithm superiority. In 
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this scheme, the particle is represented as a row of a number of elements. Every element number 

or dimension in the particle indicates a robot and every value recorded in each element denotes 

the corresponding task.  

Example, assume that we have four robots and four tasks, and the particle is represented as {4 3 

2 1} which denotes that the 4th task is allocated to the 1st robot, the 3rd task is allocated to the 

2nd robot, the 2nd task is allocated to the 3rd robot, and the first task is allocated to the 4th robot.  

5.2.1.2.2 DPSO velocity encoding 

However, the velocity encoding scheme is different because each velocity element indicates the 

probability of choosing a specific task to a given robot and so on. The discrete version from the 

Particle Swarm Optimization that has been developed by Kennedy and Eberhart  [71] applies a 

similar approach. However, in this technique, according to which task is going to be assigned for 

which robot, a specific map in the form of matrix is created for each particle, which represents 

the particles' velocity.  

According to each particle's performance, a velocity is calculated for each particle in every 

iteration. For example, in order to get familiar with the update procedures of the velocity assume 

that we have a dynamic task allocation problem with n robots and m tasks. Thus, in this case the 

velocity map for each particle is introduced as an n*m matrix as follows: 

𝑣 =   
𝑝11 ⋯ 𝑝1𝑚
⋮ ⋱ ⋮

𝑝𝑛𝑚 ⋯ 𝑝𝑛𝑚
  

where p indicates the probability of choosing a particular task for a specific robot. For example, 

every ith row has m elements pij, where j equals {1, 2, ....., m}, and each one of those elements 

indicates the probability of selecting a jth task for an ith robot.  

Through the iterations, the particles continue learning new experience from both the social 

learning process and the cognition learning process. As a result, the velocity is updated for each 
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particle in every iteration. Based on this algorithm, by finding a profitable allocation of the task 

to a given robot, the learning operation is successfully accomplished.  

The learning process to allocate various tasks to a group of robots is done as proposed by Hafiz 

and Abdennour [43] using various exemplars such as global best, personal best and local best 

particles. As the beneficial allocations give further promising results, the probability of their 

choice is raised through the update operation. An operator called a set difference operator and 

termed as, setdiff, needs to be calculated In order to determine the profitable components from 

the learning exemplar. The setdiff operator of both x and y particles can be calculates as follows:  

setdiff x, y = {e ∈ x and e ɇ x ∩ y} 

Equation (5-1) 

Four steps are necessary to accomplish the update procedure for the velocity as explained by 

Hafiz and Abdennour [43]. First, using the setdiff operator, the profitable tasks allocations must 

be calculated from the learning exemplars. According to the evaluation of these beneficial 

allocations, a set of probabilities are calculated as a second step. After that, as a third step, the 

performance for each particle is calculated against the swarm and then a comparison must be 

done between the current fitness value and the previous one. Finally, probabilities based on its 

position are updated according to the performance of each particle.  

An illustrative example is provided in order to get familiar with the update procedure of the 

velocity. Assume a dynamic task allocation problem with four tasks, m=4 and four robots, n=4. 

Then, assume that an allocation for a specific particle xi equals {4 3 2 1}, while the global best 

allocation equals {2 3 4 1} and the personal best allocation equals {3 4 2 1}. So, the operator, 

setdiff must be generated in order to accomplish the process of the learning from exemplars. 

𝑆1 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 pbesti, xi = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓  3 4 2 1 ,  4 3 2 1  = {3 4 0 0} 

Equation (5-2) 
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while, 

𝑆2 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓 gbesti, xi = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓  2 3 4 1 ,  4 3 2 1  = {2 0 4 0} 

Equation (5-3) 

where S1 indicates the cognition experience, and S2 indicates the social experience and 0 

represents the null value. Then, as a second step in the learning procedures, after the recognition 

of the beneficial allocations, the probability of choosing these allocations must be raised.  

By applying this step on the corresponding example here, the social learning experience, S2, tells 

us that allocating the second and fourth tasks to the first and third robots is most likely to afford 

substantial outcomes. In addition, the cognition learning experience, S1, indicates that allocating 

the third and fourth tasks to the first and second robots, respectively, are profitable. In order to 

apply these learning results, the first step is to convert the position vector xi and the two learning 

experiences S1 and S2 to a matrix of n × m dimension according the following rule:  

𝜆𝑖𝑗 𝑥 =  
1,                      𝑖𝑓 𝑥𝑖 = 𝑗
0,                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

Equation (5-4) 

Based on equation (5-4), the learning experience sets and the position matrices can be calculated 

as follows:  

𝜆 𝑥𝑖 = 𝜆 {4 3 2 1} =  

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

  

Equation (5-5) 

𝜆 𝑆1 = 𝜆 {3 4 0 0} =  

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

  

Equation (5-6) 
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𝜆 𝑆2 = 𝜆 {2 0 4 0} =  

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

  

Equation (5-7) 

Then, the update process for the ith particle's velocity is accomplished as follows:  

 vi = vi + (c1 r1 ∗ 𝜆(S1)) +  (c2 r2 ∗ 𝜆(S2))

=   

𝑃11 𝑃12 + 𝑐2𝑟2 𝑃13 + 𝑐1𝑟1 𝑃14
𝑃21 𝑃22 𝑃23 𝑃24 + 𝑐1𝑟1
𝑃31 𝑃32 𝑃33 𝑃34 + 𝑐2𝑟2
𝑃41 𝑃42 𝑃43 𝑃44

  

Equation (5-8) 

As can be shown from equation (5-8), the probability of the profitable allocations is raised 

according to the learning sets. So, there are rises in the values of p12, p34 (from social learning) 

and p13 and p24 (from cognitive learning) by the c1r1 and c2r2 coefficients, respectively.  

After calculating the effect of the social learning and the cognition learning on the velocity 

update equation. Now, the third step is concerned with the contribution of the particle itself to the 

velocity update equation as illustrated in [43]. Thus, the probability of a specific particle is raised 

when the current fitness value of the particle is better than the fitness value of its previous 

position. If no enhancement is detected in the particle fitness value, then the probability has to be 

reduced in order to increase the exploration capability of the algorithm. Both the inertia weight 

and the improvement rate in the fitness value of the particle determine the decrease and increase 

amount in the probability of the velocity matrix. The update process in particle number i can be 

evaluated as follows: 
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∆𝑖 =

 
 
 

 
 + 𝑤 ∗ 𝛿𝑖 ,                      𝑖𝑓 

𝑓𝑖
𝑡−1

𝑓𝑖
𝑡 < 1

 − 𝑤 ∗ 𝛿𝑖 ,                      𝑖𝑓 
𝑓𝑖

𝑡−1

𝑓𝑖
𝑡  ≥  1

  

Equation (5-9) 

where δi = 1− (
fi  
t

max (F  
t )

 ), fi 
t  and fi 

t−1 represent the fitness value for the particle number i in the 

current and previous iterations. Also, F 
t represents a vector contains the fitness values for the 

whole swarm in the current iteration. 

Finally, evaluate the velocity using the following equation (5-10) in order to update the 

probabilities of the previous position. 

𝑣𝑖 =  𝑣𝑖 +  (𝛥𝑖 ∗  𝜆(𝑥𝑖) ) =    

𝑃11 𝑃12 + 𝑐2𝑟2 𝑃13 + 𝑐1𝑟1 𝑃14 + 𝛥𝑖
𝑃21 𝑃22 𝑃23 + 𝛥𝑖 𝑃24 + 𝑐1𝑟1
𝑃31 𝑃32 + 𝛥𝑖 𝑃33 𝑃34 + 𝑐2𝑟2

𝑃41 + 𝛥𝑖 𝑃42 𝑃43 𝑃44

  

Equation (5-10) 

It is essential to note that all the previous steps could be briefly summarized using the following 

update equation:  

𝑣𝑖 =  ∆𝑖 ×  𝜆(𝑥𝑖) +  c1 r1 ∗ 𝜆(𝑆1)  +  c2 r2 ∗ 𝜆(𝑆2)  

Equation (5-11) 

From the previous equation, it can be shown that the update equation for the velocity in this 

discretized version of the Particle Swarm Optimization technique is similar to that of the 

continuous normal version of the PSO. Thus, the previous efforts that were spent by researcher 

on improving the original Particle Swarm Optimization is preserved as has been declared in [43].  
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Now, the algorithm steps for updating the particles' velocity can be outlined as follows: 

1. Calculate the setdiff learning experience. 

𝑆1 = 𝑠𝑒𝑡𝑑𝑖𝑓𝑓(pbesti, xi) 

𝑆2 =  𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑔𝑏𝑒𝑠𝑡, 𝑥𝑖) 

2. Calculate current position impact on the velocity update value, Δi. 

3. Finally, calculate the velocity according to equation (5-11). 

5.2.1.2.3 Position evaluation  

The evaluation of the position demands choosing a task from the m available tasks to be 

allocated to each robot. To achieve this, the fundamental idea of the Particle Swarm 

Optimization that has been proposed by Kennedy and Eberhart is extended to utilize the 

probability of the velocity within this framework. The velocity values indicate the learning 

experience that is accumulated from both the social and the cognition learning process through 

the whole searching time. The velocity matrix must be turned into a probability matrix first, 

using equation (5-12), before calculating the particle's new position as explained by Hafiz and 

Abdennour [43].  

 

    𝑛𝑣𝑖 =   

 
 
 
 
 
 
 
 
 
 

𝑣11

 𝑣𝑖𝑗4
𝑗=1

𝑣12

 𝑣𝑖𝑗4
𝑗=1

𝑣13

 𝑣𝑖𝑗4
𝑗=1

𝑣14

 𝑣𝑖𝑗4
𝑗=1

𝑣21

 𝑣𝑖𝑗4
𝑗=1

𝑣22

 𝑣𝑖𝑗4
𝑗=1

𝑣23

 𝑣𝑖𝑗4
𝑗=1

𝑣24

 𝑣𝑖𝑗4
𝑗=1

𝑣31

 𝑣𝑖𝑗4
𝑗=1

𝑣32

 𝑣𝑖𝑗4
𝑗=1

𝑣33

 𝑣𝑖𝑗4
𝑗=1

𝑣34

 𝑣𝑖𝑗4
𝑗=1

𝑣41

 𝑣𝑖𝑗4
𝑗=1

𝑣42

 𝑣𝑖𝑗4
𝑗=1

𝑣43

 𝑣𝑖𝑗4
𝑗=1

𝑣44

 𝑣𝑖𝑗4
𝑗=1  

 
 
 
 
 
 
 
 
 

 

Equation (5-12) 
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So, the velocity matrix in equation (5-12) should be normalized, and it can be used as an index to 

calculate the new particles' position as proposed in Hafiz and Abdennour [43]. The elements in 

every row of the previous velocity matrix indicate the probabilities of selecting m tasks for a 

specific robot that owns the index of this row. For example, the probabilities for selecting the m 

tasks to the ith robot are represented in the ith row of the velocity matrix. The evaluation of the 

new position demands selecting a single task for each robot. Thus, it is required to choose a 

single element from every row of the velocity matrix. 

In the dynamic task allocation problem, it is important to check the validity of the new evaluated 

position solution. In some cases, same task may be allocated to more than one robot while using 

the proposed framework in the new position evaluation. For example, when two or three robot is 

assigned to perform the same task, this gives a non-feasible allocation to the dynamic task 

allocation problem. It is essential to ensure that each robot has a unique allocation to a specific 

task in order to make sure that we have a valid solution.  

Hafiz and Abdennour [43] specified that three steps need to be followed while evaluating the 

new position for every particle in order to get over this problem. The choice of a specific task for 

each robot based on various source set in every step. The velocity is the 1st source set, the 

current position of the particle is the 2nd source set, and the universal set is the third and last 

source set. The universal source set holds the whole tasks (m tasks). 

