
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

6-1-2017

Reliable cost-optimal deployment of wireless sensor networks Reliable cost-optimal deployment of wireless sensor networks

Dina Salah DeifAllah

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
DeifAllah, D. (2017).Reliable cost-optimal deployment of wireless sensor networks [Doctoral Dissertation,
the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/3

MLA Citation
DeifAllah, Dina Salah. Reliable cost-optimal deployment of wireless sensor networks. 2017. American
University in Cairo, Doctoral Dissertation. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/3

This Doctoral Dissertation is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/3?utm_source=fount.aucegypt.edu%2Fetds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/3?utm_source=fount.aucegypt.edu%2Fetds%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

of Philosophy in Electronics and Communications Engineering on

Reliable Cost-Optimal Deployment of

Wireless Sensor Networks

Dina Salah Deif Allah

Department of Electronics and Communications Engineering

School of Sciences and Engineering

The American University in Cairo

Spring 2017

ii

Acknowledgements

Firstly, I would like to thank Mr. Yousef Jameel for his generosity in funding

the PhD in Applied Sciences and Engineering Fellowship. I am honored to be one of the

recipients of this Fellowship. Without it, it would not have been possible for me to conduct

the research in this thesis.

I would like to express my sincere gratitude to my thesis advisor, Prof. Yasser Gadallah,

for his continuous support and guidance during my Ph.D. journey. The mentorship and

encouragement he provided me throughout the time of research and writing of this thesis

have been invaluable to me.

I would also like to thank the rest of my thesis committee: Prof. Ayman El Ezabi and

Prof. Mohammed Moustafa, for their insightful comments on my dissertation proposal and

final dissertation.

My sincere thanks also go to Eng. Mostafa El-Tager who kindly helped me in the

experimental part of Chapter 5 of this dissertation.

Last but not least, I would like to thank my family: my parents and my husband for

their emotional support and their patience throughout my Ph.D. journey. Their love,

understanding and encouragement have helped persevere through the most challenging times.

iii

Abstract

Wireless Sensor Networks (WSNs) technology is currently considered one of the key

technologies for realizing the Internet of Things (IoT). Many of the important WSNs

applications are critical in nature such that the failure of the WSN to carry out its required

tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN

functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the

fundamental requirements of the network deployment strategy. Achieving this requirement at

a minimum deployment cost is particularly important for critical applications in which

deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in

the traditional sense, especially in conjunction with minimizing the deployment cost, has not

been considered as a deployment requirement in existing WSN deployment algorithms to the

best of our knowledge. Addressing this major limitation is the central focus of this

dissertation. We define the reliable cost-optimal WSN deployment as the one that has

minimum deployment cost with a reliability level that meets or exceeds a minimum level

specified by the targeted application. We coin the problem of finding such deployments, for a

given set of application-specific parameters, the Minimum-Cost Reliability-Constrained

Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation,

we propose a novel WSN reliability metric which adopts a more accurate SN model than the

model used in the existing metrics. The proposed reliability metric is used to formulate the

MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-

Complete. Two heuristic WSN deployment optimization algorithms are then developed to

find high quality solutions for the MCRC-SDP. Finally, we investigate the practical

realization of the techniques that we developed as solutions of the MCRC-SDP. For this

purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable

for managing such reliable cost-optimal deployments. Accordingly, we propose a practical

TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such

deployments. Experimental results suggest that the proposed TCP’s overhead and network

Time To Repair (TTR) are relatively low which demonstrates the applicability of our

proposed deployment solution in practice.

iv

Abbreviations

Ant Colony Optimization ACO

Artificial Potential Field APF

Branch and Bound B&B

Branch and Cut B&C

Breadth-First Search BFS

Computational Geometry CG

Delaunay Triangulation DT

Disjoint Sets Cover DSC

Fault Tree FT

Field of View FoV

Fixed-Length Genetic Algorithm FLGA

Genetic Algorithm GA

Greedy Heuristic GH

Hybrid Genetic Algorithm HGA

Integer Linear Programming ILP

Local Search LS

Maximum-Coverage SDP MC-SDP

Mean Time To Fail MTTF

Memetic Algorithm MA

Minimum Cost Coverage SDP MCC-SDP

Minimum-Cost Connectivity-Guaranteed SDP MCCG-SDP

Minimum-Cost Reliability-Constrained SDP MCRC-SDP

Min-Max Ant System MMAS

Mixed Integer Programming MIP

Mobile Wireless Sensor Network MWSN

Monte Carlo MC

Multiple Objective Genetic Algorithm MOGA

Non-deterministic Polynomial time-hard NP-hard

Non-deterministic Polynomial time-complete NP-complete

Particle Swarm Optimization PSO

Point of Interest PoI

List of Abbreviations

v

Quality of Service QoS

Region of Interest RoI

Reliability Block Diagram RBD

Reliability-Constrained SDP RC-SDP

Reliable Deployment TTCP RD-TTCP

Sensor Node SN

Sensor Node Deployment Problem SDP

Swarm Intelligence SI

Temporal Topology Control Protocol TTCP

Time To Repair TTR

Topology Control Protocol TCP

Virtual Force VF

Voronoi Diagram VD

Wireless Sensor Network WSN

vi

Figures

Fig. 2.1 Crossover in case of binary encoding in a GA 10

Fig. 2.2 Voronoi cell of a site O with neighbouring sites A,B,C,D and E 12

Fig. 2.3 Delaunay triangulation of a set of planar points 13

Fig. 2.4 Centroid, c, of triangle ∠XYZ 23

Fig. 2.2 VOR algorithm proposed in [48] 28

Fig. 2.6 Fitness function in [89] 34

Fig. 2.7 Comparison among the four algorithms in terms of computational cost 44

Fig. 2.8 Comparison among the three metaheuristic algorithms in terms of

convergence speed

44

Fig. 3.1 Exponential reliability function plot for different values of MTTF 49

Fig. 3.2 (a) A simple WSN consisting of a sink node, 5 SNs and 3 target points,

(b) coverage of the WSN modeled as a bipartite graph

52

Fig. 3.3 SN states: the paths from the top node to a bottom node correspond to the

SN states with non-zero probability

58

Fig. 3.4 The structure of the proposed algorithm for evaluating WSN reliability 60

Fig. 3.5 Schematic of an international airport terminal with the marked positions of

the target points, possible deployment points and sink node

63

Fig. 3.6 Comparison among the existing reliability metric in [107], the proposed

metric and its lower bound

65

Fig. 3.7 Comparison in terms of the number of SN failure combinations contributing

to the value of reliability among the existing reliability metric in [107], the

proposed metric and its lower bound

65

Fig. 3.8 Comparison in terms of computation time incurred by the existing reliability

metric in [107], the proposed metric and its lower bound

66

Fig. 3.9 Comparison between the reliability of WSN deployments in Table 3.7

evaluated using the proposed 3-mode and the 2-mode SN model adopted

in [107]

70

Fig. 3.10 Reliability for the deployment S3-D1 in Table 3.7 at different probabilities

of failure of the sensor, transceiver, processor and battery

71

Fig. 3.11 Comparison between the reliability of the WSN deployments of scenario 3

in Table 3.7 evaluated using the 3-mode, 2-par and 4-par SN model

72

Fig. 4.1 A RoI containing three target point and six deployment points where the

upper bound for connected covers is equal 2

77

Fig. 4.2 Chromosome decoding for the proposed MA 80

Fig. 4.3 The scattering operator in the propsed MA 82

Fig. 4.4 The LS procedure scheduling scheme for the proposed MA 83

Fig. 4.5 Average deployment cost of the solutions obtained by the proposed MA for

different LS procedure schedules for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 at

𝑅𝑚𝑖𝑛 = 0.999

95

Fig. 4.6 Average computational cost , measured by the CPU run time in seconds, of

the proposed MA for different LS procedure schedules for TC4 at 𝑅𝑚𝑖𝑛 =
0.99 and TC5 at 𝑅𝑚𝑖𝑛 = 0.999

95

Fig. 4.7 The average deployment cost obtained from applying the proposed ACO 97

List of Figures

vii

algorithm on test case TC3 at 𝑅𝑚𝑖𝑛 = 0.9999

Fig. 4.8 The average deployment cost obtained from applying the proposed ACO

algorithm on test case TC6 at 𝑅𝑚𝑖𝑛 = 0.99

97

Fig. 4.9 Computational cost of the proposed MA and ACO algorithm for test cases

in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.99 measured using (a) CPU run-time in seconds,

(b) Total number of performed network structure function evaluations

104

Fig. 4.10 Computational cost of the proposed MA and ACO algorithm for test cases

in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.999 measured using (a) CPU run-time in seconds,

(b) Total number of performed network structure function evaluations

105

Fig. 4.11 Computational cost of the proposed MA and ACO algorithm for test cases

in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.9999 measured using (a) CPU run-time in

seconds, (b) Total number of performed network structure function

evaluations

105

Fig. 5.1 A state diagram describing the proposed RD-TTCP functionality

115

Fig. 5.2 Traffic overhead incurred by the proposed RD-TTCP, measured as ratio

between RD-TTCP and routing traffic in percentage points

117

Fig. 5.3 Boxplots of the proposed RD-TTCP time to repair metric, measure by the

time variables TTR1 and TTR2

118

viii

Tables

Table 2.1 Pseudo code of a general GA 10

Table 2.2 Pseudo code of a PSO algorithm 16

Table 2.3 Pseudo code of an ACO algorithm 17

Table 2.4 Comparison among the GAs designed for WSN deployment 21

Table 2.5 Comparison among the CG-based algorithms for WSN deployment 25

Table 2.6 Comparison among the APF algorithms for WSN deployment 33

Table 2.7 Comparison among the SI-based algorithms for WSN deployment 38

Table 2.8 Comparison among the four mathematical approaches for planned WSN

deployment

40

Table 2.9 Comparison among the four algorithms in terms of quality of obtained

solutions

42

Table 2.10 Results of the pairwise 𝑡 −tests 42

Table 3.1 Pseudo-code for the proposed algorithm for calculating the reliability of

a WSN assuming SNs follow a 3-mode, 2-par model

56

Table 3.2 Evaluation of the probability of the corresponding individual SN states

for a given WSN state

59

Table 3.3 Pseudo-code for the proposed algorithm for calculating the reliability of

a WSN assuming SNs follow a 3-mode, 4-par model

61

Table 3.4 Parameters of the SN types used in the deployments listed in Table 3.5 64

Table 3.5 Data of the obtained deployments for the case-study surveillance WSN 64

Table 3.6 Parameters of the SNs types in the deployments listed in Table 3.7 67

Table 3.7 Data of the obtained deployments for the case-study surveillance WSN 68

Table 4.1 Pseudo-code of the LS procedure in the proposed MA 84

Table 4.2 Pseudo code of the tour construction procedure in the proposed ACO

algorithm

89

Table 4.3 Pseudo code of the LS procedure for the proposed ACO algorithm 90

Table 4.4 Pseudo code of the proposed ACO algorithm 92

Table 4.5 Data of test cases used to evaluate the proposed MA and ACO algorithm 93

Table 4.6 Parameters of the proposed MA 96

Table 4.7 Parameters of the proposed ACO algorithm 98

Table 4.8 Pseudo code of the GH used for benchmarking the performance of the

proposed algorithms for solving the MCRC-SDP

99

Table 4.9 Comparison among the GH, MA and ACO algorithms in terms of

quality of the obtained solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 =
0.99

100

Table 4.10 Comparison among the GH, MA and ACO algorithms in terms of

quality of the obtained solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 =
0.999

100

Table 4.11 Comparison among the GH, MA and ACO algorithms in terms of

quality of the obtained solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 =
0.9999

100

Table 4.12 Results of the pairwise Wilcoxon signed-rank tests on the test cases at

𝑅𝑚𝑖𝑛 = 0.99 at 99% confidence level

100

Table 4.13 Results of the pairwise Wilcoxon signed-rank tests on the test cases at

𝑅𝑚𝑖𝑛 = 0.999 at 99% confidence level

101

List of Tables

ix

Table 4.14 Results of the pairwise Wilcoxon signed-rank tests on the test cases at

𝑅𝑚𝑖𝑛 = 0.9999 at 99% confidence level

101

Table 5.1 Pseudocode of the proposed RD-TTCP functionality executed by the

sink node

113

Table 5.2 Pseudocode of the proposed RD-TTCP functionality executed by the

SNs

114

Table 5.3 Data of the reliable cost-optimal deployments used to create the COOJA

simulation scenarios

117

Table 5.4 Simulation and Protocol Parameters 117

x

Symbols

𝑟𝑠 SN coverage range

𝑟𝑐 SN communication range

𝑇𝑚 WSN mission time

𝑅𝑐(𝑡) Reliability function of a device

𝑅𝑐 Reliability of a device during 𝑇𝑚

𝜋𝑖 Binary state indicator of component 𝑖 in a system 𝑺

𝝅 State of system 𝑺

𝚷 Set of all possible states of system 𝑺

𝑓(𝝅) Structure function of system/network 𝑺

𝑅(𝑺) Reliability of system 𝑺 during 𝑇𝑚

𝑺1(𝝅) Set of functional components in system 𝑺 at state 𝝅

𝑺0(𝝅) Set of failed components in system 𝑺 at state 𝝅

𝚷1 Set of all paths of system 𝑺

𝚷0 Set of all cuts of system 𝑺

𝑫 = {𝑑𝑖} , 𝑖 = 1,… , |𝑫| Set of possible deployment points in a given RoI of the

WSN

𝑻 = {𝑡𝑗} , 𝑗 = 1,… ,𝑚 Set of target points in a given RoI of the WSN

 𝒀𝑗 Set of SNs in the on state that monitor 𝑡𝑗

 𝒁𝑗 Subset of SNs belonging to 𝒀𝑗 which have a functional

path to the sink node

𝜆𝑡
𝑖 Transceiver probability of failure of SN 𝑖 during 𝑇𝑚

𝜆𝑠
𝑖 Sensor probability of failure of SN 𝑖 during 𝑇𝑚

𝑿𝑡 Subset of SNs belonging to 𝑺 with failed transceivers

𝑿𝑠 Subset of SNs belonging to 𝑺 with failed sensors

𝑿𝑡
𝑐 Complement of 𝑿𝑡

𝑿𝑠
𝑐 Complement of 𝑿𝑠

𝑭 Set of all the SN failure combinations that can be

tolerated by 𝑺

𝑃𝑟𝑜𝑏(𝐹𝑞) Probability of occurrence of the SN failure combination 𝑞

in 𝑭

 𝑅𝑙𝑏(𝑺) Lower bound of 𝑅(𝑺)

 𝜂𝑙𝑏 Lower bound probability threshold

|𝑭|𝑙𝑏 number of probability terms include in 𝑅𝑙𝑏(𝑺) such

that 𝑃𝑟𝑜𝑏(𝐹|𝑭|𝑙𝑏) ≥ 𝜂𝑙𝑏

𝑭𝑡
𝑘 set that holds all the tolerable transceiver failure

combinations of length 𝑘 assuming no sensor failures

𝑭𝑠
𝑘 Set of all the tolerable sensor failure combinations of

length 𝑘 assuming no transceiver failures

𝑭𝑘 Set of all the tolerable components failures of length 𝑘

𝑥𝑠, 𝑥𝑡, 𝑥𝑝, 𝑥𝑏 Binary indicators for the state of the sensor, transceiver,

processor and battery of a SN respectively

 𝜆𝑠 Probability of failure of a SN sensor conditioned on the

event that the processor and battery are functional during

𝑇𝑚

List of Symbols

xi

𝜆𝑡 Probability of failure of a SN transceiver conditioned on

the event that the processor and battery are functional

during 𝑇𝑚

𝜆𝑝 Probability of failure of a SN processor conditioned on

the event that the battery is functional during 𝑇𝑚

𝜆𝑏 Probability of failure of a SN battery during 𝑇𝑚

 𝑥𝑖(𝝅) State of SN 𝑖 at state 𝝅 of 𝑺

𝑿𝑝 Subset of SNs belonging to 𝑺 with failed processor

𝑿𝑏 Subset of SNs belonging to 𝑺 with failed battery

𝑭𝑟
𝑘 Set of all the tolerable SN combinations in the relay

mode of length 𝑘 assuming the remainder of SNs are in

the on mode

𝑭𝑟 Set of all the tolerable SN combinations in the relay

mode assuming the remainder of SNs are in the on mode

𝑭𝑜
𝑘 Set of all the tolerable SN combinations in the off mode

of length 𝑘 assuming the remainder of SNs are in the on

mode

𝑭𝑜 Set of all the tolerable SN combinations in the off mode

assuming the remainder of SNs are in the on mode

𝑅𝑚𝑖𝑛 Minimum required reliability level in the MCRC-SDP

 𝑁𝑈𝐵 Upper bound for the number of connected covers for a

given MCRC-SDP instance

Φ(𝑺𝑘) Complete-redundancy binary indicative function for a

given connected 𝑺𝑘

𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, 1 ≤
𝑁 ≤ 𝑁𝑈𝐵

WSN deployment consisting of 𝑁 non-overlapping

connected covers

𝑅(𝓢) Reliability of the deployment 𝓢
ℱ(𝑐(𝑁)) Fitness of chromosome 𝑐(𝑁)

 µ Number of chromosomes in an MA population

𝑃𝐿𝑆 Ratio of the MA population undergoing the LS procedure

𝑛𝐿𝑆 Number of MA generations at which the entire

population undergoes LS

𝐺(𝑽, 𝑬) Construction graph of the ACO

𝑑0 Location of the sink node in the RoI of the WSN

𝓢𝑎 = {𝑺1
𝑎, 𝑺2

𝑎,… , 𝑺𝑁𝑎

𝑎 } WSN deployment consisting of 𝑁𝑎
 non-overlapping

connected covers corresponding to the tour of ant 𝑎

𝑝𝑖𝑗
𝑎 Probability of a transitions between deployment points 𝑖

and 𝑗 in the tour of ant 𝑎

 𝜏𝑖𝑗 pheromone trail value between deployment points 𝑖 and 𝑗

𝜂𝑗
𝑎 Heuristic value of adding the deployment point 𝑗 to the

connected cover currently being built by ant 𝑎

𝓝𝑖
𝑎 Feasible neighborhood of ant 𝑎 at its current position in

the construction graph at deployment point 𝑖
𝛼 Influence parameter of the pheromone trail values

𝛽 Influence parameter of the heuristic information

 𝜌 Pheromone evaporation rate

 𝑫− Set of deployment points not visited so far by ant 𝑎 in its

current tour

𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 Set of deployment points within the communication

List of Symbols

xii

range 𝑟𝑐 of any deployment point belonging to the current

connected cover constructed by ant 𝑎

𝓝𝑖𝑒𝑓𝑓
𝑎 Subset of 𝓝𝑖𝑓𝑢𝑙𝑙

𝑎 in which deployment points have a

non-zero coverage gain

ℊ𝑗
𝑎 Coverage gain of adding deployment point 𝑗 to the

current connected cover constructed by ant 𝑎

 𝓝𝑠𝑖𝑛𝑘
𝑎 Set of deployment points belonging to 𝑫− which are

within a distance equal to the SN communication range 𝑟𝑐

𝒞(𝓢𝑎) Cost of the tour of ant 𝑎

𝓢𝑖𝑏
 Iteration-best solution in the ACO

𝒞𝑖𝑏 Cost of the iteration-best solution in the ACO

𝜏𝑚𝑎𝑥 Maximum allowed pheromone value

𝜏𝑚𝑖𝑛 Minimum allowed pheromone value
𝑛𝑚𝑎𝑥 Maximum number of generations/iterations for MA and

ACO
𝑛𝑐𝑜𝑛𝑣 Number of generations before flagging convergence for

MA and ACO

𝑡𝑝 Duration of the RD-TTCP intervals

 𝑡𝑙 Duration of the RD-TTCP listening period
𝑡ℎ Frequency of the “heart-beat” messages in the RD-TTCP

𝑡𝑎𝑐𝑘 ACK messages time-out duration
𝑺𝑜𝑛 Currently active connected cover in the RD-TTCP

xiii

Contents

Chapter 1: Introduction .. 1

1.1. Introduction .. 1

1.2. Problem Statement and Research Objectives .. 3

1.3. Organization of the Proposal ... 4

Chapter 2: Wireless Sensor Network Deployment Techniques: A Survey and

Classification .. 5

2.1. Introduction .. 5

2.2. Fundamental Design Factors of WSNs .. 5

2.2.1. Sensing Model... 5

2.2.1.1. The Binary Sensing Model .. 5

2.2.1.2. Probabilistic Sensing Model .. 6

2.2.2. Sensor Node Mobility ... 6

2.2.3. WSN Coverage and Connectivity ... 7

2.3. Mathematical Approaches Used in WSN Deployment Algorithms 8

2.3.1. Genetic Algorithms ... 9

2.3.2. Computational Geometry .. 11

2.3.2.1. Voronoi Diagram ... 11

2.3.2.2. Delaunay Triangulation ... 12

2.3.3. Artificial Potential Field.. 13

2.3.4. Swarm Intelligence (SI) .. 14

2.3.4.1. Particle Swarm Optimization ... 14

2.3.4.2. Ant Colony Optimization ... 15

2.4. Wireless Sensor Networks Deployment Algorithms ... 17

2.4.1. Genetic Algorithms ... 17

2.4.2. Computational Geometry-based Algorithms .. 21

2.4.3. Artificial Potential Field-based Algorithms .. 25

2.4.3.1. Distributed Algorithms .. 25

2.4.3.2. Centralized Algorithms .. 30

2.4.4. Swarm Intelligence Algorithms .. 32

2.5. Discussion and Experimental Evaluation .. 38

2.5.1. Discussion: Comparing the Four Approaches .. 38

2.5.2. Experimental Evaluation ... 40

2.5.2.1. Experimental Set-up... 40

2.5.2.2. Results and Discussion .. 41

Table of Contents

xiv

2.6. Chapter Summary .. 43

Chapter 3: Reliability Assessment of Wireless Sensor Network Deployments 45

3.1. Introduction .. 45

3.2. Related Work on Reliability and Fault Tolerance of WSNs 46

3.3. Motivation for a New Reliability Metric ... 48

3.4. Fundamental Reliability Concepts ... 48

3.4.1. Component Reliability Function and Component Reliability............................... 48

3.4.2. Combinatorial Approach to System Reliability Evaluation 49

3.5. WSN Reliability Metric ... 51

3.5.1. WSN Model and Functionality Definition .. 51

3.5.2. Reliability Metric Formulation for the 3-mode, 2-par SN Model 52

3.5.2.1. 3-mode, 2-par SN Model ... 52

3.5.2.2. Reliability Metric Derivation ... 53

3.5.2.3. Reliability Metric Calculation.. 54

3.5.3. Reliability Metric Formulation for the 3-mode, 4-par SN Model 57

3.5.3.1. 3-mode, 4-par SN Model ... 57

3.5.3.2. Reliability Metric Derivation ... 58

3.5.3.3. Reliability Metric Calculation.. 59

3.6. Case Study ... 62

3.6.1. Experimental Set-up .. 62

3.6.2. Results and Discussion for the 3-mode, 2-Par SN model 63

3.6.3. Results and Discussion for the 3-mode, 4-par SN model 66

3.6.4. Comparison between the 3-mode, 2-par and 4-par SN models 71

3.7. Chapter Summary .. 72

Chapter 4: Reliable Cost-Optimal Wireless Sensor Network Deployment 74

4.1. Introduction .. 74

4.2. Minimum-Cost Reliability-Constrained SDP .. 74

4.2.1. WSN Model .. 75

4.2.2. Problem Formulation .. 75

4.2.3. Estimation of the Upper-Bound of the Number of Connected Covers 77

4.2.4. Proof that MCRC-SDP is NP-Complete ... 77

4.3. Proposed Optimization Algorithms for Solving the RCSDP 78

4.3.1. Proposed Memetic Algorithm ... 79

4.3.1.1. Chromosome Encoding Scheme .. 79

4.3.1.2. Fitness Function ... 80

4.3.1.3. Variation Operators .. 81

4.3.1.4. Chromosome Selection Methods ... 82

4.3.1.5. Local Search Procedure ... 82

4.3.1.6. Termination Conditions ... 85

4.3.1.7. Measures to Reduce Computational Cost .. 85

Table of Contents

xv

4.3.2. Proposed ACO Algorithm ... 86

4.3.2.1. Construction Graph .. 86

4.3.2.2. Tour Construction .. 86

4.3.2.3. Cost Function ... 89

4.3.2.4. Local Search Procedure ... 90

4.3.2.5. Pheromone Management ... 91

4.3.2.6. Summary of the proposed ACO algorithm .. 92

4.3.2.7. Measures to Reduce Computational Cost .. 93

4.4. Experimental Results and Discussion .. 93

4.4.1. Experimental Setup ... 93

4.4.2. Parameter Settings of the Proposed Algorithms ... 93

4.4.2.1. Parameter Settings of the Proposed MA .. 94

4.4.2.2. Parameters Setting of the Proposed ACO Algorithm 96

4.4.3. A GH for Benchmarking the Proposed Algorithms .. 98

4.4.4. Comparison and Discussion .. 99

4.5. Chapter Summary .. 106

Chapter 5: A Practical Realization of the Proposed Reliable Cost-Optimal Deployment

Technique.. 107

5.1. Introduction .. 107

5.2. Previous Work on WSN Topology Control ... 107

5.3. Proposed Topology Control Protocol for Reliable WSN Deployments 112

5.4. Experimental Results and Discussion .. 114

5.5. Chapter Summary .. 119

Chapter 6: Conclusions ... 121

6.1. Dissertation Summary ... 121

6.2. Future Work ... 122

References ... 123

Chapter 1

1

Chapter 1

Introduction

1.1. Introduction

Over the past decade, Wireless Sensor Networks (WSNs) have become a rich research

field, introducing a wide variety of exciting new applications. A WSN is composed of a

number of tiny low-power sensor devices that are capable of sensing various physical

phenomena (e.g. sound, light, temperature, motion, seismic action, etc.) in almost all types of

environments (industrial, domestic, military, etc.). These devices, simply referred to as

Sensor Nodes (SNs), process the crude sensory data and wirelessly communicate it to one or

more data collection nodes, referred to as sinks, through single or multi-hop transmissions.

The sink(s) are in turn connected to another wired or wireless network for the purposes of

querying and processing the collected data [1]. WSNs are also considered one of the key

technologies for realizing the Internet of Things (IoT) concept, playing the pivotal role of

detecting events and measuring physical and environmental quantities of interest [2], [3]. It is

currently estimated that the WSN market will grow to $1.8 billion by 2024 [4]. Current

applications for WSNs include but are not limited to industrial near real-time monitoring and

automation [5], [6], traffic surveillance and control [7], [8], continuous health monitoring [9] ,

[10], target tracking in military operations [11] and environmental monitoring [12], [13].

Nevertheless, the large potential of WSNs in vital applications is associated with their highly

complex design process. The reason behind the design complexity is that WSNs are

inherently different from existing wired and wireless networks due to the severe energy,

processing and communication constraints of their constituent SNs.

One of the most important design aspects in WSNs is the deployment of SNs, which is

also covered under different expressions in the literature: SNs’ positioning, placement,

topology construction and deployment. Throughout this dissertation, the expression

deployment will be used. The importance of SN deployment lies in the fact that it affects

almost all the performance metrics of a WSN, such as the connectivity between SNs, the

network’s effective coverage and the network’s effective lifetime. Consequently, a

considerable body of research in the field of WSNs has been dedicated to addressing

deployment related issues.

In general, SN deployment methods fall under two main categories, namely, planned

deployment and random deployment. In random deployment, SNs are usually scattered (e.g.

by aircraft), resulting in a randomized distribution of sensors, although their density can be

controlled to an extent [14]. Random deployment can sometimes be the only feasible option

in some applications where the Region of Interest (RoI) is inaccessible such as disaster areas

and active war zones. Logically speaking, random deployments result in sub-optimal

performance of the WSN. On the other hand, planned deployment is defined as selectively

deciding the locations of the SNs to optimize one or more design objectives of the WSN,

under the constraints of a specific application. Hence, planned deployment is often

formulated as an optimization problem, which we will refer to here as the SN Deployment

Problem (SDP). Design objectives of the SDP commonly required are minimizing the

deployment cost, maximizing coverage, minimizing energy consumption, and minimizing

Chapter 1

2

routing costs. Planned deployment is suited for a wide variety of WSNs applications,

provided that the RoI is accessible. Examples include border surveillance and intrusion

detection in facilities[15], continuous human health monitoring [16], structural health

monitoring [17] and industrial real-time monitoring [18]. A great number of studies have

proposed methods and algorithms for solving the planned sensor deployment problem. These

proposed deployment algorithms in the literature are heavily influenced by the requirements

of specific applications and the characteristics of the used SNs, such as their wireless

communication ranges and their sensing profiles.

The examples of WSNs applications requiring planned deployment cited above are also

examples of WSNs applications of a critical nature. For these applications, it is imperative

that the WSN functions properly throughout its mission time, i.e. the WSN is reliable during

this time. This is because failure of the WSN to carry out its required tasks can have serious

detrimental effects (e.g. failure to detect an intrusion at a military installation). The mission

time for a WSN is application-dependent and can either be the intended lifetime of the

network or the time interval between regular network maintenance operations. This in turn

poses stringent reliability requirements on the WSN that must be addressed in the design and

deployment phase of the network. Consequently, it is important to clearly define proper WSN

functionality and to identify the different issues that can compromise it. Moreover, a well-

defined reliability metric is required to serve as a measure of the fault tolerance of the WSN

deployment against these issues.

In general, the reliability of a multi-component system is defined as the “probability that

the system will perform satisfactorily during its specified mission time when used under the

stated conditions” [19]. The method by which reliability is calculated for a specific system

varies according to the type(s) of components the system is composed of, the system’s layout

or configuration in terms of how these components are connected to each other and the

state(s) at which the system is defined to have failed. In this context, a WSN can be viewed as

a multi-component system in which the components are the SNs and the sink node(s). Each

SN is characterized by a number of parameters which include the reliabilities of its own

components or alternatively, their probabilities of failure during the specified mission time of

the network. The layout or configuration of the WSN is defined as the way the SNs are

deployed in the RoI and the resulting wireless communication graph, assuming any two SNs

can communicate wirelessly if the distance between them is less than their communication

range (i.e. assuming SNs act as both sensory data sources and relays in the WSN).

In order to define the states at which a WSN fails, proper WSN functionality must be

defined, i.e. the conditions required for a WSN to be functional. The functionality of a WSN

can be divided into two major elements. The first element is the sensing functionality, which

is the ability of a WSN to detect all the targets or phenomena that occur inside the boundaries

of the RoI during its mission time. Hence, for a WSN to be functional in terms of sensing, it

must provide full coverage for the RoI area (in case of area coverage) or all the targeted

locations in the RoI (in case of point coverage) during its mission time. The second element

of the WSN functionality is the connectivity functionality, which is the ability of the WSN to

deliver sensed data from its sources (i.e. SNs) to the designated destination (i.e. sink node(s))

during its mission time. Hence, for a WSN to be functional in terms of connectivity, any

target or a phenomenon detected by one or more SNs in a WSN has to be recognized at the

sink node(s) through multi-hop wireless communication throughout the WSN mission time.

Based on this definition of WSN functionality, a WSN is said to have failed if either of its

sensing or connectivity functionality elements fails [20]. Therefore, a WSN is said to be

reliable during a specified mission time if both its functionality elements do not fail during

that time interval, i.e. if the WSN provides a connected-cover of the RoI throughout its

mission time.

Chapter 1

3

1.2. Problem Statement and Research Objectives

Deployment of reliable WSNs is a challenging problem. This is due to the fact that SNs

are subject to random failures that result from different sources such as hardware failures,

harsh environmental conditions and many other reasons [20]. Naturally, such failures can

compromise the WSN functionality in terms of sensing and/or connectivity. Hence, SN

redundancy (i.e. the presence of redundant SNs in the network) is essential to guarantee the

reliable operation of a WSN during its intended mission time. However, for many

applications for which SNs are equipped with expensive hardware minimizing the number of

deployed SNs (i.e. the network deployment cost) presents a major concern. Therefore, the

level of SN redundancy in the WSN must be carefully quantified such that the network meets

the reliability requirements imposed by the application while avoiding any unnecessary

increase in the network deployment cost.

After carrying out an extensive survey on the existing static WSN planned deployment

algorithms (which is presented and discussed in Chapter 2), we realized that WSN reliability,

specifically in conjunction with minimizing the WSN deployment cost, has been overlooked

as a deployment objective. The majority of the existing deployment algorithms aim at

minimizing the WSN deployment cost with the objective of fulfilling application-dependent

network coverage and connectivity objectives under a wide range of assumptions. In other

words, they aim to find a connected-cover of the targeted RoI that is cost-optimal [21].

However, a WSN which consists of a single connected-cover cannot be considered reliable

over a given network mission time. This is because, by definition, a cost-optimal connected

cover does not contain redundant SNs. Consequently, the failure of one or more of the

deployed SNs during the network mission time will compromise the functionality of the

network in terms of coverage and/or connectivity. On the other hand, some recent

studies [22] propose deployment algorithms that find cost-optimal deployments that are

characterized by higher degrees of coverage and/or connectivity. However, this approach do

not offer a method to predict the level of SN redundancy (i.e. the degree of coverage and

connectivity) required to guarantee a specified minimum level of network reliability over a

given network mission time. Therefore, in order to deploy reliable cost-optimal WSNs, it is

important to devise a deployment technique that explicitly considers network reliability as a

design requirement while ensuring that the deployment cost is minimized.

 Addressing the problem stated above is the central focus of this dissertation.

Specifically, we aim to develop WSN deployment algorithms that obtain reliable and cost-

optimal deployments for WSNs that support critical applications under practical operational

assumptions. We define the reliable WSN cost-optimal deployment as one that has minimum

deployment cost with a reliability level that meets or exceeds a given minimum level as

specified by the targeted application. We use practical operational assumptions that include

arbitrary SN coverage profile, arbitrary SN communication to sensing range ratio and a

realistic SN operational model.

The research contributions of this dissertation can be summarized in the following

points:

1. A comprehensive survey and classification of the existing WSN planned deployment

algorithms based on their underlying mathematical approach.

2. A novel reliability metric for WSNs that is based on an accurate SN model when

compared to the model used in the existing WSN reliability metrics.

3. A mathematical formulation of the problem of finding a reliable cost-optimal WSN

deployment. We coin this problem the Minimum-Cost Reliability-Constrained

Sensor Node Deployment Problem (MCRC-SDP) and prove that it is NP-Complete.

Chapter 1

4

4. A Memetic Algorithm (MA) and an Ant Colony Optimization (ACO) algorithm

designed for solving the defined MCRC-SDP.

5. A practical realization of a Topology Control Protocol (TPC) suitable for managing

the SN redundancy in the reliable cost-optimal WSN deployments obtained by the

developed deployment algorithms.

1.3. Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, a classification of the

WSN planned deployment algorithms is presented. Based on an extensive review of the

deployment algorithms which belong to each approach, we present a qualitative comparison

among them highlighting the strengths and shortcomings of each approach. We also present

an experimental quantitative comparison of four of the existing static WSN deployment

algorithms reviewed in the chapter. In Chapter 3, a novel WSN reliability metric is proposed

to address some of the limitations of the existing WSN metrics. Experimental results on the

proposed metric are presented and discussed in terms of its computational efficiency and

accuracy. In Chapter 4, the mathematical formulation for the MCRC-SDP is presented. A

MA and an ACO algorithm designed for solving the defined MCRC-SDP are proposed.

Extensive experimental results are presented, analyzed and discussed to highlight the

strengths and limitations of each of the proposed algorithms. In Chapter 5, we propose a

practical TCP that is suitable for managing the SN redundancy in reliable cost-optimal

deployments. We present and discuss the experimental results obtained from implementing

and simulating the proposed TCP. Finally we conclude the dissertation in Chapter 6, in which

we summarize our findings and propose future work directions.

 Chapter 2

5

Chapter 2

Wireless Sensor Network Deployment Techniques:

A Survey and Classification

2.1. Introduction

There exist a large number of studies in the literature which propose algorithms for

solving different variants of the planned SDP that we defined in Chapter 1. In this chapter, we

present an extensive literature survey on these studies. We begin by discussing some of the

fundamental design factors of WSNs, namely the SN sensing/coverage model, SN mobility

and WSN coverage and connectivity. We elaborate on these specific design aspects due to

their great influence on the deployment algorithms that are reviewed in this chapter. We

present a novel classification of the WSN planned deployment algorithms, based on the

mathematical approach used for modeling and solving the deployment problem. The

presented classification encompasses the majority of the main studies conducted on the topic.

Four distinct mathematical approaches are presented: Genetic Algorithms (GAs),

Computational Geometry (CG), Artificial Potential Fields (APFs) and Swarm Intelligence

(SI). For each approach, we provide a discussion of its background and basic mathematical

foundation. We then review the algorithms which belong to each approach and provide a

comparison between them in terms of their objectives, assumptions and performance. Based

on our extensive survey, we discuss the strengths and limitations of the four approaches and

compare them in terms of the different WSN design factors. We also present an experimental

comparison among four of the existing WSN deployment algorithms.

2.2. Fundamental Design Factors of WSNs

2.2.1. Sensing Model

Generally speaking, the sensing model of a specific type of SNs is a mathematical model

that describes the probability of target/event detection of the SN. Assuming the target or

event occur at a point 𝑝𝑗 in the RoI, the probability of detecting that target or event by a

SN 𝑠𝑖 is denoted by 𝑃𝑖𝑗, which is a function of several parameters. The most commonly used

parameters are the Euclidean distance between them 𝑑𝑖𝑗, the orientation of the SN (e.g. image

SN with a given Field of View (FoV), various environmental parameters and SN hardware

parameters. There are several sensing models found in the literature. However, they can be

broadly classified into binary and probabilistic sensing models.

2.2.1.1. The Binary Sensing Model

This model is also called the Disk Model. The Binary model simply assumes that a SN

has a fixed sensing range 𝑟𝑠 . If an event occurs at a point 𝑝𝑗 at a distance less than or equal 𝑟𝑠

from the location of SN 𝑠𝑖 , then the event is detected deterministically by 𝑠𝑖 . However, if the

distance is equal to 𝑟𝑠 + 𝜖 (𝜖 > 0), then the event won't be detected at all. This definition is

depicted in (2.1) [23], [24].

 Chapter 2

6

𝑃𝑖𝑗 = {
1 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝑟𝑠

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.1)

Although this model is widely used in the literature due to its simplicity, it is unrealistic.

It is unlikely that the detection capabilities, or the physical signals of the detected target or

event, drops abruptly from maximum to zero. This implies that using the binary sensing

model in a deployment scheme may result in under-utilizing the sensing capabilities of SNs

and hence deploying more SNs than needed, incurring higher deployment costs.

2.2.1.2. Probabilistic Sensing Model

Probabilistic sensing models aim at capturing the various factors affecting the precision

of SN readings [25]. Apart from the nature of the sensed physical phenomenon and the

imperfect detection capabilities of the SN itself, these factors also include environmental

conditions such as noise and obstacles [26]. Inspired by the probabilistic sensing models

proposed in the field of robot navigation [27], the study in [28] proposed the following

probabilistic sensing model:

𝑃𝑖𝑗 = {

1 𝑖𝑓 𝑟𝑠 − 𝑟𝑒 ≥ 𝑑𝑖𝑗

𝑒−𝛼𝑎𝛽
 𝑖𝑓 𝑟𝑠 + 𝑟𝑒 ≥ 𝑑𝑖𝑗 ≥ 𝑟𝑠 − 𝑟𝑒

0 𝑖𝑓 𝑟𝑠 + 𝑟𝑒 ≤ 𝑑𝑖𝑗

 (2.2)

𝑎 = 𝑑𝑖𝑗 − (𝑟𝑠 − 𝑟𝑒),

where 𝑟𝑒 (𝑟𝑠 > 𝑟𝑒) is the measure of the uncertainty in the SN detection and 𝛼 and 𝛽 are SN

parameters with values between 1 and 0, varying according to the physical characteristics of

the SN. The model depicted in (2.2) assumes that there are two concentric circles around a

given SN; a circle of confidence with a radius 𝑟𝑠 − 𝑟𝑒 in which the detection probability of a

target is equal to 1, and a wider circle of radius 𝑟𝑠. The probability of detecting a target

outside the circle of confidence and inside the wider circle deteriorates exponentially with the

Euclidean distance between the SN and the target or event 𝑑𝑖𝑗.

A simpler variation of the sensing model described by (2.2), proposed in [29], omits the

inner circle of confidence, and simply assumes an exponential decay of the probability of

detection with the Euclidean distance, as depicted in the following equation.

𝑃𝑖𝑗 = {
𝑒−𝛽𝑑𝑖𝑗 𝑖𝑓 𝑑𝑖𝑗 < 𝑟𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

 (2.3)

Equations (2.1) to (2.3) describe the sensing models that are most commonly adopted in

the formulation of the deployment algorithms reviewed in this chapter. Hence, these

equations will be referenced repeatedly throughout this chapter.

2.2.2. Sensor Node Mobility

WSNs can be classified according to the type of deployed SNs (static or mobile) into two

types: Static WSNs (simply referred to simply as WSN) and Mobile WSNs (MWSNs). The

concept of MWSNs has been spurred by the recent advances in distributed computing and

robotic technology. MWSNs are defined as WSNs containing SNs which have sensing,

processing, communication and locomotive capabilities. The locomotive capabilities can be

achieved by mounting static SNs on mobile vehicles or mobile robots [30], [31]. The MWSN

 Chapter 2

7

can be homogeneous, i.e. consisting entirely of mobile SNs, or heterogeneous, i.e. contains

both mobile and static SNs.

The added mobility can provide the MWSNs with several benefits, but can also

complicate the design significantly. The main added benefit is the ability of the network to

self-deploy after an initial random deployment. This self-deployment (or more accurately re-

deployment) capability can significantly improve the effective coverage of the network from

the initial limited coverage which is difficult to control, due to factors such as wind, foliage,

terrain irregularities, etc. Mobile SNs can also be used to cover detected coverage holes in a

RoI in heterogeneous WSNs consisting mostly of static SNs as proposed in [32] and [33].

Another important benefit is the added ability of self-reconfiguration in the network. Re-

configuration can be very beneficial in the case when some of the SNs in the network die

(due to energy depletion or harsh environmental conditions) which leads to connectivity

islands. Re-configuration will enable the network to maintain an acceptable connectivity, in

order to maintain multipath routing [34]. However, the introduced mobility poses design

problems such as the hefty burden on the limited energy resources of the usually battery-

powered SNs and the need for coordination between the mobile SNs.

2.2.3. WSN Coverage and Connectivity

Coverage is one of the most important performance metrics in WSNs. In WSNs,

coverage can have different meanings and can be determined using different methods. In

general, it revolves around the question "How well do the deployed SNs observe the physical

space?” In all contexts, coverage provides a measure of the Quality of Service (QoS) of a

specific WSN deployment. As the coverage of a WSN increases, its success in carrying out

its specific sensing task(s) increases as well.

 Coverage in a WSN is intertwined with the connectivity in the network. The term 𝑘-

connectivity (𝑘 ≥ 1) means that there exist at least 𝑘 disjoint paths between any pair of SNs

in a WSN [23]. Connectivity is of immense importance because it guarantees that sensory

data acquired by any SN in a WSN can be routed to the sink node(s).

 Coverage in WSNs can be classified into three types: area (blanket) coverage, point

coverage and barrier coverage [35]. In area coverage, an entire two dimensional (2-D) RoI is

considered, such that each point in the RoI is observed by at least one SN. In point coverage,

the objective is to only guarantee that a set of finite points in the RoI are observed by at least

one SN. Barrier coverage usually deals with the detection of movement across a barrier of

SNs. The most studied coverage problem in WSNs literature is the area coverage problem.

This is indeed justified, since the majority of WSNs applications involve full monitoring.

The two main problems pertaining to area coverage are achieving satisfactory coverage

and evaluating the coverage for a certain deployment. Satisfactory coverage here means

ensuring that an event occurring at any point in the RoI can be detected with a probability

that is equal to or exceeds a predefined threshold 𝛾 dictated by the application, where 𝛾 ∈
[0,1]. Another method of describing satisfactory coverage is to specify the minimum number

of SNs 𝑘 observing each point in the region of interest, which is denoted 𝑘-coverage.

The methods used for achieving the required level of area coverage depend primarily on

the deployment method (planned or random), the type of the application (which determines

the value of 𝛾), and the adopted sensing model for the deployed SNs. For example, consider

the ideal case of observing an obstacle-free 2-D RoI, assuming a binary sensing model, where

planned deployment is feasible. In such a hypothetical case, it is proposed that SNs be

deployed in regular deployment patterns, such as triangular lattice patterns, square grid

patters and hexagonal patterns [36], [37]. The objective of these regular deployment patterns

is to ensure that area coverage is achieved with no coverage holes while also ensuring 𝑘-

 Chapter 2

8

connectivity. The dimensions of the lattice (distances between SNs) depend on both the

sensing radius 𝑟𝑠and communication range 𝑟𝑐 of the SNs. It has been proven that in the case

where 𝑟𝑐 ≥ 2𝑟𝑠, 𝑘-coverage implies 𝑘-connectivity, assuming a binary sensing model [38].

Moreover, the authors in [39] propose strip-based deployment patterns to achieve 1- or 2-

connectivity for different values of the communication to sensing range ratio 𝑟𝑐/𝑟𝑠. However,

such regular planned deployments require precise manual deployment of SNs, which can be

impractical or even impossible in most applications; e.g. when the RoI is characterized by

static and/or dynamic obstacles such as in indoor environments, mountainous outdoor

environments and forests. This has motivated the emergence of the different approaches for

planned deployment surveyed in this study, in which achieving satisfactory area coverage is

always a primary objective.

On the other hand, evaluating the effective area coverage of an existing WSN

deployment has also a paramount importance. For example, consider WSNs applications

were only a random deployment is feasible, such as surveillance applications in war zones or

catastrophe areas. In these applications, if the number of SNs deployed randomly is high, i.e.

dense deployment, the need arises for protocols to control the activation and deactivation of

the deployed SNs, in order to minimize the redundancy in coverage (overlap of sensing

regions of neighboring SNs) in some areas of the RoI. This results in increasing both the

network's lifetime and fault tolerance. These protocols are called coverage protocols in the

WSN literature. Examples include Optimal Geographical Density Control (OGDC)

protocol [36], Coverage Configuration Protocol (CCP) [38], and Probabilistic Coverage

Protocol (PCP) [23]. In these coverage protocols, probabilistic sensing models are assumed,

as depicted in (2.2) and (2.3). In order to compute the effective area coverage achieved by a

set of 𝑛 active nodes 𝑺, a sampling method is used where the RoI is represented in the form

of a 2-D grid containing a finite number of 𝑚 grid points. The collective probability of

detecting a target or an event at a grid point 𝑝𝑗 , 𝑗 ∈ {1, 2, … ,𝑚}, from all 𝑛 active SNs in 𝑺 is

given by:

𝑃(𝑝𝑗) = 1 − ∏ (1 − 𝑃𝑖𝑗
𝑛
𝑖=1) , (2.4)

where 𝑃𝑖𝑗 is calculated using (2.2) or (2.3). It is then assumed that the whole RoI is

adequately covered if the probability of detection at each grid point exceeds the predefined

threshold, γ. This sampling approach for evaluating the area coverage of a WSN deployment

is also utilized in grid-based deployment algorithms [29], [40], [41], where SNs can only be

placed in a subset of 𝑚 predefined grid points that represent the RoI. The major drawback of

these grid-based deployment algorithms is that their accuracy and computational complexity

are dependent on the number of grid points considered in the RoI. Other sampling approaches

which utilize famous computational geometry constructs such as Voronoi diagrams have also

been utilized in non-grid based deployment algorithms, with less complexity, as discussed

later in this chapter.

2.3. Mathematical Approaches Used in WSN Deployment

Algorithms

On reviewing the plethora of planned deployment and re-deployment algorithms

proposed for WSNs in papers published in the past decade, we identified four mathematical

approaches or tools commonly used for building such algorithms. In this section, we aim to

provide the reader with the necessary background and foundations of these mathematical

approaches.

 Chapter 2

9

2.3.1. Genetic Algorithms

Genetic Algorithms (GAs) are search and optimization algorithms based on the

mechanics of natural selection and genetics. GAs became popular through the work of John

Holland in the early 1970s [42], and have since been used for solving optimization problems

in various fields such as computer networking, industrial engineering and machine learning.

The paradigm of GAs is copying the natural selection as described in Darwin’s Theory

stating that "species whose individuals are best adapted survive; others go extinct". A GA can

be especially effective in combinatorial and multi-objective optimization problems, in which

deterministic optimization methods are not applicable [43]. In general, a GA has three basic

components [44]:

1. A genetic representation of the candidate solutions of the problem. This is called

encoding and it is dependent on the problem's variables and constraints. The

encoding of candidate solutions is chosen in such a way that they can be decoded into

a unique variables’ vector which belong to the search space and verify the

constraints. There are several methods for encoding in GAs, such as binary

encoding, integer encoding, and real number encoding. The choice of encoding

method is highly dependent on the nature of the optimization problem itself. The

candidate solutions in the problem’s search space are said to be in the phenotype

space, while their genetic representation through encoding is in the genotype space.

2. A fitness function for evaluating candidate solutions.

3. Stochastic genetic operators that alter the composition of the offspring during the

reproductive phase of the GA.

Five steps are carried out in a single iteration of a typical GA. The first step is creating an

initial population of individuals or chromosomes. Each chromosome represents a unique

encoded candidate solution of the problem. The initial population usually covers the search

space of the problem uniformly.

 After creating the initial population, step two is carried out; using a fitness function to

evaluate the individuals in the population. The fitness function is essentially a cost function,

which is a mathematical expression of what we want to optimize. GAs use fitness evaluation

for the elimination of the weakest individuals from the population and to find out the fittest

individuals. Therefore, if a chromosome brings the fitness evaluation to a value closer to the

optimal point than the others, that chromosome is said to be the fittest.

The third step is selecting chromosomes from the population to undergo the reproductive

phase of the GA, this is called parent selection. Parent selection is usually dependent on the

calculated fitness and is often stochastic in nature. The two most commonly used parent

selection techniques are the Roulette Wheel and the Tournament techniques.

The fourth step is then to apply the two genetic operators, crossover and mutation, to the

selected parent chromosomes to produce an offspring or children population Crossover is the

primary genetic operator, and is achieved by randomly pairing every two individuals

(parents) in the population together to produce offspring that contain portions of both their

codes. Fig. 2.1 illustrates the process of crossover for binary encoding. Mutation, on the other

hand, is a background operator that creates a new individual by altering a randomly chosen

part of a selected parent.

 Chapter 2

10

Fig. 2.1 Crossover in case of binary encoding in a GA

Table 2.1 Pseudo code of a general GA

 Step Genetic Algorithm

1. Set 𝑡 ← 0

2. Initialize 𝑃(𝑡)

3. Evaluate 𝑃(𝑡)

4. While (termination condition not met)

5. Recombine 𝑃(𝑡) to yield 𝐶(𝑡)

6. Evaluate 𝐶(𝑡)

7. Select 𝑃(𝑡 + 1) from 𝑃(𝑡) and 𝐶(𝑡)

8. 𝑡 ← 𝑡 + 1

9. End While

Both operators are responsible for directing an offspring population towards exploring

new parts of the problem’s search space. The offspring population is also evaluated using the

same fitness function.

The fifth step in a GA is the selection step, which is choosing individuals from both the

parent and offspring populations to form a new population. Selection is the driving force of

the GA, since it direct the search to promising regions of the search space. There are several

methods for selection, both stochastic and deterministic, such as age-based selection, fitness-

based selection and elitism. Steps two to five are repeated to produce several iterations, or

generations, and the algorithm gradually converges to the fittest individual, which hopefully

represents an optimal solution to the problem, although that outcome isn’t guaranteed. The

algorithm can either terminates after producing a maximum number of generations or after

finding an individual with a fitness corresponding to a satisfactory solution to the problem.

The general structure of GAs is expressed in pseudo code in Table 2.1.

One of the most important advantages of GAs as an optimization tool is its ability to deal

with combinatorial and multi-objective optimization problems. This advantageous property of

GAs prompted their use in formulating multi-objective deployment algorithms for WSN. In

multi-objective GAs, or MOGAs, one of the approaches to measure fitness is to use a sum of

weighted normalized cost functions of each objective independently [43] as expressed by the

following equation:

𝐶𝑜𝑠𝑡 = ∑ 𝑤𝑖𝑓𝑖
𝑁
𝑖=1 ,

(2.5)

0 ≤ 𝑓𝑖 ≤ 1 ,

 Chapter 2

11

where 𝑓𝑖 is the 𝑖𝑡ℎ normalized cost function (1 ≤ 𝑁 ≤ 𝑖) and 𝑤𝑖 is the weighting factor

where ∑ 𝑤𝑖
𝑁
𝑖=1 = 1. Another approach for fitness evaluation in MOGAs is the Rank-based

Fitness assignment [45]. It depends on the concept of Pareto Dominance which can be

explained as follows: Given a set of objectives in a MOGA, an individual is said to Pareto

dominate another if the first is not inferior to the second in any of the objectives, and there is

at least one objective where it is better. Consequently, the optimal solution of the multi-

objective optimization problem isn't represented by a single individual, but by a set of non-

dominated Pareto optimal individuals. In Rank-based fitness assignment, individuals are

given ranks that are directly proportional to the number of individuals dominating them.

2.3.2. Computational Geometry

The field of Computational Geometry (CG) emerged in the 1970s. It dealt with various

kinds of challenging computational problems of geometric nature. Examples of such

problems include motion planning in the field of robotics, map overlay in geographic

information systems and polygon triangulation which is used to solve the famous Art Gallery

Problem in surveillance applications. These versatile geometric problems motivated

researchers to come up with carefully designed, efficient and fast geometry-based algorithms

to solve them. A formal definition for CG is given as "The systematic study of algorithms and

data structures for geometric objects, with a focus on exact algorithms that are asymptotically

fast"[46]. Nowadays, there is a rich collection of geometric algorithms that are efficient and

easy to understand and implement for various application areas.

In the field of WSNs, several studies were based on two of the famous CG structures, the

Voronoi Diagram (VD) and Delaunay Triangulation (DT). They aimed at constructing

efficient deployment algorithms for both static and mobile WSNs. In the following we shed

some light on each of these two geometric structures.

2.3.2.1. Voronoi Diagram

The VD is a versatile geometric structure with applications in physics, astronomy,

robotics and networking [47]. It is closely linked to DT which will be explained in the next

subsection.

