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Abstract 

 

Wireless Sensor Networks (WSNs) technology is currently considered one of the key 

technologies for realizing the Internet of Things (IoT). Many of the important WSNs 

applications are critical in nature such that the failure of the WSN to carry out its required 

tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN 

functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the 

fundamental requirements of the network deployment strategy. Achieving this requirement at 

a minimum deployment cost is particularly important for critical applications in which 

deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in 

the traditional sense, especially in conjunction with minimizing the deployment cost, has not 

been considered as a deployment requirement in existing WSN deployment algorithms to the 

best of our knowledge. Addressing this major limitation is the central focus of this 

dissertation. We define the reliable cost-optimal WSN deployment as the one that has 

minimum deployment cost with a reliability level that meets or exceeds a minimum level 

specified by the targeted application. We coin the problem of finding such deployments, for a 

given set of application-specific parameters, the Minimum-Cost Reliability-Constrained 

Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, 

we propose a novel WSN reliability metric which adopts a more accurate SN model than the 

model used in the existing metrics. The proposed reliability metric is used to formulate the 

MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-

Complete. Two heuristic WSN deployment optimization algorithms are  then developed to 

find high quality solutions for the MCRC-SDP. Finally, we investigate the practical 

realization of the techniques that we developed as solutions of the MCRC-SDP. For this 

purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable 

for managing such reliable cost-optimal deployments. Accordingly, we propose a practical 

TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such 

deployments. Experimental results suggest that the proposed TCP’s overhead and network 

Time To Repair (TTR) are relatively low which demonstrates the applicability of our 

proposed deployment solution in practice. 
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Introduction 

 

1.1. Introduction 

Over the past decade, Wireless Sensor Networks (WSNs) have become a rich research 

field, introducing a wide variety of exciting new applications. A WSN is composed of a 

number of tiny low-power sensor devices that are capable of sensing various physical 

phenomena (e.g. sound, light, temperature, motion, seismic action, etc.) in almost all types of 

environments (industrial, domestic, military, etc.). These devices, simply referred to as 

Sensor Nodes (SNs), process the crude sensory data and wirelessly communicate it to one or 

more data collection nodes, referred to as sinks, through single or multi-hop transmissions. 

The sink(s) are in turn connected to another wired or wireless network for the purposes of 

querying and processing the collected data [1]. WSNs are also considered one of the key 

technologies for realizing the Internet of Things (IoT) concept, playing the pivotal role of 

detecting events and measuring physical and environmental quantities of interest [2], [3]. It is 

currently estimated that the WSN market will grow to $1.8 billion by 2024 [4]. Current 

applications for WSNs include but are not limited to industrial near real-time monitoring and 

automation [5], [6], traffic surveillance and control [7], [8], continuous health monitoring [9] ,

[10], target tracking in military operations [11] and environmental monitoring [12], [13]. 

Nevertheless, the large potential of WSNs in vital applications is associated with their highly 

complex design process. The reason behind the design complexity is that WSNs are 

inherently different from existing wired and wireless networks due to the severe energy, 

processing and communication constraints of their constituent SNs.  

One of the most important design aspects in WSNs is the deployment of SNs, which is 

also covered under different expressions in the literature: SNs’ positioning, placement, 

topology construction and deployment. Throughout this dissertation, the expression 

deployment will be used. The importance of SN deployment lies in the fact that it affects 

almost all the performance metrics of a WSN, such as the connectivity between SNs, the 

network’s effective coverage and the network’s effective lifetime. Consequently, a 

considerable body of research in the field of WSNs has been dedicated to addressing 

deployment related issues.  

In general, SN deployment methods fall under two main categories, namely, planned 

deployment and random deployment. In random deployment, SNs are usually scattered (e.g. 

by aircraft), resulting in a randomized distribution of sensors, although their density can be 

controlled to an extent  [14]. Random deployment can sometimes be the only feasible option 

in some applications where the Region of Interest (RoI) is inaccessible such as disaster areas 

and active war zones. Logically speaking, random deployments result in sub-optimal 

performance of the WSN. On the other hand, planned deployment is defined as selectively 

deciding the locations of the SNs to optimize one or more design objectives of the WSN, 

under the constraints of a specific application. Hence, planned deployment is often 

formulated as an optimization problem, which we will refer to here as the SN Deployment 

Problem (SDP). Design objectives of the SDP commonly required are minimizing the 

deployment cost, maximizing coverage, minimizing energy consumption, and minimizing 
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routing costs. Planned deployment is suited for a wide variety of WSNs applications, 

provided that the RoI is accessible. Examples include border surveillance and intrusion 

detection in facilities[15], continuous human health monitoring [16], structural health 

monitoring [17] and industrial real-time monitoring [18]. A great number of studies have 

proposed methods and algorithms for solving the planned sensor deployment problem. These 

proposed deployment algorithms in the literature are heavily influenced by the requirements 

of specific applications and the characteristics of the used SNs, such as their wireless 

communication ranges and their sensing profiles. 

The examples of WSNs applications requiring planned deployment cited above are also 

examples of WSNs applications of a critical nature. For these applications, it is imperative 

that the WSN functions properly throughout its mission time, i.e. the WSN is reliable during 

this time. This is because failure of the WSN to carry out its required tasks can have serious 

detrimental effects (e.g. failure to detect an intrusion at a military installation). The mission 

time for a WSN is application-dependent and can either be the intended lifetime of the 

network or the time interval between regular network maintenance operations. This in turn 

poses stringent reliability requirements on the WSN that must be addressed in the design and 

deployment phase of the network. Consequently, it is important to clearly define proper WSN 

functionality and to identify the different issues that can compromise it. Moreover, a well-

defined reliability metric is required to serve as a measure of the fault tolerance of the WSN 

deployment against these issues. 

In general, the reliability of a multi-component system is defined as the “probability that 

the system will perform satisfactorily during its specified mission time when used under the 

stated conditions” [19]. The method by which reliability is calculated for a specific system 

varies according to the type(s) of components the system is composed of, the system’s layout 

or configuration in terms of how these components are connected to each other and the 

state(s) at which the system is defined to have failed. In this context, a WSN can be viewed as 

a multi-component system in which the components are the SNs and the sink node(s). Each 

SN is characterized by a number of parameters which include the reliabilities of its own 

components or alternatively, their probabilities of failure during the specified mission time of 

the network. The layout or configuration of the WSN is defined as the way the SNs are 

deployed in the RoI and the resulting wireless communication graph, assuming any two SNs 

can communicate wirelessly if the distance between them is less than their communication 

range (i.e. assuming SNs act as both sensory data sources and relays in the WSN). 

In order to define the states at which a WSN fails, proper WSN functionality must be 

defined, i.e. the conditions required for a WSN to be functional.  The functionality of a WSN 

can be divided into two major elements. The first element is the sensing functionality, which 

is the ability of a WSN to detect all the targets or phenomena that occur inside the boundaries 

of the RoI during its mission time. Hence, for a WSN to be functional in terms of sensing, it 

must provide full coverage for the RoI area (in case of area coverage) or all the targeted 

locations in the RoI (in case of point coverage) during its mission time. The second element 

of the WSN functionality is the connectivity functionality, which is the ability of the WSN to 

deliver sensed data from its sources (i.e. SNs) to the designated destination (i.e. sink node(s)) 

during its mission time. Hence, for a WSN to be functional in terms of connectivity, any 

target or a phenomenon detected by one or more SNs in a WSN has to be recognized at the 

sink node(s) through multi-hop wireless communication throughout the WSN mission time. 

Based on this definition of WSN functionality, a WSN is said to have failed if either of its 

sensing or connectivity functionality elements fails [20]. Therefore, a WSN is said to be 

reliable during a specified mission time if both its functionality elements do not fail during 

that time interval, i.e. if the WSN provides a connected-cover of the RoI throughout its 

mission time. 
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1.2. Problem Statement and Research Objectives 

Deployment of reliable WSNs is a challenging problem. This is due to the fact that SNs 

are subject to random failures that result from different sources such as hardware failures, 

harsh environmental conditions and many other reasons [20]. Naturally, such failures can 

compromise the WSN functionality in terms of sensing and/or connectivity. Hence, SN 

redundancy (i.e. the presence of redundant SNs in the network) is essential to guarantee the 

reliable operation of a WSN during its intended mission time. However, for many 

applications for which SNs are equipped with expensive hardware minimizing the number of 

deployed SNs (i.e. the network deployment cost) presents a major concern. Therefore, the 

level of SN redundancy in the WSN must be carefully quantified such that the network meets 

the reliability requirements imposed by the application while avoiding any unnecessary 

increase in the network deployment cost.   

After carrying out an extensive survey on the existing static WSN planned deployment 

algorithms (which is presented and discussed in Chapter 2), we realized that WSN reliability, 

specifically in conjunction with minimizing the WSN deployment cost, has been overlooked 

as a deployment objective. The majority of the existing deployment algorithms aim at 

minimizing the WSN deployment cost with the objective of fulfilling application-dependent 

network coverage and connectivity objectives under a wide range of assumptions. In other 

words, they aim to find a connected-cover of the targeted RoI that is cost-optimal [21]. 

However, a WSN which consists of a single connected-cover cannot be considered reliable 

over a given network mission time. This is because, by definition, a cost-optimal connected 

cover does not contain redundant SNs. Consequently, the failure of one or more of the 

deployed SNs during the network mission time will compromise the functionality of the 

network in terms of coverage and/or connectivity. On the other hand, some recent 

studies [22] propose deployment algorithms that find cost-optimal deployments that are 

characterized by higher degrees of coverage and/or connectivity. However, this approach do 

not offer a method to predict the level of SN redundancy (i.e. the degree of coverage and 

connectivity) required to guarantee a specified minimum level of network reliability over a 

given network mission time. Therefore, in order to deploy reliable cost-optimal WSNs, it is 

important to devise a deployment technique that explicitly considers network reliability as a 

design requirement while ensuring that the deployment cost is minimized.  

 Addressing the problem stated above is the central focus of this dissertation. 

Specifically, we aim to develop WSN deployment algorithms that obtain reliable and cost-

optimal deployments for WSNs that support critical applications under practical operational 

assumptions. We define the reliable WSN cost-optimal deployment as one that has minimum 

deployment cost with a reliability level that meets or exceeds a given minimum level as 

specified by the targeted application. We use practical operational assumptions that include 

arbitrary SN coverage profile, arbitrary SN communication to sensing range ratio and a 

realistic SN operational model.   

The research contributions of this dissertation can be summarized in the following 

points: 

1. A comprehensive survey and classification of the existing WSN planned deployment 

algorithms based on their underlying mathematical approach.  

2. A novel reliability metric for WSNs that is based on an accurate SN model when 

compared to the model used in the existing WSN reliability metrics. 

3. A mathematical formulation of the problem of finding a reliable cost-optimal WSN 

deployment. We coin this problem the Minimum-Cost Reliability-Constrained 

Sensor Node Deployment Problem (MCRC-SDP) and prove that it is NP-Complete. 
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4. A Memetic Algorithm (MA) and an Ant Colony Optimization (ACO) algorithm 

designed for solving the defined MCRC-SDP. 

5. A practical realization of a Topology Control Protocol (TPC) suitable for managing 

the SN redundancy in the reliable cost-optimal WSN deployments obtained by the 

developed deployment algorithms. 

1.3. Organization of the Dissertation 

The rest of this dissertation is organized as follows. In Chapter 2, a classification of the 

WSN planned deployment algorithms is presented. Based on an extensive review of the 

deployment algorithms which belong to each approach, we present a qualitative comparison 

among them highlighting the strengths and shortcomings of each approach. We also present 

an experimental quantitative comparison of four of the existing static WSN deployment 

algorithms reviewed in the chapter. In Chapter 3, a novel WSN reliability metric is proposed 

to address some of the limitations of the existing WSN metrics. Experimental results on the 

proposed metric are presented and discussed in terms of its computational efficiency and 

accuracy. In Chapter 4, the mathematical formulation for the MCRC-SDP is presented. A 

MA and an ACO algorithm designed for solving the defined MCRC-SDP are proposed. 

Extensive experimental results are presented, analyzed and discussed to highlight the 

strengths and limitations of each of the proposed algorithms.  In Chapter 5, we propose a 

practical TCP that is suitable for managing the SN redundancy in reliable cost-optimal 

deployments. We present and discuss the experimental results obtained from implementing 

and simulating the proposed TCP. Finally we conclude the dissertation in Chapter 6, in which 

we summarize our findings and propose future work directions. 
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Chapter 2 

 

Wireless Sensor Network Deployment Techniques: 

A Survey and Classification 

 

2.1. Introduction 

There exist a large number of studies in the literature which propose algorithms for 

solving different variants of the planned SDP that we defined in Chapter 1. In this chapter, we 

present an extensive literature survey on these studies. We begin by discussing some of the 

fundamental design factors of WSNs, namely the SN sensing/coverage model, SN mobility 

and WSN coverage and connectivity. We elaborate on these specific design aspects due to 

their great influence on the deployment algorithms that are reviewed in this chapter. We 

present a novel classification of the WSN planned deployment algorithms, based on the 

mathematical approach used for modeling and solving the deployment problem. The 

presented classification encompasses the majority of the main studies conducted on the topic. 

Four distinct mathematical approaches are presented: Genetic Algorithms (GAs), 

Computational Geometry (CG), Artificial Potential Fields (APFs) and Swarm Intelligence 

(SI). For each approach, we provide a discussion of its background and basic mathematical 

foundation. We then review the algorithms which belong to each approach and provide a 

comparison between them in terms of their objectives, assumptions and performance. Based 

on our extensive survey, we discuss the strengths and limitations of the four approaches and 

compare them in terms of the different WSN design factors. We also present an experimental 

comparison among four of the existing WSN deployment algorithms. 

2.2. Fundamental Design Factors of WSNs  

2.2.1. Sensing Model 

Generally speaking, the sensing model of a specific type of SNs is a mathematical model 

that describes the probability of target/event detection of the SN.  Assuming the target or 

event occur at a point 𝑝𝑗 in the RoI, the probability of detecting that target or event by a 

SN 𝑠𝑖 is denoted by  𝑃𝑖𝑗, which is a function of several parameters. The most commonly used 

parameters are the Euclidean distance between them 𝑑𝑖𝑗, the orientation of the SN (e.g. image 

SN with a given Field of View (FoV), various environmental parameters and SN hardware 

parameters. There are several sensing models found in the literature. However, they can be 

broadly classified into binary and probabilistic sensing models. 

2.2.1.1. The Binary Sensing Model 

This model is also called the Disk Model. The Binary model simply assumes that a SN 

has a fixed sensing range 𝑟𝑠 . If an event occurs at a point 𝑝𝑗 at a distance less than or equal 𝑟𝑠 

from the location of SN 𝑠𝑖 , then the event is detected deterministically by 𝑠𝑖  . However, if the 

distance is equal to 𝑟𝑠 + 𝜖 (𝜖 > 0), then the event won't be detected at all. This definition is 

depicted in (2.1) [23], [24]. 
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𝑃𝑖𝑗 = {
1        𝑖𝑓 𝑑𝑖𝑗 ≤ 𝑟𝑠

      0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (2.1) 

 

Although this model is widely used in the literature due to its simplicity, it is unrealistic. 

It is unlikely that the detection capabilities, or the physical signals of the detected target or 

event, drops abruptly from maximum to zero. This implies that using the binary sensing 

model in a deployment scheme may result in under-utilizing the sensing capabilities of SNs 

and hence deploying more SNs than needed, incurring higher deployment costs.  

2.2.1.2. Probabilistic Sensing Model 

Probabilistic sensing models aim at capturing the various factors affecting the precision 

of SN readings [25]. Apart from the nature of the sensed physical phenomenon and the 

imperfect detection capabilities of the SN itself, these factors also include environmental 

conditions such as noise and obstacles [26]. Inspired by the probabilistic sensing models 

proposed in the field of robot navigation [27], the study in [28] proposed the following 

probabilistic sensing model: 

 

𝑃𝑖𝑗 = {

1                 𝑖𝑓 𝑟𝑠 − 𝑟𝑒 ≥ 𝑑𝑖𝑗

𝑒−𝛼𝑎𝛽
              𝑖𝑓 𝑟𝑠 + 𝑟𝑒 ≥ 𝑑𝑖𝑗 ≥ 𝑟𝑠 − 𝑟𝑒 

0                 𝑖𝑓  𝑟𝑠 + 𝑟𝑒 ≤ 𝑑𝑖𝑗

  (2.2) 

𝑎 = 𝑑𝑖𝑗 − (𝑟𝑠 − 𝑟𝑒 ),  

 

where 𝑟𝑒 (𝑟𝑠 > 𝑟𝑒 ) is the measure of the uncertainty in the SN detection and 𝛼 and 𝛽 are SN 

parameters with values between 1 and 0, varying according to the physical characteristics of 

the SN. The model depicted in (2.2) assumes that there are two concentric circles around a 

given SN; a circle of confidence with a radius 𝑟𝑠 − 𝑟𝑒  in which the detection probability of a 

target is equal to 1, and a wider circle of radius 𝑟𝑠. The probability of detecting a target 

outside the circle of confidence and inside the wider circle deteriorates exponentially with the 

Euclidean distance between the SN and the target or event 𝑑𝑖𝑗.  

A simpler variation of the sensing model described by (2.2), proposed in [29], omits the 

inner circle of confidence, and simply assumes an exponential decay of the probability of 

detection with the Euclidean distance, as depicted in the following equation. 

 

𝑃𝑖𝑗 = {
𝑒−𝛽𝑑𝑖𝑗              𝑖𝑓 𝑑𝑖𝑗 < 𝑟𝑠
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

        (2.3) 

 

Equations (2.1) to (2.3) describe the sensing models that are most commonly adopted in 

the formulation of the deployment algorithms reviewed in this chapter. Hence, these 

equations will be referenced repeatedly throughout this chapter. 

2.2.2. Sensor Node Mobility 

WSNs can be classified according to the type of deployed SNs (static or mobile) into two 

types: Static WSNs (simply referred to simply as WSN) and Mobile WSNs (MWSNs). The 

concept of MWSNs has been spurred by the recent advances in distributed computing and 

robotic technology. MWSNs are defined as WSNs containing SNs which have sensing, 

processing, communication and locomotive capabilities. The locomotive capabilities can be 

achieved by mounting static SNs on mobile vehicles or mobile robots [30], [31]. The MWSN 
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can be homogeneous, i.e. consisting entirely of mobile SNs, or heterogeneous, i.e. contains 

both mobile and static SNs.  

The added mobility can provide the MWSNs with several benefits, but can also 

complicate the design significantly. The main added benefit is the ability of the network to 

self-deploy after an initial random deployment. This self-deployment (or more accurately re-

deployment) capability can significantly improve the effective coverage of the network from 

the initial limited coverage which is difficult to control, due to factors such as wind, foliage, 

terrain irregularities, etc. Mobile SNs can also be used to cover detected coverage holes in a 

RoI in heterogeneous WSNs consisting mostly of static SNs as proposed in [32] and [33]. 

Another important benefit is the added ability of self-reconfiguration in the network. Re-

configuration can be very beneficial in the case when some of the SNs in the network die 

(due to energy depletion or harsh environmental conditions) which leads to connectivity 

islands. Re-configuration will enable the network to maintain an acceptable connectivity, in 

order to maintain multipath routing [34]. However, the introduced mobility poses design 

problems such as the hefty burden on the limited energy resources of the usually battery-

powered SNs and the need for coordination between the mobile SNs. 

2.2.3. WSN Coverage and Connectivity 

Coverage is one of the most important performance metrics in WSNs. In WSNs, 

coverage can have different meanings and can be determined using different methods. In 

general, it revolves around the question "How well do the deployed SNs observe the physical 

space?” In all contexts, coverage provides a measure of the Quality of Service (QoS) of a 

specific WSN deployment. As the coverage of a WSN increases, its success in carrying out 

its specific sensing task(s) increases as well. 

 Coverage in a WSN is intertwined with the connectivity in the network. The term 𝑘-

connectivity (𝑘 ≥ 1) means that there exist at least 𝑘 disjoint paths between any pair of SNs 

in a WSN [23]. Connectivity is of immense importance because it guarantees that sensory 

data acquired by any SN in a WSN can be routed to the sink node(s).  

  Coverage in WSNs can be classified into three types: area (blanket) coverage, point 

coverage and barrier coverage [35]. In area coverage, an entire two dimensional (2-D) RoI is 

considered, such that each point in the RoI is observed by at least one SN. In point coverage, 

the objective is to only guarantee that a set of finite points in the RoI are observed by at least 

one SN. Barrier coverage usually deals with the detection of movement across a barrier of 

SNs. The most studied coverage problem in WSNs literature is the area coverage problem. 

This is indeed justified, since the majority of WSNs applications involve full monitoring.  

The two main problems pertaining to area coverage are achieving satisfactory coverage 

and evaluating the coverage for a certain deployment. Satisfactory coverage here means 

ensuring that an event occurring at any point in the RoI can be detected with a probability 

that is equal to or exceeds a predefined threshold 𝛾 dictated by the application, where 𝛾 ∈
[0,1]. Another method of describing satisfactory coverage is to specify the minimum number 

of SNs 𝑘 observing each point in the region of interest, which is denoted 𝑘-coverage.  

The methods used for achieving the required level of area coverage depend primarily on 

the deployment method (planned or random), the type of the application (which determines 

the value of 𝛾), and the adopted sensing model for the deployed SNs. For example, consider 

the ideal case of observing an obstacle-free 2-D RoI, assuming a binary sensing model, where 

planned deployment is feasible. In such a hypothetical case, it is proposed that SNs be 

deployed in regular deployment patterns, such as triangular lattice patterns, square grid 

patters and hexagonal patterns [36], [37]. The objective of these regular deployment patterns 

is to ensure that area coverage is achieved with no coverage holes while also ensuring 𝑘-
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connectivity. The dimensions of the lattice (distances between SNs) depend on both the 

sensing radius 𝑟𝑠and communication range 𝑟𝑐 of the SNs. It has been proven that in the case 

where 𝑟𝑐 ≥ 2𝑟𝑠, 𝑘-coverage implies 𝑘-connectivity, assuming a binary sensing model [38]. 

Moreover, the authors in [39] propose strip-based deployment patterns to achieve 1- or 2-

connectivity for different values of the communication to sensing range ratio 𝑟𝑐/𝑟𝑠. However, 

such regular planned deployments require precise manual deployment of SNs, which can be 

impractical or even impossible in most applications; e.g. when the RoI is characterized by 

static and/or dynamic obstacles such as in indoor environments, mountainous outdoor 

environments and forests. This has motivated the emergence of the different approaches for 

planned deployment surveyed in this study, in which achieving satisfactory area coverage is 

always a primary objective.   

On the other hand, evaluating the effective area coverage of an existing WSN 

deployment has also a paramount importance. For example, consider WSNs applications 

were only a random deployment is feasible, such as surveillance applications in war zones or 

catastrophe areas. In these applications, if the number of SNs deployed randomly is high, i.e. 

dense deployment, the need arises for protocols to control the activation and deactivation of 

the deployed SNs, in order to minimize the redundancy in coverage (overlap of sensing 

regions of neighboring SNs) in some areas of the RoI. This results in increasing both the 

network's lifetime and fault tolerance. These protocols are called coverage protocols in the 

WSN literature. Examples include Optimal Geographical Density Control (OGDC) 

protocol [36], Coverage Configuration Protocol (CCP) [38], and Probabilistic Coverage 

Protocol (PCP) [23]. In these coverage protocols, probabilistic sensing models are assumed, 

as depicted in (2.2) and (2.3). In order to compute the effective area coverage achieved by a 

set of 𝑛 active nodes 𝑺, a sampling method is used where the RoI is represented in the form 

of a 2-D grid containing a finite number of 𝑚 grid points. The collective probability of 

detecting a target or an event at a grid point 𝑝𝑗 , 𝑗 ∈ {1, 2, … ,𝑚}, from all 𝑛 active SNs in 𝑺 is 

given by: 

 

𝑃(𝑝𝑗) = 1 − ∏ (1 − 𝑃𝑖𝑗
𝑛
𝑖=1 ) , (2.4) 

 

where  𝑃𝑖𝑗 is calculated using (2.2) or (2.3). It is then assumed that the whole RoI is 

adequately covered if the probability of detection at each grid point exceeds the predefined 

threshold, γ. This sampling approach for evaluating the area coverage of a WSN deployment 

is also utilized in grid-based deployment algorithms [29], [40], [41], where SNs can only be 

placed in a subset of 𝑚 predefined grid points that represent the RoI. The major drawback of 

these grid-based deployment algorithms is that their accuracy and computational complexity 

are dependent on the number of grid points considered in the RoI. Other sampling approaches 

which utilize famous computational geometry constructs such as Voronoi diagrams have also 

been utilized in non-grid based deployment algorithms, with less complexity, as discussed 

later in this chapter. 