5.2.1.2.3.1 Position evaluation pseudo code 

Now, the pseudo code for the new position evaluation can be summarized as follows:  

1: Calculate the normalized velocity; 

2: Initialize the position vectors by assigning zeroes to all elements, 

pos={0}; 

3: for i= 1 to m 

4: Choose the largest task probability within the ith row and allocate 

it to the ith location of  the particle's new position vector, pos; 

5: end 
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6: Assign zero to the repetitive elements of the position vector; 

7: If there are zero elements in the position 

8: Determine the zero elements in the position vector; 

9: Substitute these elements with their corresponding elements from the 

previous position vector; 

10: End 

11: Assign zero to the repetitive elements in the position; 

12: If there are zero elements in the position vector 

13: Determine the zero elements in the position vector; 

14: Substitute these elements with their corresponding elements from the 

universal set; 

15: End 

16: Update the particle's position xi=pos; 

Next is an illustrative example on the update process of the position in order to familiarize 

ourselves more with these procedures. Let the velocity matrix vi of the particle xi after the 

velocity update operation is given as:  

    𝑣𝑖 =    

0.54 0.36 1.27 0.64
0.58 0.42 0.87 1.52
0.71 0.04 1.82 0.94
2.44 0.53 1.05 0.88

  

In order to find a probability of choice for every element in the matrix, the velocity matrix needs 

to be normalized first:  

    𝑛𝑣𝑖 =    

0.19 0.13 0.45 0.23
0.17 0.12 0.26 0.45
0.2 0.01 0.52 0.27
0.5 0.11 0.21 0.18

  

So, this normalized matrix is utilized as the main and 1st source set for the new position 

evaluation to the particle number i. The largest element among all the probabilities in each row is 

chosen for the position vector, POS. So, in this case, POS = {3 4 3 1}T. Then, the validity of the 
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POS solution must be checked, and just the unique allocation could be accepted and preserved in 

the new position vector. Since the third task is allocated to the first and third robots 

simultaneously, zero should be allocated in the 3rd element. Thus, the position vector POS 

becomes {3 4 0 1}T.  

Then, the elements with the zero value are determined. After that, the previously determined zero 

elements are allocated with the corresponding tasks from the current position vector which 

represents the 2nd source set in order to accomplish the new position evaluation. So, the current 

position of the particle which is equal to {4 3 2 1} must be checked out in order to allocate 

another task to the 3rd element. Since, the use of the current position to allocate the 3rd element 

gives a valid solution which is {3 4 2 1}T, it is enough to be used and the universal source set is 

not necessarily. Finally, the ith particle's new evaluated position is evaluated to be: xi = POS = 

{3 4 2 1}.  

It is worthily mentioned that a valid solution could also be found using only the velocity without 

referring to both the current position and the universal set and limit ourselves with the 

membership mapping as proposed by Pang et al. [72] and Liu et al. [73, 74]. However, this 

method results in a lower quality solution since some smaller probability values could be 

involved in the evaluated position vector.  

5.2.1.3 DPSO pseudo code 

Now, the complete pseudo code to solve the dynamic task allocation problem based on the 

discretized version of the PSO could be summarized as follows:  

The initialization step: 

 1: Initialize the algorithm's parameters, w, c1, c2, refresh gab 

(rg), and the stagnation count (cnt). 

 2: Initialize the particles' positions randomly, {x1, x2, ......., 

xi, ......., xn}. 

 3: Initialize the particles' velocity using normal distribution 

[0,1]. 
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 4: Calculate the fitness value for all particles in the swarm, and 

initialize the personal best and the  global best to be equal to 

the initial position of the particles. 

The evaluation step: 

 1: For i =1 to maxit 

 2:  If cnt >= rg  // stagnation detected 

 3:   Reinitialize the particles' velocity; 

 4:   cnt=0; 

 5:  End 

 6:  Update the weight, w(i) = w0 -  
 𝑤0−𝑤𝑓  ∗ 𝑖

𝑚𝑎𝑥𝑖𝑡
 ; 

 7:  For j= 1 to n 

 8:   Calculate the ith particle's velocity; 

 9:   Calculate the ith particle's position; 

 10:  End 

 11:  Calculate the fitness values; 

 12:  Save the previous fitness values for the whole swarm; 

 13:  Calculate the new position's fitness value; 

 14:  Update the personal and the global best positions; 

 15:  Increase the stagnation counter if the global best  

   kept unchanged, cnt = cnt + 1; 

 16:  End 

5.2.1.4 DPSO parameters' setting 

One of the most essential parameters to improve the searching capabilities of the Particle Swarm 

Optimization technique as announced by Wang and Liu [54] is the inertia weight w. A big inertia 

weight increases the exploration capabilities of the algorithm by opening the research within new 

areas whereas a kind of small inertia weight increases the exploitation capabilities via precise 

searching within the same current area.  
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Thus, an appropriate choice of the value of the inertia weight results in a sufficient balance 

between the global exploration and the local exploitation, and leads to a kind of less number of 

iterations to discover an efficient outcome as clarified in [54]. Therefore, reducing the inertia 

weight linearly from a kind of large value to a small value through the path of the Particle Swarm 

Optimization run, leads to increase the global search capability of the algorithm at the beginning 

of the search process, while increasing the local search capability close to the termination of run.  

Actually, in this thesis the inertia weight is chosen to be as follows:  

𝑤 = 𝑤𝑚𝑎𝑥 −  
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
∗ 𝐼 

Equation (5-13) 

where wmin   represents the inertia weight's final value, wmax   represents the inertia weight's 

initial value, Imax  represents the maximum number of iterations, and I indicates the current 

iteration number. 

5.3 SA 

Hasan, Locatelli, and Mitra [75, 76, 77] explained that unlike the steepest descent method, 

Simulated Annealing technique can be considered as a local meta-heuristic searching algorithm 

that uses a mechanism to avoid getting trapped into a local minimum solution. It adapts a 

metropolis approach, which is a random probabilistic acceptance technique, which enables some 

worse solutions to be selected as a next step with a specific probability.  

The molecular movement in materials over the annealing process is stimulated using the SA 

algorithm. If there is enough time for the molecules during the cooling process to move, they will 

move towards the highest stability and lowest energy state. The annealing operation can be 

implemented in a mathematical way to find the global optimum solution, which is correlated 

with the highest stability state by applying the probability acceptance technique of the metropolis 

mechanism and disturbance technique.  
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Simulated Annealing confirmed its superiority through years in solving many combinatorial 

discrete problems. Simulated Annealing technique's steps can be summarized as follows:  

1. Another solution from the neighborhood of the current solution(s) is selected.  

2. The fitness value for this new solution is evaluated since the fitness will change for sure 

when the solution changes.  

3. After that, the difference between the new and current solutions' fitness is calculated, 

D=E(s') _ E(s).  

4. Then, the new solution is unconditionally accepted if D < 0.  

5. However, the new solution is accepted with a probability of exp(-D/t) where t represents 

the temperature, if D > = 0.  

It is worth to mention also that, the algorithm begins with a high temperature value, and 

decreased progressively until ending with a very small value close to zero. The algorithm runs 

for a given number of iterations at every temperature value. These iterations are called the 

temperature length. Finally, the algorithm stops after finishing a specific number of iterations or 

after satisfying the end condition. 

5.3.1 SA parameters' selection 

A great attention must be given to the parameters' selection of the Simulated Annealing 

technique since it has essential consequences on the efficiency of the algorithm's performance. 

Better outcomes could be found out of a slow searching. However, it could lead to worse 

convergence characteristics. Thus, it is always a compromise between both of them. Parameters' 

choice somehow depends on the characteristics of the problem itself.  

There is a collection of essential parameters associated with the SA algorithm, such as the 

disturbance mechanism, cooling process, initial condition and equilibrium condition. Shieh, Kuo 

and Chiang [19] clarified that by the proper adjustment of these parameters, the quality of the 

outcomes of the algorithm and the algorithm performance could be significantly enhanced.  
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5.3.1.1 Initial condition choice 

During the optimization process and especially at the beginning of the searching procedure, it is 

preferred to accept some bad solutions with a high probability in order to increase the 

exploration function of the algorithm. Therefore, it is better to choose a high temperature at the 

beginning. If a very small initial temperature is selected, there will be a high possibility for the 

algorithm to be trapped into a local minimum solution.  

On the other hand, if a very high initial temperature is selected, the algorithm's time complexity 

will be extremely large. Thus, through years of experience, it has been discovered by Wang and 

Liu [54] that, by choosing an initial temperature equals to the maximum difference between two 

neighboring solutions from the whole solutions set, it could lead to better convergence time and 

cost value. In addition, Shieh, Kuo and Chiang [19] reported that a multiple of this largest 

difference could be also a very good choice for the initial temperature value. However, it is better 

to keep it in a reasonable value, not too large and not too small. 

5.3.1.2 Establishing a disturbance mechanism 

The disturbance process is one of the most significant parts in the SA algorithm because most of 

the convergence time is spent in the metropolis mechanism and it has an essential effect on the 

performance of the algorithm and the quality of solution. Thus, it is necessary to have a tight 

control over the disturbance process to be able to find a good solution.  

The main function of the disturbance mechanism is to search for a feasible solution within the 

neighborhood of the current solution. Then, the metropolis process decides whether to accept this 

worse neighboring solution with a certain probability or not. This mechanism gives SA the 

ability to jump out of a local minimum solution.  

However, it could also steer the searching process towards a direction, which is in the opposite 

direction of the global optimal solution, which in turns could raise the time complexity of the 

algorithm as illustrated in [19].  
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5.3.1.3 Equilibrium condition determination 

The state of the system at a certain temperature in which there is no more energy flow is called 

the equilibrium condition. This means that, the energy flow in the system becomes insignificant 

after a finite number of disturbances during the algorithm run. This process is referred to as the 

acceptance rate, and it can be formulated as follows: 

Acceptance rate =  
Total number of acceptance

Total number of disturbances
 

Equation (5-14) 

When a disturbance mechanism produces a new neighboring state to the current state, the 

metropolis mechanism decides whether to accept this new state or not. The total number of 

acceptance in the previous equation should be increased by one, if the new state is accepted. 

After a finite number of disturbances, the acceptance rate would indicate the amount by which 

the algorithm does accept new worse solutions. Therefore, stepping forward to a new 

temperature depends on the equilibrium condition of the system.  

If the system reach to the equilibrium condition at a certain temperature and the system is not 

changing that much anymore, this means that the acceptance rate is very small "near zero", and 

the system should step forward to the next temperature. However, it has been explained by 

Shieh, Kuo and Chiang [19] that if the system is still in an active state and there are many 

disturbances occurs which means that the acceptance rate is near to one, the system should 

continue processing at this temperature until an equilibrium state is obtained. 

5.3.1.4 Method of cooling 

As the Simulated Annealing simulates the annealing process, then the cooling rate must be 

reduced in accordance with the decrease in the temperature similar to what happened in physics. 

Hence, the temperature is progressively reduced during the Simulated Annealing operation. 

Shieh, Kuo and Chiang [19] specified that this process helps the system to be transferred from an 

active state to an equilibrium stable state. In other words, the system should be cooled faster at 

the beginning of the annealing process and cooled slower during the advanced stages. 
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The equation tk = λ tk-1 is a great selection to determine the temperature value at each iteration 

since it satisfies a compromise between a good quality solution and fast convergence time. Of 

course, according to the previous equation, the temperature decreased faster when the cooling 

rate parameter λ is small.  

5.3.1.5 Temperature length 

The temperature length indicates the number of runs which taken place at each iteration with the 

same temperature value. The best choice for this parameter is the number of the neighborhood 

for a specific solution. 

5.3.1.6 Temperature end parameter 

The last essential parameter in the Simulated Annealing algorithm is the temperature end 

parameter (tend). Wang and Liu [54] reported that this parameter is used to stop the algorithm 

when the current temperature value becomes less than the temperature end value. It is worth to 

mention that tend is always selected to be a very small value. 

5.4 DPSO/SA 

Both the exploration and exploitation searching properties are required to be able to find a global 

or near global minimum solution as has been clarified by Shieh, Kuo and Chiang [19]. The 

exploring characteristic is essential for applying the search process across the whole search space 

to be able to find the area in which the global optimum solution exists. The exploiting 

characteristic is also significant in order to apply a gradient search mechanism in a certain local 

area to search within this region for the global optimum solution. 

The use of both the exploring and the exploiting techniques together enhances the searching 

ability to be done in the whole search space and provides a way of jumping out of a certain local 

minimum solution, thereby enhancing the ability of exploring the global minimum solution.  

However, nothing in the heuristics searching techniques could guarantee finding out the global 

minimum solution. One of the most obvious disadvantages of the PSO technique is that if there 
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are a local and a global optimum solution in a certain objective function, and taboth of them are 

separated from each other with a specific distance. Then, if the initial random generated 

population is closer to the local optimal solution than the global optimal one, the particles' 

personal and global best will move towards the local optimal solution and it will lose the ability 

to jump out of this local optimum solution. Hence, it will lose the global searching capability. 

Moreover, the speed of convergence towards the final stages of iterations becomes obviously 

slow.  