To formally define a VD [46], consider a set of 𝑛 distinct points in a set 𝑃 in a 2-D plane,

such that 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}. These points are called sites in the terminology of CG. The VD

of the set 𝑃 is defined as the subdivision of the 2-D plane into 𝑛 cells, where each cell

corresponds to one site in 𝑃, such that the Euclidean distance between any site 𝑝𝑖 and any

point 𝑞 lying inside the cell corresponding to it is less than that between 𝑞 and another site 𝑝𝑗,

for 𝑖 ≠ 𝑗. This is expressed in (2.6) as:

𝑑𝑖𝑠𝑡(𝑞, 𝑝𝑖) < 𝑑𝑖𝑠𝑡(𝑞, 𝑝𝑗) ∀ 𝑝𝑖 , 𝑝𝑗 ∈ 𝑃, 𝑖 ≠ 𝑗 (2.6)

The VD of 𝑃 is denoted Vor(𝑃), while the Voronoi cell (also called Voronoi polygon)

corresponding to site 𝑝𝑖 is denoted 𝑣(𝑝𝑖). To construct 𝑣(𝑝𝑖), we draw the cell's edges as the

vertical bisectors of the lines connecting 𝑝 𝑖 to its neighboring sites. This is illustrated in Fig.

2.2, where the Voronoi polygon of point O, 𝑣(𝑂) is constructed by drawing the vertical

bisector of the lines passing through point O and points A,B,C,D and E (neighboring sites).

One of the ways VDs were utilized in the field of WSNs is using them as a means of

computing the effective coverage of a 2-D RoI. It is a sampling method, like using grids, to

check a finite number of points inside and on the boundary of the RoI for coverage, to

evaluate the area coverage of the entire RoI [48] - [52]. Using a VD for this purpose, the sites

 Chapter 2

12

correspond to deployed SNs and the vertices of the Voronoi cell of each SN are the sampling

points checked for coverage, along with a number of points on the boundaries of the RoI. If

the coverage of the WSN at the sampling points exceeds the minimum required coverage,

then it is guaranteed that the entire RoI is covered, following the VD property expressed in

(2.6). Examples of the use of VD in deployment algorithms for WSNs are reviewed at length

in Section 2.4.2.

Fig. 2.2 Voronoi cell of a site 𝑂 with neighbouring sites 𝐴,𝐵,𝐶,𝐷 and 𝐸

2.3.2.2. Delaunay Triangulation

In general, triangulations of planar point sets are widely used in approximating the

earth's terrain in topographic maps, using measured heights at a finite set of sample points.

Triangulation of a set 𝑃 is defined as "the planar subdivision whose bounded faces are

triangles and whose vertices are the points of the set 𝑃" [46]. The DT is a special kind of

triangulation of planar point sets. The DT of a set 𝑃 is always an angle-optimal triangulation

of 𝑃, which essentially means that it would give the most realistic approximation of a certain

terrain, compared to other possible triangulations.

As mentioned earlier, DT is closely related to VD. To construct the DT of a set 𝑃,

denoted 𝐷𝑇(𝑃), consider 𝑉𝑜𝑟(𝑃), as shown in Fig. 2.3. 𝐷𝑇(𝑃) is constructed by connecting

every two sites in 𝑃 if their corresponding Voronoi cells share an edge, i.e. neighboring sites.

𝐷𝑇(𝑃) has a very interesting property; the circumcircle of any triangle in 𝐷𝑇(𝑃) does not

contain a point of 𝑃 in its interior. This property is called the empty circle property, and as we

will discuss later in Section 2.4.2, it can help estimate the point of the weakest coverage in a

deployed WSN, and hence provide very useful guidance in the case of deploying new SNs (or

waking them up from a sleep state) to improve the effective coverage.

In addition to computing effective area coverage and discovering coverage holes in

WSNs, VD and DT were also used in determining the Maximal Breach Path (MBP) and

Maximal Support Path (MSP) in a certain WSN deployment [53],[54]. MBP corresponds to

the worst-case coverage. It is defined as the path between two arbitrary points that passes

through a WSN with a bounded RoI, such that the distance between each point on the path

and the nearest SN is maximized. On the other hand, MSP corresponds to the best- case

coverage, where the distance between each point on it and the nearest SN is minimized. Both

MBP and MSP are used in determining barrier coverage, which was defined earlier in Section

2.2.5.

 Chapter 2

13

Fig. 2.3 Delaunay triangulation of a set of planar points

2.3.3. Artificial Potential Field

Artificial Potential Field (APF) techniques were first introduced in the field of Robotics

in [55]. The study presented an original real-time obstacle avoidance approach for mobile

robots based on an "artificial potential concept". The idea behind the approach can be

described as follows. A mobile robot is assumed to be moving in a field of artificial virtual,

forces. The position to be reached, i.e. the goal, can be represented by an attractive pole,

which exerts virtual attractive forces on the mobile robot. The obstacles are represented by

repulsive surfaces that in turn exert virtual repulsive forces on the mobile robot. This

approach is mathematically interpreted in the following equation:

𝑈𝑎𝑟𝑡(𝑥, 𝑦) = 𝑈𝑔(𝑥, 𝑦) + 𝑈𝑜(𝑥, 𝑦) , (2.7)

where 𝑈𝑎𝑟𝑡(𝑥, 𝑦) is the artificial potential energy that varies with the location of the mobile

robot in the field, 𝑈𝑔(𝑥, 𝑦) is the artificial attractive potential energy attributed to the goal and

𝑈𝑜(𝑥, 𝑦) is the artificial repulsive potential energy due to the obstacles. The virtual force

vector F applied on a mobile robot at a certain location (𝑥, 𝑦) in the APF is computed by

obtaining the gradient of 𝑈𝑎𝑟𝑡(𝑥, 𝑦) in (2.7) as follows:

𝐹 = −𝛻𝑈𝑎𝑟𝑡(𝑥, 𝑦) , (2.8)

𝐹 = 𝐹𝑔 + 𝐹𝑜 , (2.9)

𝐹𝑔 = −𝛻[𝑈𝑔(𝑥, 𝑦)] , (2.10)

𝐹𝑜 = − 𝛻[𝑈𝑜(𝑥, 𝑦)] , (2.11)

where 𝑭𝒈 is the virtual attractive force enabling the mobile robot to reach the goal position,

while 𝑭𝒐 represents a virtual repulsive force that steers the mobile robot away from the

obstacles. The minus sign in (2.8) - (2.11) means that the virtual forces are in the direction of

the steepest decrease of the artificial potential fields at any given point (𝑥, 𝑦).

This real-time approach aims at making obstacle-avoidance in robotics a component of

the low level control that provides a robot with a path to accomplish its assigned goal free

from any risk of collision, even in cluttered dynamic environments. The authors in [56] used

a variant of the APF method to produce appropriate velocity and steering commands for a

 Chapter 2

14

mobile robot as part of a new concept in mobile robot navigation and object tracking called

"motor schema". APF techniques have since been applied to the problems of formation

control and obstacle avoidance in multi-robot systems [57] - [59]. These problems are of

similar nature to the deployment problem in MWSNs; the movement of robots, based on

local sensing and computation, collectively maintains a design objective, which is the desired

formation shape, while avoiding colliding with obstacles and each other.

In [60], authors mapped the concept of APF to the domain of WSNs. They used the

concept to devise a deployment approach for MWSNs. Their deployment algorithm, along

with several algorithms based on the APF approach, is discussed in detail in Section 2.4.3.

2.3.4. Swarm Intelligence (SI)

Swarm Intelligence is a branch of Artificial Intelligence (AI) that focuses on the

collective behavior and properties of complex, self-organized, decentralized systems with a

social structure, such as bird flocks, ant colonies and fish schools. These systems consist of

simple interacting agents organized in small societies, called swarms, which exhibit traits of

intelligence, such as the ability to react to environmental threats and decision making

capacities [61], [62].

Swarm Intelligence was utilized in the global optimization framework in the form of a

set of algorithms introduced in [63] for controlling robotic swarms in 1989. Several years

later, three main swarm intelligence optimization algorithms were developed, namely, Ant

Colony Optimization (ACO), Stochastic Diffusion (SD) and Particle Swarm Optimization

(PSO). In this study, we will only focus on PSO and ACO due to their emerging use in the

development of deployment algorithms for WSNs.

2.3.4.1. Particle Swarm Optimization

In 1995, Eberhart and Kennedy [64] developed PSO as a stochastic global optimization

algorithm based on social simulation models. The core idea of the PSO algorithm is to use a

population (swarm) of search points (particles) that move stochastically in the boundaries of

the optimization problem's search space. The nomenclature was inspired from similar models

in social sciences and particle physics. The best position (i.e. the best solution) ever reached

by each individual in the population, which is called experience, is retained in memory. This

experience is then communicated to part or all of the swarm, directing its movement towards

the search space regions where it is more likely to find the optimal solution. The convergence

of the algorithms depends greatly on the chosen communication scheme.

The mathematical framework of PSO [61] is as follows. Let 𝐴 ⊂ 𝐑𝑛 (𝐑𝑛 is the

𝑛 dimensional space) be the search space and 𝑓: 𝐴 → 𝑌 ⊆ 𝐑 be the objective function of the

optimization problem, where 𝑌 is the corresponding value of 𝑓 to any point in 𝐴. Assume

that there are no further constraints in the problem and that there are no other conditions on

either 𝐴 or 𝑓. The swarm 𝑺 is defined as a set of 𝑁 particles, representing candidate solutions:

𝑆 = {𝑝1 , 𝑝2 , … , 𝑝𝑁} , (2.12)

𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2 , … , 𝑝𝑖𝑛) ∈ 𝐴, 𝑖 = 1,2, …𝑁 , (2.13)

where 𝑁 is a user-defined parameter in the algorithm. The particles are assumed to move

within 𝐴 iteratively in order to explore its promising regions. This is achieved by defining the

velocity of each particle, which is used to adjust the particle's position in each iteration 𝑡 of

the algorithm, as follows:

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑛), 𝑖 = 1,2, …𝑁 , (2.14)

 Chapter 2

15

The particle velocity 𝑣𝑖 also changes iteratively in the algorithm. The current position

and velocity of the 𝑖-th particle are denoted 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡) respectively. The algorithm also

maintains a memory set, where each particle stores the best position (i.e. best solution) it has

ever reached during its search in 𝐴. The PSO memory set is given by:

𝑀 = {𝑚1,𝑚2 , … ,𝑚𝑛} , (2.15)

𝑚𝑖 = (𝑚𝑖1,𝑚𝑖2 , … ,𝑚𝑖𝑛) ∈ 𝐴, 𝑖 = 1,2, …𝑁 , (2.16)

Determining 𝑚𝑖 at any iteration 𝑚𝑖(𝑡) depends on the objective function 𝑓. The best

visited position in 𝐴 by any particle in the swarm at a given iteration, i.e. the best position in

𝑀 , is denoted 𝑚𝑔(𝑡). This term represents the social behavior in PSO since particles are

assumed to communicate their experiences with each other. The early version of PSO by

Eberhart and Kennedy [64] is defined by the following equations:

𝑣𝑖𝑗(𝑡 + 1) = 𝑣𝑖𝑗(𝑡) + 𝑐1𝑅1 (𝑚𝑖𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) + 𝑐2𝑅2(𝑚𝑔𝑗(𝑡) − 𝑝𝑖𝑗(𝑡))

(2.17)

𝑝𝑖𝑗(𝑡 + 1) = 𝑝𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) , (2.18)

for 𝑖 = 1,2, …𝑁 and 𝑗 = 1,2, … 𝑛; 𝑅1 and 𝑅2 are random variables uniformly distributed

between 0 and 1; 𝑐1 and 𝑐2 are weighting factors; also called the cognitive and social

parameter respectively. The steps of the PSO are provided in pseudo code in Table 2.2. It

should be noted that PSO has undergone many refinements to its earliest version, as

represented by (2.17) and (2.18), to enhance its performance in more complicated

optimization problems [65] - [67] . However, the main steps in its operation remain

unchanged.

2.3.4.2. Ant Colony Optimization

On the other hand, ACO is based on the fact that ants have the natural capability of

finding the shortest path to food using a natural chemical called “pheromone”, which the ants

lay on the paths they take as they move. ACO algorithms were initially designed by Dorigo,

Colorni and Maniezzo to find optimal solutions for the famous traveling salesman

problem [68], especially for large instances of the problem. Today, ACO can be used for any

optimization problem that can be reduced to finding optimal paths through graphs.

The mathematical framework of ACO is as follows [62], [68]. Let 𝐺(𝑽,𝑬) represent a

directed graph, where 𝑽 is the set of vertices of the graph and 𝑬 is the set of edges connecting

these vertices. The vertices in 𝑽 represent different parts/building blocks of a solution to the

optimization problem at hand. We assume that the ant colony is a set of 𝑘 ants 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑘}. A complete solution to the optimization problem is constructed by random

walks, called tours, of the ants, i.e. a complete solution is a subset of 𝑽. The ants’ tours

through 𝐺(𝑽, 𝑬) is influenced by the positive pheromone values associated with every edge

(𝑢, 𝑣) ∈ 𝑬, denoted 𝜏𝑢,𝑣. The tours are also influenced by the heuristic information assigned

to every edge, denoted by 𝜂𝑢,𝑣, which is calculated using a cost function that depends on the

objective function and constraints of the optimization problem. Assuming that an ant is at

vertex ∈ 𝑽, a set of allowed successor vertices denoted by 𝑵(𝑢) is computed based on the

 Chapter 2

16

Table 2.2 Pseudo code of a PSO algorithm

Step Particle Swarm Optimization

1. Set 𝑡 ← 0

2. Initialize 𝑆 and Set 𝑀 ≡ 𝑆

3. Evaluate 𝑆 and 𝑀; Define index 𝑔 for best position

4. While (termination condition not met)

5. Update 𝑆 using (2.17) and (2.18)

6. Evaluate 𝑆

7. Update 𝑀; Redefine index 𝑔

8. 𝑡 ← 𝑡 + 1

9. End While

10. Print best position found

constraints of the problem. The probability that the ant chooses vertex 𝑣 ∈ 𝑵(𝑢) to visit next

is given by the following function:

𝑝𝑣 =
[𝜏𝑢,𝑣]

𝛼[𝜂𝑢,𝑣]
𝛽

∑ [𝜏𝑢,𝑤]𝛼[𝜂𝑢,𝑤]𝛽𝑤∈𝑁(𝑢)
 , (2.19)

where the parameters 𝛼, 𝛽 ≥ 0 are user-defined and determine the relative

influence/importance of the pheromone values and the cost function in directing the tours. A

complete iteration of the algorithm is concluded when all the ants in 𝐴 complete their tours,

i.e. construct complete candidate solutions of the problem. Before a new iteration is started,

the pheromone levels associated with all the edges in 𝑬 are updated based on the following

pheromone-update rule:

 𝜏𝑢,𝑣
′ = 𝜏𝑢,𝑣(1 − 𝜌) + ∑ 𝛥𝑖𝑘 , (2.20)

where 𝜏𝑢,𝑣
′ is the updated pheromone level on the edge 𝑒 = (𝑢, 𝑣) ∈ 𝑬, the parameter 𝜌 is

called the pheromone evaporation factor, where 0 < 𝜌 ≤ 1 and 𝛥𝑖 is the value of pheromone

deposited by ant 𝑎𝑖 ∈ 𝐴 on 𝑒 = (𝑢, 𝑣) during its tour. The pheromone evaporation factor

introduced in (2.20) is responsible for continuously decreasing the pheromone levels on the

edges in order to help the algorithm escape local optima. On the other hand, the second term

in (2.20) is responsible for increasing the pheromone levels on the edges based on the quality

of the constructed solutions in the last iteration, measured by the objective function of the

optimization problem, which is sometimes referred to as the fitness function. Consequently,

the pheromones levels of the edges included in the solutions with higher fitness are higher

than those of less fit solutions after the update, giving these edges a higher chance of being

included in tours in the next iterations. The algorithm terminates either after a given number

of iterations or when a solution with the desired fitness or higher is obtained. Steps of the

ACO are illustrated by the pseudo code in Table 2.3.

 Chapter 2

17

Table 2.3 Pseudo code of an ACO algorithm

Step Ant Colony Optimization

1. Set 𝑡 ← 0

2. Initialize ants’ tours

3. While (termination condition not met)

4. Do Until (𝑎𝑖 completes a tour ∀ 𝑖 = 1,… , 𝑘)

0

5. Update tours using (2.19)

6. End Do

7. Update pheromone levels using (2.20)

8. t ← t + 1

9. End While

10. Print best position found

2.4. Wireless Sensor Networks Deployment Algorithms

According to the classification of the different mathematical approaches used in WSNs

deployment algorithms outlined in Section 2.3, we now review these algorithms, including

their assumptions, objectives and performance.

2.4.1. Genetic Algorithms

Several deployment methods based on GAs were presented in the literature. These

algorithms typically aim to optimize the layout of a WSN, with usually more than one

deployment objective.

 The study in [69] presents a Multi Objective GA (MOGA) for optimal deployment of 𝑛

static SNs in a 2-D flat RoI, with two competing deployment objectives: maximizing the area

coverage and maximizing lifetime. The binary sensing model, as expressed in (2.1), is

assumed and all SNs are assumed to have the same communication and sensing ranges, 𝑟𝑐

and 𝑟𝑠 respectively. For the predetermined number of 𝑛 deployed SNs, candidate solutions

(i.e. deployments) of the problem are represented by a deployment vector 𝑫𝑽, which contains

the coordinates of each SN:

𝑫𝑽 = [𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛] , (2.21)

Rank-based fitness assignment, defined earlier in Section 2.3.1, is used in the algorithm.

Each deployment vector (i.e. candidate solution) was ranked according to its area coverage

and lifetime. The authors used real number encoding of 𝑫𝑽, random single-point crossover

and a mutation probability of 0.1. The algorithm was tested under different ratios of sensing

to communication range (𝑟𝑠/𝑟𝑐). Results showed samples of obtained non-dominated pareto-

optimal deployments after reaching a maximum number of generations, demonstrating the

tradeoff between coverage and lifetime (as coverage increases, lifetime decreases). Results

suggested that for the pareto-optimal deployments with maximum coverage, the ratio 𝑟𝑠/𝑟𝑐

affects the shape of the pareto-optimal deployment regarding the extent of overlap in SNs'

coverage.

The authors extend their work in [70], where the same MOGA is used, but applied to

three specific surveillance scenarios. Each scenario had its own set of competing design

 Chapter 2

18

objectives depending on the nature of the surveillance required. The first scenario has three

objectives: maximizing coverage, minimizing the number of SNs deployed and maximizing

the distance between the deployed SNs and the hostile building under surveillance for

maximum survivability of the network. The second and third scenarios require maximizing

coverage while minimizing the number of SNs deployed. The difference between the second

and third scenarios lies in the type of coverage; barrier coverage is maximized in the second

case while area coverage is maximized in the third one. Results show samples of the pareto

optimal set of non-dominated deployments for each scenario, obtained after 300 generations

of the proposed MOGA. It is shown how these results provide the network designer with

trade-off information between the competing objectives.

Results presented in [69] and [70] suggest that the proposed algorithm is flexible in the

sense that it can be applied to other scenarios with different sets of design objectives.

However, there are two drawbacks that should be pointed out. The first drawback is the use

of the binary sensing model in the algorithm. Although it simplifies the computation of

coverage, it can lead to misleading results. The second drawback is that the modeling

assumes RoIs with a flat terrain, i.e. with no obstacles, which is an unrealistic assumption.

The study in [24] addresses the problem of covering a finite set of target locations, called

target points, with the minimum number of SNs. We refer to this deployment problem as the

Minimum Cost Coverage SDP (MCC-SDP). A finite set of possible deployment locations, or

deployment points, is also assumed to be a given of the problem. The authors propose solving

the problem using a GA with two deployment objectives; minimizing the number of deployed

SNs (i.e. deployment cost) and ensuring coverage of all target points. To define the problem,

a one-zero coverage matrix (𝑎𝑖𝑗) of size (𝑚 × 𝑛) is used. Each row 𝑖 in the coverage matrix

represents a target point, and each column 𝑗 represents a combination of three deployment

parameters (SN type, deployment point, SN orientation) called deployment-tuple and

denoted 𝑑𝑗. Two types of SNs are considered, acoustic SNs and image SNs. The acoustic SNs

follow the binary sensing model expressed in (2.1), while for image SNs, a FoV metric is

used. The deployment problem is then formulated as the following optimization problem:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 , (2.22)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 1, 𝑖 = 1,… ,𝑚 , (2.23)

 𝑥𝑗 ∈ {0,1}, 𝑗 = 1,… . . , 𝑛 , (2.24)

where 𝑐𝑗 is the cost of deploying the deployment-tuple 𝑗 and 𝑥𝑗 is a binary variable that

determines whether the deployment-tuple is actually deployed (𝑥𝑗 = 1) or not (𝑥𝑗 = 0). The

constraint in (2.23) guarantees that each row (target point) is covered by at least one column

(deployment-tuple).

A candidate solution is simply a subset of all possible deployment-tuples. Candidate

solutions are binary encoded and a simplified version of GA, called the Microbial GA [71],

was used. A fitness function 𝑓(𝑥) is used to evaluate candidate solutions based on the overall

cost of deployment as expressed in (2.22), plus a weighted penalty for not covering target

points. This fitness function is depicted in following equation:

 𝑓(𝑥) = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑤(𝑚 − 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) , (2.25)

where 𝑤 represents the weight of the penalty, 𝑚 represents the total number of target points

considered in the problem and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 represents the number of target points covered by a

specific deployment-tuple 𝑑𝑗.The authors evaluate their algorithm using a simplified

 Chapter 2

19

deployment problem which is constituted of six target points and five deployment points,

forming a security SN fence. The problem is simple enough for deriving the optimal solutions

deterministically by generating all the possible combinations, and it matches the outputs of

the proposed algorithm.

The algorithm proposed in [24] is extended in [72] to include probabilistic coverage

determination methods, i.e. the terms of the coverage matrix 𝑎𝑖𝑗 can take any value between 0

and 1, depending on the probability of coverage of target point 𝑖 by deployment-tuple 𝑑𝑗. The

sensor detection probability used in [72] follows the probabilistic sensing model expressed in

(2.2). The same GA was used to find optimal solutions for the deployment problem

expressed in (2.22) – (2.24), plus a new constraint given by:

 𝑝𝑑(𝑎𝑖) ≥ 𝛼 , (2.26)

where 𝑝𝑑(𝑎𝑖) is the probability of detection of a target point 𝑖 and α is the required coverage

threshold. The proposed deployment GA is tested on a very similar scenario to that in [24]

and the optimal solution (chromosomes) were derived using the algorithm matched the ones

obtained deterministically by evaluating all combinations. However, the authors in [24]

and [72] present a limited case study and didn't apply the algorithm on a more

computationally extensive problem to evaluate its computational efficiency. Also, their

choice of binary encoding is not practical for more complex scenarios of the deployment

problem. This is because their chromosome size is equal to the number of all possible

combinations of the deployment-tuples, which means that both the chromosome and

population sizes can get very large for practical deployment scenarios involving hundreds of

SNs. This in turn means that the algorithm would become very slow and computationally

inefficient.

In [73], the authors study the same deployment problem as the study in [24] under the

same assumptions. The authors propose an Integer-Encoded Fixed Length Chromosome GA

(𝑖FLGA) to solve the MCC-SDP, where all chromosomes have the same number of integer-

valued genes throughout the operation of the algorithm. Each chromosome is set to be a

permutation of the integers in the interval [1, 𝑛], such that every gene represents a

deployment point in the RoI. Chromosome decoding to candidate solutions of the problem

follows a first-fit approach. That is, starting at the first gene, an SN is assumed to be deployed

on the deployment point equivalent to the gene’s value and the coverage of the RoI is

updated, i.e. the algorithm registers the target points that are covered thus far. This process is

continued until full coverage is achieved. After the decoding process, the chromosome is

given a fitness value equal to the number of SNs required for achieving full coverage of the

set of designated target points in the RoI. The authors use the Order Mapped Crossover

(OMX) scheme and a simple inversion mutation scheme to recombine and mutate

chromosomes respectively. The algorithm follows a (µ + 𝜆) scheme, in which a population

of µ chromosomes is recombined to produce 𝜆 offspring. The fitness values of the (µ + 𝜆)

chromosomes are evaluated and the µ chromosomes with the highest fitness are kept for the

following generation (i.e. iteration). Experimental results presented in [73] shows that the

proposed 𝑖FLGA has a superior performance to the Greedy Heuristic (GH) MAX-AVG-COV

proposed in [29] in terms of the quality of the obtained solutions to the studied problem.

In [74], the authors consider the problem of maximizing the area coverage of a 2-D flat

RoI using a predefined number of heterogeneous SNs, with three different sensing ranges.

The sensing model expressed in (2.1) is used. The authors propose the use of GA for solving

this problem, which they term Maximum Coverage SDP (MC-SDP). Candidate solutions in

the phenotype/solution space are converted to the genotype space using an integer-encoded

chromosome similar to that used in [69] and [70], as expressed in (2.21). The only difference

 Chapter 2

20

is that the coordinates of the SNs which belong to the same SN type in a chromosome are

contiguous, i.e. each chromosome is composed of three sections, each belonging to one type

of SNs. According to this encoding scheme, the translation between the genotype and the

phenotype spaces is not unique, i.e. there is inherent redundancy in the genotype space which

arises from the fact that different permutations of each of the three sections of a chromosome

are translated to the same candidate solution. The authors argue that this redundancy slows

down the GA convergence and propose the use of a normalization technique [74] to

overcome this problem. The authors use random parent selection in their proposed

normalized GA, which is an odd choice since it is inferior in terms of convergence speed to

the more commonly used Roulette Wheel or Tournament selection methods. In addition, the

proposed algorithm shares the same limitations of the algorithm proposed in [69] and [70].

Similar to the studies in [24] and [73], the study in [75] also considers the MCC-SDP

under the same assumptions and WSN model adopted in [24] and [73]. To find high quality

solutions to the MCCDP, the authors propose an Integer-Encoded Variable Length

Chromosome GA (𝑖VLGA). This encoding scheme is used to enhance the computational

efficiency of 𝑖FLGA proposed in [24] by avoiding the use of long redundant chromosomes,

especially for large-scale instances of the MCC-SDP. Each chromosome, denoted by 𝑐(𝑙),

contains 𝑙 unique integer-valued genes, where 𝑙 ∈ [1, 𝑛], where 𝑛 is the number of SN

deployment points in the RoI. Each gene in the chromosome represents an SN deployed at a

deployment point whose index is equivalent to the value of the gene. The following equation

is used to evaluate the fitness of a chromosome 𝑐(𝑙), where 𝑐𝑜𝑣(𝑐(𝑙)) represents the number

of target points covered by 𝑐(𝑙) and 𝑤 is a constant:

𝑓(𝑐(𝑙)) = −(𝑙 + 𝑤 ∗ (𝑚 − 𝑐𝑜𝑣(𝑐(𝑙)))), (2.27)

The second term in (2.27) is responsible for penalizing solutions that do not provide full

coverage of the 𝑚 target points by assigning them a lower fitness value. The negative sign is

added so that the maximum fitness would correspond to the deployment(s) achieving full

coverage with the minimum number of SNs. The algorithm uses a special variant of the

famous single-point crossover. A simple random mutation scheme is used in which the value

of a gene is changed randomly and any repetitions of integers inside the mutated chromosome

are discarded. For the selection schemes, the 𝑖VLGA uses a combination of the Roulette

Wheel and Elitism selection schemes. Experimental results show that the proposed 𝑖VLGA

in [75] outperforms the 𝑖FLGA in [73] in terms of both the quality of obtained solutions and

the speed of convergence for all tested MCC-SDP instances. Results also suggest that in

terms of scalability, 𝑖VLGA performs progressively better than 𝑖FLGA as the problem scale

increases.

Similar to [74], the study in [76] addresses the MC-SDP. They adopt the same set of

assumptions as in [74] with the exception of the SN heterogeneity assumption. To solve the

MCSDP, they propose a GA with real-number encoded chromosomes. The chromosome

encoding scheme adopted in the proposed GA is the same as the one proposed in[69] and

expressed in (2.21). The fitness function of the proposed GA, denoted by 𝑓(𝑥), is given by:

𝑓(𝑥) = ∑ 𝐶(𝑠𝑖, 𝐴)𝑛
𝑖=1 − ∑ ∑ 𝐼(𝑠𝑖, 𝑠𝑗)

𝑛
𝑗=𝑖+1

𝑛
𝑖=1 ,

(2.28)

where the term ∑ 𝐶(𝑠𝑖, 𝐴)𝑛
𝑖=1 represents the total coverage of the RoI of the SN deployment

represented by the chromosome. The term ∑ ∑ 𝐼(𝑠𝑖, 𝑠𝑗)
𝑛
𝑗=𝑖+1

𝑛
𝑖=1 represents the total area of the

RoI covered by two SNs. The authors justify the design of the fitness function by the

 Chapter 2

21

following reasoning. Penalizing the coverage overlap between SNs will increase the speed of

convergence of the proposed GA to solutions of good quality. The authors adopt uniform

crossover and single point random mutation for the genetic operators. Tournament selection

and a mixture of elitism and fitness-based selection are adopted for parent selection and

survivor selection, respectively. Results suggest that the proposed GA is capable of

significantly improving the RoI coverage of an initial random deployment of a predefined

number of SNs. However, the authors did not provide evidence that their proposed GA has

any advantage over similar existing algorithms. The authors also neglected the overlapped

coverage area among more than two SN in their fitness function design. In addition, the

proposed algorithm shares the same limitations of the algorithm proposed in [69] and [70].

To conclude this sub section, we present a comparison between the reviewed deployment

algorithms which were based on the genetic approach in Table 2.4. The comparison is carried

out in terms of the GA type, objective(s), encoding method, type of SNs deployed and the

adopted sensing model.

Table 2.4 Comparison among the GAs designed for WSN deployment

Algorithm Type of GA Encoding Objective(s) Type of SNs
Sensing
Model

in [69]
standard,

multi-objective
real-

number
 maximize coverage

 maximize lifetime
homogeneous deterministic

in[70]
standard,

multi-objective
real-

number

 maximize coverage

 maximize
survivability

 minimize no. of SNs

homogeneous deterministic

in [24] microbial binary

 cover a set of target
points

 minimize no. of SNs

heterogeneous

; acoustic and

image

deterministic

in [72] microbial binary

 cover a set of target
points

 minimize no. of SNs

homogeneous;

Infrared
probabilistic

in [73] standard integer

 cover a set of target
points

 minimize no. of SNs

homogeneous deterministic

in [74] normalized integer maximize coverage heterogeneous deterministic

in [75]
variable-length
chromosome

integer

 cover a set of target
points

 minimize no. of SNs

heterogeneous deterministic

in [76] standard
real-

number
 maximize coverage

homogeneous deterministic

2.4.2. Computational Geometry-based Algorithms

As explained earlier in Section 2.3.2, the VD and DT are famous CG structures that have

been linked to WSNs deployment. Their unique properties were proven useful in evaluating

area coverage and detection of coverage holes. In this section we review examples of the

proposed deployment algorithms in literature utilizing these CG structures.

 Chapter 2

22

In [77], the authors utilize the VD in the re-deployment of a MWSN. They assume that

the MWSN consisted of both static and mobile SNs to reduce the cost of deployment. Their

deployment protocol, called Bidding Protocol is distributed; it is carried out by SNs

concurrently and iteratively. The mobile SNs in the network are treated as servers that are

used to heal coverage holes detected by static SNs based on their locally constructed Voronoi

cells, assuming the binary sensing model in (2.1). In every protocol iteration, each mobile SN

is assigned a base price, which is proportional to the size of the coverage hole it would leave

behind if it moved to another location. Static SNs with detected holes in their Voronoi cells

estimate the size of the hole and the candidate position for a mobile SN to move to in order

fill that hole. This information is broadcast by the static SN in the form of a single parameter

called a bid, which is essentially proportional to the size of the coverage hole detected. A

mobile SN node receiving multiple bids chooses the highest one and relocates to heal the

biggest coverage hole, provided that the bid is higher than its base price. The protocol

terminates when there are no more bids broadcasted in the network higher than the base

prices of the mobile SNs.

Results presented in [77] demonstrate the effectiveness of the Bidding Protocol in terms

of coverage, deployment cost and speed of convergence. In terms of the number of SNs

required to achieve certain coverage of the RoI, the presented protocol requires a significantly

smaller number of SNs, with the reduction reaching as high as 50%, when compared to a

random deployment. In terms of the speed of convergence, the protocol terminates after six

iterations or less for different mobile to static SNs ratios. This is advantageous since it

translates to less energy expenditure and hence a higher network's lifetime. However, the

drawback of the Bidding Protocol is that it deals only with a RoI with a flat terrain with no

obstacles. This is an unrealistic assumption; obstacles can prevent static SNs from

constructing their Voronoi cells correctly (since this is carried out through detecting

neighbors using wireless broadcast) and hence the coverage holes detection mechanism

would be inaccurate. Also, obstacles can obstruct the movement of mobile SNs to their target

locations.

The authors in [48] consider the problem of re-deploying an initially randomly deployed

MWSN, consisting of 𝑛 identical mobile SNs of the same communication and sensing ranges,

to maximize area coverage. The authors assume a 2-D RoI with a flat terrain and wall-like

boundaries, and adopted the binary sensing model in (2.1). The authors propose a distributed

and iterative deployment algorithm for MWSNs called Minimax. The algorithm also depends

on locally constructed Voronoi cells as in [77]. The target location for SNs in each iteration

in Minimax is a point inside the local Voronoi cell called the Minimax point. The location of

the Minimax point is chosen such that the variance of the distances between SNs and their

Voronoi vertices is minimized, resulting in a more evenly shaped Voronoi cells and hence a

more even distribution of SNs in the RoI. This in turn leads to maximizing the area coverage

of the MWSN, since each SN can cover its own local Voronoi cell more effectively. The

authors used analytical derivation to prove their proposed method for computing the Minimax

point. The computational complexity of the algorithm is 𝑂(𝑚3), where 𝑚 is the number of

the Voronoi vertices belonging to specific SN. The results presented suggest that the

algorithm is capable of achieving its objective of maximizing the area coverage of an initially

randomly deployed MWSN. However, Minimax suffers from two drawbacks. The first one is

the same drawback of the bidding protocol in [77]; the performance of both algorithms would

possibly deteriorate in the presence of obstacles, since the locally constructed Voronoi cells

can be inaccurate in this case. The second one is the high energy expenditure; SNs move after

the conclusion of each iteration, which would certainly decrease the network's lifetime.

In [50], two distributed deployment algorithms are proposed with the objective of

maximizing the area coverage of MWSNs, namely the Centroid and the Dual-Centroid

 Chapter 2

23

algorithms. Both algorithms are distributed and iterative. The termination condition can be

either reaching the predetermined maximum number of iterations or reaching the required

coverage level. To compute the level of area coverage reached in each iteration, the authors

use the locally constructed Voronoi cells of the deployed SNs in the same manner as in [77]

and [48]. Inspired by [78], the proposed Centroid scheme is a simple algorithm that makes

use of the geometric center, or the centroid, of the Voronoi cells. The centroid of any polygon

is defined as the intersection of all the lines that divide the polygon into two equal parts. Fig.

2.4 provides an illustration of the definition on a triangular polygon 𝑋𝑌𝑍, where point c is its

centroid. After the initial random deployment, SNs establish their local Voronoi cells

concurrently. Each SN node would then calculate the coordinates of the centroid of its cell

(C1) and checks if its local coverage would increase if it moves from its current location to

C1. This step implies an assumption that the communication range 𝑟𝑐 is greater than the

sensing range 𝑟𝑠 , which is, for many types of SNs, a correct assumption.

Fig. 2.4 Centroid, c, of triangle ∠𝑋𝑌𝑍

This constitutes a single iteration. The Dual-Centroid algorithm utilizes two centroids,

the Voronoi cell's centroid C1 and the centroid of the Neighbor Voronoi cell, C2. The

Neighbor Voronoi Cell, C2, is the polygon with the SN's neighbors as vertices. The same

steps carried out in the Centroid scheme are used, except that the new position for a SN G is

calculated using the following equation:

𝐺 = 𝐶1 + (1 −)𝐶2 (∈ (0,1)) , (2.29)

The authors compare the performance of both algorithms to Minimax in [48]. Results

presented suggest that both algorithms have a better coverage performance compared to

Minimax, with the Dual-Centroid algorithm being the best. This slight advantage in coverage

performance is accompanied by a higher computational complexity, since two Voronoi cells

and their centroids must be computed. It should be noted that although the coverage

performance was enhanced in [50], the authors didn't address the drawbacks of [48].

The authors in [79] consider the same re-deployment problem as in [77], [48] and [50],

but with energy consumption in mind. They presented the Voronoi Diagram Deployment

Algorithm, or VDDA, to solve the problem in a distributed fashion, with the same

assumptions used in [50]. VDDA is similar in its steps to the Centroid scheme in [50].

However, VDDA considers multiple points for the next position of the SN node i.e. conducts

a local search inside each polygon for the optimum candidate position for relocation. One of

 Chapter 2

24

these positions is the centroid of the SN's Voronoi cell. Another candidate position is the

center of the Voronoi cell range, which is defined as the midpoint of the maximum and

minimum points along the 𝑥 and 𝑦 coordinates in the Voronoi cell. The search space is

reduced to several points that are linearly spaced, starting from the current position of the SN

to the centroid and then to the center of the Voronoi cell range. These points are evaluated

before the actual movement takes place. The evaluation is based on what the authors called a

node utility metric 𝑈𝑡
𝑖 given by:

𝑈𝑡
𝑖 = 𝐴𝑡

𝑖 × 𝑇𝑡
𝑖 , (2.30)

where 𝐴𝑡
𝑖 is the effective coverage of SN 𝑖 at iteration 𝑡, while 𝑇𝑡

𝑖 represents the estimated

lifetime of SN 𝑖 at iteration 𝑡 after the projected movement from the SN's current position to

the candidate position. The lifetime parameter 𝑇𝑡
𝑖 is calculated by assuming an initial equal

amount of energy for each SN and setting a specific value for energy consumption per unit

distance travelled by the SNs. After finding the best point in the search space, according to

that metric, the SN moves to that position. From the presented results, VDDA succeeds in

increasing the initial coverage of the random deployment and results in an almost uniform

distribution of SNs in the RoI. The authors argue that this advantage is of great importance,

since uniformity of deployment can decrease interference between SNs and consequently

decrease communication energy consumption, increasing the network's lifetime. However,

the algorithm is slow and complex, increasing the processing load on each SN. VDDA also

does not address the presence of obstacles in the RoI.

On the other hand, DT was utilized in a centralized deployment algorithm proposed

in [80]. The deployment algorithm, called DT-Score, is tailored for WSN applications that

involve a RoI containing stationary obstacles in known locations prior to the deployment (by

the means of satellite imagery, for example). The objective of DT-Score is to maximize the

area coverage of the RoI using a fixed number of static SNs 𝑛. All SNs have identical

communication range 𝑟𝑐 and a probabilistic sensing model as expressed in (2.2).

DT-Score algorithm runs in two phases, the contour deployment and the refined

deployment respectively. In contour deployment phase, SNs are deployed at regular intervals

along the edges of the RoI (assumed to be rectangular shaped) and the obstacles (assumed to

be polygon shaped). This phase is used to eliminate coverage holes at the boundaries of the

RoI and the obstacles. In the refined deployment phase, a sequence of steps is repeated,

where each repetition results in the deployment of one more SN in the RoI. These steps

consider the set of deployed SNs so far and locate existing coverage holes using DT. The

empty circle property, discussed earlier in Section 2.3.2, is used to locate candidate positions

for new SNs. These candidate positions are simply the centers of the empty circles generated

from the DT of the set of deployed SNs. The candidate positions are then scored according to

the coverage gains they would produce (based on both the radius of the empty circle and the

vicinity to obstacles). At the conclusion of each repetition, a SN is deployed in the candidate

position of the highest score. The second phase is concluded when the predetermined number

of deployable SNs 𝑛 is reached.

As a centralized algorithm, the DT-Score algorithm has a key advantage over other

centralized grid-based algorithms, such as the MAX-MIN-COV in [29], which is its

scalability. The computational complexity of DT-Score is 𝑂(𝑛2𝑙𝑜𝑔𝑛), whereas most grid-

based algorithms have a complexity is 𝑂(𝑁2), where 𝑁 the number of grid points in the RoI

is. Although DT-Score considers the presence of obstacles in the RoI, its limitations lie in the

assumption that the exact topology of the RoI is known prior to the deployment. This

assumption is not applicable for some WSNs applications.

 Chapter 2

25

In Table 2.5, we present a comparison between the reviewed algorithms in this section in

terms of the CG structure used, the type of deployed SNs (static only; mobile only; or both),

the RoI's terrain (flat or containing obstacles), adopted sensing model and whether the

algorithm is centralized or distributed.

Table 2.5 Comparison among the CG-based algorithms for WSN deployment

Algorithm
CG

Structure
Type of SNs ROI Sensing Model Centralized/Distributed

Bidding protocol
in [77]

VD
heterogeneous;

static and
mobile

w/o
obstacles

deterministic distributed

Minimax in[48] VD
homogeneous;

mobile
w/o

obstacles
deterministic distributed

Centroid and
Dual Centroid
in [50]

VD
homogeneous;

mobile
w/o

obstacles
deterministic distributed

VDDA in [79] VD
homogeneous;

mobile
w/o

obstacles
deterministic distributed

DT-Score
in [80]

DT
homogeneous;

static
w/

obstacles
probabilistic centralized

2.4.3. Artificial Potential Field-based Algorithms

A large number of studies presented deployment algorithms that utilize the concept of

Artificial Potential Field (APF), which is also referred to as Virtual Forces (VF) in the

literature. Since the concept of APF depends on motion, deployment algorithms based on

APF are usually re-deployment algorithms for MWSNs. However, they can also be used in

the planned deployment of static WSNs through simulation. These algorithms can be either

be centralized or distributed. In the following two sub-sections, we review APF-based

algorithms proposed in each type, along with its advantages and disadvantages.

2.4.3.1. Distributed Algorithms

Distributed APF-based deployment approaches are used in de-centralized MWSN

architectures, where every SN uses its local data, such as distances to neighboring SNs and

obstacles, to run the deployment algorithm and self-deploy in the optimized positions. There

are two advantages to this approach. The first advantage is that it doesn't depend on any prior

knowledge of the RoI. It also doesn't require any coordination between the SNs, as they are

assumed to run the algorithm concurrently. Hence the distributed algorithms are usually

highly scalable, i.e. the algorithm's complexity or performance isn't sensitive to the number of

deployed SNs.

On the other hand, applying this approach involve extending the conventional sensing

capabilities of SNs in order to be able to obtain the required type of local data. For example,

SNs need to be equipped with laser range finders to detect obstacles and neighboring SNs. It

also involves extending their computational power to carry out the distributed algorithm,

which compounded with the actual SN movement, can increase the power consumption

levels significantly and consequently decrease the MWSN's lifetime.

 One of the earliest proposed distributed deployment algorithms based on APF is the

algorithm presented in[60], which considers the problem of deploying a MWSN in an

unknown environment that may be dynamic and even hostile. The authors propose an APF-

based approach for deployment, in which the mobile SNs are treated as virtual free particles

 Chapter 2

26

that are subject to virtual forces. These forces repel the SNs from each other and from

obstacles, i.e. the artificial potential field in (2.7) is caused by obstacles and other SNs in the

network, and its gradient results in two virtual repulsive forces, as expressed in (2.8) - (2.11).

This method guarantees that an initial compact configuration of SNs will spread out to

maximize the area coverage of the MWSN in a certain RoI. In addition to these repulsive

forces, SNs are also subject to a viscous friction force. This force is used to ensure that the

network will eventually reach a state of static equilibrium; i.e. nodes will eventually come to

a complete stop, given that the RoI itself eventually becomes static. The proposed algorithm

computes the trajectory of the mobile SN by applying the following equation of motion:

�̈� = (𝐹 − 𝛾�̇�)/𝑚 , (2.31)

where 𝑭 is the resultant force vector on a given SN, �̈� and �̇� are the acceleration and velocity

vectors respectively, 𝛾 is the viscosity coefficient and 𝑚 is the SN's mass. This virtual

equation of motion assumes the SN is a free particle, and hence it must be mapped to a real

control law. This control law takes into account both the kinematic and dynamic constraints

of a mobile SN, such as its maximum velocity and acceleration. The simulation results

offered in this paper suggest that the proposed algorithm has the potential of introducing a

huge improvement that reaches 10-fold in terms of RoI coverage from an initial compact

deployment of SNs. The deployment time was measured and found to be considerably fast,

given the limited maximum velocity assumed for the mobile SNs (0.5 m/s). An unplanned but

appealing feature of the final deployment was observed, which was the evenness of the inter-

distance between the SNs. The authors do not offer a solid explanation for this phenomenon.

They also do not study the effect of the deployment algorithm on the energy reservoir of the

nodes.

The authors in [81] propose a similar APF-based deployment algorithm. They consider

SN-carrying robots that are deployed in a certain RoI, aiming to achieve certain goal. The

goal is to detect a certain phenomenon occurring in the RoI by at least four of the deployed

robotic SNs and communicating data successfully to a fixed sink node. The proposed

algorithm computes the resultant force vector 𝑭 acting on each SN, and applies the equation

of motion expressed in (2.30) to direct the SN, as in [60]. However, the authors in[81] assume

that the virtual forces acting on each SN are both repulsive and attractive, as opposed to only

repulsive in [60]. The repulsive forces in the algorithm are exerted by the obstacles in the RoI

and other robotic SNs. There are three types of attractive forces considered in the algorithm.

The first type include attractive forces caused by the goals in the RoI, while the second type

include attractive restoring forces based on penalties for exceeding the maximum allowable

communication range 𝑟𝑐 between SNs. The third type includes attractive forces based on

maximizing the capacity between nodes, and it depends on the optimal value of a

communication utility function proposed by the authors. This communication utility function

aims to maximize the use of the WSN capacity by adjusting the sources' rates to their optimal

values. Since the SNs are mobile, it is hence dependent on their locations. This is because

the maximum achievable data rate between any two nodes depends on the distance between

them. This type of attractive force acting on a certain SN 𝑖 with a location vector 𝒓𝒊 is given

by:

𝐹𝑖 = −
𝜕𝑈∗

𝜕𝒓𝑖
, (2.32)

where 𝑈∗is the optimal value of the communication utility function. The algorithm is tested

on a scenario consisting of a 2-D rectangular RoI with a single target at a specific location

and a sink node in another fixed location. Although the algorithm factored in the presence of

 Chapter 2

27

obstacles, no obstacles were included in the RoI in the simulation. The results presented

showed that the algorithm successfully enabled the MWSN to attain its target in the

considered scenario. However, we find that this scenario is unrealistic since it is unlikely that

the exact position of the phenomenon or target of interest is known in advance.

 In [48], the authors present two APF-based distributed deployment algorithms for

MWSNs. These algorithms aim to increase the area coverage of a defined RoI in which

mobile SNs were initially randomly deployed. The algorithms run concurrently and

iteratively until the desired area coverage is reached or the maximum numbers of runs is

executed. It is assumed that all deployed mobile SNs are identical with a fixed sensing

range 𝑟𝑠. Both algorithms utilize the Voronoi diagram; in the beginning of each algorithm, all

deployed SNs construct their Voronoi cells based on their relative position from neighboring

SNs and the wall-like boundaries of the RoI. This procedure was explained in Section 2.4.2

and was part of the algorithms presented in [50], [77] and [79].

In the first algorithm, named VEC (VECtor-based), both repulsive and attractive forces

are exerted on each mobile SN in the network. These positive and negative forces take place

in between SNs and also between SNs and the wall-like boundaries of the RoI, which are

considered obstacles exerting repulsive forces on nearby SNs. The algorithm depends on the

following idea: for complete area coverage of the RoI, SNs should be uniformly deployed

such that the inter-distances between them are constant and equal to 𝑑𝑎𝑣𝑒 (or 𝑑𝑎𝑣𝑒/2

between a SN and RoI boundary) which is calculated according to the area of the RoI,

sensing range 𝑟𝑠 and the number of deployed SNs. If the distance between two SNs is less

than 𝑑𝑎𝑣𝑒, (𝑑𝑎𝑣𝑒/2 between a SN and RoI boundary), a virtual repulsive force acts on the

SNs to increase the separation between them to 𝑑𝑎𝑣𝑒 , and vice versa. In each iteration, each

SN computes the resultant force vector 𝑭 acting on it and determines its next target position.

To reduce errors, the authors added a movement-adjustment scheme which allows SN

movement in each round only if the local coverage would be enhanced by such movement.

The local coverage of a SN is simply the intersection between its Voronoi cell and its circular

sensing area with a radius 𝑟𝑠 .

The second algorithm in [48], named VOR (VORonoi-based), is a pull-based algorithm;

only an attraction force is considered. In VOR, if a SN detects the existence of coverage hole

in its Voronoi cell, it moves towards its farthest Voronoi vertex, such that the Euclidian

distance between the target position and the farthest vertex becomes equal to the sensing

range 𝑟𝑠. This is illustrated in Fig. 2.5, where vertex 𝑣2 is the farthest vertex of the Voronoi

cell of SN 𝑠𝑖 and 𝑇𝑃 is the target position. The authors report that VOR resulted in moving

oscillations due to its greedy nature in fixing the largest coverage holes. To deal with this

problem, they added oscillation control to the basic algorithm, which prevents a SN from

moving in opposite directions in two consecutive rounds. They also limit the maximum

moving distance in VOR to only half the communication range 𝑟𝑐 to deal with inaccurate

construction of Voronoi cells due to communication limitations.

The authors carried out extensive experimentation on both algorithms to qualify their

performance in terms of the coverage obtained, the accumulated moving distance by the SNs,

scalability, and impact of the initial topology. Results show that in terms of total moving

distance, VEC was the more efficient. In terms of scalability, both algorithms proved to be

extensible to large deployment scenarios, since the communication and movement are kept

local in these algorithms. In terms of the impact of the initial topology, the authors consider

 Chapter 2

28

Fig. 2.5 VOR algorithm proposed in [48]

both a random and a normal initial topology. The results show that the proposed algorithms

take more time to converge in the case of the normal distribution than in the random case.

However, the apparent drawback of both algorithms is not factoring in the presence of

obstacles in the RoI. As we pointed earlier, the presence of obstacles may result in inaccurate

Voronoi cells. Another drawback is the repeated movement of SNs, reducing the network's

lifetime, although the movement is reduced to an extent in VOR, since a SN is only allowed

to move if its local coverage will be enhanced.

In [49], the authors consider the same re-deployment problem as in [48] and use the same

assumptions. Voronoi cells, constructed by SNs using local data, are utilized in the proposed

algorithm, in order to divide the RoI into parts so that each SN can maximize its local

coverage. The proposed algorithm combines repulsive forces from neighboring SNs and the

RoI boundaries, and the attractive force that draws the SN to the centroid of its Voronoi cell.

In each iteration of the algorithm, each SN calculates its local Voronoi cell. If no coverage

hole is detected, the SN would not calculate the centroid of the cell and would just consider

virtual forces from neighboring SNs and possibly the RoI boundaries. Otherwise, the SN

calculates the centroid of its Voronoi cell. The resultant force vector 𝑭 is computed

accordingly, and the SN's trajectory is computed by applying the equation of motion

expressed in (2.31). As in VEC algorithm proposed in [48], the SN only moves to a new

location if its local coverage will be enhanced. The algorithm is terminated when each of the

deployed SNs reaches an equilibrium state by itself. The equilibrium state, in turn, can occur

in two cases; if the SN repeatedly moves back and forth to the same position (oscillatory

equilibrium state) or if its accumulated moving distance during a given time period set in the

simulator does not exceed a certain threshold value (stationary equilibrium state).

The authors compare their algorithm to the one proposed in [60] in terms of coverage,

cumulative moving distance and deployment time. Results suggest the proposed algorithm

in [49] shows a better coverage performance than the algorithm in [60], irrespective of the

number of SNs. The performance gain diminished as the number of deployed SNs increased.

This was attributed to the fact that a relatively large number of deployed SNs can easily cover

the RoI adequately without much need of a complex self-deployment algorithm. The

proposed algorithm also exhibited superior performance in terms of the cumulative moving

distance and area coverage. The authors attribute this to the additional attractive force that

optimizes the SNs' paths in terms of maximizing the coverage. They also point out that the

algorithm is sensitive to the communication range 𝑟𝑐, assuming a constant number of

deployed SNs and area of the RoI. This is attributed to the fact the proposed algorithm

depends on the correct estimation of the Voronoi cell of each SN. If the SN cannot detect its

neighbors due to a relatively short 𝑟𝑐, it will estimate an inaccurate Voronoi cell. Again, we

point out that this error can also take place in a RoI containing obstacles, which were not

considered in [49]. Hence, the comparison between the performances of the APF-based

 Chapter 2

29

algorithms in [60] and [49] may be inaccurate since authors in [60] considered a complex RoI

with obstacles such as walls and doors.

In [82], the authors propose a comprehensive distributed APF-based algorithm, named

Holes dEtection and healing (HEAL), for mobile WSN re-deployment. HEAL is designed to

detect, measure and fix coverage holes in MWSNs that arise due to random deployment,

environmental factors or external attacks on the network. The algorithm operates in two

phases. In the first phase, a distributed hole detection algorithm is used to find coverage holes

in the RoI, estimate their size and locate their center, using the Gabriel Graph (GG) [46] of

the WSN. In the second phase, the mobility of the SNs is exploited to cover the detected

holes. This is carried out through applying an APF-based distributed relocation algorithm,

where SNs in the vicinity of a hole are subject to an attractive virtual force exerted by its

center, in addition to repulsive virtual forces in between them to minimize coverage overlap.

To validate the algorithm, the authors applied HEAL to different scenarios by varying the

number and sizes of the holes. Results indicate that the proposed algorithm has the ability to

almost perfectly detect and repair coverage holes in densely deployed MWSNs. However, the

algorithm can only deal with obstacle-free RoIs and does not address holes which occur on

the borders of the RoI.

Similar to [81], the study in [83] considers the problem of the re-deployment of mobile

SNs which are initially randomly deployed in RoI. The objective is to achieve the coverage of

single or multiple target locations while maintaining connectivity with the sink node in the

presence of potential obstacles in the RoI. The authors propose an APF-based deployment

algorithm which is coined the Obstacle Avoidance Target Involved Deployment Algorithm

(OATIDA). The proposed algorithm runs concurrently on each SN in iterations where it

calculates the SN movement vector 𝑀𝑖
⃗⃗ ⃗⃗ , where 𝑖 is the index of the SN. The algorithm starts

by constructing the Relative Neighborhood Graph (RNG) using the neighbors’ relative

distance and indicating the distance to the farthest SN in the constructed RNG. This distance

is used to calculate the magnitude of the distance that will be travelled by the SN in the

current iteration, which is denoted by 𝐷𝑖. The preferred direction of motion for the SN in the

current iteration, denoted by 𝐷𝑖
⃗⃗ ⃗⃗ , is then decided using the advertised target(s) location.