2.3. Mathematical Approaches Used in WSN Deployment 

Algorithms 

On reviewing the plethora of planned deployment and re-deployment algorithms 

proposed for WSNs in papers published in the past decade, we identified four mathematical 

approaches or tools commonly used for building such algorithms. In this section, we aim to 

provide the reader with the necessary background and foundations of these mathematical 

approaches. 
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2.3.1. Genetic Algorithms 

Genetic Algorithms (GAs) are search and optimization algorithms based on the 

mechanics of natural selection and genetics. GAs became popular through the work of John 

Holland in the early 1970s [42], and have since been used for solving optimization problems 

in various fields such as computer networking, industrial engineering and machine learning. 

The paradigm of GAs is copying the natural selection as described in Darwin’s Theory 

stating that "species whose individuals are best adapted survive; others go extinct". A GA can 

be especially effective in combinatorial and multi-objective optimization problems, in which 

deterministic optimization methods are not applicable [43]. In general, a GA has three basic 

components [44]:  

1. A genetic representation of the candidate solutions of the problem. This is called 

encoding and it is dependent on the problem's variables and constraints. The 

encoding of candidate solutions is chosen in such a way that they can be decoded into 

a unique variables’ vector which belong to the search space and verify the 

constraints.  There are several methods for encoding in GAs, such as binary 

encoding, integer encoding, and real number encoding. The choice of encoding 

method is highly dependent on the nature of the optimization problem itself. The 

candidate solutions in the problem’s search space are said to be in the phenotype 

space, while their genetic representation through encoding is in the genotype space. 

2. A fitness function for evaluating candidate solutions. 

3. Stochastic genetic operators that alter the composition of the offspring during the 

reproductive phase of the GA. 

Five steps are carried out in a single iteration of a typical GA. The first step is creating an 

initial population of individuals or chromosomes. Each chromosome represents a unique 

encoded candidate solution of the problem. The initial population usually covers the search 

space of the problem uniformly.  

 After creating the initial population, step two is carried out; using a fitness function to 

evaluate the individuals in the population. The fitness function is essentially a cost function, 

which is a mathematical expression of what we want to optimize. GAs use fitness evaluation 

for the elimination of the weakest individuals from the population and to find out the fittest 

individuals. Therefore, if a chromosome brings the fitness evaluation to a value closer to the 

optimal point than the others, that chromosome is said to be the fittest.  

The third step is selecting chromosomes from the population to undergo the reproductive 

phase of the GA, this is called parent selection.  Parent selection is usually dependent on the 

calculated fitness and is often stochastic in nature. The two most commonly used parent 

selection techniques are the Roulette Wheel and the Tournament techniques.  

The fourth step is then to apply the two genetic operators, crossover and mutation, to the 

selected parent chromosomes to produce an offspring or children population Crossover is the 

primary genetic operator, and is achieved by randomly pairing every two individuals 

(parents) in the population together to produce offspring that contain portions of both their 

codes. Fig. 2.1 illustrates the process of crossover for binary encoding. Mutation, on the other 

hand, is a background operator that creates a new individual by altering a randomly chosen 

part of a selected parent.  
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Fig. 2.1   Crossover in case of binary encoding in a GA 

Table 2.1   Pseudo code of a general GA 

  Step Genetic Algorithm     

1. Set 𝑡 ← 0 

2. Initialize 𝑃(𝑡) 

3. Evaluate 𝑃(𝑡)                  

4. While (termination condition not met) 

5.           Recombine 𝑃(𝑡) to yield 𝐶(𝑡) 

6.           Evaluate 𝐶(𝑡)                     

7.           Select 𝑃(𝑡 + 1) from 𝑃(𝑡) and 𝐶(𝑡) 

8.            𝑡 ← 𝑡 + 1 

9. End While 

 

Both operators are responsible for directing an offspring population towards exploring 

new parts of the problem’s search space. The offspring population is also evaluated using the 

same fitness function. 

The fifth step in a GA is the selection step, which is choosing individuals from both the 

parent and offspring populations to form a new population. Selection is the driving force of 

the GA, since it direct the search to promising regions of the search space. There are several 

methods for selection, both stochastic and deterministic, such as age-based selection, fitness-

based selection and elitism.  Steps two to five are repeated to produce several iterations, or 

generations, and the algorithm gradually converges to the fittest individual, which hopefully 

represents an optimal solution to the problem, although that outcome isn’t guaranteed. The 

algorithm can either terminates after producing a maximum number of generations or after 

finding an individual with a fitness corresponding to a satisfactory solution to the problem. 

The general structure of GAs is expressed in pseudo code in Table 2.1. 

One of the most important advantages of GAs as an optimization tool is its ability to deal 

with combinatorial and multi-objective optimization problems. This advantageous property of 

GAs prompted their use in formulating multi-objective deployment algorithms for WSN. In 

multi-objective GAs, or MOGAs, one of the approaches to measure fitness is to use a sum of 

weighted normalized cost functions of each objective independently [43] as expressed by the 

following equation: 

𝐶𝑜𝑠𝑡 = ∑ 𝑤𝑖𝑓𝑖
𝑁
𝑖=1  , 

 
(2.5) 

0 ≤ 𝑓𝑖 ≤ 1 ,  
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where 𝑓𝑖 is the 𝑖𝑡ℎ normalized cost function ( 1 ≤ 𝑁 ≤ 𝑖) and 𝑤𝑖 is the weighting factor 

where ∑ 𝑤𝑖 
𝑁
𝑖=1 = 1. Another approach for fitness evaluation in MOGAs is the Rank-based 

Fitness assignment [45]. It depends on the concept of Pareto Dominance which can be 

explained as follows: Given a set of objectives in a MOGA, an individual is said to Pareto 

dominate another if the first is not inferior to the second in any of the objectives, and there is 

at least one objective where it is better. Consequently, the optimal solution of the multi-

objective optimization problem isn't represented by a single individual, but by a set of non-

dominated Pareto optimal individuals. In Rank-based fitness assignment, individuals are 

given ranks that are directly proportional to the number of individuals dominating them. 

2.3.2. Computational Geometry 

The field of Computational Geometry (CG) emerged in the 1970s. It dealt with various 

kinds of challenging computational problems of geometric nature. Examples of such 

problems include motion planning in the field of robotics, map overlay in geographic 

information systems and polygon triangulation which is used to solve the famous Art Gallery 

Problem in surveillance applications. These versatile geometric problems motivated 

researchers to come up with carefully designed, efficient and fast geometry-based algorithms 

to solve them. A formal definition for CG is given as "The systematic study of algorithms and 

data structures for geometric objects, with a focus on exact algorithms that are asymptotically 

fast"[46]. Nowadays, there is a rich collection of geometric algorithms that are efficient and 

easy to understand and implement for various application areas. 

In the field of WSNs, several studies were based on two of the famous CG structures, the 

Voronoi Diagram (VD) and Delaunay Triangulation (DT). They aimed at constructing 

efficient deployment algorithms for both static and mobile WSNs. In the following we shed 

some light on each of these two geometric structures. 

2.3.2.1. Voronoi Diagram  

The VD is a versatile geometric structure with applications in physics, astronomy, 

robotics and networking [47]. It is closely linked to DT which will be explained in the next 

subsection. 

To formally define a VD [46], consider a set of 𝑛 distinct points in a set 𝑃 in a 2-D plane, 

such that 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}. These points are called sites in the terminology of CG. The VD 

of the set 𝑃 is defined as the subdivision of the 2-D plane into 𝑛 cells, where each cell 

corresponds to one site in 𝑃, such that the Euclidean distance between any site 𝑝𝑖 and any 

point 𝑞 lying inside the cell corresponding to it is less than that between 𝑞 and another site 𝑝𝑗, 

for 𝑖 ≠ 𝑗. This is expressed in (2.6) as: 

 

𝑑𝑖𝑠𝑡(𝑞, 𝑝𝑖) < 𝑑𝑖𝑠𝑡(𝑞, 𝑝𝑗)   ∀ 𝑝𝑖 , 𝑝𝑗 ∈ 𝑃, 𝑖 ≠ 𝑗 (2.6) 

 

The VD of 𝑃 is denoted Vor(𝑃), while the Voronoi cell (also called Voronoi polygon) 

corresponding to site 𝑝𝑖 is denoted 𝑣(𝑝𝑖). To construct 𝑣(𝑝𝑖), we draw the cell's edges as the 

vertical bisectors of the lines connecting 𝑝 𝑖 to its neighboring sites. This is illustrated in Fig. 

2.2, where the Voronoi polygon of point O, 𝑣(𝑂) is constructed by drawing the vertical 

bisector of the lines passing through point O and points A,B,C,D and E (neighboring sites).  

One of the ways VDs were utilized in the field of WSNs is using them as a means of 

computing the effective coverage of a 2-D RoI. It is a sampling method, like using grids, to 

check a finite number of points inside and on the boundary of the RoI for coverage, to 

evaluate the area coverage of the entire RoI [48] - [52]. Using a VD for this purpose, the sites 
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correspond to deployed SNs and the vertices of the Voronoi cell of each SN are the sampling 

points checked for coverage, along with a number of points on the boundaries of the RoI. If 

the coverage of the WSN at the sampling points exceeds the minimum required coverage, 

then it is guaranteed that the entire RoI is covered, following the VD property expressed in 

(2.6). Examples of the use of VD in deployment algorithms for WSNs are reviewed at length 

in Section 2.4.2. 

 

 

Fig. 2.2   Voronoi cell of a site 𝑂 with neighbouring sites 𝐴,𝐵,𝐶,𝐷 and 𝐸                     

2.3.2.2. Delaunay Triangulation  

In general, triangulations of planar point sets are widely used in approximating the 

earth's terrain in topographic maps, using measured heights at a finite set of sample points.  

Triangulation of a set 𝑃 is defined as "the planar subdivision whose bounded faces are 

triangles and whose vertices are the points of the set 𝑃" [46]. The DT is a special kind of 

triangulation of planar point sets. The DT of a set 𝑃 is always an angle-optimal triangulation 

of  𝑃, which essentially means that it would give the most realistic approximation of a certain 

terrain, compared to other possible triangulations. 

As mentioned earlier, DT is closely related to VD. To construct the DT of a set 𝑃, 

denoted 𝐷𝑇(𝑃), consider 𝑉𝑜𝑟(𝑃), as shown in Fig. 2.3. 𝐷𝑇(𝑃) is constructed by connecting 

every two sites in  𝑃 if their corresponding Voronoi cells share an edge, i.e. neighboring sites. 

𝐷𝑇(𝑃) has a very interesting property; the circumcircle of any triangle in 𝐷𝑇(𝑃) does not 

contain a point of 𝑃 in its interior. This property is called the empty circle property, and as we 

will discuss later in Section 2.4.2, it can help estimate the point of the weakest coverage in a 

deployed WSN, and hence provide very useful guidance in the case of deploying new SNs (or 

waking them up from a sleep state) to improve the effective coverage. 

In addition to computing effective area coverage and discovering coverage holes in 

WSNs, VD and DT were also used in determining the Maximal Breach Path (MBP) and 

Maximal Support Path (MSP) in a certain WSN deployment [53],[54]. MBP corresponds to 

the worst-case coverage.  It is defined as the path between two arbitrary points that passes 

through a WSN with a bounded RoI, such that the distance between each point on the path 

and the nearest SN is maximized. On the other hand, MSP corresponds to the best- case 

coverage, where the distance between each point on it and the nearest SN is minimized. Both 

MBP and MSP are used in determining barrier coverage, which was defined earlier in Section 

2.2.5.  
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Fig. 2.3   Delaunay triangulation of a set of planar points 

2.3.3. Artificial Potential Field   

Artificial Potential Field (APF) techniques were first introduced in the field of Robotics 

in [55]. The study presented an original real-time obstacle avoidance approach for mobile 

robots based on an "artificial potential concept". The idea behind the approach can be 

described as follows. A mobile robot is assumed to be moving in a field of artificial virtual, 

forces. The position to be reached, i.e. the goal, can be represented by an attractive pole, 

which exerts virtual attractive forces on the mobile robot. The obstacles are represented by 

repulsive surfaces that in turn exert virtual repulsive forces on the mobile robot. This 

approach is mathematically interpreted in the following equation: 

 

𝑈𝑎𝑟𝑡(𝑥, 𝑦) = 𝑈𝑔(𝑥, 𝑦) + 𝑈𝑜(𝑥, 𝑦) , (2.7) 

 

where 𝑈𝑎𝑟𝑡(𝑥, 𝑦) is the artificial potential energy that varies with the location of the mobile 

robot in the field, 𝑈𝑔(𝑥, 𝑦) is the artificial attractive potential energy attributed to the goal and 

𝑈𝑜(𝑥, 𝑦) is the artificial repulsive potential energy due to the obstacles. The virtual force 

vector F applied on a mobile robot at a certain location (𝑥, 𝑦) in the APF is computed by 

obtaining the gradient of 𝑈𝑎𝑟𝑡(𝑥, 𝑦) in (2.7) as follows: 

 

𝐹 = −𝛻𝑈𝑎𝑟𝑡(𝑥, 𝑦) , (2.8) 

𝐹 = 𝐹𝑔 + 𝐹𝑜 ,  (2.9) 

𝐹𝑔 = −𝛻[𝑈𝑔(𝑥, 𝑦)] , (2.10) 

𝐹𝑜 = − 𝛻[𝑈𝑜(𝑥, 𝑦)] , (2.11) 

 

where 𝑭𝒈 is the virtual attractive force enabling the mobile robot to reach the goal position, 

while 𝑭𝒐 represents a virtual repulsive force that steers the mobile robot away from the 

obstacles. The minus sign in (2.8) - (2.11) means that the virtual forces are in the direction of 

the steepest decrease of the artificial potential fields at any given point (𝑥, 𝑦). 

This real-time approach aims at making obstacle-avoidance in robotics a component of 

the low level control that provides a robot with a path to accomplish its assigned goal free 

from any risk of collision, even in cluttered dynamic environments. The authors in [56] used 

a variant of the APF method to produce appropriate velocity and steering commands for a 
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mobile robot as part of a new concept in mobile robot navigation and object tracking called 

"motor schema".  APF techniques have since been applied to the problems of formation 

control and obstacle avoidance in multi-robot systems [57] - [59]. These problems are of 

similar nature to the deployment problem in MWSNs; the movement of robots, based on 

local sensing and computation, collectively maintains a design objective, which is the desired 

formation shape, while avoiding colliding with obstacles and each other. 

In [60], authors mapped the concept of APF to the domain of WSNs. They used the 

concept to devise a deployment approach for MWSNs. Their deployment algorithm, along 

with several algorithms based on the APF approach, is discussed in detail in Section 2.4.3. 

2.3.4. Swarm Intelligence (SI) 

Swarm Intelligence is a branch of Artificial Intelligence (AI) that focuses on the 

collective behavior and properties of complex, self-organized, decentralized systems with a 

social structure, such as bird flocks, ant colonies and fish schools. These systems consist of 

simple interacting agents organized in small societies, called swarms, which exhibit traits of 

intelligence, such as the ability to react to environmental threats and decision making 

capacities [61], [62].   

Swarm Intelligence was utilized in the global optimization framework in the form of a 

set of algorithms introduced in [63] for controlling robotic swarms in 1989. Several years 

later, three main swarm intelligence optimization algorithms were developed, namely, Ant 

Colony Optimization (ACO), Stochastic Diffusion (SD) and Particle Swarm Optimization 

(PSO). In this study, we will only focus on PSO and ACO due to their emerging use in the 

development of deployment algorithms for WSNs.  

2.3.4.1. Particle Swarm Optimization 

In 1995, Eberhart and Kennedy [64] developed PSO as a stochastic global optimization 

algorithm based on social simulation models. The core idea of the PSO algorithm is to use a 

population (swarm) of search points (particles) that move stochastically in the boundaries of 

the optimization problem's search space. The nomenclature was inspired from similar models 

in social sciences and particle physics. The best position (i.e. the best solution) ever reached 

by each individual in the population, which is called experience, is retained in memory. This 

experience is then communicated to part or all of the swarm, directing its movement towards 

the search space regions where it is more likely to find the optimal solution. The convergence 

of the algorithms depends greatly on the chosen communication scheme. 

The mathematical framework of PSO [61] is as follows. Let 𝐴 ⊂ 𝐑𝑛 (𝐑𝑛 is the 

𝑛 dimensional space) be the search space and 𝑓: 𝐴 → 𝑌 ⊆ 𝐑 be the objective function of the 

optimization problem, where  𝑌 is the corresponding value of 𝑓 to any point in 𝐴. Assume 

that there are no further constraints in the problem and that there are no other conditions on 

either 𝐴 or 𝑓. The swarm 𝑺 is defined as a set of 𝑁 particles, representing candidate solutions: 

 

𝑆 = {𝑝1 , 𝑝2 , … , 𝑝𝑁} ,  (2.12) 

𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2 , … , 𝑝𝑖𝑛) ∈ 𝐴,    𝑖 = 1,2, …𝑁 , (2.13) 

 

where 𝑁 is a user-defined parameter in the algorithm. The particles are assumed to move 

within 𝐴 iteratively in order to explore its promising regions. This is achieved by defining the 

velocity of each particle, which is used to adjust the particle's position in each iteration 𝑡 of 

the algorithm, as follows:  

𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑛),    𝑖 = 1,2, …𝑁 ,  (2.14) 
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The particle velocity 𝑣𝑖 also changes iteratively in the algorithm. The current position 

and velocity of the 𝑖-th particle are denoted 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡) respectively. The algorithm also 

maintains a memory set, where each particle stores the best position (i.e. best solution) it has 

ever reached during its search in 𝐴. The PSO memory set is given by: 

 

𝑀 = {𝑚1,𝑚2 , … ,𝑚𝑛} , (2.15) 

𝑚𝑖 = (𝑚𝑖1,𝑚𝑖2 , … ,𝑚𝑖𝑛) ∈ 𝐴,    𝑖 = 1,2, …𝑁 , (2.16) 

 

Determining  𝑚𝑖 at any iteration 𝑚𝑖(𝑡)  depends on the objective function 𝑓. The best 

visited position in 𝐴 by any particle in the swarm at a given iteration, i.e. the best position in  

𝑀 , is denoted 𝑚𝑔(𝑡). This term represents the social behavior in PSO since particles are 

assumed to communicate their experiences with each other. The early version of PSO by 

Eberhart and Kennedy [64] is defined by the following equations: 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑣𝑖𝑗(𝑡) + 𝑐1𝑅1 (𝑚𝑖𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) + 𝑐2𝑅2(𝑚𝑔𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) 

 
 
 
 
 

(2.17) 

𝑝𝑖𝑗(𝑡 + 1) = 𝑝𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) , (2.18) 

 

for 𝑖 = 1,2, …𝑁 and 𝑗 = 1,2, … 𝑛; 𝑅1 and 𝑅2 are random variables uniformly distributed 

between 0 and 1;  𝑐1 and 𝑐2 are weighting factors; also called the cognitive and social 

parameter respectively. The steps of the PSO are provided in pseudo code in Table 2.2. It 

should be noted that PSO has undergone many refinements to its earliest version, as 

represented by (2.17) and (2.18), to enhance its performance in more complicated 

optimization problems [65] - [67] . However, the main steps in its operation remain 

unchanged. 

2.3.4.2. Ant Colony Optimization 

On the other hand, ACO is based on the fact that ants have the natural capability of 

finding the shortest path to food using a natural chemical called “pheromone”, which the ants 

lay on the paths they take as they move. ACO algorithms were initially designed by Dorigo, 

Colorni and Maniezzo to find optimal solutions for the famous traveling salesman 

problem [68], especially for large instances of the problem. Today, ACO can be used for any 

optimization problem that can be reduced to finding optimal paths through graphs. 

The mathematical framework of ACO is as follows [62], [68]. Let 𝐺(𝑽,𝑬) represent a 

directed graph, where 𝑽 is the set of vertices of the graph and 𝑬 is the set of edges connecting 

these vertices. The vertices in 𝑽 represent different parts/building blocks of a solution to the 

optimization problem at hand. We assume that the ant colony is a set of 𝑘 ants 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑘}. A complete solution to the optimization problem is constructed by random 

walks, called tours, of the ants, i.e. a complete solution is a subset of 𝑽. The ants’ tours 

through 𝐺(𝑽, 𝑬) is influenced by the positive pheromone values associated with every edge 

(𝑢, 𝑣) ∈ 𝑬, denoted 𝜏𝑢,𝑣. The tours are also influenced by the heuristic information assigned 

to every edge, denoted by  𝜂𝑢,𝑣, which is calculated using a cost function that depends on the 

objective function and constraints of the optimization problem. Assuming that an ant is at 

vertex ∈ 𝑽, a set of allowed successor vertices denoted by 𝑵(𝑢) is computed based on the  
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Table 2.2   Pseudo code of a PSO algorithm  

Step Particle Swarm Optimization 

1. Set 𝑡 ← 0 

2. Initialize 𝑆 and Set 𝑀 ≡ 𝑆 

3. Evaluate 𝑆 and 𝑀; Define index 𝑔 for best position 

4. While (termination condition not met) 

5.           Update 𝑆 using (2.17) and (2.18) 

6.           Evaluate 𝑆                    

7.           Update 𝑀; Redefine index 𝑔  

8.            𝑡 ← 𝑡 + 1 

9. End While 

10. Print best position found 

 

constraints of the problem. The probability that the ant chooses vertex 𝑣 ∈ 𝑵(𝑢) to visit next 

is given by the following function: 

 

𝑝𝑣 =
[ 𝜏𝑢,𝑣]

𝛼[ 𝜂𝑢,𝑣]
𝛽

∑ [ 𝜏𝑢,𝑤]𝛼[ 𝜂𝑢,𝑤]𝛽𝑤∈𝑁(𝑢)
  , (2.19) 

 

where the parameters 𝛼, 𝛽 ≥ 0 are user-defined and determine the relative 

influence/importance of the pheromone values and the cost function in directing the tours. A 

complete iteration of the algorithm is concluded when all the ants in 𝐴 complete their tours, 

i.e. construct complete candidate solutions of the problem. Before a new iteration is started, 

the pheromone levels associated with all the edges in 𝑬 are updated based on the following 

pheromone-update rule: 

 

 𝜏𝑢,𝑣
′ =  𝜏𝑢,𝑣(1 − 𝜌) + ∑ 𝛥𝑖𝑘  , (2.20) 

 

where  𝜏𝑢,𝑣
′ is the updated pheromone level on the edge 𝑒 = (𝑢, 𝑣) ∈ 𝑬, the parameter 𝜌 is 

called the pheromone evaporation factor, where 0 < 𝜌 ≤ 1 and 𝛥𝑖 is the value of pheromone 

deposited by ant 𝑎𝑖 ∈ 𝐴 on 𝑒 = (𝑢, 𝑣) during its tour. The pheromone evaporation factor 

introduced in (2.20) is responsible for continuously decreasing the pheromone levels on the 

edges in order to help the algorithm escape local optima. On the other hand, the second term 

in (2.20) is responsible for increasing the pheromone levels on the edges based on the quality 

of the constructed solutions in the last iteration, measured by the objective function of the 

optimization problem, which is sometimes referred to as the fitness function. Consequently, 

the pheromones levels of the edges included in the solutions with higher fitness are higher 

than those of less fit solutions after the update, giving these edges a higher chance of being 

included in tours in the next iterations. The algorithm terminates either after a given number 

of iterations or when a solution with the desired fitness or higher is obtained. Steps of the 

ACO are illustrated by the pseudo code in Table 2.3.  
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Table 2.3   Pseudo code of an ACO algorithm 

Step Ant Colony Optimization 

1. Set 𝑡 ← 0 

2. Initialize ants’ tours 

3. While (termination condition not met) 

4.    Do Until (𝑎𝑖   completes a tour ∀ 𝑖 = 1,… , 𝑘) 

 

 

 

 

 

 

 

0 

5.     Update tours using (2.19) 

6.    End Do 

7. Update pheromone levels using (2.20) 

8.  t ← t + 1 

9. End While 

10. Print best position found 

 

2.4.   Wireless Sensor Networks Deployment Algorithms 

According to the classification of the different mathematical approaches used in WSNs 

deployment algorithms outlined in Section 2.3, we now review these algorithms, including 

their assumptions, objectives and performance. 

 

2.4.1. Genetic Algorithms 

Several deployment methods based on GAs were presented in the literature. These 

algorithms typically aim to optimize the layout of a WSN, with usually more than one 

deployment objective. 

 The study in [69] presents a Multi Objective GA (MOGA) for optimal deployment of 𝑛 

static SNs in a 2-D flat RoI, with two competing deployment objectives: maximizing the area 

coverage and maximizing lifetime. The binary sensing model, as expressed in (2.1), is 

assumed and all SNs are assumed to have the same communication and sensing ranges, 𝑟𝑐 

and 𝑟𝑠 respectively. For the predetermined number of 𝑛 deployed SNs, candidate solutions 

(i.e. deployments) of the problem are represented by a deployment vector 𝑫𝑽, which contains 

the coordinates of each SN: 

 

𝑫𝑽 = [𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛] , (2.21) 

 

Rank-based fitness assignment, defined earlier in Section 2.3.1, is used in the algorithm. 