In addition, the DPSO technique is a problem-independent algorithm. This means that the only 

information pertinent to the problem itself that is required while searching for the solution is the 

fitness function. This characteristic provides more simplicity and robustness for the DPSO 

algorithm than the other optimization techniques. However, the DPSO also suffers from the 

disadvantage of the possibility of being trapped in a local optimum solution especially when the 

problem to be solved is quite complex because at the end of the day it is a stochastic heuristic 

searching technique. Another disadvantage could be the reduction of the global search 

capabilities at the final iteration in the algorithm.  

On the other hand, it has been notified by Wang and Liu [54] that the searching capabilities of 

the Simulated Annealing technique could be improved by the precise selection of the cooling 

rate, and the problem of getting trapped into a local optimal solution could be restricted by 

applying a specific acceptance rate. Thus, we thought of trying to limit the issue of the local 

optimum solution and provide a better control for the searching ability through the careful design 

of the cooling parameter and neighborhood topology structure of the Simulated Annealing 

technique. 

Thus, in this thesis, a hybrid algorithm is developed in order to try to address and solve the main 

two problems of the PSO technique. Shieh, Kuo and Chiang [19] reported that when small 

variations are applied to the temperature parameters of the SA technique, and an equilibrium 

condition is obtained for every temperature value during the searching process, the SA technique 

could have a probability of one for finding the global minima. Moreover, the SA algorithm owns 

a great capability of being able to avoid becoming trapped into a local optimum solution due to 
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the metropolis process. However, SA has a disadvantage of a slow convergence time due to the 

small temperature variations to ensure finding the good-quality solution after running the 

algorithm.  

The essential adjustment of the hybrid PSO/SA algorithm is that it fuses the parallel movement 

structure of the PSO technique into the disturbance searching mechanism of the SA algorithm. In 

this way, the algorithm can explore for solutions in more paths, increasing the probability that 

the global optima could be found. In addition, the parallel processing capabilities of PSO reduces 

calculation time. Also, a good quality solution could be easily found as a result of combining the 

advantage of the global search ability of the SA algorithm with the fast convergence 

characteristics of the PSO algorithm. Thus, this hybrid technique owns very easily realizable 

characteristics. 

5.4.1 DPSO/SA pseudo code 

The most significant characteristics and properties of the hybrid PSO/SA are summarized in the 

following notes: 

Note1. Since the Particle Swarm Optimization technique owns a simple implementation and an 

inherent parallel structure, just few adjustments are needed to develop the hybrid algorithm. 

Note2. The hybrid PSO/SA algorithm could have both a powerful global exploration and local 

exploitation abilities due to the dynamic adaptation of the temperature value of the SA. The 

particles at the early steps in each temperature value own a high probability of accepting worse 

solution as the next solution, which improve the exploration ability of the algorithm. Then, 

through the iteration, the temperature becomes lower and the probability for accepting a worse 

solution as the next solution is decreased which generates a balance between the global 

exploration and the local exploitation behaviors. In addition, near the end of the iterations and as 

the temperature becomes closer to zero, nearly no more worse solutions is accepted which 

enhance the ability of exploiting the promising solutions in the optimal areas.  
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Note3. In the literatures [52, 53], there is a mathematical proof that the Simulated Annealing 

algorithm could find the global optimum solution with a reasonable convergence time with a 

probability equal one. On the contrary, Particle Swarm Optimization technique does not always 

guarantee an optimal solution. Thus, the hybrid algorithm can be considered as a parallel 

structure SA algorithm. As a result, the proposed algorithm guarantees finding the global optimal 

solution with a probability equals to one and at the same time enhance the time complexity and 

convergence characteristics due to its parallel structure.  

Note4. Finally yet importantly, this hybrid PSO/SA algorithm could be used to optimize any 

other problems due to its generality. In this research, the proposed hybrid algorithm is deployed 

to optimize fifteen different swarm sizes to ensure its robustness and scalability. 

Based on the above illustration, the complete Pseudo code for the hybrid DPSO/SA algorithm 

can be outlined as follows: 

Start 

Step1. Initialization step 

 1: Initialize position, velocity and number of population for each  

  particle in the swarm; 

 2: Calculate the fitness value for each particle; 

 3: Initialize the personal best position with the initial position  

  of the particle; 

 4: Initialize the global best with the minimum particle in the  

  swarm; 

 5: Initialize the acceleration constants c1, c2; 

 6: Initialize the inertia weight constants wmax, wmin; 

 7: Initialize the maximum number of iteration constant; 

 8: Initialize the initial temperature, temperature end and the  

  cooling rate parameter for the SA technique; 

Step2. Evaluation step 

(2.1) PSO 

 1: While (the termination condition is not satisfied) 
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 2:  { 

 3:  Iteration++; 

 4:  Generate new position and velocity using Eqs.(11)and   

   (12); 

 5:  Evaluate the new fitness values; 

 6:  Update the swarm { 

 7:   Adjust the personal best for each particle; 

 8:    Adjust the global best of the swarm; 

 9:   } 

 10:  } 

(2.2) SA 

 1: Initialize the algorithm's solution with the global best particle 

  in the swarm.  

 2: T = T0; 

 3: While (T > Tend) 

 4: { 

 5:  Find a new neighboring solution from the old one;  

 6:  Evaluate the fitness of the new neighboring solution;  

 7:  Calculate the fitness difference D = E(s') - E(s); 

 8:  If min[1,exp(-D/T)] > rand[0, 1] 

 9:  { Accept the new solution s'; 

 10:  } 

 11:  Adjust the global optimum solution if the new solution is  

   the best solution found so far; 

 12:  Update the temperature t = λ tk_1; 

 13: } 

Step3. Output the best solution and its fitness value. 

End 

It can be shown from the pseudo code that the algorithm begins with the PSO technique to find 

an initial solution followed by the SA algorithm. If the Simulated Annealing part is cancelled, 
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the algorithm simply turned into a PSO algorithm. In addition, the algorithm can be turned into 

the simple well-known SA algorithm if the PSO part is cancelled out or by setting the population 

size of the swarm to one. Using this algorithm maintains the generality of both the SA and PSO. 

Furthermore, by just modifying the fitness function within the algorithm, it could be utilized to 

solve any other combinatorial discrete optimization problems.  

5.4.2 DPSO/SA parameters' selection 

Because of the shortage in the divergence within the final iterations of the search operation in the 

Discrete Particle Swarm Optimization technique, it sustains from early convergence. Thus, it is 

substantial to keep the variety within the swarm over the whole search space in order to find a 

promising solution for NP-hard problems like the dynamic task allocation problem. There are 

many methods to do so. One of the easiest ways to achieve this as proposed by Hafiz and 

Abdennour [43] is to use the restart technique if stagnation happens.  

The restart technique can be translated in this discretized version from the Particle Swarm 

Optimization as velocity re-initialization for each particle in the swarm. This velocity re-

initialization increases the capability of exploration within the swarm, because the basic source 

for the new position construction is the velocity. However, the only part, which is reinitialized in 

the whole process, is the velocity, and neither the personal best nor the global best positions are 

changed. 

The notion of the refresh gap is utilized to solve the problem of the stagnation and all the 

parameters, which are somehow involved with this concept, are calibrated. Therefore, various 

refresh gaps' values are tried in the algorithm until a suitable value is detected. Furthermore, the 

algorithm is tried on different swarm dimensions in order to make sure that the performance of 

the algorithm becomes stable and unbiased.  

The performance of the algorithm is observed while adjusting the refresh gap's value to be five, 

ten, twenty-five, fifty and one hundred percent of the total number of iteration. We figure out 

that the refresh gab has a considerable effect on the outcomes of the algorithm.  
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A large number of restarts are permitted if a small refresh gap is chosen which of course results 

in a preferable performance. However, if a large refresh gap is selected, the performance of the 

algorithm becomes worse. Also, no restarts is supplied if the refresh gap is given the value of 

100% of iterations. The best performance is achieved by setting the refresh gap within the range 

of 30 percent of the total number of iterations. 

5.4.3 LPSO VS. GPSO 

It is very substantial to make some sort of compromise between the exploitation ability and the 

exploration ability of the swarm in order to increase the robustness of the algorithm, see figure 

5.2. Many efforts have been spend in last recent years in an attempt to find a solution to the issue 

of the algorithm early convergence. It has been clarified by Hafiz and Abdennour [43] that these 

efforts can be divided into categories according to either the used learning exemplars, the way 

the information exchanged among particles (neighborhood topology), or the use of different 

parameters control.  

 

 

Figure 5.2: PSO example [78]. 
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The basic idea behind the Particle Swarm Optimization technique is to seek for learning and 

gaining experience through the exchange of information among the particles in the swarm. The 

way by which the particles within the smarm share the information has a direct influence on the 

outcomes of the algorithm. The proposed algorithm in this thesis is based on the global approach 

with the star topology where the global best particle in the whole swarm shares its information 

with all the other particles in the swarm. By using this topology, the convergence time of the 

algorithm becomes very fast. However, there is an increasing possibility for the algorithm to get 

trapped into a local minimal solution.  

This problem actually is solved using the proposed algorithm by combining the Simulated 

Annealing with the global version of the Particle Swarm Optimization technique. As discussed 

earlier, Simulated Annealing has the ability to avoid getting trapped into a local optimal solution 

using its metropolis technique. Also, the refresh gap approach is applied into the proposed 

algorithm to ensure that the algorithm could easily reach the global optimal solution and avoid 

the local optimal one. Thus, there is no need to use a local neighborhood topology and it is better 

to use the generic global Particle Swarm Optimization technique in order to increase the 

algorithm convergence capability. 

Some researchers solve this issue by restricting the knowledge sharing among the particles to a 

limited number of particles instead of the whole swarm via using one of the most common 

neighborhood topologies. The most commonly used topology in terms of research and 

publications, is the local best approach. This approach decreases the algorithm's possibility of 

being trapped into a local minimal solution since it increases the exploration capabilities of the 

particle in the swarm through the reduction of the speed of the knowledge sharing among the 

particles in the swarm.  

In this approach, instead of learning from the global best particle within the whole swarm 

particles, the particles start learning from the local best particle within its neighborhood. Figure 

5.3 shows some of the most commonly used neighborhood topologies. It is actually very easy to 

apply the Discrete Particle Swarm Optimization framework to this approach. The steps for 
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discretization remain the same except the part of evaluating the learning sets. The learning sets 

could be modified as follows:   

1. Determine the best particle in the local neighborhood. Then, choose it as the local best 

solution to be used for the velocity evaluation. 

2. 𝑆1 =  𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑝𝑏𝑒𝑠𝑡, 𝑥𝑖)  

3. 𝑆2 =  𝑠𝑒𝑡𝑑𝑖𝑓𝑓 (𝑙𝑏𝑒𝑠𝑡, 𝑥𝑖)  

However, the method by which the position is evaluated, is the same for all different approaches.  

 

 

Figure 5.3: Neighboring topology [79]. 

 

Despite of the simplicity of applying a local neighborhood topology to the swarm, and the 

advantages, that could be achieved out of using this approach, like increasing the exploration 

capabilities of the particles within the swarm. However, it is better to use the global star 

neighborhood topology to gain the advantage of the fast convergence meanwhile increasing the 

exploration capabilities using SA technique with the metropolis mechanism and the concept of 

the refresh gab.  
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        Chapter 6 

 Results and Discussion 

This chapter discusses the outcomes from both the simulation and the real experiment. Also, the 

proposed algorithm parameters are precisely chosen using a suitable delicate method. Finally yet 

importantly, the communication overhead and the overall throughput for the system are 

evaluated. 

6.1 Introduction 

The simulation is implemented using MATLAB to prove the efficiency of the proposed hybrid 

DPSO/SA algorithm in solving the minimal time dynamic task allocation problem in swarm 

robotics. The specifications for the platform which is used in the simulation are as follows:  

1. Intel core i7 processor 2.4 GHZ. 

2. 8 GB RAM. 

The results of the proposed algorithm are compared with both the SA algorithm and the DPSO 

algorithm as heuristic algorithms and with the Hungarian algorithm as an exact solver. Fifteen 

various swarm dimensions are used to compare between the algorithms' performance.  Due to the 

randomness in most of the meta-heuristic algorithms, they obtain a different solution every time 

the algorithm runs. Thus, each swarm instance is replicated 50 times and the arithmetic mean is 

calculated in order to ensure the stability of the results. The prime parameters that are used for 

the comparisons are the quality of solution, the execution time of the algorithm, and the stability 

of the algorithm. To ensure the fairness during the simulation among all the four algorithms, all 

of them continue running until an equilibrium state is obtained.  