Following this step, the algorithm computes the repulsive force, denoted by 𝐹𝑂𝑖
⃗⃗ ⃗⃗ ⃗⃗ , which is

exerted by the nearby obstacle(s) in the RoI on the SN. Finally, the movement vector 𝑀𝑖
⃗⃗ ⃗⃗ of

the current iteration for SN 𝑖 is calculated using the following equation:

𝑀𝑖
⃗⃗ ⃗⃗ = 𝐷𝑖. 𝐷𝑖

⃗⃗ ⃗ + 𝐹𝑂𝑖
⃗⃗ ⃗⃗ ⃗⃗ (2.33)

Results presented in [83] shows that the proposed OATIDA is capable of directing the

mobile SNs to successfully provide coverage for single and multiple targets in the presence of

one or more obstacles while maintaining connectivity with the sink node. However, the speed

of convergence of the algorithm cannot be commented on since the authors did not provide a

performance comparison between their proposed algorithm and similar existing algorithms in

the literature (e.g., [81]). The main drawback of the OATIDA is that it is based on the

assumption that all the mobile SNs are initially deployed within the communication range of

the sink node. This assumption is not realistic since, in most practical application of MWSNs,

the initial random deployment cannot be precisely controlled.

All the previous examples considered homogeneous MWSNs, where all the deployed

SNs are mobile. However, a MWSN can be heterogeneous in the sense that only a subset of

all deployed SNs are mobile in order to decrease the network's energy consumption and cost

while enhancing the coverage or any other performance metric. In [84], the authors propose

an APF-based deployment algorithm that only affects the sink nodes in a randomly deployed

 Chapter 2

30

WSN, i.e. only sink nodes are mobile, to enhance the total coverage. The authors differentiate

between the attractive and repulsive virtual forces between the sink nodes and the static SNs,

the virtual repulsive forces in-between sink nodes, and the virtual repulsive forces on sink

nodes due to the wall-like boundaries of the RoI. It is assumed that the sink nodes are SNs

with higher energy reservoir, locomotive capabilities and higher sensing and communication

ranges. The direction and magnitude of the virtual forces between static SNs and sink nodes

depend on their interspacing, and aims at adjusting it to be equal to √3𝑟𝑠, which is the

interspacing in a regular hexagonal grid. The repulsive forces in between sink nodes are

introduced to guarantee that the minimum distance between two sink nodes is their

communication range in order to disperse the sink nodes on the RoI.

The simulation results presented are not extensive; they only provide an illustration on

how the coverage of an initially randomly deployed WSN, confined to a rectangular RoI, was

improved when about 15% of its nodes (the sink nodes) moved according to the proposed

algorithm until reaching equilibrium. The authors do not specify what equilibrium in the

simulation environment implies (static or oscillatory) and do not provide data on the effect of

increasing or decreasing the introduced percentage of sink nodes in the WSN on its coverage.

2.4.3.2. Centralized Algorithms

APF-based centralized deployment algorithms are used in cluster-based WSN

architecture, where the cluster head is assumed to have a high computational power to carry

out the deployment algorithm for all deployed SNs. To carry out this task, the cluster head

has to first localize the SNs in the network after an initial deployment and collect any other

data pertinent to the deployment algorithm. After running the algorithm, the cluster head then

communicate to each SN its new target position.

The advantages of the centralized approach lie in the fact that only one (or a few)

resourceful cluster-head is responsible for running the deployment algorithm. The deployed

mobile SNs are not required to possess any extra sensing or computational abilities, apart

from the ones required for their primary sensing function. However, they are required to have

the ability of self-localization, in order to make sense of the communicated target locations.

The centralized approach also requires that all deployed SNs can communicate with the

cluster head. It is readily apparent that this kind of approach is not feasible in dynamic and

harsh RoIs, such as disaster areas and battlefields. In such cases, ensuring the survival of a

resourceful server is very difficult. This approach also requires a prior knowledge of the

terrain of the RoI, in order to be able to keep the mobile SNs away from obstacles.

Consequently, if the RoI has a dynamic rather than a static nature, a centralized deployment

approach would be infeasible.

An example of a centralized APF-based deployment algorithm deployment for MWSNs

is proposed in [85]. The proposed algorithm, called Virtual Forces Algorithm (VFA), aims to

maximize the coverage of a cluster-based MWSN, with a fixed number of deployed mobile

SNs that are initially randomly deployed. A powerful cluster head is proposed to be

responsible for carrying out the VFA, assuming it possesses augmented computational power

over SNs. The VFA considers a combination of virtual attractive and repulsive forces on each

SN in the RoI, due to neighboring SNs, obstacles and preferential areas. The resultant force

vector F on each SN is used to determine its virtual target location in each iteration. The VFA

terminates either when the required level of area coverage is achieved or when a

predetermined number of iterations are reached. Once the VFA is concluded, the final target

positions are identified and communicated to SNs, and a one-time movement is carried out.

The authors consider three scenarios to evaluate the performance of VFA. The first

scenario an ideal one, assuming the binary sensing model as expressed in (2.1) and no

obstacles or preferential areas. The second scenario assume a probabilistic sensing model as

 Chapter 2

31

expressed in (2.2), but again with no obstacles or preferential areas, while the third one

assume a binary sensing model with a single obstacle and preferential area. Results show a

substantial improvement in the area coverage of the RoI compare to the initial random

deployment, with an almost constant interspacing between SNs. However, the VFA depends

primarily on the assumptions that a prior knowledge of the RoI terrain (obstacles and

preferential areas) is available and that the cluster-head is not threatened by energy depletion

at any point during the VFA run time. Also, the initial random deployment is assumed to be

at least 1 −connected; every SN can communicate with the cluster head in a single or multi-

hops. This may not be the case in random deployments. Another limitation for VFA is its

scalability, since the communication overhead would dramatically increase as the number of

deployed SNs increase.

Another example is presented in [86]. The authors propose a centralized APF-based

deployment algorithm called Target Involved Virtual Force Algorithm (TIVFA), which is

executed on the cluster-head of an initially randomly deployed MWSN. The authors work on

the following assumptions: in a well-defined RoI, there exist hotspot areas, obstacles, static

target areas and maneuvering targets. The hotspot areas are defined as areas known to be

more important in the MWSN, such as a headquarters in a battlefield. Static target areas are

defined as circular areas in the RoI where targets are more likely to appear (depending on

prior information). Maneuvering targets were divided into several importance levels, so that

targets of higher importance level are given more attention in the WMSN. All SNs are

assumed to be identical with a fixed communication range, self-localization capability and a

probabilistic sensing model as expressed in (2.2). The objective of TIVFA is to reconfigure

the area coverage after an initial random deployment, such that targets of higher importance

are detected more precisely, while ensuring obstacle-avoidance and high-coverage of the

hotspot areas. The algorithm, running on the cluster head, computes the resultant force vector

𝑭 that constitutes both attractive and repulsive forces. The forces between SNs can be

attractive or repulsive depending on the distance between them as in [85]. The hotspots and

static target areas are assumed to exert attractive forces on SNs, depending on the distance

between them and the radii of the hotspot and static target areas. The obstacles logically exert

repulsive forces on SNs, also depending on the distance between them. Finally, the forces

exerted by the maneuvering targets on the SNs are explained as follows: if a SN detects a

target with a probability less than 1, the target is assumed to exert an attractive force with a

strength that is inversely proportional with the detection probability. Otherwise, no force is

exerted on the SN by the target. The simulation results presented in [86] suggest that TIVFA

succeeded in fulfilling its objectives. However, the algorithm depends primarily on prior

knowledge of the RoI. It also implicitly assumes that the cluster head maintains the locations

of all the SNs in the network as they move based on its instructions after each iteration or

time interval. This will consequently introduce a considerable amount of traffic into the

network. The combination of movement and communication overhead of TIVFA can

diminish the network's lifetime significantly. Also, the authors do not offer explicit algorithm

termination criteria for TIVFA, which is essential to understand the TIVFA's performance

regarding energy consumption.

In [87], the authors propose a modification to the VFA algorithm presented in [85] to

enhance its performance. They claim that the VFA produces coverage holes in the RoI upon

its convergence. They attributed this phenomenon to the fact that in VFA, virtual attractive

and repulsive forces due to all neighboring SNs, i.e. all SNs within the communication range

of a SN, are considered. These forces can in some instances cancel out and prevent SNs from

covering some areas in the RoI. In order to overcome this phenomenon, the authors propose a

modified version of VFA that only takes into account adjacent SNs based on the DT of the

initial random deployment. If two SNs are "connected" in the DT (were the set of points of

 Chapter 2

32

the DT are the initially randomly deployed SNs), then they are adjacent SNs. Results

presented in [87] suggest that the modified VFA is superior to the original VFA in [85] both

in terms of the total coverage of the RoI and its uniformity. A comparison between the

processing times of both algorithms is also presented and it shows that the modification

proposed does not add any significant processing cost. However, similar to the original VFA,

the modified VFA will not function correctly if some of the SNs in the initial random

deployment are unable to communicate with the cluster head.

We conclude this section by comparing between the APF-based algorithms reviewed

above in Table 2.6. We compare between them in terms of the repulsive and attractive virtual

forces exerted on SNs, their objectives, the sensing model adopted and whether the algorithm

is centralized or distributed.

2.4.4. Swarm Intelligence Algorithms

The use of SI methods in the deployment of WSNs is relatively new and limited,

compared to the other three approaches discussed in the previous sections. To the best of our

knowledge, the first research effort in this approach was presented in [88]. The authors study

the problem of deploying a finite number 𝑁 of homogeneous mobile SNs to cover a 2-D RoI.

The SNs are assumed to be initially randomly deployed, and a proposed PSO-based

deployment algorithm, called PSO-Grid, is assumed to run on a computationally powerful

base station. The base station would send the optimized positions to the randomly deployed

SNs after the convergence of the algorithm to maximize the area coverage of the RoI. Each

particle in the swarm used in PSO-Grid represents a deployment solution that contains the

positions of all the SN nodes inside the RoI. Hence, PSO-Grid encodes each particle in the

swarm as follows: the position of a single SN 𝑗 is described by its Cartesian

coordinates (𝑥𝑗 , 𝑦𝑗), and for 𝑁 SNs, the dimension of a particle in the swarm is two times the

number of SNs, i.e. 2𝑁. This is similar to the encoding used in [69] and expressed in (2.21).

The algorithm starts by randomly generating a number of solutions or particles. Equation

(2.17) is used in PSO-Grid with a minor refinement of multiplying the current velocity term

by an inertia weight 𝑤, which is used to control the effect of the previous velocity in the

current velocity. A time decreasing inertia weight encourages high exploration of the search

space at the beginning and fine tunes it at the end, as suggested in [65]. Hence, (2.17) is

modified in the algorithm as follows:

𝑣𝑖𝑗(𝑡 + 1) = 𝑤 𝑣𝑖𝑗(𝑡) + 𝑐1𝑅1 (𝑚𝑖𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) + 𝑐2𝑅2(𝑚𝑔𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) , (2.34)

where 𝑖 is the index of the particle in the swarm and 𝑗 is the dimension of the particle,

hence 𝑗 = 1,2, …2𝑁. In order to evaluate each solution, i.e. the current position of a particle

in the search space, a fitness function is used. Logically, the fitness function chosen in PSO-

Grid is the area coverage of the RoI. Calculating the area coverage is carried out by creating a

uniform grid over the RoI. All the grid points located in the RoI is labeled 1 or 0, depending

whether it is covered by at least one SN or not, assuming the binary sensing model as

expressed in (2.1). The coverage is simply the ratio of the summation of ones to the total

number of grid points. The authors evaluate the performance of PSO-Grid by comparing its

results with a similarly encoded GA. The results suggest that although both algorithms

converge to near optimum solutions after a maximum number of set iterations, PSO exhibits

a significantly faster convergence than GA.

 Chapter 2

33

Table 2.6 Comparison among the APF algorithms for WSN deployment

Algorithm
Sources of
repulsive VFs

Sources of
Attractive VFs

 Objectives
Sensing
Model

Centralized/
Distributed

[60] obstacles

 SNs

 −
 maximize area

coverage
not stated distributed

[81]

 obstacles

 SNs

 SNs

 stationary
targets

 maximizing
link capacities
between SNs

 detection of
stationary targets

 maximize
network's
throughput

deterministic distributed

VEC [48] ROI
boundaries

 SNs

 SNs

 maximize area
coverage deterministic distributed

VOR [48]

 −
 farthest vertex

in local
Voronoi cell

 maximize area
coverage

deterministic distributed

[49] ROI
boundaries

 SNs

 Centroid of
local Voronoi
cell

 maximize area
coverage

deterministic distributed

HEAL [82] SNs detected
coverage holes

 maximize area
coverage

 minimizing SN
movement

deterministic distributed

OATIDA[83] obstacles stationary or
moving targets

 coverage of
designated targets

deterministic distributed

[84] ROI
boundaries

 Static SNs

 mobile sink
nodes

 Static SNs

 mobile sink
nodes

 maximize area
coverage

deterministic distributed

VFA [85] ROI
boundaries

 obstacles

 SNs

 SNs

 preferential
areas

 maximize area
coverage

probabilistic centralized

TIVFA[86]

 SNs

 obstacles

 hotspots

 static target
areas

 maneuvering
targets

 SNs

 maximize area
coverage

 detection of static
and maneuvering
targets

probabilistic centralized

[87] ROI
boundaries

 SNs
 SNs

 maximize area
coverage

deterministic centralized

 Chapter 2

34

The study in [89] considers the generic problem of maximizing the area coverage of a

WSN composed of a finite number of homogeneous static SNs in a 2-D RoI. To solve the

problem, the authors combines PSO and Voronoi diagram to build a deployment algorithm

that converges to the optimal positioning of the available SNs in terms of area coverage. The

same particle encoding and time decreasing inertia weight in PSO-Grid [88] are used in [89].

However, the presented algorithm uses the Voronoi diagram instead of a grid to calculate the

percentage of the covered area of the RoI for each candidate solution. After the conclusion of

each iteration, SNs in their current positions generate their Voronoi cells. Only the distances

between a SN and its Voronoi vertices are checked to ensure that the Voronoi cell is covered,

assuming a binary sensing model. As for the RoI boundaries, a finite set of boundary points

are selected at random and checked to be covered. Both the Voronoi vertices and the

boundary points are referred to as interest points. Accordingly, the fitness function in the

deployment algorithm depends solely on the distances between these interest points and their

nearest SNs as shown in Fig. 2.6. The presented deployment algorithm is evaluated in several

scenarios, where the effect of the number of deployed SNs and the size of the 2-D RoI on

area total coverage is studied.

Fig. 2.6 Fitness function in [89]

It is important to point out that the authors calculate the area coverage as the percentage

of the interest points covered to the total number of interest points, similar to the approach

used in [84]. The results show that although the presented algorithm followed the logical

trends in both investigations (number of SNs and size of RoI versus area coverage), it

produces sub-optimal results after a predetermined maximum number of iterations.

In [90], the authors extend their work by refining their deployment algorithm presented

in [89]. The refined algorithm is named PSO-Voronoi, and it solves a similar deployment

problem to the one in [89] and [88]. However, the fitness function in PSO-Voronoi was

changed to be the total area of the coverage holes in the RoI for increased accuracy. To

calculate the area of coverage holes, the authors again use the Voronoi diagram and the

notion of interest points, as defined in[89]. The calculations are straight forward; if the

distance 𝑑 between an interest point and its nearest SN is greater than the sensing radius 𝑟𝑠,

then a coverage hole exists around the interest point. The area of the hole is approximated to

quarter, half or a full circle, with a radius 𝑑 − 𝑟𝑠, according to the location of the interest

point (corner, boundary or inside the RoI respectively). The authors propose that PSO-

Voronoi be executed in a centralized manner: the algorithm is executed on a base station

node, which would then communicate the coordinates of the optimized positions to randomly

deployed mobile SNs.

The PSO-Voronoi algorithm's performance is compared to that of PSO-Grid algorithm

presented in [88]. In terms of complexity, the comparison is in favor of PSO-Voronoi. This is

because its complexity depends only on the number of interest points (or the number of SNs

deployed), and not on the actual size of the RoI. On the other hand, the complexity of PSO-

Grid depends on both the number of deployed SNs and the number of the grid points. The

Interest points = [Voronoi cell vertices, n randomly

selected points along the boundary];

For each interest point

Find the distance of the interest point to its nearest

sensor;

If distance>sensing radius

Fitness += (distance−sensing radius);

End

Fig. 2.6 Fitness function in [89]

 Chapter 2

35

energy consumption aspect of PSO-Voronoi is not discussed. However, it is obvious that

being a centralized algorithm, it would introduce a significant communication overhead that

would shorten the WSN lifetime, even though the SNs movement takes place only once. It

should be also noted that the authors implicitly assume that the initial random deployment

resulted in a connected network so that each SN is able to communicate with the base station.

The PSO-Voronoi deployment algorithm is further improved in[91]. The improved

algorithm consists of two phases: phase I is the PSO-Voronoi deployment algorithm, called in

this paper WSNPSOvor, while phase II, called WSNPSOper, aims at minimizing the collective

energy consumed during the movement of mobile SNs to their optimized positions.

WSNPSOper solves the following minimization problem:

𝑚𝑖𝑛 𝑓𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 (2.35)

𝑑𝑚𝑎𝑥𝑚𝑜𝑣 = 𝑚𝑎𝑥{𝑑𝑖} , 𝑖 = 1,2, … ,𝑁 (2.36)

where 𝑓𝑒𝑛𝑒𝑟𝑔𝑦 is the objective function of the optimization, 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 is the maximum

moving distance required from any deployed SN after the conclusion of the first phase

WSNPSOvor, and 𝑁 is the number of deployed SNs in the RoI. The operation of WSNPSOper

starts by taking the following inputs: the initial positions of SN nodes after random

deployment, their IDs and the final positions suggested by WSNPSOvor. It then assigns each

SN to one of the optimized final positions such that 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 is minimized using a simple

form of PSO. Results showed a significant reduction of 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 in five different scenarios

with varying number of deployed SNs, when using the two-phase algorithm versus using only

phase I. Moreover, phase II does not noticeably increase the computation time or alter the

total coverage achieved by phase I.

The study in [92] considers the problem of near-optimal deployment of multiple sink

nodes in a pre-deployed static WSN, with the objective of minimizing the maximum worst

case delay of SN-sink message communications. The authors assume that there are a finite

number of candidate positions for the sink nodes. Hence, they formulated the optimization

problem as follows:

𝑚𝑖𝑛 𝑚𝑎𝑥𝑖є{1,…,𝑛} {𝑑𝑖},

(2.37)

where 𝑑𝑖 = 𝑓(𝜏|𝛼, 𝛽) (2.38)

 𝜏 = 𝑔(𝑠|𝑝, 𝑅)

(2.39)

The parameter 𝑑𝑖 is defined as the worst case delay of SN 𝑖. It is the objective function of

the optimization problem. It is logically a function of the given topology of the WSN, 𝜏,

given a specific arrival and service patterns for each SN, represented by α and β respectively.

The topology is in turn a function of the actual positions of the sink nodes, 𝑠 given the

vector, 𝑝 which contains the SN positions in the RoI and the routing algorithm used, 𝑅. The

authors propose using PSO with Local Search (PSO-LS) algorithm to find near-optimal

solutions for the optimization problem expressed in (2.37) - (2.39). LS is used to escape the

tendency of a conventional PSO to converge fast to a local optimal solution, but instead

evolves to better solutions. The proposed algorithm is applied to several WSN topologies

with different sizes, i.e. different numbers of SNs and sink nodes. The results of the PSO-LS

algorithm were compared to the results obtained by applying a genetic-based algorithm with

the same parameters. The comparison suggests a superior performance of PSO-LS in terms of

convergence speed and quality of obtained solutions.

 Chapter 2

36

It is important to point out that the all the presented PSO-based deployment algorithms in

this section so far have one major disadvantage in common, which is failing to account for

the obstacles and/or preferential areas in a RoI. It was implicitly assumed in these algorithms

that the terrain of the RoI is obstacle-free.

Unlike the algorithms reviewed so far in this section, which are based on PSO, the

algorithms presented in [93] - [95] are based on ACO. In[93] , the authors present an ACO

deployment algorithm called EasiDesign. The algorithm is designed to solve the Minimum-

Cost Connectivity-Guaranteed SDP (MCCG-SDP). The authors assume that the RoI is

modeled by a grid and that SNs can only be deployed on those grid points. To account for

obstacles in the RoI, the authors exclude grid points associated with obstacles from the

allowable set of grid-points at which SNs can be deployed. The algorithm constructs

solutions to the problem, i.e. SNs layouts, by allowing the ants to transition from one grid

point to another deploying SNs until full coverage, i.e. coverage of all grid-points in the RoI,

is achieved. Hence, following the ACO mathematical framework discussed in Section

2.3.4.2, the directed graph of the algorithm 𝐺(𝑽,𝑬) is constructed such that the set of vertices

𝑽 is the allowable set of grid-points at which SNs can be deployed. As explained earlier in

Section 2.3.4.2, ants’ transitions between grid points are stochastic. Assuming the 𝑖𝑡ℎant is at

a grid-point 𝑢 on 𝐺(𝑽, 𝑬), the set of allowed successor grid-points is the set 𝑵𝑖
𝑢 ⊂ 𝑽 such that

each grid-point 𝑣 ∈ 𝑵𝑖
𝑢 is within an Euclidean distance equal to the SNs’ communication

range from grid-point 𝑢. Using this definition of 𝑵𝑖
𝑢 guarantees that the resulting

solution/layout is connected to the sink node, assuming all ants start their tour at the sink

node position. The probability that the 𝑖𝑡ℎ ant will transition from grid point 𝑢 to point 𝑣 is

given by (2.40), where 𝜏𝑢,𝑣 is the pheromone level between the two grid points, 𝜂𝑢,𝑣
𝑖 is a

variable that is proportional to the coverage gain to deploying a SN in point 𝑣 and 𝛼 and β are

constants.

 𝑝𝑢,𝑣
𝑖 =

[𝜏𝑢,𝑣]
𝛼[𝜂𝑢,𝑣

𝑖]𝛽

∑ [𝜏𝑢,𝑚]𝛼[𝜂𝑢,𝑣
𝑖]𝛽𝑚∈𝑁𝑖

𝑢
 , 𝑣 ∈ 𝑁𝑖

𝑢 (2.40)

For the pheromone update procedure, the authors use a slightly version of the pheromone

update rule expressed in (2.20) as follows:

 𝜏𝑢,𝑣
′ = 𝜏𝑢,𝑣(1 − 𝜌) + 𝛥𝑢,𝑣

𝑏𝑒𝑠𝑡

(2.41)

𝛥𝑢,𝑣
𝑏𝑒𝑠𝑡 = {

1

𝐿𝑏𝑒𝑠𝑡
 , 𝑖𝑓 𝑢 𝑖𝑠 𝑖𝑛 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.42)

where 𝐿𝑏𝑒𝑠𝑡 is the number of SNs in the best solution constructed in the last iteration of the

algorithm. For performance evaluation, the authors applied EasiDesign to find an optimal SN

layout for an environmental monitoring WSN. Their results indicated that EasiDesign

algorithm can work efficiently in complex real-life applications. However, the presented

results did not indicate the performance of EasiDesign in terms of speed of convergence. In

addition, the authors did not compare the performance of EasiDesign in terms of

optimality/quality of obtained solution to any other existing deployment algorithms.

In [94], the authors enhance the EasiDesign algorithm of [93]. They proposed an ACO

deployment algorithm with three classes of ant transitions (ACO-TCAT) to solve the MCCG-

SDP. The authors define the MCCG problem as finding the required minimum number of

 Chapter 2

37

SNs and their locations in a grid-based RoI to achieve full coverage of a given set of Points of

Interest (PoIs) while guaranteeing that the resulting WSN is connected to a sink node in an

arbitrary location in the RoI. The main difference between ACO-TCAT and EasiDesign is the

definition of the the set of allowed successor grid-points 𝑵𝑖
𝑢 ⊂ 𝑽, for 𝑖 = 1, . . , 𝑁𝑎𝑛𝑡𝑠 and 𝑢 ∈

𝑽. ACO-TCAT uses three classes (i.e. three different definitions for 𝑵𝑖
𝑢) of ant transitions

instead of one class in EasiDesign. This modification is introduced to enhance the search

capability of ACO-TCAT, i.e. it enables the algorithm to converge faster. For all three classes

of ant transitions, successive grid points in an ant’s tour must be within a distance equal to the

SNs communication range, i.e. neighboring grid-points. Similar to EasiDesign, this condition

is used to guarantee that the obtained solutions are connected to the sink node. The first class

of ant transitions restricts 𝑵𝑖
𝑢 to neighboring grid points with a coverage gain of one or more

PoIs. If this class/set is empty, i.e. there are no neighboring grid-points that satisfy this

condition, the second class is used. The second class of ant transitions restricts 𝑵𝑖
𝑢 to

neighboring grid points that in turn have neighboring grid points with a coverage gain of one

or more PoIs. If the second class is empty, then the third and final class is used. The third

class of ant transitions is defined as neighboring grid points that have not been visited yet in

the ant’s tour. Presented results show that ACO-TCAT outperforms exiting greedy

algorithms [29] in terms of the quality of obtained solutions. They also show that although

ACO-TCAT does not outperform EasiDesign in terms of the quality of obtained solutions, it

outperforms it in terms of the speed of convergence.

In [95], the authors address the blindness-of-connection problem which may occur when

applying ACO-TCAT ni mhliro la [94] to solve an MCCG-SDP instance. This problem can

occur during an ant’s search when the ant is forced to apply the second or third transition

class in the ACO-TCAT algorithm which can lead to the additions of redundant SNs to the

final solution/deployment. To enhance the performance of the ACO-TCAT algorithm in

terms of the quality of obtained solution (i.e. deployment cost), the authors in [95] propose a

different set of ant transition rules and coin their proposed ACO algorithm the Node

Deployment Strategy for Blindness Avoiding (NDSBA) algorithm. NDSBA is based on the

same assumptions and problem formulation as ACO-TCAT algorithm in [94]. Both

algorithms adopt the same transition probability rule expressed in (2.39) and the same

pheromone update rule expressed in (2.40) and (2.41). The first class of ant transition in the

ACO-TCAT algorithm is also the same as the basic ant transition class in NDSBA. However,

NDSBA replaces the second and third ant transition classes in ACO-TCAT by three novel

rules, namely: greedy-migration, long-distance-jumping and short-distance-jumping. An ant

resorts to the greedy-migration transition rule when there are no neighboring grid points that

have a coverage gain i.e., no Effective Candidate Points (ECPs). In this case, the ant jumps to

a previously visited grid-point which has the highest number of ECPs within its

communication range. In the case where greedy-migration is inapplicable, the grid-points

visited by the ant thus far form a Local Connected Group (LCG) and the ant applies the long-

distance-jumping rule. In this rule, the ant randomly chooses any unvisited grid-point which

has a non-zero coverage gain i.e., an ECP. Due to this transition rule, a new LCG will arise

which is not connected to the previous LCG(s). After all PoI are covered, the ant uses the

short-distance-jumping transition rule to add grid points to its tour (i.e., add SNs to the

deployment) such that the different constructed LCGs and the sink node form a connected

graph following a simple greedy logic. After this step, the ant concludes its tour, pheromone

levels are updated and a new iteration starts provided that convergence conditions are not yet

satisfied. Results show that the NDSBA algorithm significantly outperforms ACO-TCAT

algorithm in terms of the quality of the obtained solutions. The authors also prove that a

single NDSBA algorithm iteration has the same computational complexity as that of an

 Chapter 2

38

ACO-TCAT algorithm iteration which is 𝑂(𝑛2), where 𝑛 is the number of grid points in the

RoI.

The three ACO-based algorithms discussed above have two main advantages over the

PSO-based algorithms reviewed in this section. The first advantage is the ease of factoring in

the presence of obstacles in the RoI. This is due to the design of ACO which reduces the

deployment problem to finding optimal path in a graph 𝐺(𝑽, 𝑬) which is very compatible

with the properties of SN deployment problems. The second advantage is that the obtained

solutions, i.e. WSN layouts, from ACO-based algorithms are connected whereas this is not

the case for all the PSO-based algorithms.

We conclude this section with Table 2.7, in which we compare between the deployment

algorithms reviewed in terms of the type of SI method used (PSO or ACO), the

characteristics of the targeted RoI, the sensing model adopted in coverage calculations and

the algorithms' speed of convergence.

Table 2.7 Comparison among the SI algorithms for WSN deployment

Algorithm
Type Of SI

Method
ROI Sensing Model

Speed of
Convergence

PSO-Grid in [89]
conventional

PSO w/o obstacles deterministic slow
PSO-Voronoi
in [90], [91]

conventional
PSO

w/o obstacles deterministic medium

PSO-LS in [92]
conventional
PSO with LS

w/o obstacles deterministic fast

EasiDesign
in [93]

ACO with one
class of ant
transitions

w/ obstacles and
preferential

areas
deterministic medium

ACO-TCAT
in [94]

ACO with
three classes of
ant transitions

w/ obstacles and
preferential

areas
deterministic fast

NDSBA in [95]
ACO with four
classes of ant

transitions

w/ obstacles and
preferential

areas
deterministic fast

2.5. Discussion and Experimental Evaluation

2.5.1. Discussion: Comparing the Four Approaches

Through the review and discussion presented in Section 2.4, it can be seen that the

choice of a WSN deployment approach depends on several factors. These factors include the

targeted RoI, whether a distributed or centralized approach is required, the degree of SN

mobility (if any) in the WSN and whether the deployment has a single or multiple objectives.

The complexity of the deployment approach is also a deciding factor in some WSN

applications.

The targeted RoI involves whether the WSN is deployed in an obstacle-ridden or an

obstacle-free RoI. It also involves whether the RoI is expected to be static or dynamic during

the lifetime span of the WSN. Incorporating the presence of static obstacles, such as concrete

walls, in the deployment problem is feasible in all four approaches. This is clear in the

deployment algorithms which belong to the CG and APF approaches, in addition to ACO in

the SI approach. As far as the GA and PSO are concerned, the presence of static obstacles can

be handled by limiting the search space of the problem to a set of candidate deployment

points or areas. It can also be achieved by introducing further constraints on the deployment

 Chapter 2

39

problem, or designing the fitness function such that it penalizes solutions with deployment

positions on/near obstacle locations. The same argument is applicable to preferential areas.

On the other hand, the deployment of WSNs in highly dynamic and/or hostile RoIs

requires the use of a deployment approach that provides the network with a self-organizing

feature. APF-based algorithms, especially when implemented in a distributed fashion, have

the ability to provide mobile SNs in MWSNs with real-time navigation in such environments

without the need for a global localization method, albeit with a high cost. The high cost is

partially due to the extended sensing capabilities required in the mobile SNs to detect their

surroundings (e.g. a laser range-finder), and partially due to the repetitive movement of SNs

which shortens the WSN lifetime. This can be overcome by deploying redundant SNs in the

RoI which can be put to sleep and activated as needed. It should be noted that the

performance of the distributed APF-based algorithms, in terms of energy consumption, are

highly sensitive to the equilibrium conditions used to restrict unnecessary motion. Distributed

CG-based deployment algorithms applied to MWSNs can also handle some changes in the

RoI, particularly changes in the area coverage due to SNs dying from energy depletion and/or

external attacks. As discussed earlier in Section 2.4.3, the performance of APF-based

algorithms, in terms of area coverage and energy consumption, can be greatly enhanced by

combining the conventional approach with CG (e.g. the use of Voronoi cells in local

coverage calculation).

Since both GA and SI approaches are heuristic global optimization methods, they can

only be implemented in a centralized fashion in WMSNs. This is not the case for APF and

CG approaches, which have the option of being implemented in a distributed or centralized

manner. This greatly limits the ability of GA and SI approaches to deal with dynamic RoIs.

Although all four approaches can be used in deploying mobile SNs, the use of either GA

or SI approaches requires a powerful sink node or base station, since they can only be

deployed in a centralized fashion. The sink would run the algorithms, based on a global

knowledge of the SN locations and other parameters, and then communicates the new

positions to the SNs to perform a one-time movement. This makes these two approaches

unsuitable for applications targeting harsh or hostile RoIs, where the survival of a sink node

is not guaranteed. For such applications, using a distributed CG or APF approach is more

suitable.

As far as design objectives are concerned, GA and SI approaches are better suited for

deploying WSNs with multiple design objectives than CG and APF approaches. This is due

to the fact that multiple objectives can be easily factored in the fitness function used in a GA

or SI algorithm. It should be pointed out that APF-based deployment algorithms can

theoretically deal with multiple design objectives. This can be achieved by introducing more

virtual forces to the algorithm to represent objectives besides optimizing the RoI coverage,

for example maximizing the WSN throughput. However, adjusting the weights of these added

virtual forces is a difficult process since they can only be estimated thorough trial and error.

In terms of the complexity, it would only be subjective to hold a general comparison

between the algorithms which belong to the four different approaches. Although calculating

the complexity of an APF or CG-based algorithm is a rather straightforward task as it is

primarily a function of the number of deployed SNs, this is not the case for Genetic and SI

algorithms. This is because the complexity of the latter two algorithms is a function of many

variables. For GAs, it is a function of the size of the population, fitness function calculations

and implementation of the genetic operators. Similarly, the complexity of a SI algorithm is a

function of the number of particles in the swarm/ants in the ant colony, fitness function

calculations and particles velocity/ants transitions calculations used for the swarm’s

evolution. Hence, a comparison can practically be held only among specific algorithms which

follow the different approaches applied to the same deployment problem. To the best of our

 Chapter 2

40

knowledge, a comparative study of this description has not been published yet and it is one of

our ongoing research studies. Table 2.8 summarizes the comparison among the different

approaches. In this table, we compare the four approaches in our classification in terms of

adaptability to changes in RoI, whether their implementation is centralized or distributed,

suitability for deploying static and mobile WSNs, their ability to incorporate multiple

network design objectives and the factors affecting their complexity.

Table 2.8 Comparison among the four mathematical approaches for planned WSN deployment

Mathematical
Approach

Adaptability
to RoI

Changes

Centralized
/Distributed

Suitability for
Mobile/Static

WSNs

Applicability
to Multiple
Objectives

Factors Affecting
Complexity

GA no centralized static; one-time
movement

yes no. of deployed SNs

 genetic operators

 fitness evaluation

CG yes but
limited

both both no no. of deployed SNs

APF yes both both yes but
difficult

 no. of deployed SNs

SI no centralized static; one-time
movement

yes no. of particles/ants

 swarm’s
velocity/ant’s
transitions
calculations

 fitness evaluation

2.5.2. Experimental Evaluation

In this section, we conduct a performance evaluation study of four of the existing SN

deployment algorithms that are designed to solve the MCC-SDP, namely the MAX-AVG-

COV GH in [29], the 𝑖FLGA in [73], the 𝑖VLGA dhmdmsop la [75] nap the EasiDesign ACO

algorithm in [93]. The MCC-SDP is chosen since it is the most studied deployment cost

minimization SDP in the literature. It is defined in Section 2.4.1 and mathematically

formulated by (2.22) – (2.24). The 𝑖FLGA, 𝑖VLGA and EasiDesign algorithm represent two

of the mathematical approaches in the presented classification in this chapter: GAs and SI.

These two approaches are the most suitable of the four approaches for the planned

deployment of static WSNs, where the SDP is modeled as a constrained optimization

problem. The GH MAX-AVG-COV is used to benchmark the performance of these

algorithms. These specific algorithms are selected based on the adaptability of their design to

solve most versions of the MCC-SDP of different required coverage types (e.g. area

coverage, point coverage or barrier coverage) and SN coverage models (e.g. binary disk

model, FoV…etc.). The performance of the four algorithms is evaluated in terms of three

metrics: quality of the obtained solutions (i.e. deployment cost), computational cost and

speed of convergence. The results are then statistically analyzed and a comparison is

conducted among the four algorithms.

2.5.2.1. Experimental Set-up

To evaluate the performance of the four algorithms, we implement and apply each to six

different scales of the MCC-SDP, where the RoI is modeled by a square grid (𝑀 = 𝑁) with

10, 15, 20, 25, 30 and 35 gird points in each dimension respectively. At all tested problem

 Chapter 2

41

scales, we assume that grid points are 5 meters apart and that the SNs have a coverage range

𝑟𝑠 of 15 meters. The SNs communication range 𝑟𝑐 is set to 30 meters in EasiDesign. This

assumption results in a ratio 𝑟𝑐: 𝑟𝑠 of 2. Consequently, the obtained solutions (i.e. SN

deployments) from all four algorithms will provide both comprehensive coverage and

connectivity among SNs. The algorithms were developed on MATLAB R2010b version

7.11.0.584. To account for the stochastic nature of the algorithms, each is executed for 10

trials on an Intel Xeon processor, CPU E5620, 2.4 GHz and 12 GB RAM.

We use the same parameter settings specified for 𝑖FLGA, 𝑖VLGA and EasiDesign

in [73], [75] and [93] respectively. To ensure a fair comparison in terms of the computational

cost and speed of convergence, we use the same termination conditions for all three

metaheuristic algorithms. We use two termination conditions in our experiments. The first

one is the algorithm reaching a maximum number of 500 iterations. The second condition is

the convergence of the algorithm, signaled by the stagnation of the maximum fitness through

100 iterations. Performance is evaluated in terms of three metrics:

 Quality of obtained solutions, which is measured by the number of SNs in the

minimum-cost deployments obtained by the four algorithms. For the metaheuristic

algorithms 𝑖FLGA, 𝑖VLGA and EasiDesign, this number is equivalent to highest fitness

achieved at the algorithm termination.

 Computational cost, which is measured using the CPU run-time required for an

algorithm to terminate or converge.

 Speed of convergence, which pertains only to the three metaheuristic algorithms. This

metric is measured by the number of iterations the algorithm executes before

converging (if convergence occurs). This metric does not apply to MAX-AVG-COV

since it terminates once a solution to the problem is found.

We also investigate how these three performance metrics change with the increase of the

problem scale, i.e. algorithm scalability.

2.5.2.2. Results and Discussion

We now present and discuss the obtained results according to the aforementioned

performance metrics.

Quality of obtained solutions: Table 2.9 summarizes the results in terms of the quality of

the obtained solutions, showing the lowest (best), highest (worst) and the average number of

SNs in the solutions obtained by the four algorithms. For each problem scale, the lowest

obtained average (i.e. lowest average deployment cost) is written in bold font. The three

metaheuristic algorithms outperform the MAX-AVG-COV GH at all tested scales of the

problem. This outcome is expected since the evolutionary nature of the metaheuristic

algorithms makes them generally more capable than GHs of finding higher quality solutions

to difficult optimization problems. The performance gap between the three metaheuristic

algorithms and MAX-AVG-COV increases progressively as the problem. The algorithm

EasiDesign and 𝑖FLGA demonstrate the best performance, outperforming 𝑖VLGA with a

small margin at the largest three scales of the problem.

Based on the average solutions quality, both 𝐸𝑎𝑠𝑖𝐷𝑒𝑠𝑖𝑔𝑛 and 𝑖FLGA show a similar

performance. However, EasiDesign exhibits a higher variability in the quality of its solutions.

To provide a more statistically accurate comparison, a set of pair-wise 𝑡 −tests is performed

to confirm the initial observations drawn from the results in Table 2.9.

 Chapter 2

42

Table 2.9 Comparison among the four algorithms in terms of quality of obtained solutions

Grid Size

(𝑀x𝑁)

MAX-AVG-COV 𝒊VLGA EasiDesign 𝒊FLGA

Best Avg. Worst Best Avg. Worst Best Avg. Worst Best Avg. Worst

(10x10) 6 6 6 4 4.8 5 4 5.1 6 4 4.6 5

(15x15) 14 14.2 16 11 12.7 14 11 12.5 14 10 11.6 13

(20x20) 26 26.9 28 22 24 26 21 23.2 25 22 23.2 24

(25x25) 39 40.2 41 35 37.1 38 32 35.3 38 34 35.6 37

(30x30) 57 58 61 51 54.2 57 49 51.9 54 50 52.2 54

(35x35) 76 78.5 80 70 74.5 78 68 72.9 77 68 72 74

Table 2.10 Results of the pairwise 𝑡 −tests

Grid Size

(𝑀x𝑁)

MAX-AVG-

COV Vs.

𝒊VLGA1

𝒊VLGA

Vs.

𝒊FLGA2

𝒊FLGA

Vs.

EasiDesign3

Conclusion

(10x10) 4.27× 10−6 1.80× 10−1 9.80× 10−2
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign

(15x15) 2.40× 10−4 1.82× 10−2 5.04× 10−2
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign

(20x20) 1.57× 10−4 1.10× 10−1 10× 10−1
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign

(25x25) 1.26× 10−6 2.34× 10−3 6.35× 10−1
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign

(30x30) 4.72× 10−5 7.21× 10−3 6.52× 10−1
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign

(35x35) 1.02× 10−4 7.83× 10−3 4.03× 10−1
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign

All 𝑡 −tests are carried out at a 95 percent confidence interval, i.e. α = 0.05

“A< B” means B performs better than A, while “A≈B” means A and B perform similarly

1 𝑝 −values of the one-tailed 𝑡 −test of the alternative hypodissertation that the average of 𝑖VLGA is greater than that of MAX-AVG-

COV

2 𝑝 −values of the one-tailed 𝑡 −test of the alternative hypodissertation that the average of 𝑖FLGA is greater than that of 𝑖VLGA

3 𝑝 −values of the two-tailed t-test of the alternative hypodissertation that the averages of 𝑖FLGA and EasiDesign are unequal

Table 2.10 shows the resulting 𝑝 −values of the performed 𝑡 −tests and the

corresponding conclusion for each problem scale. Values less than the specified statistical

significance α=0.05 indicates that the null hypodissertation of equal averages is rejected and

that the alternative hypodissertation of the test is true with a 95% confidence level.

Conclusions in Table 2.10 coincide with our initial observations: in terms of quality, the

ascending order of performance is MAX − AVG − COV < 𝑖VLGA ≈ 𝑖FLGA ≈ EasiDesign for

the three smallest problem scales and MAX-AVG-COV< 𝑖VLGA< 𝑖FLGA≈ EasiDesign

for the three largest scales, where “A< B” means B performs better than A, while “A≈B”

means A and B perform almost similarly. The deterioration of the 𝑖VLGA performance in

terms of quality at larger problem scales can be attributed to the variable-length chromosome

encoding scheme. As the scale of the problem increases, i.e. as the number of grid points

increases, the probability that one or more genes belonging to the global optimum solution

are not represented in the initial population increases as well. Since the crossover operator

simply recombines existing chromosomes, the mutation operator is the only source of

 Chapter 2

43

diversification in the algorithm. At larger problem, it may not be sufficient to successfully

guide the algorithm’s search to higher quality solutions.

Computational Cost and Speed of Convergence: These two performance metrics are

closely correlated and together they determine the computational efficiency of a stochastic

optimization algorithm. Fig. 2.7 illustrates the performance of the four algorithms in terms of

the computational cost measured by the average CPU run-time in seconds. Fig. 2.8 illustrates

the performance of the three metaheuristic algorithms in terms of their speed of convergence,

measured by the number of iterations executed by the algorithm before termination (either by

convergence or reaching the maximum number of iterations). In Fig. 2.8, each result point

consists of the average, upper and lower limits of the 95% confidence interval of the

corresponding set of runs.

In terms of computational cost, the ascending order of performance is EasiDesign <
 𝑖FLGA< 𝑖VLGA< MAX-AVG-COV. As a GH, the low computational cost of MAX-

AVG-COV is expected and attributed to its simple design. Compared to 𝑖FLGA and

EasiDesign, 𝑖VLGA has a much lower computational cost. This can be attributed to the

variable-length chromosome encoding scheme, which significantly decreases memory

assignment time during the 𝑖VLGA execution, reducing its computational cost. This is not the

case for both 𝑖FLGA and EasiDesign, where the fixed chromosome length and the average

number of ants’ transitions are directly proportional to the problem scale. Theoretically, the

performance gap between the 𝑖VLGA and both 𝑖FLGA and EasiDesign in terms of

computational cost should increase with the increase of the problem scale. However, it is

interesting to observe that in practice this is not valid for 𝑖FLGA as the difference between it

and 𝑖VLGA decreases steadily with the increase of the scale. It can also be observed that

𝑖FLGA and EasiDesign have a comparable computational cost for the smallest problem scale,

but as the scale grows, 𝑖FLGA starts exhibiting a steadily increasing advantage

over 𝐸𝑎𝑠𝑖𝐷𝑒𝑠𝑖𝑔𝑛. These two observations can be explained by Fig. 2.8. In the figure, it can

be seen that 𝑖FLGA shows the best performance in terms of the speed of convergence with a

large margin over both 𝑖VLGA and EasiDesign. For the majority of the runs at all tested

problem scales, 𝑖FLGA converges within 200 iterations.

 On the other hand, the ability of 𝑖VLGA and EasiDesign to converge quickly

deteriorates as the problem scale grows. This explains the narrowing in the performance gap

in terms of the computational cost between 𝑖VLGA and 𝑖FLGA: although the average time to

execute iteration in 𝑖VLGA is always lower than in 𝑖FLGA, the slow convergence of the

𝑖VLGA dampens its advantage over 𝑖FLGA. The deterioration in convergence speed of the

𝑖VLGA at larger problem scales can be attributed again to the variable-length chromosome

encoding scheme: the limited level of diversification introduced by the genetic operators in

𝑖VLGA slows down its convergence. For EasiDesign, the slow convergence (at the three

smallest problem scales) and the lack of it (at the three largest problem scales) can be due to

the definition of the set of allowed successor grid points 𝑵𝑖
𝑘. The adopted definition of this

set limits the successor grid points and hence creates a situation where a grid point that offers

no coverage gain can be included to an ants’ tour (i.e. solution). This in turn leads to

redundant transitions which slows down the convergence of the algorithm or prevents it

altogether.

2.6. Chapter Summary

In this chapter, we surveyed and classified the planned WSN deployment algorithms

which have been presented in the literature according to their mathematical approach. Four

distinct approaches were proposed for this classification, namely GAs, CG, APFs and SI. We

 Chapter 2

44

Fig. 2.7 Comparison among the four algorithms under consideration in terms of computational cost

measured by the average CPU run-time.

Fig. 2.8 Comparison among the three metaheuristic algorithms under consideration in terms of

convergence speed measured by the number of executed iterations.

discussed some of the fundamental design factors of WSNs, namely the sensing model,

mobility of SNs, WSN coverage and network connectivity. We presented a brief account on

the background and mathematical foundation of each of the four approaches. An extensive

review of the deployment algorithms which belong to each approach was presented. In this

review, we presented comparisons between the different deployment algorithms based on

each approach. We then discussed and compared the four approaches in terms of different

WSN design factors, thus highlighting the strengths and limitations of each approach. One of

the most important conclusions drawn from the conducted survey is that GAs and SI

algorithms, specifically ACO algorithms, are best suited for deploying static WSNs with

single or multiple design objectives. Finally, we presented and discussed a performance

evaluation study of four of the existing SN deployment algorithms.

10x10 15x15 20x20 25x25 30x30 35x35
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Number of grid points

A
v

er
ag

e
C

P
U

 r
u

n
-t

im
e

(s
)

MAX-AVG-COV

iVLGA

iFLGA

EasiDesign

10x10 15x15 20x20 25x25 30x30 35x35
50

100

150

200

250

300

350

400

450

500

Number of grid points

N
u

m
b

er
 o

f
ex

ec
u

te
d

 i
te

ra
ti

o
n

s

iFLGA

iVLGA

EasiDesign

 Chapter 3

45

Chapter 3

Reliability Assessment of Wireless Sensor Network

Deployments

3.1. Introduction

Evaluating the reliability of WSNs is of great importance especially for WSNs designed

for mission-critical applications. For such applications, the failure of the WSN to perform its

function(s) can have catastrophic effects [6]. In this chapter, we review and discuss existing

studies on the reliability and fault-tolerance of WSNs. Based on the presented review, we

propose a novel WSN reliability metric in terms of the coverage and connectivity of the

network. This is done under the practical assumption that that an SN functions as a three-

mode device (on, off and relay modes) as opposed to the conventional two-mode SN model

(on and off modes) in the existing work in the literature.

 The reliability of any multi-component system is formally defined as the “probability

that a system will perform satisfactorily during its mission time when used under the stated

conditions” [19]. The method by which the reliability of a specific system is evaluated varies

according to the type(s) of components of which the system is composed, the configuration of

the system in terms of how these components are connected to each other and the state(s) at

which the system is defined to have failed. Ultimately, the reliability of the system is a

function of the reliability measures of its components. Therefore, evaluating the reliability of

the system as a whole is a probability-modeling problem. In this context, a WSN can be

viewed as a multi-component system in which the components are the sensor nodes (SNs)

and the sink node(s). The mission time for a WSN can either be its intended lifetime or the

time interval between scheduled maintenance operations. Hence, the WSN mission time is

application-dependent and can vary greatly ranging from a few days to a few years. The

configuration of the WSN is determined by the way the SNs are deployed in the targeted RoI

and the resulting wireless connectivity among them.

In order to identify the states at which a given WSN deployment fails, the functionality

of a WSN must first be defined. The functionality of a WSN can be divided into two major

elements. The first element is the sensing functionality, which is the ability of a WSN to

detect all the targets or phenomena that occur inside the boundaries of the RoI during its

mission time. Hence, for a WSN to be functional in terms of sensing it must provide full

coverage for the RoI area (in case of area coverage) or all the targeted locations in the RoI (in

case of point coverage) during its mission time. The second element of the WSN

functionality is the connectivity functionality, which is the ability of the WSN to deliver

sensed data from its sources (i.e. SNs) to the designated destination (i.e. sink node(s)) during

its mission time. Hence, for a WSN to be functional in terms of connectivity, any target or a

phenomenon detected by one or more SNs in a WSN has to be recognized at the sink node(s)

through multi-hop wireless communication throughout the WSN mission time. Based on this

definition of the WSN functionality, a WSN is said to have failed if either of its sensing or

connectivity functionality elements fails [96].

There are several issues that affect the reliability of a WSN. These issues can generally

be classified into SN related and non-SN related issues. The SN related issues are factors

pertinent to the functionality of the deployed SNs, namely, SN power failure, hardware

 Chapter 3

46

failures and software failures. The effect of these issues on the functionality of the network

during its mission time (i.e. on the reliability of the network) can be predicted [97] as will be

discussed later. These issues can be summarized as follows:

 SN Power Failure: the majority of the industrial and commercial SNs currently available

in the market are battery-powered. Current advances in the fabrication of batteries have

recently introduced highly durable batteries for SNs that can last for years (e.g. lithium

thionyl chloride batteries [98]) under certain conditions. Although, theoretically, these

batteries can sustain the operation of the SNs for long periods of time, premature battery

failures can still occur in practice. This can be attributed to a myriad of reasons such as

the deployment of the SNs in harsh environmental conditions (e.g. extreme temperatures

or rain), incorrect handling or random failure caused by defective hardware [99].

 SN Hardware Failures: SNs are subject to random hardware failures. This is attributed to

two main reasons. The first one is that most commercial SNs are cost-sensitive, meaning

that they are not always built of the highest quality components. The second reason is

that SNs are often subjected to harsh environmental conditions which can affect the

normal operation of its components [20].

 SN Software Failures: SNs are prone to random software failures which can render them

inactive, i.e. unable to sense or communicate.

On the other hand, non-SN related issues are factors that are external to the deployed

SNs such as wireless link failures (due to fading and external interference) and excessive

packet collisions (i.e. internal interference in WSNs adopting contention-based medium

access control). The effect of these issues on the overall network reliability is in general

difficult to predict [100]. However, several measures can be adopted to mitigate their

detrimental effect on the network reliability. Examples of such measures include

acknowledgements and retransmissions.

3.2. Related Work on Reliability and Fault Tolerance of WSNs

Several studies have addressed the issue of evaluating or estimating the reliability of

WSNs. In this section, we review the most significant of these studies and discuss their scope

and limitations.

In the studies presented in [101] - [103], the authors use a reliability metric to measure

the reliability of SN systems used in monitoring linear processes in chemical plants to cost-

optimize the SN system layout. The proposed metric is formulated in terms of the failure

probabilities of the SNs and depends on the method by which the different variables of a

chemical process are measured and how they contribute to the monitoring of the chemical

process. Hence, the metric is specifically tailored for this type of monitoring application and

cannot be extended to other applications. Moreover, the authors consider SN systems and not

networks, meaning that wireless communication between SNs is overlooked and not factored

in the proposed reliability metric.

The studies in [104] and [105] address the problem of evaluating the reliability of WSNs

characterized by cluster-based deployments subject to random SN failures. In both studies,

the authors assume that the SN clusters are non-overlapping and that each cluster has a

designated cluster head which acts as a relay between the SNs in the cluster and the sink

node. In [104], the authors define the reliability of a cluster as the probability of successful

message delivery between the sink node and the cluster head. The authors in [105] define the

reliability of the WSN as the probability that the geographical area of each cluster in the

WSN is fully covered by its SNs and that the cluster head has at least one functional direct or

multi-hop wireless path to the sink node. Based on this definition, they derive an expression

 Chapter 3

47

for the reliability of each individual cluster and use a Monte Carlo (MC) simulation approach

to estimate it. The main limitation of the studies in [104] and [105] is that the reliability of the

WSN as a whole in terms of the reliability of its constituent clusters is not evaluated. In

addition, the proposed definitions of reliability cannot be extended to WSNs with different

deployment configurations such as flat deployments which are non-hierarchical.

On the other hand, the studies in [106] - [110] address the reliability of SN systems or

WSNs of non-hierarchical deployment configurations. In [106], the authors address the

problem of evaluating the reliability of WSNs designed for industrial inventory management.

They assume that, for the purposes of this specific application, the data collected by each SN

are stored redundantly on several other SNs to account for random SN failures. Accordingly,

the WSN is deemed functional as long as there is a sufficient number of functional SNs that

are both connected to each other and to the sink node. Based on this definition of network

functionality and the assumption that the WSN deployment is homogeneous, the reliability

evaluation problem is reduced to the famous 𝐾-out-of-𝑁 reliability problem [111]. The

authors also present a MC simulation approach similar to that proposed in [105] to estimate

the reliability of the WSN at hand. However, the reliability evaluation and estimation

approaches proposed in [106] are based on a very restrictive definition of network

functionality. Consequently, they cannot be applied to other WSN applications (e.g.

surveillance and monitoring applications) where the functionality of the network is dependent

not only on the number of SNs connected to the sink node but also on the network coverage.

Also, the proposed approaches do not support network heterogeneity which is a major

limitation since real-world deployments are often heterogeneous.

The authors in [107] propose a reliability metric for SN systems designed for

surveillance purposes subject to random SN failures. They assume an arbitrary deployment

configuration where SNs can monitor multiple target locations in the RoI and that each target

location can be monitored by multiple SNs. They also assume that the surveillance SN

system can be heterogeneous. The reliability of the system is defined as the probability that

all target locations are monitored by at least one SN. The authors use a combinatorial

approach to evaluate the proposed reliability measure. The main limitation of the proposed

metric is that system functionality is assumed to be in terms of the degree of target locations

coverage only. Connectivity between SNs to form a wireless network is not considered.

Hence, the proposed approach cannot be applied to evaluate the reliability of a WSN

deployment.

In [108], the authors propose a model for evaluating the reliability of a WSN subject to

two types of failure events, namely, SN failures due to battery depletion and link failures.