Each deployment vector (i.e. candidate solution) was ranked according to its area coverage 

and lifetime. The authors used real number encoding of  𝑫𝑽, random single-point crossover 

and a mutation probability of 0.1. The algorithm was tested under different ratios of sensing 

to communication range (𝑟𝑠/𝑟𝑐).  Results showed samples of obtained non-dominated pareto-

optimal deployments after reaching a maximum number of generations, demonstrating the 

tradeoff between coverage and lifetime (as coverage increases, lifetime decreases). Results 

suggested that for the pareto-optimal deployments with maximum coverage, the ratio 𝑟𝑠/𝑟𝑐 

affects the shape of the pareto-optimal deployment regarding the extent of overlap in SNs' 

coverage.  

The authors extend their work in [70], where the same MOGA is used, but applied to 

three specific surveillance scenarios. Each scenario had its own set of competing design 
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objectives depending on the nature of the surveillance required. The first scenario has three 

objectives: maximizing coverage, minimizing the number of SNs deployed and maximizing 

the distance between the deployed SNs and the hostile building under surveillance for 

maximum survivability of the network. The second and third scenarios require maximizing 

coverage while minimizing the number of SNs deployed. The difference between the second 

and third scenarios lies in the type of coverage; barrier coverage is maximized in the second 

case while area coverage is maximized in the third one. Results show samples of the pareto 

optimal set of non-dominated deployments for each scenario, obtained after 300 generations 

of the proposed MOGA. It is shown how these results provide the network designer with 

trade-off information between the competing objectives.  

Results presented in [69] and [70] suggest that the proposed algorithm is flexible in the 

sense that it can be applied to other scenarios with different sets of design objectives. 

However, there are two drawbacks that should be pointed out. The first drawback is the use 

of the binary sensing model in the algorithm. Although it simplifies the computation of 

coverage, it can lead to misleading results. The second drawback is that the modeling 

assumes RoIs with a flat terrain, i.e. with no obstacles, which is an unrealistic assumption.  

The study in [24] addresses the problem of covering a finite set of target locations, called 

target points, with the minimum number of SNs. We refer to this deployment problem as the 

Minimum Cost Coverage SDP (MCC-SDP). A finite set of possible deployment locations, or 

deployment points, is also assumed to be a given of the problem. The authors propose solving 

the problem using a GA with two deployment objectives; minimizing the number of deployed 

SNs (i.e. deployment cost) and ensuring coverage of all target points. To define the problem, 

a one-zero coverage matrix (𝑎𝑖𝑗 ) of size (𝑚 × 𝑛 ) is used. Each row 𝑖 in the coverage matrix 

represents a target point, and each column 𝑗 represents a combination of three deployment 

parameters (SN type, deployment point, SN orientation) called deployment-tuple and 

denoted 𝑑𝑗. Two types of SNs are considered, acoustic SNs and image SNs. The acoustic SNs 

follow the binary sensing model expressed in (2.1), while for image SNs, a FoV metric is 

used. The deployment problem is then formulated as the following optimization problem: 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1  , (2.22) 

       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 1,      𝑖 = 1,… ,𝑚 , (2.23) 

  𝑥𝑗  ∈ {0,1},      𝑗 = 1,… . . , 𝑛 , (2.24) 

 

where 𝑐𝑗 is the cost of deploying the deployment-tuple 𝑗 and 𝑥𝑗  is a binary variable that 

determines whether the deployment-tuple is actually deployed (𝑥𝑗 = 1 ) or not (𝑥𝑗 = 0). The 

constraint in (2.23) guarantees that each row (target point) is covered by at least one column 

(deployment-tuple).  

A candidate solution is simply a subset of all possible deployment-tuples. Candidate 

solutions are binary encoded and a simplified version of GA, called the Microbial GA [71], 

was used. A fitness function 𝑓(𝑥) is used to evaluate candidate solutions based on the overall 

cost of deployment as expressed in (2.22), plus a weighted penalty for not covering target 

points. This fitness function is depicted in following equation: 

 

      𝑓(𝑥) = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑤(𝑚 − 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) , (2.25) 

 

where 𝑤 represents the weight of the penalty, 𝑚 represents the total number of target points 

considered in the problem and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 represents the number of target points covered by a 

specific deployment-tuple 𝑑𝑗.The authors evaluate their algorithm using a simplified 
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deployment problem which is constituted of six target points and five deployment points, 

forming a security SN fence. The problem is simple enough for deriving the optimal solutions 

deterministically by generating all the possible combinations, and it matches the outputs of 

the proposed algorithm.  

The algorithm proposed in [24] is extended in [72] to include probabilistic coverage 

determination methods, i.e. the terms of the coverage matrix 𝑎𝑖𝑗 can take any value between 0 

and 1, depending on the probability of coverage of target point 𝑖 by deployment-tuple 𝑑𝑗. The 

sensor detection probability used in [72] follows the probabilistic sensing model expressed in 

(2.2).  The same GA was used to find optimal solutions for the deployment problem 

expressed in (2.22) – (2.24), plus a new constraint given by: 

 

        𝑝𝑑(𝑎𝑖) ≥ 𝛼 ,  (2.26) 

 

where 𝑝𝑑(𝑎𝑖) is the probability of detection of a target  point 𝑖 and α is the required coverage 

threshold. The proposed deployment GA is tested on a very similar scenario to that in [24] 

and the optimal solution (chromosomes) were derived using the algorithm matched the ones 

obtained deterministically by evaluating all combinations. However, the authors in [24] 

and [72] present a limited case study and didn't apply the algorithm on a more 

computationally extensive problem to evaluate its computational efficiency. Also, their 

choice of binary encoding is not practical for more complex scenarios of the deployment 

problem. This is because their chromosome size is equal to the number of all possible 

combinations of the deployment-tuples, which means that both the chromosome and 

population sizes can get very large for practical deployment scenarios involving hundreds of 

SNs. This in turn means that the algorithm would become very slow and computationally 

inefficient.  

In [73], the authors study the same deployment problem as the study in [24] under the 

same assumptions. The authors propose an Integer-Encoded Fixed Length Chromosome GA 

(𝑖FLGA) to solve the MCC-SDP, where all chromosomes have the same number of integer-

valued genes throughout the operation of the algorithm. Each chromosome is set to be a 

permutation of the integers in the interval [1, 𝑛], such that every gene represents a 

deployment point in the RoI. Chromosome decoding to candidate solutions of the problem 

follows a first-fit approach. That is, starting at the first gene, an SN is assumed to be deployed 

on the deployment point equivalent to the gene’s value and the coverage of the RoI is 

updated, i.e. the algorithm registers the target points that are covered thus far. This process is 

continued until full coverage is achieved. After the decoding process, the chromosome is 

given a fitness value equal to the number of SNs required for achieving full coverage of the 

set of designated target points in the RoI. The authors use the Order Mapped Crossover 

(OMX) scheme and a simple inversion mutation scheme to recombine and mutate 

chromosomes respectively. The algorithm follows a (µ + 𝜆) scheme, in which a population 

of µ chromosomes is recombined to produce 𝜆 offspring. The fitness values of the (µ + 𝜆) 

chromosomes are evaluated and the µ chromosomes with the highest fitness are kept for the 

following generation (i.e. iteration). Experimental results presented in [73] shows that the 

proposed 𝑖FLGA has a superior performance to the Greedy Heuristic (GH) MAX-AVG-COV 

proposed in [29] in terms of the quality of the obtained solutions to the studied problem. 

In [74], the authors consider the problem of maximizing the area coverage of a 2-D flat 

RoI using a predefined number of heterogeneous SNs, with three different sensing ranges. 

The sensing model expressed in (2.1) is used. The authors propose the use of GA for solving 

this problem, which they term Maximum Coverage SDP (MC-SDP). Candidate solutions in 

the phenotype/solution space are converted to the genotype space using an integer-encoded 

chromosome similar to that used in [69] and [70], as expressed in (2.21). The only difference 
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is that the coordinates of the SNs which belong to the same SN type in a chromosome are 

contiguous, i.e. each chromosome is composed of three sections, each belonging to one type 

of SNs. According to this encoding scheme, the translation between the genotype and the 

phenotype spaces is not unique, i.e. there is inherent redundancy in the genotype space which 

arises from the fact that different permutations of each of the three sections of a chromosome 

are translated to the same candidate solution. The authors argue that this redundancy slows 

down the GA convergence and propose the use of a normalization technique [74] to 

overcome this problem.  The authors use random parent selection in their proposed 

normalized GA, which is an odd choice since it is inferior in terms of convergence speed to 

the more commonly used Roulette Wheel or Tournament selection methods. In addition, the 

proposed algorithm shares the same limitations of the algorithm proposed in [69] and [70]. 

Similar to the studies in [24] and [73],  the study in [75] also considers the MCC-SDP 

under the same assumptions and WSN model adopted in [24] and [73]. To find high quality 

solutions to the MCCDP, the authors propose an Integer-Encoded Variable Length 

Chromosome GA (𝑖VLGA). This encoding scheme is used to enhance the computational 

efficiency of 𝑖FLGA proposed in [24] by avoiding the use of long redundant chromosomes, 

especially for large-scale instances of the MCC-SDP. Each chromosome, denoted by 𝑐(𝑙), 

contains 𝑙  unique integer-valued genes, where 𝑙 ∈ [1, 𝑛], where 𝑛 is the number of SN 

deployment points in the RoI. Each gene in the chromosome represents an SN deployed at a 

deployment point whose index is equivalent to the value of the gene. The following equation 

is used to evaluate the fitness of a chromosome 𝑐(𝑙), where 𝑐𝑜𝑣(𝑐(𝑙)) represents the number 

of target points covered by 𝑐(𝑙) and 𝑤 is a constant:  

 

𝑓(𝑐(𝑙)) = −(𝑙 + 𝑤 ∗ (𝑚 − 𝑐𝑜𝑣(𝑐(𝑙)))),  (2.27) 

 

The second term in (2.27) is responsible for penalizing solutions that do not provide full 

coverage of the 𝑚 target points by assigning them a lower fitness value. The negative sign is 

added so that the maximum fitness would correspond to the deployment(s) achieving full 

coverage with the minimum number of SNs. The algorithm uses a special variant of the 

famous single-point crossover. A simple random mutation scheme is used in which the value 

of a gene is changed randomly and any repetitions of integers inside the mutated chromosome 

are discarded.  For the selection schemes, the 𝑖VLGA uses a combination of the Roulette 

Wheel and Elitism selection schemes. Experimental results show that the proposed 𝑖VLGA 

in [75] outperforms the 𝑖FLGA in [73] in terms of both the quality of obtained solutions and 

the speed of convergence for all tested MCC-SDP instances. Results also suggest that in 

terms of scalability, 𝑖VLGA performs progressively better than 𝑖FLGA as the problem scale 

increases. 

Similar to [74], the study in [76] addresses the MC-SDP. They adopt the same set of 

assumptions as in [74] with the exception of the SN heterogeneity assumption. To solve the 

MCSDP, they propose a GA with real-number encoded chromosomes. The chromosome 

encoding scheme adopted in the proposed GA is the same as the one proposed in[69] and 

expressed in (2.21).  The fitness function of the proposed GA, denoted by 𝑓(𝑥), is given by: 

 

𝑓(𝑥) = ∑ 𝐶(𝑠𝑖, 𝐴)𝑛
𝑖=1 − ∑ ∑ 𝐼(𝑠𝑖, 𝑠𝑗)

𝑛
𝑗=𝑖+1

𝑛
𝑖=1 , 

 

(2.28) 

where the term ∑ 𝐶(𝑠𝑖, 𝐴)𝑛
𝑖=1  represents the total coverage of the RoI of the SN deployment 

represented by the chromosome. The term ∑ ∑ 𝐼(𝑠𝑖, 𝑠𝑗)
𝑛
𝑗=𝑖+1

𝑛
𝑖=1  represents the total area of the 

RoI covered by two SNs. The authors justify the design of the fitness function by the 
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following reasoning. Penalizing the coverage overlap between SNs will increase the speed of 

convergence of the proposed GA to solutions of good quality. The authors adopt uniform 

crossover and single point random mutation for the genetic operators. Tournament selection 

and a mixture of elitism and fitness-based selection are adopted for parent selection and 

survivor selection, respectively. Results suggest that the proposed GA is capable of 

significantly improving the RoI coverage of an initial random deployment of a predefined 

number of SNs. However, the authors did not provide evidence that their proposed GA has 

any advantage over similar existing algorithms. The authors also neglected the overlapped 

coverage area among more than two SN in their fitness function design. In addition, the 

proposed algorithm shares the same limitations of the algorithm proposed in [69] and [70]. 

To conclude this sub section, we present a comparison between the reviewed deployment 

algorithms which were based on the genetic approach in Table 2.4. The comparison is carried 

out in terms of the GA type, objective(s), encoding method, type of SNs deployed and the 

adopted sensing model. 

Table 2.4   Comparison among the GAs designed for WSN deployment 

Algorithm Type of GA Encoding Objective(s) Type of SNs 
Sensing 
Model 

in [69] 
standard, 

multi-objective 
real-

number 
 maximize coverage 

 maximize lifetime 
homogeneous deterministic 

in[70]   
standard, 

multi-objective 
real-

number 

 maximize coverage 

 maximize 
survivability 

 minimize no. of  SNs 

 

homogeneous deterministic 

in [24] microbial binary 

 cover a set of target 
points 

 minimize no. of  SNs 

 

heterogeneous

; acoustic and 

image 

deterministic 

in [72] microbial binary 

 cover a set of target 
points 

 minimize no. of SNs 
 

homogeneous; 

Infrared 
probabilistic 

in [73] standard integer 

 cover a set of target 
points 

 minimize no. of SNs 
 

homogeneous deterministic 

in [74] normalized integer  maximize coverage heterogeneous deterministic 

in [75] 
variable-length 
chromosome 

integer 

 cover a set of target 
points 

 minimize no. of SNs 
 

heterogeneous deterministic 

in [76] standard 
real-

number 
 maximize coverage 
 

homogeneous deterministic 

 

2.4.2. Computational Geometry-based Algorithms 

As explained earlier in Section 2.3.2, the VD and DT are famous CG structures that have 

been linked to WSNs deployment. Their unique properties were proven useful in evaluating 

area coverage and detection of coverage holes. In this section we review examples of the 

proposed deployment algorithms in literature utilizing these CG structures.  
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In [77], the authors utilize the VD in the re-deployment of a MWSN. They assume that 

the MWSN consisted of both static and mobile SNs to reduce the cost of deployment. Their 

deployment protocol, called Bidding Protocol is distributed; it is carried out by SNs 

concurrently and iteratively. The mobile SNs in the network are treated as servers that are 

used to heal coverage holes detected by static SNs based on their locally constructed Voronoi 

cells, assuming the binary sensing model in (2.1). In every protocol iteration, each mobile SN 

is assigned a base price, which is proportional to the size of the coverage hole it would leave 

behind if it moved to another location. Static SNs with detected holes in their Voronoi cells 

estimate the size of the hole and the candidate position for a mobile SN to move to in order 

fill that hole. This information is broadcast by the static SN in the form of a single parameter 

called a bid, which is essentially proportional to the size of the coverage hole detected. A 

mobile SN node receiving multiple bids chooses the highest one and relocates to heal the 

biggest coverage hole, provided that the bid is higher than its base price. The protocol 

terminates when there are no more bids broadcasted in the network higher than the base 

prices of the mobile SNs. 

Results presented in [77] demonstrate the effectiveness of the Bidding Protocol in terms 

of coverage, deployment cost and speed of convergence. In terms of the number of SNs 

required to achieve certain coverage of the RoI, the presented protocol requires a significantly 

smaller number of SNs, with the reduction reaching as high as 50%, when compared to a 

random deployment. In terms of the speed of convergence, the protocol terminates after six 

iterations or less for different mobile to static SNs ratios. This is advantageous since it 

translates to less energy expenditure and hence a higher network's lifetime. However, the 

drawback of the Bidding Protocol is that it deals only with a RoI with a flat terrain with no 

obstacles. This is an unrealistic assumption; obstacles can prevent static SNs from 

constructing their Voronoi cells correctly (since this is carried out through detecting 

neighbors using wireless broadcast) and hence the coverage holes detection mechanism 

would be inaccurate. Also, obstacles can obstruct the movement of mobile SNs to their target 

locations. 

The authors in [48] consider the problem of re-deploying an initially randomly deployed 

MWSN, consisting of 𝑛 identical mobile SNs of the same communication and sensing ranges, 

to maximize area coverage. The authors assume a 2-D RoI with a flat terrain and wall-like 

boundaries, and adopted the binary sensing model in (2.1). The authors propose a distributed 

and iterative deployment algorithm for MWSNs called Minimax. The algorithm also depends 

on locally constructed Voronoi cells as in [77]. The target location for SNs in each iteration 

in Minimax is a point inside the local Voronoi cell called the Minimax point. The location of 

the Minimax point is chosen such that the variance of the distances between SNs and their 

Voronoi vertices is minimized, resulting in a more evenly shaped Voronoi cells and hence a 

more even distribution of SNs in the RoI. This in turn leads to maximizing the area coverage 

of the MWSN, since each SN can cover its own local Voronoi cell more effectively. The 

authors used analytical derivation to prove their proposed method for computing the Minimax 

point. The computational complexity of the algorithm is 𝑂(𝑚3), where 𝑚 is the number of 

the Voronoi vertices belonging to specific SN. The results presented suggest that the 

algorithm is capable of achieving its objective of maximizing the area coverage of an initially 

randomly deployed MWSN. However, Minimax suffers from two drawbacks. The first one is 

the same drawback of the bidding protocol in [77]; the performance of both algorithms would 

possibly deteriorate in the presence of obstacles, since the locally constructed Voronoi cells 

can be inaccurate in this case. The second one is the high energy expenditure; SNs move after 

the conclusion of each iteration, which would certainly decrease the network's lifetime. 

In [50], two distributed deployment algorithms are proposed with the objective of 

maximizing the area coverage of MWSNs, namely the Centroid and the Dual-Centroid 
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algorithms. Both algorithms are distributed and iterative. The termination condition can be 

either reaching the predetermined maximum number of iterations or reaching the required 

coverage level. To compute the level of area coverage reached in each iteration, the authors 

use the locally constructed Voronoi cells of the deployed SNs in the same manner as in [77] 

and [48]. Inspired by [78], the proposed Centroid scheme is a simple algorithm that makes 

use of the geometric center, or the centroid, of the Voronoi cells. The centroid of any polygon 

is defined as the intersection of all the lines that divide the polygon into two equal parts.  Fig. 

2.4 provides an illustration of the definition on a triangular polygon  𝑋𝑌𝑍, where point c is its 

centroid. After the initial random deployment, SNs establish their local Voronoi cells 

concurrently. Each SN node would then calculate the coordinates of the centroid of its cell 

(C1) and checks if its local coverage would increase if it moves from its current location to 

C1. This step implies an assumption that the communication range 𝑟𝑐 is greater than the 

sensing range 𝑟𝑠 , which is, for many types of SNs, a correct assumption.  

 

 

Fig. 2.4   Centroid, c, of triangle ∠𝑋𝑌𝑍 

 

This constitutes a single iteration. The Dual-Centroid algorithm utilizes two centroids, 

the Voronoi cell's centroid C1 and the centroid of the Neighbor Voronoi cell, C2. The 

Neighbor Voronoi Cell, C2, is the polygon with the SN's neighbors as vertices. The same 

steps carried out in the Centroid scheme are used, except that the new position for a SN G is 

calculated using the following equation: 

 

𝐺 = 𝐶1 + (1 − )𝐶2           ( ∈ (0,1)) , (2.29) 

 

 

The authors compare the performance of both algorithms to Minimax in [48]. Results 

presented suggest that both algorithms have a better coverage performance compared to 

Minimax, with the Dual-Centroid algorithm being the best. This slight advantage in coverage 

performance is accompanied by a higher computational complexity, since two Voronoi cells 

and their centroids must be computed. It should be noted that although the coverage 

performance was enhanced in [50], the authors didn't address the drawbacks of [48]. 

The authors in [79] consider the same re-deployment problem as in [77], [48] and [50], 

but with energy consumption in mind. They presented the Voronoi Diagram Deployment 

Algorithm, or VDDA, to solve the problem in a distributed fashion, with the same 

assumptions used in [50]. VDDA is similar in its steps to the Centroid scheme in [50]. 

However, VDDA considers multiple points for the next position of the SN node i.e. conducts 

a local search inside each polygon for the optimum candidate position for relocation. One of 
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these positions is the centroid of the SN's Voronoi cell. Another candidate position is the 

center of the Voronoi cell range, which is defined as the midpoint of the maximum and 

minimum points along the 𝑥 and 𝑦 coordinates in the Voronoi cell. The search space is 

reduced to several points that are linearly spaced, starting from the current position of the SN 

to the centroid and then to the center of the Voronoi cell range. These points are evaluated 

before the actual movement takes place. The evaluation is based on what the authors called a 

node utility metric 𝑈𝑡
𝑖 given by: 

 

𝑈𝑡
𝑖  = 𝐴𝑡

𝑖 × 𝑇𝑡
𝑖 , (2.30) 

 

where 𝐴𝑡
𝑖  is the effective coverage of SN 𝑖 at iteration 𝑡, while 𝑇𝑡

𝑖 represents the estimated 

lifetime of SN 𝑖 at iteration 𝑡 after the projected movement from the SN's current position to 

the candidate position. The lifetime parameter 𝑇𝑡
𝑖  is calculated by assuming an initial equal 

amount of energy for each SN and setting a specific value for energy consumption per unit 

distance travelled by the SNs. After finding the best point in the search space, according to 

that metric, the SN moves to that position. From the presented results, VDDA succeeds in 

increasing the initial coverage of the random deployment and results in an almost uniform 

distribution of SNs in the RoI. The authors argue that this advantage is of great importance, 

since uniformity of deployment can decrease interference between SNs and consequently 

decrease communication energy consumption, increasing the network's lifetime. However, 

the algorithm is slow and complex, increasing the processing load on each SN. VDDA also 

does not address the presence of obstacles in the RoI. 

On the other hand, DT was utilized in a centralized deployment algorithm proposed 

in [80]. The deployment algorithm, called DT-Score, is tailored for WSN applications that 

involve a RoI containing stationary obstacles in known locations prior to the deployment (by 

the means of satellite imagery, for example). The objective of DT-Score is to maximize the 

area coverage of the RoI using a fixed number of static SNs 𝑛. All SNs have identical 

communication range 𝑟𝑐 and a probabilistic sensing model as expressed in (2.2).  

DT-Score algorithm runs in two phases, the contour deployment and the refined 

deployment respectively. In contour deployment phase, SNs are deployed at regular intervals 

along the edges of the RoI (assumed to be rectangular shaped) and the obstacles (assumed to 

be polygon shaped). This phase is used to eliminate coverage holes at the boundaries of the 

RoI and the obstacles. In the refined deployment phase, a sequence of steps is repeated, 

where each repetition results in the deployment of one more SN in the RoI. These steps 

consider the set of deployed SNs so far and locate existing coverage holes using DT. The 

empty circle property, discussed earlier in Section 2.3.2, is used to locate candidate positions 

for new SNs. These candidate positions are simply the centers of the empty circles generated 

from the DT of the set of deployed SNs. The candidate positions are then scored according to 

the coverage gains they would produce (based on both the radius of the empty circle and the 

vicinity to obstacles). At the conclusion of each repetition, a SN is deployed in the candidate 

position of the highest score. The second phase is concluded when the predetermined number 

of deployable SNs 𝑛 is reached.  

As a centralized algorithm, the DT-Score algorithm has a key advantage over other 

centralized grid-based algorithms, such as the MAX-MIN-COV in [29], which is its 

scalability. The computational complexity of DT-Score is 𝑂(𝑛2𝑙𝑜𝑔𝑛), whereas most grid-

based algorithms have a complexity is 𝑂(𝑁2), where 𝑁 the number of grid points in the RoI 

is. Although DT-Score considers the presence of obstacles in the RoI, its limitations lie in the 

assumption that the exact topology of the RoI is known prior to the deployment. This 

assumption is not applicable for some WSNs applications. 
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In Table 2.5, we present a comparison between the reviewed algorithms in this section in 

terms of the CG structure used, the type of deployed SNs (static only; mobile only; or both), 

the RoI's terrain (flat or containing obstacles), adopted sensing model and whether the 

algorithm is centralized or distributed. 