6.2 Methodology 

This thesis proposes a hybrid PSO/SA algorithm, which fuses the concept of SA algorithm to 

overcome the PSO algorithm's imperfections. SA is used to promote the PSO's local search 

capability. The hybrid algorithm not only possesses the pros of PSO and SA but also omits the 

cons of both of them.  
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The basic concept of the DPSO algorithm is introduced in the main framework of the hybrid 

PSO/SA algorithm. Thus, a finite number of initial particles' velocities and positions are 

generated and they kept updated through iterations. Then, after a specific number of iterations, 

the SA algorithm takes the global best solution and starts performing local search operations. 

The SA continues processing repeatedly until the satisfaction of the termination condition.  

The most significant properties of the proposed algorithm can be highlighted in the following 

notes: 

6.2.1 Initial population of DPSO 

Since Meng, Zhang and Fan [80] clarified that it is better to raise the degree of randomness at the 

beginning of the process to maintain the diversity of the population, thus the PSO/SA algorithm 

starts with a randomly generated candidate solutions (particles).  

6.2.2 Local searching ability of SA 

In the hybrid PSO/SA algorithm, SA runs after an optimal solution is found by DPSO. As the 

SA's temperature decreasing, the algorithm only searches within the neighborhood of the current 

best solution. Then, when the new solution found by the algorithm is better than the previous 

one, the algorithm would accept it without any conditions. However, if the new solution is worse 

than the previous one, the algorithm will accept it with a certain probability. This process is 

continued till the temperature of the algorithm declines under a certain temperature. 

Hafiz and Abdennour [43] illustrated that unlike PSO, SA operates on a single solution. The 

working solution is updated by performing a move (swapping of solution elements) in each 

iteration. The reason for choosing SA specifically to combine it with the DPSO is that Simulated 

Annealing technique is inherently discrete unlike the DPSO and it is interesting to study and 

compare between the searching behaviors of two such different techniques.  

6.2.3 DPSO/SA decentralization 

The proposed algorithm is decentralized which means that neither a global knowledge, nor 

messages‟ broadcast nor a multi-hop communication would ever be used. There is no central unit 
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to take care of the task allocation, and each individual in the swarm has to identify the task it 

must perform via the communication with only their neighbors. This decentralization is essential 

to avoid the restrictions that could result from the communication range limitations.  

It is also essential to mention that, the simulation in this research is an offline simulation, so that 

the robots and objects positions are predetermined prior to the simulation run. However, the real 

experiment is performed online and the robots and objects positions and the population size 

could change repeatedly during the experiment. 

6.3 Parameters' Optimization 

Since the parameters of the heuristic optimization techniques affect both the quality of solution 

and the performance of the algorithm as declared by Shieh, Kuo and Chiang [19], they have to be 

precisely chosen using a suitable delicate method. It has been demonstrated in [19] that the 

efficiency of both the DPSO and the SA algorithms significantly depends on five main 

parameters. These parameters are c1, c2, T0, λ, w.  

The simulation in this research is done for 7, 15, 30, 40, 50, 60, 70, 80, 90, 100, 500, 600, 800, 

1000, and 2000 swarm sizes. Each case of theses swarm sizes is replicated 50 times. The 

parameter value, which obtains the highest performance, is chosen for the algorithm. Each one of 

the five parameters is tested independently while keeping the other five parameters constant. 

This process continues until a suitable value is found, then same procedures are replicated to find 

proper values for the other five parameters. 

First, to select the optimal value for the initial temperature, simulations are implemented with 

different values for the initial temperature. In this step, the other parameters' values, which are 

not optimized, yet should be kept constant.  

6.3.1 Initial temperature 'T0' 

Due to the change in the value of the initial temperature, the initial acceptance rate of the hybrid 

algorithm is also affected. As shown in equation (6-1), this acceptance rate guarantees that the 

algorithm searches for the solution globally in the whole search space, and helps the global best 

and personal best solution to jump out of the local optimum solution. Thus, it is good to 
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sometimes accept worse solutions to avoid getting trapped into a local optimum solution, thereby 

enhance the exploration property for the algorithm. This fixed acceptance probability that is used 

for accepting new worse solutions are termed as the metropolis acceptance rule.  

Time could be wasted in exploring new unnecessarily regions when a very high initial 

temperature is selected. On the contrary, the algorithm becomes very slow and large number of 

iterations is needed to find a suitable solution if a very low initial temperature is selected. Thus, 

the time complexity increases. Therefore, the simulation is run with different values of initial 

temperature ranging from 1 to 100 with an increase by 10 in the proceeding runs. The best 

performance and quality of solutions are detected using an initial temperature of 100.  

P1 =  𝐞 
−∆𝐗𝐦𝐚𝐱

𝐓𝟎
  

Equation (6-1) 

where 

T0,  initial temperature 

∆Xmax  , the difference between the fitness value of the worst solution and the initial 

solution 

P1,  acceptance rate of the worst new solution                                                 

6.3.2 Cooling rate ' λ ' 

The acceptance rate close to the end of iterations is affected by the value of λ. If the value of λ is 

very small close to the end of the iterations, the algorithm could get trapped into a local minima 

and lose the ability of jumping out of this local minimum solution which may enforce us to rerun 

the algorithm until reaching a reasonable global minima. This problem results in raising the time 

complexity of the algorithm. Therefore, the simulation is run with different values of λ ranging 

from 0.4 to 0.95 with an increase by 0.05 in the proceeding runs. The best performance and 

quality of solution are detected using a cooling parameter value of 0.9.  
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6.3.3 Inertia weight 'w' 

The momentum weight of the hybrid PSO/SA algorithm affects the amount of reference to a new 

particle's solution in comparison with the reference to the old one. Thus, the larger the 

momentum weight is, the larger effect of the old solution is considered. In the last few years, 

researchers have observed that it is better to dynamically reduce the value of the inertial weight 

as the iterations proceed. It is also found that a better performance and a better quality of solution 

could be yielded from a maximum inertial weight of 0.9 and a minimum inertial weight of 0.4. 

6.3.4 Acceleration constants 'c1, c2' 

The parameters of learning factors, c1 and c2 affect the moving speed in the direction of the 

global and personal best as notified by Wang and Zheng [56].  The larger the learning factors 

are, the bigger steps the particles take towards best solutions locally and globally. Through 

simulations and experiments, it is detected that better outcomes could be obtained by setting the 

value of c1 to 2 and the value of c2 to 2. 

To sum up, the parameter constants are chosen to be as follows:  

SA's parameter:  

1. T0 = 100. 

2. λ = 0.95.  

PSO's parameter: 

1. c1=c2=2. 

2. wmax = 0.9.  

3. wmin = 0.4. 

4. Population size=25.  

5. Maximum number of iterations depends on the problem dimension.  
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6.4 Simulation Results and Comparisons 

6.4.1 DPSO vs. SA 

In our simulation, we first compare between DPSO and SA techniques. So, this comparison is 

going to be presented in this section before extending our problem dimension to include an 

increasing number of swarm sizes. 

So, in this section only two study-cases are considered. Since we need to have at least more than 

two robots in the environment to be considered as a swarm, Thus, in the first study-case, we 

started with only 7 robots and 10 tasks as the smallest swarm size in our simulation. In such case, 

only 7 tasks were allocated while the remaining 3 tasks were waiting in the waiting list. The 

algorithm is executed periodically. Thus, if any robot finished its allocated task, left for 

recharging or new tasks were explored which need to be allocated, the algorithm should calculate 

a new allocation for the robots in the swarm. We start the simulation with 7 robots since we have 

in the lab only 7 robots, so we considered it the minimum swarm size. 

Then, we increased the swarm size gradually to test the algorithms' behaviors in different 

problem dimensions. So, in the second study-case, we considered 10 robots and 20 tasks. Thus, 

only 10 tasks were allocated at the beginning. The allocation for each particle in the swarm is 

represented as a raw with a number of elements equals to the number of robots in the swarm and 

the number, which is written in each cell, represents the task allocated to the corresponding 

robot.  

For example, let the task allocation be as shown in the second row of table 6.1. The first row is 

just an identifier for the robot number to which the corresponding underneath task is allocated. In 

this case, task 3 is allocated to robot 1, task 5 is allocated to robot 2, task 8 is allocated to robot 3, 

task 2 is allocated to robot 4, task 9 is allocated to robot 5, task 4 is allocated to robot 6, and task 

1 is allocated to robot 7. This allocation is corresponding to the first case study. 
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Table 6.1.Allocation solution for the first case study 

r1 r2 r3 r4 r5 r6 r7 

t3 t5 t8 t2 t9 t4 t1 

 

Another example on the allocation corresponding to the second case study is as shown in table 

6.2. 20 tasks are allocated to 10 robots.  Therefore, task 6 is allocated to the robot 1, task 14 is 

allocated to the robot 2, task 9 is allocated to the robot 3, task 11 is allocated to the robot 4, task 

2 is allocated to the robot 5, task 19 is allocated to the robot 6, task 3 is allocated to the robot 7, 

task 17 is allocated to the robot 8, task 8 is allocated to the robot 9, and task 5 is allocated to the 

robot 10. 

Table 6.2.Allocation solution for the second case study 

r1 r2 r3 t4 r5 r6 r7 r8 r9 r10 

t6 t14 t9 t11 t2 t19 t3 t17 t8 t5 

 

In this simulation, tasks were displayed as yellow circles, while robots were represented as red 

squares to be able to differentiate between tasks and robots. Allocations between robots and tasks 

are addressed as a black line extended from each robot to its allocated task. Figure 6.1 and 6.2 

show the best solution A* resulting after 500 iterations for both PSO and SA, respectively. 

Figure 6.1 show that PSO gives a better allocation as each robot is assigned to its nearest task. 

However, in figure 6.2, some robots select a far task rather than the nearest one. 

Simulation results corresponding to the second case study are shown in figure 6.3 and 6.4 for 

PSO and SA, respectively. If the distance between the robots and their corresponding tasks is 

tracked in both cases, it could be easily explored that the distance traveled by robots in figure 6.3 

is much smaller than the traveled distance in figure 6.4.  
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Figure 6.1: PSO solution resulting after 500 iterations in the first study case 

 

 

 

Figure 6.2: SA solution resulting after 500 iterations in the first study case. 
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Figure 6.3: PSO solution resulting after 500 iterations in the second study case. 

 

 

 

Figure 6.4: SA solution resulting after 500 iterations in the second study case. 
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A comparison about the MTDTA performance is made between PSO and SA. Both of them are 

executed for 100, 200, 300, 400, and 500 iterations and the corresponding algorithm run time for 

each case is also calculated. 

Table 6.3 and 6.4 show the results from the first and second case studies, respectively. It can be 

deduced from table 6.3 that the distance travelled using PSO is smaller than that of the SA in 

almost all cases and the gap between the PSO‟s and SA‟s fitness kept increasing till reaching its 

maximum value after 500 iterations. For example, the difference between the travelled distance 

by the robots in PSO and SA after 100 iterations equals (207.9 cm - 165.4 cm= 42.5 cm). 

However, the difference after 500 iterations equals (199.6 cm - 128.6 cm= 71 cm).  Furthermore, 

it can be shown that after 150 iterations, SA‟s fitness gets trapped in a local minimum at 199.6 

cm and it never changes. However, PSO‟s fitness kept changing until reaching the global 

minimum value at 128.6 cm.  

 

Table 6.3: Simulation experiment data for the first case study 

Optimization 

technique 

Number of 

iterations 

Algorithm 

run time 

Distance travelled 

by robots 

PSO 

100 4.9 sec 165.4 cm 

200 5.8 sec 157.7 cm 

300 9.5 sec 153.5 cm 

400 9.6 sec 143.2 cm 

500 14.6 sec 128.6 cm 

SA 

100 14.3 sec 207.9 cm 

200 18.9 sec 199.6 cm 

300 18.9 sec 199.6 cm 

400 24.1 sec 199.6 cm 

500 23.8 sec 199.6 cm 
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By looking at table 6.4, it can be figured out that the PSO‟s travelled distance (419.3 cm) is 

smaller than that of the SA (426.7 cm) for small number of iterations. However, when the 

number of iterations increases above 250, the PSO‟s travelled distance which is (356.5 cm) 

becomes larger than that of the SA which is (250.9 cm). Moreover, in this case study, the PSO‟s 

fitness value gets trapped in a local minimum at 356.5 cm after 400 iterations, while the SA‟s 

fitness value kept decreasing until reaching the global minimum solution at 250.9 cm. 