Their proposed approach depends on dividing the targeted RoI into disjoint areas or target

regions. For each region, a reliability model is constructed using a Reliability Block Diagram

(RBD) [19], which depends on the number of SNs monitoring the target region, their relative

location from the sink node and the routing protocol used in the network. There are two

drawbacks of the proposed reliability modeling proposed in [108]. The first drawback is that

the model does not provide a method by which the reliability of the entire WSN deployment

can be evaluated in terms of the reliability of its regions. The second drawback is that the

reliability modeling is carried out under the assumption that the probabilities of link failures

are known and are constant throughout the lifetime of the WSN. This assumption is

unrealistic for wireless links since link quality is affected by numerous factors such as multi-

path effects, shadowing (due to static and mobile obstacles) and interference. The effect of

these factors on link quality varies significantly and rapidly in time and space [100] and

hence, unlike SN related factors, cannot be reduced, contrary to hardware components, to a

constant probability of failure throughout WSN mission time.

 Chapter 3

48

 The study in [109] propose a method for evaluating the reliability of WSNs designed for

industrial IoT applications based on the automatic generation of Fault Trees (FTs). The

proposed method requires the network failure conditions as inputs to enable the generation of

the corresponding network FT and compute the network reliability. A network failure

condition is defined as a combination of SNs which if fail will lead to the failure of the WSN

in terms of network coverage only and not connectivity to the sink. To address the

connectivity part of the network functionality, the authors propose a depth-first search

algorithm that finds all the paths between SNs belonging to the network failure conditions

and the sink node. The study in [109] is extended in [110] by assuming that the WSN is also

subject to permanent wireless link failures in addition to SN failures under the same

assumptions adopted in [105]. However, the reliability metric proposed in [109] and [110]

can not be used in the context of stochastic optimization and hence to calculate the reliability

in the problem at hand since developing/constructing the FT and using it to calculate the

paths set and the reliability of the WSN is a very time-consuming process.

3.3. Motivation for a New Reliability Metric

Based on the above discussion, existing studies provide reliability evaluation or

estimation for WSNs under restrictive conditions that pertain to specific applications,

network functionality definition and/or deployment configurations. More importantly, they

all assume that SNs have only two modes of operation, either on or off. If an SN is on, it is

assumed to be functional in terms of both sensing its surrounding environment and

communicating wirelessly with its neighbors. If it is off, then the SN has failed permanently

due to one or more of the SN related reliability issues outlined in the introduction of this

chapter. This representation is not accurate since most commercial SNs are composed of

multiple independent chips that carry out different functions, with each having its own

probability of failure during the network’s mission time.

A more accurate model considers the SN as a multi-component system [113]. Based on

this model, an SN has three modes of operation. These modes of operation are on, relay and

off. The definitions of the on and off modes are the same as discussed above, while the relay

mode occurs when the SN is unable to perform its sensory function but it still able to

communicate wirelessly with its neighbors. This mode of operation occurs when the SN’s

sensor(s) hardware fails while its transceiver, processor and battery are in working condition.

Adopting this SN model provides a more accurate evaluation of WSN reliability, assuming

that the network functionality is adequately defined in terms of both network coverage and

connectivity.

3.4. Fundamental Reliability Concepts

In this section, we discuss some of the fundamental definitions and concepts related to

the evaluation of multi-component systems’ reliability which we will be using throughout this

chapter.

3.4.1. Component Reliability Function and Component Reliability

The main objective of reliability modeling is to express the reliability of a given system

in terms of the reliability measures of its constituent components. There are two main

reliability measures for any device or component. The first measure is the reliability

function, 𝑅𝑐(𝑡), which is used to estimate the probability that the device or component will

continue to function beyond a time duration of length 𝑡 [19]. The second reliability measure

is based on the fact that, for most practical purposes, a device or component is only required

 Chapter 3

49

to function during the specified mission time 𝑇𝑚 of the system it belongs to. In this case, the

reliability function 𝑅𝑐(𝑡) can be substituted by the reliability of the device. The reliability of

a device, Rc, is simply defined as the probability that the device will continue to function

throughout the mission time of the system. Accordingly, the probability of failure of the

device during 𝑇𝑚 is equal to 1 − 𝑅𝑐(𝑇𝑚) = 1 − 𝑅𝑐 [19].

For example, Fig. 3.1 shows an exponential reliability function, which is one of the

simplest functions used in modeling the reliability of electronic components. The exponential

reliability function is 𝑅𝑐𝑒
(𝑡) is given by the following equation:

𝑅𝑐𝑒
(𝑡) = 𝑒−𝛼𝑡 (3.1)

where α is the estimated failure rate of the component per unit of measurement (e.g. hour,

year, cycle…etc.) and is equal to the reciprocal of its Mean Time To Fail (MTTF). From the

reliability curves in Figure 1, we can estimate the reliability at 𝑡 = 5000 hours for 𝛼 =
1/4000 (i.e. for MTTF = 4000) to be 0.287. This in turn means that there is a 1 − 0.287 =
0.713 chance that the component will fail during this time interval, i.e. the probability of

failure during this time interval is 0.713.

Fig. 3.1 Exponential reliability function plot for different values of MTTF (1000, 2000, 3000 and

4000) in hours.

Although the exponential reliability function is commonly used in reliability engineering due

to its simplicity, it usually leads to inaccurate estimations of the probabilities of failures. This

is because this type of function is based on the assumption that the component has a constant

failure rate, which means that its performance does not degrade with time. To obtain a more

accurate model for the reliability function of a given electronic device, reliability engineers

carry out rigorous reliability testing techniques and/or gather empirical data on the device in

service [19]. For example, qualitative and quantitative accelerated reliability testing is used to

identify probable hardware failures of SNs and estimate the probability of their

occurrence [97].

3.4.2. Combinatorial Approach to System Reliability Evaluation

Combinatorics is a proven useful tool in evaluating and estimating the reliability of

complex systems and networks [114],[115]. The fundamental premise of the combinatorial

approach to reliability evaluation is that the reliability of any system can be computed by

means of evaluating the system’s structure function for every possible state of the system. To

explain this concept, consider a system 𝑺 which consists of 𝑛 components, i.e. 𝑺 =

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 5000

Y: 0.2865

Time (hrs)

R
el

ia
b

il
it

y
 F

u
n

ct
io

n
 R

(t
)

MTTF = 1000

MTTF = 2000

MTTF = 3000

MTTF = 4000

 Chapter 3

50

{1,2, … . , 𝑛}. Each component can only have two distinct states; it can either be functional or

on or it can fail or be off. Let the binary variable 𝜋𝑖 be the state indicator of component 𝑖 as

follows:

𝜋𝑖 = {
1 , 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑜𝑛
0, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑜𝑓𝑓

 (3.2)

A state 𝝅 of the system 𝑺 is a description of the states of all its components, hence 𝝅 =
{𝜋𝑖} for 𝑖 = 1,… , 𝑛. Let 𝚷 be the set of all possible states of 𝑺. The structure function of 𝑺 ,

denoted 𝑓(𝝅), is a binary function that indicates whether the system is working under a given

state according to the following equation:

𝑓(𝝅) = {
1 , 𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙
0, 𝑺 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑

 (3.3)

Based on the above definitions, the reliability of 𝑺, denoted by 𝑅(𝑺), can be calculated

using the following equation:

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑓(𝝅) = 1) = ∑ 𝑓(𝝅). 𝑃𝑟𝑜𝑏(

𝝅∈𝚷

𝝅) (3.4)

To calculate 𝑅(𝑺) using (3.4), the conditions necessary for 𝑺 to be functional must be

defined and the probability of any system state must be evaluated in terms of the reliabilities

(or probabilities of failure) of system’s components, assuming that the system has a specified

mission time 𝑇𝑚. Theoretically 𝑓(𝝅) must be evaluated for all the possible system states 𝝅 ∈
𝚷 to calculate 𝑅(𝑺) using this approach. However, following this extensive method in

reliability calculation poses a computational problem for systems of a practical scale. For

example, a system composed of 30 components which fail independently has 230 states.

Therefore, a tremendous amount of time is required to calculate 𝑅(𝑺) which grows

exponentially with the number of components in the system. This computational problem is

mitigated by the use of more efficient methods (e.g. RBD, FT and search algorithms) that

attempt to find all the system’s path-sets or cut-sets [115].

 To define a system’s path and cut, let 𝑺1(𝝅) be the set of functioning components, i.e.

components in the on state, in 𝑺 for a given system state 𝛑 and 𝑺0(𝝅) be the set of failed

components, i.e. components in the off state. 𝑺1(𝝅) and 𝑺0(𝝅) can be expressed by the

following equations:

𝑺1(𝝅) ≡ {𝑖 | 𝜋𝑖 = 1, 𝑖 ∈ 𝑺}

(3.5)

𝑺0(𝝅) ≡ {𝑖 | 𝜋𝑖 = 0, 𝑖 ∈ 𝑺}, (3.6)

where 𝑺1(𝝅) ∪ 𝑺0(𝝅) = 𝑺. A state 𝛑 of the system 𝑺 is called a path if the system is

functional at that state, i.e. 𝑓(𝝅) = 1. In that case, the corresponding path set is the

set 𝑺1(𝝅), which is defined as the set of components whose simultaneous functional state

guarantees that the overall system is functional. On the other hand, a state 𝛑 of the system 𝑺

is called a cut if the system fails at that state, i.e. 𝑓(𝝅) = 0. In this case, the corresponding

cut set is the set 𝑺0(𝝅), which is defined as the set of components whose simultaneous

failure results in the failure of the overall system. If all the path sets or alternatively all the cut

sets of a system 𝑺 are known, we can rewrite (3.4) as follows:

 Chapter 3

51

𝑅(𝑺) = ∑ 𝑃𝑟𝑜𝑏(

𝝅∈𝚷1

𝝅) = 1 − ∑ 𝑃𝑟𝑜𝑏(

𝝅∈𝚷0

𝝅), (3.7)

where 𝚷1 is the set of all the paths of 𝑺 (i.e. the complete paths set of 𝑺) and 𝚷0 is the

corresponding set containing all the cuts of 𝑺 (i.e. the complete cuts set of 𝑺) such that 𝚷1 ∪
𝚷0 = 𝚷 . For example, a simple system of 𝑛 components connected in series has only one

path set which is equal to the system set 𝑺 = {1,2, … . , 𝑛} and has ∑ 𝐶𝑘
𝑛𝑛

𝑘=1 cut sets.

Therefore, it is simpler to express its reliability as 𝑅(𝑺𝑠𝑒𝑟𝑖𝑒𝑠) = 𝑃𝑟𝑜𝑏(𝝅 = {𝜋𝑖 = 1, ∀ 𝑖 =
1, … , 𝑛}) = ∏ 𝑅𝑖

𝑛
𝑖=1 , where 𝑅𝑖 is the reliability of the 𝑖th component during the system’s

mission time. On the other hand, a system of 𝑛 components connected in parallel has only

one cut set which is equal to 𝑺 and has ∑ 𝐶𝑘
𝑛𝑛

𝑘=1 path sets. Hence, the system’s reliability can

be expressed as 𝑅(𝑺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) = 1 − 𝑃𝑟𝑜𝑏(𝝅 = {𝜋𝑖 = 0, ∀ 𝑖 = 1,… , 𝑛}) = 1 − ∏ (1 −𝑛
𝑖=1

𝑅𝑖).

3.5. WSN Reliability Metric

In this section, we use the combinatorial approach outlined in Section 3.4 to derive our

proposed WSN reliability metric for an arbitrary WSN deployment configuration. We start by

presenting the adopted model for the WSN. We then derive a WSN reliability metric based

on the assumption that the constituent SNs are three-mode devices characterized by two

failure probabilities, namely, the sensor failure probability and the transceiver sensor

probability, as an intermediate step. We will refer to this SN model as the 3-mode, 2-par

model. Finally, we derive the proposed WSN metric based on the assumption that the

constituent SNs are three-mode devices characterized by four failure probabilities, namely

sensor, transceiver, processor and battery failure probabilities. We will refer to this SN model

as the 3-mode, 4-par model.

3.5.1. WSN Model and Functionality Definition

We assume that the targeted RoI of the WSN is a two-dimensional area in which there is

a finite set of locations that require some form of monitoring (e.g. motion, image, video...etc.)

using static SNs. These locations are called target points and are denoted by the set 𝑻 = {𝑡𝑗}

for 𝑗 = 1,… ,𝑚. To maintain generality, we do not assume that the target points conform to

any regular pattern. Target points are monitored by the SNs in the WSN. We assume that the

SNs used in the deployment of the WSN can be of different types (e.g. sound, image, etc.)

and can have different coverage profiles (e.g. binary disk model, FoV model, etc.), i.e. the

WSN can be heterogeneous in nature. Let the set of deployed SNs be denoted by 𝑺 =
{𝑠𝑖}, 𝑖 = 1,… , 𝑛. We assume an arbitrary deployment configuration in which an SN can

monitor multiple target points. We also assume that a target can be monitored by more than

one SN. Therefore, in terms of coverage, the WSN can be modeled as a bipartite graph. Fig.

3.2 shows an example of a WSN consisting of 5 SNs (𝑛 = 5) monitoring 3 target

points (𝑚 = 3) and the resulting bipartite graph representation of the network coverage,

assuming SNs are characterized by a binary disk coverage model. All sensory data acquired

by the SNs should be relayed to a sink node with an arbitrary fixed position in the RoI

through wireless multi-hop communications. We assume that all deployed SNs have a fixed

communication range, 𝑟𝑐. Hence, any two SNs deployed have a wireless communication link

if the distance between them is less than or equal to 𝑟𝑐. Naturally, it is required that the WSN

remains functional in terms of coverage and connectivity throughout its intended mission

time 𝑇𝑚. To express this mathematically, we use the following definition:

 Chapter 3

52

Definition 1: A WSN is said to be functional in terms of both coverage and connectivity if

both of the following two conditions are met:

1. Each target point 𝑡𝑗 for 𝑗 = 1, … ,𝑚 is covered by at least one SN with an

uncompromised sensing capability, i.e. an SN in the on state. Let the set 𝒀𝑗 be the set

of SNs in the on state that monitor 𝑡𝑗. Then this condition can be expressed as, | 𝒀𝑗 | ≠

0, ∀ 𝑗 = 1,… . ,𝑚 where |. | denotes the size of a set.

2. Within each 𝒀𝑗 , there is at least one SN that has at least one functional path to the sink

node. This implies that SNs along that path, including the source SN, have

uncompromised communication capabilities, i.e. in either the on or the relay state.

Hence, the events detected at any 𝑡𝑗 can be relayed back to the sink node. Let the set

 𝒁𝑗 be the set of SNs which belong to 𝒀𝑗 that are connected to the sink node.

Hence 𝒁𝑗 ⊆ 𝒀𝑗 . The condition can be expressed as | 𝒁𝑗 | ≠ 0, ∀ 𝑗 = 1,… . ,𝑚.

Fig. 3.2 (a) A simple WSN consisting of a sink node, 5 SNs (𝑛 = 5) and 3 target points (𝑚 = 3) ; (b)

The coverage of the WSN is modeled as a bipartite graph in which the target point set {𝑡1, 𝑡2, 𝑡3} and

the SN set 𝑺 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} are the two disjoint sets.

3.5.2. Reliability Metric Formulation for the 3-mode, 2-par SN Model

We now use the above definition of WSN functionality conditions in deriving a

reliability metric for arbitrary WSN deployments under the assumption that the constituent

SNs follow the 3-mode, 2-par model.

3.5.2.1. 3-mode, 2-par SN Model

The 3-mode, 2-par SN model is built on the assumption that each SN in the WSN has

two given probabilities of failure during 𝑇𝑚. The first one is the communication failure

probability, denoted by 𝜆𝑡
𝑖 which is defined as the probability that the wireless

communication capability of SN 𝑖 is lost due to transceiver hardware failure during 𝑇𝑚. The

second probability is the sensing failure probability, denoted by 𝜆𝑠
𝑖 which is the probability

that the sensing capability of SN 𝑖 is lost due to sensor hardware failure during 𝑇𝑚. We will

 Chapter 3

53

assume in this section that the battery and the processor of the SN are not subject to failure

(later in Section 3.5.3 we will relax this assumption).

Accordingly, the events of communication and sensing failures are independent. This

implies that a SN can have three modes of operation, namely on, relay and off. In the on

mode, the SN has functioning sensor and transceiver hardware and hence can both sense and

communicate wirelessly. In the relay mode, the SN has failed sensor hardware while its

transceiver is functioning. In this mode, the SN will not be able to detect any events within its

coverage range. However, it will still be able to communicate with its neighbors, i.e. act as a

relay and hence contribute to the WSN functionality. On the other hand, if the SN transceiver

fails, the SN becomes isolated from the network and hence is considered in the off mode,

irrespective of the status of its sensor hardware.

3.5.2.2. Reliability Metric Derivation

Let the reliability of a WSN deployment 𝑺 be denoted by 𝑅(𝑺). The reliability of the

WSN deployment 𝑺, 𝑅(𝑺), is defined as the probability that the WSN remains functional, in

terms of coverage and connectivity, subject to two types of SN components failures during its

intended mission time, 𝑇𝑚. To obtain a closed formula for 𝑅(𝑺) using the combinatorial

approach to system reliability evaluation outlined in Section 3.4.2, let 𝑿𝑠 denote the subset of

SNs in 𝑺 that have failed sensors and 𝑿𝑡 denote the subset of SNs in 𝑺 that have failed

transceivers. We can express 𝑅(𝑺) as follows:

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙) =
∑ ∑ [𝑃𝑟𝑜𝑏(𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺 𝑺 𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 | 𝑿𝑠, 𝑿𝑡). 𝑃𝑟𝑜𝑏(𝑿𝑠, 𝑿𝑡)]

(3.8)

 Equation (3.8) expresses 𝑅(𝑺) as the probability that 𝑺 is functional, subject to all

possible sensor and transceiver failure combinations of the SNs in 𝑺 during 𝑇𝑚. The

conditional probability of functionality is either equal to 1 or 0, depending on whether the

WSN fulfills the two conditions of functionality stated in Definition 1 under a given sensor

and transceiver failure combination, i.e. network state, represented by 𝑿𝑠 and 𝑿𝑡. Hence, the

term 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 | 𝑿𝑠, 𝑿𝑡) is equivalent to the network structure function which we

will denote by 𝑓(𝑿𝑠, 𝑿𝑡). According to Definition 1, 𝑓(𝑿𝑠, 𝑿𝑡) can be expressed as follows:

𝑓(𝑿𝑠, 𝑿𝑡) = {
1 , 𝑖𝑓 𝒁𝑗 ⊆ 𝒀𝑗 ≠ 𝜙 ∀ 𝑗 = 1,… ,𝑚

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3.9)

To calculate the joint probability 𝑃𝑟𝑜𝑏(𝑿𝑠, 𝑿𝑡), i.e. the probability of a given network

state represented 𝑓(𝑿𝑠, 𝑿𝑡), we can use the assumption that both types of SN failures are

independent of each other. Hence, it can be expressed as follows,

𝑓(𝑿𝑠, 𝑿𝑡) = 𝑃𝑟𝑜𝑏(𝑿𝑠, 𝑿𝑡) =𝑃𝑟𝑜𝑏(𝑿𝑠) ∗ 𝑃𝑟𝑜𝑏(𝑿𝑡). (3.10)

Let 𝑿𝑠
𝑐 be the remainder of the SNs in 𝑺 with functional sensors and 𝑿𝑡

𝑐 be the

remainder of the sensors in 𝑺 with functional transceivers. Hence, (3.8) can be rewritten as

follows,

 Chapter 3

54

𝑅(𝑺) = ∑ ∑ 𝑓(𝑿𝑠, 𝑿𝑡). 𝑃𝑟𝑜𝑏(𝑿𝑠). 𝑃𝑟𝑜𝑏(𝑿𝑡)

 𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺

 (3.11)

=∑ ∑ 𝑓(𝑿𝑠, 𝑿𝑡). 𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺 ∏ (1 − 𝜆𝑠
𝑖
) .∏ 𝜆𝑠

𝑖
𝑖∈𝑿𝑠𝑖∈𝑿𝑠

𝑐 . ∏ (1 −𝑖∈𝑿𝑡
𝑐 𝜆𝑡

𝑖
).∏ 𝜆𝑡

𝑖
𝑖∈𝑿𝑡

Examining (3.11) suggests that in the computation of the proposed reliability metric for

most WSN deployments, there will be probability terms of very limited effect on the

numerical value of reliability. If these terms are identified and discarded, then it is possible to

calculate a lower bound of reliability that can serve as a good approximation of the exact

reliability 𝑅(𝑺), with a smaller number of network structure function evaluations and hence

lower computation time. The degree of approximation can be controlled by varying the

number of discarded probability terms.

Let the set 𝑭 = {𝐹1, 𝐹2, … , 𝐹|𝑭| } contain all the SN failure combinations that can be

tolerated by the WSN, where|𝑭| denotes the number of these combinations. Let the term

𝑃𝑟𝑜𝑏(𝐹𝑞) for 𝑞 = 1, . . , |𝑭| denote the probability of occurrence of the SN failure

combination 𝑞 in 𝑭. We can express 𝑃𝑟𝑜𝑏(𝐹𝑞) by the following equation,

𝑃𝑟𝑜𝑏(𝐹𝑞) = ∏ (1 − 𝜆𝑠
𝑖
) . ∏ 𝜆𝑠

𝑖

𝑖∈𝑿𝑠𝑞
𝑖∈𝑿𝑠𝑞

𝑐
.∏ (1 −

𝑖∈𝑿𝑡𝑞
𝑐

𝜆𝑡
𝑖
). ∏ 𝜆𝑡

𝑖
,

𝑖∈𝑿𝑡𝑞

 (3.12)

where 𝑿𝑠𝑞, 𝑿𝑠𝑞
𝑐, 𝑿𝑡𝑞 and 𝑿𝑡𝑞

𝑐 , are the functional and dysfunctional SN sets which correspond

to the SN failure combination 𝐹𝑘. Using (3.12), we can re-write the reliability metric

expressed in (3.11) as follows,

𝑅(𝑺) = ∑ 𝑃𝑟𝑜𝑏(𝐹𝑞)
|𝑭|

𝑞=1
. (3.13)

Let the lower bound for 𝑅(𝑺) we wish to compute be denoted by 𝑅𝑙𝑏(𝑺). Therefore, the

expression for 𝑅𝑙𝑏(𝑺) will include only a subset of the set of all the probability terms

corresponding to the failure combinations in 𝑭. If we assume that the combinations in 𝑭

follow a descending order in terms of their probability of occurrence, then a cut-off value

must be set to determine which probability terms are to be eliminated in the computation of

 𝑅𝑙𝑏(𝑺). This cut-off value will represent the smallest numerical value of a probability term

that would be included in 𝑅𝑙𝑏(𝑺) . We will call that cut-off value the lower bound probability

threshold, denoted by 𝜂𝑙𝑏. Hence, we can express 𝑅𝑙𝑏(𝑺) using the following equation:

 𝑅𝑙𝑏(𝑺) = ∑ 𝑃𝑟𝑜𝑏(𝐹𝑞),
|𝑭|𝑙𝑏

𝑞=1
 (3.14)

where |𝑭|𝑙𝑏 ≤ |𝑭| is the number of probability terms include in 𝑅𝑙𝑏(𝑺) such

that 𝑃𝑟𝑜𝑏(𝐹|𝑭|𝑙𝑏) ≥ 𝜂𝑙𝑏.

3.5.2.3. Reliability Metric Calculation

From the derived expression for the proposed reliability metric in (3.11), it is clear that

computing 𝑅(𝑺) involves evaluating the WSN structure function for all possible

combinations of SN failures, i.e. for all possible network states. This can pose a

computational challenge since WSN deployments designed for real-world applications are

often composed of tens or even hundreds of SNs, resulting in a huge number of possible

 Chapter 3

55

failure combinations, i.e. network states. To solve this computational problem, we make use

of the following two properties of the WSN, 𝑺, according to the adopted WSN model:

 Only tolerable SN failure combinations contribute to the value of 𝑅(𝑺) as expressed in

(3.13). This means that the majority of the network states have null probabilities and

hence they do not contribute to the value of 𝑅(𝑺).

 The WSN 𝑺 has the property of being a monotone system [115]. This property implies

the following. If the failure of a group of SNs’ components causes 𝑺 to fail, then the

failure of any set which contains this group will also cause 𝑺 to fail. For example, if we

assume that the SNs 𝑠1 and 𝑠2 in the WSN depicted in Fig. 3.2 are both in the off mode

while the remaining SNs are in the on mode, then it can readily be observed that this

would cause 𝑺 to fail since any phenomenon at target point 𝑡1 cannot be detected or

communicated to the sink node. This means that network states corresponding to this

situation have a structure function of zero value. Using the monotone property, we can

say that the network states that include the SNs 𝑠1 and 𝑠2 being in the off mode and 𝑠4

being in the relay mode would also have a structure function value of zero without

actually evaluating the function.

These two facts are used to construct a Breadth-First Search (BFS) algorithm to search

for the tolerable SN failure combinations, i.e. generate the complete paths set and compute

𝑅(𝑺) using (3.13) for any WSN deployment 𝑺. The algorithm can also compute the reliability

lower bound 𝑅𝑙𝑏(𝑺) for any given value of the parameter 𝜂𝑙𝑏.

The structure of the algorithm is outlined in Table 3.1 and can be summarized as follows.

In step 1, all required parameters for the computation of 𝑅(𝑺) are specified. If the exact value

of 𝑅(𝑺) is to be computed, the lower bound probability threshold 𝜂𝑙𝑏 is set to zero. Step 2

sets the 𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 parameter to zero. This parameter will flag the termination of the

algorithm in case the lower bound reliability 𝑅𝑙𝑏(𝑺) is being computed for a value of 𝜂𝑙𝑏

greater than zero. Step 2 also initializes 𝑅(𝑺) with the probability of the no SN failures

network state. We are working under the assumption that the WSN is well designed and

hence is functional under no failures. The sets 𝑭𝑠
𝑘, 𝑭𝑡

𝑘 and 𝑭𝑘 are defined and initialized in

step 3. 𝑭𝑠
𝑘 is the set that holds all the tolerable sensor failure combinations of length 𝑘

assuming no transceiver failures while 𝑭𝑡
𝑘 holds all tolerable transceiver failure combinations

of length 𝑘 assuming no sensor failures. The set 𝑭𝑘 is defined as the set that holds all the

tolerable components failures of length 𝑘. The algorithm then proceeds by evaluating the

failure combinations which can be tolerated by the WSN for an increasing value of , i.e.

proceeds in a breadth-first approach, in steps 4 to 7. For each value of 𝑘, the probabilities of

the events corresponding to the failure combinations in the set 𝑭𝑘 are computed and then re-

ordered in a descending order accordingly. This step is carried out to make sure that all

discarded probability terms in the calculation of 𝑅𝑙𝑏(𝑺) are indeed of a value smaller

than 𝜂𝑙𝑏. If 𝜂𝑙𝑏 is greater than zero, the algorithm will terminate when a probability term less

than 𝜂𝑙𝑏 is calculated corresponding to a failure combination in 𝑭𝑘 at the current value of 𝑘.

If 𝜂𝑙𝑏 is set to zero to calculate the exact value of 𝑅(𝑺) , then the algorithm terminates when

all tolerable failure combinations (𝑿𝑠, 𝑿𝑡) are evaluated and any additional component failure

results in 𝑓(𝑿𝑠, 𝑿𝑡)=0.

 Chapter 3

56

Table 3.1 Pseudo-code for the proposed algorithm for calculating the reliability of a WSN assuming

SNs follow a 3-mode, 2-par model

Step Algorithm for computing reliability 𝑅(𝑺) lower bound reliability 𝑅𝑙𝑏

1.

Set all parameters (𝑺, {𝑡𝑗}, 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖 and 𝜂𝑙𝑏 for 𝑗 = 1,… ,𝑚 and 𝑖 = 1,… , 𝑛)

2. Initialize: set 𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 = 0 and 𝑅(𝑺) = 𝑃𝑟𝑜𝑏([𝑿𝑠 = {𝜙}, 𝑿𝑡={𝜙}])
3.a. Let 𝑘 be the number of failed components. Initialize 𝑘 = 1.

3.b. Let 𝑭𝑠
𝑘 and 𝑭𝑡

𝑘 be the sets of 𝑘 −combinations of failed sensors and transceivers that 𝑺

can tolerate respectively. Initialize 𝑭𝑠
𝑘 = {𝜙} and 𝑭𝑡

𝑘 = {𝜙}.
3.c. Let 𝑭𝑘 be the set of all 𝑘 −combinations of failed components that 𝑺 can tolerate.

Initialize 𝑭𝑘 = {𝜙}.
4.a. For 𝑖 = 1,… , 𝑛

 - Let 𝑿𝑠 = {𝑖} and 𝑿𝑡 = {𝜙}
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑠

𝑘 = 𝑭𝑠
𝑘 ∪ [𝑿𝑠, 𝑿𝑡={𝜙}]

 End For

4.b. For 𝑖 = 1,… , 𝑛

 - Let 𝑋𝑠={𝜙} and 𝑋𝑡 = {𝑖}
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑡

𝑘 = 𝑭𝑡
𝑘 ∪ [𝑿𝑠 = {𝜙}, 𝑿𝑡]

 End For

4.c. 𝑭𝑘 = 𝑭𝑘 ∪ 𝑭𝑠
𝑘 ∪ 𝑭𝑐

𝑘
5.a. Let 𝐹𝑙

𝑘 ∈ 𝑭𝑘, 𝑙 = 1, … , |𝑭𝑘|. Calculate 𝑃𝑟𝑜𝑏(𝐹𝑙
𝑘) ∀𝑙. Rearrange 𝑭𝑘 accordingly in

descending order.

5.b. For 𝑙 = 1,… , |𝑭𝑘|
 - If 𝑃𝑟𝑜𝑏(𝐹𝑙

𝑘) < 𝜂𝑙𝑏 → 𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 = 1 → break For → go to 9

 - Else 𝑅(𝑺) = 𝑅(𝑺) + 𝑃𝑟𝑜𝑏(𝐹𝑙
𝑘)

 End For

6. While (𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 ≠ 0 and 𝑭𝑘 ≠ {𝜙})

 𝑘 = 𝑘 + 1. 𝑭𝑠
𝑘 = {𝜙}, 𝑭𝑡

𝑘 = {𝜙} and 𝑭𝑘 = {𝜙}.
7.a. Let 𝐹𝑠𝑙

𝑘−1 ∈ 𝑭𝑠
𝑘−1, 𝑙 = 1,… , |𝑭𝑠

𝑘−1|
7.b For 𝑙 = 1,… , |𝑭𝑠

𝑘−1|
 For 𝑖 = 1,… , |𝑭𝑠

1|
 - Let 𝑿𝑠 = { 𝑭𝑠𝑙

𝑘−1, 𝑖 } and 𝑿𝑡 = {𝜙}
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑠

𝑘 = 𝑭𝑠
𝑘 ∪ [𝑿𝑠, 𝑿𝑡 = {𝜙}]

 End For

 End For

7.c. Let 𝐹𝑡𝑙
𝑘−1 ∈ 𝑭𝑡

𝑘−1, 𝑘 = 1,… , |𝑭𝑡
𝑘−1|

7.d. For 𝑙 = 1,… , |𝑭𝑡
𝑘−1|

 For 𝑖 = 1, … , |𝑭𝑡
1|

 - Let 𝑿𝑡 = { 𝐹𝑡𝑙
𝑘−1, 𝑖 } and 𝑿𝑠= {𝜙} and

 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑡
𝑘 = 𝑭𝑡

𝑘 ∪ [𝑿𝑠 = {𝜙}, 𝑿𝑡]
 End For

 End For

7.e. 𝑭𝑘 = 𝑭𝑘 ∪ 𝑭𝑠
𝑘 ∪ 𝑭𝑡

𝑘

7.f. For 𝑙 = 1,… , (𝑚 − 1)

 For 𝑙𝑠 = 1,… , |𝑭𝑠
𝑘−𝑙|

 For 𝑙𝑡 = 1,… , |𝑭𝑐
𝑙 |

 - Let 𝑿𝑠 = {𝐹𝒔
𝑘−𝑙} , 𝑿𝑡 = {𝐹𝑡

𝑙}
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑘 = 𝑭𝑘 ∪ [𝑿𝑠, 𝑿𝑡]
 End For

 End For

 End For

8. Repeat step 5.

9. Print 𝑅(𝑺)

 Chapter 3

57

3.5.3. Reliability Metric Formulation for the 3-mode, 4-par SN Model

In this section, we re-drive the proposed WSN reliability metric of Section 3.5.2 under

the assumption that the constituent SNs follow the 3-mode, 4-par model.

3.5.3.1. 3-mode, 4-par SN Model

This model assumes that SNs which are characterized by four different probabilities of

failure during 𝑇𝑚, namely, the sensor, transceiver, processor and battery failures. These

failure probabilities can be estimated through a standard reliability prediction test provided by

the SN vendor or through reliability testing techniques [97].

Since each of the four components can either function or fail, i.e. be in an on or off state,

an SN can theoretically have 24 possible states. To describe these states, let the binary

variables 𝑥𝑠, 𝑥𝑡 , 𝑥𝑝 and 𝑥𝑏 be the state indicators of the sensor, transceiver, processor and

battery, respectively, of an SN, as defined in (3.2) in Section 3.4.2. Hence, an SN state 𝑥 is

described using a tuple of these four variables {𝑥𝑠, 𝑥𝑡 , 𝑥𝑝, 𝑥𝑏}. These variables are not

statistically independent; the sensor and transceiver cannot possibly function if either the

processor or the battery fails. Therefore, some of the SN states are practically impossible and

hence their probability of occurrence is zero.

To calculate the probability of occurrence of the other possible states, let 𝜆𝑠, 𝜆𝑡, 𝜆𝑝 and

𝜆𝑏 be the probabilities of failure of the sensor, transceiver, processor and battery,

respectively. It should be noted that only unrecoverable hardware failures of these four SN

components are considered here, i.e. temporary failures/malfunctions are not considered. It

should also be noted that the estimated probability of failure for any given device or hardware

component is obtained regardless of the failure of any other device or component. Hence, 𝜆𝑠

and 𝜆𝑡 are actually the probability of failure of the sensor and transceiver conditioned on the

event that the component is properly controlled (i.e. processor is functional) and powered (i.e.

battery is functional). Similarly, 𝜆𝑝 is the probability of failure of the processor conditioned

on the event that the battery is functional, where as 𝜆𝑏 is the unconditional probability that

the SN power unit or battery fails during 𝑇𝑚. According to the above definitions, the

probability of an SN state can be given by the following equations:

𝑃𝑟𝑜𝑏(𝑥) = 𝑃𝑟𝑜𝑏(𝑥𝑠, 𝑥𝑡 , 𝑥𝑝,𝑥𝑏)= 𝑃𝑟𝑜𝑏(𝑥𝑠, 𝑥𝑡|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑝,𝑥𝑏) =

𝑃𝑟𝑜𝑏(𝑥𝑠|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑡|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑝|𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑏)
(3.15)

Equation (3.15) makes use of the fact that the states of the sensor and the transceiver are

independent when conditioned on the states of the processor and battery. Fig. 3.3 illustrates

the SN’s states which have a non-zero probability. It is straightforward to verify that the sum

of the probabilities of these states is equal to unity. There are two SN states at which the SN

is of use to the WSN. The first state is described by the tuple {1,1,1,1}, at which all four

components are functional and the SN can both sense its surroundings and communicate

wirelessly. This state corresponds to the on mode of operation in which the SN is fully

functional. The second state is described by the tuple {0,1,1,1} at which only the sensor(s)

failed and the SN can only communicate wirelessly, i.e. acts as a relay node. This state

corresponds to the relay mode of operation in which the SN is partially functional. In all the

practically possible remaining states the SN does not serve the network and hence a SN in

these states is considered to be in the off mode of operation.

 Chapter 3

58

3.5.3.2. Reliability Metric Derivation

The reliability of the WSN deployment 𝑺, denoted by 𝑅(𝑺), is defined as the probability

that the WSN remains functional, in terms of coverage and connectivity, subject to four types

of SN components failures during its intended mission time, 𝑇𝑚. We follow the

combinatorial approach outlined in Section 3.4.2 to derive 𝑅(𝑺).

Fig. 3.3 SN states: the paths from the top node to a bottom node correspond to the SN states with

non-zero probability. The probability of a path, i.e. the probability of a state, is the product of the

probabilities in the associated transitions. The SN relay state and the on state are both marked by a

dark shade of grey.

To define the states of 𝑺, let 𝑿𝑠, 𝑿𝑡 , 𝑿𝑝 and 𝑿𝑏 be the subsets of SNs in 𝑺 that have

failed sensors, transceivers, processors and batteries, respectively. Hence, a state of the WSN

𝑺 is described by the tuple 𝝅 ≡ { 𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏}, where 𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏 ⊆ 𝑺. Therefore, each

state 𝝅 is associated with a unique combination of SN components’ failures. To calculate the

probability of occurrence of a given state, 𝝅, the corresponding state 𝑥𝑖(𝝅) of each

individual SN 𝑠𝑖 ∈ 𝑺 must be identified. Assuming the components belonging to different

SNs fail independently, 𝑃𝑟𝑜𝑏(𝝅) can be expressed by:

𝑃𝑟𝑜𝑏(𝝅) = 𝑃𝑟𝑜𝑏(𝑿𝑠, 𝑿𝑡 , 𝑿𝑝, 𝑿𝑏) = ∏ 𝑃𝑟𝑜𝑏(𝑥𝑖

𝑁

𝑖=1
(𝝅)) (3.16)

Table 3.2 lists the different values of the probability of an individual SN state 𝑥𝑖(𝝅) for

a given network state 𝝅 based on the SN states illustrated in Fig. 3.3. Let 𝚷 be the set of all

possible states of 𝑺. Based on the definition provided in Section 3.5.1, the structure function

of 𝑺 can be expressed as follows:

 Chapter 3

59

𝑓(𝝅) = {
1 , 𝑖𝑓 𝒁𝑗 ⊆ 𝒀𝑗 ≠ 𝜙 ∀ 𝑗 = 1,… ,𝑚

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.17)

Similar to (3.4), we can now express the reliability of the WSN 𝑺 as follows:

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑖𝑛𝑔 𝑇𝑚) = ∑[𝑓(𝝅). 𝑃𝑟𝑜𝑏(𝝅)]

𝝅𝝐𝚷

 (3.18)
= ∑ ∑ ∑ ∑ [𝑓(𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏).∏ 𝑃𝑟𝑜𝑏(𝑥𝑖

𝑁

𝑖=1
(𝝅))]

 𝑿𝑏⊆𝑺 𝑿𝑝⊆𝑺 𝑿𝒕⊆𝑺 𝑿𝒔⊆𝑺

Table 3.2 Evaluation of the probability of the corresponding individual SN states for a given WSN

state = {𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏}, where “true” and “false” are denoted by 1 and 0 respectively and 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑝
𝑖 ,

𝜆𝑏
𝑖 are the probabilities of failure of the four main components

𝑠𝑖 ∈ 𝑿𝑠 𝑠𝑖 ∈ 𝑿𝑡
𝑠𝑖

∈ 𝑿𝑝
𝑠𝑖 ∈ 𝑿𝑏 𝑃𝑟𝑜𝑏(𝑥𝑖(𝝅))

0 0 0 0 (1-𝜆𝑠
𝑖)(1-𝜆𝑡

𝑖)(1-𝜆𝑝
𝑖)(1-𝜆𝑏

𝑖)

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 (1-𝜆𝑠
𝑖)𝜆𝑡

𝑖 (1-𝜆𝑝
𝑖)(1-𝜆𝑏

𝑖)

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 𝜆𝑠
𝑖 (1-𝜆𝑡

𝑖)(1-𝜆𝑝
𝑖)(1-𝜆𝑏

𝑖)

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 𝜆𝑠
𝑖 𝜆𝑡

𝑖 (1-𝜆𝑝
𝑖)(1-𝜆𝑏

𝑖)

1 1 0 1 0

1 1 1 0 𝜆𝑝
𝑖 (1-𝜆𝑏

𝑖)

1 1 1 1 𝜆𝑏
𝑖

3.5.3.3. Reliability Metric Calculation

Similar to the reliability metric expressed in (3.11), evaluating 𝑅(𝑺) using the expression

in (3.18) involves evaluating the structure function of the network, 𝑓(𝝅), for all possible

states of 𝑺 , i.e. for all 𝝅𝜖𝚷. To calculate 𝑅(𝑺) using 3.18 in a time efficient manner, we

propose a BFS algorithm that generates the complete paths set of 𝑺, denoted by 𝚷1. The

algorithm is founded on the same two properties discussed in Section 3.5.2.3. The general

structure of the proposed search algorithm is illustrated in Fig. 3.4. The pseudo-code of the

algorithm, which provides execution details, is given in Table 3.3.

 Chapter 3

60

The structure of the algorithm can be summarized in the following steps. In step 1, all the

required parameters for the calculation of 𝑅(𝑺) are specified as inputs. This includes the two

dimensional RoI layout, the positions of the target locations within the RoI provided by the

set of target points 𝑻 = {𝑡𝑗}, the positions of the deployed SNs provided by 𝑺 = {𝑠𝑖}, the

types of the deployed SNs including their coverage profiles and wireless communication

ranges and the probabilities of failure of the SN components associated with each SN type.

We assume here that the sink node can be at any fixed arbitrary position in the targeted RoI.

Fig. 3.4 The structure of the proposed algorithm for evaluating the WSN reliability 𝑅(𝑺).

We initialize the value of 𝑅(𝑺) with the probability of the network state 𝝅 which

corresponds to all the deployed SNs being in the on mode. Since this network state is an

obvious path of 𝑺 , we also initialize the network path set 𝚷1 with this state as expressed in

1.c. in Table 3.3.

In step 2, the algorithm searches for all the combinations of SNs that can be in the relay

mode without compromising the functionality of 𝑺 , assuming the remainder of the deployed

SNs are in the on mode. These SN combinations are referred to as the “tolerable

combinations of SNs in the relay mode”. This means that for the network states

corresponding to these SN combinations, the structure function expressed in (3.17) is equal to

unity. To perform this search, we define 𝑭𝑟
𝑘 as the set that holds the tolerable combinations

of SNs in relay mode of length 𝑘 starting with 𝑘 = 1 as expressed in 2.a - 2.c. in Table 3.3.

For example, consider the WSN depicted in Figure 3.2. The set of single tolerable SNs in the

 Chapter 3

61

Table 3.3 Pseudo-code for the proposed algorithm for calculating the reliability of a WSN assuming

SNs follow a 3-mode, 4-par model

Step Algorithm for computing WSN reliability 𝑅(𝑺)

1.a. Set all parameters (𝑺 = {𝑠𝑖}, 𝑻 = {𝑡𝑗}, types of SNs, sink location, 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑝
𝑖 and 𝜆𝑏

𝑖 for 𝑖 = 1,… , 𝑛

and 𝑗 = 1,… ,𝑚)

1.b. Initialize 𝑅 =𝑃𝑟𝑜𝑏(𝝅 |𝑠𝑖 ∈ 𝑺 is in on mode ∀ 𝑖 = 1,… , 𝑛)

1.c. Initialize 𝚷1 = {(𝝅 |𝑠𝑖 ∈ 𝑺 is in on mode ∀ 𝑖 = 1,… , 𝑛)}

2.a. Let 𝑘 be the number of SNs in relay mode. Initialize 𝑘 = 1.

2.b. Let ℱ𝑟
𝑘 be a 𝑘 −combination of SNs in relay mode. Let 𝑭𝑟

𝑘 be the set of 𝑘 −combinations of SNs in

relay mode that 𝑺 can tolerate. Initialize ℱ𝑟
𝑘 = 𝑭𝑟

𝑘 = {𝜙}.
2.c. For 𝑖 = 1,… , 𝑛

 - Let 𝑠𝑖 be in relay mode, i.e. ℱ𝑟
𝑘 = {𝑠𝑖}

 - Evaluate 𝑓(𝝅| ℱ𝑟
𝑘) using (3.17)

- If 𝑓(𝝅| ℱ𝑟
𝑘) = 1 → 𝑭𝑟

𝑘 = 𝑭𝑟
𝑘 ∪ ℱ𝑟

𝑘

 End For loop

2.d. While 𝑭𝑟
𝑘 ≠ {𝜙} → 𝑘 = 𝑘 + 1, Let 𝑭𝑟𝑙

𝑘−1 ∈ 𝑭𝑟
𝑘−1,

 ℱ𝑟
𝑘 = 𝑭𝑟

𝑘 = {𝜙}
2.e. For 𝑙 = 1,… , | 𝑭𝑟

𝑘−1| and 𝑖 = 1,… , | 𝑭𝑟
1|

 - Let ℱ𝑟
𝑘 = { 𝑭𝑟𝑙

𝑘−1, 𝑠𝑖 }

- Evaluate 𝑓(𝝅| ℱ𝑟
𝑘) using (3.17)

 - If 𝑓(𝝅| ℱ𝑟
𝑘) = 1 → 𝑭𝑟

𝑘 = 𝑭𝑟
𝑘 ∪ ℱ𝑟

𝑘

2.f. End For loops, End While loop

3.a. Let 𝑘 be the number of SNs in off mode. Initialize 𝑘 = 1.

3.b. Let ℱ𝑜
𝑘 be a 𝑘 −combination of SNs in off mode. Let 𝑭𝑜

𝑘 be the set of 𝑘 −combinations of SNs in

off mode that 𝑺 can tolerate. Initialize ℱ𝑜
𝑘 = 𝑭𝑜

𝑘 = {𝜙}.
3.c. Repeat step 2.c. for off mode, i.e. ℱ𝑜

𝑘 = {𝑠𝑖}
3.d. While 𝑭𝑜

𝑘 ≠ {𝜙} → 𝑘 = 𝑘 + 1, Let 𝐹𝑜𝑙
𝑘−1 ∈ 𝑭𝑜

𝑘−1,
 ℱ𝑜

𝑘 = 𝑭𝑜
𝑘 = {𝜙}

3.e. Repeat 2.e. using 𝑭𝑜𝑙
𝑘−1 and ℱ𝑜

𝑘 to get 𝑭𝑜
𝑘 , 𝑖 = 1,… , | 𝑭𝑜

1 |
3.f. End For loops, End While loop

4.a. Let ℱ𝑟 and ℱ𝑜 be a combination of SNs in relay and off modes respectively.

Let 𝑭𝑟 and 𝑭𝑜 be the sets of all combinations of SNs of in relay and off mode that that 𝑺 can

tolerate respectively.

Let 𝐹𝑟𝑙𝑟 ∈ 𝑭𝑟 and 𝐹𝑜𝑙𝑜 ∈ 𝑭𝑜

4.b. For 𝑙𝑟 = 1,… , |𝑭𝑟| and 𝑙𝑜 = 1,… , |𝑭𝑜|
 - Let ℱ𝑟 = 𝑭𝑟𝑙𝑟 and ℱ𝑜 = 𝑭𝑜𝑙𝑜

- Evaluate 𝑓(𝝅| ℱ𝑟 , ℱ𝑜) using (3.17)

 - If 𝑓(𝝅| ℱ𝑟 , ℱ𝑜) = 1 → Π1 = Π1 ∪ 𝝅

 End For loops

5.a. Let 𝝅𝑙 ∈ 𝚷1

5.b. For 𝑙 = 1, … , |𝚷1|
 - 𝑅(𝑺) = 𝑅(𝑺) + 𝑃𝑟𝑜𝑏(𝝅𝑙)

 End For loop

6. Output: 𝑅(𝑺)

relay mode will be given by 𝑭𝑟
1 = { {𝑠1}, {𝑠2}, {𝑠3}, {𝑠4}, {𝑠5} }. The algorithm then proceeds

with the search for an increasing value of 𝑘 as expressed in 2.d - 2.f. in Table 3.3. For

example, the combination {𝑠1, 𝑠3} belongs to 𝑭𝑟
2 while {𝑠1, 𝑠2} does not. This search

continues until the algorithm reaches a value of 𝑘 which results in an empty 𝑭𝑟
𝑘, i.e. 𝑭𝑟

𝑘 =
{∅}. The set of all tolerable combinations of different lengths of SNs in relay mode is

denoted 𝑭𝑟.

In step 3, the algorithm searches for all the combinations of SNs that can be in the off

mode without compromising the functionality of 𝑺 , assuming the remainder of the SNs is in

the on mode, i.e. tolerable combinations of SNs in the off mode. The search follows the same

 Chapter 3

62

procedure in step 2. Note that if the network cannnot tolerate a SN being in the relay mode, it

follows that it can not tolerate it in the off mode. This observation reduces the number of

structre function evaluation in step 3. We define 𝑭𝑜
𝑘 as the set that holds the tolerable

combinations of SNs in the off mode of length 𝑘. Using the same example WSN in Fig.

3, 𝑭𝑜
1 = { {𝑠2}, {𝑠3}, {𝑠4}, {𝑠5} }. The combination {𝑠4, 𝑠5} belongs to 𝑭𝑜

2 while {𝑠2, 𝑠5} does

not. The set of all tolerable combinations of different lengths of SNs in the off mode is

denoted 𝑭𝑜.

In step 4, the algorithm uses the sets 𝑭𝑟 and 𝑭𝑜 to discover all the pairs of combinations

of SNs that can be in the relay and off modes simultaneously without compromising the

functionality of 𝑺, assuming the remainder of the SNs is in the on mode. For example, the

combination {𝑠1, 𝑠3} can be in the relay mode while {𝑠5} can be in the off mode

simultaneously without causing the WSN depicted in Fig. 3.2 to fail. Each of the discovered

pairs of combinations corresponds to one or more distinct network path and hence the

complete paths set 𝚷1 is updated accordingly as expressed in 4.b in Table 3.3. In step 5, the

probabilities of the network paths in 𝚷1 are calculated using (3.16) and Table 3.2. Finally, the

reliability of the given WSN 𝑅(𝑺) is calculated using (3.18) and given as an output in step 6.

3.6. Case Study

In this section, we apply the proposed reliability metric in both its versions, as expressed

in (3.11) and (3.18), to evaluate the reliability of a surveillance WSN deployments designed

to cover part of an international airport terminal. We compare between each version of the

proposed reliability metric and the existing reliability metric proposed in [107] to highlight

the significance of using the 3-mode SN model on the accuracy of reliability evaluation. We

also evaluate the computational efficiency of the developed BFS algorithm used to calculate

the proposed reliability metric. Finally, we compare between both versions of the proposed

reliability metric in terms of the accuracy of reliability evaluation.

3.6.1. Experimental Set-up

Consider the layout of an international airport terminal shown in Fig. 3.5 in which

surveillance WSN is to be designed to cover part of it. Target points, marked on the Fig. 3.5

in red, represent the vital locations that need to be placed under image/video surveillance

such as arrival checkpoints, entrances and staircases. The sink node to which all SNs in the

WSN should be connected is marked in black.

To obtain test deployments of the WSN for different number of target points, we use the

𝑖VLGA proposed in [75] and discussed in Section 2.4.1 in Chapter 2. This optimization

algorithm is designed to obtain cost-optimized deployments for heterogeneous WSNs that

provide coverage for all designated target points in the RoI, i.e. providing full-coverage of the

set 𝑻 = {𝑡𝑗} for 𝑗 = 1,… ,𝑚. However, since a well-designed surveillance WSN should be

functional in terms of coverage and connectivity, we modified the 𝑖VLGA in [75] to add

network connectivity to the design objectives. To achieve this we modify the fitness function

of the algorithm expressed in (2.27), which is used to evaluate the fitness of the candidate

deployments or chromosomes in [75], as follows:

𝑓(𝑐(𝑙)) = −(∑𝑝𝑖

𝑙

𝑖=1

+ 𝑤1 ∗ (𝑚 − 𝑐𝑜𝑣) + 𝑤2 ∗ 𝑐𝑜𝑛_𝑡𝑒𝑠𝑡) (3.19)

 Chapter 3

63

Fig. 3.5 Schematic of an international airport terminal with the marked positions of the target points,

possible deployment points and sink node of layout 5 in Table 3.5.

where ∑ 𝑝𝑖
𝑙
𝑖=1 is the total cost of the deployment 𝑐(𝑙), 𝑐𝑜𝑣 is the number of target points

that are covered by 𝑐(𝑙), 𝑐𝑜𝑛_𝑡𝑒𝑠𝑡 is a binary variable that is equal to unity when 𝑐(𝑙) is a

disconnected deployment (i.e. has isolated SNs from the sink node) and zero otherwise, 𝑤1 is

the penalty imposed on the fitness for failing to cover a single target point and 𝑤2 is a penalty

for violating the connectivity constraint. For further details on the VLGA and the settings of

its parameters, we refer the reader to the study in [75].

To demonstrate the ability of the proposed metric to evaluate the reliability of

heterogeneous deployments, we assume that there are two types of image/video SNs

available for the deployment of the WSN with different operational parameters.

3.6.2. Results and Discussion for the 3-mode, 2-Par SN model

In this section we compare the proposed reliability metric using the 3-mod, 2-par SN

model as expressed in (3.11) to the existing reliability metric in [107] which uses the

conventional 2-mode SN model. The operational parameters of the two types of SNs used in

this experiment are listed in Table 3.4. Although the exact reliability figures for commercial

SNs such as Tmote2 and Iris nodes are not publicly available, we estimated the given

probabilities of failure using the reliability figures available for Texas Instrument CC2420

IEEE 802.15.4 transceiver [116] as a reference point, assuming a WSN mission time of five

years. We also used the fact that sensor hardware is the SN component most prone to failure

[8]. Using the modified 𝑖VLGA, we obtain five WSN deployments for five sets of target

points of different sizes. Table 3.5 lists the data of the five deployments, including the

number of target points 𝑚, the number of deployed SNs of type 1 and type 2, denoted by 𝑛1,
and 𝑛2, respectively, and the total number of deployed SNs in the given deployment denoted

by 𝑛.

For each deployment in Table 3.5, the reliability is assessed using three different

methods. The first and second methods apply the proposed reliability metric 𝑅(𝑺) expressed

in (3.11) and its lower bound 𝑅𝑙𝑏(𝑺) expressed in (3.14) for 𝜂𝑙𝑏 = 10-3 respectively. The

third method assesses the reliability using the reliability metric proposed in [107]. For a fair

comparison, we use the same WSN functionality definition (in terms of both network

coverage and connectivity) expressed in (3.9) for all the three methods. Since the metric

 Chapter 3

64

in [107] adopts the conventional two-mode SN model in which a given SN is either in a fully

functional or failed state, SNs cannot contribute to the WSN functionality as relays. In this

case, the corresponding probability of failure of a given SN is equal to 1 − (1 − 𝜆𝑠
𝑖)(1 − 𝜆𝑡

𝑖).

Fig. 3.6 shows the performance of the three reliability assessment methods in the

computed reliability value for the five deployments in Table 3.5. Fig. 3.7 shows the number

of tolerable SN failure combinations contributing to the value of reliability (i.e. |𝑭|) obtained

from the three methods. As can be observed from Fig. 3.6, the reliability values computed

using the metric in [107] are significantly lower than those computed using the proposed

metric and its lower bound for all the deployments of Table 3.5, with the difference reaching

around 5% for the fifth deployment. This behavior can be attributed to the fact that the

conventional 2-mode SN model adopted in [107] does not take into account the ability of an

SN with a failed sensor to contribute to the functionality of the WSN as a relay.