Table 2.5   Comparison among the CG-based algorithms for WSN deployment 

Algorithm 
CG 

Structure 
Type of SNs ROI Sensing Model Centralized/Distributed 

Bidding protocol 
in [77] 

VD 
heterogeneous; 

static and  
mobile 

w/o 
obstacles 

deterministic distributed 

Minimax in[48]  VD 
homogeneous; 

mobile 
w/o 

obstacles 
deterministic distributed 

Centroid and 
Dual Centroid  
in [50]  

VD 
homogeneous; 

mobile 
w/o 

obstacles 
deterministic distributed 

VDDA in [79] VD 
homogeneous; 

mobile 
w/o 

obstacles 
deterministic distributed 

DT-Score 
in [80] 

DT 
homogeneous; 

static 
w/ 

obstacles 
probabilistic centralized 

 

2.4.3. Artificial Potential Field-based Algorithms 

A large number of studies presented deployment algorithms that utilize the concept of 

Artificial Potential Field (APF), which is also referred to as Virtual Forces (VF) in the 

literature. Since the concept of APF depends on motion, deployment algorithms based on 

APF are usually re-deployment algorithms for MWSNs. However, they can also be used in 

the planned deployment of static WSNs through simulation. These algorithms can be either 

be centralized or distributed. In the following two sub-sections, we review APF-based 

algorithms proposed in each type, along with its advantages and disadvantages. 

2.4.3.1. Distributed Algorithms 

Distributed APF-based deployment approaches are used in de-centralized MWSN 

architectures, where every SN uses its local data, such as distances to neighboring SNs and 

obstacles, to run the deployment algorithm and self-deploy in the optimized positions. There 

are two advantages to this approach. The first advantage is that it doesn't depend on any prior 

knowledge of the RoI. It also doesn't require any coordination between the SNs, as they are 

assumed to run the algorithm concurrently. Hence the distributed algorithms are usually 

highly scalable, i.e. the algorithm's complexity or performance isn't sensitive to the number of 

deployed SNs. 

On the other hand, applying this approach involve extending the conventional sensing 

capabilities of SNs in order to be able to obtain the required type of local data. For example, 

SNs need to be equipped with laser range finders to detect obstacles and neighboring SNs. It 

also involves extending their computational power to carry out the distributed algorithm, 

which compounded with the actual SN movement, can increase the power consumption 

levels significantly and consequently decrease the MWSN's lifetime.  

 One of the earliest proposed distributed deployment algorithms based on APF is the 

algorithm presented in[60], which considers the problem of deploying a MWSN in an 

unknown environment that may be dynamic and even hostile. The authors propose an APF-

based approach for deployment, in which the mobile SNs are treated as virtual free particles 
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that are subject to virtual forces. These forces repel the SNs from each other and from 

obstacles, i.e. the artificial potential field in (2.7) is caused by obstacles and other SNs in the 

network, and its gradient results in two virtual repulsive forces, as expressed in (2.8) - (2.11). 

This method guarantees that an initial compact configuration of SNs will spread out to 

maximize the area coverage of the MWSN in a certain RoI. In addition to these repulsive 

forces, SNs are also subject to a viscous friction force. This force is used to ensure that the 

network will eventually reach a state of static equilibrium; i.e. nodes will eventually come to 

a complete stop, given that the RoI itself eventually becomes static. The proposed algorithm 

computes the trajectory of the mobile SN by applying the following equation of motion: 

 

�̈� = (𝐹 − 𝛾�̇�)/𝑚 , (2.31) 

 

where 𝑭 is the resultant force vector on a given SN, �̈� and  �̇� are the acceleration and velocity 

vectors respectively, 𝛾 is the viscosity coefficient and 𝑚 is the SN's mass. This virtual 

equation of motion assumes the SN is a free particle, and hence it must be mapped to a real 

control law. This control law takes into account both the kinematic and dynamic constraints 

of a mobile SN, such as its maximum velocity and acceleration. The simulation results 

offered in this paper suggest that the proposed algorithm has the potential of introducing a 

huge improvement that reaches 10-fold in terms of RoI coverage from an initial compact 

deployment of SNs. The deployment time was measured and found to be considerably fast, 

given the limited maximum velocity assumed for the mobile SNs (0.5 m/s). An unplanned but 

appealing feature of the final deployment was observed, which was the evenness of the inter-

distance between the SNs. The authors do not offer a solid explanation for this phenomenon. 

They also do not study the effect of the deployment algorithm on the energy reservoir of the 

nodes.  

The authors in [81] propose a similar APF-based deployment algorithm. They consider 

SN-carrying robots that are deployed in a certain RoI, aiming to achieve certain goal. The 

goal is to detect a certain phenomenon occurring in the RoI by at least four of the deployed 

robotic SNs and communicating data successfully to a fixed sink node. The proposed 

algorithm computes the resultant force vector 𝑭  acting on each SN, and applies the equation 

of motion expressed in (2.30) to direct the SN, as in [60]. However, the authors in[81] assume 

that the virtual forces acting on each SN are both repulsive and attractive, as opposed to only 

repulsive in [60]. The repulsive forces in the algorithm are exerted by the obstacles in the RoI 

and other robotic SNs. There are three types of attractive forces considered in the algorithm. 

The first type include attractive forces caused by the goals in the RoI, while the second type 

include attractive restoring forces based on penalties for exceeding the maximum allowable 

communication range 𝑟𝑐 between SNs. The third type includes attractive forces based on 

maximizing the capacity between nodes, and it depends on the optimal value of a 

communication utility function proposed by the authors. This communication utility function 

aims to maximize the use of the WSN capacity by adjusting the sources' rates to their optimal 

values.  Since the SNs are mobile, it is hence dependent on their locations.  This is because 

the maximum achievable data rate between any two nodes depends on the distance between 

them. This type of attractive force acting on a certain SN 𝑖 with a location vector 𝒓𝒊 is given 

by: 

𝐹𝑖 = − 
𝜕𝑈∗

𝜕𝒓𝑖
,  (2.32) 

 

where 𝑈∗is the optimal value of the communication utility function. The algorithm is tested 

on a scenario consisting of a 2-D rectangular RoI with a single target at a specific location 

and a sink node in another fixed location. Although the algorithm factored in the presence of 
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obstacles, no obstacles were included in the RoI in the simulation. The results presented 

showed that the algorithm successfully enabled the MWSN to attain its target in the 

considered scenario. However, we find that this scenario is unrealistic since it is unlikely that 

the exact position of the phenomenon or target of interest is known in advance. 

 In [48], the authors present two APF-based distributed deployment algorithms for 

MWSNs. These algorithms aim to increase the area coverage of a defined RoI in which 

mobile SNs were initially randomly deployed. The algorithms run concurrently and 

iteratively until the desired area coverage is reached or the maximum numbers of runs is 

executed. It is assumed that all deployed mobile SNs are identical with a fixed sensing 

range 𝑟𝑠. Both algorithms utilize the Voronoi diagram; in the beginning of each algorithm, all 

deployed SNs construct their Voronoi cells based on their relative position from neighboring 

SNs and the wall-like boundaries of the RoI. This procedure was explained in Section 2.4.2 

and was part of the algorithms presented in [50], [77] and [79]. 

In the first algorithm, named VEC (VECtor-based), both repulsive and attractive forces 

are exerted on each mobile SN in the network. These positive and negative forces take place 

in between SNs and also between SNs and the wall-like boundaries of the RoI, which are 

considered obstacles exerting repulsive forces on nearby SNs. The algorithm depends on the 

following idea: for complete area coverage of the RoI, SNs should be uniformly deployed 

such that the inter-distances between them are constant and equal to 𝑑𝑎𝑣𝑒 (or 𝑑𝑎𝑣𝑒/2  

between a SN and RoI boundary) which is calculated according to the area of the RoI, 

sensing range  𝑟𝑠  and the number of deployed SNs. If the distance between two SNs is less 

than 𝑑𝑎𝑣𝑒, ( 𝑑𝑎𝑣𝑒/2  between a SN and RoI boundary), a virtual repulsive force acts on the 

SNs to increase the separation between them to  𝑑𝑎𝑣𝑒 , and vice versa. In each iteration, each 

SN computes the resultant force vector 𝑭 acting on it and determines its next target position. 

To reduce errors, the authors added a movement-adjustment scheme which allows SN 

movement in each round only if the local coverage would be enhanced by such movement. 

The local coverage of a SN is simply the intersection between its Voronoi cell and its circular 

sensing area with a radius 𝑟𝑠 . 

The second algorithm in [48], named VOR (VORonoi-based), is a pull-based algorithm; 

only an attraction force is considered. In VOR, if a SN detects the existence of coverage hole 

in its Voronoi cell, it moves towards its farthest Voronoi vertex, such that the Euclidian 

distance between the target position and the farthest vertex becomes equal to the sensing 

range 𝑟𝑠. This is illustrated in Fig. 2.5, where vertex 𝑣2 is the farthest vertex of the Voronoi 

cell of SN 𝑠𝑖 and 𝑇𝑃 is the target position. The authors report that VOR resulted in moving 

oscillations due to its greedy nature in fixing the largest coverage holes. To deal with this 

problem, they added oscillation control to the basic algorithm, which prevents a SN from 

moving in opposite directions in two consecutive rounds. They also limit the maximum 

moving distance in VOR to only half the communication range 𝑟𝑐 to deal with inaccurate 

construction of Voronoi cells due to communication limitations. 

The authors carried out extensive experimentation on both algorithms to qualify their 

performance in terms of the coverage obtained, the accumulated moving distance by the SNs, 

scalability, and impact of the initial topology. Results show that in terms of total moving 

distance, VEC was the more efficient. In terms of scalability, both algorithms proved to be 

extensible to large deployment scenarios, since the communication and movement are kept 

local in these algorithms. In terms of the impact of the initial topology, the authors consider 
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Fig. 2.5   VOR algorithm proposed in [48] 

both a random and a normal initial topology. The results show that the proposed algorithms 

take more time to converge in the case of the normal distribution than in the random case. 

However, the apparent drawback of both algorithms is not factoring in the presence of 

obstacles in the RoI. As we pointed earlier, the presence of obstacles may result in inaccurate 

Voronoi cells. Another drawback is the repeated movement of SNs, reducing the network's 

lifetime, although the movement is reduced to an extent in VOR, since a SN is only allowed 

to move if its local coverage will be enhanced.  

In [49], the authors consider the same re-deployment problem as in [48] and use the same 

assumptions. Voronoi cells, constructed by SNs using local data, are utilized in the proposed 

algorithm, in order to divide the RoI into parts so that each SN can maximize its local 

coverage. The proposed algorithm combines repulsive forces from neighboring SNs and the 

RoI boundaries, and the attractive force that draws the SN to the centroid of its Voronoi cell. 

In each iteration of the algorithm, each SN calculates its local Voronoi cell. If no coverage 

hole is detected, the SN would not calculate the centroid of the cell and would just consider 

virtual forces from neighboring SNs and possibly the RoI boundaries. Otherwise, the SN 

calculates the centroid of its Voronoi cell. The resultant force vector 𝑭 is computed 

accordingly, and the SN's trajectory is computed by applying the equation of motion 

expressed in (2.31). As in VEC algorithm proposed in [48], the SN only moves to a new 

location if its local coverage will be enhanced. The algorithm is terminated when each of the 

deployed SNs reaches an equilibrium state by itself. The equilibrium state, in turn, can occur 

in two cases; if the SN repeatedly moves back and forth to the same position (oscillatory 

equilibrium state) or if its accumulated moving distance during a given time period set in the 

simulator does not exceed a certain threshold value (stationary equilibrium state).  

The authors compare their algorithm to the one proposed in [60] in terms of coverage, 

cumulative moving distance and deployment time. Results suggest the proposed algorithm 

in [49] shows a better coverage performance than the algorithm in [60], irrespective of the 

number of SNs. The performance gain diminished as the number of deployed SNs increased. 

This was attributed to the fact that a relatively large number of deployed SNs can easily cover 

the RoI adequately without much need of a complex self-deployment algorithm. The 

proposed algorithm also exhibited superior performance in terms of the cumulative moving 

distance and area coverage. The authors attribute this to the additional attractive force that 

optimizes the SNs' paths in terms of maximizing the coverage. They also point out that the 

algorithm is sensitive to the communication range 𝑟𝑐, assuming a constant number of 

deployed SNs and area of the RoI. This is attributed to the fact the proposed algorithm 

depends on the correct estimation of the Voronoi cell of each SN. If the SN cannot detect its 

neighbors due to a relatively short 𝑟𝑐, it will estimate an inaccurate Voronoi cell. Again, we 

point out that this error can also take place in a RoI containing obstacles, which were not 

considered in [49]. Hence, the comparison between the performances of the APF-based 
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algorithms in [60] and [49] may be inaccurate since authors in [60] considered a complex RoI 

with obstacles such as walls and doors.  

In [82], the authors propose a comprehensive distributed APF-based algorithm, named 

Holes dEtection and healing (HEAL), for mobile WSN re-deployment. HEAL is designed to 

detect, measure and fix coverage holes in MWSNs that arise due to random deployment, 

environmental factors or external attacks on the network. The algorithm operates in two 

phases. In the first phase, a distributed hole detection algorithm is used to find coverage holes 

in the RoI, estimate their size and locate their center, using the Gabriel Graph (GG) [46] of 

the WSN.  In the second phase, the mobility of the SNs is exploited to cover the detected 

holes. This is carried out through applying an APF-based distributed relocation algorithm, 

where SNs in the vicinity of a hole are subject to an attractive virtual force exerted by its 

center, in addition to repulsive virtual forces in between them to minimize coverage overlap. 

To validate the algorithm, the authors applied HEAL to different scenarios by varying the 

number and sizes of the holes. Results indicate that the proposed algorithm has the ability to 

almost perfectly detect and repair coverage holes in densely deployed MWSNs. However, the 

algorithm can only deal with obstacle-free RoIs and does not address holes which occur on 

the borders of the RoI. 

Similar to [81], the study in [83] considers the problem of the re-deployment of mobile 

SNs which are initially randomly deployed in RoI. The objective is to achieve the coverage of 

single or multiple target locations while maintaining connectivity with the sink node in the 

presence of potential obstacles in the RoI. The authors propose an APF-based deployment 

algorithm which is coined the Obstacle Avoidance Target Involved Deployment Algorithm 

(OATIDA). The proposed algorithm runs concurrently on each SN in iterations where it 

calculates the SN movement vector 𝑀𝑖
⃗⃗ ⃗⃗ , where 𝑖 is the index of the SN. The algorithm starts 

by constructing the Relative Neighborhood Graph (RNG) using the neighbors’ relative 

distance and indicating the distance to the farthest SN in the constructed RNG. This distance 

is used to calculate the magnitude of the distance that will be travelled by the SN in the 

current iteration, which is denoted by 𝐷𝑖. The preferred direction of motion for the SN in the 

current iteration, denoted by 𝐷𝑖
⃗⃗ ⃗⃗  , is then decided using the advertised target(s) location. 

Following this step, the algorithm computes the repulsive force, denoted by 𝐹𝑂𝑖
⃗⃗ ⃗⃗ ⃗⃗   , which is 

exerted by the nearby obstacle(s) in the RoI on the SN. Finally, the movement vector 𝑀𝑖
⃗⃗ ⃗⃗   of 

the current iteration for SN 𝑖 is calculated using the following equation: 

  

𝑀𝑖
⃗⃗ ⃗⃗ =  𝐷𝑖. 𝐷𝑖

⃗⃗  ⃗ +  𝐹𝑂𝑖
⃗⃗ ⃗⃗ ⃗⃗   (2.33) 

 

Results presented in [83] shows that the proposed OATIDA is capable of directing the 

mobile SNs to successfully provide coverage for single and multiple targets in the presence of 

one or more obstacles while maintaining connectivity with the sink node. However, the speed 

of convergence of the algorithm cannot be commented on since the authors did not provide a 

performance comparison between their proposed algorithm and similar existing algorithms in 

the literature (e.g., [81]).  The main drawback of the OATIDA is that it is based on the 

assumption that all the mobile SNs are initially deployed within the communication range of 

the sink node. This assumption is not realistic since, in most practical application of MWSNs, 

the initial random deployment cannot be precisely controlled.  

All the previous examples considered homogeneous MWSNs, where all the deployed 

SNs are mobile. However, a MWSN can be heterogeneous in the sense that only a subset of 

all deployed SNs are mobile in order to decrease the network's energy consumption and cost 

while enhancing the coverage or any other performance metric. In [84], the authors propose 

an APF-based deployment algorithm that only affects the sink nodes in a randomly deployed 
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WSN, i.e. only sink nodes are mobile, to enhance the total coverage. The authors differentiate 

between the attractive and repulsive virtual forces between the sink nodes and the static SNs, 

the virtual repulsive forces in-between sink nodes, and the virtual repulsive forces on sink 

nodes due to the wall-like boundaries of the RoI. It is assumed that the sink nodes are SNs 

with higher energy reservoir, locomotive capabilities and higher sensing and communication 

ranges. The direction and magnitude of the virtual forces between static SNs and sink nodes 

depend on their interspacing, and aims at adjusting it to be equal to √3𝑟𝑠, which is the 

interspacing in a regular hexagonal grid. The repulsive forces in between sink nodes are 

introduced to guarantee that the minimum distance between two sink nodes is their 

communication range in order to disperse the sink nodes on the RoI.  

The simulation results presented are not extensive; they only provide an illustration on 

how the coverage of an initially randomly deployed WSN, confined to a rectangular RoI, was 

improved when about 15% of its nodes (the sink nodes) moved according to the proposed 

algorithm until reaching equilibrium. The authors do not specify what equilibrium in the 

simulation environment implies (static or oscillatory) and do not provide data on the effect of 

increasing or decreasing the introduced percentage of sink nodes in the WSN on its coverage. 

2.4.3.2. Centralized Algorithms 

APF-based centralized deployment algorithms are used in cluster-based WSN 

architecture, where the cluster head is assumed to have a high computational power to carry 

out the deployment algorithm for all deployed SNs. To carry out this task, the cluster head 

has to first localize the SNs in the network after an initial deployment and collect any other 

data pertinent to the deployment algorithm. After running the algorithm, the cluster head then 

communicate to each SN its new target position. 

The advantages of the centralized approach lie in the fact that only one (or a few) 

resourceful cluster-head is responsible for running the deployment algorithm. The deployed 

mobile SNs are not required to possess any extra sensing or computational abilities, apart 

from the ones required for their primary sensing function. However, they are required to have 

the ability of self-localization, in order to make sense of the communicated target locations. 

The centralized approach also requires that all deployed SNs can communicate with the 

cluster head.  It is readily apparent that this kind of approach is not feasible in dynamic and 

harsh RoIs, such as disaster areas and battlefields. In such cases, ensuring the survival of a 

resourceful server is very difficult. This approach also requires a prior knowledge of the 

terrain of the RoI, in order to be able to keep the mobile SNs away from obstacles. 

Consequently, if the RoI has a dynamic rather than a static nature, a centralized deployment 

approach would be infeasible.  

An example of a centralized APF-based deployment algorithm deployment for MWSNs 

is proposed in [85]. The proposed algorithm, called Virtual Forces Algorithm (VFA), aims to 

maximize the coverage of a cluster-based MWSN, with a fixed number of deployed mobile 

SNs that are initially randomly deployed. A powerful cluster head is proposed to be 

responsible for carrying out the VFA, assuming it possesses augmented computational power 

over SNs. The VFA considers a combination of virtual attractive and repulsive forces on each 

SN in the RoI, due to neighboring SNs, obstacles and preferential areas. The resultant force 

vector F on each SN is used to determine its virtual target location in each iteration. The VFA 

terminates either when the required level of area coverage is achieved or when a 

predetermined number of iterations are reached. Once the VFA is concluded, the final target 

positions are identified and communicated to SNs, and a one-time movement is carried out.  

The authors consider three scenarios to evaluate the performance of VFA. The first 

scenario an ideal one, assuming the binary sensing model as expressed in (2.1) and no 

obstacles or preferential areas. The second scenario assume a probabilistic sensing model as 
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expressed in (2.2), but again with no obstacles or preferential areas, while the third one 

assume a binary sensing model with a single obstacle and preferential area. Results show a 

substantial improvement in the area coverage of the RoI compare to the initial random 

deployment, with an almost constant interspacing between SNs. However, the VFA depends 

primarily on the assumptions that a prior knowledge of the RoI terrain (obstacles and 

preferential areas) is available and that the cluster-head is not threatened by energy depletion 

at any point during the VFA run time. Also, the initial random deployment is assumed to be 

at least 1 −connected; every SN can communicate with the cluster head in a single or multi-

hops. This may not be the case in random deployments. Another limitation for VFA is its 

scalability, since the communication overhead would dramatically increase as the number of 

deployed SNs increase. 

Another example is presented in [86]. The authors propose a centralized APF-based 

deployment algorithm called Target Involved Virtual Force Algorithm (TIVFA), which is 

executed on the cluster-head of an initially randomly deployed MWSN. The authors work on 

the following assumptions: in a well-defined RoI, there exist hotspot areas, obstacles, static 

target areas and maneuvering targets. The hotspot areas are defined as areas known to be 

more important in the MWSN, such as a headquarters in a battlefield. Static target areas are 

defined as circular areas in the RoI where targets are more likely to appear (depending on 

prior information).  Maneuvering targets were divided into several importance levels, so that 

targets of higher importance level are given more attention in the WMSN. All SNs are 

assumed to be identical with a fixed communication range, self-localization capability and a 

probabilistic sensing model as expressed in (2.2). The objective of TIVFA is to reconfigure 

the area coverage after an initial random deployment, such that targets of higher importance 

are detected more precisely, while ensuring obstacle-avoidance and high-coverage of the 

hotspot areas. The algorithm, running on the cluster head, computes the resultant force vector 

𝑭  that constitutes both attractive and repulsive forces. The forces between SNs can be 

attractive or repulsive depending on the distance between them as in [85]. The hotspots and 

static target areas are assumed to exert attractive forces on SNs, depending on the distance 

between them and the radii of the hotspot and static target areas. The obstacles logically exert 

repulsive forces on SNs, also depending on the distance between them. Finally, the forces 

exerted by the maneuvering targets on the SNs are explained as follows: if a SN detects a 

target with a probability less than 1, the target is assumed to exert an attractive force with a 

strength that is inversely proportional with the detection probability. Otherwise, no force is 

exerted on the SN by the target. The simulation results presented in [86] suggest that TIVFA 

succeeded in fulfilling its objectives. However, the algorithm depends primarily on prior 

knowledge of the RoI. It also implicitly assumes that the cluster head maintains the locations 

of all the SNs in the network as they move based on its instructions after each iteration or 

time interval. This will consequently introduce a considerable amount of traffic into the 

network. The combination of movement and communication overhead of TIVFA can 

diminish the network's lifetime significantly. Also, the authors do not offer explicit algorithm 

termination criteria for TIVFA, which is essential to understand the TIVFA's performance 

regarding energy consumption. 

In [87], the authors propose a modification to the VFA algorithm presented in [85] to 

enhance its performance. They claim that the VFA produces coverage holes in the RoI upon 

its convergence. They attributed this phenomenon to the fact that in VFA, virtual attractive 

and repulsive forces due to all neighboring SNs, i.e. all SNs within the communication range 

of a SN, are considered. These forces can in some instances cancel out and prevent SNs from 

covering some areas in the RoI. In order to overcome this phenomenon, the authors propose a 

modified version of VFA that only takes into account adjacent SNs based on the DT of the 

initial random deployment. If two SNs are "connected" in the DT (were the set of points of 
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the DT are the initially randomly deployed SNs), then they are adjacent SNs. Results 

presented in [87] suggest that the modified VFA is superior to the original VFA in [85] both 

in terms of the total coverage of the RoI and its uniformity. A comparison between the 

processing times of both algorithms is also presented and it shows that the modification 

proposed does not add any significant processing cost. However, similar to the original VFA, 

the modified VFA will not function correctly if some of the SNs in the initial random 

deployment are unable to communicate with the cluster head. 

We conclude this section by comparing between the APF-based algorithms reviewed 

above in Table 2.6. We compare between them in terms of the repulsive and attractive virtual 

forces exerted on SNs, their objectives, the sensing model adopted and whether the algorithm 

is centralized or distributed. 

2.4.4. Swarm Intelligence Algorithms 

The use of SI methods in the deployment of WSNs is relatively new and limited, 

compared to the other three approaches discussed in the previous sections. To the best of our 

knowledge, the first research effort in this approach was presented in [88]. The authors study 

the problem of deploying a finite number 𝑁 of homogeneous mobile SNs to cover a 2-D RoI. 

The SNs are assumed to be initially randomly deployed, and a proposed PSO-based 

deployment algorithm, called PSO-Grid, is assumed to run on a computationally powerful 

base station. The base station would send the optimized positions to the randomly deployed 

SNs after the convergence of the algorithm to maximize the area coverage of the RoI. Each 

particle in the swarm used in PSO-Grid represents a deployment solution that contains the 

positions of all the SN nodes inside the RoI. Hence, PSO-Grid encodes each particle in the 

swarm as follows: the position of a single SN 𝑗 is described by its Cartesian 

coordinates (𝑥𝑗 , 𝑦𝑗), and for 𝑁 SNs, the dimension of a particle in the swarm is two times the 

number of SNs, i.e. 2𝑁. This is similar to the encoding used in [69] and expressed in (2.21). 