 

Table 6.4: Simulation experiment data for the second case study 

Optimization 

technique 

Number of 

iterations 

Algorithm run 

time 

Distance travelled 

by robots 

PSO 

100 7 sec 431.9 cm 

200 6.4 sec 419.3 cm 

300 14.1 sec 411.8 cm 

400 12.7 sec 356.5 cm 

500 20.8 sec 356.5 cm 

SA 

100 19.1 sec 444.3 cm 

200 27.5 sec 426.7 cm 

300 25.3 sec 384.2 cm 

400 32 sec 319.2 cm 

500 31.6 sec 250.9 cm 

 

In the first case study, it can also be seen from figure 6.5 that no matter how much we increase 

the number of iterations, the cost function gives the same results after 200 iterations. From this 

observation, it can be concluded that the algorithm based on the Simulated Annealing was 

trapped into a local minimum. Whether, the algorithm based on the Particle Swarm Optimization 

technique kept decreasing until it reached its global minimum after 500 iterations. So, it is better 

to use the algorithm based on Particle Swarm Optimization for a small number of populations. 
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However, in the second case study, it can be seen from figure 6.6 that if we need a fast 

performance, it is better to use Particle Swarm Optimization technique but it will only give a 

local minimum solution. To have a global minimum solution, it is better to use Simulated 

Annealing technique. However, the performance of the algorithm would be very slow. 

 

 

Figure 6.5: PSO vs. SA performance for the first case study 

 

 

Figure 6.6: PSO VS. SA performance for the second case study 

 

To sum up, it can be observed by looking at figure 6.5 and 6.6 that it is always recommended to 

use the PSO technique than the SA technique for a swarm with a small number of robots and 

tasks (1st case study). However, if the swarm size is large (2nd case study), techniques‟ 
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preference depends on the number of iterations. Thus, it is a compromise between a global 

optimal solution that takes long time to be detected, and a good but not optimum solution that 

could be found faster.  

6.4.2 Comparison between the proposed hybrid algorithm vs. other techniques 

Since the main objective of this work is to design a hybrid discretized algorithm combines both 

Particle Swarm Optimization and Simulated Annealing techniques, it is essential to compare the 

performance of the proposed algorithm with the other traditional algorithms. The proposed 

hybrid DPSO/SA, DPSO, SA, and the Hungarian algorithms are implemented and executed to 

test a suite of fifteen different swarm dimensions problems to see the effect of dimensionality on 

the algorithm's performance.  

For fair comparison, the problem instances are selected to be generated randomly for all different 

problem dimensions. Also, all the simulations were carried out on the same platform (MATLAB 

2016, Windows PC with Intel core i7 processor and 8GB RAM). In addition, each technique runs 

50 times and each one of them is allowed to run for the same number of iterations in each 

specific problem dimension, especially the Simulated Annealing and the hybrid DPSO/SA 

techniques. Table 6.5 presents the outcomes acquired from applying each algorithm on the 

various swarm dimensions. Each problem instance is executed for 50 times and the average is 

evaluated. 

In table 6.5, the comparison is made between the four algorithms; Hungarian, DPSO/SA, DPSO, 

SA. The convergence time and the fitness values (distance travelled by robots in the swarm) are 

evaluated in two columns for each one of these algorithms. From table 6.5, it is obvious that, as 

expected, the proposed hybrid algorithm outperforms both the DPSO and SA algorithms in 

almost all cases. Also, the convergence time for the proposed algorithm is always better than that 

of the discrete PSO algorithm. However, it is clear that Simulated Annealing algorithm gives 

better execution time than both the hybrid and the Discrete Particle Swarm Optimization 

algorithm.  
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Table 6.5: Simulation results 

Robots Tasks 
Search 

Space 

Hungarian Hybrid DPSO SA 

Cost   

(cm) 

Time      

(sec) 

Cost  

(cm) 

Time

(sec) 

Cost   

(cm) 

Time

(sec) 

Cost    

(cm) 

Time 

(sec) 

7 10 100 127.84 0.34 127.84 1.3 127.84 1.3 152.05 1.74 

15 20 100 213.83 0.39 213.83 12.02 215.43 14.6 293.12 2.2 

30 45 135 172 0.08 300 19.3 313 50 358 3.5 

40 60 180 231 0.03 544 25.8 708 52 602 5.3 

50 75 225 293 0.05 669 29.9 940 55 678 5.2 

60 90 270 353.6 0.05 858 44.3 1882 55 977 7 

70 105 315 414.3 0.04 1210 57.1 2866 60 1441 7 

80 120 360 478.1 0.06 1362 69.7 3906 70 1990 7 

90 135 405 541.6 0.07 1757 83.6 4952 90 2591 7 

100 150 450 603.9 0.9 2438 105.2 6891 110 2766 7 

500 1000 3000 2697 90 55368 182 659377 177 90328 24 

600 900 2700 3581 120 63715 185.1 317352 193 82715 31.9 

800 1200 3600 4794 330.7 125948 102.6 1064833 235 159669 34.5 

1000 1500 4500 5921 520 223204 130.9 2138035 298 305243 37 

2000 3000 9000 11819 1509 1191864 341 8722822 347 1351566 42 

 

In this research, since the Hungarian algorithm gives us the exact solution for the problem, it is 

used as a model to enable us to compare between the different algorithms. To make the results 

more readable, the outcomes from all the algorithms are normalized, by dividing each 

algorithms' cost values in all dimensions by the Hungarian algorithm cost values.  

Then, the various swarm dimensions are classified into three categories in order to simplify the 

comparisons between the algorithms, see table 6.6. In each category, we evaluate the geometrical 

mean of the normalized fitness values and the convergence time for each one of the optimization 

techniques. 

Therefore, table 6.6 lists the time complexity and the fitness values for each algorithm. It has 8 

columns corresponding to the fitness values and the time complexity for Hungarian, hybrid 

DPSO/SA, DPSO, and SA, respectively. The best result for each instance is highlighted using 

boldface. Also, the geometrical mean for each category is listed. 
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Table 6.6: Geometrical mean of different swarm sizes 

Robots Tasks 
Search 

Space 

Hungarian Hybrid DPSO SA 

Cost  

(cm) 

Time      

(sec) 

Cost   

(cm) 

Time

(sec) 

Cost   

(cm) 

Tim 

(sec) 

Cost    

(cm) 

Time 

(sec) 

7 10 100 127.84 0.34 1 1.3 1 1.3 1.2 1.74 

15 20 100 213.83 0.39 1 12.02 1 14.6 1.4 2.2 

30 45 135 172 0.08 1.7 19.3 1.8 50 2.1 3.5 

40 60 180 231 0.03 2.4 25.8 3.1 52 2.6 5.3 

50 75 225 293 0.05 2.3 29.9 3.2 55 2.3 5.2 

Small swarm size geometrical mean 1.56 11.8 1.78 19.3 1.84 3.3 

60 90 270 353.6 0.05 2.4 44.3 5.3 55 2.8 7 

70 105 315 414.3 0.04 2.9 57.1 6.9 60 3.5 7 

80 120 360 478.1 0.06 2.9 69.7 8.2 70 4.2 7 

90 135 405 541.6 0.07 3.2 83.6 9.1 90 4.8 7 

100 150 450 603.9 0.9 4 105.2 11.4 110 4.6 7 

Medium swarm size geometrical mean 3 68.9 7.9 74.4 3.9 7 

500 1000 3000 2697 90 20.5 182 244.5 177 33.5 24 

600 900 2700 3581 120 17.8 185.1 88.6 193 23.1 31.9 

800 1200 3600 4794 330.7 26.3 102.6 222.1 235 33.3 34.5 

1000 1500 4500 5921 520 37.7 130.9 361.1 298 51.6 37 

2000 3000 9000 11819 1509  100.8 341 738 347 114.4 42 

Large swarm size geometrical mean 32.5 148 264 242 43.3 33.3 

Geometrical mean 5.3675 49.4 15.5 70.4 6.7763 9.1 

 

Thus, as can be seen for the small swarm sizes, the hybrid approach gives a better performance 

than both the Simulated Annealing and DPSO algorithms. Also, the geometrical mean for the 

Discrete Particle Swarm Optimization which equals 1.78 cm, is less than that of the Simulated 

Annealing which gives geometrical mean of 1.84 cm. 

In addition, for the medium swarm sizes, it is obvious that the hybrid approach gives a 

geometrical mean of 3 which outperforms both the DPSO and Simulated Annealing outcomes. 

Also, it is important to notice in this case that Simulated Annealing performs better than Discrete 

Particle Swarm Optimization since the geometrical means for both SA and DPSO are 3.9 and 

7.9, respectively. 
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Furthermore, for the large swarm sizes, the geometrical mean for the proposed hybrid algorithm 

is 32.5 cm, which is also better than the geometrical mean for both SA and DPSO. Also, the table 

indicates that, in this case the result of Simulated Annealing technique which is 43.3 is a way 

better than the result of the Discrete Particle Swarm Optimization which is 264. 

Finally, if we were to evaluate and compare all the algorithms in general for all the swarm sizes, 

it is also very clear from the last row in table 6.6, that the proposed hybrid approach outperforms 

all the other algorithms. We can see that, the geometrical means for the hybrid DPSO/SA, 

Discrete Particle Swarm Optimization and Simulated Annealing are 5.4, 15.5 and 6.8, 

respectively.  

To sum up, we could say that it is always recommended to use the hybrid DPSO/SA approach 

than the other two algorithms for almost all problem dimensions. However to be fair, we should 

say that the Simulated Annealing execution time is better than the execution time of the proposed 

hybrid approach.  

Also, it could be noticed that regardless of how bad the Discrete Particle Swarm Optimization 

performs when compared with the hybrid DPSO/SA and the Simulated Annealing approaches, it 

is worth to mention that it performs better than the Simulated Annealing algorithm in case of 

small swarm sizes. However, it never gives better results than the proposed hybrid approach even 

in small problem dimensions.  

Finally yet importantly, we could say that in most of the cases, the hybrid DPSO/SA provides the 

best outcome followed by Simulated Annealing algorithm; whereas the Discrete Particle Swarm 

Optimization performed rather inadequately.  

Actually, these results are somehow identical to the earlier observations by Loiola [81], which 

denotes that for the combinatorial discrete dynamic task allocation problems, the local searching 

techniques like the Simulated Annealing algorithm, which could be considered as algorithms 

with solution modification techniques, are more efficient, powerful and are likely to provide 

better results than algorithms with population-based approaches, such as the Particle Swarm 
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Optimization and other social behavior meta-heuristic techniques. This conclusion can lead us to 

refer to the superiority of our proposed memetic algorithm. 

6.4.2.1 Performance analysis 

The standard deviations for all the algorithms are also evaluated in order to measure the stability 

of the outcomes of the hybrid DPSO/SA, PSO and SA approaches, see tables 6.7, 6.8 and 6.9. 

6.4.2.1.1 SA 

Table 6.7 shows the arithmetic mean, geometrical mean, and more important the standard 

deviation after running the SA for 100 times.  

 

Table 6.7: SA standard deviation 

Swarm Size 
Number 

of tasks 

Search 

Space 

Number of 

iterations 
CPU time 

Arithmetic 

Mean 

Geometrical 

Mean 

Standard 

Deviation 

7 10 100 100 1.7 81.8 81.7 1.7889 

15 20 100 200 2.2 206.4 204.1 33.5 

30 45 135 300 3.5 673 668.5 87.8 

40 60 180 400 5.3 1241 1236 122.1 

50 75 225 400 5.2 2278 2277 242 

60 90 270 400 7 3415 3405 308.1 

70 105 315 500 7 5176 5171 261.6 

80 120 360 500 7 6262 6261 156.5 

90 135 405 2000 7 8553 8547 402 

100 150 450 2500 7 10680 10660 597.5 

500 750 2250 8000 24 48283 48283 2422 

600 900 2700 9000 31.9 56999 56976 1807.1 

800 1200 3600 10000 34.5 107640 107610 3333.8 

1000 1500 4500 12000 37 168068 168000 5726.3 

2000 3000 9000 15000 42 152605 152530 5727 

It can be shown from the table that the standard deviation for the algorithm increases as the 

problem dimension increases. This conclusion actually makes sense because the mean values 

increase as the problem dimension increases and as a result the standard deviation increases too. 
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For example, when the swarm size equals 7 (small swarm size), it can be seen that the mean 

equals 81 and the standard deviation is 1.8. However, when the problem dimension increases to 

2000 robots, the mean increases to 152605 and as a result, the standard deviation increases to 

5727. 