Consequently, the reliability of a given deployment is underestimated. The difference

between both metrics in the computed reliability value is directly proportional to the number

of SNs with redundant coverage, i.e. number of SNs that can be in the relay mode without

compromising the functionality of the network. Fig. 3.6 and Fig. 3.7 show that the reliability

values computed using the three reliability assessment methods decrease steadily with the

increase in the size of the WSN, i.e. the increase in the number of deployed SNs 𝑛, while the

value of |𝑭| increases. This behavior can be explained as follows. For the deployments in

Table 3.5, as 𝑛 increases, the number of redundant SNs (both complete redundancy and

coverage redundancy) increases as well. This is because it is more likely for a larger WSN to

be able to tolerate the failure of a few SNs than a smaller one, especially in terms of

coverage, given that both deployments are cost-optimized (i.e. characterized by a low level of

SN redundancy). The value of |𝑭|, in turn, increases with the level of SN redundancy,

especially for the proposed metric 𝑅(𝑺) which reflects the SN coverage redundancy.

However, the rate of increase in the number of redundant SNs is less than the rate of increase

of 𝑛 itself. This means that the relative SN redundancy level decreases with the increase

in 𝑛 and hence the reliability decreases.

Fig. 3.6 also shows that 𝑅(𝑺) and 𝑅𝑙𝑏(𝑺) are very close in value. The difference

between them increases slightly with the increase of 𝑛, but does not exceed 2% for the fifth

deployment. This is because the contribution of the omitted probability terms from the

expression of 𝑅𝑙𝑏(𝑺) to the exact value of 𝑅(𝑺) is very small in value compared to the

included terms. From Fig. 3.7 we can observe that as 𝑛 increases, the value |𝑭| increases as

well as the number of tolerable SN failure combinations with probabilities less than 𝜂𝑙𝑏.

Table 3.4 Parameters of the SN types used in the deployments listed in Table 3.5

 FoV 𝑟𝑠 𝑟𝑐 𝜆𝑆 𝜆𝑡 Price($)

Type 1 90° 20 m 40 m 1.0× 10−2 5.0 × 10−3 150

Type 2 60° 30 m 40 m 2.0 × 10−2 1.5× 10−2 100

Table 3.5 Data of the obtained deployments for the case-study surveillance WSN

 𝑚 𝑛1 𝑛2 𝑛 𝐶 $

Deployment 1 15 0 11 11 1100

Deployment 2 20 5 13 18 2050

Deployment 3 25 6 17 23 2600

Deployment 4 30 11 17 28 3350

Deployment 5 35 12 22 34 4000

 Chapter 3

65

Therefore, the difference between the number of terms which goes into the calculation of

𝑅(𝑺) and 𝑅𝑙𝑏(𝑺) increases as well. Hence, the difference between the values of 𝑅(𝑺) and

 𝑅𝑙𝑏(𝑺) for a given WSN deployment is inversely proportional to the threshold 𝜂𝑙𝑏 and is

directly proportional to the level SN redundancy in that deployment. This means that for cost-

optimized WSN deployments characterized by low SN redundancy level, the lower bound

can serve as a good approximation for the exact reliability. On the other hand, if the level of

redundancy is high, the neglected terms increase in number and causes the difference

between 𝑅(𝑺) and 𝑅𝑙𝑏(𝑺) to become higher.

Fig. 3.8 shows a comparison between the computation time incurred by the three

reliability assessment methods for the five deployments in Table 3.5. It can be readily

observed that the computation time incurred by 𝑅(𝑺) is notably higher than that incurred by

Fig. 3.6 Comparison among the existing reliability metric in [107], the proposed metric 𝑅(𝑺) and its

lower bound 𝑅𝑙𝑏(𝑺).

Fig. 3.7 Comparison in terms of the number of SN failure combinations contributing to the value of

reliability among the existing reliability metric in [107], the proposed metric 𝑅(𝑺) and its lower

bound 𝑅𝑙𝑏(𝑺).

1 2 3 4 5
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

WSN deployment #

 R
el

ia
b

il
it

y

proposed metric; lower bound.

proposed metric; exact.

existing metric; exact.

1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

10
5

WSN deployment #

N
u

m
b
er

 o
f

to
le

ra
b

le
 S

N
 f

ai
lu

re
 c

o
m

b
in

at
io

n
s

proposed metric; lower bound

proposed metric; exact

existing metric; exact

 Chapter 3

66

Fig. 3.8 Comparison in terms of computation time incurred by the existing reliability metric in [107],

the proposed metric 𝑅(𝑺) and its lower bound 𝑅𝑙𝑏(𝑺).

the metric proposed in [107], with the difference between them increasing with the increase

in the deployment size 𝑛. This can be attributed to the use of the 3-mode SN model in the

proposed metric, which raises the number of the network components subject to failure

to 𝑛2 instead of 𝑛 in case of the 2-mode SN model used in [107]. This significantly increases

the value of |𝑭| (and consequently the number of structure function evaluations), which

causes the gap in the computation time. However, it can be observed from Fig. 3.7 and Fig.

3.8 that 𝑅𝑙𝑏(𝑺) offers a very good approximation for 𝑅(𝑺) at a fraction of the computation

time incurred in computing 𝑅(𝑺). The computation time of the lower bound is also

comparable to the computation time incurred by the metric in [107] for all five deployments

in Table 3.5. This result can be attributed to the efficiency of the BFS of tolerable SN failure

combinations employed in our proposed algorithm in Table 3.2. This approach enables the

proposed algorithm to find the tolerable SN failure combinations of relatively higher

probability before those of lower probability. Hence, the proposed algorithm finds all the

tolerable SN failure combinations of probability greater than the set value of 𝜂𝑙𝑏 in a

computation time comparable to that of the algorithm in [107].

3.6.3. Results and Discussion for the 3-mode, 4-par SN model

In this section we compare the proposed reliability metric using the 3-mode, 4-par SN

model as expressed in (3.18) to the existing reliability metric in [107]. We also evaluate the

computational efficiency of the reliability metric calculation algorithm outlined in Table 3.3

and examine the sensitivity of the computed reliability for a given deployment to the changes

in the probabilities of failure of its constituent SNs.

The operational parameters of the two types of SNs used in this experiment are listed in

Table 3.6. We assume that both SN types have a coverage range and a communication range

of 30 and 40 meters, respectively. Similar to the parameters settings in Table 3.4, we use the

reliability figures available for Texas Instrument CC2420 IEEE 802.15.4 transceiver [116] as

a reference point, assuming a WSN mission time of five years and the fact that sensor

hardware is the SN component most prone to failure [8]. In addition, we considered that the

1 2 3 4 5
10

0

10
1

10
2

10
3

10
4

WSN deployment #

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

proposed metric; lower bound.

proposed metric; exact.

existing metric; exact.

 Chapter 3

67

premature battery failure rate for the highly durable lithium thionyl chloride batteries recently

used for SNs to be very low [99].

Table 3.6 Parameters of the SNs types used in the deployments listed in Table 3.7

 FoV 𝑟𝑠 𝑟𝑐 𝜆𝑆 𝜆𝑡 𝜆𝑝 𝜆𝑏 Price($)

Type 1 90° 30 m 40 m 1.0× 10−2 5.0 × 10−3 2.0 × 10−3 1.0 × 10−3 150

Type 2 60° 30 m 40 m 1.5 × 10−2 5.5× 10−3 2.5 × 10−3 1.5 × 10−3 100

To evaluate computational efficiency, it is crucial to assess the effect of the deployment

size and complete paths set size |𝚷1| on the computation time of the proposed algorithm

outlined in Table 3.3. Similar to the experiment in Section 3.6.2, we apply the modified

𝑖VLGA to obtain functional cost-optimized deployments. We consider five target points sets

of sizes 𝑚 = 15, 20, 25, 30 and 35. For each deployment scenario, i.e. for each value of 𝑚,

we obtain five deployments of different sizes (i.e. different values of 𝑛), with the deployment

of the smallest size being the most cost-optimal and the deployment with the largest size

being the least cost-optimal. Each deployment fulfills the coverage and connectivity network

functionality conditions in the case of no SN failures. It has a different level of SN

redundancy, where the higher 𝑛, the higher the redundancy level and the larger the complete

paths set 𝚷1 and vice versa. Data of the resulting twenty five deployments, including the size

of the deployment (𝑛), the number of SNs of each type (𝑛1 and 𝑛2) and the total deployment

cost (𝐶) are presented in Table 3.7.

To evaluate the computational efficiency of the proposed algorithm outlined in Table 3.3,

we use the algorithm to evaluate the reliability of the twenty five deployments in Table 3.7.

For each deployment, Table 4 shows the value of the reliability 𝑅(𝑺) , the total number of

possible network states |𝚷|, the size of the deployment complete paths set |𝚷𝟏| , the number

of network structure function evaluations 𝐹𝐸 performed by the algorithm and the value of

the ratio 𝐹𝐸/|𝚷| in percentage points. The latter ratio is used as a measure of the

computational efficiency of the proposed algorithm. This is because the most computationally

expensive sub-routine in the algorithm is the evaluation of the network structure function

expressed in (3.17). For each structure function evaluation, checking the two network

functionality conditions, i.e. checking the network coverage of the set of target points and the

connectivity to the sink, has a computational complexity of 𝑂(𝑛.𝑚) and 𝑂(𝑛3) respectively.

Therefore, the computation time of the algorithm is mainly determined by the number of

structure function evaluations 𝐹𝐸. It should be noted that although the theoretical total

number of network states is equal to 24𝑛, the total number of possible network states is equal

to 3𝑛 since each deployed SN only has three possible states, namely, on, relay and off.

It can be readily observed that the values of 𝑅(𝑺) , |𝚷𝟏| and increase steadily with the

increase of 𝑛 in each deployment scenario. This behavior is expected and is attributed to the

increase in the level of SN redundancy in the deployment as 𝑛 increases in each deployment

scenario. An increase in the level of SN redundancy translates to an exponential increase in

the number of the deployment’s paths |𝚷𝟏|and hence the number of structure function

evaluations 𝐹𝐸 performed by the search algorithm to identify these paths. Naturally, as the

SN redundancy level increases, the reliability 𝑅(𝑺) increases as well.

 Chapter 3

68

Table 3.7 Data of the obtained deployments for the case-study surveillance WSN

Deployment # 𝑛 𝑛1 𝑛2 𝐶 ($) 𝑅(𝑺) |𝚷| |𝚷𝟏| 𝐹𝐸 𝐹𝐸/|𝚷| (%)

Scenario 1

𝑚 = 15

S1-D1 9 0 9 900 0.829 39 4 45 0.229

S1-D2 10 1 9 1050 0.849 310 28 164 0.278

S1-D3 11 2 9 1200 0.870 311 196 723 0.408

S1-D4 12 3 9 1350 0.891 312 1.37× 103 4.16× 103 0.783

S1-D5 13 4 9 1500 0.912 313 9.60× 103 3.01× 104 1.888

Scenario 2

𝑚 = 20

S2-D1 16 3 13 1750 0.731 316 16 256 5.947× 10−4

S2-D2 17 4 13 1900 0.748 317 112 881 6.822× 10−4

S2-D3 18 4 14 2000 0.756 318 560 3.08× 103 7.950× 10−4

S2-D4 19 5 14 2150 0.774 319 3.92× 103 1.46× 104 1.256× 10−3

S2-D5 20 6 14 2300 0.793 320 2.74× 104 9.08× 104 2.604× 10−3

Scenario 3

𝑚 = 25

S3-D1 21 1 20 2150 0.657 321 64 1.24× 103 1.185× 10−5

S3-D2 22 2 20 2300 0.673 322 448 4.16× 103 1.326× 10−5

S3-D3 23 3 20 2450 0.696 323 5.38× 103 1.97× 104 2.093× 10−5

S3-D4 24 4 20 2600 0.703 324 3.23× 104 7.49× 104 2.652× 10−5

S3-D5 25 5 20 2750 0.720 325 2.26× 105 5.37× 105 6.338× 10−5

Scenario 4

𝑚 = 30

S4-D1 25 8 17 2900 0.630 325 128 2.91× 103 3.434× 10−7

S4-D2 26 6 20 2900 0.612 326 192 4.51× 103 1.774× 10−7

S4-D3 27 6 21 3000 0.633 327 2.30× 103 1.61× 104 2.111× 10−7

S4-D4 28 7 21 3150 0.649 328 1.61× 104 6.61× 104 2.889× 10−7

S4-D5 29 8 21 3300 0.665 329 1.13× 105 3.55× 105 5.173× 10−7

Scenario 5

𝑚 = 35

S5-D1 28 4 24 3000 0.553 328 32 876 3.829× 10−9

S5-D2 29 6 23 3200 0.555 329 48 1.34× 103 1.952× 10−9

S5-D3 30 7 23 3350 0.568 330 336 4.36× 103 2.118× 10−9

S5-D4 31 8 23 3500 0.589 331 6.38× 103 3.04× 104 4.922× 10−9

S5-D5 32 9 23 3650 0.597 332 4.47× 104 1.57× 105 8.473× 10−9

On the other hand, the value of the ratio 𝐹𝐸/|𝚷| decreases rapidly with the increase of

the network size across the five tested scenarios. For example, examining the values of the

ratio 𝐹𝐸/|𝚷| for the deployments in scenarios 4 and 5 shows that there is approximately a

two orders of magnitude difference in favor of the deployments in scenario 5. In all the

tested deployments, the value of 𝐹𝐸/|𝚷| does not exceed 2% and for the majority of the

tested deployments is a small fraction of this value. In each scenario, the ratio 𝐹𝐸/|𝚷|
increases with the increase of the SN redundancy level due to the exponential increase of the

number of the deployment’s paths |𝚷𝟏|. However, it can be observed that the ratio |𝚷𝟏|/ 𝐹𝐸

generally increases with the increase of the level of SN redundancy in each of the five tested

scenarios. For example, the value of |𝚷𝟏|/ 𝐹𝐸 is 27% for deployment S3-D3 and 43% for

S3-D4. This means that the computational efficiency of the proposed algorithm becomes

more prominent with the increase of the SN redundancy level due to the efficiency of its

search method for the deployment’s paths.

 Chapter 3

69

It is instructive to examine the two deployments S4-D1 and S4-D2 which are the only

exception in Table 3.7 to the trend of the increase of the reliability level with the increase of

the redundancy level in each tested scenario. Although S4-D2 has more SNs than S4-D1 and

a larger number of paths |𝚷𝟏|, it is approximately 2% less reliable than S4-D1. This can be

attributed to the higher ratio of more reliable SNs of type 1 to the less reliable SNs of type 2

in the S4-D1 compared to S4-D2. It can also be observed that the value of 𝑅(𝑺) decreases

with the increase of the number of target points in the deployment scenarios, i.e. with the

increase of 𝑚. This behavior can be explained as follows. The value of 𝑅(𝑺) depends mainly

on the SN redundancy level (i.e. the value of |𝚷𝟏|) relative to the total number of deployed

SNs 𝑛 (which controls the value of the probability of occurrence of the paths in 𝚷𝟏). Since

the increase in 𝑛 in each deployment scenario is similar, the value of |𝚷𝟏| for the

deployments of the same order in the different scenarios (e.g. S4-D3 and S5-D3) is

comparable. This means that the SN redundancy level relative to 𝑛 actually decreases with

the increase of deployment scenario order, i.e. with the increase of 𝑚, resulting in a steady

decrease in 𝑅(𝑺).
We now compare the computed reliability values for the deployments shown in Table 3.7

using the proposed metric expressed in (3.18) to the reliability metric proposed in [107].

Since the reliability metric proposed in [107] adopts the conventional 2-mode SN model, this

comparison is carried out to demonstrate the significance of modeling the SNs as three-mode

(on, relay and off) devices. For a fair comparison, we use our proposed network structure

function expressed in (3.17) (which defines the WSN functionality in terms of both network

coverage and connectivity as opposed to network coverage only in [107]). Since the two-

mode SN model assumes that a given SN is either in a fully functional (on state) or failed (off

state) state, SNs cannot contribute to the network functionality as relays. Hence, the

corresponding probability of the off state for a given SN 𝑠𝑖 is equal to the probability that any

of the four SN components fail, i.e. is equal to unity minus the probability that all of the four

SN components are functioning simultaneously (i.e. 1 − (1 − 𝜆𝑠
𝑖)(1 − 𝜆𝑡

𝑖)(1 − 𝜆𝑝
𝑖)(1 − 𝜆𝑡

𝑖)).

As can be observed from Fig. 3.9 (a) – (e), the value of 𝑅(𝑺) evaluated using the 2-mode

SN model is significantly smaller than that using the proposed 3-mode model for all the

deployments in Table 3.7, exceeding 6% for some deployments. This behavior is expected

and can be attributed to the fact that the 2-mode SN model is an unrealistic model that does

not take into account the ability of an SN with a failed sensor to contribute to the

functionality of the WSN in practice as a relay. Consequently, the size of the resulting paths

set is drastically reduced which in turn reduces the value of 𝑅(𝑺). It should be explained that

the difference between both models in 𝑅(𝑺) value for a given deployment is primarily

dependent on the number of the tolerable combinations of SNs in the relay mode, i.e. the

number of SNs with redundant coverage. Since this coverage redundancy is not accounted for

in calculating 𝑅(𝑺) using the 2-mode SN model, the difference in 𝑅(𝑺) between the two

models increases with the increase of the level of coverage redundancy. For example, the

deployment S2-D5 has a higher level of coverage redundancy than S5-D5. This is reflected in

their difference in 𝑅(𝑺) value between the two models, which is 5.4% for the former and

3.9% for the latter. The difference in the value of the computed reliability between the two

models, although relatively limited, can adversely affect the deployment cost of a reliable

WSN as will be addressed in Chapter 4, since deployment cost is the objective of the SDP

while reliability is the constraint. In other word, under-evaluating the reliability of a WSN

deployment can potentially lead to an increase in the deployment cost of a reliable cost-

iotimal network.

In order to examine the sensitivity of 𝑅(𝑺) of a given deployment to changes in the

probabilities of failure of its constituent SNs, we arbitrarily choose one of the deployments in

to 0.01 for each of the four SN components, assuming the remaining components have the

 Chapter 3

70

(a)

(b)

(c)

(d)

(e)

Fig. 3.9 Comparison between the reliability of WSN deployments in Table 3.7 evaluated using the

proposed 3-mode and the 2-mode SN model adopted in the existing metric in [107] for the

deployment scenarios 1 through 5 shown in (a) – (e).

default probabilities of failure given in Table 3.6. The results obtained are shown in Fig.

3.10. As expected, the highest value of 𝑅(𝑺) is obtained when the probabilities of failure of

the four SN components are at their minimum value. Fig. 3.10 also shows that 𝑅(𝑺) is less

sensitive to changes in the sensor probability of failure than to changes in the other

threecomponents probabilities of failure. This can be attributed to the adopted three-mode SN

model, for which the SN can contribute to the network functionality in both the on and relay

modes. In the relay mode, the SN sensor is not functional. However, for both modes the SN

battery, processor and transceiver must be functioning. Hence, the reliability of a given

S1-D1 S1-D2 S1-D3 S1-D4 S1-D5

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

WSN Deployment #

R
el

ia
b

il
it

y

 Two-mode SN model

 Three-mode SN model

S2-D1 S2-D2 S2-D3 S2-D4 S2-D5

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

WSN Deployment #

R
el

ia
b

il
it

y

Two-mode SN model

Three-mode SN model

S3-D1 S3-D2 S3-D3 S3-D4 S3-D5

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

WSN Deployment #

R
el

ia
b

il
it

y

Two-mode SN model

Three-mode SN model

S4-D1 S4-D2 S4-D3 S4-D4 S4-D5

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

WSN Deployment #

 R
el

ia
b

il
it

y

Two-mode SN model

Three-mode SN model

S5-D1 S5-D2 S5-D3 S5-D4 S5-D5

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

WSN Deployment #

R
e
li

a
b

il
it

y

Two-mode SN model

Three-mode SN model

 Chapter 3

71

Fig. 3.10 Reliability 𝑅(𝑺) for the deployment S3-D1 in Table 3.7 at different probabilities of failure

of the sensor, transceiver, processor and battery, assuming all deployed SNs are of type 1.

deployment is less affected by the change in the sensor probability of failure compared to

those of the other components.

3.6.4. Comparison between the 3-mode, 2-par and 4-par SN models

In this section, we will compare the proposed reliability metric expressed in (3.11) in

Section 3.5.2, to the metric expressed in (3.18) in Section 3.5.3. To carry out the comparison,

we compute the reliability of the five deployments of scenario 3 in Table 3.7 using both

metrics. For the 3-mode, 4-par SN model, the four failure probabilities for both types of SNs

listed in Table 3.6 are used. For the 3-mode, 2-par SN model, only the sensor and transceiver

failure probabilities for both types of SNs from the same table are used. The comparison is

shown in Fig. 3.11. It can be observed from Fig. 3.11 that the computed reliability values

using the 3-mode, 2-par SN model is higher than the values computed using the 3-mode, 4-

par SN model. This result is expected since the latter model factors in the probabilities of

failure of the battery and processor modules of the SNs and hence SNs have a higher

probability of failure. The effect of using the more accurate 4-par model can be significant in

the computed value of a given deployment reliability even for the relatively very low failure

probabilities for the processor and battery modules shown in Table 3.6. For example, the

relative/percentage difference between the computed reliability values from both models is

approximately 9% for the deployment S3-D1.

It should be noted that the increased accuracy in calculating the reliability 𝑅(𝑺) using the

4-par model does not incur an increase in the computational cost compared to two-parameter

model. This is because in both models, SNs have the same three modes of operation, which

means that the total number of possible network states |𝚷| is the same for both models. The

two search algorithms outlined in Tables 3.1 and 3.3 use the same search methodology for

finding all the tolerable failure combinations (i.e. the complete network’s paths set 𝚷𝟏)

although each of them follows a different order in the search steps. Therefore, the number of

structure function evaluations 𝐹𝐸 performed by the two algorithms, and hence their

computational cost, is equal.

1 2 3 4 5 6 7 8 9 10

x 10
-3

0.59

0.62

0.65

0.68

0.71

0.74

0.77

0.8

0.83

0.86

Probability of component failure

R
el

ia
b

il
it

y

Sensor

Transceiver

Processor

Battery

 Chapter 3

72

Fig. 3.11 Comparison between the reliability of WSN deployments of scenario 3 in Table 3.7

evaluated using the 3-mode, 2-par SN model and the 3-mode, 4-par SN model.

3.7. Chapter Summary

In this chapter, we identified the key SN related and non-SN related issues that affect the

reliability of a WSN. We reviewed the existing studies in the literature on the reliability and

fault tolerance of WSNs and highlighted their limitations. Based on the presented review, we

proposed a novel reliability metric for WSNs subject to random SN failures. Compared to the

existing reliability evaluation and estimation approaches, the strengths of our proposed metric

can be summarized in the following points:

 Network functionality is defined in terms of both network coverage of a predefined set

of target locations in the RoI and connectivity to the designated sink node.

 No specific network deployment configuration is assumed in the proposed model. We

assume an arbitrary deployment configuration where each deployed SN may monitor

multiple target locations in the RoI and that each target location may be monitored by

multiple SNs. All SNs can communicate wirelessly with its neighbors, i.e. no specific

communication hierarchy is imposed.

 The WSN can be heterogeneous; it can consist of more than one type of SN, where each

type is characterized by a different coverage profile and a set of capabilities.

 A more accurate SN model is adopted in the derivation of the proposed metric where an

SN has three modes of operation instead of the two-mode model used in the previous

studies.

 Each SN type can be characterized by two or four different probabilities of constituent

module failure during the mission time of the network instead of a single SN probability

of failure, as it is the case in the previous studies.

 A search algorithm is developed to calculate the proposed reliability metric in a

computationally efficient manner for each SN model.

We applied the proposed metrics and search algorithms experimentally to several

deployments of a surveillance WSN under different operational conditions. Results

demonstrated the computational efficiency of the developed search algorithms. Moreover, the

significance of adopting the proposed 3-mode SN model on the evaluated value of WSN

reliability as opposed to the conventional simplistic 2-mode SN model adopted in existing

S3-D1 S3-D2 S3-D3 S3-D4 S3-D5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

WSN Deployment #

R
e
li

a
b

il
it

y

3-mode, 4-par SN model

3-mode, 2-par SN model

 Chapter 3

73

studies can be observed in the results. Using the 2-mode SN model can significantly

underestimate the reliability of a WSN deployment since it does not account for the relay SN

state as in the 3-mode SN model.

 Chapter 4

74

Chapter 4

Reliable Cost-Optimal Wireless Sensor Network

Deployment

4.1. Introduction

 Some of the important IoT applications in which WSNs play a pivotal role place

stringent reliability requirements on the WSN. Reliability of the WSN is therefore considered

one of the most essential design attributes. In such applications, the failure of the network to

carry out its required tasks can have serious effects and hence cannot be tolerated.

As previously discussed, a reliable WSN provides a connected cover of the targeted RoI

throughout its mission time. However, the deployment of reliable WSNs is a challenging

problem due to the random failures of the SNs. Hence, to guarantee the reliable operation of a

WSN during its intended mission time, the presence of redundant SNs in the network

becomes essential. However, for many applications for which SNs are equipped with

expensive hardware, minimizing the total deployment cost remains a primary concern.

Therefore, the level of SN redundancy in the WSN must be carefully quantified, such that the

network meets the minimum reliability requirements imposed by the application while

avoiding an unnecessary increase in the network deployment cost.

In this chapter, we formally define the problem of deploying a WSN that meets a

specified minimum level of reliability defined over a given mission time in such a way that

result in the minimum network deployment cost. In Chapter 1, we coined this problem the

MCRC-SDP. We formulate the MCRC-SDP as a combinatorial optimization problem and

prove that it is NP-Complete. The performance of GAs and ACO has proven to be promising

in solving complex combinatorial NP-Complete optimization problems [117] - [121] and in

solving the MCC-SDP as demonstrated in Chapter 2. Therefore, we propose a GA-based and

an ACO-based method to solve the defined MCRC-SDP. Both methods are coupled with a

Local Search (LS) procdeure to improve the method’s search capability and increase its speed

of convergence. To measure the reliability of the network, we adopt the reliability metric

proposed in Chapter 3. To benchmark the performance of both methods in solving the

problem at hand in terms of the quality of the obtained solutions, we also present a GH which

is designed to solve the MCRC-SDP. Finally, we present extensive experimental results

which we use to compare the two proposed methods, in terms of both the quality of the

obtained solutions and the computational cost. We then discuss their strengths and

limitations.

4.2. Minimum-Cost Reliability-Constrained SDP

In this section, we formally define the MCRC-SDP as a combinatorial optimization

problem. We start by defining the WSN model in Section 4.2.1. We then mathematically

formulate the MCRC-SDP in Section 4.2.2. Finally we prove that the MCRC-SDP is NP-

Complete in Section 4.2.3.

 Chapter 4

75

4.2.1. WSN Model

We adopt here the same WSN model used in formulating the WSN reliability metric

presented in Section 3.5 in Chapter 3. We assume that the RoI is modeled as a two-

dimensional area in which there is a finite set of locations that require some form of

monitoring (e.g. motion, image...etc.) using static SNs. These locations are called target

points and they represent the vital locations or assets that require monitoring in the RoI. We

denote the set of target points 𝑻 = {𝑡1, 𝑡2, … , 𝑡|𝑻|}. We assume that there is a finite set of

possible deployment locations for SNs, which we call deployment points, at which SNs may

be deployed. This assumption is valid for most critical WSN applications, where the topology

or layout of the targeted RoI is known prior to the WSN deployment. Hence, careful

examination of that RoI yields a finite set of feasible possible deployment locations, i.e.

deployment points. We denote the set of deployment points 𝑫 = {𝑑1, 𝑑2, … , 𝑑|𝑫|}.
All SNs available for deployment are assumed to be able to communicate wirelessly and

have the same fixed communication range denoted by 𝑟𝑐. Sensed data acquired by the

deployed SNs are relayed to a sink node with an arbitrary fixed position in the RoI denoted

by 𝑑0.

4.2.2. Problem Formulation

We address the problem of deploying a WSN that meets a specified minimum level of

reliability, denoted by 𝑅𝑚𝑖𝑛, defined over a given mission time at the minimum network

deployment cost. The reliability requirement of the MCRC-SDP implicitly includes three

sub-requirements. The first two sub-requirements are the fulfillment of the coverage and

connectivity functionality aspects according to the WSN model and the network functionality

definition presented in Section 3.5.1 in Chapter 3. The third sub-requirement is that the WSN

must possess a certain level of robustness against the random failures of its constituent SNs

such that the network can fulfill the coverage and connectivity functionality conditions

throughout the network mission time despite random SN failures. This robustness, in turn,

requires introducing a certain level of SN redundancy in the network deployment. However,

the introduction of redundant SNs in a WSN can significantly increase the energy

consumption of the network, the demand on its limited bandwidth and its level of internal

interference [100] under the assumption that all the deployed SNs are activated at the same

time. This introduces non-SN related issues (e.g. excessive packet collisions in WSNs

adopting contention-based medium access control) which negatively affect the reliability of

the message delivery in the network, thus defeating the purpose of introducing the

redundancy in the first place. Therefore, SN activity planning is required to increase the

robustness of the WSN against SN failures without introducing significant degradation in its

performance.

As such, we can restate the MCRC-SDP to be the problem of finding a number of non-

overlapping minimal connected covers of the targeted RoI such that the combined reliability

level of these minimal connected covers would meet or exceed the specified minimum level

of reliability 𝑅𝑚𝑖𝑛 and the total number of deployed SNs (i.e. the deployment cost) is

minimized. A minimal connected cover is defined as a connected cover which contains no

completely redundant SNs. These minimal connected covers are activated in an orthogonal

manner as follows: a single minimal connected cover is activated at any given point in time

during 𝑇𝑚 while the SNs belonging to the remaining connected covers are put in sleep mode.

Since there are no completely redundant SNs in a minimal connected cover, energy

consumption, bandwidth usage and internal interference are kept at a minimum. This

activated minimal connected cover remains active until its functionality is compromised due

 Chapter 4

76

to the expected random failures of its constituent SNs. At that point, the remaining functional

SNs belonging to this minimal connected cover are put in sleep mode and another minimal

connected cover is activated. This procedure is continued until either the mission time of the

network 𝑇𝑚 elapses or there are no remaining deployed minimal connected covers of

uncompromised functionality. The first event means the WSN deployment remained

functional throughout 𝑇𝑚 while the second event means that the WSN has failed. According

to the statement of the problem, the probability of the first event is equal to 𝑅𝑚𝑖𝑛 and that of

the second event is equal to 1 − 𝑅𝑚𝑖𝑛.

Let 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} be the superset of 𝑁 non-overlapping connected covers in a

given WSN deployment. For simplicity, we assume here that the WSN is homogeneous, i.e.

composed of the same type of SNs. The MCRC-SDP can then be formulated as follows:

 𝑚𝑖𝑛 {|𝓢| = ∑|𝑺𝑘|

𝑁

𝑘=1

}, (4.1)

subject to:

𝑺𝑘 ⊆ 𝑫 ∀ 𝑘 = 1,…𝑁, 𝑁 ≤ 𝑁𝑈𝐵 , (4.2)

𝑺𝑘⋂𝑺𝑘′ = 𝜙, ∀ 𝑘, 𝑘′ = 1,… ,𝑁, 𝑘 ≠ 𝑘′ , (4.3)

𝑅(𝓢) = 𝑅(𝑺1, 𝑺2, … , 𝑺𝑁) = 1 − ∏(1 − 𝑅(𝑺𝑘))

𝑁

𝑘=1

≥ 𝑅𝑚𝑖𝑛 , (4.4)

Φ(𝑺𝑘) = 0 ∀ 𝑘 = 1,… ,𝑁. (4.5)

Equation (4.1) is the objective function of the MCRC-SDP, which is the minimization of

the total number of the deployment points (i.e. deployed SNs) belonging to all 𝑁 disjoint

minimal connected covers, i.e. |𝓢|. This is equivalent to the minimization of the network

deployment cost. Equations (4.2) - (4.5) are the constraints of the problem. In (4.2), all the

connected covers are constrained to be subsets of the deployment points set 𝑫 in the targeted

RoI. Equation (4.2) also sets the number of connected covers in the solution 𝓢 denoted by 𝑁

to be less than or equal to 𝑁𝑈𝐵, which is defined as the the upper bound on the number of

connected covers for a given MCRC-SDP instance, i.e. for a given {𝑻,𝑫} tuple. The process

of estimating this upper bound is detailed in Section 4.2.3. Equation (4.3) expresses the

condition that the 𝑁 minimal connected covers constituting 𝓢 must be disjoint, i.e. have no

deployment points in common. Equation (4.4) expresses the reliability constraint of the

problem. In (4.4), the total reliability of the WSN deployment, i.e. of 𝓢, is calculated in terms

of the reliability of the 𝑁 connected covers assuming they are activated orthogonally. We will

measure the reliability of the connected covers using the reliability metric presented in

Section 3.5.3. Finally, (4.5) constrains each of the 𝑁 connected covers in 𝓢 to be a minimal

connected cover, where Φ(𝑺𝑘) is a binary function that returns 0 if the connected cover 𝑺𝑘

is a minimal connected cover and 1 otherwise. Note that if 𝑺𝑘 is a minimal connected cover,

there would be no completely redundant SNs in 𝑺𝑘. This means that there would be no

combinations of SNs in the off-mode that would correspond to a unity network structure

function (𝑓(𝝅) = 1), i.e. 𝑭𝑜 = {𝜙}. However, this does not mean that there would not be

coverage redundant SNs in a minimal connected cover 𝑺𝑘. That is, it is possible for 𝑺𝑘 to

have one or more combinations of SNs in the relay-mode that would correspond to a unity

network structure function which means that 𝑭𝑟 ≠ {𝜙}.

 Chapter 4

77

4.2.3. Estimation of the Upper-Bound of the Number of Connected

Covers

To estimate the upper bound of the number of connected covers denoted by 𝑁𝑈𝐵 in a

given MCRC-SDP instance represented by a given {𝑻,𝑫} tuple, we make use of the fact that

the upper bound for the number of connected covers cannot exceed the upper bound for the

number of covers. A cover in a given MCRC-SDP instance is a subset of 𝑫 which meet the

coverage constraint only. Thus the upper bound of the covers can be used as the upper bound

of the number of connected covers 𝑁𝑈𝐵. Although finding the maximum number of covers

for a given MCRC-SDP instance is an NP-complete problem, we can estimate the upper

bound of the number covers with the following method [121]. Assume that all the

deployment points in 𝑫 have SNs deployed on them. Then, locate the least covered target

point in 𝑻, i.e. the target point(s) with the smallest number of SNs covering it. We will call

this target point a critical target point(s). The number of SNs covering the critical target

point(s) represents the upper bound on the number of covers and hence connected covers

denoted by 𝑁𝑈𝐵. This is because a cover of the RoI cannot provide full coverage of 𝑻

without providing coverage of the critical target point(s). Hence, the maximum number of

covers cannot exceed the number of SNs covering the critical target point(s). To illustrate

this, Fig. 4.1 shows a problem instance where 𝑻 = {𝑡1, 𝑡2, 𝑡3} and 𝑫 =
{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. We will assume here that the SNs available for deployment have a

disk-coverage profile. As can be observed from the figure, three SNs provide coverage for

target points 𝑡1 and 𝑡3. For 𝑡1 the SNs are located on deployment points {𝑑1, 𝑑2, 𝑑6} while for

𝑡3 they are located on {𝑑2, 𝑑3, 𝑑5}. Target point 𝑡2, on the other hand, is covered by only two

SNs deployed on deployment points {𝑑3, 𝑑4}. As such, 𝑡2 is the critical target point and the

upper bound of the number of connected covers 𝑁𝑈𝐵 for this problem instance is equal to 2.

Although the authors in [121] did not comment on the tightness of the above method in

estimating 𝑁𝑈𝐵, it can be deduced that the estimate 𝑁𝑈𝐵 can actually be equal to the exact

value in the case where 𝑟𝑐 ≫ 𝑟𝑠 such that all SNs are within as single hop of the sink node. In

all other cases, the difference between 𝑁𝑈𝐵 and the actual value of the maximum number of

connected covers depends on the relative spatial positions among the deployment points,

target points and the sink node.

Fig. 4.1 A RoI containing three target points 𝑻 = {𝑡1, 𝑡2, 𝑡3} and six deployment points 𝑫 =
{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. Target point 𝑡2 is the critical target point and the upper bound for connected

covers is 𝑁𝑈𝐵 = 2.

4.2.4. Proof that MCRC-SDP is NP-Complete

To prove that the MCRC-SDP expressed in (4.1) - (4.5) is NP-complete, we start by

considering the decision problem that corresponds to the MCRC-SDP. We will call this

 Chapter 4

78

decision problem the Reliability Constrained SN Deployment Problem (RC-SDP). The RC-

SDP can be expressed as follows.

RC-SDP: given 𝑫, 𝑻, 𝑁𝑈𝐵(𝑁𝑈𝐵 ∈ Ζ+), 𝑅𝑚𝑖𝑛 (𝑅𝑚𝑖𝑛 ∈ [0,1]), does a superset 𝓢 =
{𝑺1, 𝑺2, … , 𝑺𝑁} ⊆ 𝑫 exist, such that the following conditions are true?

1. 𝑺𝑘 ⊆ 𝑫 ∀ 𝑘 = 1,…𝑁,𝑁 ≤ 𝑁𝑈𝐵

2. 𝑺𝑘⋂𝑺𝑘′ = 𝜑, ∀ 𝑘, 𝑘′ = 1,… ,𝑁, 𝑘 ≠ 𝑘′ ;

3. 𝑅(𝓢) = 1 − ∏ (1 − 𝑅(𝑺𝑘))
𝑁
𝑘=1 ≥ 𝑅𝑚𝑖𝑛;

4. Φ(𝑺𝑘) = 0 ∀ 𝑘 = 1,… ,𝑁.

Theorem 1: RC-SDP is NP

Proof: To prove that RC-SDP is NP, we need to prove that for any given superset 𝓢 =
{𝑺1, 𝑺2, … , 𝑺𝑁} ⊆ 𝑫, we can check if 𝓢 fulfills the problem’s conditions in polynomial time.

The computational complexity of checking each of the problem’s conditions is given, in

order, as follows:

1. 𝑂(|𝑫|), where ∑ | 𝑺𝑘|
𝑁
𝑘=1 = |𝓢| ≤ |𝑫| ;

2. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
2}) , 𝑘 = 1,… ,𝑁 ;

3. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
4}) ;

4. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
4}) .

Checking the third and fourth conditions has the same computational complexity since

checking whether a connected cover 𝑺𝑘 is minimal or not comes automatically through the

process of calculating its reliability 𝑅(𝑺𝑘). The computational complexity of

calculating 𝑅(𝑺𝑘) is dictated by the complexity of the structure function evaluation, which is

the most computationally expensive routine in the reliability calculation algorithm presented

in Section 3.5.3.3 in Chapter 3. To evaluate the network structure function 𝑓(𝝅) at a given

network state 𝝅, the two network functionality conditions needs to be checked. Evaluating

the network coverage of the set of target points 𝑻 and that of the connectivity to the sink at a

given network state have a computational complexity of (| 𝑺𝑘| ∗ |𝑻|) and (| 𝑺𝑘|
3),

respectively. This is valid under the assumption that in the presence of coverage redundancy,

only a fixed number of maximum coverage functionality checks is allowed when evaluating

the reliability in the third condition. This gives an overall computational complexity

of 𝑂(𝑎𝑟𝑔𝑚𝑎𝑥𝑘 {| 𝑺𝑘|
3}) , where 0 < | 𝑺𝑘 | ≤ |𝑫|.

Therefore, RC-SDP is NP ∎

Theorem 2: RC-SDP is NP-hard

Proof: We use the method of restriction to prove that RC-SDP is NP-hard. For any given

problem instance, i.e. for a given {𝑻,𝑫} tuple, let 𝑅𝑚𝑖𝑛 = 𝜖 ≪ 1. This means that we are

looking for a deployment that consists of a single minimal connected cover deployment and

that any non-zero value of reliability is acceptable. This restriction converts the RC-SDP to

the problem of deciding whether there exists a single minimal connected cover 𝑺 ⊆ 𝑫 of

size/cardinality |𝑺| ≤ |𝑫| that provides full coverage of 𝑻 and is connected to the given sink

node. This latter problem has been proved NP-complete in [122].

Therefore, RC-SDP is NP-hard ∎

From theorems 1, 2 RC-SDP is NP-complete ∎

4.3. Proposed Optimization Algorithms for Solving the RCSDP

Since the MSCRC-SDP is NP-Complete, solving instances of the MCRC-SDP of

practical scale using exact optimization methods (such as Integer Linear Programming (ILP),

the Branch and Bound method (B&B) and the Branch and Cut method (B&C)) is not

computationally feasible. This is due to the fact that the calculation time for these

 Chapter 4

79

optimization methods increases exponentially with the problem size [123]. For example, an

efficient implementation of the B&B for the famous Travelling Salesman Problem (TSP) has

a computational time complexity 𝑂(𝑛2 ∗ 2𝑛)[124] where 𝑛 is the number of cities in the

problem. On the other hand, heuristic or stochastic optimization methods offer a viable

alternative to the exact optimization methods in solving complex large-scale optimization

problems. Generally speaking, they are capable of reaching good solutions for these problems

in a relatively short amount of calculation time. Although these methods do not guarantee

reaching the global optimum solution of the problem, they can often lead to near-optimal

solutions that are slightly worse than the global optimum if they are well designed. Moreover,

a generic form of a stochastic optimization method can be tuned according to the special

characteristics of an optimization problem, enabling the method to reach even better

solutions, possibly even the global optimum solution [123].

GAs and ACO algorithms are among the most widely used stochastic optimization

methods. Their performance has proven to be promising in solving complex combinatorial

NP-Complete optimization problems [125] - [131]. In the context of WSN deployment, their

effective performance in solving the MCC-SDP has been demonstrated in Section 2.5.2 in

Chapter 2. It should be noted that other first-order derivative iterative optimization methods

such as gradient descent can be applied to the MCRC-SDP. However, the complex nature of

the reliability constraint expressed in (4.4) makes it difficult to use. In this section, we present

two reliable cost-optimal deployment algorithms using both methods and analyzing their

obtained results to evaluate their performance according to the two aforementioned metrics:

the quality of the obtained solutions and the computational speed/cost. Coupling both

methods with an LS procedure has been reported to increase the method’s speed of

convergence and enhances its search capability [117] - [121]. We therefore have each of the

proposed algorithms apply an LS procedure suitable for its design. For each of the proposed

algorithms, we will discuss the design of the fundamental building blocks, the LS procedure

and the termination conditions of the algorithm.

4.3.1. Proposed Memetic Algorithm

In this Section, we present the proposed Memetic Algorithm (MA) for solving the

MCRC-SDP problem expressed in (4.1) - (4.5). The term Memetic Algorithm is used in

literature to refer to a combination of an evolutionary-based algorithm, such as a GA, with a

LS procedure customized to the problem at hand, also known as a meme [118]. This

combination is also referred to as a Hybrid GA (HGA). In the following sub-sections, we

discuss the different building blocks of the proposed MA, namely, the chromosome-encoding

scheme, the fitness function, the chromosome selection schemes, the variation operators, the

applied LS procedure and finally, the termination conditions of the algorithm.

4.3.1.1. Chromosome Encoding Scheme

We select to use an integer-encoding scheme for the MA chromosome encoding. Each

chromosome is composed of |𝑫| genes, where each gene represents one of the deployment

points in the set 𝑫 with an ordered one-to-one correspondence. The value given to each gene

varies between 0 and 𝑁𝑈𝐵. The value of the gene indicates whether an SN is deployed at the

corresponding deployment point (if it takes a non-zero value between 1 and 𝑁𝑈𝐵) or not (if it

is null). If a given gene takes a non-zero integer value, then this value indicates the index of

the SN set which the corresponding deployment point (and hence the actual SN deployed on

it) belongs to. Each SN set represented in a chromosome is a potential connected cover of the

targeted RoI, i.e. the set of target points 𝑻, if that SN set fulfills the coverage and connectivity

conditions defined in Section 3.5.1 in Chapter 3. Therefore, the maximum number of SN sets

 Chapter 4

80

represented in any given chromosome is 𝑁𝑈𝐵 and hence the upper bound for the number of

connected covers is equal to 𝑁𝑈𝐵 as well. The ordered one-to-one correspondence between

the genes of the chromosome and the deployment points in 𝑫 ensures that all the represented

connected covers in a given chromosome are disjoint and hence the MCRC-SDP constraints

expressed in (4.2) and (4.3) are always satisfied.

For example, consider the problem instance illustrated in Fig. 4.1 where 𝑻 = {𝑡1, 𝑡𝟐, 𝑡𝟑} ,
𝑫 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6} and 𝑁𝑈𝐵 = 2. Fig. 4.2 shows a possible chromosome encoding

using the proposed scheme and how it is decoded to a possible solution to the problem at

hand. Since |𝑫| = 6 in this example, the number of genes in the chromosome is 6. The genes

in the chromosome take integer values between 0 and 2 since 𝑁𝑈𝐵 = 2 as explained in

Section 4.2.3. The chromosome in Fig. 4.2 corresponds to two SN sets, the first one is

composed of deployment points 𝑑1, 𝑑3 and 𝑑4 and the second one is composed of

deployment points 𝑑2 and 𝑑6. For simplicity, we will assume that in this example that all six

deployment points are within 𝑟𝑐 of the sink node, i.e. any cover of 𝑻 = {𝑡1, 𝑡2, 𝑡3} is

automatically a connected cover. It is clear that the first SN set is a connected cover while the

second one is not. Therefore the chromosome in Figure 2 corresponds to one connected

cover 𝑺1 = {𝑑1, 𝑑3, 𝑑4}. It is important to point out that the problem’s reliability and

redundancy constraints expressed in (4.4) and (4.5) are not automatically met in each

chromosome, since it is possible that a given chromosome does not represent enough

connected covers to meet the specified minimum reliability 𝑅𝑚𝑖𝑛 or that one or more of the

connected covers is not a minimal connected cover. For example, the connected cover

represented by the chromosome in Fig. 4.2 is not a minimal connected cover since 𝑑4 is

completely redundant. Hence, only a part of the genotypic space corresponds to feasible

solutions to the MCRC-SDP. Therefore, these constraints must be incorporated in the fitness

function of the proposed MA as discussed in the next sub-section.

Fig. 4.2 Chromosome decoding for the proposed MA: the chromosome corresponds to two SN sets,

the first set includes 𝑑1, 𝑑3 and 𝑑4 and the second set includes 𝑑2 and 𝑑6. The value of the fifth gene

is null, therefore 𝑑5 is not assigned to a SN set. Since only the first SN set covers 𝑻 = {𝑡1, 𝑡2, 𝑡3} , the

chromosome corresponds to a single connected cover 𝑺1 = {𝑑1, 𝑑3, 𝑑4}.

4.3.1.2. Fitness Function

Since the objective function of the MCRC-SDP expressed in (4.1) is minimizing the total

deployment cost of the WSN, the fitness of any given chromosome must be inversely

proportional to the total number of deployment points (i.e. deployed SNs) belonging to all the

connected covers represented in the chromosome. However, since only a part of the

genotypic space corresponds to feasible solutions that satisfy the minimum reliability and

redundancy constraints expressed in (4.4) and (4.5), the fitness function must also incorporate

 Chapter 4

81

these two constraints by the means of penalty terms. This is a common practice in using GAs

to solve constrained optimization problems [130]. The penalty terms work by dampening the

fitness of unfeasible solutions that do not meet one or more of the constraints in order to

direct the search away from the neighborhoods of these solutions in the genotypic space.

Let 𝑐(𝑁) be a chromosome representing 𝑁 disjoint connected covers, i.e. a chromosome

that corresponds to a WSN deployment 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, where 1 ≤ 𝑁 ≤ 𝑁𝑈𝐵. The

fitness value given to 𝑐(𝑁), denoted by ℱ(𝑐(𝑁)), is calculated using the following fitness

function:

ℱ(𝑐(𝑁)) = −(∑ |𝑺𝑘|
𝑁
𝑘=1 + 𝜔1 ∑ Φ(𝑺𝑘)

𝑁
𝑘=1 + 𝜔2[𝑅𝑚𝑖𝑛 − (1 − ∏ (1 − 𝑅(𝑺𝑘))

𝑁
𝑘=1)]

+
), (4.6)

where the first term of the function represents the total deployment cost which is equal to the

total number of the deployment points belonging to the 𝑁 disjoint connected covers (i.e. |𝓢|)
represented in 𝑐(𝑁). The second term penalizes the fitness of the chromosome for every non-

minimal connected cover in 𝓢, for which Φ(𝑺𝑘) is equal to unity, by a value equal to the

constant weight, 𝜔1. The third term penalizes the fitness of the chromosome if the collective

reliability of the disjoint connected covers represented in the chromosome is less than the

specified minimum reliability level, 𝑅𝑚𝑖𝑛. The value of the penalty is equal to the difference

between the two reliability levels multiplied by the constant weight, 𝜔2. The constant weights

𝜔1 and 𝜔2 are set such that fitness values assigned to the chromosomes follow the following

scale. All the chromosomes which meet both the reliability and redundancy constraints

expressed in (4.4) and (4.5) respectively have higher fitness values than all the chromosomes

that fail to meet either constraint. On the other hand, all the chromosomes which meet the

reliability constraint have higher fitness values than all the chromosomes which do not meet

the reliability constraint, whether they meet the redundancy constraint or not. This approach

in assigning fitness will direct the MA search to the most promising regions in the genotypic

space which correspond to high quality feasible solutions to the MCRC-SDP. Since the

maximum value for ∑ | 𝑺𝑘 |
𝑁
𝑘=1 (i.e. the deployment cost) is |𝑫| and the upper bound for the

number of connected covers is 𝑁𝑈𝐵, it is easy to verify that setting 𝜔1 to the value |𝑫| + 1

and 𝜔2 to (|𝑫| + 1)(𝑁𝑈𝐵 + 1) ∗ 10𝓃 will fulfill the required fitness scaling described above,

where 𝓃 is the number of significant decimal places in both 𝑅𝑚𝑖𝑛 and 𝑅(𝑺𝑘).

4.3.1.3. Variation Operators

The traditional variation operators, i.e. crossover and mutation operators, for integer

encoded GAs are applicable for the proposed chromosome encoding scheme. In the proposed

MA, we adopt a simple single-point crossover and creep mutation [130]. For each pair of

parent chromosomes, the single-point crossover operator chooses the crossover point at

random in the interval [1, |𝑫|] and creates two offspring by exchanging parts of the parent

chromosomes. The creep mutation simply changes the value of a gene in an offspring

chromosome to a value in the interval [0, 𝑁𝑈𝐵].
We adopt an additional variation operator to the standard genetic operators called

scattering [131], which is applied to the offspring population directly after crossover and

mutation. This operator is used to help the proposed MA in avoiding regions in the genotypic

space that correspond to infeasible solutions to the MCRC-SDP. To explain how the operator

works, we define the term critical deployment points, which refer to the deployment points

which have the critical target point in the RoI (as defined in Section 4.2.3) within their

coverage region. For example, consider the problem instance illustrated in Fig. 4.1, where the

critical target point is 𝑡2 and hence the critical deployment points are 𝑑3 and 𝑑4. The

scattering operator distributes the critical deployment points on the different possible SN sets

 Chapter 4

82

in each chromosome. Since a connected cover must include at least one critical deployment

point to provide full coverage, the scattering operator increases the chance of the creation of

connected covers in each chromosome. This, in turn, increases the chance of the

chromosomes translating to feasible solutions to a given instance of the MCRC-SDP.

The scattering operator works as follows. It checks the genes which correspond to the

critical deployment points for the given MCRC-SDP instance, i.e. for a given {𝑻 , 𝑫} tuple. If

it finds that two or more of these genes are given same value, it changes the repeated genes to

other values such that each of these genes is given a unique integer value in the

interval [1, 𝑁𝑈𝐵]. For example, applying the scattering operator on the chromosome

illustrated in Fig. 4.2 will change the value of the fourth gene, which represents the critical

deployment point 𝑑4 from 1 to 2 , since the other critical deployment point 𝑑3 is already set

to 1. Accordingly, the altered chromosome will now represent two connected covers, namely

 𝑺1 = {𝑑1, 𝑑3} and 𝑺2 = {𝑑2, 𝑑4 , 𝑑6 } as shown in Fig. 4.3.

Fig. 4.3 The scattering operator in the proposed MA: the value of the fourth gene in the chromosome

in Fig. 4.2 is changed from 1 to 2. The altered chromosome now represents two connected

cover 𝑺1 = {𝑑1, 𝑑3} and 𝑺2 = {𝑑2, 𝑑4 , 𝑑6 }.

4.3.1.4. Chromosome Selection Methods

Two types of chromosome selection methods are required in the design of the proposed

MA. The first one is the parent selection method, which dictates how the parent

chromosomes in a current population are chosen to undergo crossover. In our proposed MA,

we adopt the widely-known Roulette Wheel parent selection method [130]. Assuming the

number of chromosomes in a population is µ, the Roulette Wheel method is applied to the

entire population to select µ/2 pairs of parents and hence µ offspring chromosomes are

produced after the crossover, mutation and scattering operators are applied. The second

selection method is the survivor selection method, which determines which chromosomes in

the aggregated pool of parents and offspring populations of size 2µ will survive to the next

generation/iteration of the algorithm. We adopt a fitness-based survivor selection which

selects the µ chromosomes with the highest fitness from that pool to constitute the next

generation/iteration. This selection method is also known as the µ + λ selection

scheme [130].

4.3.1.5. Local Search Procedure

As explained earlier, the proposed MA is composed of a GA coupled with a LS

procedure that helps the GA fine tune its search for high quality solutions to the problem at

 Chapter 4

83

hand in the promising regions of the genotypic space. In each iteration of the proposed MA

after the selection of the surviving chromosomes for the following generation/iteration, we

apply an LS procedure to a fraction of the chromosome population denoted by 𝑃𝐿𝑆. The

chromosomes which undergo the LS in each generation/iteration are selected at random. To

strike the best balance between the global and the local search and to avoid the premature

convergence of the proposed MA, we adopt a gradual increase in 𝑃𝐿𝑆 with the number of the

performed generations/iterations of the algorithm [132]. Fig. 4.4 shows the adopted

scheduling scheme for the application of the LS procedure in our proposed MA, where 𝑛𝐿𝑆

denotes the number of iterations at which the entire chromosome population undergoes the

LS procedure, i.e. 𝑃𝐿𝑆 = 1.

Fig. 4.4 The LS procedure scheduling scheme in the proposed MA: the fraction of the chromosome

population undergoing the LS procedure 𝑃𝐿𝑆 versus the number of performed iterations of the

algorithms.