The algorithm starts by randomly generating a number of solutions or particles. Equation 

(2.17) is used in PSO-Grid with a minor refinement of multiplying the current velocity term 

by an inertia weight 𝑤, which is used to control the effect of the previous velocity in the 

current velocity. A time decreasing inertia weight encourages high exploration of the search 

space at the beginning and fine tunes it at the end, as suggested in [65]. Hence, (2.17) is 

modified in the algorithm as follows: 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤 𝑣𝑖𝑗(𝑡) + 𝑐1𝑅1 (𝑚𝑖𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) + 𝑐2𝑅2(𝑚𝑔𝑗(𝑡) − 𝑝𝑖𝑗(𝑡)) , (2.34) 

 

where 𝑖 is the index of the particle in the swarm and 𝑗 is the dimension of the particle, 

hence 𝑗 = 1,2, …2𝑁. In order to evaluate each solution, i.e. the current position of a particle 

in the search space, a fitness function is used. Logically, the fitness function chosen in PSO-

Grid is the area coverage of the RoI. Calculating the area coverage is carried out by creating a 

uniform grid over the RoI. All the grid points located in the RoI is labeled 1 or 0, depending 

whether it is covered by at least one SN or not, assuming the binary sensing model as 

expressed in (2.1). The coverage is simply the ratio of the summation of ones to the total 

number of grid points. The authors evaluate the performance of PSO-Grid by comparing its 

results with a similarly encoded GA. The results suggest that although both algorithms 

converge to near optimum solutions after a maximum number of set iterations, PSO exhibits 

a significantly faster convergence than GA.  
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Table 2.6  Comparison among the APF algorithms for WSN deployment  

Algorithm 
Sources of 
repulsive VFs 

Sources of 
Attractive VFs 

 Objectives 
Sensing 
Model 

Centralized/ 
Distributed 

[60]  obstacles 

 SNs 

 

       − 
 maximize area 

coverage 
not stated distributed 

[81] 

 obstacles 

 SNs 

 SNs 

 stationary 
targets  

 maximizing 
link capacities 
between SNs 

 

 detection of 
stationary targets 

 maximize 
network's 
throughput 

deterministic distributed 

VEC [48]  ROI 
boundaries 

 SNs 

 SNs 
 

 maximize area 
coverage deterministic distributed 

VOR [48] 

         − 
 farthest vertex 

in local 
Voronoi cell 

 maximize area 
coverage 

deterministic distributed 

[49]  ROI 
boundaries 

 SNs 

 

 Centroid of 
local Voronoi 
cell 

 maximize area 
coverage 

deterministic distributed 

HEAL [82]   SNs  detected 
coverage holes 

 maximize area 
coverage 

 minimizing SN 
movement 

deterministic distributed 

OATIDA[83]  obstacles  stationary or 
moving targets 

 coverage of 
designated targets 

deterministic distributed 

[84]  ROI 
boundaries 

 Static SNs 

 mobile sink 
nodes 

 

 

 Static SNs 

 mobile sink 
nodes 

 maximize area 
coverage 

deterministic distributed 

VFA [85]   ROI 
boundaries 

 obstacles 

 SNs 

 SNs 

 preferential 
areas 

 maximize area 
coverage 

probabilistic centralized 

TIVFA[86] 

 SNs 

 obstacles 

 hotspots 

 static target 
areas 

 maneuvering 
targets 

 SNs 

 maximize area 
coverage 

 detection of static 
and maneuvering 
targets 

probabilistic centralized 

[87]  ROI 
boundaries 

 SNs 
 SNs 

 maximize area 
coverage 

deterministic centralized 

  



  Chapter 2 

34 

 

The study in [89] considers the generic problem of maximizing the area coverage of a 

WSN composed of a finite number of homogeneous static SNs in a 2-D RoI. To solve the 

problem, the authors combines PSO and Voronoi diagram to build a deployment algorithm 

that converges to the optimal positioning of the available SNs in terms of area coverage. The 

same particle encoding and time decreasing inertia weight in PSO-Grid [88] are used in [89]. 

However, the presented algorithm uses the Voronoi diagram instead of a grid to calculate the 

percentage of the covered area of the RoI for each candidate solution. After the conclusion of 

each iteration, SNs in their current positions generate their Voronoi cells. Only the distances 

between a SN and its Voronoi vertices are checked to ensure that the Voronoi cell is covered, 

assuming a binary sensing model. As for the RoI boundaries, a finite set of boundary points 

are selected at random and checked to be covered. Both the Voronoi vertices and the 

boundary points are referred to as interest points. Accordingly, the fitness function in the 

deployment algorithm depends solely on the distances between these interest points and their 

nearest SNs as shown in Fig. 2.6. The presented deployment algorithm is evaluated in several 

scenarios, where the effect of the number of deployed SNs and the size of the 2-D RoI on 

area total coverage is studied. 

 

 

 

 

 

 

 

Fig. 2.6  Fitness function in [89]  

 

 

It is important to point out that the authors calculate the area coverage as the percentage 

of the interest points covered to the total number of interest points, similar to the approach 

used in [84]. The results show that although the presented algorithm followed the logical 

trends in both investigations (number of SNs and size of RoI versus area coverage), it 

produces sub-optimal results after a predetermined maximum number of iterations. 

In [90], the authors extend their work by refining their deployment algorithm presented 

in [89]. The refined algorithm is named PSO-Voronoi, and it solves a similar deployment 

problem to the one in [89] and [88]. However, the fitness function in PSO-Voronoi was 

changed to be the total area of the coverage holes in the RoI for increased accuracy. To 

calculate the area of coverage holes, the authors again use the Voronoi diagram and the 

notion of interest points, as defined in[89]. The calculations are straight forward; if the 

distance 𝑑 between an interest point and its nearest SN is greater than the sensing radius 𝑟𝑠, 

then a coverage hole exists around the interest point. The area of the hole is approximated to 

quarter, half or a full circle, with a radius 𝑑 − 𝑟𝑠, according to the location of the interest 

point (corner, boundary or inside the RoI respectively). The authors propose that PSO-

Voronoi be executed in a centralized manner: the algorithm is executed on a base station 

node, which would then communicate the coordinates of the optimized positions to randomly 

deployed mobile SNs.  

The PSO-Voronoi algorithm's performance is compared to that of PSO-Grid algorithm 

presented in [88]. In terms of complexity, the comparison is in favor of PSO-Voronoi. This is 

because its complexity depends only on the number of interest points (or the number of SNs 

deployed), and not on the actual size of the RoI. On the other hand, the complexity of PSO-

Grid depends on both the number of deployed SNs and the number of the grid points. The 

Interest points = [Voronoi cell vertices, n randomly 

selected points along the boundary]; 

For each interest point 

Find the distance of the interest point to its nearest 

sensor; 

If distance>sensing radius 

Fitness += (distance−sensing radius); 

End   

Fig. 2.6   Fitness function in [89] 
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energy consumption aspect of PSO-Voronoi is not discussed. However, it is obvious that 

being a centralized algorithm, it would introduce a significant communication overhead that 

would shorten the WSN lifetime, even though the SNs movement takes place only once. It 

should be also noted that the authors implicitly assume that the initial random deployment 

resulted in a connected network so that each SN is able to communicate with the base station.  

The PSO-Voronoi deployment algorithm is further improved in[91]. The improved 

algorithm consists of two phases: phase I is the PSO-Voronoi deployment algorithm, called in 

this paper WSNPSOvor, while phase II, called WSNPSOper, aims at minimizing the collective 

energy consumed during the movement of mobile SNs to their optimized positions. 

WSNPSOper solves the following minimization problem: 

 

𝑚𝑖𝑛 𝑓𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 (2.35) 

𝑑𝑚𝑎𝑥𝑚𝑜𝑣 = 𝑚𝑎𝑥{𝑑𝑖}   , 𝑖 = 1,2, … ,𝑁 (2.36) 

 

where 𝑓𝑒𝑛𝑒𝑟𝑔𝑦 is the objective function of the optimization, 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 is the maximum 

moving distance required from any deployed SN after the conclusion of the first phase 

WSNPSOvor, and 𝑁 is the number of deployed SNs in the RoI. The operation of WSNPSOper 

starts by taking the following inputs: the initial positions of SN nodes after random 

deployment, their IDs and the final positions suggested by WSNPSOvor. It then assigns each 

SN to one of the optimized final positions such that 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 is minimized using a simple 

form of PSO. Results showed a significant reduction of 𝑑𝑚𝑎𝑥𝑚𝑜𝑣 in five different scenarios 

with varying number of deployed SNs, when using the two-phase algorithm versus using only 

phase I. Moreover, phase II does not noticeably increase the computation time or alter the 

total coverage achieved by phase I. 

The study in [92] considers the problem of near-optimal deployment of multiple sink 

nodes in a pre-deployed static WSN, with the objective of minimizing the maximum worst 

case delay of SN-sink message communications. The authors assume that there are a finite 

number of candidate positions for the sink nodes. Hence, they formulated the optimization 

problem as follows: 

 

𝑚𝑖𝑛       𝑚𝑎𝑥𝑖є{1,…,𝑛} {𝑑𝑖}, 

 
(2.37) 

where                       𝑑𝑖 = 𝑓(𝜏|𝛼, 𝛽) (2.38) 

    𝜏 = 𝑔(𝑠|𝑝, 𝑅) 

 
(2.39) 

 

The parameter 𝑑𝑖 is defined as the worst case delay of SN 𝑖. It is the objective function of 

the optimization problem. It is logically a function of the given topology of the WSN, 𝜏, 

given a specific arrival and service patterns for each SN, represented by α and β respectively. 

The topology is in turn a function of the actual positions of the sink nodes, 𝑠 given the 

vector, 𝑝 which contains the SN positions in the RoI and the routing algorithm used,  𝑅. The 

authors propose using PSO with Local Search (PSO-LS) algorithm to find near-optimal 

solutions for the optimization problem expressed in (2.37) - (2.39). LS is used to escape the 

tendency of a conventional PSO to converge fast to a local optimal solution, but instead 

evolves to better solutions.  The proposed algorithm is applied to several WSN topologies 

with different sizes, i.e. different numbers of SNs and sink nodes. The results of the PSO-LS 

algorithm were compared to the results obtained by applying a genetic-based algorithm with 

the same parameters. The comparison suggests a superior performance of PSO-LS in terms of 

convergence speed and quality of obtained solutions. 
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It is important to point out that the all the presented PSO-based deployment algorithms in 

this section so far have one major disadvantage in common, which is failing to account for 

the obstacles and/or preferential areas in a RoI. It was implicitly assumed in these algorithms 

that the terrain of the RoI is obstacle-free.  

Unlike the algorithms reviewed so far in this section, which are based on PSO, the 

algorithms presented in [93] - [95] are based on ACO. In[93] , the authors present an ACO 

deployment algorithm called EasiDesign. The algorithm is designed to solve the Minimum-

Cost Connectivity-Guaranteed SDP (MCCG-SDP). The authors assume that the RoI is 

modeled by a grid and that SNs can only be deployed on those grid points. To account for 

obstacles in the RoI, the authors exclude grid points associated with obstacles from the 

allowable set of grid-points at which SNs can be deployed. The algorithm constructs 

solutions to the problem, i.e. SNs layouts, by allowing the ants to transition from one grid 

point to another deploying SNs until full coverage, i.e. coverage of all grid-points in the RoI, 

is achieved. Hence, following the ACO mathematical framework discussed in Section 

2.3.4.2, the directed graph of the algorithm 𝐺(𝑽,𝑬) is constructed such that the set of vertices 

𝑽 is the allowable set of grid-points at which SNs can be deployed. As explained earlier in 

Section 2.3.4.2, ants’ transitions between grid points are stochastic. Assuming the 𝑖𝑡ℎant is at 

a grid-point 𝑢 on 𝐺(𝑽, 𝑬), the set of allowed successor grid-points is the set 𝑵𝑖
𝑢 ⊂ 𝑽 such that 

each grid-point 𝑣 ∈ 𝑵𝑖
𝑢  is within an Euclidean distance equal to the SNs’ communication 

range from grid-point 𝑢. Using this definition of 𝑵𝑖
𝑢 guarantees that the resulting 

solution/layout is connected to the sink node, assuming all ants start their tour at the sink 

node position. The probability that the 𝑖𝑡ℎ ant will transition from grid point 𝑢 to point 𝑣 is 

given by (2.40), where 𝜏𝑢,𝑣 is the pheromone level between the two grid points, 𝜂𝑢,𝑣
𝑖  is a 

variable that is proportional to the coverage gain to deploying a SN in point 𝑣 and 𝛼 and β are 

constants. 

 

 𝑝𝑢,𝑣
𝑖 =

[𝜏𝑢,𝑣]
𝛼[𝜂𝑢,𝑣

𝑖 ]𝛽

∑ [𝜏𝑢,𝑚]𝛼[𝜂𝑢,𝑣
𝑖 ]𝛽𝑚∈𝑁𝑖

𝑢
  , 𝑣 ∈ 𝑁𝑖

𝑢  (2.40) 

 

For the pheromone update procedure, the authors use a slightly version of the pheromone 

update rule expressed in (2.20) as follows: 

 

    𝜏𝑢,𝑣
′ =  𝜏𝑢,𝑣(1 − 𝜌) + 𝛥𝑢,𝑣

𝑏𝑒𝑠𝑡  
 

(2.41) 

 

𝛥𝑢,𝑣
𝑏𝑒𝑠𝑡 = {

1

𝐿𝑏𝑒𝑠𝑡
 , 𝑖𝑓 𝑢 𝑖𝑠 𝑖𝑛 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0    ,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.42) 

 

where 𝐿𝑏𝑒𝑠𝑡 is the number of SNs in the best solution constructed in the last iteration of the 

algorithm. For performance evaluation, the authors applied EasiDesign to find an optimal SN 

layout for an environmental monitoring WSN. Their results indicated that EasiDesign 

algorithm can work efficiently in complex real-life applications.  However, the presented 

results did not indicate the performance of EasiDesign in terms of speed of convergence. In 

addition, the authors did not compare the performance of EasiDesign in terms of 

optimality/quality of obtained solution to any other existing deployment algorithms. 

In [94], the authors enhance the EasiDesign algorithm of [93].  They proposed an ACO 

deployment algorithm with three classes of ant transitions (ACO-TCAT) to solve the MCCG-

SDP. The authors define the MCCG problem as finding the required minimum number of 
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SNs and their locations in a grid-based RoI to achieve full coverage of a given set of Points of 

Interest (PoIs) while guaranteeing that the resulting WSN is connected to a sink node in an 

arbitrary location in the RoI. The main difference between ACO-TCAT and EasiDesign is the 

definition of the the set of allowed successor grid-points 𝑵𝑖
𝑢 ⊂ 𝑽, for 𝑖 = 1, . . , 𝑁𝑎𝑛𝑡𝑠 and 𝑢 ∈

𝑽. ACO-TCAT uses three classes (i.e. three different definitions for 𝑵𝑖
𝑢) of ant transitions 

instead of one class in EasiDesign. This modification is introduced to enhance the search 

capability of ACO-TCAT, i.e. it enables the algorithm to converge faster. For all three classes 

of ant transitions, successive grid points in an ant’s tour must be within a distance equal to the 

SNs communication range, i.e. neighboring grid-points. Similar to EasiDesign, this condition 

is used to guarantee that the obtained solutions are connected to the sink node. The first class 

of ant transitions restricts  𝑵𝑖
𝑢 to neighboring grid points with a coverage gain of one or more 

PoIs. If this class/set is empty, i.e. there are no neighboring grid-points that satisfy this 

condition, the second class is used. The second class of ant transitions restricts 𝑵𝑖
𝑢  to 

neighboring grid points that in turn have neighboring grid points with a coverage gain of one 

or more PoIs. If the second class is empty, then the third and final class is used. The third 

class of ant transitions is defined as neighboring grid points that have not been visited yet in 

the ant’s tour.  Presented results show that ACO-TCAT outperforms exiting greedy 

algorithms [29] in terms of the quality of obtained solutions. They also show that although 

ACO-TCAT does not outperform EasiDesign in terms of the quality of obtained solutions, it 

outperforms it in terms of the speed of convergence.  

In [95], the authors address the blindness-of-connection problem which may occur when 

applying ACO-TCAT ni mhliro la [94] to solve an MCCG-SDP instance. This problem can 

occur during an ant’s search when the ant is forced to apply the second or third transition 

class in the ACO-TCAT algorithm which can lead to the additions of redundant SNs to the 

final solution/deployment. To enhance the performance of the ACO-TCAT algorithm in 

terms of the quality of obtained solution (i.e. deployment cost), the authors in [95] propose a 

different set of ant transition rules and coin their proposed ACO algorithm the Node 

Deployment Strategy for Blindness Avoiding (NDSBA) algorithm. NDSBA is based on the 

same assumptions and problem formulation as ACO-TCAT algorithm in [94]. Both 

algorithms adopt the same transition probability rule expressed in (2.39) and the same 

pheromone update rule expressed in (2.40) and (2.41). The first class of ant transition in the 

ACO-TCAT algorithm is also the same as the basic ant transition class in NDSBA. However, 

NDSBA replaces the second and third ant transition classes in ACO-TCAT by three novel 

rules, namely: greedy-migration, long-distance-jumping and short-distance-jumping. An ant 

resorts to the greedy-migration transition rule when there are no neighboring grid points that 

have a coverage gain i.e., no Effective Candidate Points (ECPs). In this case, the ant jumps to 

a previously visited grid-point which has the highest number of ECPs within its 

communication range. In the case where greedy-migration is inapplicable, the grid-points 

visited by the ant thus far form a Local Connected Group (LCG) and the ant applies the long-

distance-jumping rule. In this rule, the ant randomly chooses any unvisited grid-point which 

has a non-zero coverage gain i.e., an ECP. Due to this transition rule, a new LCG will arise 

which is not connected to the previous LCG(s). After all PoI are covered, the ant uses the 

short-distance-jumping transition rule to add grid points to its tour (i.e., add SNs to the 

deployment) such that the different constructed LCGs and the sink node form a connected 

graph following a simple greedy logic. After this step, the ant concludes its tour, pheromone 

levels are updated and a new iteration starts provided that convergence conditions are not yet 

satisfied. Results show that the NDSBA algorithm significantly outperforms ACO-TCAT 

algorithm in terms of the quality of the obtained solutions. The authors also prove that a 

single NDSBA algorithm iteration has the same computational complexity as that of an 
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ACO-TCAT algorithm iteration which is 𝑂(𝑛2), where 𝑛 is the number of grid points in the 

RoI. 

The three ACO-based algorithms discussed above have two main advantages over the 

PSO-based algorithms reviewed in this section. The first advantage is the ease of factoring in 

the presence of obstacles in the RoI. This is due to the design of ACO which reduces the 

deployment problem to finding optimal path in a graph 𝐺(𝑽, 𝑬) which is very compatible 

with the properties of SN deployment problems. The second advantage is that the obtained 

solutions, i.e. WSN layouts, from ACO-based algorithms are connected whereas this is not 

the case for all the PSO-based algorithms. 

We conclude this section with Table 2.7, in which we compare between the deployment 

algorithms reviewed  in terms of the type of SI method used (PSO or ACO), the 

characteristics of the targeted RoI, the sensing model adopted in coverage calculations and 

the algorithms' speed of convergence. 

Table 2.7   Comparison among the SI algorithms for WSN deployment  

Algorithm 
Type Of SI 

Method 
ROI Sensing Model 

Speed of 
Convergence 

PSO-Grid in [89] 
conventional 

PSO w/o obstacles deterministic slow 
PSO-Voronoi 
in [90], [91] 

conventional 
PSO 

w/o obstacles deterministic medium 

PSO-LS in [92] 
conventional 
PSO with LS 

w/o obstacles deterministic fast 

EasiDesign 
in [93] 

ACO with one 
class of ant 
transitions 

w/ obstacles and 
preferential 

areas 
deterministic medium 

ACO-TCAT 
in [94] 

ACO with 
three classes of 
ant transitions 

w/ obstacles and 
preferential 

areas 
deterministic fast 

NDSBA in [95] 
ACO with four 
classes of ant 

transitions 

w/ obstacles and 
preferential 

areas 
deterministic fast 

 

2.5.   Discussion and Experimental Evaluation 

2.5.1. Discussion: Comparing the Four Approaches 

Through the review and discussion presented in Section 2.4, it can be seen that the 

choice of a WSN deployment approach depends on several factors. These factors include the 

targeted RoI, whether a distributed or centralized approach is required, the degree of SN 

mobility (if any) in the WSN and whether the deployment has a single or multiple objectives. 

The complexity of the deployment approach is also a deciding factor in some WSN 

applications. 

The targeted RoI involves whether the WSN is deployed in an obstacle-ridden or an 

obstacle-free RoI. It also involves whether the RoI is expected to be static or dynamic during 

the lifetime span of the WSN. Incorporating the presence of static obstacles, such as concrete 

walls, in the deployment problem is feasible in all four approaches. This is clear in the 

deployment algorithms which belong to the CG and APF approaches, in addition to ACO in 

the SI approach. As far as the GA and PSO are concerned, the presence of static obstacles can 

be handled by limiting the search space of the problem to a set of candidate deployment 

points or areas. It can also be achieved by introducing further constraints on the deployment 
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problem, or designing the fitness function such that it penalizes solutions with deployment 

positions on/near obstacle locations. The same argument is applicable to preferential areas. 

On the other hand, the deployment of WSNs in highly dynamic and/or hostile RoIs 

requires the use of a deployment approach that provides the network with a self-organizing 

feature. APF-based algorithms, especially when implemented in a distributed fashion, have 

the ability to provide mobile SNs in MWSNs with real-time navigation in such environments 

without the need for a global localization method, albeit with a high cost. The high cost is 

partially due to the extended sensing capabilities required in the mobile SNs to detect their 

surroundings (e.g. a laser range-finder), and partially due to the repetitive movement of SNs 

which shortens the WSN lifetime. This can be overcome by deploying redundant SNs in the 

RoI which can be put to sleep and activated as needed. It should be noted that the 

performance of the distributed APF-based algorithms, in terms of energy consumption, are 

highly sensitive to the equilibrium conditions used to restrict unnecessary motion. Distributed 

CG-based deployment algorithms applied to MWSNs can also handle some changes in the 

RoI, particularly changes in the area coverage due to SNs dying from energy depletion and/or 

external attacks. As discussed earlier in Section 2.4.3, the performance of APF-based 

algorithms, in terms of area coverage and energy consumption, can be greatly enhanced by 

combining the conventional approach with CG (e.g. the use of Voronoi cells in local 

coverage calculation).  

Since both GA and SI approaches are heuristic global optimization methods, they can 

only be implemented in a centralized fashion in WMSNs. This is not the case for APF and 

CG approaches, which have the option of being implemented in a distributed or centralized 

manner. This greatly limits the ability of GA and SI approaches to deal with dynamic RoIs.  

Although all four approaches can be used in deploying mobile SNs, the use of either GA 

or SI approaches requires a powerful sink node or base station, since they can only be 

deployed in a centralized fashion. The sink would run the algorithms, based on a global 

knowledge of the SN locations and other parameters, and then communicates the new 

positions to the SNs to perform a one-time movement. This makes these two approaches 

unsuitable for applications targeting harsh or hostile RoIs, where the survival of a sink node 

is not guaranteed. For such applications, using a distributed CG or APF approach is more 

suitable.   

As far as design objectives are concerned, GA and SI approaches are better suited for 

deploying WSNs with multiple design objectives than CG and APF approaches. This is due 

to the fact that multiple objectives can be easily factored in the fitness function used in a GA 

or SI algorithm. It should be pointed out that APF-based deployment algorithms can 

theoretically deal with multiple design objectives. This can be achieved by introducing more 

virtual forces to the algorithm to represent objectives besides optimizing the RoI coverage, 

for example maximizing the WSN throughput. However, adjusting the weights of these added 

virtual forces is a difficult process since they can only be estimated thorough trial and error.  

In terms of the complexity, it would only be subjective to hold a general comparison 

between the algorithms which belong to the four different approaches. Although calculating 

the complexity of an APF or CG-based algorithm is a rather straightforward task as it is 

primarily a function of the number of deployed SNs, this is not the case for Genetic and SI 

algorithms. This is because the complexity of the latter two algorithms is a function of many 

variables. For GAs, it is a function of the size of the population, fitness function calculations 

and implementation of the genetic operators. Similarly, the complexity of a SI algorithm is a 

function of the number of particles in the swarm/ants in the ant colony, fitness function 

calculations and particles velocity/ants transitions calculations used for the swarm’s 

evolution. Hence, a comparison can practically be held only among specific algorithms which 

follow the different approaches applied to the same deployment problem. To the best of our 
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knowledge, a comparative study of this description has not been published yet and it is one of 

our ongoing research studies. Table 2.8 summarizes the comparison among the different 

approaches. In this table, we compare the four approaches in our classification in terms of 

adaptability to changes in RoI, whether their implementation is centralized or distributed, 

suitability for deploying static and mobile WSNs, their ability to incorporate multiple 

network design objectives and the factors affecting their complexity. 