6.4.2.1.2 DPSO 

Table 6.8 shows the arithmetic mean, geometrical mean, and more important the standard 

deviation after running the Discrete Particle Swarm Optimization for 100 times. It can also be 

shown from the table that the standard deviation for the algorithm increases as the problem 

dimension increases. For example, when the number of robots equals 7 (small swarm size), it can 

be seen that the mean equals 109 and the standard deviation is 17.9. However, when the problem 

dimension increases to 2000 robots (large swarm size), the mean increases to 878576 and as a 

result, the standard deviation increases to 2903.3.  

 

Table 6.8: DPSO standard deviation 

Swarm Size 
Number 

of tasks 

Search 

Space 
CPU time 

Arithmetic 

Mean 

Geometrical 

Mean 

Standard 

Deviation 

7 10 100 1.3 109.1 107.8 17.8789 

15 20 100 14.6 179.4000 178.2286 20.8231 

30 45 135 50 362.3 360.2547 40.4531 

40 60 180 52 531.9 528.4047 50.9358 

50 75 225 55 2707.7 2706.2651 78.8278 

60 90 270 55 3956.6 3947.7605 86.5927 

70 105 315 60 6229.2 6223.9 97.2949 

80 120 360 70 7419.8 7416.7 105.9184 

90 135 405 90 9757.3 9752.4 157.9694 

100 150 450 110 12090.8 12078.7 244.4212 

500 750 2250 177 54693 54665 1648.6 

600 900 2700 193 74418 74418 2781.3 

800 1200 3600 235 136590 136580 2367 

1000 1500 4500 298 218123 218120 2859 

2000 3000 9000 347 878576 878580 2903.3 
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6.4.2.1.3 DPSO/SA 

Similarly, table 6.9 shows the arithmetic mean, geometrical mean, and more important the 

standard deviation after running the proposed hybrid DPSO/SA algorithm for 100 times. It can 

be shown from the table that the standard deviation for the algorithm increases as the problem 

dimension increases. For example, when the number of robots equals 7 (small swarm size), it can 

be seen that the mean equals 80 and the standard deviation is 2.3. However, when the problem 

dimension increases to 2000 robots (large swarm size), the mean increases to 150590 and as a 

result, the standard deviation increases to 3339 too.  

 

Table 6.9: DPSO/SA standard deviation 

Swarm Size 
Number 

of tasks 

Search 

Space 

Number of 

iteration 
CPU time 

Arithmetic 

Mean 

Geometrical 

Mean 

Standard 

Deviation 

7 10 100 300 1.3 80.3 80.3 2.3 

15 20 100 400 12.02 179.6 179.1 16.7 

30 45 135 500 19.3 380.5 380.1 21.9 

40 60 180 800 25.8 556.5 556.2 23.3 

50 75 225 1000 29.9 726.5 725.1 61.5 

60 90 270 1200 44.3 1028 1026 79.1 

70 105 315 1500 57.1 1245 1243 76 

80 120 360 1800 69.7 1430 1427 93.9 

90 135 405 2000 83.6 1710 1707 130.8 

100 150 450 2500 105.2 1941 1927 287.5 

500 750 2250 8000 182 34879 34877 452.5 

600 900 2700 9000 185.1 45746 45744 454.6 

800 1200 3600 10000 102.6 97583 97579 1168 

1000 1500 4500 12000 130.9 149520 149510 1990 

2000 3000 9000 13000 341 150587 150590 3339 

In figure 6.7, the X-axis represents the problem's dimension and the Y-axis represents the 

standard deviation. In addition, the blue bars in this figure indicate the outcomes of the hybrid 

DPSO/SA algorithm, the green bars represent the results out of applying the Discrete Particle 
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Swarm Optimization technique, and finally the red bars denote the standard deviation of the 

Simulated Annealing algorithm.  

Therefore, by comparing the standard deviations of these three algorithms together, it can be 

shown that the standard deviation of the hybrid DPSO/SA algorithm is better than that of both 

the Discrete Particle Swarm Optimization and the Simulated Annealing techniques for almost all 

various problem dimensions. It is also obvious that the Discrete Particle Swarm Optimization 

gives smaller standard deviation than Simulated Annealing technique despite that the SA 

algorithm performs better than the DPSO especially in the large swarm sizes. This actually 

proves that the Discrete Particle Swarm Optimization technique always suffers from getting 

stuck into a local optimum solution but it seems more stable than the Simulated Annealing 

algorithm. 

 

 

Figure 6.7: Standard deviation of the DPSO/SA, SA, and DPSO. 
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Thus, the previous remarks indicate that the proposed algorithm is more stable than the 

traditional Discrete Particle Swarm Optimization and Simulated Annealing algorithm.  

6.4.2.2 Scalability analysis  

Table 6.5 and 6.6 show the outputs from running the simulations for the DPSO, SA, PSO/SA and 

the Hungarian algorithm for the various 15 dimensions of the dynamic task allocation problem. It 

can be clearly deduced that the proposed hybrid technique obtains higher performance than the 

other classical DPSO and SA in almost all problem sizes. 

The DPSO gives a better quality of solutions than the SA annealing in lower dimensional 

problems. However, in both medium swarm sizes which ranges from 50 to 100 problem 

dimensions and large swarm sizes which ranges from 500 to 2000 problem dimensions, it could 

be found that SA produces better performance than the DPSO as the Discrete Particle Swarm 

Optimization suffers from the disability of jumping out of local optimal solution in large swarm 

sizes. These results prove that the hybrid algorithm overcomes the disadvantages of DPSO, 

which suffers from the local minima and the SA, which suffers from poor convergence 

characteristics. In addition, we can conclude that the proposed algorithm is more scalable than 

both DPSO and SA algorithms. 

6.4.2.3 Stability analysis 

In order to compare between the proposed algorithms in different swarms' dimensions, it is better 

to run each experiment for a number of times and then compare the results to obtain more stable 

and robust performances. The average value after the 100 runs and the standard deviation are 

calculated. As can be seen from equation (6-2), this equation is used to calculate the average in 

which the outputs from a finite number of runs are summed up and then divided by the number 

of runs, which equals to 100 in our case. As shown in equation (6-3) the difference between the 

solutions obtained from different runs is calculated which is called the variance. A small value of 

variance indicates that the algorithm is more stable and the differences between solutions from 

different runs are small. On the contrary, a large value of variance, gives an indication of the 

instability of the algorithm, which in turns indicates that it could be extremely hard to implement 

this algorithm in real-systems. 
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µ =  
1

n
  𝑥𝑖

𝑛

𝑖=1

 

Equation (6-2) 

where 

xi: represents solution produced after an entire run 

n: represents the number of runs 

and, 

µ:            represents the average 

𝜎 =  
1

𝑛
  (𝑥𝑖 − µ)2

𝑛

𝑖=1

 

Equation (6-3) 

where  

σ:              represents the standard deviation 

Table 6.7, 6.8 and 6.9 show the statistics of the standard deviation values using the 3 algorithms 

while testing 15 various swarm dimensions. In order to prove that a specific algorithm is good 

enough to be used in a real-life system, the standard deviation should be taken into account along 

with the algorithm performance and the solutions' average values. The lower the standard 

deviation is, the more stability the algorithm provides.  

As can be seen from these tables, the proposed PSO/SA algorithm almost always gives smaller 

standard deviation values than both the traditional DPSO and SA in almost all dimensions which 

means that the hybrid PSO/SA algorithm is more stable than the traditional DPSO and SA 

algorithms.  
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However, the comparison between the DPSO and SA shows that, at small and medium swarm 

sizes, the standard deviation for both SA and DPSO is comparable. On the contrary, in the large 

swarm sizes, the DPSO algorithm has smaller standard deviation than the SA algorithm. The 

reason behind the outstanding performance and stability of the proposed hybrid algorithm is that 

the SA allows the PSO/SA to globally explore for better solutions and avoid getting stuck into a 

local optimum solution. 

6.4.2.4 Convergence analysis 

Based on the simulation results shown in previous sections, the convergence characteristics of 

the DPSO is usually better than that of the SA. Also, it is clearly obvious that the quality of 

solution for the SA is relatively higher than the DPSO especially for large swarm dimensions. 

The proposed PSO/SA algorithm enhances both the searching capabilities over the global search 

space, which in turns prevents local optimum solutions, and increases the efficiency of finding 

the solution in lower convergence time. 

6.4.2.5 Solution efficiency 

It is fair enough to select the same stopping condition while comparing the efficiencies for a 

number of algorithms in finding a good quality solution. In this work, two conditions are chosen. 

If any of these two conditions are met, the algorithm stops and this specific point could be 

considered as a convergence state. These two conditions are either reaching the maximum 

number of iteration or the constancy of the solution for a certain number of iterations, which 

indicates that the algorithm saturates and the solution stays unchanged. However, as indicated 

from table 6.6, different number of iterations are selected for different problem dimensions, 

because the algorithm takes time to saturate in larger problem dimensions. 

Also, it can be clearly deduced that the mean values of the solutions of the hybrid algorithm are 

also better than both the DPSO and the SA results. The reason behind this is that almost all 

solutions found by the PSO/SA algorithm are near the global minimum solution. Thus, we 

assume that the proposed hybrid PSO/SA algorithm is more efficient than both the DPSO and 

SA alone. 
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6.5 Simulation using Eliza-3 robots 

We implemented two experimental scenarios with real robots using the proposed hybrid 

algorithm. All of the experiment scenarios contain 4 Eliza-3 robots divided into two teams, a 

searching team (red team) and a rescue team (blue team). The searching team inspects the arena 

to find victims and then the rescue team transports them to the designated rescue zone.   

In the first scenario, only one robot is employed as a searching robot and the other 3 robots are 

applied to be used as rescuers (see figure 6.12). While, in the second scenario, two robots are 

used as searching robots and the other two robots are used as rescuers (see figure 6.21). We used 

the RGB LED in the robots to distinguish between the two different teams. Red color is used to 

denote the searching team while the blue color is dedicated as a reference to the rescue team.  

As can be shown in figure 6.16, if one of the robots from the searching team finds a victim, its 

color should be turned into green and pause for a second then turns back to red color and starts 

searching randomly again for more victims (see figure 6.17). In addition, if one of the rescuers 

allocates itself to transport a specific victim, it starts moving towards its allocated victim. When 

the robot reaches to the victim's location, the 8 green LEDs around its body should be turned on 

and the robot starts transporting the victim to the rescue zone, (see figure 6.18 and 6.19). After 

that, the rescuer turns into the sleep mode again until the searching team finds more victims and 

so on. 

6.5.1 The controller 

In this thesis, we propose a distributed algorithm that could efficiently tackle the problem of 

victims' allocation in a search and rescue robotic system and then transport victims to the rescue 

zone. A distributed algorithm is a promising choice for such an application that might suffer 

from lots of failures while running since the robots are most probably navigating in an unstable 

and unstructured arena. A set of essential questions regarding the control level are commonly 

showed up if a distributed system is decided to be designed. Most of these questions have been 

already answered throughout chapter 3 and 4. These questions include: 

1. How the robots interact with each other? 
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2. How could we control distributed systems?  

3. How should tasks be allocated to the available robots? 

The desired behavior of our proposed controller is to locate and transport the victims to the 

rescue zone. The proposed distributed controller is designed to utilize only local sensing and 

communication capabilities. The control logic executed independently by each Eliza-3 robot is 

shown in figure 6.8. The searching robots inspect the environment for victims by performing a 

random walk with their red LED illuminated (Searching state). As indicated before, when one of 

the searching robots detects a victim, it turns on the green led, pauses for a second and continue 

searching for other victims in the environment. While, the closest rescuer to the victim moves 

towards the victim to grip it (Rescuing state) and turns on the green LEDs around the robot's 

body. Then, the rescuer starts transporting its allocated victim to the rescue zone. 

 

 

Figure 6.8: Controller's conceptual state diagram. 
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6.5.2 Elisa-3 robot 

Eliza-3 robots are smart swarm robots with a very high cognition abilities inspired from swarm 

of birds when they transport objects to their nest. Each individual robot owns central RGB LED, 

8 green LEDs around the robot's body, IR emitters, 8 IR proximity sensors, 4 ground sensors, 3-

axis accelerometer, RF radio for communication (Nordic Semiconductor nRF24L01+), micro 

USB connector for programming, debugging and charging, IR receiver, 2 DC motors, top light 

diffuser, and selector. Eliza-3 robot is designed with capability of communicating with the other 

Eliza-3 robots, navigating smoothly in the environment using 2 differential wheels, and 

providing monitoring information for data analysis on an external computer through 

communicating with the base station.  