Table 4.1 shows the pseudo-code of the LS procedure in the proposed MA. The

operation of the LS procedure can be described as follows. The LS is applied on the input

chromosome 𝑐(𝑁) that has a fitness of ℱ(𝑐(𝑁)), which corresponds in the phenotypic space

to the solution 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} with a combined reliability 𝑅(𝓢). The first step of the LS

procedure (line 2) is to initialize the resulting chromosome of the LS and its fitness, denoted

by 𝑐𝐿𝑆(𝑁) and ℱ(𝑐𝐿𝑆(𝑁)) respectively, to the input chromosome and its fitness. In this LS

procedure, we adopt a Lamarckian approach, in which both the fitness and the genotypic

representation of the solution, i.e. the chromosome, are changed by the LS procedure [132].

In the second step (lines 4 − 10), the LS checks if any of the connected covers in 𝓢 violates

the redundancy constraint in (4.5), i.e. Φ(𝑺𝑘) = 1, for any 𝑘 = 1,… ,𝑁. If one or more of the

connected covers are non-minimal connected covers, the LS attempts to enhance the quality

of the solution (and the fitness of the chromosome) by converting these connected covers to

minimal connected covers. This step is carried out as follows. For each non-minimal

connected cover 𝑺𝑘, the LS procedure prunes 𝑺𝑘 by removing redundant deployment points

and hence converting 𝑺𝑘 to a minimal connected cover denoted by 𝑺𝑘
𝑚. A redundant

deployment point in 𝑺𝑘 is a deployment point whose removal from the connected cover will

not compromise its coverage or connectivity. For example, consider the chromosome

illustrated in Fig. 4.3. The second connected cover represented in the chromosome, 𝑺2 =
{𝑑2, 𝑑4 , 𝑑6 } is a non-minimal connected cover because the deployment point 𝑑6 is

completely redundant. The LS identifies redundant deployment points by examining the

tolerable failure combinations of SNs in the off-mode.

0
0

0.2

0.4

0.6

0.8

1

Number of Iterations

P
L

S

n
LS

 Chapter 4

84

Table 4.1 Pseudo-code of the LS procedure in the proposed MA

Procedure LOCAL_SEARCH

1 Input: 𝑐(𝑁), ℱ(𝑐(𝑁)). Decode input: 𝑐(𝑁) ↔ 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, 1 ≤ 𝑁 ≤ 𝑁𝑈𝐵 , 𝑅(𝓢)

2 Initialize: 𝑐𝐿𝑆(𝑁) ← 𝑐(𝑁), ℱ(𝑐𝐿𝑆(𝑁)) ← ℱ(𝑐(𝑁)) , 𝓢𝐿𝑆 ← 𝓢 , 𝑅(𝓢𝐿𝑆) ← 𝑅(𝓢)

3 𝓢𝑡𝑒𝑚𝑝 ← 𝓢𝐿𝑆, 𝑅(𝓢𝑡𝑒𝑚𝑝) ← 𝑅(𝓢𝐿𝑆) , 𝑺′
𝑝𝑟𝑢𝑛𝑒 ← ∅

4 For 𝑘 = 1:𝑁

5 If Φ(𝑺𝑘) ≠ 0 , i.e. 𝑺𝑘 is a non-minimal connected cover

6 Prune 𝑺𝑘 until there is no redundancy. Denote pruned 𝑺𝑘 by 𝑺𝑘
𝑚

7 𝑺′
𝑝𝑟𝑢𝑛𝑒 ← 𝑺′

𝑝𝑟𝑢𝑛𝑒 ∪ [𝑺𝑘 − 𝑺𝑘
𝑚]

8 Update 𝓢𝑡𝑒𝑚𝑝: 𝑺𝑘 ← 𝑺𝑘
𝑚

9 End If

10 End For

11 Update 𝑅(𝓢𝑡𝑒𝑚𝑝)

12 If 𝑅(𝓢𝑡𝑒𝑚𝑝) ≥ 𝑅𝑚𝑖𝑛

13 Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ← 𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to 𝑺′
𝑝𝑟𝑢𝑛𝑒 to 0

14 Else (i.e. if reliability constraint is not met)

15 Let incomplete SN sets in 𝑐(𝑁), if any, be denoted 𝑺𝑙
′ , where 1 ≤ 𝑙 ≤ (𝑁𝑈𝐵 − 𝑁)

16 For 𝑙 = 1: (𝑁𝑈𝐵 − 𝑁)

17 Augment 𝑺𝑙
′: 𝑺𝑙

′ ← 𝑺𝑙
′ ∪ 𝑺′

𝑝𝑟𝑢𝑛𝑒. Test functionality of augmented SN set 𝑺𝑙
′

18 If 𝑺𝑙
′ after augmentation became a connected cover, i.e. 𝑺𝑁+1 ← 𝑺𝑙

′

19 Prune 𝑺𝑁+1 until there are no redundant deployment points. Denote pruned 𝑺𝑁+1 by 𝑺𝑁+1
𝑚

20 Update 𝓢𝑡𝑒𝑚𝑝: 𝑺𝑁+1 ← 𝑺𝑁+1
𝑚 , 𝓢𝑡𝑒𝑚𝑝 ← 𝓢𝑡𝑒𝑚𝑝 ∪ 𝑺𝑁+1

21 Break For

22 End If

23 End For

24 If 𝑺𝑁+1 ≠ ∅ (i.e. if one of the incomplete SN sets became a connected cover)

25 Update 𝑅(𝓢𝑡𝑒𝑚𝑝)

26 Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ← 𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to

 [𝑺𝑁+1 − 𝑺𝑁+1
𝑚] to 0

27 Else

28 Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ← 𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to 𝑺′
𝑝𝑟𝑢𝑛𝑒 to 0

29 End If

30 End If

31 Update ℱ(𝑐𝐿𝑆(𝑁))

32 If ℱ(𝑐𝐿𝑆(𝑁)) ≥ ℱ(𝑐(𝑁))

33 𝑐(𝑁) ← 𝑐𝐿𝑆(𝑁), ℱ(𝑐(𝑁)) ← ℱ(𝑐𝐿𝑆(𝑁))

34 End If

35 Output: 𝑐(𝑁), ℱ(𝑐(𝑁))

produced by the search algorithm used to calculate 𝑅(𝑺𝑘) described in Section 3.5.3.3 in

Chapter 3. We denote the set of all the pruned deployment points by 𝑺′
𝑝𝑟𝑢𝑛𝑒

.

After the application of the second step of the LS procedure, all the connected covers

belonging to 𝓢 are guaranteed to be minimal connected covers. The updated solution is

denoted by 𝓢𝑡𝑒𝑚𝑝 and the updated combined reliability is denoted by 𝑅(𝓢𝑡𝑒𝑚𝑝). Note that if

all the connected covers in 𝓢 are minimal, the second step of the LS procedure will affect no

 Chapter 4

85

change in 𝓢 or 𝑅(𝓢) , i.e. 𝓢𝑡𝑒𝑚𝑝 = 𝓢 and 𝑅(𝓢𝑡𝑒𝑚𝑝) = 𝑅(𝓢). In the third step of the LS

procedure (lines 11 − 30), 𝑅(𝓢𝑡𝑒𝑚𝑝) is compared to the specified minimum reliability 𝑅𝑚𝑖𝑛.

If the reliability constraint is met, i.e. 𝑅(𝓢𝑡𝑒𝑚𝑝) ≥ 𝑅𝑚𝑖𝑛, no further steps are performed on

the solution. Accordingly, the resulting chromosome of the LS 𝑐𝐿𝑆(𝑁) is updated to reflect

the pruning applied to the non-minimal connected covers in the second step. On the other

hand, if the reliability constraint is not fulfilled, the LS attempts to further enhance the quality

of the solution by attempting to construct an additional minimal connected cover, i.e. 𝑺𝑁+1, to

increase the combined reliability of the solution. This step is carried out as follows. For every

SN set represented in 𝑐(𝑁) which does not amount to a connected cover, denoted by 𝑺𝑙
′

for 𝑙 = 1,… , (𝑁𝑈𝐵 − 𝑁), the LS procedure checks if augmenting any of these SN sets by the

pruned deployment points in the set 𝑺′
𝑝𝑟𝑢𝑛𝑒 would result in an additional connected cover. If

an additional connected cover was successfully constructed, it is pruned to a minimal

connected cover 𝑺𝑁+1
𝑚 (if necessary) and added to the updated solution 𝓢𝑡𝑒𝑚𝑝. The resulting

chromosome of the LS procedure 𝑐𝐿𝑆(𝑁) is then updated to reflect the changes made

to 𝓢𝑡𝑒𝑚𝑝. On the other hand, if none of the SN sets was successfully converted to a connected

cover, 𝓢𝑡𝑒𝑚𝑝 remains unchanged and 𝑐𝐿𝑆(𝑁) is updated accordingly. In the fourth and final

step (lines 31 − 35), the fitness of the resulting chromosome ℱ(𝑐𝐿𝑆(𝑁)) is updated after the

possible changes made to 𝑐𝐿𝑆(𝑁) in steps 2 and 3. It is then compared with the fitness of the

input chromosome ℱ(𝑐(𝑁)). If the LS procedure produces an enhancement in fitness (i.e. the

condition ℱ(𝑐𝐿𝑆(𝑁)) ≥ ℱ(𝑐(𝑁)) holds), then 𝑐𝐿𝑆(𝑁) and ℱ(𝑐𝐿𝑆(𝑁)) are returned to replace

the input chromosome and its corresponding fitness. Otherwise, the input chromosome and its

corresponding fitness are returned unchanged.

4.3.1.6. Termination Conditions

The proposed MA is terminated if one of possible termination conditions occurs. The

first termination condition is the algorithm going through a predetermined maximum number

of generations denoted by 𝑛𝑚𝑎𝑥. The second condition is the algorithm going through a

predetermined number maximum number of generations with no enhancement in the value of

the best fitness discovered by the algorithm denoted by 𝑛𝑐𝑜𝑛𝑣. The second termination

condition signals that the algorithm has indeed converged to a solution and no further

enhancement of fitness can be expected.

4.3.1.7. Measures to Reduce Computational Cost

The fitness function ℱ(𝑐(𝑁)) of the proposed MA, presented in Section 4.3.1.2 and

expressed in (4.6), is in essence a complex and computationally expensive function to

evaluate. This stems primarily from the third term of the fitness function, which requires the

calculation of the reliability of the connected covers represented by a given chromosome. The

proposed MA needs to evaluate the fitness function ℱ(𝑐(𝑁)) for every generated

chromosome, both before and after mutation and during the proposed LS procedure. This

poses a computational challenge. This is because the algorithm needs to evaluate the

reliability of a large number of connected covers with varying levels of SN redundancy. To

address this computational challenge, we apply the following two measures to reduce the

computational cost associated with the fitness function:

 We terminate the search for the paths of 𝑺𝑘 carried out by the search algorithm (outlined

in Table 3.3 in Chapter 3) if a complete redundancy is discovered in step 3 of the

algorithm, i.e. if the set 𝑭𝑜
1 ≠ {𝜙}. If this occurs, then Φ(𝑺𝑘) is set to unity. The

corresponding reliability 𝑅(𝑺𝑘) used to evaluated the fitness function in (4.6) is the

 Chapter 4

86

lower bound of the exact reliability value calculated using the paths set of 𝑺𝑘 discovered

by the search algorithm before the search terminates. Although this measure may

decrease the fitness of the chromosome to which the connected cover 𝑺𝑘 belongs, this

potential decrease is less significant for connected covers with a low redundancy level

since the calculated lower bound will be a good estimation for the exact value. On the

other hand, if a given connected cover is a minimal connected cover, the reliability is

calculated exactly.

 A list of every connected cover the MA comes across and their calculated reliability is

kept over all the generations/iterations of the algorithm. Every time the reliability of a

given connected cover needs to be evaluated, the list is checked to see if this connected

cover has been encountered before. If it has, the stored reliability value is used thus

saving the reliability re-calculation time.

4.3.2. Proposed ACO Algorithm

In this section, we present our proposed ACO approach for solving the MCRC-SDP.

First, we discuss how the MCRC-SDP is represented as a connected graph for ACO

application, i.e. define the construction graph of the problem. Then, the ants’ tour

construction procedure is described, including the ants’ neighborhood definitions and

heuristic information. This is followed by the formulation of the cost function used for

evaluating the quality of the solutions obtained by the ants. We then describe the pheromone

management scheme followed by the LS procedure which we propose to be coupled with the

ACO algorithm to enhance the quality of the obtained solutions. Finally, we summarize the

steps of the proposed algorithm.

4.3.2.1. Construction Graph

In any ACO algorithm designed to solve a given optimization problem, ants build

solutions incrementally by executing randomized walks or tours through a connected

graph 𝐺(𝑽, 𝑬), where 𝑽 is the set of the graph’s vertices and 𝑬 is the set of all the edges

between the vertices in 𝑽. Therefore, the first step in designing an ACO algorithm to solve a

given optimization problem is to represent the problem as a connected graph 𝐺(𝑽, 𝑬) by

defining the sets 𝑽 and 𝑬 in terms of the problem’s variables. For the MCRC-SDP at hand,

the ACO construction graph is identical to the problem’s graph defined by the set of

deployment points 𝑫 and the location of the sink node in the RoI denoted by 𝑑0. Hence, 𝑽

corresponds to the set of deployment points and the sink node location (i.e. 𝑽 ≡ { 𝑑0, 𝑫} =
{ 𝑑0, 𝑑1, 𝑑2, … , 𝑑|𝑫|}) and 𝑬 corresponds to the set of undirected arcs/links connecting the

deployment points and the sink node in 𝑽 with each other.

4.3.2.2. Tour Construction

The ants’ search behavior in a given construction graph is primarily influenced by a

probabilistic transition rule, which controls how each ant selects its next vertex (i.e.

deployment point) to visit during the construction of its tour (i.e. its solution to the problem).

The probabilistic transition rule is in turn defined by three elements: the neighborhood

definition(s), the heuristic information used by the ant and the pheromone trail values

between the vertices of the construction graph. In this section we will discuss the first two

elements while the pheromone management is discussed in Section 4.3.2.5.

 Chapter 4

87

A. Basic Idea:

Each ant 𝑎, 𝑎 = 1,… ,𝑚, starts its tour at the sink node location 𝑑0, which is an arbitrary

location inside the boundaries of the RoI. Let the solution to the problem at hand which

corresponds to the ant’s tour be denoted by 𝓢𝑎
, initialized by an empty superset, i.e. 𝓢𝑎 = 𝜑.

Ant 𝑎 then starts constructing a solution to the problem by consecutively building connected

covers through transitioning among the deployment points in the construction graph. Let the

index of the connected covers built by ant 𝑎 be denoted by 𝑘, where 𝑘 = 1 in the beginning

of the ant’s tour. An SN is deployed at each deployment point visited by ant 𝑎 and the

deployment point is added to the connected cover that ant 𝑎 is currently building, denoted

by 𝑺𝑘
𝑎. The connectivity of 𝑺𝑘

𝑎
 to the sink node is maintained in each ant’s transition by

selectively defining the neighborhood of the ant’s probabilistic transition rule (i.e. the

candidate deployment points selected for the next transition), which will be discussed in the

next sub-section. The building of 𝑺𝑘
𝑎
 concludes when complete coverage of the target points

in set 𝑻 is achieved. The completed connected cover 𝑺𝑘
𝑎
 is then added to the ant’s solution

superset 𝓢𝑎
. To check if the ant’s tour is complete, 𝑅(𝓢𝑎) is calculated using (4.4) and

compared to the given minimum reliability level 𝑅𝑚𝑖𝑛. If 𝑅(𝓢𝑎) ≥ 𝑅𝑚𝑖𝑛, then ant 𝑎’s tour is

concluded. Otherwise, the index 𝑘 is incremented and ant 𝑎 starts building a new connected

cover through transitioning between the deployments points in the construction graph,

excluding the points belonging to the connected cover(s) the ant built and added to 𝓢𝑎
 so far.

Ant 𝑎 continues building connected covers until 𝑅(𝓢𝑎) meets or exceeds 𝑅𝑚𝑖𝑛. At this point

the solution corresponding to ant 𝑎’s tour is denoted 𝓢𝑎 = {𝑺1
𝑎, 𝑺2

𝑎, … , 𝑺𝑁𝑎

𝑎 }.

B. Heuristic Information and Neighborhood Definitions

At each tour construction step, ant 𝑎 applies a probabilistic transition rule to select which

deployment point it will visit next. The probability that ant 𝑎, currently at deployment

point 𝑑𝑖 , 𝑖 = 0,1,… , |𝑫|, will select deployment point 𝑑𝑗, 𝑗 = 1,2, . . . |𝑫|, to visit next is given

by:

𝑝𝑖𝑗
𝑎 = {

[𝜏𝑖𝑗]
𝛼[𝜂𝑗

𝑎]𝛽

∑ [𝜏𝑖𝑙]
𝛼[𝜂𝑙

𝑎]𝛽𝑑𝑙∈𝓝𝑖
𝑎

 , 𝑖𝑓 𝑑𝑗 ∈ 𝓝𝑖
𝑎

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,

(4.7)

where 𝜏𝑖𝑗 is the pheromone trail value between deployment points 𝑑𝑖 (or sink node if 𝑖 = 0 at

the beginning of the tour) and 𝑑𝑗, 𝜂𝑗
𝑎 is the heuristic value of adding the deployment point 𝑑𝑗

to the connected cover currently being built by ant 𝑎 , i.e. 𝑺𝑘
𝑎 , 𝓝𝑖

𝑎 is the feasible

neighborhood of ant 𝑎 at its current position in the construction graph at 𝑑𝑖, and 𝛼 and 𝛽 are

the parameters that control the influence of the pheromone trail values and heuristic

information on 𝑝𝑖𝑗
𝑎 , respectively.

The definition of the feasible neighborhood 𝓝𝑖
𝑎 of ant 𝑎 at a given current position 𝑑𝑖

depends on whether the next transition the ant is making is an intra-connected cover

transition or inter-connected cover transition. Ant 𝑎 makes an intra-connected cover

transition when the current connected cover its building, i.e. 𝑺𝑘
𝑎 , is not yet complete after the

addition of the deployment point 𝑑𝑖 at which the ant is currently present, i.e. 𝑺𝑘
𝑎 ≠ 𝜑. On the

other hand, ant 𝑎 makes an inter-connected cover transition when its previous transition has

completed 𝑺𝑘
𝑎 but its tour is not yet complete, i.e. 𝑅(𝓢𝑎) < 𝑅𝑚𝑖𝑛. In this case, the next

transition of 𝑎 is the start of a new connected cover, i.e. 𝑘 = 𝑘 + 1 and 𝑺𝑘
𝑎 = 𝜑.

For an intra-connected cover transition, the feasible neighborhood 𝓝𝑖
𝑎 of ant 𝑎 at a given

current position 𝑑𝑖 is defined as follows:

 Chapter 4

88

 𝓝𝑖
𝑎 = {

𝓝𝑖𝑒𝑓𝑓
𝑎 ,𝓝𝑖𝑒𝑓𝑓

𝑎 ≠ 𝜑

𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 ,𝓝𝑖𝑒𝑓𝑓

𝑎 = 𝜑
, (4.8)

where 𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 is defined as the set of deployment points within the communication range 𝑟𝑐 of

any deployment point belonging to 𝑺𝑘
𝑎 . Let the set 𝑫− be the set of deployment points not

visited so far by ant 𝑎 in its current tour. The set 𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 can then be expressed as follows:

𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 = {𝑑𝑗 ∈ 𝑫− ∶ ‖𝑑𝑗𝑑𝑗′‖ ≤ 𝑟𝑐, for any 𝑑𝑗′ ∈ 𝑺𝑘

𝑎}, (4.9)

The set 𝓝𝑖𝑒𝑓𝑓
𝑎 , on the other hand, is a subset of deployment points belonging to 𝓝𝑖𝑓𝑢𝑙𝑙

𝑎

that would offer a coverage gain for 𝑺𝑘
𝑎, i.e. the addition of any of the deployment points

belonging to 𝓝𝑖𝑒𝑓𝑓
𝑎 to 𝑺𝑘

𝑎 would result in the coverage of uncovered target points in 𝑻 by

𝑺𝑘
𝑎. Let the coverage gain of a deployment point 𝑑𝑗 ∈ 𝓝𝑖𝑓𝑢𝑙𝑙

𝑎 be denoted by ℊ𝑗
𝑎. We define

the coverage gain ℊ𝑗
𝑎 as the number of uncovered target points by 𝑺𝑘

𝑎 that would be covered

if an SN is deployed at 𝑑𝑗, i.e. if 𝑑𝑗 is added to the current connected cover 𝑺𝑘
𝑎. Hence, the set

𝓝𝑖𝑒𝑓𝑓
𝑎 can be expressed as follows:

𝓝𝑖𝑒𝑓𝑓
𝑎 = {𝑑𝑗 ∈ 𝓝𝑖𝑓𝑢𝑙𝑙

𝑎 : ℊ𝑗
𝑎 ≠ 0}, (4.10)

For an inter-connected cover transition, on the other hand, the feasible neighborhood 𝓝𝑖
𝑎

of ant 𝑎 at a given current position 𝑑𝑖 is defined as:

 𝓝𝑖
𝑎 = 𝓝𝑠𝑖𝑛𝑘

𝑎
, (4.11)

where 𝓝𝑠𝑖𝑛𝑘
𝑎 is defined as the set of deployment points belonging to 𝑫− which are within a

distance equal to the SN communication range 𝑟𝑐. Note that at the beginning of the tour, 𝑖 =
0 and 𝑫− = 𝑫. Accordingly, we can express 𝓝𝑠𝑖𝑛𝑘

𝑎 as follows:

 𝓝𝑠𝑖𝑛𝑘
𝑎 = {𝑑𝑗 ∈ 𝑫− ∶ ‖𝑑𝑗𝑑0‖ ≤ 𝑟𝑐}, (4.12)

The neighborhood definitions in (4.8) and (4.11) are designed to achieve two goals. The

first goal is to guarantee the connectivity of each cover built by ant 𝑎. Since all ants start

their tours at 𝑑0, the neighborhood definitions guarantee that each added deployment point to

𝑺𝑘
𝑎 will be connected to the sink node via single or multi-hop communication. The second

goal is to minimize the probability of adding redundant deployment points to any of the

connected covers built by the ants, i.e. minimize the probability of ants constructing tours that

correspond to infeasible solutions to the MCRC-SDP that violate the redundancy constraint

expressed in (4.5). This goal is achieved specifically through the neighborhood definition in

(9). The neighborhood definition restricts the candidate deployment points for the ant’s next

transition to points which belong to the set 𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 and have a non-zero coverage gain, i.e.

𝓝𝑖𝑒𝑓𝑓
𝑎 . In the case where 𝓝𝑖𝑒𝑓𝑓

𝑎 = 𝜑, however, adding a redundant deployment point to 𝑺𝑘
𝑎

may occur.

The heuristic value of adding deployment point 𝑑𝑗 to the current connected cover 𝑺𝑘
𝑎

being built by ant 𝑎, denoted by 𝜂𝑗
𝑎, is directly proportional to its coverage gain ℊ𝑗

𝑎 and is

defined as:
𝜂𝑗
𝑎 = ℊ𝑗

𝑎 +1 (4.13)

 Chapter 4

89

Equation (4.13) applies to both types of ant’s transitions, namely, the intra- and inter-

connected cover transitions, where in the latter case the uncovered target points are the entire

set 𝑻, since the current connected cover 𝑺𝑘
𝑎 in this case is empty, i.e. 𝑺𝑘

𝑎 = 𝜑. Table 4.2

summarizes the ants’ tour construction procedure.

Table 4.2 Pseudo code of the tour construction procedure in the proposed ACO algorithm

Procedure TOUR_CONSTRUCTION

1 Input: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛, , 𝜆, 𝜏𝑖𝑗 for 𝑖 = 0,1,… , |𝑫| , 𝑗 = 1,2,… , |𝑫|

2 Initialize: 𝓢𝑎 = 𝜑 , 𝑅(𝓢𝑎) = 0, 𝑘 = 0,𝑫− = 𝑫, ant starts tour at 𝑑0(𝑖 = 0)
3 While 𝑅(𝓢𝑎) < 𝑅𝑚𝑖𝑛

4 Build a new connected cover: 𝑘 ← 𝑘 + 1, 𝑺𝑘
𝒂 = 𝜑 , 𝑻𝑐𝑜𝑣 = 𝜑

5 While 𝑻𝑐𝑜𝑣 ≠ 𝑻 (i.e. 𝑺𝑘
𝑎 is not a complete connected cover)

6 Identify 𝓝𝑖
𝑎 using (9) and (12)

7 Calculate coverage gain ℊ𝑗∀𝑑𝑗 ∈ 𝓝𝑖
𝑎

8 Apply transition rule in (8) to choose next deployment point

9 Update 𝑺𝑘
𝑎

10 Update 𝑻𝑐𝑜𝑣 (i.e. update coverage of 𝑺𝑘
𝑎)

11 End While

12 Update 𝓢𝑎 : 𝓢𝑎 ← { 𝓢𝑎 , 𝑺𝑘
𝑎}

13 Calculate 𝑅(𝑺𝑘
𝑎) and Update 𝑅(𝓢𝑎)

14 Update 𝑫− : 𝑫− ← 𝑫− − 𝑺𝑘
𝑎

15 End While

16 Output: 𝓢𝑎 = {𝑺1
𝑎 , 𝑺2

𝑎 , … , 𝑺𝑁𝑎

𝑎 }, 𝑅(𝓢𝑎)

4.3.2.3. Cost Function

To evaluate the quality of the solution to the MCRC-SDP corresponding to the tour
constructed by ant 𝑎 , i.e. 𝓢𝑎 = {𝑺1

𝑎, 𝑺2
𝑎, … , 𝑺𝑁𝑎

𝑎 }, the following cost function is used:

𝒞(𝓢𝑎) = 𝜔1 ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 + 𝜔2 ∑ Φ𝑁𝑎

𝑘=1 (𝑺𝑘), (4.14)

where the first term of the cost function, ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 = |𝓢𝑎|, represents the total number of

deployment points (i.e. deployed SNs) belonging to the 𝑁𝑎 connected covers in 𝓢𝑎

multiplied by a constant weight 𝜔1. The second term of the cost function penalizes every

connected cover that contains complete redundancy i.e. that is not a minimal connected cover

by a penalty equal to the constant weight 𝜔2.

Since the objective of the MCRC-SDP is to minimize the total deployment cost of the

network, i.e. minimize ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 = |𝓢𝑎|, the weights 𝜔1 and 𝜔2 are set such that the cost

assigned to the solutions follow the following criterion. All the solutions which meet both

the reliability and the redundancy constraints expressed in (4.4) and (4.5), respectively, have

a lower cost than all the solutions that meet the reliability constraint but fail to meet the

redundancy constraint, i.e. solutions that have one or more non-minimal connected covers. As

such, if 𝜔1 is set to unity such that the first term of the cost function is equal to the total

number of deployed SNs (i.e. the deployment cost), then 𝜔2 must be greater than |𝑫| (since

the maximum value of |𝓢𝑎| is |𝑫|). Accordingly, we set 𝜔1 = 1 and 𝜔2 = |𝑫| + 1.

 Chapter 4

90

4.3.2.4. Local Search Procedure

As stated earlier, the proposed ACO algorithm for solving the MCRC-SDP is coupled

with an LS procedure that helps the algorithm find higher quality solutions to the problem.

Similar to the study in [119], after the ants have completed the construction of their

tours/solutions in every ieteration, the LS procedure is applied to each of the constructed

solutions with the objective of reducing its cost as evaluated by the cost function in (4.14).

Table 4.3 shows the pseudo code of the proposed LS procedure.

The operation of the LS procedure can be described as follows. Assuming the LS is applied

on the solution 𝓢𝑎 = {𝑺1
𝑎, 𝑺2

𝑎, … , 𝑺𝑁𝑎

𝑎 } constructed by ant 𝑎, the first step of the LS procedure

is to determine whether any of the connected covers in 𝓢𝑎 violates the redundancy constraint

in (4.5), i.e. Φ(𝑺𝑘
𝑎) = 1, for any 𝑘 = 1,… ,𝑁𝑎. If all the connected covers are minimal

connected covers, i.e. 𝓢𝑎 is a feasible solution, the LS procedure returns 𝓢𝑎 and its

corresponding reliability 𝑅(𝓢𝑎) unchanged. On the other hand, if one or more of the

connected covers in 𝓢𝑎 have redundant deployment points, the LS attempts to reduce the cost

𝒞(𝓢𝑎) by converting these connected covers to minimal connected covers. This procedure is

carried out as follows. For each non-minimal connected cover 𝑺𝑘
𝑎, the LS procedure prunes

 𝑺𝑘
𝑎 by removing completely redundant deployment points in the same method used in the LS

procedure in the proposed MA presented in Section 4.3.1.5. Let the pruned connected cover

be denoted 𝑺𝑘𝑝
𝑎 . The LS procedure then updates the combined reliability of 𝓢𝑎 accordingly

(i.e. substituting 𝑅(𝑺𝑘
𝑎) with 𝑅(𝑺𝑘𝑝

𝑎) in (4.4)). If the updated combined reliability

of 𝓢𝑎 exceeds or meets 𝑅𝑚𝑖𝑛, the pruned connected cover 𝑺𝑘𝑝
𝑎 replaces 𝑺𝑘

𝑎 in the

solution 𝓢𝑎, otherwise 𝑺𝑘
𝑎 is kept without change in 𝓢𝑎. The same above steps are repeated

for every non-minimal connected cover in 𝓢𝑎. Accordingly, for every pruned connected

cover that replaces a non-minimal connected cover in 𝓢𝑎, the cost 𝒞(𝓢𝑎) is reduced by the

value of 𝜔2 = |𝑫| + 1.

Table 4.3 Pseudo code of the LS procedure for the proposed ACO algorithm

Procedure LOCAL_SEARCH

1 Input: 𝓢𝑎 = {𝑺1
𝑎 , 𝑺2

𝑎 , … , 𝑺𝑁𝑎

𝑎 } , 𝒞(𝓢𝑎) , 𝑅(𝓢𝑎)

2 Initialize: 𝒞𝐿𝑆(𝓢
𝑎) ← 𝒞(𝓢𝑎), 𝓢𝑎

𝐿𝑆 ← 𝓢𝑎 , 𝑅(𝓢𝑎
𝐿𝑆) ← 𝑅(𝓢𝑎)

3 𝓢𝑎
𝑡𝑒𝑚𝑝 ← 𝓢𝑎

𝐿𝑆, 𝑅(𝓢𝑎
𝑡𝑒𝑚𝑝) ← 𝑅(𝓢𝑎

𝐿𝑆)
4 For 𝑘 = 1,… ,𝑁𝑎
5 If Φ(𝑺𝑘

𝑎) = 1 , i.e. if 𝑺𝑘
𝑎 is not a minimal connected cover

6 Prune 𝑺𝑘
𝑎 until there are no redundant deployment points. Let

 pruned 𝑺𝑘
𝑎 be denoted 𝑺𝑘𝑝

𝑎

7 Update 𝓢𝑎
𝑡𝑒𝑚𝑝: 𝑺𝑘

𝑎 ← 𝑺𝑘𝑝
𝑎

8 Update 𝑅(𝓢𝑎
𝑡𝑒𝑚𝑝)

9 If 𝑅(𝓢𝑎
𝑡𝑒𝑚𝑝) ≥ 𝑅𝑚𝑖𝑛

10 Update 𝓢𝑎
𝐿𝑆 : 𝑺𝑘

𝑎 ← 𝑺𝑘𝑝
𝑎 . 𝑅(𝓢𝑎

𝐿𝑆) ← 𝑅(𝓢𝑎
𝑡𝑒𝑚𝑝)

11 𝒞𝐿𝑆(𝓢
𝑎) ← 𝒞𝐿𝑆(𝓢

𝑎) − 𝜔2
12 Else
13 𝓢𝑎

𝐿𝑆 remains unchanged → 𝒞𝐿𝑆(𝓢
𝑎) remains unchanged

14 𝓢𝑎
𝑡𝑒𝑚𝑝 ← 𝓢𝑎

𝐿𝑆, 𝑅(𝓢𝑎
𝑡𝑒𝑚𝑝) ← 𝑅(𝓢𝑎

𝐿𝑆)

15 End If

16 End If

17 End For

18 Output: 𝒞𝐿𝑆(𝓢
𝑎) , 𝒞𝐿𝑆(𝓢

𝑎)

 Chapter 4

91

4.3.2.5. Pheromone Management

After all the ants have constructed their tours and the LS procedure has been applied to

the corresponding solutions, pheromone trail values are updated according to the MAX-MIN

Ant System (MMAS) [68] updating rule which can be expressed as follows:

𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 + ∆𝜏𝑖𝑗
𝑖𝑏 , (4.15)

where 𝑖 = 0,1,… , |𝑫|, 𝑗 = 1,… , |𝑫|, 𝜌 ∈ (0,1) is the pheromone evaporation factor and the

added pheromone trail ∆𝜏𝑖𝑗
𝑖𝑏 can be given by the following equation:

∆𝜏𝑖𝑗
𝑖𝑏 = {

1/𝒞𝑖𝑏 , 𝑖𝑓𝑑𝑗 ∈ 𝓢𝑖𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (4.16)

where 𝓢𝑖𝑏
 is the best solution found by the ants in the current iteration of the algorithm (i.e.

iteration-best solution) and 𝒞𝑖𝑏
is its cost evaluated by the cost function expressed in (4.13).

According to the MMAS pheromone update rule, only the ant which found the solution with

the highest quality (i.e. the lowest cost) gets to deposit pheromone on the arcs of the

construction graph.

Note that pheromone is deposited on all the arcs leading to the deployment point 𝑑𝑗 ∈

𝓢𝑖𝑏. This is because the proposed algorithm rewards the inclusion of a deployment point in

the iteration-best solution, regardless of its position in the solution (i.e. regardless of the

connected cover to which it belongs). The reasoning behind this is that the inclusion of such

advantageous deployment points in different connected covers can lead to different but

equally good solutions to the problem. Thus, exploring different permutations of these

deployment points is essential to finding high quality solutions.

Since the MMAS pheromone update rule strongly exploits the best solution found in

each iteration, upper and lower limits, denoted 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛, are imposed on the

pheromone trail value on each arc of the construction graph. This strategy is called

pheromone constraining and is followed to avoid a stagnation situation where the algorithm

converges prematurely to good but sub-optimal solutions. This is due to the excessive

increase of the pheromone trails on the arcs leading to the deployment points belonging to

those solutions. Pheromone constraining ensures that the probability of an ant 𝑎 on

deployment point 𝑑𝑖 selecting a deployment point 𝑑𝑗 ∈ 𝓝𝑖
𝑎 is always greater than zero. The

value of 𝜏𝑚𝑎𝑥 is given by:

𝜏𝑚𝑎𝑥 = 1/𝜌𝒞𝑏𝑠 , (4.17)

where 𝒞𝑏𝑠
is the best solution found so far by the algorithm (i.e. best-so-far solution). Note

that every time a higher quality solution is found and 𝒞𝑏𝑠
 is updated, the value of 𝜏𝑚𝑎𝑥 is

updated accordingly. On the other hand, the value of 𝜏𝑚𝑖𝑛 is given by (4.18), where 𝒷 is a

constant that is set by experimentation.

𝜏𝑚𝑖𝑛 = 𝜏𝑚𝑎𝑥/𝒷, (4.18)

 Chapter 4

92

4.3.2.6. Summary of the proposed ACO algorithm

Table 4.4 summarizes the different steps in the proposed ACO algorithm for solving the

MCRC-SDP. The input to the proposed ACO algorithm includes all the MCRC-SDP instance

parameters (𝑫, 𝑻, 𝑑0 , 𝜆 , 𝑅𝑚𝑖𝑛, 𝑁𝑈𝐵 , 𝑟𝑠 , 𝑟𝑐) and the ACO related parameters (𝑚 , 𝜌, 𝑖𝑡𝑚𝑎𝑥

, 𝑖𝑡𝑐). The ACO parameters 𝑖𝑡𝑚𝑎𝑥 and 𝑖𝑡𝑐 are defined as the maximum allowed number of

iterations the algorithm can carry out and the number of successive iterations the algorithm

can carry out with no enhancement in the best so far solution cost 𝒞𝑏𝑠
 before it is terminated,

i.e. before it is decided that the algorithm has converged.

In the first step of the proposed algorithm, the best-so-far solution cost 𝒞𝑏𝑠
is initialized

to a high value in order to ensure that it is replaced by the best solution cost found in the first

iteration. All Pheromone trails are initialized to unity to ensure that they are constrained to

the upper limit calculated at the end of the first iteration using (4.17). Then, each ant 𝑎,
for 𝑎 = 1, … ,𝑚, constructs its tour/ solution 𝓢𝑎

 according to the tour construction procedure

presented in Section 4.3.2.2 and summarized in Table 4.2. The cost of ant 𝑎’s solution

𝒞(𝓢𝑎) is evaluated using (4.14). Then the LS procedure presented in Section 4.3.2.4 and

summarized in Table 4.3 is applied to 𝓢𝑎
. Note that if the LS procedure produced no

reduction in the value of 𝒞(𝓢𝑎), it returns the original solution and cost unaltered.

After these steps are applied for each ant, the iteration-best solution 𝓢𝑖𝑏
 and the

corresponding cost 𝒞𝑖𝑏
 are identified and used to update the pheromone trail values using

(4.15) and (4.16). Next, the best-so-far solution is updated if 𝒞𝑖𝑏
 is less than the current

𝒞𝑏𝑠
and the values of 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 are updated accordingly using (4.17) and (4.18). The

pheromone constraining procedure follows as described in Section 4.3.2.5. Finally, the

algorithm is terminated if it goes through 𝑛𝑚𝑎𝑥 iterations or if it goes through 𝑛𝑐𝑜𝑛𝑣

iterations with no enhancement in the best-so-far solution cost 𝒞𝑏𝑠 .

Table 4.4 Pseudo code of the proposed ACO algorithm

Ant Colony Optimization Algorithm for Solving MCRC-SDP

1 Input: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛, 𝜆 , 𝑁𝑈𝐵 , 𝑟𝑠 , 𝑟𝑐 , 𝑚 , 𝜌, 𝑛𝑚𝑎𝑥 , 𝑛𝑐𝑜𝑛𝑣

2 Initialize: 𝑖𝑡 = 0 , 𝒞𝑏𝑠 = ∞, 𝓢𝑏𝑠 = 𝜑, 𝜏0 = 1

3 While (𝑖𝑡 < 𝑛𝑚𝑎𝑥 & 𝑛𝑐𝑜𝑛𝑣 > 0)

4 Increment iterations counter: 𝑖𝑡 ← 𝑖𝑡 + 1

5 For 𝑎 = 1,… ,𝑚
6 Apply TOUR_CONSTRUCTION in Table 4.2 procedure to build 𝓢𝑎

7 Calculate tour cost 𝒞(𝓢𝑎) using (4.14)

8 Apply LOCAL_SEARCH procedure in Table 4.3: 𝓢𝑎 ← 𝓢𝑎
𝐿𝑆 ,

 𝒞(𝓢𝑎) ← 𝒞𝐿𝑆(𝓢
𝑎), 𝑅(𝓢𝑎) ← 𝑅(𝓢𝑎

𝐿𝑆)
9 End For

10 Identify iteration-best solution 𝓢𝑖𝑏 and cost 𝒞𝑖𝑏

11 Update pheromone trails using (4.15) , (4.16)

12 If 𝒞𝑖𝑏 < 𝒞𝑏𝑠
13 Update best solution so far: 𝓢𝑏𝑠 ← 𝓢𝑖𝑏 , 𝒞𝑏𝑠 ← 𝒞𝑖𝑏

14 Re-initialize convergence counter 𝑛𝑐𝑜𝑛𝑣 to starting value

15 Else

16 Decrement convergence counter: 𝑛𝑐𝑜𝑛𝑣 ← 𝑛𝑐𝑜𝑛𝑣 − 1

17 End If

18 Apply Pheromone constraining to 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 (4.17) , (4.18)

19 End While

20 Output: 𝓢𝑏𝑠 = {𝑺1
𝑏𝑠, 𝑺2

𝑏𝑠, … , 𝑺𝑁𝑏𝑠

𝑏𝑠 }, 𝒞𝑏𝑠

 Chapter 4

93

4.3.2.7. Measures to Reduce Computational Cost

The same two measures discussed in Section 4.3.1.7, which are applied in the proposed

MA, are applied in the proposed ACO algorithm to reduce the computational cost associated

with the cost function expressed in (4.14).

4.4. Experimental Results and Discussion

In this section, the performance of the proposed MA and ACO algorithms in solving the

MCRC-SDP expressed in (4.1) - (4.5) is evaluated in terms of two main performance metrics,

namely, the quality of the obtained solutions and the computational cost. Since, to the best of

our knowledge, the proposed algorithms are the first algorithms to solve the MCRC-SDP, we

benchmark their performance using a simple GH which attempts to find feasible solutions of

good quality to the MCRC-SDP by successively building connected covers until the

reliability constraint is met.

4.4.1. Experimental Setup

For the conducted experiments, several instances of the MCRC-SDP of different scales

and different values of the minimum reliability 𝑅𝑚𝑖𝑛 are generated. We assume that the RoI

is a two-dimensional square area equal to 100 × 100 m2. The set of target points 𝑻, the set

of deployment points 𝑫 and the location of the sink node 𝑑0 are all generated randomly inside

the perimeter of the RoI. The scale of the problem is identified by the sizes of the sets 𝑫

and 𝑻, denoted by |𝑫| and |𝑻| respectively. For each problem scale, the upper bound of the

number of connected covers 𝑁𝑈𝐵 is calculated using the procedure presented in Section 4.2.3.

We denote each problem scale a test case. Since the value of 𝑅𝑚𝑖𝑛 affects the difficulty level

of the problem instance (the higher the value the more difficult it is to solve the problem

instance), three values for 𝑅𝑚𝑖𝑛 are considered, specifically 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999,

for each test case. That is, each test case generates three problem instances, one for each of

the three 𝑅𝑚𝑖𝑛 values. Table 4.5 shows the data pertinent to each test case, namely the values

of |𝑫|, |𝑻| and 𝑁𝑈𝐵. For all problem instances, we assume the following SN-related

parameters: disk-coverage model, sensing range 𝑟𝑠 = 30 m, communication range 𝑟𝑐 = 50 m

and probabilities of failure of sensor, transceiver, processor and battery,

𝜆𝑠 = 1.0× 10−2 , 𝜆𝑡 = 5.0× 10−3 , 𝜆𝑝 = 2.0 × 10−3 and 𝜆𝑏 = 1.0 × 10−3, respectively.

Table 4.5 Data of test cases used to evaluate the proposed MA and ACO algorithm

Test Case |𝑫| |𝑻| 𝑁𝑈𝐵

TC1 30 15 4

TC2 40 25 4

TC3 50 35 5

TC4 60 45 5

TC5 70 55 6

TC6 80 65 6

TC7 90 75 7

4.4.2. Parameter Settings of the Proposed Algorithms

In this section, we discuss how the different parameters of the proposed MA and ACO

algorithm are set.

 Chapter 4

94

4.4.2.1. Parameter Settings of the Proposed MA

Selecting the MA parameters, including the population size, the crossover rate, the

mutation rate and the LS procedure scheduling, carefully is an important task in optimizing

its performance in solving the optimization problem at hand [133]. However, it is also a

difficult task since a wide range of numbers for each of these parameters have been

recommended in the literature [134], i.e. there are no optimal parameter settings that can be

applied to all optimization problems. Therefore, it is advised that general guidelines for GA

parameters setting are followed along with an initial parameter sensitivity testing on the

problem at hand, which reveals the parameter(s) by which the algorithm performance is most

affected.

For the MCRC-SDP at hand, the initial parameter sensitivity testing revealed that the

performance of proposed MA is most sensitive to the LS procedure schedule, especially in

terms of the computational cost, which is measured by the total CPU run time in seconds for

the algorithm to converge or perform the set maximum number of iterations. Since the ratio

𝑃𝐿𝑆 follows a gradual linear increase as shown in Fig. 4.4, the parameter 𝑛𝐿𝑆 controls the

speed by which this increase occurs during the progress of the MA. According to the study

in [132], this speed is highly dependent on the combination of both the optimization problem

nature (i.e. objective function, constraints, and the design of the MA fitness function) and the

used LS procedure. On one hand, decreasing the value of 𝑛𝐿𝑆 decreases the speed of the LS

procedure application and hence decreases the overall number of chromosomes undergoing

the procedure throughout a given number of iterations. This in turn results in a decrease in the

additional computational cost of the LS procedure and may result in decreasing the overall

computational cost/run time of the algorithm. On the other hand, decreasing the speed of the

LS procedure application may also decrease the speed of convergence of the algorithm, i.e.

increase the number of iterations the algorithm requires to converge and hence increase the

overall computational cost/run time. Similarly, decreasing the value of 𝒏𝑳𝑺 increases the

speed of the LS procedure application and its effect on the overall computational cost/ run

time of the algorithm may be positive or negative as well. It may also cause the algorithm to

quickly get trapped in local minima and converge prematurely. Hence, setting the value of the

parameter 𝑛𝐿𝑆 requires tuning using experimental results. The remainder of the proposed

MA parameters are set as follows [135], [136]: µ = 2|𝑫| (where |𝑫| represents the length of

the integer-encode chromosome), crossover rate is set to 1.0 and the mutation rate is set to

2 |𝑫|⁄ .

In order to tune the LS procedure scheduling to produce the best performance of the

proposed MA in terms of the quality of solutions and the computational cost, we selected two

MCRC-SDP instances at random from the twenty one problem instances generated from the

seven test cases in Table 4.5, namely, TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 at 𝑅𝑚𝑖𝑛 = 0.999. For

both selected problem instances, the proposed MA is applied using seven different values

for 𝑛𝐿𝑆 , specifically, 5,10,20,30,40,50,100. For each value of 𝑛𝐿𝑆 ten independent runs of

the proposed MA are performed to account for the algorithm’s stochastic nature. Since this

experiment involves a significantly large number of runs, we adopted the conventional two-

mode SN model in all reliability calculations in this experiment. This significantly decreases

the computational cost of calculating the fitness function expressed in (4.6) as can be inferred

from the discussion in Section 3.6.2 in Chapter 3. This implicit simplification of the fitness

function has no effect on the outcome of this experiment since the effect of the value of 𝑛𝐿𝑆

on the performance of the proposed MA is independent of the accuracy of the SN model

adopted in reliability calculations. Results of the experiment are shown in Fig. 4.5 and Fig.

4.6.

 Chapter 4

95

Fig. 4.5 shows the quality of the obtained solutions, measured by the average number of

deployment points in the solutions (i.e. the deployment cost) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and for

TC5 at 𝑅𝑚𝑖𝑛 = 0.999. Fig. 4.6 shows the computational cost, measured by the average CPU

run time in seconds, for both problem instances. From Fig. 4.5 we see that the effect of

varying the speed of the LS procedure application for the tested range of values for 𝑛𝐿𝑆 on

the quality of the obtained solutions does not appear to be significant in both tested problem

instances. However, Fig. 4.6 shows that in both tested problem instances, the lowest overall

computational cost of applying the proposed MA occurs at the slowest LS procedure

schedule, i.e. at 𝑛𝐿𝑆 = 100. At that setting, the rate of increase of the number of

chromosomes undergoing the LS procedure per iteration, which is equal to ⌊µ/ 𝑛𝐿𝑆⌋, is equal

Fig. 4.5 Average deployment cost of the solutions obtained by the proposed MA for different LS

procedure schedules (different values of 𝑛𝐿𝑆) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 at 𝑅𝑚𝑖𝑛 = 0.999.

Fig. 4.6 Average computational cost , measured by the CPU run time in seconds, of the proposed

MA for different LS procedure schedules (different values of 𝑛𝐿𝑆) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5

at 𝑅𝑚𝑖𝑛 = 0.999.

to unity for both tested problem instances. This slow speed of LS procedure application

progression does not negatively affect the ability of the solution to obtain relatively good

quality solutions but significantly decrease the overall computational cost of the proposed

5 10 20 30 40 50 100
5

10

15

20

25

LS Procedure Scheduling Parameter n
LS

A
v

er
ag

e
D

ep
lo

y
m

en
t

C
o

st

TC4 at R
min

 = 0.99

TC5 at R
min

 = 0.999

5 10 20 30 40 50 100
0

2

4

6

8

10

12
x 10

4

LS Procedure Sceduling Parameter n
LS

A
v

er
ag

e
C

o
m

p
u

ta
ti

o
n

al
 C

o
st

 (
s)

TC4 at R
min

 = 0.99

TC5 at R
min

= 0.999

 Chapter 4

96

MA by decreasing the additional computational cost of the LS procedure. Hence, we will use

 𝑛𝐿𝑆 = 100 for all tested problem instances in the MA experiments presented later in this

chapter. Table 4.6 shows the settings of the different parameters of the proposed MA.

Table 4.6 Parameters of the proposed MA

Parameter Setting

Population Size µ 2|𝑫|

Parent Selection Roulette Wheel

Crossover Operator Single-point with rate 1.0

Mutation Operator Creep with rate 2 |𝑫|⁄

Survivor Selection µ + 𝜆 scheme

Heuristics Scattering + LS procedure in Table 4.1

LS Procedure Schedule 𝑛𝐿𝑆 100

Maximum No. of Generations 𝑛𝑚𝑎𝑥 100

No. of Generations for Convergence 𝑛𝑐𝑜𝑛𝑣 20

4.4.2.2. Parameters Setting of the Proposed ACO Algorithm

To set the different parameters of the proposed ACO algorithm, we follow the general

guidelines in [68], which suggests that for a wide variety of optimization problems, the

number of ants 𝑚 and the pheromone evaporation rate ρ can be set to 30 and 0.5, to achieve

optimal results. For a fair comparison with the proposed MA in the following experiments,

we set 𝑛𝑚𝑎𝑥 = 100 and 𝑛𝑐𝑜𝑛𝑣 = 20. However, the optimal values of the ACO parameters α

and β vary depending on the problem at hand. It is therefore important to find their optimum

configuration that would result in the best average solution quality obtained by the ACO

algorithm for the MCRC-SDP. In the ACO literature, values of both α and β can vary

between 1 and 5, with the optimum configuration largely depending on the type of problem

the ACO algorithm is designed to solve and whether or not the algorithm is coupled with an

LS procedure [68].

Similar to the method followed in tuning 𝑛𝐿𝑆 in the proposed MA, we selected two

problem instances at random from the twenty one problem instances generated from the

seven test cases in Table 4.5, namely test case TC3 for 𝑅𝑚𝑖𝑛 = 0.9999 and TC6 for 𝑅𝑚𝑖𝑛 =
0.99, in order to find the optimum configuration of α and β for the problem at hand. For both

selected problem instances, the proposed ACO algorithm is applied using twenty-five

possible combinations of α and β, with each parameter ranging between 1 and 5. To account

for the heuristic nature of the ACO algorithm, the algorithm is run ten independent times at

each of the twenty-five parameters’ settings. Since this experiment involves a significantly

large number of runs, we adopted the conventional two-mode SN model in all reliability

calculations in this experiment. This significantly decreases the computational burden of

calculating the fitness function expressed in (4.6) as can be inferred from the discussion in

Section 3.6.2 in Chapter 3. Similar to the previous section, we use the conventional two-mode

SN model in all reliability calculations to decrease the computational cost of this experiment

without affecting its outcome.

Fig. 4.7 and Fig. 4.8 show the average value of the total number of deployment points,

i.e. the average deployment cost, in the obtained solutions the versus α and β. Fig. 2 shows

that there is an advantage in setting 𝛼 = 1 and 𝛽 = 3, at which the minimum average

deployment cost is obtained. Fig. 3 also shows that the minimum average deployment cost is

obtained by setting 𝛼 = 1 and 𝛽 = 3 in addition to setting 𝛼 = 2 and 𝛽 = 5. Hence, in the

 Chapter 4

97

following experiments we set 𝛼 = 1 and 𝛽 = 3. Table 4.7 shows the settings of the different

parameters of the proposed ACO algorithm.

Fig. 4.7 The average deployment cost obtained from applying the proposed ACO algorithm on test

case TC3 at 𝑅𝑚𝑖𝑛 = 0.9999. The best combination of α and β is (1,3).

Fig. 4.8 The average deployment cost obtained from applying the proposed ACO algorithm on test

case TC6 at 𝑅𝑚𝑖𝑛 = 0.99. The best combinations of α and β are (1,3) and (2,5).

1

2

3

4

5

1

2

3

4

5

22.5

22.6

22.7

22.8

22.9

23

A
v

e
ra

g
e
 D

e
p

lo
y

m
e
n

t
C

o
st

1

2

3

4

5

1

2

3

4

5

18.2

18.4

18.6

18.8

19

19.2

A
v

er
ag

e
D

ep
lo

y
m

en
t

C
o

st

 Chapter 4

98

Table 4.7 Parameters of the proposed ACO algorithm

Parameter Setting

Number of ant 𝑚 30

Pheromone influence parameter α 1

Heuristic info influence parameter β 3

Pheromone levels update rule MMAS

Pheromone evaporation rate ρ 0.5

Pheromone constraining parameter 𝒷 10

Heuristics LS procedure in Table 4.4

Maximum No. of Generations 𝑛𝑚𝑎𝑥 100

No. of Generations for Convergence 𝑛𝑐𝑜𝑛𝑣 20

4.4.3. A GH for Benchmarking the Proposed Algorithms

Since, to the best of our knowledge, the proposed MA and ACO algorithms are the first

algorithms for solving the MCRC-SDP, a benchmark approach is required to evaluate their

performance. Similar to the studies in [121], [94] and [73], we benchmark the performance

of the proposed algorithms using a GH. The GH uses the same heuristic information adopted

in the proposed ACO algorithm. It also follows the same basic idea of constructing solutions

to the MCRC-SDP by consecutively building connected covers until the combined reliability

of the connected covers meets or exceeds the specified minimum reliability 𝑅𝑚𝑖𝑛. The pseudo

code of the GH is given in Table 4.8.

The input to the GH includes all the MCRC-SDP instance

parameters: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛 , 𝑟𝑠 , 𝑟𝑐 , 𝜆𝑠, 𝜆𝑡 , 𝜆𝑝 and 𝜆𝑏. The GH is initialized by an empty

solution superset (i.e. 𝓢 = 𝜑) and a connected cover index 𝑘 = 0. The GH then proceeds in

rounds. In each round, a deployment point is added to the connected cover with the current

index 𝑘, denoted by 𝑺𝑘. Similar to the proposed ACO algorithm, connectivity to the sink

node located at 𝑑0 is achieved by constricting the candidate deployment points for inclusion

to 𝑺𝑘 in a given round to the set 𝓝𝑛𝑒𝑥𝑡. Similar to the neighborhood set 𝓝𝑖
𝑎 defined in

Section 4.3.2.2 and expressed in (4.8) and (4.11), the definition of the set 𝓝𝑛𝑒𝑥𝑡 depends on

whether the current round is an intra- or inter- connected cover round. For an intra-connected

cover round, 𝓝𝑛𝑒𝑥𝑡 has a similar definition to the set 𝓝𝑖𝑓𝑢𝑙𝑙
𝑎 expressed in (4.9), which

includes all the deployment points which have not been added in previous rounds to the

solution and are within the communication range 𝑟𝑐 of any of the deployment points

belonging to 𝑺𝑘. For an inter-connected cover round (which includes the first round, i.e. the

start of the first connected cover), on the other hand, 𝓝𝑛𝑒𝑥𝑡 has a similar definition to the

set 𝓝𝑠𝑖𝑛𝑘
𝑎 , which includes all the deployment points which have not been added in previous

rounds to the solution and are within the communication range 𝑟𝑐 of the sink node located at

𝑑0. For both types of rounds, the GH calculates the coverage gain ℊ𝑗, as defined in Section

4.3.2.2, of all the deployment points 𝑑𝑗 ∈ 𝓝𝑛𝑒𝑥𝑡 and adds the point with the highest gain,

denoted by ℊ𝑚𝑎𝑥, to 𝑺𝑘. In the case where more than one deployment point have the

maximum gain or if none of the deployment points belonging to 𝓝𝑛𝑒𝑥𝑡 have a non-zero

coverage gain, the GH chooses a deployment point from 𝓝𝑛𝑒𝑥𝑡 randomly. The GH

terminates when the combined reliability of the constructed connected covers meets the

reliability constraint, i.e. 𝑅(𝓢) ≥ 𝑅𝑚𝑖𝑛.