Table 2.8   Comparison among the four mathematical approaches for planned WSN deployment 

Mathematical 
Approach 

Adaptability 
to RoI 

Changes 

Centralized 
/Distributed 

Suitability for 
Mobile/Static 

WSNs 

Applicability 
to Multiple 
Objectives 

Factors Affecting 
Complexity  

GA no centralized static; one-time 
movement 

yes  no. of deployed SNs 

 genetic operators 

 fitness evaluation 
 

CG yes but 
limited 

both both no  no. of deployed SNs 
 

APF yes both both yes but 
difficult 

 no. of deployed SNs 
 

SI no centralized static; one-time 
movement 

yes  no. of particles/ants 

 swarm’s 
velocity/ant’s 
transitions 
calculations 

 fitness evaluation 

 

2.5.2. Experimental Evaluation 

In this section, we conduct a performance evaluation study of four of the existing SN 

deployment algorithms that are designed to solve the MCC-SDP, namely the MAX-AVG-

COV GH in [29], the 𝑖FLGA in [73], the 𝑖VLGA  dhmdmsop la [75]  nap  the EasiDesign ACO 

algorithm in [93]. The MCC-SDP is chosen since it is the most studied deployment cost 

minimization SDP in the literature. It is defined in Section 2.4.1 and mathematically 

formulated by (2.22) – (2.24). The 𝑖FLGA, 𝑖VLGA and EasiDesign algorithm represent two 

of the mathematical approaches in the presented classification in this chapter: GAs and SI. 

These two approaches are the most suitable of the four approaches for the planned 

deployment of static WSNs, where the SDP is modeled as a constrained optimization 

problem. The GH MAX-AVG-COV is used to benchmark the performance of these 

algorithms. These specific algorithms are selected based on the adaptability of their design to 

solve most versions of the MCC-SDP of different required coverage types (e.g. area 

coverage, point coverage or barrier coverage) and SN coverage models (e.g. binary disk 

model, FoV…etc.). The performance of the four algorithms is evaluated in terms of three 

metrics: quality of the obtained solutions (i.e. deployment cost), computational cost and 

speed of convergence. The results are then statistically analyzed and a comparison is 

conducted among the four algorithms. 

2.5.2.1. Experimental Set-up 

To evaluate the performance of the four algorithms, we implement and apply each to six 

different scales of the MCC-SDP, where the RoI is modeled by a square grid (𝑀 = 𝑁) with 

10, 15, 20, 25, 30 and 35 gird points in each dimension respectively. At all tested problem 
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scales, we assume that grid points are 5 meters apart and that the SNs have a coverage range 

𝑟𝑠 of 15 meters. The SNs communication range 𝑟𝑐 is set to 30 meters in EasiDesign. This 

assumption results in a ratio  𝑟𝑐: 𝑟𝑠 of 2. Consequently, the obtained solutions (i.e. SN 

deployments) from all four algorithms will provide both comprehensive coverage and 

connectivity among SNs. The algorithms were developed on MATLAB R2010b version 

7.11.0.584. To account for the stochastic nature of the algorithms, each is executed for 10 

trials on an Intel Xeon processor, CPU E5620, 2.4 GHz and 12 GB RAM.  

We use the same parameter settings specified for 𝑖FLGA, 𝑖VLGA and EasiDesign 

in  [73], [75] and [93] respectively. To ensure a fair comparison in terms of the computational 

cost and speed of convergence, we use the same termination conditions for all three 

metaheuristic algorithms. We use two termination conditions in our experiments. The first 

one is the algorithm reaching a maximum number of 500 iterations. The second condition is 

the convergence of the algorithm, signaled by the stagnation of the maximum fitness through 

100 iterations. Performance is evaluated in terms of three metrics: 

 Quality of obtained solutions, which is measured by the number of SNs in the 

minimum-cost deployments obtained by the four algorithms. For the metaheuristic 

algorithms 𝑖FLGA, 𝑖VLGA and EasiDesign, this number is equivalent to highest fitness 

achieved at the algorithm termination. 

 Computational cost, which is measured using the CPU run-time required for an 

algorithm to terminate or converge.  

 Speed of convergence, which pertains only to the three metaheuristic algorithms. This 

metric is measured by the number of iterations the algorithm executes before 

converging (if convergence occurs). This metric does not apply to MAX-AVG-COV 

since it terminates once a solution to the problem is found. 

We also investigate how these three performance metrics change with the increase of the 

problem scale, i.e. algorithm scalability. 

2.5.2.2. Results and Discussion 

We now present and discuss the obtained results according to the aforementioned 

performance metrics. 

Quality of obtained solutions: Table 2.9 summarizes the results in terms of the quality of 

the obtained solutions, showing the lowest (best), highest (worst) and the average number of 

SNs in the solutions obtained by the four algorithms. For each problem scale, the lowest 

obtained average (i.e. lowest average deployment cost) is written in bold font. The three 

metaheuristic algorithms outperform the MAX-AVG-COV GH at all tested scales of the 

problem. This outcome is expected since the evolutionary nature of the metaheuristic 

algorithms makes them generally more capable than GHs of finding higher quality solutions 

to difficult optimization problems. The performance gap between the three metaheuristic 

algorithms and MAX-AVG-COV increases progressively as the problem. The algorithm 

EasiDesign and 𝑖FLGA demonstrate the best performance, outperforming 𝑖VLGA with a 

small margin at the largest three scales of the problem. 

Based on the average solutions quality, both 𝐸𝑎𝑠𝑖𝐷𝑒𝑠𝑖𝑔𝑛 and 𝑖FLGA show a similar 

performance. However, EasiDesign exhibits a higher variability in the quality of its solutions. 

To provide a more statistically accurate comparison, a set of pair-wise 𝑡 −tests is performed 

to confirm the initial observations drawn from the results in Table 2.9.  
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Table 2.9   Comparison among the four algorithms in terms of quality of obtained solutions  

Grid Size 

(𝑀x𝑁) 

MAX-AVG-COV 𝒊VLGA EasiDesign 𝒊FLGA 

Best Avg.  Worst Best Avg.  Worst Best Avg.  Worst Best Avg.  Worst 

(10x10) 6 6 6 4 4.8 5 4 5.1 6 4 4.6 5 

(15x15) 14 14.2 16 11 12.7 14 11 12.5 14 10 11.6 13 

(20x20) 26 26.9 28 22 24 26 21 23.2 25 22 23.2 24 

(25x25) 39 40.2 41 35 37.1 38 32 35.3 38 34 35.6 37 

(30x30) 57 58 61 51 54.2 57 49 51.9 54 50 52.2 54 

(35x35) 76 78.5 80 70 74.5 78 68 72.9 77 68 72 74 

 

Table 2.10   Results of the pairwise 𝑡 −tests 

Grid Size 

(𝑀x𝑁) 

MAX-AVG-

COV Vs. 

𝒊VLGA1 

𝒊VLGA  

Vs. 

𝒊FLGA2 

𝒊FLGA  

Vs. 

EasiDesign3 

 

Conclusion 

 

(10x10) 4.27× 10−6 1.80× 10−1 9.80× 10−2 
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign 

(15x15) 2.40× 10−4 1.82× 10−2 5.04× 10−2 
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign 

(20x20) 1.57× 10−4 1.10× 10−1 10× 10−1 
MAX-AVG-COV< 𝑖VLGA≈

 𝑖FLGA≈EasiDesign 

(25x25) 1.26× 10−6 2.34× 10−3 6.35× 10−1 
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign 

(30x30) 4.72× 10−5 7.21× 10−3 6.52× 10−1 
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign 

(35x35) 1.02× 10−4 7.83× 10−3 4.03× 10−1 
MAX-AVG-COV< 𝑖VLGA<

 𝑖FLGA≈EasiDesign 
 

All 𝑡 −tests are carried out at a 95 percent confidence interval, i.e. α = 0.05 

“A< B” means B performs better than A, while “A≈B” means A and B perform similarly 

1 𝑝 −values of the one-tailed 𝑡 −test of the alternative hypodissertation that the average of 𝑖VLGA  is greater than that of MAX-AVG-

COV   

2 𝑝 −values of the one-tailed 𝑡 −test of the alternative hypodissertation that the average of 𝑖FLGA  is greater than that of 𝑖VLGA 

3 𝑝 −values of the two-tailed t-test of the alternative hypodissertation that the averages of 𝑖FLGA and EasiDesign are unequal 

 

Table 2.10 shows the resulting 𝑝 −values of the performed 𝑡 −tests and the 

corresponding conclusion for each problem scale. Values less than the specified statistical 

significance α=0.05 indicates that the null hypodissertation of equal averages is rejected and 

that the alternative hypodissertation of the test is true with a 95% confidence level. 

Conclusions in Table 2.10 coincide with our initial observations: in terms of quality, the 

ascending order of performance is MAX − AVG − COV <  𝑖VLGA ≈  𝑖FLGA ≈ EasiDesign for 

the three smallest problem scales and MAX-AVG-COV< 𝑖VLGA<  𝑖FLGA≈ EasiDesign 

for the three largest scales, where “A< B” means B performs better than A, while “A≈B” 

means A and B perform almost similarly. The deterioration of the 𝑖VLGA performance in 

terms of quality at larger problem scales can be attributed to the variable-length chromosome 

encoding scheme. As the scale of the problem increases, i.e. as the number of grid points 

increases, the probability that one or more genes belonging to the global optimum solution 

are not represented in the initial population increases as well. Since the crossover operator 

simply recombines existing chromosomes, the mutation operator is the only source of 
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diversification in the algorithm. At larger problem, it may not be sufficient to successfully 

guide the algorithm’s search to higher quality solutions.  

Computational Cost and Speed of Convergence: These two performance metrics are 

closely correlated and together they determine the computational efficiency of a stochastic 

optimization algorithm. Fig. 2.7 illustrates the performance of the four algorithms in terms of 

the computational cost measured by the average CPU run-time in seconds. Fig. 2.8 illustrates 

the performance of the three metaheuristic algorithms in terms of their speed of convergence, 

measured by the number of iterations executed by the algorithm before termination (either by 

convergence or reaching the maximum number of iterations). In Fig. 2.8, each result point 

consists of the average, upper and lower limits of the 95% confidence interval of the 

corresponding set of runs.  

In terms of computational cost, the ascending order of performance is EasiDesign <
 𝑖FLGA<  𝑖VLGA< MAX-AVG-COV. As a GH, the low computational cost of MAX-

AVG-COV is expected and attributed to its simple design. Compared to 𝑖FLGA and 

EasiDesign, 𝑖VLGA has a much lower computational cost. This can be attributed to the 

variable-length chromosome encoding scheme, which significantly decreases memory 

assignment time during the 𝑖VLGA execution, reducing its computational cost. This is not the 

case for both 𝑖FLGA and EasiDesign, where the fixed chromosome length and the average 

number of ants’ transitions are directly proportional to the problem scale. Theoretically, the 

performance gap between the 𝑖VLGA and both 𝑖FLGA and EasiDesign in terms of 

computational cost should increase with the increase of the problem scale. However, it is 

interesting to observe that in practice this is not valid for 𝑖FLGA as the difference between it 

and 𝑖VLGA decreases steadily with the increase of the scale. It can also be observed that 

𝑖FLGA and EasiDesign have a comparable computational cost for the smallest problem scale, 

but as the scale grows, 𝑖FLGA starts exhibiting a steadily increasing advantage 

over 𝐸𝑎𝑠𝑖𝐷𝑒𝑠𝑖𝑔𝑛. These two observations can be explained by Fig. 2.8. In the figure, it can 

be seen that 𝑖FLGA shows the best performance in terms of the speed of convergence with a 

large margin over both 𝑖VLGA and EasiDesign. For the majority of the runs at all tested 

problem scales, 𝑖FLGA converges within 200 iterations.  

 On the other hand, the ability of 𝑖VLGA and EasiDesign to converge quickly 

deteriorates as the problem scale grows. This explains the narrowing in the performance gap 

in terms of the computational cost between 𝑖VLGA and 𝑖FLGA: although the average time to 

execute iteration in 𝑖VLGA is always lower than in 𝑖FLGA, the slow convergence of the 

𝑖VLGA dampens its advantage over 𝑖FLGA.  The deterioration in convergence speed of the 

𝑖VLGA at larger problem scales can be attributed again to the variable-length chromosome 

encoding scheme: the limited level of diversification introduced by the genetic operators in 

𝑖VLGA slows down its convergence. For EasiDesign, the slow convergence (at the three 

smallest problem scales) and the lack of it (at the three largest problem scales) can be due to 

the definition of the set of allowed successor grid points 𝑵𝑖
𝑘. The adopted definition of this 

set limits the successor grid points and hence creates a situation where a grid point that offers 

no coverage gain can be included to an ants’ tour (i.e. solution). This in turn leads to 

redundant transitions which slows down the convergence of the algorithm or prevents it 

altogether. 

2.6. Chapter Summary 

In this chapter, we surveyed and classified the planned WSN deployment algorithms 

which have been presented in the literature according to their mathematical approach. Four 

distinct approaches were proposed for this classification, namely GAs, CG, APFs and SI. We  
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Fig. 2.7   Comparison among the four algorithms under consideration in terms of computational cost 

measured by the average CPU run-time. 

 

Fig. 2.8   Comparison among the three metaheuristic algorithms under consideration in terms of 

convergence speed measured by the number of executed iterations. 

discussed some of the fundamental design factors of WSNs, namely the sensing model, 

mobility of SNs, WSN coverage and network connectivity. We presented a brief account on 

the background and mathematical foundation of each of the four approaches. An extensive 

review of the deployment algorithms which belong to each approach was presented. In this 

review, we presented comparisons between the different deployment algorithms based on 

each approach. We then discussed and compared the four approaches in terms of different 

WSN design factors, thus highlighting the strengths and limitations of each approach. One of 

the most important conclusions drawn from the conducted survey is that GAs and SI 

algorithms, specifically ACO algorithms, are best suited for deploying static WSNs with 

single or multiple design objectives. Finally, we presented and discussed a performance 

evaluation study of four of the existing SN deployment algorithms. 
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Chapter 3 

 

Reliability Assessment of Wireless Sensor Network 

Deployments 

 

3.1. Introduction 

Evaluating the reliability of WSNs is of great importance especially for WSNs designed 

for mission-critical applications. For such applications, the failure of the WSN to perform its 

function(s) can have catastrophic effects [6]. In this chapter, we review and discuss existing 

studies on the reliability and fault-tolerance of WSNs. Based on the presented review, we 

propose a novel WSN reliability metric in terms of the coverage and connectivity of the 

network. This is done under the practical assumption that that an SN functions as a three-

mode device (on, off and relay modes) as opposed to the conventional two-mode SN model 

(on and off modes) in the existing work in the literature.  

 The reliability of any multi-component system is formally defined as the “probability 

that a system will perform satisfactorily during its mission time when used under the stated 

conditions” [19]. The method by which the reliability of a specific system is evaluated varies 

according to the type(s) of components of which the system is composed, the configuration of 

the system in terms of how these components are connected to each other and the state(s) at 

which the system is defined to have failed. Ultimately, the reliability of the system is a 

function of the reliability measures of its components. Therefore, evaluating the reliability of 

the system as a whole is a probability-modeling problem. In this context, a WSN can be 

viewed as a multi-component system in which the components are the sensor nodes (SNs) 

and the sink node(s). The mission time for a WSN can either be its intended lifetime or the 

time interval between scheduled maintenance operations. Hence, the WSN mission time is 

application-dependent and can vary greatly ranging from a few days to a few years. The 

configuration of the WSN is determined by the way the SNs are deployed in the targeted RoI 

and the resulting wireless connectivity among them.  

In order to identify the states at which a given WSN deployment fails, the functionality 

of a WSN must first be defined. The functionality of a WSN can be divided into two major 

elements. The first element is the sensing functionality, which is the ability of a WSN to 

detect all the targets or phenomena that occur inside the boundaries of the RoI during its 

mission time. Hence, for a WSN to be functional in terms of sensing it must provide full 

coverage for the RoI area (in case of area coverage) or all the targeted locations in the RoI (in 

case of point coverage) during its mission time. The second element of the WSN 

functionality is the connectivity functionality, which is the ability of the WSN to deliver 

sensed data from its sources (i.e. SNs) to the designated destination (i.e. sink node(s)) during 

its mission time. Hence, for a WSN to be functional in terms of connectivity, any target or a 

phenomenon detected by one or more SNs in a WSN has to be recognized at the sink node(s) 

through multi-hop wireless communication throughout the WSN mission time. Based on this 

definition of the WSN functionality, a WSN is said to have failed if either of its sensing or 

connectivity functionality elements fails [96]. 

There are several issues that affect the reliability of a WSN. These issues can generally 

be classified into SN related and non-SN related issues. The SN related issues are factors 

pertinent to the functionality of the deployed SNs, namely, SN power failure, hardware 
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failures and software failures. The effect of these issues on the functionality of the network 

during its mission time (i.e. on the reliability of the network) can be predicted [97] as will be 

discussed later. These issues can be summarized as follows: 

 SN Power Failure: the majority of the industrial and commercial SNs currently available 

in the market are battery-powered.  Current advances in the fabrication of batteries have 

recently introduced highly durable batteries for SNs that can last for years (e.g. lithium 

thionyl chloride batteries [98]) under certain conditions. Although, theoretically, these 

batteries can sustain the operation of the SNs for long periods of time, premature battery 

failures can still occur in practice. This can be attributed to a myriad of reasons such as 

the deployment of the SNs in harsh environmental conditions (e.g. extreme temperatures 

or rain), incorrect handling or random failure caused by defective hardware [99].  

 SN Hardware Failures: SNs are subject to random hardware failures. This is attributed to 

two main reasons. The first one is that most commercial SNs are cost-sensitive, meaning 

that they are not always built of the highest quality components. The second reason is 

that SNs are often subjected to harsh environmental conditions which can affect the 

normal operation of its components [20]. 

 SN Software Failures: SNs are prone to random software failures which can render them 

inactive, i.e. unable to sense or communicate. 

On the other hand, non-SN related issues are factors that are external to the deployed 

SNs such as wireless link failures (due to fading and external interference) and excessive 

packet collisions (i.e. internal interference in WSNs adopting contention-based medium 

access control). The effect of these issues on the overall network reliability is in general 

difficult to predict [100]. However, several measures can be adopted to mitigate their 

detrimental effect on the network reliability. Examples of such measures include 

acknowledgements and retransmissions. 

3.2. Related Work on Reliability and Fault Tolerance of WSNs 

Several studies have addressed the issue of evaluating or estimating the reliability of 

WSNs. In this section, we review the most significant of these studies and discuss their scope 

and limitations.  

In the studies presented in  [101] - [103], the authors use a reliability metric to measure 

the reliability of SN systems used in monitoring linear processes in chemical plants to cost-

optimize the SN system layout. The proposed metric is formulated in terms of the failure 

probabilities of the SNs and depends on the method by which the different variables of a 

chemical process are measured and how they contribute to the monitoring of the chemical 

process. Hence, the metric is specifically tailored for this type of monitoring application and 

cannot be extended to other applications. Moreover, the authors consider SN systems and not 

networks, meaning that wireless communication between SNs is overlooked and not factored 

in the proposed reliability metric. 

The studies in [104] and [105] address the problem of evaluating the reliability of WSNs 

characterized by cluster-based deployments subject to random SN failures. In both studies, 

the authors assume that the SN clusters are non-overlapping and that each cluster has a 

designated cluster head which acts as a relay between the SNs in the cluster and the sink 

node. In [104], the authors define the reliability of a cluster as the probability of successful 

message delivery between the sink node and the cluster head. The authors in [105] define the 

reliability of the WSN as the probability that the geographical area of each cluster in the 

WSN is fully covered by its SNs and that the cluster head has at least one functional direct or 

multi-hop wireless path to the sink node. Based on this definition, they derive an expression 
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for the reliability of each individual cluster and use a Monte Carlo (MC) simulation approach 

to estimate it. The main limitation of the studies in [104] and [105] is that the reliability of the 

WSN as a whole in terms of the reliability of its constituent clusters is not evaluated. In 

addition, the proposed definitions of reliability cannot be extended to WSNs with different 

deployment configurations such as flat deployments which are non-hierarchical.  

On the other hand, the studies in [106] - [110] address the reliability of SN systems or 

WSNs of non-hierarchical deployment configurations. In [106], the authors address the 

problem of evaluating the reliability of WSNs designed for industrial inventory management. 

They assume that, for the purposes of this specific application, the data collected by each SN 

are stored redundantly on several other SNs to account for random SN failures. Accordingly, 

the WSN is deemed functional as long as there is a sufficient number of functional SNs that 

are both connected to each other and to the sink node. Based on this definition of network 

functionality and the assumption that the WSN deployment is homogeneous, the reliability 

evaluation problem is reduced to the famous 𝐾-out-of-𝑁 reliability problem [111]. The 

authors also present a MC simulation approach similar to that proposed in [105] to estimate 

the reliability of the WSN at hand. However, the reliability evaluation and estimation 

approaches proposed in [106] are based on a very restrictive definition of network 

functionality. Consequently, they cannot be applied to other WSN applications (e.g. 

surveillance and monitoring applications) where the functionality of the network is dependent 

not only on the number of SNs connected to the sink node but also on the network coverage. 

Also, the proposed approaches do not support network heterogeneity which is a major 

limitation since real-world deployments are often heterogeneous. 

The authors in [107] propose a reliability metric for SN systems designed for 

surveillance purposes subject to random SN failures. They assume an arbitrary deployment 

configuration where SNs can monitor multiple target locations in the RoI and that each target 

location can be monitored by multiple SNs. They also assume that the surveillance SN 

system can be heterogeneous. The reliability of the system is defined as the probability that 

all target locations are monitored by at least one SN. The authors use a combinatorial 

approach to evaluate the proposed reliability measure. The main limitation of the proposed 

metric is that system functionality is assumed to be in terms of the degree of target locations 

coverage only. Connectivity between SNs to form a wireless network is not considered. 

Hence, the proposed approach cannot be applied to evaluate the reliability of a WSN 

deployment.  

In [108], the authors propose a model for evaluating the reliability of a WSN subject to 

two types of failure events, namely, SN failures due to battery depletion and link failures. 

Their proposed approach depends on dividing the targeted RoI into disjoint areas or target 

regions. For each region, a reliability model is constructed using a Reliability Block Diagram 

(RBD) [19], which depends on the number of SNs monitoring the target region, their relative 

location from the sink node and the routing protocol used in the network. There are two 

drawbacks of the proposed reliability modeling proposed in [108]. The first drawback is that 

the model does not provide a method by which the reliability of the entire WSN deployment 

can be evaluated in terms of the reliability of its regions. The second drawback is that the 

reliability modeling is carried out under the assumption that the probabilities of link failures 

are known and are constant throughout the lifetime of the WSN. This assumption is 

unrealistic for wireless links since link quality is affected by numerous factors such as multi-

path effects, shadowing (due to static and mobile obstacles) and interference. The effect of 

these factors on link quality varies significantly and rapidly in time and space [100] and 

hence, unlike SN related factors, cannot be reduced, contrary to hardware components, to a 

constant probability of failure throughout WSN mission time. 
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 The study in [109] propose a method for evaluating the reliability of WSNs designed for 

industrial IoT applications based on the automatic generation of Fault Trees (FTs). The 

proposed method requires the network failure conditions as inputs to enable the generation of 

the corresponding network FT and compute the network reliability. A network failure 

condition is defined as a combination of SNs which if fail will lead to the failure of the WSN 

in terms of network coverage only and not connectivity to the sink. To address the 

connectivity part of the network functionality, the authors propose a depth-first search 

algorithm that finds all the paths between SNs belonging to the network failure conditions 

and the sink node. The study in [109] is extended in [110] by assuming that the WSN is also 

subject to permanent wireless link failures in addition to SN failures under the same 

assumptions adopted in [105]. However, the reliability metric proposed in [109] and [110] 

can not be used in the context of stochastic optimization and hence to calculate the reliability 

in the problem at hand since developing/constructing the FT and using it to calculate the 

paths set and the reliability of the WSN is a very time-consuming process. 

3.3. Motivation for a New Reliability Metric 

Based on the above discussion, existing studies provide reliability evaluation or 

estimation for WSNs under restrictive conditions that pertain to specific applications, 

network functionality definition and/or deployment configurations. More importantly, they 

all assume that SNs have only two modes of operation, either on or off. If an SN is on, it is 

assumed to be functional in terms of both sensing its surrounding environment and 

communicating wirelessly with its neighbors. If it is off, then the SN has failed permanently 

due to one or more of the SN related reliability issues outlined in the introduction of this 

chapter. This representation is not accurate since most commercial SNs are composed of 

multiple independent chips that carry out different functions, with each having its own 

probability of failure during the network’s mission time.  