Thus, our system consists of small, simple, but fully autonomous individuals that have the ability 

of sensing, making decisions, and acting in the environment. They work individually as well as 

collaborate with other units. There is not any centralized planning and control. The global task 

execution is realized through robot-robot and robot-environment interactions. 

6.5.3 Experiment implementation 

As mentioned before, each experiment scenario is defined by the number of rescue robots, and 

the number of searching robots. Both the searching and the rescue robots have no prior 

knowledge of the experiment configuration. In this research, the two experiments are 

implemented to show that our proposed hybrid DPSO/SA algorithm provides sufficient 

performance and displays robustness and adaptability characteristics. 

6.5.3.1 First scenario 

We conducted this scenario using three rescue robots and one searching robot. In this 

experiment, the system successfully allocated the nearest rescue robot to the found victim and 

the victim is transported to the destination rescue zone. In this scenario, possible incorrect 

behaviors could be allocating more than one rescue robot to the same victim or allocating the far 

robot to the victim instead of the nearest ones. However, in this experiment, nothing wrong 

http://www.nordicsemi.com/kor/Products/2.4GHz-RF/nRF24L01P
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happened and the nearest rescuer allocated itself successfully to the inspected victim in the 

environment. 

In this experimental scenario, all robots start from the same starting point to have the same 

reference in the arena. Figure 6.9 shows that the first rescue robot starts from our reference point 

(0,0). Then, the second robot starts from the same reference point (see figure 6.10) followed by 

the third and fourth robots (see figure 6.11 and 6.12). 

 

 

Figure 6.9: Starting 1st robot from the reference point (0,0) 

 

 

Figure 6.10: Starting the 2nd robot from the reference point (0,0) 
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Figure 6.11: Starting the 3rd robot from the reference point (0,0) 

 

 

Figure 6.12: Starting the 4th robot from the reference point (0,0) 

 

Then, as shown from figure 6.13, 6.14, and 6.15, the red searching robot starts searching for 

victims in the arena. Once, the searching robot finds a victim as can be seen from figure 6.16, it 

turns on its green led, stops for a second and then turns into the red color again and keeps 

moving to search for other victims (see figure 6.17). The victims in our experiment is 

represented as small black sheets to be easily detected by the robots' ground sensors as the 

ground sensors in the bottom side of the robots could differentiate between different colors 

efficiently. It reads values from 512 to 1023 and the smaller the value the darker the surface. 

Finally, as can be shown from figure 6.18, the closest rescuer to the detected victim starts 

moving towards it and turns on the 8 green LEDs whenever it reaches to the victim's location. 
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After it pauses for a second, it continues moving to the rescue zone to leave the victim there (see 

figure 6.19). 

 

 

Figure 6.13: The searching robot searches for victims 

 

 

Figure 6.14: Searching for victims 

 

 

Figure 6.15: The rescue robot searches for victims 
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Figure 6.16: The rescue robot finds a victim 

 

 

Figure 6.17: The rescue robot searches for more victims 

 

 

Figure 6.18: The closest rescuer to the victim finds the victim 
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Figure 6.19: The rescuer transports the victim to the rescue zone 

 

6.5.3.1.1 First scenario results 

In this scenario, we have 1 searching robots and 3 rescuers. The cost of allocating the nearest 

rescuer to the explored victim is 10cm (correct allocation). However, if we considered the wrong 

allocations by allocating any of the other two far robots to the victim, they would cost us either 

29cm or 34cm. Note that the cost here is the distance between the robot and the victim. By 

looking carefully to these results, we can see that the wrong allocation costs around 3 times more 

than the cost of the right allocation. Since, our experiment works properly and the correct 

allocation achieved, it costs us only 10cm to allocate the robot to the victim. In addition, it is 

worth to mention that the execution time for the algorithm was 0.15 sec given that we only have 

4 robots in our system. 

6.5.3.2 Second scenario 

We conducted the second scenario using two rescue robots and two searching robots. In this 

experiment, the system successfully allocated the nearest rescue robot to each of the founded 

victims and the victims were transported to the nest. Same as in the first experiment, possible 

incorrect behaviors in this experiment could be allocating the two rescue robots to the same 

victim or allocating a far robot to a given victim instead the nearest one. In addition, in this 

experiment, everything works properly and nothing went wrong, and the rescuers allocated 

themselves in the right way to the detected victims in the arena. 
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Unlike the implementation of the first scenario, in this scenario only the rescue robots start from 

a single starting point to have the same reference point in the arena. However, the searching 

robots started from other points on the right and left sides of our reference point. Hence, we 

added a small value to the x-axis of the starting point of the searching robots. Figure 6.20 shows 

that the first rescue robot starts from our reference point (0,0). Then, the second robot starts from 

the same reference point (see figure 6.21). As shown in figure 6.22, the rescue robots turned into 

the sleep mode at two different random locations waiting for victims to be found by the 

searching team.  

Then, as can be seen from figure 6.23, the red searching robots start searching for victims in the 

arena. Once, the searching robot on the right side finds a victim (see figure 6.24), it turns on its 

green led, stops for a second and then turns on the red color again and keeps moving to search 

for other victims (see figure 6.26).  

Similarly, when the other searching robot on the left side finds a victim, it turns on its green led, 

stops for a second and then turns on the red led again and continues searching for other victims 

(see figure 6.25 and 6.26).  

After that, as can be shown from figure 6.27, the rescuers start moving towards the closest 

victims and turn on the 8 green LEDs whenever they reach to the victims' location. Therefore, 

the rescuer on the right side moves to the right victim and the rescuer on the left moves towards 

the left victim. Finally, the robots pause for a second on the victims' locations and then continue 

moving to the rescue zone to leave the victims there (see figure 6.28). 

 

Figure 6.20: The first rescuer starts from the reference point (0,0) 
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Figure 6.21: The second rescuer starts from the reference point (0,0) 

 

 

Figure 6.22: The two rescuer turns into sleep mode at random location 

 

 

Figure 6.23: The two searching robots start searching for victims randomly 

 



138 

 

 

Figure 6.24: The right searching robot finds a victim 

 

 

Figure 6.25: The left searching robot finds a victim 

 

 

Figure 6.26: The searching robot continue searching for more victims 
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Figure 6.27: The tow rescuers find the victims detected by the searching team  

 

 

Figure 6.28: The rescue robots transport the victims to the rescue zone 

 

6.5.3.2.1 Second scenario results 

In this scenario, we have 2 searching robots and 2 rescuers. The cost of allocating the right 

rescuer to the right victim is 8cm (correct allocation), while the cost of allocating the right 

rescuer to the left victim is 24cm (wrong allocation). In addition, the cost of allocating the left 

rescuer to the left victim is 12cm (correct allocation), while the cost of allocating the left rescuer 

to the right victim is 25cm (wrong allocation). Therefore, the correct allocation demands a total 

cost of (8+12=20cm). However, the wrong allocation requires an overall cost of around 

(24+25=49cm). By considering this small experiment, we can see that the cost of the wrong 

allocation is almost more than twice the cost of the correct allocation. Since, our experiment 
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works properly and the valid allocation achieved, it costs us only 20cm to allocate the robots to 

the victims. In addition, it is worth to mention that similar to the first scenario, the execution time 

for the algorithm was 0.18 sec given that we only have 4 robots in our system. 

6.5.4 Communication overhead evaluation 

In this research, each robot is equipped with a transceiver module, suitable for wireless 

communication with ultra-low power consumption in the communication range of Radio 

Frequency (RF). The chip is designed to operate in the ISM radio band (Industrial, Scientific and 

Medical band basis) of 2.4 GHz. Thus, the robots communicate with each other using RF via a 

base station connected to a computer via USB. Likewise, the transceiver module, embedded in 

the robot, communicates via SPI (Serial Peripheral Interface) with the microcontroller on the 

robot's board and transfers data to and from the PC via wireless communication, as shown in 

figure 6.29.  

 

Figure 6.29.Communication between the robots and PC. 

 

Each robot is identified by a unique address in the swarm. This address is stored in a specific 

memory address of the robot EEPROM. Every message coming from the base station has a 

destination address, which should coincide with one of the addresses of the robot in the swarm. 

 Up on reception of a message, the robot compares the destination address of the received 

message with its own address to assess whether it is intended by this message. If so, the message 

is saved and interpreted by the robot.  
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The master PC, which continuously polls the slave base station, controls the communication 

between the robots and the base station. The polling is performed on regular basis, which is a 

restriction on the maximum speed of communication. To overcome this limitation, an optimized 

protocol was implemented wherein the packet sent from the PC to the base station contains 

commands to four robots simultaneously. The base station is responsible of separating the 

received packet into four individual packets of 16 bytes each, before sending them to the 

indicated destination address. The same procedure is followed during the reception from the 

robots. In this case, the base station is responsible for receiving the packets of 4 robots, 

assembles them into a single message of 64 bytes, and sends this message to the computer. This 

procedure allows higher throughput communication, making it 4 times faster.  

The packets generated by the robots to be transferred to the base station are composed of 16 

bytes, as shown in figure 6.30(a). The first byte is used to identify the validity of the packet, the 

following two bytes represent the sender address of the robot, and the fourth byte represents the 

message type. Up to 255 different types of messages may exist during the communication 

process. The remaining 12 bytes contain the payload of the message, which are the actual data to 

be sent.  

The structure of the message sent by the base station to a robot is shown in figure 6.30(b). It is 

similar to the structure of the message shown in figure 6.30(a), it also consists of 16 bytes. The 

first byte defines the validity, which validates the authenticity of the message sent by the base 

station when it is received by the robot. Byte 14 defines the type of message, used when there are 

more than one type of messages, and the last two bytes contain the destination address of the 

robot. The remaining 12 bytes contain the payload of the message to be received by the robot. 

 

Figure 6.30. Overall structure of the message sent by robot ID to the RF base station.  

(a) From robot to RF base station. (b) From RF base station to robot. 
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Packet format - PC to radio to robot 

The 16 bytes packet format is shown below in figure 6.31 (the number in the parenthesis 

expresses the bytes): 

 

 

Figure 6.31: Structure of the message sent by the RF base station to robot ID 

 

Packet format - robot to radio to PC 

The robot sends back to the base-station information about all its sensors every time it receives a 

command; this is accomplished by using the "ack packet" feature of the radio module. Each 

"ack" is 16 bytes length as shown in figure 6.32 and is marked with an ID that is used to know 

which information the robot is currently transferring. 

 

 

Figure 6.32: Structure of the message sent by robot ID to the RF base station. 

 

Considering each packet received from the base station, the PC takes the four addresses and the 

allocated tasks' information and composes a new package of 16 bytes. The first byte of this 
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package is the validity flag of the package to be verified by the robot upon reception, the 12 

following bytes represent the address and the allocated tasks' information received, the 

fourteenth byte is a sending signal enabler and the remaining two bytes contain the address of the 

target robot. This package is replicated four times using four distinct robot addresses to compose 

the message of 64 bytes to be sent to the base station to be transmitted to the destination 

addresses. Thus, the same information (robot ID and task) is transmitted to four robots at a time 

until all the robots of the swarm are encompassed.  

The enabling signal generated and sent by the PC to robots of the swarm has the function of 

managing the process of packet transmission from the robots to the PC. This signal enables the 

transmission to a group of four robots to transmit at a time. Note that the transmission time for a 

group of 4 robots depends on the total number of robots that compose the swarm. This 

synchronization trick is an alternative to reduce the packet traffic, thus decreasing the chances of 

packages being lost due to limited buffer size at the base station.  

In the developed algorithm, the payload of the message generated by the robot and sent to the 

base station consists solely of a byte that corresponds to the task currently allocated to this robot. 

In order to compose the necessary information to be sent to the remaining robots of the swarm, a 

robot includes its RFID. Thus, the information to be transferred to the robots has three bytes: two 

bytes to identify the robot and one byte to identify the allocated task. The packet composition 

during the communication between the robots is shown in figure 6.33.  

 

 

Figure 6.33: Packet format of the messages from and to the robots. 
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When the base station detects the existence of new messages in the buffer, the packet is formed 

of 64 bytes each, containing four messages. This packet is sent to a computer that interprets the 

message contents, identifying the payload of each of the composed messages. Then, the task 

informed in the payload of each of the four messages received and the two bytes identifying the 

robot are extracted to form a new message to be sent a way to the robots. Thus, the new 

generated message contains as a payload, the necessary information (NI) included in the four 

messages received by the base station. The content of the message thus composed is then 

replicated into four new messages, each one destined to a different target address. The four 

messages generated form a packet to be routed back to the base station by computer. Upon 

reception, the base station separates its content into four messages and sends them away to the 

identified robots. 