 Chapter 4

99

Table 4.8 Pseudo code of the GH used for benchmarking the performance of the proposed

algorithms for solving the MCRC-SDP

Procedure GREEDY_HEURISTIC

1 Input: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛 , 𝑟𝑠 , 𝑟𝑐 , 𝜆𝑠, 𝜆𝑡 , 𝜆𝑝 and 𝜆𝑏

2 Initialize: 𝓢 = 𝜑 , 𝑅(𝓢) = 0, 𝑘 = 0,𝑫− = 𝑫

3 While 𝑅(𝓢) < 𝑅𝑚𝑖𝑛

4 Build a new connected cover: 𝑘 ← 𝑘 + 1, 𝑺𝑘 = 𝜑 , 𝑻𝑐𝑜𝑣 = 𝜑

5 While 𝑻𝑐𝑜𝑣 ≠ 𝑻 (i.e. 𝑺𝑘 is not a complete connected cover)

6 If 𝑺𝑘 = 𝜑 , i.e. the beginning of 𝑺𝑘

7 𝓝𝑛𝑒𝑥𝑡 = {𝑑𝑗 ∈ 𝑫−: ‖𝑑𝑗𝑑0‖ ≤ 𝑟𝑐}

8 Else

9 𝓝𝑛𝑒𝑥𝑡 = {𝑑𝑗 ∈ 𝑫−: ‖𝑑𝑗𝑑𝑗′‖ ≤ 𝑟𝑐 for any 𝑑𝑗′ ∈ 𝑺𝑘}

10 End If

11 Calculate coverage gain ℊ𝑗∀𝑑𝑗 ∈ 𝓝𝑛𝑒𝑥𝑡

12 Update 𝑺𝑘 by adding 𝑑𝑗 ∈ 𝓝𝑛𝑒𝑥𝑡 with ℊ𝑗 = ℊ𝑚𝑎𝑥

13 Update 𝑻𝑐𝑜𝑣 (i.e. update coverage of 𝑺𝑘)

14 End While

15 Update 𝓢 : 𝓢 ← 𝓢 ∪ 𝑺𝑘

16 Calculate 𝑅(𝑺𝑘) and Update 𝑅(𝓢)

17 Update 𝑫− : 𝑫− ← 𝑫− − 𝑺𝑘

18 End While

19 Output: 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, 𝑅(𝓢)

4.4.4. Comparison and Discussion

To carry out our evaluations, we apply the three algorithms, MA, ACO and GH, to the

twenty one MCRC-SDP problem instances generated from the seven test cases in Table 4.5 at

a minimum required reliability 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999. For each problem instance,

ten independent runs of each of the three algorithms are performed. For the MA and ACO

algorithm, the parameters settings listed in Tables 4.6 and 4.7, respectively, are used. The

algorithms are run on a workstation with the following specs: an Intel Xeon processor, CPU

E5620, 2.4 GHz and 24 GB RAM.

Tables 4.9, 4.10 and 4.11 summarize the results, in terms of the quality of

solutions/deployment cost obtained by the three algorithms for the seven test cases at 𝑅𝑚𝑖𝑛 =
0.99, 0.999 and 0.9999, respectively. The tables show the lowest (‘Best’), highest (‘Worst’)

and the average (‘Avg.’) deployment cost obtained from each algorithm. The tables also

show the success rate (‘SR’) in percentage of each method in finding a solution to each

MCRC-SDP instance that fulfills all the constraints of the problem, i.e. a feasible solution.

For each problem instance, the best result(s)/lowest deployment cost obtained among the

three algorithms is written in bold. To provide a statistically accurate comparison in terms of

the averages of the obtained results, a set of pair-wise Wilcoxon Signed-Rank test [137] is

performed to confirm the initial observations drawn from the results in Tables 4.9 – 4.11.

Tables 4.12 – 4.14 show the resulting p-values of the performed statistical test and the

corresponding conclusion for each problem instance. Values less than the specified statistical

significance, α=0.01, indicate that the null hypodissertation of equal averages is rejected. The

alternative hypodissertation of the test is therefore true with a 99% confidence level, where

“A<B” means B performs better than A (the true mean of the obtained deployment cost from

B is lower than from A), while “A≈B” means A and B perform almost similarly.

 Chapter 4

100

Table 4.9 Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.99

Test

Case

Greedy Heuristic Proposed MA Proposed ACO Algorithm

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%)

TC1 10 11 10.1 40 8 10 8.4 100 8 8 8 100

TC2 11 12 11.1 70 8 10 9.1 100 8 8 8 100

TC3 11 19 12.5 30 10 11 10.2 100 10 10 10 100

TC4 12 22 15.8 50 10 11 10.8 100 10 10 10 100

TC5 19 22 20.4 40 18 19 18.4 100 18 18 18 100

TC6 20 24 21.8 40 19 20 21.8 100 18 19 18.4 100

TC7 21 23 22.2 70 20 21 20.7 100 19 20 19.2 100

Table 4.10 Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.999

Test

Case

Greedy Heuristic Proposed MA Proposed ACO Algorithm

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%)

TC1 15 17 15.6 30 13 14 13.2 100 13 13 13 100

TC2 15 18 16.7 40 14 15 14.4 100 13 13 13 100

TC3 18 29 23.3 20 16 17 16.8 100 16 16 16 100

TC4 18 26 21.4 40 17 18 17.3 100 16 16 16 100

TC5 26 29 27.4 30 25 26 25.3 100 24 24 24 100

TC6 28 31 29.7 20 26 28 27.1 100 25 26 25.7 100

TC7 30 32 31 20 27 29 28.4 100 26 27 26.1 100

Table 4.11 Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.9999

Test

Case

Greedy Heuristic Proposed MA Proposed ACO Algorithm

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%)

TC1 21 22 21.8 20 18 19 18.3 100 18 18 18 100

TC2 22 26 23.5 10 20 22 20.8 100 18 18 18 100

TC3 27 38 34.3 0 23 24 23.7 100 22 23 22.6 100

TC4 24 34 30 30 23 25 23.8 100 22 22 22 100

TC5 33 37 35.7 10 31 34 32.8 100 30 31 30.8 100

TC6 36 40 37.7 10 34 35 34.2 100 32 33 32.4 100

TC7 38 42 38.9 10 34 36 35.4 100 33 34 33.5 100

Table 4.12 Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.99 at

99% confidence level

Test Case GH vs. MA1 MA vs. ACO2 Conclusion

TC1 9.69 × 10−5 3.88× 10−2 GH < MA ≈ ACO

TC2 2.93 × 10−5 7.83 × 10−5 GH < MA < ACO

TC3 1.11 × 10−4 8.37 × 10−2 GH < MA ≈ ACO

TC4 5.03 × 10−5 2.20 × 10−4 GH < MA < ACO

TC5 2.97× 10−4 1.68× 10−2 GH < MA ≈ ACO

TC6 1.42 × 10−4 1.27 × 10−4 GH < MA < ACO

TC7 1.28 × 10−4 8.92 × 10−5 GH < MA < ACO

 Chapter 4

101

Table 4.13 Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.999 at

99% confidence level

Test Case GH vs. MA1 MA vs. ACO2 Conclusion

TC1 4.52 × 10−5 8.37 × 10−2 GH < MA ≈ ACO

TC2 3.06 × 10−4 2.28 × 10−5 GH < MA < ACO

TC3 5.43 × 10−5 2.20 × 10−4 GH < MA < ACO

TC4 2.09 × 10−4 2.02 × 10−5 GH < MA < ACO

TC5 1.37 × 10−4 2.02 × 10−5 GH < MA < ACO

TC6 8.03 × 10−5 1.15 × 10−4 GH < MA < ACO

TC7 6.04 × 10−5 4.18 × 10−5 GH < MA < ACO

Table 4.14 Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.9999 at

99% confidence level

Test Case GH vs. MA1 MA vs. ACO2 Conclusion

TC1 3.68 × 10−5 3.84 × 10−2 GH < MA ≈ ACO

TC2 9.09 × 10−5 2.38 × 10−5 GH < MA < ACO

TC3 6.31 × 10−5 4.82 × 10−4 GH < MA < ACO

TC4 7.18 × 10−4 2.38 × 10−5 GH < MA < ACO

TC5 2.64 × 10−4 1.36 × 10−4 GH < MA < ACO

TC6 4.71 × 10−5 4.09 × 10−5 GH < MA < ACO

TC7 6.39 × 10−5 2.20 × 10−4 GH < MA < ACO

All tests are carried out at a 99 percent confidence interval, i.e. α = 0.01

“A<B” means B performs better than A, i.e. the true mean of B is lower than A, while “A≈B” means A and B perform similarly, i.e. there
is no sufficient evidence to reject the null hypodissertation of equal true means.

1. 𝑝 −values of the Wilcoxon signed-rank test of the alternative hypodissertation that the mean of the proposed MA is lower than the mean
of the GH.

2. 𝑝 −values of the Wilcoxon signed-rank test of the alternative hypodissertation that the mean of the proposed ACO algorithm is lower
than the mean of the proposed MA.

Results in Tables 4.9 - 4.11 demonstrate that the proposed MA and ACO algorithms are

consistently capable of finding fully feasible solutions to the problem at hand with a success

rate of 100% for all the twenty one problem instances under consideration. This proves that

the underlying design of the different building blocks of the two proposed algorithms is

indeed appropriate for the problem at hand. For the MA, the demonstrated ability to converge

to feasible solutions to the MCRC-SDP with a success rate of 100% for all the tested problem

instances is attributed to the design of the chromosome fitness function expressed in (4.6). As

discussed in Section 4.3.1.2, the reliability and redundancy constraints of the MCRC-SDP

expressed in (4.4) and (4.5) are not automatically met in each chromosome. This in turn

means that only a part of the genotypic space corresponds to feasible solutions to the MCRC-

SDP. However, both of these constraints are incorporated in the fitness function by means of

the two penalty terms which dampen the fitness of the chromosomes that correspond to

solutions which violate one or both constraints. As a result, the MA search is directed

towards the regions in the genotypic space which correspond to fully feasible solutions. This

process is accelerated by the application of the LS procedure which aims to increase the

fitness of the chromosomes to which it is applied by attempting to remove the redundancy

and reliability constraints’ violations in the corresponding solutions. For the proposed ACO

algorithm, the demonstrated ability to consistently find feasible solutions is attributed to the

design of the cost function expressed in (4.14). Some ants may construct infeasible tours due

 Chapter 4

102

to the violation of the redundancy constraint if one or more of the connected covers in the

corresponding solutions are non-minimal. However, the cost function penalizes these

infeasible tours and consequently the pheromone trail levels will reinforce feasible tours and

increase the proportion of ants which construct feasible solutions over that of ants which

construct non-feasible ones. This process is accelerated by the use of the proposed LS

procedure outlined in Table 4.3.

On the other hand, the success rate of the GH does not exceed 70% and is, on average,

considerably lower than 70%. For all the problem instances under consideration, the GH was

able to construct solutions that satisfy the constraints expressed in (4.2) - (4.4). However, it

failed in a considerable number of runs in obtaining solutions that satisfy the redundancy

constraint expressed in (4.5), i.e. solutions that consist only of minimal connected covers and

hence are feasible solutions. The failure of the GH in consistently constructing feasible

solutions to the MCRC-SDP problem which consist only of minimal connected covers can be

attributed to its ‘greedy’ method it follows in constructing the connected covers. This method

aims at reducing the chance of adding redundant deployment points to the connected covers

but fails to eliminate it completely. A redundant deployment point or points can be added to a

given connected cover 𝑺𝑘 in the following case. At any given stage in constructing 𝑺𝑘, all

the deployment points belonging to the set 𝓝𝑛𝑒𝑥𝑡 may happen to have a zero coverage gain.

In this case, the GH selects a deployment point at random from 𝓝𝑛𝑒𝑥𝑡 to maintain the

connectivity of 𝑺𝑘. Hence, the selected deployment point is redundant to 𝑺𝑘 in terms of

coverage but non-redundant in terms connectivity thus far. However, depending on the

deployment points selected by the GH in the following rounds till the completion of 𝑺𝑘, this

redundant deployment point(s) in terms of coverage may become redundant in terms of

connectivity as well, meaning that its elimination from 𝑺𝑘 would not compromise its

coverage or connectivity. Hence, such a deployment point(s) becomes fully redundant and

consequently 𝑺𝑘 becomes a non-minimal connected cover.

It can also be observed from the GH results shown in Tables 4.9 - 4.11 that for each of

the seven test cases, the success rate of the GH declines as the value of 𝑅𝑚𝑖𝑛 increases. This

behaviour is expected since the number of connected covers required to satisfy the reliability

constraint increases with the increase of the value of 𝑅𝑚𝑖𝑛. As the number of connected

covers the GH has to construct to meet 𝑅𝑚𝑖𝑛 increases, the probability that a non-minimal

connected cover is constructed increases as well. Consequently, this increases the probability

that the GH obtains a non-feasible solution with one or more non-minimal connected covers

which constitutes a failure.

Examining the results in Tables 4.9 - 4.11 also reveals that the two proposed algorithms

significantly outperform the GH in terms of the deployment cost in all tested problem

instances. For the proposed MA, in all instances, the algorithm obtained a minimum

deployment cost (i.e. ‘Best’ solution) solution which is lower than that obtained by the GH.

The difference between the averages of both algorithms is also significant in favour of the

proposed MA. For the proposed ACO, results relative to those of the GH are even better. In

all the problem instances, the highest deployment cost (i.e. ‘Worst’ solution) obtained by the

ACO algorithm is lower than the lowest total number of deployment points in the solutions

(i.e. ‘Best’ solution) obtained by the GH. This implies that even for the problem instances

where the GH succeeded in obtaining solutions consisting only of minimal covers (i.e.

feasible solutions) with a success rate higher than null, the proposed MA and ACO

algorithms were capable of finding feasible solutions with significantly higher quality, i.e.

solutions of a lower deployment cost. These observations are confirmed by the statistical tests

carried out and summarized in Tables 4.12 - 4.14. These tests conclude that for all the tested

problem instances, the two proposed algorithms outperform the GH with a confidence level

of 99%. This proves that the two algorithms are appropriately designed and tuned for the

 Chapter 4

103

MCRC-SDP. It is also worth mentioning that for the majority of the test problem instances,

the MA and ACO algorithm solutions consistently have a higher combined reliability levels

than those of the feasible GH solutions. This is because the reliability of a minimal connected

cover is inversely proportional to its size, provided that it has no coverage redundancy. The

reliability in this case is equal to the probability of the existence of a single event that all the

deployed SNs are in the on state. This probability increases when there are fewer deployed

SNs, i.e. when there are fewer deployment points in the minimal connected cover. Therefore

for the used problem instances, where the feasible solutions obtained from the three

algorithms consist of minimal connected covers with no coverage redundancy, the lower the

deployment cost, the higher the combined reliability level of the connected covers.

 Results of test cases TC3 and TC4 show a greater advantage of the proposed MA and

ACO algorithm over the GH in terms of solution quality as compared to the rest of the test

cases at the three considered levels for 𝑅𝑚𝑖𝑛. This can be explained as follows. In these

problem instances, some of the GH obtained solutions (both feasible and partially feasible)

consisted of an entire additional connected cover when compared to the solutions obtained by

the MA and ACO algorithms. This is because in these problem instances the GH constructed

one or more minimal connected covers of non-optimal size (i.e. with lower reliability) in its

earlier rounds, i.e. at the beginning of constructing a solution to the problem. This has caused

the GH to have to construct an additional connected cover to meet the reliability constraint.

This situation does not occur in the solutions obtained by the proposed MA and ACO due to

their search efficiency.

 As far as the comparison between the MA and ACO algorithms is concerned, the results

in Tables (4.9) - (4.11) suggest that the ACO algorithm outperforms the MA in the majority

of the tested problem instances. In terms of the average of the obtained solutions, this

conclusion is further confirmed by the results of the statistical tests performed and which are

presented in Tables (4.12) - (4.14). In terms of the lowest deployment cost (i.e. ‘Best’

solution), the MA exhibits a similar performance to the ACO algorithm in almost half of the

tested problem instances. However, the MA’s performance in that aspect deteriorates with the

increase of 𝑅𝑚𝑖𝑛, i.e. deteriorates with the increase of the difficulty level of the problem.

Furthermore, the MA results show a higher level of variation, i.e. a higher standard deviation,

than the results obtained by the ACO algorithm. This behaviour can be attributed to the fact

that the framework of the ACO is better suited to the MCRC-SDP. Specifically, the design of

the ACO tour construction ensures that for every ant tour, the reliability constraint expressed

in (4.4) is met by the constructed solution. Also, the neighbourhood definitions expressed in

(4.8) - (4.12) ensure that for every ant tour, the level of SN redundancy in each constructed

connected covers is non-existent at best or very low at worst. Hence, especially as the ACO

algorithm progresses and the pheromone levels reinforce the feasible solutions, a significant

portion of the ants in each iteration build feasible solutions. Furthermore, for those ants that

build infeasible solutions, the LS procedure may convert that infeasible solution to a feasible

one if the reliability constraint can still be met after pruning.

On the other hand, the chromosome encoding scheme in the proposed MA cannot

guarantee that the reliability or the redundancy constraints are met in each chromosome.

Therefore, only a fraction of the genotypic space correspond to feasible solutions. This in turn

decreases the efficiency of the search performed by the MA in comparison with the ACO

algorithm, especially with the increase on 𝑅𝑚𝑖𝑛. As 𝑅𝑚𝑖𝑛 increases it becomes a more

difficult task to find high quality feasible solutions and a higher chance that the MA will

converge to a local minimum. This conclusion is supported by the following pattern in the

results shown in Tables 4.9 - 4.11. At 𝑅𝑚𝑖𝑛 = 0.99, the MA was able to find the minimum

deployment cost (i.e. ‘Best’ solution) in five out of the seven test cases. At 𝑅𝑚𝑖𝑛 = 0.999 it

 Chapter 4

104

was able to do that in only two test cases. At 𝑅𝑚𝑖𝑛 = 0.9999 it was able to do that in only

one test case.

It can also be observed from Tables 4.9 - 4.11 that the solutions obtained by the MA

have a significantly higher variability, i.e. a higher standard deviation, than the solutions

obtained from the ACO algorithm. This behaviour can be explained as follows. According to

the ant tour construction procedure, all ants start their tours at the sink node location in the

RoI, which is generated randomly for every test case. Their choice of the first deployment

point to add to every constructed connected cover, including the first one, is stochastic since

it is governed by the probabilistic transition rule expressed in (4.7). However, these

deployment points are constricted by the feasible neighborhood 𝓝𝑖
𝑎 expressed in (4.11). On

the other hand, the solution obtained by the MA in each run is highly affected by the fitness

of the chromosomes in the initial generation/population which is randomly selected. Hence,

the results obtained from the ACO algorithm have a lower sensitivity to the random

initialization which originates from the transition rule in (4.7) than the sensitivity of the

results obtained by the MA to the random initialization of its first population.

Fig. 4.9(a), 4.10 (a) and 4.11(a) show a comparison between the MA and ACO algorithm

in terms of the computational cost, measured by the CPU run-time in seconds, for 𝑅𝑚𝑖𝑛 =
0.99, 0.999 and 0.9999, respectively. Fig. 4.9(b), 4.10 (b) and 4.11(b) show a comparison

between the MA and ACO algorithm in terms of the total number of performed structure

function evaluations in the reliability calculations of the fitness and cost functions,

for 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999 respectively. The 95% confidence interval is indicated in

both sets of figures.

Examining Fig. 4.9(a), 4.10 (a) and 4.11(a) shows that for each test case and for both the

MA and the ACO algorithm, the increase in the value of 𝑅𝑚𝑖𝑛 causes an increase in the

computational cost, i.e. the run-time of the algorithm. This is an expected behavior since

increasing 𝑅𝑚𝑖𝑛 raises the difficulty level of the problem as solutions are expected to contain

a higher number of minimal connected covers. Examining Fig. 4.9(b), 4.10 (b) and 4.11(b)

confirms this conclusion. For each test case, as 𝑅𝑚𝑖𝑛 increases, the average number of total

performed structure function evaluations increases significantly.

Results illustrated in Fig. 4.9, 4.10 and 4.11 also show that the computational cost of the

two algorithms is affected differently by the increase in the problem scale. For the proposed

(a) (b)

Fig. 4.9 Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5

at 𝑅𝑚𝑖𝑛 = 0.99 measured using (a) CPU run-time in seconds, (b) Total number of performed network

structure function evaluations.

TC1 TC2 TC3 TC4 TC5 TC6 TC7
10

0

10
1

10
2

10
3

10
4

10
5

Test Cases

C
P

U
 R

u
n

 T
im

e
 (

s)

MA

ACO

TC1 TC2 TC3 TC4 TC5 TC6 TC7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Test Cases

T
o

ta
l

N
u

m
b

er
 o

f
S

tr
u

ct
u

re
 F

u
n

ct
io

n
 E

v
al

u
at

io
n

s

MA

ACO

 Chapter 4

105

(a) (b)

Fig. 4.10 Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5

at 𝑅𝑚𝑖𝑛 = 0.999 measured using (a) CPU run-time in seconds, (b) Total number of performed

network structure function evaluations.

 (a) (b)

Fig. 4.11 Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5

at 𝑅𝑚𝑖𝑛 = 0.9999 measured using (a) CPU run-time in seconds, (b) Total number of performed

network structure function evaluations.

MA, increasing the value of |𝑫| consistently increases the computational cost of the

algorithm. This can be attributed to the chromosome encoding scheme in which the

chromosome length is equal to |𝑫| to preserve the one-to-one correspondence between the

chromosome genes and the deployment points in a given test case. The size of the population

is also directly proportional to the problem scale as µ = 2|𝑫|. For the proposed ACO

algorithm, the correlation between |𝑫| and the computational cost is less drastic compared to

the MA. This is primarily because the number of ants 𝑚 remains unchanged for all the test

cases under consideration.

Results in Fig. 4.9, 4.10 and 4.1 also show that for all the tested instances, the ACO

algorithm has a significantly lower computational cost than the MA. This behavior can be

attributed to two main factors. The first factor is the higher population size of the MA

compared to the number of ants in the ACO algorithm. The second factor is the fact the

execution time of a structure function evaluation directly proportional to the size of the

connected cover for which the evaluation is carried out. Due to the chromosome encoding

scheme used in the MA, chromosomes may represent connected covers with high levels of

redundancy, especially in the earlier iterations of the algorithm. On the other hand, the ant

TC1 TC2 TC3 TC4 TC5 TC6 TC7
10

0

10
1

10
2

10
3

10
4

10
5

Test Cases

C
P

U
 R

u
n

 T
im

e
(s

)

MA

ACO

TC1 TC2 TC3 TC4 TC5 TC6 TC7
0

1

2

3

4

5

6
x 10

5

Test Cases

T
o

ta
l

N
u

m
b

er
 o

f
S

tr
u

ct
u

re
 F

u
n

ct
io

n
 E

v
al

u
at

io
n

s

MA

ACO

TC1 TC2 TC3 TC4 TC5 TC6 TC7
10

0

10
1

10
2

10
3

10
4

10
5

Test Cases

C
P

U
 R

u
n

 T
im

e
 (

s)

MA

ACO

TC1 TC2 TC3 TC4 TC5 TC6 TC7
0

1

2

3

4

5

6

7

8

9
x 10

5

Test Cases

T
o

ta
l

N
u

m
b

e
r

o
f

S
tr

u
c
tu

re
 F

u
n

c
ti

o
n

 E
v

a
lu

a
ti

o
n

s

MA

ACO

 Chapter 4

106

tour construction procedure and the feasible neighborhood definitions are designed to

minimize the chance of ants constructing non minimal connected covers. Hence, during the

execution of both algorithms, the average size of the connected covers the MA calculates

reliability for is higher than that in the case of the ACO algorithm. This in turn means that the

average execution time of a structure function evaluation is higher in the case of the MA than

the ACO algorithm.

4.5. Chapter Summary

In this chapter, we considered the problem of deploying a WSN that meets a specified

minimum level of reliability during its mission time at a minimum network deployment cost.

To minimize the internal interference, bandwidth usage and energy consumption throughout

the network’s mission time, we defined the problem as the problem of finding a number of

non-overlapping minimal connected covers of the targeted region of interest such that the

combined reliability level of these connected covers meets or exceeds the specified minimum

level of reliability while the deployment cost is kept at a minimum. We coined this problem

the MCRC-SDP and proved that it is NP-complete. To measure the reliability of the network,

we used the reliability metric proposed in Section 3.5.3 in Chapter 3. We proposed two

stochastic optimization algorithms to solve the defined MCRC-SDP, namely, a MA (i.e.

HGA) and an ACO each coupled with a LS procedure. For each of the proposed algorithms,

we discussed the design of the different building blocks of the algorithm. To benchmark the

performance of both algorithms in terms of the quality of the obtained solutions, we

presented a GH which attempts to find good quality solutions for the MCRC-SDP by using

the same underlying idea of building solutions and heuristic information adopted in the

proposed ACO algorithm. Finally, we presented and discussed our experimental results of

applying the three algorithms to twenty one MCRC-SDP problem instances with different

scales and required minimum reliability levels. Experimental results showed that for all the

tested problem instances, the proposed MA and ACO algorithm significantly outperform the

GH in terms of the quality of the obtained solutions, which validates the design of both

algorithms. Experimental results also showed that the ACO algorithm outperforms the MA in

the majority of the tested problem instances in terms of quality/optimality and in all the tested

problem instances in terms of the computational cost. Results also suggest that the proposed

ACO algorithm exhibits better scalability to the dimensions of the MCRC-SDP (determined

by |𝑫| and |𝑻|) than the proposed MA.

 Chapter 5

107

Chapter 5

A Practical Realization of the Proposed Reliable

Cost-Optimal Deployment Technique

5.1. Introduction

Each of the minimal connected covers belonging to the solution of the MCRC-SDP

problem provides complete coverage of the target locations in RoI and forms a connected

network with the sink node. According to the formulation of the MCRC-SDP presented in

Section 4.2.2 in Chapter 4, these minimal connected covers are assumed to be activated in an

orthogonal manner. This assumption is adopted to minimize the level of internal interference

in the network during its mission time and is fundamental to the formulation of the reliability

constraint expressed in (4.5). There is therefore a need to coordinate the sleep and active

cycles of the SNs belonging to these connected covers based on the dynamic state of the

overall deployment throughout the network mission time. This type of SN activity

coordination is known in the WSN literature as topology control.

The goal of a topology control protocol designed for a reliable WSN deployment

obtained from solving the MCRC-SDP defined by (4.1) - (4.5) is to activate the deployed

minimal connected covers in the assumed orthogonal manner as follows. A single minimal

connected cover is activated at any given point in time during the network mission time while

the SNs belonging to the remaining connected covers are put in sleep mode. This activated

minimal connected cover remains active until its functionality is compromised due to random

failures of one or more of its constituent SNs. At that point, the remaining functional SNs

belonging to this minimal connected cover are put in sleep mode till the end of the network

mission time and another minimal connected cover is activated. This procedure is repeated

until either the mission time of the network elapses or there are no remaining functional

deployed minimal connected covers. According to the statement of the MCRC-SDP, the

probability of the first event is equal to 𝑅𝑚𝑖𝑛 and that of the second event is equal to 1 −
𝑅𝑚𝑖𝑛.

In this chapter, we propose a topology control protocol for reliable cost-optimal WSN

deployments obtained from solving the MCRC-SDP using the proposed algorithms presented

in Chapter 4. We implement the proposed protocol on a WSN simulator and apply the

proposed protocol on different deployment scenarios. We present and discuss the

experimental results in terms of two protocol performance metrics: the incurred overhead and

the time required to detect and repair the functionality of the WSN due to potential SN

failures. The different factors which affect each of these performance metrics are also

highlighted.

5.2. Previous Work on WSN Topology Control

In WSN literature, the term topology control protocol encompasses any protocol that

controls some aspect of the deployed SNs in a WSN deployment (e.g. SN state (sleep/active),

transmission range (radio power level), mobility (if the WSN contains mobile SNs)) to affect

the network’s level of coverage and/or connectivity [138]. In the context of problem at hand,

we will focus on the topology control protocols which manage the states of the deployed SNs

 Chapter 5

108

in WSNs, which are termed Temporal Topology Control Protocols (TTCP). The concept of

temporal topology control is based on the premise that WSNs, either deployed in a planned or

a random fashion, can have a certain level of SN redundancy, i.e. the number of deployed

SNs in the network may greatly exceed the number required to form a single connected-cover

of the RoI. To manage this redundancy, a TTCP pushes a subset of the deployed SNs in the

WSN into sleep mode while keeping the other SNs active to fulfil the coverage and

connectivity requirements of the network in an adaptive fashion [139]. An SN in sleep mode

will conserve its energy expenditure by turning off its sensor(s) and most or all of its

transceiver circuitry (depending on whether the SN will be activated by an internal timer or

an external WAKEUP message). Hence, it will not be able to sense the environment or

communicate wirelessly. As a direct consequence, TTCPs can enhance the WSN energy-

efficiency and hence prolong the network lifetime (in case of a random deployment). TTCPs

are also used to counteract internal interference within the WSN, specifically those adopting a

contention-based medium access control scheme (e.g. non-beacon enabled mode of the IEEE

802.15.4). Internal interference occurs mainly due to packet collisions, which in turn

increases with the increase of the number of active SNs in the network. By minimizing the

number of active SNs in the network at any given time without compromising the network

functionality in terms of coverage and connectivity, a TTCP decreases packet collisions by

decreasing the amount of redundant traffic. This results in increasing the overall WSN

throughput [36], [100].

TTCPs can be classified according to where they are executed in the network, i.e. can be

classified as either centralized or distributed protocols [140]. A centralized TTCP is

executed in the sink node(s) of the WSN and requires global information on the SNs such as

their relative location from the sink node and their current state and mode (i.e. in sleep or

active mode, functional or failed state) at any time instant. Distributed TTCP is executed

concurrently on the SNs and required only local information (i.e. information obtained from

the neighbors of each SN). Topology control protocols can also be classified according to

how they are executed, iteratively or non-iteratively. The general approach of an iterative

TTCP is to periodically compute a single connected-cover of the RoI from the pool of

functional deployed SNs. In other words, the protocol divides time into equal periods or

rounds. At the beginning of each round, the protocol, either in a centralized or distributed

fashion, is responsible for activating only a subset of the deployed SNs such that this subset

forms a connected-cover of the RoI. After the current round elapses, this procedure is

repeated, where possibly a different subset of SNs is activated, based on the states of the

deployed SNs at the beginning of the new round. This scheme continues until the mission

time of the WSN has elapsed or until there are not enough functional SNs left to construct a

connected-cover. On the other hand, the general approach adopted by a non-iterative TTCP is

to pre-divide the deployed SNs into non-overlapping connected-covers before actually

controlling their sleep/active cycles. Consequently, the original topology control problem of

minimizing the number of active SNs is transformed into an optimization problem with the

objective of maximizing the number of the non-overlapping connected covers. A given

connected-cover is said to be active when all the SNs belonging to it are put in active mode.

The aim of this approach is to apply an orthogonal sleep-wake scheme on the obtained non-

overlapping connected covers.

Examples of iterative TTCPs are presented in [36], [141] - [149]. In [36], the authors

propose the Optimal Geographical Density Control (OGDC) protocol. OGDC protocol runs

periodically, i.e. in rounds, in a distributed fashion. The objective of OGDC is to activate the

minimum number of SNs in each round such that the selected active SNs completely cover

the targeted RoI. The protocol is based on the assumptions that all deployed SNs are

homogeneous, have a binary disk coverage profile and a communication range that is equal to

 Chapter 5

109

or exceeds twice the sensing range. This latter assumption is used to prove that connectivity

of WSN during any round is maintained if the targeted RoI is fully covered. The protocol

assumes that each SN can have three states: on, off or undecided. In the beginning of each

round, SNs go through the decision phase of the protocol, during which all the functional

deployed SNs assigned to an undecided state. A SN in the undecided state has its transceiver

in a fully functional state, i.e. it can send and receive messages. Then the process of selecting

the active SNs proceeds by randomly assigning one or more of the SNs to be “starting SNs”.

These starting SNs change their state to the on state and broadcast “power-on” messages to

the network. A SN in the on state will remain active throughout the current round after the

decision phase elapses. Each SN still in the undecided state utilizes the information provided

by the “power-on” messages it receives to carry out local computations to decide whether it

change its state to the on or off state or remain undecided to wait for more “power-on”

messages. These local computations factor in the relative location of current on SNs, the

residual energy of the SN, the coverage gain it will contribute (if any) if it becomes active.

This process continues until all SNs are either in the on or off states, which marks the end of

the decision phase of the protocol. Simulation results show that OGDC outperforms existing

protocols presented in [146] and [147] in terms of the average percentage of active SNs in a

given round and provides almost the same level of coverage as the best protocol. Results also

show that applying OGDC to a given deployment results in a longer lifetime of the network

when compared to the protocol in [147].

In [141], the authors present a distributed token-based iterative TTCP named Coverage-

Centric Active Nodes Selection (CCANS). Similar to OGDC in [36], CCANS runs in rounds

and each round has a protocol decision phase. During the protocol decision phase, a SN can

assume three states, namely active, sleep or unset. However, throughout the decision phase of

CCANS all SNs have their transceivers in a fully functional state regardless of their state. At

the beginning of the decision phase of each round, all SNs are in the unset state and they are

required to construct a list of 1-hop neighbor SNs using “hello” messages. The proposed

CCANS protocol is then executed in two separate stages. In both stages the protocol assigns

the token to a single SN at any time instant during its execution and that SN is called the

token node. Stage 1 is given the name sensing coverage evaluation. In this stage, the token

node performs a set of coverage calculations based on its local information to decide a

temporary change from its unset state to either an active or sleep states. This change is

temporary because the state decision is taken while some of the other SNs are in the unset

state and hence the state of a given SN may be changed again in stage 2 of the protocol. The

current token node then sends a “state” message to its neighbors and passes the token to one

of its neighbors based on specific criteria. The steps are repeated until all SNs are either in

active or sleep states. This marks the conclusion of stage 1 and initiates stage 2 of the

protocol. Stage 2 is given the name node state and connectivity checking and is only executed

by SNs assigned to a sleep state during stage 1. Using the same token approach as in stage 1,

a token node repeats its coverage calculations with no neighbor SNs now in the unset state. It

also checks if any of its active neighbor SNs is not connected to the sink node. Based on

these two steps, the token node decides its final state for the current round sends an “update”

message to its neighbors and passes the token on. Stage 2 is completed when all SNs finalize

their state decision (either active or sleep throughout the current round), which marks the end

of the decision phase. Simulation results show that CCANS protocol increases the average

percentage of sleeping SNs in a given round when compared to similar existing protocols

presented in [142] and [148].

In [143], the authors argue that an iterative TTCP designed for p-percent coverage (PPC)

instead of full coverage provides the network operator with the ability to dynamically specify

and tune the required level of network coverage, specifically for applications where

 Chapter 5

110

extending the network lifetime is the primary objective and not reliability. Based on this

argument, the authors propose a distributed iterative TTCP named Distributed 𝑝−Percent

Coverage Protocol (DPCP). Each round of DPCP consists of three stages, namely discover,

construct and connect. Each stage has a fixed time interval. It is assumed that at the

beginning of each round, all SNs are in the active state, and that they remain active

throughout the execution time of the three stages of DPCP. In the discover stage, each

functional deployed SN discovers its neighbors using 1-hop “hello” messages. In the

construct stage, a subset of SNs sufficient to achieve PPC decide to join the active set for the

current round depending on a set of local coverage calculations and 1-hop message

exchanges with neighbors. In the connect stage, possibly more SNs decide to join the active

set for the current round to ensure its connectivity by the means of both broadcast messages

(sent by the SNs belonging to the active set thus far) and more local calculations. After DPCP

concludes, all SNs not belonging to the active set finalized in the last stage are put to sleep

until a new round begins. A test bed using Java is built to simulate the operation of DPCP.

Simulation results show that that DPCP outperforms the Greedy Selection (GS) protocol

presented in [149] in prolonging the lifetime of the network.

Similar to [143], the study in [144] proposes an iterative distributed TTCP designed for

p-percent coverage (PPC). However, the authors in [144] assume that the deployed SNs can

have different sensing and communication ranges, i.e. the WSN is heterogeneous and that the

SNs are deployed in a uniform (i.e. random) dense deployment in the RoI. They also define

the term redundancy degree of a SN, which is defined as the percentage of overlap in

coverage area between the SN and its first-hop neighbors of different types. Based on this

definition and the stated assumptions, the authors derive an analytical expression for

redundancy degree of a SN, which depends on the SN type, the number of the SN first-hop

neighbors and their types. This analytical expression is used to compute a redundancy table

for each SN type, which provides the redundancy degree for different combinations of first-

hop neighbors’ numbers and types. The authors assume that this table is either stored in the

SNs off-line or sent to the SNs by the sink node after deployment as a control message. In the

proposed TTCP, SNs can assume three states: active, wait and sleep. At the beginning of each

round of the protocol, all SNs are in the active state and they broadcast “hello” messages to

the network. Each SN uses the “hello” messages it received to construct a neighbor table

which contains the ID, type and current state of its first-hop neighbors (the table is updated

using periodic “hello” messages during the decision phase of each round). Based on the

required percentage of coverage, each SN decides whether it’s potentially redundant in this

round or not using the redundancy and neighbor tables. If it is potentially redundant, it

changes its state to the wait state and invokes a random back-off timer. If the SN is still

redundant at the end of the back-off time (i.e. the SN still has sufficient neighbors in the

active or wait states), it sends a “sleep” message to its neighbors and switches to the sleep

state till the end of the current round. Otherwise it switches to the active state. Simulation

experiments are carried out using ns 2.34. Simulation results shows that the proposed

protocol is more capable than the protocol proposed in [145] in prolonging the lifetime of the

network since it requires a smaller average number of active SNs.

On the other hand, examples of non-iterative TTCPs are presented in [150] -

 [152], [121]. In [150], the authors consider the problem of maximizing the number of the

non-overlapping covers in a dense randomly deployed WSN. They coin the problem the

Disjoint Sets Cover (DSC) problem. The authors assume that for a set to be functional, only

the complete coverage of a given set of target points in a specified RoI is required.

Connectivity was not considered in this study. The authors assume that an orthogonal sleep-

wake scheme is applied to the non-overlapping covers such that only one cover is activated at

any point in time while the other covers are put in sleep mode. This cover remains active for

 Chapter 5

111

a fixed amount of time, after which another cover is activated in a round robin fashion. The

authors argue that following this scheme will prolong the SNs’ battery lifetime and minimize

internal interference in the network. They proceed to solve the DSC problem by first proving

that it is NP-complete. They then transform the DSC problem into a Maximum-Flow problem

(MFP), which is then formulated and solved as a Mixed-Integer-Programming (MIP)

problem. Finally, using the output of the formulated MIP, a heuristic named Maximum

Covers using MIP (MC-MIP) is used to carry out the actual partitioning of the deployed SNs

into the required non-overlapping covers. They propose that a central node (i.e. sink node)

performs the computation of the non-overlapping covers, i.e. solves the DSC, once shortly

after the network deployment. The authors assume that the deployed SNs have the ability to

localize themselves and that they would send their location to the central node to enable it to

carry out the computation of the non-overlapping covers. The central node would then send

each SN its membership information so each SN can compute its own sleep-wake schedule

(assuming SNs are time-synchronized using on-board GPS receivers or through periodic

beacon messages). Presented results show that the proposed MC-MIP heuristic outperforms

the heuristic proposed in [151] in terms of the number of non-overlapping covers obtained in

various instances of the DSC problem.

Similar to [150] and [151], the authors in [152] also consider the problem of maximizing

the number of the non-overlapping covers in a dense randomly deployed WSN, i.e. Disjoint

Sets Cover (DSC) problem. As in [150], the authors assume that an orthogonal sleep-wake

scheme is applied to the non-overlapping covers with the difference being that an activated

cover remains activated until its coverage of the target locations in the RoI is compromised.

No other details on how the non-overlapping covers are to be managed are provided. The

authors critique the heuristic algorithm MC-MIP proposed in [150]. They point out that MC-

MIP involves solving a MIP problem using an implicit exhaustive search which, although

enhances the optimality of the MC-MIP heuristic, requires a computation time which in the

worst case increases exponentially with the number of deployed SNs and hence is impractical

to use for medium to large WSN layouts. Based on their critique, they propose a GA called

GA for Maximum Disjoint Sets Cover (GAMDSC) as a more scalable alternative to MC-MIP

and provide analysis of the time complexity of the algorithm in the worst case. To evaluate

the performance of GAMDSC in terms of optimality (measured by the average number of

obtained sets) in comparison to MC-MIP, the authors apply both algorithms on several WSN

layouts with different number of deployed SNs but for the same set of target points. Results

show that GAMDSC has a comparable performance to that of MC-MIP, with a small

advantage for MC-MIP. However, GAMDSC offers significant saving in computation time

compared to MC-MIP.

 In [121], the authors consider a variation of the DSC problem in [150] - [152]. They

assume that a number of sink nodes are deployed in the WSN and that the deployed SNs can

only communicate with sink nodes. Consequently, the DSC problem is converted into the

problem of maximizing the number of the non-overlapping connected covers in a dense

randomly deployed WSN, where each connected cover is composed of a subset of the

deployed SNs and a subset of the deployed sink nodes. Each connected cover must fulfil

three constraints: namely the coverage constraint, the collection constraint and the routing

constraint. The coverage constraint is simply that the SNs belonging to the connected cover

provide full coverage of the RoI. The collection constraint is that all the SNs belonging to the

connected cover must be able to communicate directly (1-hop) with at least one of the sink

nodes belonging to the same connected cover. The collection constraint is that the sink nodes

belonging to the same connected cover must form a connected network with each other. The

authors propose an ACO algorithm named ACO-MNCC to solve the above variation of the

DSC problem. Since the proposed approach is the first algorithm proposed for solving this

 Chapter 5

112

variation of the DSC problem, the authors also propose a greedy algorithm that uses the same

heuristic information as MDS-MCC to compare ACO-MNCC against. Experimental results

show that ACO-MNCC consistently outperforms the greedy algorithm for all tested sizes of

the WSN. No details were provided in [121] on how an orthogonal sleep-wake scheme

should be applied to the non-overlapping connected covers obtained by the proposed ACO-

MNCC algorithm.

5.3. Proposed Topology Control Protocol for Reliable WSN

Deployments

From the literature survey presented in Section 5.2, it is clear that iterative TTCPs are

applied to WSNs that are characterized by a dense random deployment to increase the

lifetime of such WSNs. This is done by activating only a subset of the functioning deployed

SNs which form a connected cover of the RoI during each time round. However, iterative

TTCPs also introduce a significant amount of SN processing and control traffic overhead

during their decision phase(s) at the beginning of each round. This is because each SN must

carry out local computations to decide its state and exchange this with its neighbors for state

decision making purposes. This implies an energy cost on SNs during the decision phase(s)

of each round [147]. This also implies an increase in the internal interference in the network

as well. The shorter the duration of the round, the higher the incurred control traffic overhead

and added internal interference that is experienced by the network. Increasing the duration of

the rounds to decrease these undesired effects of the iterative TTCPs is not a practical

solution since it decreases the network responsiveness to potential SN failures. This is

because if one or more SN failures occur during a given round, the functionality of the WSN

would remain compromised until the beginning of the next one. For example, the study

in[140] proposes a round duration of 1000 seconds. In the situation where the reliability of

WSN operation is a primary concern, such relatively large durations are not acceptable.

 On the other hand, a TTCP based on a non-iterative approach can be applied easily to

reliable cost-optimal deployments obtained from solving the MCRC-SDP. In the context of

the defined MCRC-SDP, a reliable WSN deployment represented by 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}
consists of a number of non-overlapping minimal connected covers of the targeted RoI under

the assumption that these minimal connected covers are activated orthogonally. Hence, the

main objective of a non-iterative TTCP designed for 𝓢 is to control the orthogonal activation

of the minimal connected covers that comprises 𝓢 with the lowest possible additional control

overhead.

We will coin the proposed non-iterative TTCP the Reliable Deployment TTCP (RD-

TTCP). Table 5.1 shows the pseudocode of the RD-TTCP functionality executed by the sink

node while Table 5.2 shows the pseudocode of the RD-TTCP functionality executed by the

SNs. The main idea of the RD-TTCP can be summarized as follows. The protocol runs

periodically, i.e. the mission time of the network is divided into equal time intervals of

duration 𝑡𝑝 seconds. Similar to the studies in [141] - [149], we assume that SNs are time-

synchronized. The information about the specific SNs in the 𝑁 connected covers of 𝓢 and the

order of connected covers’ activation is pre-programmed in the sink node. We will assume

that the order of activation is based on the reliability of the connected covers in a descending

order. In the beginning of each interval, i.e. at 𝑡 = 𝑛𝑡𝑝, 𝑛 = 0, 1, 2, …, all deployed SNs of all

functional connected-covers self-activate and remain in the active state for the duration of a

listening period of duration 𝑡𝑙 seconds, where 𝑡𝑙 < 𝑡𝑝. This means that SNs during the

listening period of each interval can exchange packets with each other and with the sink node.

At the beginning of the mission time of the network, i.e. at 𝑡 = 0, the sink node checks the

stored membership information on the deployed connected-covers and sends an “on”

 Chapter 5

113

Table 5.1 Pseudocode of the proposed RD-TTCP functionality executed by the sink node

RD-TTCP: SINK_NODE

1 Input: 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} , timer values 𝑡𝑝 , 𝑡𝑙, 𝑡ℎ , 𝑡𝑎𝑐𝑘, network mission time 𝑇𝑚

2 Initialize: 𝑺𝑜𝑛 = ∅ , connected-cover counter 𝑘 = 1, network time 𝑡 = 0

3 While {𝑡 < 𝑇𝑚 && 𝑘 ≤ 𝑁}

4 If {𝑡 = 𝑛𝑡𝑝 , 𝑛 = 0,1, 2, … && 𝑺𝑜𝑛 = ∅ } // at the beginning of each interval when a new

 connected cover needs to be activated

5 Send “on” msgs to all SNs 𝑠𝑖 ∈ 𝑺𝑘 , 𝑖 ∈ [1,2, … , |𝑺𝑘|] ; Set ack. timer to 𝑡𝑎𝑐𝑘

6 If { ACK received from 𝑠𝑖 ∈ 𝑺𝑘 ∀ 𝑖 = 1,2. . , |𝑺𝑘| = TRUE before ack. timer expires }

7 𝑺𝑜𝑛 = 𝑺𝑘 ; Set HB#[𝑗] = 0 , 𝑗 = 1,2, . . , |𝑺𝑜𝑛| // current active set is 𝑺𝑘

8 Send “off” msgs to remaining functional SNs 𝑠𝑖 ∈ 𝑺𝑘−1 , 𝑖 ∈ [1,2, … , |𝑺𝑘−1|]
9 Else // the connected cover 𝑺𝑘 being activated is compromised

10 𝑘 = 𝑘 + 1 // activate the next connected cover in the order of activation in the next

 listening period

11 End If

12 If {𝑺𝑜𝑛 ≠ ∅} // if there is a functional activated connected cover

13 While { |𝑚𝑎𝑥 (HB#) − 𝑚𝑖𝑛(HB#)| < 4} //while current connected cover is still

 functional

14 Listen: “hear-beat” msgs received from 𝑠𝑗 ∈ 𝑺𝑜𝑛 → HB#[𝑗] ≡ “heart-beat” msg index of 𝑠𝑗

15 End While

16 𝑺𝒐𝒏 = ∅ // current connected cover 𝑺𝑜𝑛 has failed

17 𝑘 = 𝑘 + 1 // activate the next connected cover in the order of activation in the next listening

 period

18 End If

19 End While

20 If {𝑘 > 𝑁} // If there are no more functional connected covers in the deployment

21 Output: “Network Failed”

22 Else

23 Output: “Network Mission Time Elapsed”

23 End If
24 End RD-TTCP: SINK_NODE

message to the SNs which belong to the first connected cover in the order of activation.

Based on this step, if an SN receives an “on” message from the sink node stamped with its

own ID as the destination, it replies with an ACK message after a short random back-off

timewithin the time interval 𝑡𝑎𝑐𝑘. It will keep its active status until it receives an “off”

message from the sink node at a later time. The short random back-off time associated with

the ACK message is used to decrease the probability of packet collision due to several SNs

sending ACK messages to the sink node after being activated by their “on” messages. At the

end of the listening period, i.e. at 𝑡 = 𝑛𝑡𝑝 + 𝑡𝑙, the sink node will decide whether the

connected cover it attempted to activate is indeed activated. It bases its decision on whether it

received an ACK message from every SN belonging to this connected cover. On the other

hand, if an SN does not receive an “on” message during the listening period of a given

interval, it switches itself (i.e. transceivers and sensors) off and maintains that state until its

internal timer signals the start of the listening period of the next interval.

We will denote the current active connected cover at any given time during the mission

time of the network by 𝑺𝑜𝑛. As a result of the above steps, only the SNs of the first connected

cover in the order of activation, denoted 𝑺1, remain active after the elapse of the listening

time of the first interval, i.e. 𝑺𝑜𝑛 = 𝑺1. For the sink node to be able to monitor the

functionality/health of the currently activated connected cover 𝑺𝑜𝑛, SNs which belong to 𝑺𝑜𝑛

will periodically send a “heart-beat” message to the sink node every 𝑡ℎ seconds directly

following the end of the listening period. To minimize packet collisions, each SN of 𝑺𝑜𝑛 will

send its “hear-beat” message at a random time during each 𝑡ℎ interval, i.e. the sink node will

 Chapter 5

114

Table 5.2 Pseudocode of the proposed RD-TTCP functionality executed by the SNs

RD-TTCP: SENSOR_NODE

1 Input: timer values 𝑡𝑝 , 𝑡𝑙, 𝑡ℎ , 𝑡𝑎𝑐𝑘, network mission time 𝑇𝑚

2 Initialize: 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓 , 𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE , 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE, network time 𝑡 = 0

3 While { 𝑡 < 𝑇𝑚}

4 Process I // if SN is neither activated or deactivated

5 If { (𝑛𝑡𝑝 ≤ 𝑡 ≤ 𝑛𝑡𝑝 + 𝑡𝑙 , 𝑛 = 0,1, 2, …) && 𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE}

6 Listen: 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑛 // turn sensor and transceiver on

7 If { “on” msg received from sink node with local ID = TRUE}

8 𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE ; record activation round index 𝑛𝑎; set “hear-beat” msg index HB#←1

9 Send ACK msg to sink node with a random back back-off time within 𝑡𝑎𝑐𝑘

10 Break & GO TO Process II
11 Else

12 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓 // SN goes to sleep at the end of the listening period if it was not activated

13 End If

14 End If

15 Process II // begins when the SN is activated by an “on” msg from the sink node during round 𝑛𝑎

16 While {𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE}

17 Set “heart-beat” timer to 𝑡ℎ at 𝑡 = 𝑛𝑎𝑡𝑝 + 𝑡𝑙

18 Send “heart-beat” msg with index HB# to sink node with a random back-off before “heart-beat”

 timer expires

19 If {“heart-beat” timer expires = TRUE && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE}

20 Reset “heart-beat” timer to 𝑡ℎ ; HB# ← HB# + 1

21 GOTO line 18
22 End If

23 If {“off” msg received from sink node with local ID = TRUE} // SN is now part of a compromised

 connected cover that is being set to sleep mode

24 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE ; 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓

25 End If

26 End While // end Process II since SN is now deactivated

27 End While // end Process I and II because network mission time 𝑇𝑚 has elapsed

28 End RD-TTCP: SENSOR_NODE

receive a “heart-beat” message from each functioning SN once every 𝑡ℎ seconds. Since all

the deployed connected covers are minimal, i.e. contain no completely redundant SNs, the

total failure of any of the SNs which belong to 𝑺𝑜𝑛 will compromise its functionality in terms

of coverage or/and connectivity. Therefore, if the sink node does not receive three

consecutive “heart-beat” messages from one or more of the SNs of 𝑺𝑜𝑛, it will assume that a

SN has failed and the next connected cover in the order of activation needs to be activated

while the remaining functional SNs in the current 𝑺𝑜𝑛 needs to be put to sleep. Hence, the

sink node looks up the next connected cover in its list of the activation order, i.e. 𝑺2, and

sends an “on” message to the SNs belonging to it in during the listening period of the next

interval. After the sink node receives confirmation that the SNs which belong to 𝑺2 have

received their “on” messages via the ACK messages sent by the SNs, the sink node sends an

“off” message to the remaining functional SNs in 𝑺𝑜𝑛 and changes the index pointer of 𝑺𝑜𝑛 to

the newly activated connected cover, i.e. 𝑺𝑜𝑛 = 𝑺2. The above procedure continues until the

mission time of the network elapses or there are no more functional connected covers to

activate. Fig. 5.1 illustrates the RD-TTCP functionality executed by both the sink node and

the SNs as detailed above in the form of a state diagram.

5.4. Experimental Results and Discussion

In this section, we present the experimental results obtained from implementing the

proposed RD-TTCP on the wireless sensor network simulator COOJA [153], [154]. COOJA

 Chapter 5

115

Fig. 5.1 A state diagram describing the proposed RD-TTCP functionality

is a flexible Java-based simulator designed for simulating networks of SNs running the

Contiki operating system [155], [156]. COOJA is capable of emulating a wide variety of

commercial wireless sensor nodes. The main advantage in using COOJA to simulate

protocols proposed for WSNs is that it enforces the hardware limitations of the selected SN

type (including memory, number of internal timers, speed of processing, etc.). Moreover, the

developed code to be executed by each type of SN in a simulated WSN in COOJA is the

exact same code that can be uploaded to a physical SN of the same type. Hence, using

COOJA to develop and simulate new protocols for WSNs running the Contiki operating

system enables a precise/realistic inspection and debugging of the developed code before

implementing the code/protocol on physical SNs [157].