A more accurate model considers the SN as a multi-component system [113]. Based on 

this model, an SN has three modes of operation. These modes of operation are on, relay and 

off.  The definitions of the on and off modes are the same as discussed above, while the relay 

mode occurs when the SN is unable to perform its sensory function but it still able to 

communicate wirelessly with its neighbors. This mode of operation occurs when the SN’s 

sensor(s) hardware fails while its transceiver, processor and battery are in working condition. 

Adopting this SN model provides a more accurate evaluation of WSN reliability, assuming 

that the network functionality is adequately defined in terms of both network coverage and 

connectivity.  

3.4. Fundamental Reliability Concepts 

In this section, we discuss some of the fundamental definitions and concepts related to 

the evaluation of multi-component systems’ reliability which we will be using throughout this 

chapter.  

3.4.1. Component Reliability Function and Component Reliability 

The main objective of reliability modeling is to express the reliability of a given system 

in terms of the reliability measures of its constituent components. There are two main 

reliability measures for any device or component. The first measure is the reliability 

function, 𝑅𝑐(𝑡), which is used to estimate the probability that the device or component will 

continue to function beyond a time duration of length 𝑡 [19]. The second reliability measure 

is based on the fact that, for most practical purposes, a device or component is only required 
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to function during the specified mission time 𝑇𝑚 of the system it belongs to. In this case, the 

reliability function 𝑅𝑐(𝑡) can be substituted by the reliability of the device. The reliability of 

a device, Rc, is simply defined as the probability that the device will continue to function 

throughout the mission time of the system. Accordingly, the probability of failure of the 

device during 𝑇𝑚 is equal to 1 −  𝑅𝑐(𝑇𝑚) = 1 −  𝑅𝑐 [19].  

For example, Fig. 3.1 shows an exponential reliability function, which is one of the 

simplest functions used in modeling the reliability of electronic components. The exponential 

reliability function is 𝑅𝑐𝑒
(𝑡) is given by the following equation: 

 

𝑅𝑐𝑒
(𝑡) = 𝑒−𝛼𝑡 (3.1) 

 

where α is the estimated failure rate of the component per unit of measurement (e.g. hour, 

year, cycle…etc.) and is equal to the reciprocal of its Mean Time To Fail (MTTF). From the 

reliability curves in Figure 1, we can estimate the reliability at 𝑡 = 5000 hours for 𝛼 =
1/4000 (i.e. for MTTF = 4000) to be 0.287. This in turn means that there is a 1 − 0.287 =
0.713 chance that the component will fail during this time interval, i.e. the probability of 

failure during this time interval is 0.713. 

 

Fig. 3.1   Exponential reliability function plot for different values of MTTF (1000, 2000, 3000 and 

4000) in hours. 

Although the exponential reliability function is commonly used in reliability engineering due 

to its simplicity, it usually leads to inaccurate estimations of the probabilities of failures. This 

is because this type of function is based on the assumption that the component has a constant 

failure rate, which means that its performance does not degrade with time. To obtain a more 

accurate model for the reliability function of a given electronic device, reliability engineers 

carry out rigorous reliability testing techniques and/or gather empirical data on the device in 

service [19]. For example, qualitative and quantitative accelerated reliability testing is used to 

identify probable hardware failures of SNs and estimate the probability of their 

occurrence [97]. 

3.4.2. Combinatorial Approach to System Reliability Evaluation 

Combinatorics is a proven useful tool in evaluating and estimating the reliability of 

complex systems and networks [114],[115]. The fundamental premise of the combinatorial 

approach to reliability evaluation is that the reliability of any system can be computed by 

means of evaluating the system’s structure function for every possible state of the system. To 

explain this concept, consider a system  𝑺 which consists of 𝑛 components, i.e. 𝑺 =
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{1,2, … . , 𝑛}. Each component can only have two distinct states; it can either be functional or 

on or it can fail or be off. Let the binary variable 𝜋𝑖 be the state indicator of component 𝑖 as 

follows: 

𝜋𝑖 = {
1 ,      𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑜𝑛
0,     𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑜𝑓𝑓

 (3.2) 

 

A state  𝝅 of the system  𝑺 is a description of the states of all its components, hence 𝝅 =
{𝜋𝑖} for 𝑖 = 1,… , 𝑛. Let 𝚷 be the set of all possible states of 𝑺. The structure function of  𝑺 , 

denoted 𝑓(𝝅), is a binary function that indicates whether the system is working under a given 

state according to the following equation:  

 

𝑓(𝝅) = {
1 ,       𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙
0,              𝑺 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑

 (3.3) 

 

Based on the above definitions, the reliability of 𝑺, denoted by 𝑅(𝑺), can be calculated 

using the following equation: 

 

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑓(𝝅) = 1) = ∑ 𝑓(𝝅). 𝑃𝑟𝑜𝑏(

𝝅∈𝚷

𝝅) (3.4) 

 

To calculate  𝑅(𝑺) using (3.4), the conditions necessary for  𝑺 to be functional must be 

defined and the probability of any system state must be evaluated in terms of the reliabilities 

(or probabilities of failure) of system’s components, assuming that the system has a specified 

mission time  𝑇𝑚. Theoretically 𝑓(𝝅) must be evaluated for all the possible system states  𝝅 ∈
𝚷  to calculate  𝑅(𝑺) using this approach. However, following this extensive method in 

reliability calculation poses a computational problem for systems of a practical scale. For 

example, a system composed of 30 components which fail independently has 230 states. 

Therefore, a tremendous amount of time is required to calculate  𝑅(𝑺) which grows 

exponentially with the number of components in the system. This computational problem is 

mitigated by the use of more efficient methods (e.g. RBD, FT and search algorithms) that 

attempt to find all the system’s path-sets or cut-sets [115]. 

 To define a system’s path and cut, let  𝑺1(𝝅) be the set of functioning components, i.e. 

components in the on state, in  𝑺   for a given system state 𝛑  and  𝑺0(𝝅) be the set of failed 

components, i.e. components in the off state.  𝑺1(𝝅) and  𝑺0(𝝅)   can be expressed by the 

following equations: 

 

𝑺1(𝝅) ≡ {𝑖 |  𝜋𝑖 = 1, 𝑖 ∈ 𝑺} 
 

(3.5) 

𝑺0(𝝅) ≡ {𝑖 |  𝜋𝑖 = 0, 𝑖 ∈ 𝑺}, (3.6) 

 

where 𝑺1(𝝅) ∪ 𝑺0(𝝅) = 𝑺. A state 𝛑  of the system 𝑺  is called a path if the system is 

functional at that state, i.e.  𝑓(𝝅) = 1. In that case, the corresponding path set is the 

set  𝑺1(𝝅), which is defined as the set of components whose simultaneous functional state 

guarantees that the overall system is functional. On the other hand, a state 𝛑 of the system  𝑺 

is called a cut if the system fails at that state, i.e.  𝑓(𝝅) = 0. In this case, the corresponding 

cut set is the set  𝑺0(𝝅), which is defined as the set of components whose simultaneous 

failure results in the failure of the overall system. If all the path sets or alternatively all the cut 

sets of a system  𝑺 are known, we can rewrite (3.4) as follows: 
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𝑅(𝑺) = ∑ 𝑃𝑟𝑜𝑏(

𝝅∈𝚷1

𝝅) = 1 − ∑ 𝑃𝑟𝑜𝑏(

𝝅∈𝚷0

𝝅), (3.7) 

 

where   𝚷1 is the set of all the paths of  𝑺 (i.e. the complete paths set of  𝑺 ) and  𝚷0 is the 

corresponding set containing all the cuts of  𝑺 (i.e. the complete cuts set of 𝑺) such that  𝚷1 ∪
𝚷0 = 𝚷 . For example, a simple system of 𝑛 components connected in series has only one 

path set which is equal to the system set 𝑺 = {1,2, … . , 𝑛} and has  ∑ 𝐶𝑘
𝑛𝑛

𝑘=1  cut sets. 

Therefore, it is simpler to express its reliability as 𝑅(𝑺𝑠𝑒𝑟𝑖𝑒𝑠) = 𝑃𝑟𝑜𝑏(𝝅 = {𝜋𝑖 = 1, ∀ 𝑖 =
1, … , 𝑛}) = ∏ 𝑅𝑖

𝑛
𝑖=1 , where 𝑅𝑖 is the reliability of the 𝑖th component during the system’s 

mission time. On the other hand, a system of 𝑛 components connected in parallel has only 

one cut set which is equal to  𝑺 and has  ∑ 𝐶𝑘
𝑛𝑛

𝑘=1  path sets. Hence, the system’s reliability can 

be expressed as  𝑅(𝑺𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) = 1 − 𝑃𝑟𝑜𝑏(𝝅 = {𝜋𝑖 = 0, ∀ 𝑖 = 1,… , 𝑛}) = 1 − ∏ (1 −𝑛
𝑖=1

𝑅𝑖). 

3.5. WSN Reliability Metric  

In this section, we use the combinatorial approach outlined in Section 3.4 to derive our 

proposed WSN reliability metric for an arbitrary WSN deployment configuration. We start by 

presenting the adopted model for the WSN. We then derive a WSN reliability metric based 

on the assumption that the constituent SNs are three-mode devices characterized by two 

failure probabilities, namely, the sensor failure probability and the transceiver sensor 

probability, as an intermediate step. We will refer to this SN model as the 3-mode, 2-par 

model. Finally, we derive the proposed WSN metric based on the assumption that the 

constituent SNs are three-mode devices characterized by four failure probabilities, namely 

sensor, transceiver, processor and battery failure probabilities. We will refer to this SN model 

as the 3-mode, 4-par model. 

3.5.1. WSN Model and Functionality Definition 

We assume that the targeted RoI of the WSN is a two-dimensional area in which there is 

a finite set of locations that require some form of monitoring (e.g. motion, image, video...etc.) 

using static SNs.  These locations are called target points and are denoted by the set   𝑻 = {𝑡𝑗} 

for 𝑗 = 1,… ,𝑚.  To maintain generality, we do not assume that the target points conform to 

any regular pattern. Target points are monitored by the SNs in the WSN. We assume that the 

SNs used in the deployment of the WSN can be of different types (e.g. sound, image, etc.) 

and can have different coverage profiles (e.g. binary disk model, FoV model, etc.), i.e. the 

WSN can be heterogeneous in nature. Let the set of deployed SNs be denoted by   𝑺 =
{𝑠𝑖}, 𝑖 = 1,… , 𝑛. We assume an arbitrary deployment configuration in which an SN can 

monitor multiple target points. We also assume that a target can be monitored by more than 

one SN. Therefore, in terms of coverage, the WSN can be modeled as a bipartite graph.  Fig. 

3.2 shows an example of a WSN consisting of 5 SNs (𝑛 = 5) monitoring 3 target 

points  (𝑚 = 3) and the resulting bipartite graph representation of the network coverage, 

assuming SNs are characterized by a binary disk coverage model. All sensory data acquired 

by the SNs should be relayed to a sink node with an arbitrary fixed position in the RoI 

through wireless multi-hop communications. We assume that all deployed SNs have a fixed 

communication range, 𝑟𝑐. Hence, any two SNs deployed have a wireless communication link 

if the distance between them is less than or equal to 𝑟𝑐. Naturally, it is required that the WSN 

remains functional in terms of coverage and connectivity throughout its intended mission 

time 𝑇𝑚. To express this mathematically, we use the following definition: 



  Chapter 3 

52 

 

Definition 1:  A WSN is said to be functional in terms of both coverage and connectivity if 

both of the following two conditions are met: 

1. Each target point 𝑡𝑗 for 𝑗 = 1, … ,𝑚 is covered by at least one SN with an 

uncompromised sensing capability, i.e. an SN in the on state. Let the set  𝒀𝑗  be the set 

of SNs in the on state that monitor 𝑡𝑗. Then this condition can be expressed as,  | 𝒀𝑗  | ≠

0, ∀ 𝑗 = 1,… . ,𝑚  where |. | denotes the size of a set. 

2. Within each   𝒀𝑗 , there is at least one SN that has at least one functional path to the sink 

node. This implies that SNs along that path, including the source SN, have 

uncompromised communication capabilities, i.e. in either the on or the relay state. 

Hence, the events detected at any  𝑡𝑗 can be relayed back to the sink node. Let the set 

  𝒁𝑗 be the set of SNs which belong to  𝒀𝑗  that are connected to the sink node. 

Hence  𝒁𝑗 ⊆  𝒀𝑗 . The condition can be expressed as   | 𝒁𝑗  | ≠ 0, ∀ 𝑗 = 1,… . ,𝑚. 

 

 

 

Fig. 3.2   (a) A simple WSN consisting of a sink node, 5 SNs (𝑛 = 5) and 3 target points (𝑚 = 3) ; (b) 

The coverage of the WSN is modeled as a bipartite graph in which the target point set {𝑡1, 𝑡2, 𝑡3}  and 

the SN set 𝑺 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} are the two disjoint sets. 

3.5.2. Reliability Metric Formulation for the 3-mode, 2-par SN Model 

We now use the above definition of WSN functionality conditions in deriving a 

reliability metric for arbitrary WSN deployments under the assumption that the constituent 

SNs follow the 3-mode, 2-par model.  

3.5.2.1. 3-mode, 2-par SN Model 

The 3-mode, 2-par SN model is built on the assumption that each SN in the WSN has 

two given probabilities of failure during  𝑇𝑚. The first one is the communication failure 

probability, denoted by  𝜆𝑡
𝑖  which is defined as the probability that the wireless 

communication capability of SN 𝑖 is lost due to transceiver hardware failure during  𝑇𝑚. The 

second probability is the sensing failure probability, denoted by 𝜆𝑠
𝑖  which is the probability 

that the sensing capability of SN 𝑖 is lost due to sensor hardware failure during  𝑇𝑚.  We will 
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assume in this section that the battery and the processor of the SN are not subject to failure 

(later in Section 3.5.3 we will relax this assumption).  

Accordingly, the events of communication and sensing failures are independent. This 

implies that a SN can have three modes of operation, namely on, relay and off. In the on 

mode, the SN has functioning sensor and transceiver hardware and hence can both sense and 

communicate wirelessly. In the relay mode, the SN has failed sensor hardware while its 

transceiver is functioning. In this mode, the SN will not be able to detect any events within its 

coverage range. However, it will still be able to communicate with its neighbors, i.e. act as a 

relay and hence contribute to the WSN functionality. On the other hand, if the SN transceiver 

fails, the SN becomes isolated from the network and hence is considered in the off mode, 

irrespective of the status of its sensor hardware.  

3.5.2.2. Reliability Metric Derivation 

Let the reliability of a WSN deployment  𝑺 be denoted by 𝑅(𝑺). The reliability of the 

WSN deployment 𝑺, 𝑅(𝑺), is defined as the probability that the WSN remains functional, in 

terms of coverage and connectivity, subject to two types of SN components failures during its 

intended mission time,  𝑇𝑚. To obtain a closed formula for 𝑅(𝑺) using the combinatorial 

approach to system reliability evaluation outlined in Section 3.4.2, let 𝑿𝑠 denote the subset of 

SNs in 𝑺 that have failed sensors and  𝑿𝑡   denote the subset of SNs in 𝑺 that have failed 

transceivers. We can express 𝑅(𝑺) as follows: 

 

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙) = 
∑ ∑ [𝑃𝑟𝑜𝑏(  𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺 𝑺 𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 | 𝑿𝑠,  𝑿𝑡). 𝑃𝑟𝑜𝑏(𝑿𝑠,  𝑿𝑡)] 

(3.8) 

 

 Equation (3.8) expresses 𝑅(𝑺) as the probability that 𝑺 is functional, subject to all 

possible sensor and transceiver failure combinations of the SNs in  𝑺 during  𝑇𝑚. The 

conditional probability of functionality is either equal to 1 or 0, depending on whether the 

WSN fulfills the two conditions of functionality stated in Definition 1 under a given sensor 

and transceiver failure combination, i.e. network state, represented by  𝑿𝑠  and 𝑿𝑡. Hence, the 

term 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 | 𝑿𝑠, 𝑿𝑡) is equivalent to the network structure function which we 

will denote by   𝑓(𝑿𝑠,  𝑿𝑡). According to Definition 1, 𝑓(𝑿𝑠, 𝑿𝑡) can be expressed as follows: 

 

𝑓(𝑿𝑠, 𝑿𝑡) = {
1 ,    𝑖𝑓  𝒁𝑗 ⊆  𝒀𝑗 ≠ 𝜙  ∀ 𝑗 = 1,… ,𝑚 

0 ,                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3.9) 

 

To calculate the joint probability 𝑃𝑟𝑜𝑏(𝑿𝑠, 𝑿𝑡), i.e. the probability of a given network 

state represented  𝑓(𝑿𝑠, 𝑿𝑡), we can use the assumption that both types of SN failures are 

independent of each other. Hence, it can be expressed as follows, 

𝑓(𝑿𝑠, 𝑿𝑡) = 𝑃𝑟𝑜𝑏(𝑿𝑠,  𝑿𝑡) =𝑃𝑟𝑜𝑏(𝑿𝑠) ∗ 𝑃𝑟𝑜𝑏(𝑿𝑡). (3.10) 

 

Let 𝑿𝑠
𝑐 be the remainder of the SNs in 𝑺 with functional sensors and 𝑿𝑡

𝑐 be the 

remainder of the sensors in 𝑺 with functional transceivers. Hence, (3.8) can be rewritten as 

follows,  
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𝑅(𝑺) = ∑ ∑ 𝑓(𝑿𝑠, 𝑿𝑡). 𝑃𝑟𝑜𝑏(𝑿𝑠). 𝑃𝑟𝑜𝑏(𝑿𝑡)

  𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺

 (3.11) 

=∑ ∑ 𝑓(𝑿𝑠, 𝑿𝑡).  𝑿𝑡⊆𝑺𝑿𝒔⊆𝑺 ∏ (1 − 𝜆𝑠
𝑖
) .∏ 𝜆𝑠

𝑖
𝑖∈𝑿𝑠𝑖∈𝑿𝑠

𝑐 . ∏ (1 −𝑖∈𝑿𝑡
𝑐 𝜆𝑡

𝑖
).∏ 𝜆𝑡

𝑖
𝑖∈𝑿𝑡

 

Examining (3.11) suggests that in the computation of the proposed reliability metric for 

most WSN deployments, there will be probability terms of very limited effect on the 

numerical value of reliability. If these terms are identified and discarded, then it is possible to 

calculate a lower bound of reliability that can serve as a good approximation of the exact 

reliability 𝑅(𝑺), with a smaller number of network structure function evaluations and hence 

lower computation time. The degree of approximation can be controlled by varying the 

number of discarded probability terms. 

Let the set 𝑭 = {𝐹1, 𝐹2, … , 𝐹|𝑭|  } contain all the SN failure combinations that can be 

tolerated by the WSN, where|𝑭| denotes the number of these combinations. Let the term 

𝑃𝑟𝑜𝑏(𝐹𝑞) for 𝑞 = 1, . . , |𝑭| denote the probability of occurrence of the SN failure 

combination 𝑞 in 𝑭. We can express 𝑃𝑟𝑜𝑏(𝐹𝑞) by the following equation, 

 

𝑃𝑟𝑜𝑏(𝐹𝑞) = ∏ (1 − 𝜆𝑠
𝑖
) . ∏ 𝜆𝑠

𝑖

𝑖∈𝑿𝑠𝑞
𝑖∈𝑿𝑠𝑞

𝑐
.∏ (1 −

𝑖∈𝑿𝑡𝑞
𝑐

𝜆𝑡
𝑖
). ∏ 𝜆𝑡

𝑖
,

𝑖∈𝑿𝑡𝑞

 (3.12) 

 

where 𝑿𝑠𝑞, 𝑿𝑠𝑞
𝑐, 𝑿𝑡𝑞 and 𝑿𝑡𝑞

𝑐 , are the functional and dysfunctional SN sets which correspond 

to the SN failure combination 𝐹𝑘. Using (3.12), we can re-write the reliability metric 

expressed in (3.11) as follows, 

𝑅(𝑺) = ∑ 𝑃𝑟𝑜𝑏(𝐹𝑞)
|𝑭|

𝑞=1
. (3.13) 

 

Let the lower bound for 𝑅(𝑺) we wish to compute be denoted by 𝑅𝑙𝑏(𝑺). Therefore, the 

expression for  𝑅𝑙𝑏(𝑺) will include only a subset of the set of all the probability terms 

corresponding to the failure combinations in 𝑭. If we assume that the combinations in 𝑭 

follow a descending order in terms of their probability of occurrence, then a cut-off value 

must be set to determine which probability terms are to be eliminated in the computation of 

 𝑅𝑙𝑏(𝑺). This cut-off value will represent the smallest numerical value of a probability term 

that would be included in 𝑅𝑙𝑏(𝑺) . We will call that cut-off value the lower bound probability 

threshold, denoted by 𝜂𝑙𝑏. Hence, we can express  𝑅𝑙𝑏(𝑺) using the following equation: 

 𝑅𝑙𝑏(𝑺) = ∑ 𝑃𝑟𝑜𝑏(𝐹𝑞),
|𝑭|𝑙𝑏

𝑞=1
 (3.14) 

 

where |𝑭|𝑙𝑏 ≤ |𝑭| is the number of probability terms include in  𝑅𝑙𝑏(𝑺) such 

that 𝑃𝑟𝑜𝑏(𝐹|𝑭|𝑙𝑏) ≥  𝜂𝑙𝑏. 

3.5.2.3. Reliability Metric Calculation 

From the derived expression for the proposed reliability metric in (3.11), it is clear that 

computing 𝑅(𝑺) involves evaluating the WSN structure function for all possible 

combinations of SN failures, i.e. for all possible network states. This can pose a 

computational challenge since WSN deployments designed for real-world applications are 

often composed of tens or even hundreds of SNs, resulting in a huge number of possible 
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failure combinations, i.e. network states. To solve this computational problem, we make use 

of the following two properties of the WSN, 𝑺, according to the adopted WSN model: 

 Only tolerable SN failure combinations contribute to the value of 𝑅(𝑺) as expressed in 

(3.13). This means that the majority of the network states have null probabilities and 

hence they do not contribute to the value of 𝑅(𝑺). 

 The WSN 𝑺 has the property of being a monotone system [115]. This property implies 

the following. If the failure of a group of SNs’ components causes 𝑺 to fail, then the 

failure of any set which contains this group will also cause 𝑺 to fail. For example, if we 

assume that the SNs 𝑠1 and 𝑠2 in the WSN depicted in Fig. 3.2 are both in the off mode 

while the remaining SNs are in the on mode, then it can readily be observed that this 

would cause 𝑺 to fail since any phenomenon at target point 𝑡1 cannot be detected or 

communicated to the sink node. This means that network states corresponding to this 

situation have a structure function of zero value. Using the monotone property, we can 

say that the network states that include the SNs  𝑠1 and  𝑠2 being in the off mode and 𝑠4 

being in the relay mode would also have a structure function value of zero without 

actually evaluating the function.  

These two facts are used to construct a Breadth-First Search (BFS) algorithm to search 

for the tolerable SN failure combinations, i.e. generate the complete paths set and compute 

𝑅(𝑺) using (3.13) for any WSN deployment 𝑺. The algorithm can also compute the reliability 

lower bound  𝑅𝑙𝑏(𝑺)  for any given value of the parameter 𝜂𝑙𝑏.  

The structure of the algorithm is outlined in Table 3.1 and can be summarized as follows. 

In step 1, all required parameters for the computation of 𝑅(𝑺) are specified. If the exact value 

of 𝑅(𝑺) is to be computed, the lower bound probability threshold  𝜂𝑙𝑏 is set to zero. Step 2 

sets the 𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 parameter to zero. This parameter will flag the termination of the 

algorithm in case the lower bound reliability  𝑅𝑙𝑏(𝑺) is being computed for a value of   𝜂𝑙𝑏 

greater than zero. Step 2 also initializes 𝑅(𝑺) with the probability of the no SN failures 

network state. We are working under the assumption that the WSN is well designed and 

hence is functional under no failures.  The sets 𝑭𝑠
𝑘, 𝑭𝑡

𝑘 and 𝑭𝑘 are defined and initialized in 

step 3. 𝑭𝑠
𝑘 is the set that holds all the tolerable sensor failure combinations of length 𝑘 

assuming no transceiver failures while 𝑭𝑡
𝑘 holds all tolerable transceiver failure combinations 

of length 𝑘 assuming no sensor failures. The set 𝑭𝑘 is defined as the set that holds all the 

tolerable components failures of length 𝑘. The algorithm then proceeds by evaluating the 

failure combinations which can be tolerated by the WSN for an increasing value of  , i.e. 

proceeds in a breadth-first approach, in steps 4 to 7. For each value of 𝑘, the probabilities of 

the events corresponding to the failure combinations in the set 𝑭𝑘 are computed and then re-

ordered in a descending order accordingly. This step is carried out to make sure that all 

discarded probability terms in the calculation of  𝑅𝑙𝑏(𝑺) are indeed of a value smaller 

than 𝜂𝑙𝑏. If  𝜂𝑙𝑏 is greater than zero, the algorithm will terminate when a probability term less 

than  𝜂𝑙𝑏 is calculated corresponding to a failure combination in 𝑭𝑘 at the current value of 𝑘. 