6.5.4.1 Transmission and reception overhead 

Since our swarm system depends on a wireless communication, we have to calculate the 

communication overheads in both the transmitter and receiver sides. In this project the 

transmitter is the Atmel 2560 microcontroller connected with the RF radio for communication 

(Nordic Semiconductor nRF24L01+), while the receiver is the base station which is connected to 

the pc through USB connection. 

This system is developed using Atmel 2560 microcontroller to which a wireless transceiver 

called Nrf24L01 is connected. Atmel 2560 microcontroller is programmed via the AVR studio. 

The nrf24l01 is connected to the microcontroller and communicates with it via SPI pins, namely 

MOSI, MISO, SCK and 2 GPIOs for the ce and csn pins. Those are pins necessary for the correct 

operation of the nrf24l01. Libraries called SPI.h, nRF24L01.h, and mirf.h are used to handle the 

initializations and configurations of the registers in the nrf24l01 and the SPI related parameters 

in the system. In addition, SPI.c, nRF24L01.c, and mirf.c are dedicated to handle the 

implementation for these modules. 

6.5.4.2 Real time analysis 

This wireless system needs to be a hard real-time system, because the robots need to transmit 

messages containing their coordinates, all their internal states and sensors values. Then, each 

http://www.atmel.com/dyn/products/product_card.asp?part_id=3632
http://www.nordicsemi.com/kor/Products/2.4GHz-RF/nRF24L01P
http://www.atmel.com/dyn/products/product_card.asp?part_id=3632
http://www.atmel.com/dyn/products/product_card.asp?part_id=3632
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robot receives the same message from the other robots.  Since the robots continuously changing 

their positions and hence all their internal states change, so they have to send and receive 

messages in frequent basis.  

Moreover, the robots must send their messages within a specific period. It has to be deterministic 

and meet all of its deadlines as unexpected behavior or delay of the transmission during the 

mission cannot be tolerated. The reason why the deadlines are hard is that failure to meet just one 

deadline would mean the delay or failure of the transmission of robot's information including the 

proximity IR and ground sensors, which may cause the robot to fall from a cliff, collide with 

obstacles, or even has wrong information about the other robots' coordinates. Therefore, missing 

deadlines cannot be tolerated because it may cause the failure of our entire system and hence, the 

hard real-time constraints are essential. 

6.5.4.3 Transmission and reception instructions 

Since the Atmel microcontroller runs at a clock = 8 MHz, therefore each instruction takes 1 / (8* 

10^6), which is equal to 125 ns. 

As mentioned above, the libraries used in this program are SPI.h, nRF24L01.h, and mirf.h to 

support the communication between the Atmel microcontroller and the nrf24l01. The SPI.h 

library sets the SPI clock by default to SYSCLK/4. This means that the SPI_CLOCK now runs at 

8/4 = 2 MHz and hence is able to transmit one bit every 0.5 us. In our system, we send the 

message byte by byte. This means that one byte could be transmitted over SPI within a total time 

of 4 us. Table 6.10 and 6.11 show a list of the tasks in the system with the detailed instructions 

and timings of each one. 

6.5.4.4 Transmission side analysis 

In the transmission side, the distance from the Atmel microcontroller on the robot's board to the 

radio frequency module is not large, therefore the delay introduced from the wires connecting 

them is negligible. 
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The default and most reliable air data rate for the nrf24l01 is 2 Mbps. So, to transmit the 8 bits of 

the char, it would take 8/(2*10^6) = 4 us. 

Table 6.10 shows the essential transmission side instructions and their timings to calculate the 

total communication overhead in the transmission side. 

 

Table 6.10: Transmission communication overhead 

Instruction Time 

Check for the data readiness 125 ns 

16 commands for updating Ackpayload 2 us 

Sending command (write payload) 125 ns 

Delay due to transmission of a char between 

the microcontroller and the nrf24L01 via SPI. 
4 us 

Air data rate 4 us 

Total 10.25 us 

 

6.5.4.5 Receiver side analysis 

The usb_receive(RX_buffer, 16) instruction in the receiver side checks whether the RF channel 

contains data ready to be read. If data is available, the nrf24l01, if in RX mode, can read it. 

Table 6.11 shows the essential receiver side instructions and their timings to calculate the total 

communication overhead in the receiver side.  

 

Table 6.11: Reception communication overhead 

Instruction Time 

Check if there is data to be read 125 ns 

Read the receiving data 125 ns 

8 commands for updating sensor variables 1 us 

Delay due to the reception of a char between 

the microcontroller and the nrf24L01 via SPI. 
4 us 

Air data rate 4 us 

Total 9.25 us 
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Therefore, it can be concluded that the system‟s total worst communication overhead taken to 

transmit data from the robot and receive it in the base station = 9.25 us + 10.25 us = 19.5 us. 

This time considers sending just one byte since the SPI sends byte by byte. However, the base 

station could receive up to 4 messages at the same time in which each message consists of 16 

bytes. Thus, total communication time for sending 4 messages from 4 different robots and 

receiving them at the base station simultaneously = 16 * 4 * 19.5 us = 1248 us = 1.25 ms. 

Since we have two ways communication, so same calculation should be applied for sending the 

data from the base station and receiving it via 4 different robots simultaneously. Therefore, The 

overall communication overhead = 2* 1.25 ms = 2.5 ms. 

Finally, it is worth noting that the assumption that each instruction on the Atmel microcontroller 

takes 125 ns is not very accurate. This is because the instructions we write on the AVR studio 

represent more than one instruction in assembly, hence one instruction can be in fact split into 

perhaps 2 or three instructions which in turn each takes 125 ns, so the delay would be larger than 

the one which is calculated. However, since the microcontroller runs at a clock as fast as 8 MHz, 

the time taken to execute one instructions is quite small, which means that even if the actual time 

per instruction was four or five times more, the increase would still be in the order of 

nanoseconds so the overall system would still meet its deadline. 

To sum up, the entire communication overheads including the transmission and reception on the 

robots and the base station happen within 2.5ms. Since, each message from a single robot is 16 

bytes, thus the throughput is 46 bytes each 2.5 millisecond. 
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       Chapter 7 

 Conclusion and Future Work  

In this chapter, both the conclusion about the work that is done in this research and the future 

work that could be carried out to extend and enhance our research in the future are addressed. 

7.1 Conclusion 

In this thesis, a mathematical model for the dynamic task allocation problem is formulated for a 

swarm of homogeneous robots using linear integer programming. The task allocation decision 

process is carried out independently by each robot in the swarm using a clear and straightforward 

procedure to accomplish the whole tasks in a minimal time.  

In addition, an efficient and applicable framework based on a probabilistic velocity 

representation is implemented to discretize the Particle Swarm Optimization technique in order 

to find solution to the dynamic task allocation problem, which is a discrete combinatorial 

problem. All the substantial efforts and improvements that have been discovered through years 

of working on developing the continuous version of the Particle Swarm Optimization technique 

are retained and discrete PSO just builds the new framework over these original efforts.  

In addition, two case-studies with different problem dimensions are simulated to compare 

between a local searching technique (Simulated Annealing technique) and a global searching 

technique with parallel population based structure (Particle Swarm Optimization technique). The 

comparison is done in terms of both the quality of solution and the time complexity of the 

algorithm. Basically, we did this simulation to highlights the pros and cons of both PSO and SA 

and hence develop a more efficient, robust and scalable algorithm.  

This simulation experiments prove that the Particle Swarm Optimization has a better 

convergence characteristics due to its parallel structure. However, it suffers from the issue of 

getting trapped into a local optimal solution and it loses the ability to reach the global optimal 

solution.  
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On the other hand, the results also show that the Simulated Annealing algorithm provides us with 

a better-quality solution due to the use of the metropolis mechanism, which determines whether 

to accept some worse solutions or not using a specific probability function. This mechanism 

enables the algorithm to jump out of any local optimal solution towards the global optimal 

solution and hence finds better quality solution. However, it is worth to mention that this 

algorithm suffers from bad convergence characteristics. 

Thus, a novel flexible and simple hybrid algorithm combining both DPSO and SA optimization 

technique is proposed to find solutions to the cons of both DPSO and SA. Actually, this 

algorithm provides us with superior quality solutions with small and stable convergence time 

because it utilizes the probabilistic jumping property of the SA to escape from local minimum 

solutions, and to raise the particle's diversity. Thus, the DPSO/SA algorithm stretches the search 

scope of the swarm to new unexplored areas, and promotes its global searching ability. 

In the novel hybrid DPSO/SA algorithm, every particle gains experience from both its own best 

solution and the global best solution. The inertial weigh and the acceleration constants c1 and c2 

are tuned to control both the cognitive and social learning process via enhancing the performance 

of the proposed algorithm. Also, a restart approach is provided to solve the stagnation problem in 

the proposed algorithm. 

Moreover, simulation scenarios are extended to a suite of 15 different swarm dimensions in order 

to confirm the efficiency of the proposed algorithm through comparing it with both SA and 

DPSO. In these extended simulation instances, the Hungarian algorithm which provides us with 

the exact solutions is used as a model to normalize the outcomes from all the three optimization 

techniques. Also, the algorithms' results are classified into 3 different categories, small swarm 

size, medium swarm size and large swarm size to observe the algorithms' behavior in different 

swarm sizes.  

The simulation results provide an outstanding performance for the hybrid algorithm in almost all 

problem dimensions. It significantly outperforms both the traditional Particle Swarm 

Optimization technique and the Simulated Annealing algorithm due to its simplicity, stability, 

ruggedness, high quality solutions, raised computational efficiency and stable convergence 
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characteristics. It is also worth to mention that, the proposed algorithm performance is closely 

followed by the SA algorithm, which provides promising execution time results.  

Moreover, it is pertinent to mention that the local searching approaches most probably provide a 

better-quality solution than the global meta-heuristic techniques in the combinatorial discrete 

problems. However, combining both the solution constructive techniques and the local searching 

techniques as a single unit is proven to be very effective and is found to be more successful 

compared with the traditional well-known local searching techniques.  

Finally, we implement the proposed hybrid algorithm in a real system using 4 Eliza-3 robots. 

After a chain of experiments' runs, the system achieves a stable performance and performs all 

tasks efficiently.  

Also, these experimental scenarios are mapped into a real application (human rescuing 

application) which could be applied in a semi-destroyed site after a disaster like an earthquake 

happened. In such situation, it is dangerous for human to get inside this site in an attempt to 

rescue victims. So, we studied a scenario in which we could deploy a team of autonomous robots 

to rescue those victims without the need for human operators' intervention. 

Finally yet importantly, the communication overhead is evaluated in both transmission side and 

receiver side and the throughput of the system is calculated to be 46 bytes each 2.5 millisecond. 

7.2 Future Work 

The focus in this research is upon the problems, which include only single-robot tasks. 

Therefore, we could extend this work by taking into consideration two-robot tasks or more. 

Actually, tightly coupled tasks add some sort of complexity to the problem whenever it is taken 

into account. For example, it is more challenging to find a suitable allocation for tasks that need 

the cooperation of at least two robots in order to carry out the task concurrently. The resulting 

complexity is due to the environmental temporal and spatial constraints. Also, in this case, the 

task assignment complexity rises exponentially with growing the number of task's types. So, 

developing efficient approaches to deal with such complex problem could be a remarkable 

contribution in the future. 



151 

 

In addition, due to our limited budget, we implement our algorithm using only a set of 

homogeneous robots called Elisa-3 robots. So, these experiments could be extended in the future 

to include heterogeneous robots, which of course would increase the complexity of the problem. 

In this case, the mathematical model of the problem needs to be reformulated and the 

optimization technique should be modified to suite the new problem's formulation and 

constrains.  

Also, robots with more sophisticated sensing capabilities like camera, laser and ultrasonic could 

be used in the future. For example, e-puck robot could be involved which owns microphone, 

camera, ultrasonic, optical sensor and accelerometer. All these different kind of sensors could be 

utilized to raise the accuracy of the odometry data through applying the concept of sensor 

diffusion. 

Finally, robots' congestion could be taken into account in the future in order to help the robots to 

avoid jammed locations in the environment and hence increase the efficiency and robustness of 

the algorithm. 
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