To implement the proposed RD-TTCP, two custom mote types are developed, namely, a

sink node and a sensor node, each capable of performing the proposed protocol steps outlined

in Tables 5.1 and 5.2 respectively. For both mote types, the Tmote sky hardware platform is

selected. Tmote sky is a commercial ultra-low power IEEE 802.15.4 compliant (non-beacon

enabled/contention based MAC) wireless sensor module [158]. The underlying routing

protocol used in this experiment is the IPv6 Routing Protocol for Low Power and Lossy

Networks, which is known in the literature as RPL. RPL is a distance-vector routing protocol

designed by the Routing over Low-power and Lossy networks (ROLL) Working Group in

order to cater to the specific needs of low-power and lossy networks such as WSNs designed

for different IoT applications. It is specified in the Internet Engineering Task Force (IETF)

standards document RFC 6550 [159]. It is worth mentioning that the implementation of the

proposed RD-TTCP is independent of the underlying routing protocol.

To evaluate the performance of the proposed RD-TTCP, we test the protocol on several

network scenarios. Each scenario represents a different reliable cost-optimal deployment.

Specifically, we use a reliable cost-optimal deployment for each of the seven test cases

presented in Table 4.5 at the minimum required reliability 𝑅𝑚𝑖𝑛 = 0.99 obtained by the

proposed ACO algorithm (i.e. we use one of the obtained solutions characterized by the best

quality/lowest deployment cost) as summarized in Table 4.9. Table 5.3 summarizes the data

pertinent to these deployments, where each is used to set up a simulation scenario in COOJA.

The RoI is a two-dimensional square 100 × 100 𝑚2 area. The location of the sink node 𝑑0 in

 Chapter 5

116

the RoI is different for each test case as it was generated randomly as explained in Section

4.4.1 in Chapter 4.

 Two performance metrics are considered: the communications overhead incurred by the

proposed RD-TTCP and the time it takes the protocol to repair the WSN after an SN failure

occurs, i.e. Time To Repair (TTR). The overhead is measured as the percentage of the RD-

TTCP traffic (measured in bytes) out of the total RPL control traffic within the network. In

this experiment, we assume that there is no traffic generated from the deployed SNs to

convey sensory data to the sink node and hence the sources of traffic in the network are the

proposed protocol and the RPL routing protocol. The second performance metric is measured

using two time variables. The first time variable is the total time it takes the RD-TTCP to

activate a new functional connected cover (i.e. to repair the WSN), measured from the instant

the functionality of the current connected cover is compromised by a SN failure, which we

will denote by TTR1. The second time variable is the time it takes RD-TTCP to activate a

new functional connected cover (i.e. to repair the WSN), measured from the instant the sink

node discovers that the functionality of the current connected cover is compromised, which

we will denote by TTR2. For each simulation scenario, ten independent runs are by the

simulator. Simulation and protocol parameters are summarized in Table 5.4.

Fig. 5.1 shows the proposed protocol communication overhead for each of the simulated

deployments. For each deployment, the 95% confidence interval of the corresponding set of

runs is indicated. Fig. 5.1 suggests that the proposed protocol have a low overhead, with

averages that do not exceed 3.5% for all the tested deployments. The relatively low overhead

of the proposed protocol is due to its simplicity and the fact that only the SNs which belong

to the currently activated connected cover communicate with the sink node through sending

the periodic heartbeats. SNs belonging to non-activated and failed connected covers do not

generate any protocol traffic. Fig. 5.1 also shows a large variation in the measured protocol

overhead, indicated by the wide confidence intervals. This can be attributed to the fact that

the amount of both the RD-TTCP traffic and the RPL control traffic are highly sensitive to

changes in the topology of the WSN due to the SN failure events during the course of the

simulation. An SN failure event can either trigger a repair action in the network (i.e. the

activation of a new connected cover) or not. The first case occurs when the failed SN belongs

to the currently activated connected cover and hence its functionality as well as the network’s

functionality is compromised. The latter case occurs when the failed SN belongs to one of the

connected covers that have not been activated yet while the currently activated connected

cover remains functional.

The lowest measured values of the proposed protocol overhead occurred in simulation

runs in which there were no SN failure events or in which the SN failure events do not trigger

a repair action. In these simulation runs the amount of traffic generated by the RD-TTCP is at

its lowest since only one connected cover is activated in the beginning of the simulation and

only the SNs which belong to that connected cover communicate periodically with the sink

node by sending their “heart-beat” messages. On the other hand, the amount of control traffic

generated by the RPL is at its highest since all or most of the deployed SNs are functional

until the end of the simulation time. This in turn means that all or most of the deployed SNs

generate routing control traffic during the simulation time. For all simulated deployments, the

RD-TTCP overhead for these simulation runs is roughly 1%.

On the other hand, the higher measured values of overhead occurred in simulation runs

in which SN failure events triggered repair actions. In these cases, the RD-TTCP traffic

increases since additional protocol messages are generated, namely, the activation messages

required to activate a new connected cover and the “off” messages sent to the remaining

functional SNs in the failed connected cover. On the other hand, the RPL control traffic

 Chapter 5

117

Table 5.3 Data of the reliable cost-optimal deployments used to create the COOJA simulation

scenarios

Test Case
Total number

of SNs (|𝓢|)

Number of

connected

covers (𝑁)

Connected

Covers

Distribution

TC1 8 2 {4,4}

TC2 8 2 {4,4}

TC3 10 2 {4,6}

TC4 10 2 {5,5}

TC5 18 3 {6,6,6}

TC6 18 3 {6,6,6}

TC7 18 3 {6,6,6}

Table 5.4 Simulation and Protocol Parameters

Parameter Setting

Simulation time 30 minutes

SN hardware platform Tmote Sky

PHY + MAC 802.15.4 non-beacon enabled

Routing Protocol IPv6 RPL

SN failure probability λ 0.08

SN failure time distribution uniform

Protocol round duration 𝑡𝑝 120 seconds

Protocol listening period 𝑡𝑙 30 seconds

Protocol heart-beat message frequency 𝑡ℎ 30 seconds

Fig. 5.2 Traffic overhead incurred by the proposed RD-TTCP, measured as ratio between RD-TTCP

and routing traffic in percentage points.

TC1 TC2 TC3 TC4 TC5 TC6 TC7

1

2

3

4

5

6

7

P
ro

to
co

l
O

v
er

h
ea

d
 (

%
)

 Chapter 5

118

Fig. 5.3 Boxplots of the proposed RD-TTCP time to repair metric, measure by the time variables

TTR1 and TTR2

decreases significantly since in these cases several SNs which belong to the failed connected

cover are forced to sleep. Hence, these SNs stop generating any RPL control traffic until the

end of the simulation run. It follows that the time at which the repair action is taken during

the simulation run affects the value of the protocol overhead: the earlier the repair action is

taken, the lower the total RPL control traffic generated during the simulation run and hence

the higher the overhead. However, Fig. 5.1 shows that the upper confidence interval of the

proposed protocol overhead does not exceed 5% for all the simulated deployments which

means that even when one or more repair action is carried out during the network mission

time, the overhead incurred by the proposed protocol remains relatively low.

Fig. 5.2 shows the box plots for the TTR time variables, TTR1 and TTR2, for all the SN

failure events that triggered a repair action/event in the seventy simulation runs performed

(10 runs for each of the seven deployments). The time variable TTR2 represents the response

time of the proposed protocol to an identified SN failure which compromises the

functionality of the current connected cover. The average response time (i.e. the average

value of TTR2) is primarily dependent on the protocol interval duration 𝑡𝑝. This is because

once the sink node discovers that a SN failure that requires a repair action has occurred, it

needs to wait until all the SNs which belong to the other functional (yet not yet activated)

connected covers emerge from sleep mode at the beginning of the listening period of the next

protocol interval. Fig. 5.2 indicates that the median of TTR2 is equal to 57 seconds which is

an expected value since in this experiment 𝑡𝑝 is set to 120 seconds. Values of TTR2 higher

than the set value of 𝑡𝑝 (i.e. higher than 120 seconds) can occur in cases where the next

connected cover in the order of activation has already suffered a complete SN failure and

hence it functionality is compromised. In this case, the proposed protocol will require an

additional protocol interval to discover that the functionality of the connected cover it is

trying to activate it compromised through not receiving an ACK message from one or more

of the member SNs. This event, however, has a low probability of occurrence as its

probability is only half the probability that two consecutive connected covers fail (the higher

the number of connected covers in the deployment, the lower that probability will be for a

given SN failure probability). It should be pointed out that although decreasing the protocol

round duration can decrease the average response time of the proposed protocol, it can also

increase the RPL routing traffic since it will increase the frequency at which the RPL

0

50

100

150

200

250

TTR1 TTR2

 Chapter 5

119

structure is disrupted (through SNs alternating between sleep and active modes at a higher

frequency). Hence, the setting of the protocol round duration 𝑡𝑝 requires careful tuning

according to the type of routing protocol used in the WSN to keep the routing overhead at a

reasonable level.

On the other hand, the relationship between time variables TTR1 and TTR2 indicates the

speed at which the sink node discovers/identifies SN failures in the currently activated

connected cover. This speed is primarily dependent on two factors. The first factor is the

frequency at which “heart-beat” messages are sent, which is set by the timer value 𝑡ℎ. The

second factor is the number of the “heart-beat” messages the sink node has to miss from one

or more of the SNs in the active connected cover before it decides that the connected cover

has failed. In this experiment, 𝑡ℎ is set to 30 seconds and the number of missed “heart-beat”

messages is set to 3. Accordingly, the minimum amount of time required for the sink node to

discover a SN failure in the active connected cover is three times the value of 𝑡ℎ or 90

seconds. Fig. 5.2 indicates that the difference between the medians of TTR1 and TTR2 is 106

seconds which is an expected value for the selected values of the protocol parameters. It

should be pointed out that configuring the number of missed “heart-beat” messages to take a

lower value may decrease the TTR1 and hence the speed of network repair. However, this

may also lead to misdiagnosing, unnecessary repairs and an unnecessary increase in overhead

especially if the WSN is deployed in lossy environments where the link quality and hence the

Packet Delivery Ratio (PDR) is low. Hence, the setting of the protocol parameter requires

careful tuning according to the expected link quality and the conditions of the environment in

which the WSN is to be deployed.

It should be noted that a comparision with one or more of the existing iterative TTCPs

proposed in [36], [141] – [145], [147] , [149] was not possible. This because the objective of

these protocols as explained earlier is to prolong the lifetime of dense randomly-deployed

WSN. This is in contrast with the proposed RD-TTCP which designed to manage the

minimal connected covers in a relaible cost-optimal planned WSN deployment. As such, the

performance parameters for iterative TTCPs and the proposed non-iterative RD-TTCP are

different. For example, in [36], [141] , [142], [144], [145], [147] and [149] the primary

performance metric is the percentage of the sleeping nodes to the total number of nodes in the

WSN after the execution of the protocol in a single round. Additional performance metrics

such as the ratio of the RoI area actually covered to the total area, the lifetime of the network

and rate of SN energy consumption were evaluated in [36], [142] - [145] and [149]. The only

study that commented on the overhead of the iterative TTCP is [147], where overhead was

calculated as the average percentage of the energy spent on protocol messages to the total

energy expenditure of SNs. However, the results provided in [147] can not be used as a

benchmark since many of the simulation parameters and assumptions are different, primarily

the fact that in [147], SNs are assumed to periodically send data messages whereas in our

simulation no data traffic was generated.

5.5. Chapter Summary

In this chapter, we introduced a practical realization of the reliable deployment

algorithms that we proposed earlier. For this purpose, we defined the concept of temporal

topology control in WSNs as a method for controlling the sleep/active cycles of the SNs

deployed in a WSN. We highlighted the importance of TTCPs, specifically in minimizing

excessive traffic in the WSN, which in turn reduces packet collisions. We discussed why

existing TTCPs are not suitable for WSN designed for critical applications. Accordingly, we

proposed a TTCP suitable for managing the disjoint connected covers which constitute the

 Chapter 5

120

reliable cost-optimal WSN deployments obtained by solving the MCRC-SDP. The proposed

non-iterative TTCP was coined the RD-TTCP. The proposed RD-TTCP was implemented on

the WSN simulator COOJA and applied to several different reliable cost-optimal WSN

deployments. Simulation results suggest that the overhead incurred by the proposed protocol

and the average TTR are relatively low and hence the proposed protocol is applicable in

practice.

Chapter 6

121

Chapter 6

Conclusions

6.1. Dissertation Summary

In this dissertation, we presented our research contributions on the topic of reliable cost-

optimal deployment of static WSNs. We defined the dissertation problem as the problem of

deploying a static WSN that meets an application-specific reliability level at a minimum

network deployment cost. We coined this problem the Minimum-Cost Reliability-

Constrained SN Deployment Problem (MCRC-SDP). We highlighted the significance of this

problem to the body of research on WSN deployment. Based on the problem definition, we

identified the different research objectives associated with it. We then presented the work

carried out to address each of the identified research objectives.

We presented a survey and classification of the existing WSN deployment algorithms

based on their underlying mathematical approach. The presented classification contains four

major mathematical approaches: Genetic Algorithms (GAs), Computational Geometry (CG),

Artificial Potential Fields (APFs) and Swarm Intelligence (SI). We discussed the strengths

and limitations of the four approaches in terms of different WSN design factors. We

concluded that GAs and Ant Colony Optimization (ACO) are the most suitable approaches

for deploying static WSNs with multiple design objectives. We presented an experimental

comparison among three of the existing WSN deployment algorithms based on these two

approaches. Their performance was evaluated in terms of optimality, speed of convergence

and scalability.

We then identified the key SN related and non-SN related issues that affect the reliability

of a WSN. We discussed the existing WSN reliability metrics in the literature. Based on this

discussion, we proposed a novel WSN reliability metric to address some of the limitations of

the existing metrics. The proposed metric adopts practical assumptions concerning the

operation and configuration of the WSN. It also adopts a more accurate SN model compared

to the simplistic model adopted in the existing metrics. A search algorithm is presented to

calculate the proposed metric in a computationally efficient manner. Extensive experimental

results on the proposed metric are presented and discussed. The experimental results

demonstrated the computational efficiency of the developed search algorithm. They also

showed that the proposed metric has a significantly higher accuracy in measuring WSN

reliability compared to the most-relevant existing metric in the literature.

Based on this metric, we presented the mathematical formulation of the dissertation

problem, i.e. the MCRC-SDP. The MCRC-SDP is formulated as a constrained combinatorial

optimization problem which we prove to be NP-Complete. We proposed two heuristic

optimization algorithms that are designed to find high quality solutions for the MCRC-SDP.

The first algorithm is a Memetic Algorithm (MA), which is also known in the literature as a

Hybrid GA (HGA). The second algorithm is an ACO algorithm coupled with a Local Search

(LS) heuristic. For each algorithm, the design of the different basic building blocks is

discussed. Extensive experimental results are presented, analyzed and discussed to highlight

the strengths and limitations of each algorithm. Results show that the ACO algorithm

outperforms the MA in the majority of the tested problem instances in terms of optimality

and in all the tested problem instances in terms of the computational cost.

Chapter 6

122

Finally, we reviewed some of the significant studies presented in the literature on the

topic of WSN topology control. We discussed why existing WSN Topology Control

Protocols (TCPs) are not suitable for managing the reliable cost-optimal deployments

obtained from solving the MCRC-SDP. Accordingly, we proposed a practical TCP that is

suitable for managing the non-overlapping minimal connected covers which constitute such

deployments. We presented experimental results obtained from implementing the proposed

TCP and applying it to several deployments. Results suggest that the overhead incurred by

the proposed protocol is relatively low and hence is the proposed protocol is applicable in

practice as a realization of our optimized deployment techniques.

6.2. Future Work

The work presented in this dissertation can be further extended in the following directions:

 Other heuristic optimization techniques can be applied to solve the MCRC-SDP. For

example, Differential Evolution (DE) [160] (which is an evolutionary algorithm that

shares the same foundations as the GAs) and Bee Colony Optimization (BCO) [161]

(which has recently been introduced as a new direction in SI) are good candidates.

 The proposed MA and ACO algorithm can be extended to allow for the deployment of

heterogeneous reliable cost-optimal WSNs (i.e. WSNs composed of different types of

SNs with varying capabilities).

 The MCRC-SDP can be extended to be a multi-objective constrained optimization

problem by considering other design objectives such as minimizing routing cost.

 An original GH capable of consistently finding feasible solutions to the MCRC-SDP can

be designed.

 The SN probabilities of failure due to other non-SN related issues such as attacks on the

deployed SNs by external malicious forces can be included/considered in the WSN

reliability metric.

 The performance of the proposed TCP for managing the MCRC deployments can be

implemented and studied in conjunction with other routing protocols such as Adhoc-On

Demand Distance Vector (AODV) [162].

123

References

[1] P. Rawat, K. D. Singh, H. Chaouchi and J. M. Bonnin, “Wireless sensor networks: a survey

on recent developments and potential synergies,” Journal of Supercomputing, vol. 68, no. 1,

pp. 1-48, 2014.

[2] L. Fagen and P. Xiong, "Practical secure communication for integrating wireless sensor

networks into the Internet of Things," IEEE Sensors Journal, vol. 13, no. 10, pp. 3677-3684,

2013.

[3] A. Flammini and E. Sisinni, “Wireless sensor networking in the Internet of Things and cloud

computing era,” Proc. of the European Conference on Solid-State Transducers

(EUROSENSOR 2014), vol. 87, pp. 672-679, 2014.

[4] P. Harrop and R. Das, “Wireless Sensor Networks (WSN) 2014-2024: Forecasts,

Technologies, Players,” IDTechEx, Cambridge, United Kingdom, Tech. Rep, pp. 1.1-1.10,

2014.

[5] I. Stoianov, L. Nachman, S. Madden, T. Tokmouline, and M. Csail, “Pipenet: A wireless

sensor network for pipeline monitoring,” in Proc. of 6th International Symposium on

Information Processing in Sensor Networks (IPSN), pp. 264-273, 2007.

[6] L. Lei, Y. Kuang, X. S. Shen, K. Yang, J. Qiao and Z. Zhong, "Optimal reliability in energy

harvesting industrial wireless sensor networks," IEEE Transactions on Wireless

Communications, vol. 15, no. 8, pp. 5399-5413, Aug. 2016.

[7] J. Chinrungrueng, U. Sununtachaikul and S. Triamlumlerd, “A vehicular monitoring system

with power-efficient wireless sensor networks,” in Proc. of International Conference on ITS

Telecommunications, pp. 951-954, 2006.

[8] W. Xue, L. Wang and D. Wang, "A prototype integrated monitoring system for pavement and

traffic based on an embedded sensing network," IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 3, pp. 1380-1390, 2015.

[9] A. Milenkovic, C. Otto and E. Jovanov, “Wireless sensor networks for personal health

monitoring: Issues and an implementation,” ElSevier Computer Communications, vol. 29, no.

13, pp. 2521-2533, 2006.

[10] A. Sawand, S. Djahel, Z. Zonghua Zhang and F. Nait-Abdesselam, "Multidisciplinary

approaches to achieving efficient and trustworthy eHealth monitoring systems," IEEE/CIC

International Conference on Communications in China (ICCC), pp.187-192, 2014.

[11] M. Naderan, M. Dehghan and H. Pedram, “Mobile object tracking techniques in wireless

sensor networks,” in Proc. of International Conference on Ultra-Modern

Telecommunications (ICUMT), 2009.

[12] V. Jelicic, T. Razov, D. Oletic, M. Kuri and V. Bilas, “Maslinet: A wireless sensor network

based environmental monitoring system,” in Proc. of the International Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp.

150-155, 2011.

[13] Y. Liao et al., "SnowFort: An open source wireless sensor network for data Analytics in

infrastructure and environmental monitoring," IEEE Sensors Journal, vol. 14, no. 12, pp.

4253-4263, 2014.

[14] M. Ishizuka and M. Aida, “Performance study of node placement in sensor networks,” in

Proc. 24th International Conference on Distributed Computing Systems Workshops

(ICDCSW), pp. 598-603, 2004.

[15] S. Ghatak, S. Bose and S. Roy, "Intelligent wall mounted wireless fencing system using

wireless sensor actuator network," Proc. of International Conference on Computer

Communication and Informatics (ICCCI), 2014.

124

[16] E. Kantoch, P. Augustyniak, M. Markiewicz and D. Prusak, "Monitoring activities of daily

living based on wearable wireless body sensor network," Proc. of IEEE International

Conference on Engineering in Medicine and Biology Society (EMBC), pp. 586-589, 2014.

[17] Ping Wang, Yan Yan, Gui Yun Tian, Omar Bouzid and Zhiguo Ding, “Investigation of

wireless sensor networks for structural health monitoring,” Journal of Sensors, vol. 2012,

Article ID 156329, 2012.

[18] M. Sha, D. Gunatilaka, C. Wu and C. Lu, "Empirical study and enhancements of industrial

wireless sensor-actuator network protocols," IEEE Internet of Things, early-access article,

2017.

[19] W. Kuo and M. J. Zuo, Optimal reliability modeling: principles and applications, John Wiley

& Sons, 1st edition, 2003, pp. 85-102.

[20] F. Koushanfar, M. Potkonjak and A. Sangiovanni-Vecentelli, “Fault-tolerance in wireless

sensor networks”, in Handbook of Sensor Networks, CRC Press, 1st edition, 2005.

[21] D. Deif and Y. Gadallah,” Classification of wireless sensor networks deployment techniques”,

IEEE Communications Surveys & Tutorials, vol. 16, no.2, pp. 834-854, 2014.

[22] K. Yetgin, T. K. Cheung, M. El-Hajjar and L. Hanzo, "A survey of network lifetime

maximization techniques," IEEE Communications Surveys & Tutorials, early access article,

2017.

[23] M. Hefeeda and H. Ahmadi, "A probabilistic coverage protocol for wireless sensor

networks," Proc. of IEEE International Conference on Network Protocols (ICNP'07), pp. 41-

50, 2007.

[24] B. Carter and R. Ragade, "An extensible model for the deployment of non-isotropic sensors,"

Proc. of IEEE Sensors Applications Symposium (SAS'08), pp. 22-25, Feb. 2008.

[25] N. Aitsaadi, N. Achir, K. Boussetta and B. Gavish, "A gradient approach for differentiated

wireless sensor network deployment," Proc. of IFIP Wireless Days (WD'08), 2008.

[26] D. N. Ahmed, S.S. Kanhere and S. Jha, "Probabilistic coverage in wireless sensor networks,"

Proc. of IEEE Conference on Local Computer Networks (LCN'05), pp. 681-688, 2005.

[27] A. Alfes, “Occupancy Grids: A stochastic spatial representation for active robot perception”,

in Proc. of Conference on Uncertainty in Artificial Intelligence, pp. 60-70, 1990.

[28] A. Alfes, "Using occupancy grids for mobile robot perception and navigation", IEEE

Computer Magazine, vol. 22, no.6, pp. 46-57, 1989.

[29] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective coverage and surveillance

in distributed sensor networks,” Proc. of IEEE Wireless Communications and Networking

Conference (WCNC'03), pp. 1609-1614, 2003.

[30] L. Yuan, W. Chen and Y. Xi, "A review of control and localization for mobile sensor

networks," Proc. of World Congress on Intelligent Control and Automation, (WCICA'06),

vol.2, pp.9164-9168, 2006.

[31] http://www-robotics.usc.edu/~robomote/

[32] Z. Ming, D. Xiaojiang and K. Nygard, "Improving coverage performance in sensor networks

by using mobile sensors," Proc. of IEEE Military Communications Conference

(MILCOM'05), vol. 5, pp. 3335-3341, 2005.

[33] F. Li, S. Xiong and L. Wang, "Recovering coverage holes by using mobile sensors in wireless

SENSOR networks," Proc. of International Conference on Computational Intelligence and

Security (CIS), pp.746-749, 2011.

[34] H. Pishro-Nik, K.S. Chan and F. Fekri, "On connectivity properties of large-scale sensor

networks," Proc. of 1st Annual IEEE Communications Society Conference on Sensor and Ad

Hoc Communications and Networks (IEEE SECON), pp. 498- 507, 2004.

[35] M. Cardei and J. Wu, "Coverage in wireless sensor networks”, in Handbook of Sensor

Networks, CRC Press, 2005.

[36] H. Zhang and J. Hou, "Maintaining sensing coverage and connectivity in large sensor

networks", Ad Hoc & Sensor Wireless Networks, vol. 1, pp. 89-124, 2005.

[37] Y. Kim, C. Kim, D. Yang, Y. Oh and Y. Han, "Regular sensor deployment patterns for p-

coverage and q-connectivity in wireless sensor networks," Proc. of International Conference

on Information Networking (ICOIN), pp.290-295, 2012.

125

[38] G. Xing, X. Wang, Y Zhang, C. Lu, R. Pless and C. Gill, "Integrated coverage and

connectivity configuration for energy conservation in sensor networks," ACM Transactions

on Sensor Networks, vol. 1, no. 2, pp.36-72, 2005.

[39] Y. Sun, Z. Yu, J. Ge, B. Lin and Z. Yun, "On deploying wireless sensors to achieve both

coverage and connectivity," Proc. of 5th International Conference on Wireless

Communications, Networking and Mobile Computing (WiCom '09), 2009.

[40] X. Shen and J. Chen, Y. Sun, "Grid Scan: A simple and effective approach for coverage issue

in wireless sensor networks," Proc. of IEEE International Conference on Communications

(ICC '06), pp.3480-3484, 2006.

[41] K. Chakrabarty, S.S. Iyengar, Q. Hairong and C. Eungchun, "Grid coverage for surveillance

and target location in distributed sensor networks," IEEE Transactions on Computers, vol. 51,

no.12, pp. 1448-1453, 2002.

[42] J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press,

1975.

[43] R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming, http://gp-

field-guide.org.uk, 2008.

[44] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley and Sons,

2000, pp. 2- 40.

[45] C. M. Fonseca, P. J. Fleming, “Genetic Algorithms for multi objective optimization:

formulation, discussion and generalization”, Proc. of the International Conference on Genetic

Algorithms, pp 416-423, 1993.

[46] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry:

Algorithms and Applications, Springer, 3rd Edition, 2008.

[47] F. Aurenhammer, “Voronoi Diagrams – a survey of a fundamental geometric data structure,”

ACM Computing Surveys, vol.23, no.3, Sep. 1991.

[48] G. Wang, G. Cao and T. L. Porta, “Movement-assisted sensor deployment,” IEEE

Transactions on Computers, vol. 5, no.6, pp. 640-652, 2006.

[49] C. Kim, Y. Kim, Y. Han, H. Lee and Y. Jeong, "An energy-efficient self-deployment scheme

in intelligent mobile sensor networks," Proc. of International Conference on Multimedia and

Ubiquitous Engineering (MUE), 2010.

[50] H. Lee, Y. Kim, Y. Han and C. Park, "Centroid-based movement assisted sensor deployment

schemes in wireless sensor networks," Proc. of IEEE Vehicular Technology Conference-Fall

(VTC 2009-Fall), 2009.

[51] M. R. Ingle and N. Bawane, "An energy efficient deployment of nodes in wireless sensor

network using Voronoi diagram," Proc. of 3rd International Conference on Electronics

Computer Technology (ICECT), vol.6, pp.307-311, 2011.

[52] A. Boukerche and X. Fei, "A voronoi approach for coverage protocols in wireless sensor

networks," Proc. of IEEE Global Telecommunications Conference (GLOBECOM '07),

pp.5190-5194, 2007.

[53] S. Meguerdichian, F. Koushanfar, M. Potkonjak and M. Srivastava “Coverage problems in

wireless ad-hoc sensor network,” Proc. of the Annual IEEE International Conference on

Computer Communications (INFOCOM'01), pp. 1380-1387, 2001.

[54] X. Li, P. Wan and O. Frieder, "Coverage in wireless ad hoc sensor networks," IEEE

Transactions on Computers, vol. 52, no .6, pp. 753-763, 2003.

[55] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots", International

Journal of Robotics Research, vol. 5, pp. 90-98, 1986.

[56] R. Arkin, "Motor schema based navigation for a mobile robot: An approach to programming

by behavior," Proc. of IEEE International Conference on Robotics and Automation, pp. 264-

271, 1987.

[57] F.E. Schneider, D. Wildermuth, "A potential field based approach to multi robot formation

navigation," Proc. of IEEE International Conference on Intelligent Systems and Signal

Processing, pp. 680-685, 2003.

[58] W. H. Fan, Y. H. Liu, F. Wang, X.P. Cai, "Multi-robot formation control using potential field

for mobile ad-hoc networks," Proc. of IEEE International Conference on Robotics and

Biomimetics (ROBIO), pp.133-138, 2005.

126

[59] M. Zhang, Y. Shen, Q. Wang, Y. Wang, "Dynamic artificial potential field based multi-robot

formation control," Proc. of IEEE Conference on Instrumentation and Measurement

Technology, pp.1530-1534, 2010.

[60] A. Howard, M. J. Mataric, G. S. Sukhatme, “Mobile sensor network deployment using

potential field: a distributed scalable solution to the area coverage problem”, Proc. of

International Symposium on Distributed Autonomous Robotics Systems (DARS'02), 2002.

[61] K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances

and Applications, IGI Global, 2010.

[62] F. Neumann, C. Witt, Bio-inspired Computation in Combinatorial Optimization: Algorithms

and Their Computational Complexity, Springer, pp. 28-30, 2010.

[63] G. Beni, J. Wang, "Swarm intelligence in cellular robotic systems" In P. Dario, G. Sandini, P.

Aebischer (Eds.), Robotics and Biological Systems: Towards a New Bonics, NATO ASI

Series, Series F: Computer and System Science, pp. 703-712.

[64] R. Eberhart, J. Kermedy, “A New Optimizer Using Particles Swarm Theory", Proc. of

International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.

[65] Y. Shi, R. Eberhart, "A modified particle swarm optimizer," Proc. of IEEE World Congress

on Computational Intelligence, pp.69-73, May 1998.

[66] E. Ozcan, C.K. Mohan, "Particle swarm optimization: surfing the waves," Proc. of 1999

Congress on Evolutionary Computation, pp. 1939-1944, 1999.

[67] H. Xiaohui, R. Eberhart, S. Yuhui, "Particle swarm with extended memory for multi-objective

optimization," Proc. of IEEE Symposium on Swarm Intelligence (SIS '03), pp. 193-197, 2003.

[68] M. Dorigo and T. Stutzle, Ant colony optimization, MIT Press, 2004, pp. 25-100.

[69] D.B. Jourdan, O.L. de Weck, “Layout optimization for a wireless sensor network using a

multi objective genetic algorithm”, Proc. of IEEE Semi-annual Vehicular Technology

Conference-Spring (VTC'04-spring), vol. 5, pp. 2466-2470, 2004.

[70] D.B. Jourdan, and O.L. de Weck, "Multi-objective genetic algorithm for the automated

planning of a wireless sensor network to monitor a critical facility," Proc. of SPIE Defense

and Security Symposium, pp. 565-575, 2004.

[71] I. Harvey, "The microbial genetic algorithm", Evolutionary Computation, 1996.

[72] B. Carter, R. Ragade, "A probabilistic model for the deployment of sensors", IEEE Sensors

Applications Symposium (SAS'09), pp. 7-12, 2009.

[73] Yong Xu and Xin Yao, "A GA approach to the optimal placement of sensors in wireless

sensor networks with obstacles and preferences," Proc. Of the IEEE Consumer

Communications and Networking Conference (CCNC 2006), pp. 127-131, 2006.

[74] S.-S. Choi and B.-R. Moon, “Normalization for genetic algorithms with non-synonymously

redundant encodings,” IEEE Transaction on Evolutionary Computing, vol. 12, no. 5, pp. 604-

616, 2008.

[75] D. S. Deif and Y. Gadallah, “Wireless sensor network deployment using a variable-length

genetic algorithm”, Proc. of the IEEE Wireless Communications and Networking Conference

(WCNC 2014), pp. 2450-2455, 2014.

[76] O. Zorlu and O. K. Sahingoz, "Increasing the coverage of homogeneous wireless sensor

network by genetic algorithm based deployment," Proc. of International Conference on

Digital Information and Communication Technology and its Applications (DICTAP), pp. 109-

114, 2016.

[77] G. Wang, G. Cao, T. LaPorta, "A bidding protocol for deploying mobile sensors," Proc. of

IEEE International Conference on Network Protocol, pp. 315-324, Nov. 2003.

[78] Z. Zhou, S. Wang, “Centroid optimization coverage and polling the sets of the coverage

nodes: An improved coverage scheme,” Proc. of International Conference on Wireless

Communications, Networking and Mobile Computing (WiCOM'06), 2006.

[79] N. Heo, P.K. Varshney, “Energy-efficient deployment of intelligent mobile sensor networks,”

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 1,

no. 35, pp.78-92, 2005.

[80] C. H. Wu, K. C. Lee and Y. C. Chung, "A delaunay triangulation based method for wireless

sensor network deployment," Proc. of International Conference on Parallel and Distributed

Systems (ICPADS' 06), 2006.

127

[81] D.O. Popa, H.E. Stephanou, C. Helm and A. C. Sanderson, "Robotic deployment of sensor

networks using potential fields," Proc. of IEEE International Conference on Robotics and

Automation (ICRA '04), pp. 642-647, 2004.

[82] M. Senouci, M. Abdelhamid, K. Assnoune, "Localized movement-assisted sensor deployment

algorithm for hole detection and healing," IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 5, pp. 1267-1277, 2014.

[83] M. Rout and R. Roy, "Self-deployment of mobile sensors to achieve target coverage in the

presence of obstacles," IEEE Sensors Journal, vol. 16, no. 14, pp. 5837-5842, 2016.

[84] W. Jia, "Coverage enhanced algorithm using artificial potential force," Proc. of International

Conference on Intelligent Control and Information Processing (ICICIP'11), vol. 2, pp. 969-

972, 2011.

[85] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual

forces,” Proc. of the Annual IEEE International Conference on Computer Communications

(INFOCOM'03), vol. 2, pp.1293-1303, 2003.

[86] S. Li, C. Xu, W. Pan, Y. Pan, "Sensor deployment optimization for detecting maneuvering

targets," Proc. of 8th International Conference on Information Fusion, vol.2, pp. 1629-1635,

July 2005.

[87] X. Yu, W. Huang, J. Lan, X. Qian, "A novel virtual force approach for node deployment in

wireless sensor network," Proc. of IEEE International Conference on Distributed Computing

in Sensor Systems (DCOSS), pp. 359-363, 2012.

[88] W. Xiaoling, S. Lei, Y. Jie, X. Hui, J. Cho, S. Lee, "Swarm based sensor deployment

optimization in ad hoc sensor networks", Proc. of International Conference on Embedded

Software and Systems (ICESS'05), 2005.

[89] N. A. Aziz, A. W. Mohemmed, B. S. Daya Sagar, "Particle Swarm Optimization and Voronoi

diagram for Wireless Sensor Networks coverage optimization," Proc. of International

Conference on Intelligent and Advanced Systems (ICIAS 2007), pp. 961-965, Nov. 2007.

[90] N. A. Aziz, A. W. Mohemmed, M. Y. Alias, "A wireless sensor network coverage

optimization algorithm based on particle swarm optimization and Voronoi diagram," Proc. of

International Conference on Networking, Sensing and Control (ICNSC '09), pp.602-607,

2009.

[91] N. A. Aziz, A. W. Mohemmed, M. Y. Alias, K. A. Aziz, S. Syahali, "Coverage maximization

and energy conservation for mobile wireless sensor networks: A two phase particle swarm

optimization algorithm," Proc. of International Conference on Bio-Inspired Computing:

Theories and Applications (BIC-TA 2011), pp.64-69, 2011.

[92] H. Safa, W. El-Hajj, H. Zoubian, "Particle swarm optimization based approach to solve the

multiple sink placement problem in WSNs," IEEE International Conference

on Communications (ICC), 2012, pp.5445-5450, 2012.

[93] D. Li, W. Liu and L. Cui, "EasiDesign: an improved ant colony algorithm for sensor

deployment in real sensor network system," IEEE Global Telecommunications Conference

(GLOBECOM 2010), 2010.

[94] X. Liu, "Sensor deployment of wireless sensor networks based on ant colony optimization

with three Classes of ant transitions," IEEE Communications Letters, vol. 16, no. 10, pp.

1604-1607, 2012.

[95] G. Huang, D. Chen and X. Liu, "A node deployment strategy for blindness avoiding in

wireless sensor networks," IEEE Communications Letters, vol. 19, no. 6, pp. 1005-1008,

2015.

[96] C. Zhu, C. Zheng, L. Shu and G. Han, "A survey on coverage and connectivity issues in

wireless sensor networks," Journal of Network and Computer Applications, vol. 35, no. 2, pp.

619-632, 2012.

[97] J. Virkki, Y. Zhu, Y. Meng, and L. Chen, "Reliability of WSN hardware," International

Journal of Embedded Systems, vol. 1, no. 2, 2012.

[98] http://www.tadiranbatteries.de/eng/products/lithium-thionyl-chloride-batteries/overview.asp

[99] https://www.omnisense.com/oms_cds/media/008-002-

002%20OmniSense%20FMS%20Sensor%20Battery%20Life.pdf

http://www.tadiranbatteries.de/eng/products/lithium-thionyl-chloride-batteries/overview.asp
https://www.omnisense.com/oms_cds/media/008-002-002%20OmniSense%20FMS%20Sensor%20Battery%20Life.pdf
https://www.omnisense.com/oms_cds/media/008-002-002%20OmniSense%20FMS%20Sensor%20Battery%20Life.pdf

128

[100] N. Baccour, A. Koubaa, L. Mottola, M. A. Zuniga, H. Youssef, C. A. Boano, and . Alves,

“Radio link quality estimation in wireless sensor networks: a survey” ACM Transactions on

Sensor Networks, vol. 8, no. 4, 2012.

[101] Y. Ali and S. Narasimhan “Sensor network design for maximizing reliability of linear

processes,” Journal of AIChE, vol. 39, pp. 820–828, 1993.

[102] M. Bagajewicz and M. Sanchez, “Cost-optimal design of reliable sensor networks,” El Sevier

Journal of Computer and Chemical Engineering, vol. 23, pp. 1757-1762, 2000.

[103] P. R. Kotecha, M. Bhushan, R. D. Gudi, and M. K. Keshari. "A duality based framework for

integrating reliability and precision for sensor network design," El Sevier Journal of Process

Control, vol. 18, no. 2 pp. 189-201, 2008.

[104] H. M. AboElFotoh, S.S. Iyengar and K. Chakrabarty, "Computing reliability and message

delay for cooperative wireless distributed sensor networks subject to random failures," IEEE

Transactions on Reliability, vol. 54, no. 1, pp. 145-155, 2005.

[105] Y. Jin, H. Lin, Zhang, Z. Zhang and X. Zhang, "Estimating the reliability and lifetime of

wireless sensor network," Proc. of the International Conference on Wireless

Communications, Networking and Mobile Computing (WiCOM), 2008.

[106] C. Jaggle, J. Neidig, T. Grosch and F. Dressler, "Introduction to model-based reliability

evaluation of wireless sensor networks," Proc. of the International Federation of Automatic

Control (IFAC) Workshop on Dependable Control of Discrete Systems, pp. 149-154, 2009.

[107] E. I. Gokce, A. K. Shrivastava and Y. Ding. "Fault tolerance analysis of surveillance sensor

systems," IEEE Transactions on Reliability, vol. 62, no. 2, pp. 478-489, 2013.

[108] A. Damaso, N.Rosa, P. Maciel, “Reliability of wireless sensor networks”, Sensors, vol.14,

no.9, pp. 15760-15785, 2014.

[109] I. Silva, L. A. Guedes, P. Portugal and F. Vasques, "Reliability and availability evaluation of

wireless sensor networks for industrial applications," Sensors, vol. 12, no. 1, pp. 806-838,

2012.

[110] I. Silva, L. A. Guedes, P. Portugal and F. Vasques, “A dependability evaluation tool for the

Internet of Things”, Computers & Electrical Engineering, vol. 39, no.7, pp. 806-838, 2013

[111] http://www.reliabilityanalytics.com/blog/2011/09/02/reliability-modeling-k-out-of-n-

configutation/

[112] M. O. Ball, "Computational complexity of network reliability analysis: An overview," IEEE

Transactions on Reliability, vol. 35, no. 3, pp. 230-239, 1986.

[113] H. Van-Trinh, N. Julien and P. Berruet, “On-line self-diagnosis based on power measurement

for a wireless sensor node” Proc. of the IEEE Workshop on Highly-Reliable Power-Efficient

Embedded Designs, 2013.

[114] Y. Shpungin, "Combinatorial approach to reliability evaluation of network with unreliable

nodes and unreliable edges," International Journal of Computer Science, vol. 1, no. 3, pp.

177-183, 2006.

[115] I. B. Gertsbakh and Y. Shpungin, Models of Network Reliability: Analysis, Combinatorics,

and Monte Carlo, CRC Press, 1st edition, 2010, pp. 17-23.

[116] http://www.ti.com/product/CC2420/quality

[117] X. Chen, Y.S. Ong, M.H. Lim, K.C. Tan, “ A multi-facet survey on memetic computation”

IEEE Transactions on Evolutionary Computation, vol. 15, pp. 591-607, 2011.

[118] P. Moscato and C.A. Cotta, “A modern introduction to memetic algorithms”, In Handbook of

Metaheuristics, International series in operations research and management science,

Gendreau, M., Potvin, J., Eds.; Springer, 2nd ed., 2010, pp. 141-183.

[119] J. Levine and F. Ducatelle, “Ant colony optimization and local search for bin packing and

cutting stock problems,” Journal of the Operational Research Society, vol. 55, pp. 705-716,

2004.

[120] F. Neumann, D. Sudholt and C. Witt, “Rigorous analyses for the combination of ant colony

optimization and local search,” Proc. of International Conference on Ant Colony

Optimization and Swarm Intelligence, pp. 132-143, 2008.

[121] Y. Lin, J. Zhang, H. S. H. Chung, W. H. Ip, Y. Li and Y. H. Shi, "An ant colony optimization

approach for maximizing the lifetime of heterogeneous wireless sensor networks," IEEE

http://www.reliabilityanalytics.com/blog/2011/09/02/reliability-modeling-k-out-of-n-configutation/
http://www.reliabilityanalytics.com/blog/2011/09/02/reliability-modeling-k-out-of-n-configutation/
http://www.ti.com/product/CC2420/quality

129

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42,

no. 3, pp. 408-420, 2012.

[122] W. Ke, B. H. Liu and M.J. Tsai, “Constructing a WSN to fully cover critical grids by

deploying minimum sensors on grid points is NP-complete”, IEEE Transactions on

Computers, vol. 56, no. 5, 2007.

[123] J.J. Schneider, S. Kirkpatrick, Stochastic Optimization, Springer, 2006, pp. 43-169.

[124] R.Wiener, “Branch and Bound implementations of the travelling salesman problem: Part1”,

Journal of Object Technology, vol.2, no.2, March 2003.

[125] N. B. Sariff and Norlida Buniyamin, "Comparative study of genetic algorithm and ant colony

optimization algorithm performances for robot path planning in global static environments of

different complexities," Proc. of the IEEE International Symposium on Computational

Intelligence in Robotics and Automation (CIRA), pp. 132-137, 2009.

[126] E. Elbeltagi, T. Hegazy and D. Grierson. "Comparison among five evolutionary-based

optimization algorithms," El Sevier Journal of Advanced engineering informatics, vol.19, no.

1 pp. 43-53, 2005.

[127] R. Putha, L. Quadrifoglio and Emily Zechman, "Comparing ant colony optimization and

genetic algorithm approaches for solving traffic signal coordination under oversaturation

conditions, " Journal of Computer Aided Civil and Infrastructure Engineering, vol.27, no. 1

pp. 14-28, 2012.

[128] V. Saishanmuga and S. P. Rajagopalan, "A comparative analysis of optimization techniques

for artificial neural networks in bio-medical applications," Journal of Computer Science,

vol.10, no. 1, pp. 106-114, 2014.

[129] K. M. Rana and M. A. Zaveri, "Techniques for efficient routing in wireless sensor network,"

Proc. of International conference on Intelligent Systems and Data Processing (ICISD), 2011.

[130] R. Haupt and S. Haupt, Practical Genetic Algorithms, Wiley, 2nd edition, 2004, pp. 27- 64.

[131] C. C. Lai, C. K. Ting, R. S. Ko, “An effective genetic algorithm to improve wireless sensor

network lifetime for large-scale surveillance applications,” Proc. of the IEEE Congress on

Evolutionary Computation (CEC’07), pp. 3531–3538, 2007.

[132] A. Sinha, Y. Chen, D. E. Goldberg, “Designing efficient genetic and evolutionary algorithm

hybrids," in Studies in Fuzziness and Soft Computing, Springer, 2004, pp. 259-288.

[133] A.E. Eiben and K. Smit, “Parameter tuning for configuring and analyzing evolutionary

algorithms,” Swarm and Evolutionary Computation, vol.1, no.1, pp.19-31, 2011.

[134] R. Haupt and S. Haupt, Practical Genetic Algorithms, Wiley, 2nd edition, 2004, pp. 128-135.

[135] Wen Wan and Jeffrey B. Birch, “An improved hybrid genetic algorithm with a new local

search procedure,” Journal of Applied Mathematics, vol. 2013, Article ID 103591, 10 pages,

2013. doi:10.1155/2013/103591.

[136] E. A. Eiben and J. E. Smith, Introduction to Evolutionary Computing, vol. 53, Heidelberg:

Springer, 2003.

[137] D.C. Montogomery, Deisgn and Analysis of Experiments, Wiley, 8th edition,2013,pp. 26-52.

[138] M. Li, Z. Li and A. V. Vasilakos, "A survey on topology control in wireless sensor networks:

taxonomy, comparative study, and open Issues," Proceedings of the IEEE, vol. 101, no. 12,

pp. 2538-2557, 2013.

[139] F. Delicato, F. Protti, L. Pirmez and J.F. de Rezende,"An efficient heuristic for selecting

active nodes in wireless sensor networks", Computer Networks, vol. 50, no. 18, pp. 3701-

3720, 2006.

[140] A. Nagpur and S. Patil, “Topology control in wireless sensor networks: An overview,”

International Journal of Computer Applications, vol. 92, no. 7, 2014.

[141] Yi Zou and K. Chakrabarty, "A distributed coverage- and connectivity-centric technique for

selecting active nodes in wireless sensor networks," IEEE Transactions on Computers, vol.

54, no. 8, pp. 978-991, 2005.

[142] D. Tian and N.D. Georganas, “A node scheduling scheme for energy conservation in large

wireless sensor networks,” Wireless Comm. and Mobile Computing, vol. 3, pp. 271-290,

2003.

[143] Y. Li, Yingshu, C. Ai, Z. Cai and R. Beyah, "Sensor scheduling for p-percent coverage in

wireless sensor networks," Cluster Computing, vol. 14, no. 1, pp. 27-40, 2011.

130

[144] H. P. Gupta, S. V. Rao and T. Venkatesh, "Sleep scheduling for partial coverage in

heterogeneous wireless sensor networks," Proc. of the International Conference on

Communication Systems and Networks (COMSNETS), 2013.

[145] M. Hefeeda and H. Ahmadi, “Energy-efficient protocol for deterministic and probabilistic

coverage in sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol.

21, no. 5, pp. 579-593, 2010.

[146] Y. Xu, J. Heidemann and D. Estrin, “Geography-informed energy conservation for ad hoc

routing”, Proc. of International Conference on Mobile Computing and Networking

(MOBICOM), 2001.

[147] F. Ye, G. Zhong, S. Lu and L. Zhang, “PEAS: A robust energy conserving protocol for long-

lived sensor networks”, Proc. of the International Conference on Distributed Computing

Systems (ICDCS), 2003.

[148] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “SPAN: An energy-efficient

coordination algorithm for topology maintenance in ad hoc wireless networks,” Proc. Of

MobiCom, pp. 85-96, 2001.

[149] S. Gao, C. Vu and Y. Li, “Sensor scheduling for k-coverage in wireless sensor networks,”

Proc. Of the International Conference on Mobile Ad-hoc and Sensor Networks, 2006.

[150] M. Cardei and D. Z. Du, “Improving wireless sensor network lifetime through power aware

organization,” Wireless Networks, vol. 11, no. 3, pp. 333-340, 2005.

[151] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sensor networks,”

in Proc. of the IEEE International Conference on Communications (ICC), 2001.

[152] C. C. Lai, C. K. Ting and R. S. Ko, “An effective genetic algorithm to improve wireless

sensor network lifetime for large-scale surveillance applications,” Proc. of the IEEE Congress

on Evolutionary Computation, pp. 3531–3538, 2007.

[153] https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja.

[154] http://anrg.usc.edu/contiki/index.php/Cooja_Simulator

[155] A. Dunkels, B. Gron¨ vall, and T. Voigt, “Contiki - a lightweight and flexible operating

system for tiny networked sensors,” Proc. of the First IEEE Workshop on Embedded

Networked Sensors, 2004

[156] http://www.contiki-os.org/

[157] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor network

simulation with COOJA” Proc. of the First IEEE International Workshop on Practical Issues

in Building Sensor Network Applications (SenseApp 2006), 2006.

[158] http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

[159] https://tools.ietf.org/html/rfc6550

[160] S. Dasa, S.S. Mullicka and P.N. Suganthanb, “Recent advances in differential evolution – An

updated survey,” Elsevier Journal on Swarm and Evolutionary Computation, vol. 27, no. 4,

2016.

[161] M. Nikolić and D. Teodorović, “Empirical study of the Bee Colony Optimization (BCO)

algorithm”, Elsevier Journal on Expert Systems with Applications, vol. 40, no. 11, , pp. 4609-

4620, 2013.

[162] https://www.ietf.org/rfc/rfc3561.txt

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
http://anrg.usc.edu/contiki/index.php/Cooja_Simulator
http://www.contiki-os.org/
https://tools.ietf.org/html/rfc6550
https://www.ietf.org/rfc/rfc3561.txt

131

	Reliable cost-optimal deployment of wireless sensor networks
	Recommended Citation
	APA Citation
	MLA Citation

	Reliable Cost-Optimal Deployment of Wireless Sensor Networks
	Acknowledgements
	Abstract
	Abbreviations
	Figures
	Tables
	Symbols
	Contents
	Chapter 1
	Introduction
	1.1. Introduction
	1.2. Problem Statement and Research Objectives
	1.3. Organization of the Dissertation

	Chapter 2
	Wireless Sensor Network Deployment Techniques: A Survey and Classification
	2.
	2.1. Introduction
	2.2. Fundamental Design Factors of WSNs
	1.
	2.
	2.1.
	2.2.
	2.2.1. Sensing Model
	2.2.1.1. The Binary Sensing Model
	2.2.1.2. Probabilistic Sensing Model

	2.2.2. Sensor Node Mobility
	2.2.3. WSN Coverage and Connectivity

	2.3. Mathematical Approaches Used in WSN Deployment Algorithms
	2.3.1. Genetic Algorithms
	2.3.2. Computational Geometry
	2.3.2.1. Voronoi Diagram
	2.3.2.2. Delaunay Triangulation

	2.3.3. Artificial Potential Field
	2.3.4. Swarm Intelligence (SI)
	2.3.4.1. Particle Swarm Optimization
	2.3.4.2. Ant Colony Optimization

	2.4. Wireless Sensor Networks Deployment Algorithms
	2.3.
	2.4.1. Genetic Algorithms
	2.4.2. Computational Geometry-based Algorithms
	2.4.3. Artificial Potential Field-based Algorithms
	2.4.3.1. Distributed Algorithms
	2.4.3.2. Centralized Algorithms

	2.4.4. Swarm Intelligence Algorithms

	2.5. Discussion and Experimental Evaluation
	2.5.1. Discussion: Comparing the Four Approaches
	2.5.2. Experimental Evaluation
	2.5.2.1. Experimental Set-up
	2.5.2.2. Results and Discussion

	2.6. Chapter Summary

	Chapter 3
	Reliability Assessment of Wireless Sensor Network Deployments
	3.
	3.1. Introduction
	3.2. Related Work on Reliability and Fault Tolerance of WSNs
	3.3. Motivation for a New Reliability Metric
	3.4. Fundamental Reliability Concepts
	3.4.1. Component Reliability Function and Component Reliability
	3.4.2. Combinatorial Approach to System Reliability Evaluation

	3.5. WSN Reliability Metric
	3.5.1. WSN Model and Functionality Definition
	3.5.2. Reliability Metric Formulation for the 3-mode, 2-par SN Model
	3.5.2.1. 3-mode, 2-par SN Model
	3.5.2.2. Reliability Metric Derivation
	3.5.2.3. Reliability Metric Calculation

	3.5.3. Reliability Metric Formulation for the 3-mode, 4-par SN Model
	3.5.3.1. 3-mode, 4-par SN Model
	3.5.3.2. Reliability Metric Derivation
	3.5.3.3. Reliability Metric Calculation

	3.6. Case Study
	3.6.1. Experimental Set-up
	3.6.2. Results and Discussion for the 3-mode, 2-Par SN model
	3.6.3. Results and Discussion for the 3-mode, 4-par SN model
	3.6.4. Comparison between the 3-mode, 2-par and 4-par SN models

	3.7. Chapter Summary

	Chapter 4
	Reliable Cost-Optimal Wireless Sensor Network Deployment
	4.
	4.1. Introduction
	4.2. Minimum-Cost Reliability-Constrained SDP
	4.2.1. WSN Model
	4.2.2. Problem Formulation
	4.2.3. Estimation of the Upper-Bound of the Number of Connected Covers
	4.2.4. Proof that MCRC-SDP is NP-Complete

	4.3. Proposed Optimization Algorithms for Solving the RCSDP
	4.3.1. Proposed Memetic Algorithm
	4.3.1.1. Chromosome Encoding Scheme
	4.3.1.2. Fitness Function
	4.3.1.3. Variation Operators
	4.3.1.4. Chromosome Selection Methods
	4.3.1.5. Local Search Procedure
	4.3.1.6. Termination Conditions
	4.3.1.7. Measures to Reduce Computational Cost

	4.3.2. Proposed ACO Algorithm
	4.3.2.1. Construction Graph
	4.3.2.2. Tour Construction
	4.3.2.3. Cost Function
	4.3.2.4. Local Search Procedure
	4.3.2.5. Pheromone Management
	4.3.2.6. Summary of the proposed ACO algorithm
	4.3.2.7. Measures to Reduce Computational Cost

	4.4. Experimental Results and Discussion
	4.4.1. Experimental Setup
	4.4.2. Parameter Settings of the Proposed Algorithms
	4.4.2.1. Parameter Settings of the Proposed MA
	4.4.2.2. Parameters Setting of the Proposed ACO Algorithm

	4.4.3. A GH for Benchmarking the Proposed Algorithms
	4.4.4. Comparison and Discussion

	4.5. Chapter Summary

	Chapter 5
	A Practical Realization of the Proposed Reliable Cost-Optimal Deployment Technique
	5.
	5.1. Introduction
	5.2. Previous Work on WSN Topology Control
	5.3. Proposed Topology Control Protocol for Reliable WSN Deployments
	5.4. Experimental Results and Discussion
	5.5. Chapter Summary

	Chapter 6
	Conclusions
	6.
	6.1. Dissertation Summary
	6.2. Future Work

	References