If  𝜂𝑙𝑏 is set to zero to calculate the exact value of  𝑅(𝑺) , then the algorithm terminates when 

all tolerable failure combinations (𝑿𝑠, 𝑿𝑡) are evaluated and any additional component failure 

results in 𝑓(𝑿𝑠, 𝑿𝑡)=0.  
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Table 3.1  Pseudo-code for the proposed algorithm for calculating the reliability of a WSN assuming 

SNs follow a 3-mode, 2-par model  

Step Algorithm  for computing reliability 𝑅(𝑺) lower bound reliability 𝑅𝑙𝑏 

 

1. 

 

Set all parameters (𝑺, {𝑡𝑗}, 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖   and  𝜂𝑙𝑏 for 𝑗 = 1,… ,𝑚 and 𝑖 = 1,… , 𝑛) 

2. Initialize: set 𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 = 0 and 𝑅(𝑺) = 𝑃𝑟𝑜𝑏([𝑿𝑠 = {𝜙}, 𝑿𝑡={𝜙}]) 
3.a. Let 𝑘 be the number of failed components. Initialize 𝑘 = 1. 

3.b. Let 𝑭𝑠
𝑘 and 𝑭𝑡

𝑘 be the sets of 𝑘 −combinations of failed sensors and transceivers that 𝑺  

can tolerate respectively. Initialize 𝑭𝑠
𝑘 = {𝜙}  and 𝑭𝑡

𝑘 = {𝜙}. 
3.c. Let 𝑭𝑘 be the set of all 𝑘 −combinations of failed components that 𝑺  can tolerate. 

Initialize 𝑭𝑘 = {𝜙}. 
4.a. For 𝑖 = 1,… , 𝑛 

 - Let 𝑿𝑠 = {𝑖} and 𝑿𝑡 = {𝜙} 
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑠

𝑘 = 𝑭𝑠
𝑘 ∪ [𝑿𝑠, 𝑿𝑡={𝜙}] 

 End For 

4.b. For 𝑖 = 1,… , 𝑛 

 - Let  𝑋𝑠={𝜙} and 𝑋𝑡 = {𝑖} 
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑡

𝑘 = 𝑭𝑡
𝑘 ∪ [𝑿𝑠 = {𝜙}, 𝑿𝑡] 

 End For 

4.c. 𝑭𝑘 = 𝑭𝑘 ∪ 𝑭𝑠
𝑘 ∪ 𝑭𝑐

𝑘 
5.a. Let 𝐹𝑙

𝑘 ∈ 𝑭𝑘, 𝑙 = 1, … , |𝑭𝑘|. Calculate 𝑃𝑟𝑜𝑏(𝐹𝑙
𝑘) ∀𝑙. Rearrange 𝑭𝑘  accordingly in 

descending order. 

5.b. For 𝑙 = 1,… , |𝑭𝑘| 
 - If 𝑃𝑟𝑜𝑏( 𝐹𝑙

𝑘) <  𝜂𝑙𝑏 →  𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 = 1 → break For → go to 9  

 - Else 𝑅(𝑺) = 𝑅(𝑺)  + 𝑃𝑟𝑜𝑏( 𝐹𝑙
𝑘) 

 End For 

6. While (𝑠𝑡𝑜𝑝_𝑓𝑙𝑎𝑔 ≠ 0 and 𝑭𝑘 ≠ {𝜙}) 

 𝑘 = 𝑘 + 1.  𝑭𝑠
𝑘 = {𝜙}, 𝑭𝑡

𝑘 = {𝜙}  and 𝑭𝑘 = {𝜙}. 
7.a. Let 𝐹𝑠𝑙

𝑘−1 ∈ 𝑭𝑠
𝑘−1, 𝑙 = 1,… , |𝑭𝑠

𝑘−1| 
7.b For 𝑙 = 1,… , |𝑭𝑠

𝑘−1| 
   For 𝑖 = 1,… , |𝑭𝑠

1| 
 - Let 𝑿𝑠 = { 𝑭𝑠𝑙

𝑘−1, 𝑖  } and 𝑿𝑡 = {𝜙} 
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑠

𝑘 = 𝑭𝑠
𝑘 ∪ [𝑿𝑠, 𝑿𝑡 = {𝜙}] 

   End For 

 End For 

7.c. Let 𝐹𝑡𝑙
𝑘−1 ∈ 𝑭𝑡

𝑘−1, 𝑘 = 1,… , |𝑭𝑡
𝑘−1| 

7.d. For 𝑙 = 1,… , |𝑭𝑡
𝑘−1| 

   For  𝑖 = 1, … , |𝑭𝑡
1| 

 - Let 𝑿𝑡 = { 𝐹𝑡𝑙
𝑘−1, 𝑖  } and 𝑿𝑠= {𝜙} and  

 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑡
𝑘 = 𝑭𝑡

𝑘 ∪ [𝑿𝑠 = {𝜙}, 𝑿𝑡] 
   End For 

 End For 

7.e. 𝑭𝑘 = 𝑭𝑘 ∪ 𝑭𝑠
𝑘 ∪ 𝑭𝑡

𝑘 

7.f. For 𝑙 = 1,… , (𝑚 − 1) 

   For 𝑙𝑠 = 1,… , |𝑭𝑠
𝑘−𝑙| 

     For 𝑙𝑡 = 1,… , |𝑭𝑐
𝑙 | 

 - Let 𝑿𝑠 = {𝐹𝒔
𝑘−𝑙} , 𝑿𝑡 = {𝐹𝑡

𝑙} 
 - If 𝑓(𝑿𝑠, 𝑿𝑡) = 1 → 𝑭𝑘 = 𝑭𝑘 ∪ [𝑿𝑠, 𝑿𝑡] 
 End For 

   End For 

     End For 

8. Repeat step 5. 

9. Print 𝑅(𝑺) 
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3.5.3. Reliability Metric Formulation for the 3-mode, 4-par SN Model 

In this section, we re-drive the proposed WSN reliability metric of Section 3.5.2 under 

the assumption that the constituent SNs follow the 3-mode, 4-par model.  

3.5.3.1. 3-mode, 4-par SN Model 

This model assumes that SNs which are characterized by four different probabilities of 

failure during 𝑇𝑚, namely, the sensor, transceiver, processor and battery failures. These 

failure probabilities can be estimated through a standard reliability prediction test provided by 

the SN vendor or through reliability testing techniques [97]. 

Since each of the four components can either function or fail, i.e. be in an on or off state, 

an SN can theoretically have 24 possible states. To describe these states, let the binary 

variables  𝑥𝑠, 𝑥𝑡 , 𝑥𝑝 and 𝑥𝑏 be the state indicators of the sensor, transceiver, processor and 

battery, respectively, of an SN, as defined in (3.2) in Section 3.4.2. Hence, an SN state 𝑥 is 

described using a tuple of these four variables  {𝑥𝑠, 𝑥𝑡 , 𝑥𝑝, 𝑥𝑏}. These variables are not 

statistically independent; the sensor and transceiver cannot possibly function if either the 

processor or the battery fails. Therefore, some of the SN states are practically impossible and 

hence their probability of occurrence is zero.  

To calculate the probability of occurrence of the other possible states, let  𝜆𝑠, 𝜆𝑡,  𝜆𝑝 and 

𝜆𝑏 be the probabilities of failure of the sensor, transceiver, processor and battery, 

respectively. It should be noted that only unrecoverable hardware failures of these four SN 

components are considered here, i.e. temporary failures/malfunctions are not considered. It 

should also be noted that the estimated probability of failure for any given device or hardware 

component is obtained regardless of the failure of any other device or component. Hence, 𝜆𝑠 

and 𝜆𝑡 are actually the probability of failure of the sensor and transceiver conditioned on the 

event that the component is properly controlled (i.e. processor is functional) and powered (i.e. 

battery is functional). Similarly, 𝜆𝑝 is the probability of failure of the processor conditioned 

on the event that the battery is functional, where as  𝜆𝑏 is the unconditional probability that 

the SN power unit or battery fails during  𝑇𝑚. According to the above definitions, the 

probability of an SN state can be given by the following equations: 

 

𝑃𝑟𝑜𝑏(𝑥) = 𝑃𝑟𝑜𝑏(𝑥𝑠, 𝑥𝑡 , 𝑥𝑝,𝑥𝑏)= 𝑃𝑟𝑜𝑏(𝑥𝑠, 𝑥𝑡|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑝,𝑥𝑏) =

𝑃𝑟𝑜𝑏(𝑥𝑠|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑡|𝑥𝑝,𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑝|𝑥𝑏). 𝑃𝑟𝑜𝑏(𝑥𝑏)          
(3.15) 

 

Equation (3.15) makes use of the fact that the states of the sensor and the transceiver are 

independent when conditioned on the states of the processor and battery. Fig. 3.3 illustrates 

the SN’s states which have a non-zero probability. It is straightforward to verify that the sum 

of the probabilities of these states is equal to unity. There are two SN states at which the SN 

is of use to the WSN. The first state is described by the tuple  {1,1,1,1}, at which all four 

components are functional and the SN can both sense its surroundings and communicate 

wirelessly. This state corresponds to the on mode of operation in which the SN is fully 

functional. The second state is described by the tuple  {0,1,1,1} at which only the sensor(s) 

failed and the SN can only communicate wirelessly, i.e. acts as a relay node. This state 

corresponds to the relay mode of operation in which the SN is partially functional. In all the 

practically possible remaining states the SN does not serve the network and hence a SN in 

these states is considered to be in the off mode of operation. 
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3.5.3.2. Reliability Metric Derivation 

The reliability of the WSN deployment 𝑺, denoted by   𝑅(𝑺), is defined as the probability 

that the WSN remains functional, in terms of coverage and connectivity, subject to four types 

of SN components failures during its intended mission time,  𝑇𝑚. We follow the 

combinatorial approach outlined in Section 3.4.2 to derive  𝑅(𝑺). 
 

 

Fig. 3.3   SN states: the paths from the top node to a bottom node correspond to the SN states with 

non-zero probability. The probability of a path, i.e. the probability of a state, is the product of the 

probabilities in the associated transitions. The SN relay state and the on state are both marked by a 

dark shade of grey. 

To define the states of  𝑺, let 𝑿𝑠, 𝑿𝑡 , 𝑿𝑝 and 𝑿𝑏 be the subsets of SNs in 𝑺 that have 

failed sensors, transceivers, processors and batteries, respectively. Hence, a state of the WSN 

𝑺 is described by the tuple  𝝅 ≡ { 𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏}, where 𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏 ⊆ 𝑺. Therefore, each 

state  𝝅 is associated with a unique combination of SN components’ failures. To calculate the 

probability of occurrence of a given state,  𝝅, the corresponding state  𝑥𝑖(𝝅) of each 

individual SN  𝑠𝑖 ∈ 𝑺 must be identified. Assuming the components belonging to different 

SNs fail independently, 𝑃𝑟𝑜𝑏(𝝅) can be expressed by: 

 

𝑃𝑟𝑜𝑏(𝝅) = 𝑃𝑟𝑜𝑏( 𝑿𝑠, 𝑿𝑡 , 𝑿𝑝, 𝑿𝑏) = ∏ 𝑃𝑟𝑜𝑏(𝑥𝑖

𝑁

𝑖=1
(𝝅)) (3.16) 

 

Table 3.2 lists the different values of the probability of an individual SN state  𝑥𝑖(𝝅)  for 

a given network state 𝝅 based on the SN states illustrated in Fig. 3.3. Let 𝚷 be the set of all 

possible states of 𝑺. Based on the definition provided in Section 3.5.1, the structure function 

of 𝑺 can be expressed as follows: 
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𝑓(𝝅) = {
1 ,    𝑖𝑓  𝒁𝑗 ⊆  𝒀𝑗 ≠ 𝜙     ∀ 𝑗 = 1,… ,𝑚 

0 ,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.17) 

 

Similar to (3.4), we can now express the reliability of the WSN  𝑺  as follows: 

 

𝑅(𝑺) = 𝑃𝑟𝑜𝑏(𝑺 𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑟𝑖𝑛𝑔 𝑇𝑚) = ∑[𝑓(𝝅). 𝑃𝑟𝑜𝑏(𝝅)]

𝝅𝝐𝚷

 

             (3.18) 
= ∑ ∑ ∑ ∑ [𝑓( 𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏).∏ 𝑃𝑟𝑜𝑏(𝑥𝑖

𝑁

𝑖=1
(𝝅))]

 𝑿𝑏⊆𝑺 𝑿𝑝⊆𝑺 𝑿𝒕⊆𝑺 𝑿𝒔⊆𝑺

 

Table 3.2   Evaluation of the probability of the corresponding individual SN states for a given WSN 

state =  {𝑿𝑠, 𝑿𝑡, 𝑿𝑝, 𝑿𝑏}, where “true” and “false” are denoted by 1 and 0 respectively and 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖 ,   𝜆𝑝
𝑖 , 

𝜆𝑏
𝑖   are the probabilities of failure of the four main components 

𝑠𝑖 ∈  𝑿𝑠 𝑠𝑖 ∈  𝑿𝑡 
𝑠𝑖

∈  𝑿𝑝 
𝑠𝑖 ∈  𝑿𝑏  𝑃𝑟𝑜𝑏( 𝑥𝑖(𝝅)) 

0 0 0 0 (1-𝜆𝑠
𝑖 )(1-𝜆𝑡

𝑖 )(1-𝜆𝑝
𝑖 )(1-𝜆𝑏

𝑖   ) 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 (1-𝜆𝑠
𝑖 )𝜆𝑡

𝑖  (1-𝜆𝑝
𝑖 )(1-𝜆𝑏

𝑖   ) 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 𝜆𝑠
𝑖 (1-𝜆𝑡

𝑖 )(1-𝜆𝑝
𝑖 )(1-𝜆𝑏

𝑖   ) 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 𝜆𝑠
𝑖 𝜆𝑡

𝑖  (1-𝜆𝑝
𝑖 )(1-𝜆𝑏

𝑖   ) 

1 1 0 1 0 

1 1 1 0 𝜆𝑝
𝑖 (1-𝜆𝑏

𝑖   ) 

1 1 1 1 𝜆𝑏
𝑖  

 

3.5.3.3. Reliability Metric Calculation  

Similar to the reliability metric expressed in (3.11), evaluating 𝑅(𝑺) using the expression 

in (3.18) involves evaluating the structure function of the network, 𝑓(𝝅), for all possible 

states of 𝑺 , i.e. for all   𝝅𝜖𝚷. To calculate 𝑅(𝑺) using 3.18 in a time efficient manner, we 

propose a BFS algorithm that generates the complete paths set of  𝑺, denoted by  𝚷1. The 

algorithm is founded on the same two properties discussed in Section 3.5.2.3. The general 

structure of the proposed search algorithm is illustrated in Fig. 3.4. The pseudo-code of the 

algorithm, which provides execution details, is given in Table 3.3.  
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The structure of the algorithm can be summarized in the following steps. In step 1, all the 

required parameters for the calculation of 𝑅(𝑺) are specified as inputs. This includes the two 

dimensional RoI layout, the positions of the target locations within the RoI provided by the 

set of target points   𝑻 = {𝑡𝑗}, the positions of the deployed SNs provided by  𝑺 = {𝑠𝑖}, the 

types of the deployed SNs including their coverage profiles and wireless communication 

ranges and the probabilities of failure of the SN components associated with each SN type. 

We assume here that the sink node can be at any fixed arbitrary position in the targeted RoI. 

 

 

Fig. 3.4   The structure of the proposed algorithm for evaluating the WSN reliability 𝑅(𝑺). 

We initialize the value of 𝑅(𝑺) with the probability of the network state  𝝅  which 

corresponds to all the deployed SNs being in the on mode. Since this network state is an 

obvious path of  𝑺 , we also initialize the network path set 𝚷1 with this state as expressed in 

1.c. in Table 3.3. 

In step 2, the algorithm searches for all the combinations of SNs that can be in the relay 

mode without compromising the functionality of   𝑺 , assuming the remainder of the deployed 

SNs are in the on mode. These SN combinations are referred to as the “tolerable 

combinations of SNs in the relay mode”. This means that for the network states 

corresponding to these SN combinations, the structure function expressed in (3.17) is equal to 

unity. To perform this search, we define  𝑭𝑟
𝑘  as the set that holds the tolerable combinations 

of SNs in relay mode of length 𝑘 starting with 𝑘 = 1 as expressed in 2.a - 2.c. in Table 3.3. 

For example, consider the WSN depicted in Figure 3.2. The set of single tolerable SNs in the   



  Chapter 3 

61 

 

Table 3.3   Pseudo-code for the proposed algorithm for calculating the reliability of a WSN assuming 

SNs follow a 3-mode, 4-par model  

Step Algorithm  for computing WSN reliability 𝑅(𝑺) 

1.a. Set all parameters (𝑺 = {𝑠𝑖}, 𝑻 = {𝑡𝑗}, types of SNs, sink location, 𝜆𝑠
𝑖 , 𝜆𝑡

𝑖 , 𝜆𝑝
𝑖  and 𝜆𝑏

𝑖  for 𝑖 = 1,… , 𝑛 

and 𝑗 = 1,… ,𝑚) 

1.b. Initialize 𝑅 =𝑃𝑟𝑜𝑏(𝝅 |𝑠𝑖 ∈ 𝑺 is in on mode ∀ 𝑖 = 1,… , 𝑛) 

1.c. Initialize 𝚷1 = {(𝝅 |𝑠𝑖 ∈ 𝑺 is in on mode ∀ 𝑖 = 1,… , 𝑛)} 

2.a. Let 𝑘 be the number of SNs in relay mode. Initialize  𝑘 = 1. 

2.b. Let ℱ𝑟
𝑘 be a 𝑘 −combination of SNs in relay mode. Let  𝑭𝑟

𝑘 be the set of 𝑘 −combinations of SNs in 

relay mode that 𝑺  can tolerate. Initialize  ℱ𝑟
𝑘 = 𝑭𝑟

𝑘 = {𝜙}. 
2.c. For 𝑖 = 1,… , 𝑛 

 - Let 𝑠𝑖 be in relay mode, i.e. ℱ𝑟
𝑘 = {𝑠𝑖} 

 - Evaluate 𝑓(𝝅| ℱ𝑟
𝑘) using (3.17) 

- If 𝑓(𝝅| ℱ𝑟
𝑘) = 1 →  𝑭𝑟

𝑘 =  𝑭𝑟
𝑘 ∪ ℱ𝑟

𝑘 

 End For loop 

2.d. While  𝑭𝑟
𝑘 ≠ {𝜙}     →    𝑘 = 𝑘 + 1,  Let 𝑭𝑟𝑙

𝑘−1 ∈  𝑭𝑟
𝑘−1,  

  ℱ𝑟
𝑘 =  𝑭𝑟

𝑘 = {𝜙} 
2.e. For 𝑙 = 1,… , | 𝑭𝑟

𝑘−1| and  𝑖 = 1,… , | 𝑭𝑟
1| 

 - Let ℱ𝑟
𝑘 = { 𝑭𝑟𝑙

𝑘−1, 𝑠𝑖   }  

- Evaluate 𝑓(𝝅| ℱ𝑟
𝑘) using (3.17) 

 - If 𝑓(𝝅| ℱ𝑟
𝑘) = 1 →  𝑭𝑟

𝑘 =  𝑭𝑟
𝑘 ∪ ℱ𝑟

𝑘 

2.f. End For loops, End While loop 

3.a. Let 𝑘 be the number of SNs in off mode. Initialize  𝑘 = 1. 

3.b. Let ℱ𝑜
𝑘 be a 𝑘 −combination of SNs in off mode. Let  𝑭𝑜

𝑘 be the set of 𝑘 −combinations of SNs in 

off mode that 𝑺  can tolerate. Initialize  ℱ𝑜
𝑘 = 𝑭𝑜

𝑘 = {𝜙}. 
3.c. Repeat step 2.c. for off mode, i.e. ℱ𝑜

𝑘 = {𝑠𝑖} 
3.d. While  𝑭𝑜

𝑘 ≠ {𝜙}     →    𝑘 = 𝑘 + 1,  Let 𝐹𝑜𝑙
𝑘−1 ∈  𝑭𝑜

𝑘−1,  
 ℱ𝑜

𝑘 =  𝑭𝑜
𝑘 = {𝜙} 

3.e. Repeat 2.e. using 𝑭𝑜𝑙
𝑘−1 and ℱ𝑜

𝑘 to get  𝑭𝑜
𝑘 ,  𝑖 = 1,… , | 𝑭𝑜

1 | 
3.f. End For loops, End While loop 

4.a. Let ℱ𝑟 and ℱ𝑜 be a combination of SNs in relay and off modes respectively.  

Let 𝑭𝑟 and 𝑭𝑜 be the sets of all combinations of SNs of in relay and off mode that that 𝑺  can 

tolerate respectively. 

Let 𝐹𝑟𝑙𝑟 ∈ 𝑭𝑟 and 𝐹𝑜𝑙𝑜 ∈ 𝑭𝑜 

4.b. For 𝑙𝑟 = 1,… , |𝑭𝑟|  and   𝑙𝑜 = 1,… , |𝑭𝑜|   
 - Let  ℱ𝑟 = 𝑭𝑟𝑙𝑟  and  ℱ𝑜 = 𝑭𝑜𝑙𝑜  

- Evaluate 𝑓(𝝅|  ℱ𝑟 ,  ℱ𝑜 ) using (3.17) 

 - If 𝑓(𝝅|  ℱ𝑟 ,  ℱ𝑜 ) = 1 → Π1 = Π1 ∪ 𝝅 

 End For loops 

5.a. Let 𝝅𝑙 ∈ 𝚷1   

5.b. For 𝑙 = 1, … , |𝚷1|  
 - 𝑅(𝑺) = 𝑅(𝑺) + 𝑃𝑟𝑜𝑏(𝝅𝑙) 

 End For loop 

6. Output:  𝑅(𝑺) 

 

relay mode will be given by   𝑭𝑟
1 = { {𝑠1}, {𝑠2}, {𝑠3}, {𝑠4}, {𝑠5} }. The algorithm then proceeds 

with the search for an increasing value of 𝑘 as expressed in 2.d - 2.f. in Table 3.3. For 

example, the combination {𝑠1, 𝑠3} belongs to   𝑭𝑟
2 while {𝑠1, 𝑠2} does not. This search 

continues until the algorithm reaches a value of 𝑘 which results in an empty  𝑭𝑟
𝑘, i.e.  𝑭𝑟

𝑘 =
{∅}. The set of all tolerable combinations of different lengths of SNs in relay mode is 

denoted   𝑭𝑟. 

In step 3, the algorithm searches for all the combinations of SNs that can be in the off 

mode without compromising the functionality of   𝑺  , assuming the remainder of the SNs is in 

the on mode, i.e. tolerable combinations of SNs in the off mode. The search follows the same 
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procedure in step 2. Note that if the network cannnot tolerate a SN being in the relay mode, it 

follows that it can not tolerate it in the off mode. This observation reduces the number of 

structre function evaluation in step 3. We define   𝑭𝑜 
𝑘  as the set that holds the tolerable 

combinations of SNs in the off mode of length 𝑘. Using the same example WSN in Fig. 

3,  𝑭𝑜
1 = { {𝑠2}, {𝑠3}, {𝑠4}, {𝑠5} }. The combination {𝑠4, 𝑠5} belongs to   𝑭𝑜

2   while  {𝑠2, 𝑠5}  does 

not. The set of all tolerable combinations of different lengths of SNs in the off mode is 

denoted  𝑭𝑜. 

In step 4, the algorithm uses the sets  𝑭𝑟 and  𝑭𝑜 to discover all the pairs of combinations 

of SNs that can be in the relay and off modes simultaneously without compromising the 

functionality of  𝑺, assuming the remainder of the SNs is in the on mode. For example, the 

combination {𝑠1, 𝑠3} can be in the relay mode while  {𝑠5}  can be in the off mode 

simultaneously without causing the WSN depicted in Fig. 3.2 to fail. Each of the discovered 

pairs of combinations corresponds to one or more distinct network path and hence the 

complete paths set 𝚷1 is updated accordingly as expressed in 4.b in Table 3.3. In step 5, the 

probabilities of the network paths in 𝚷1 are calculated using (3.16) and Table 3.2. Finally, the 

reliability of the given WSN 𝑅(𝑺) is calculated using (3.18) and given as an output in step 6. 

3.6. Case Study 

In this section, we apply the proposed reliability metric in both its versions, as expressed 

in (3.11) and (3.18), to evaluate the reliability of a surveillance WSN deployments designed 

to cover part of an international airport terminal. We compare between each version of the 

proposed reliability metric and the existing reliability metric proposed in [107] to highlight 

the significance of using the 3-mode SN model on the accuracy of reliability evaluation. We 

also evaluate the computational efficiency of the developed BFS algorithm used to calculate 

the proposed reliability metric. Finally, we compare between both versions of the proposed 

reliability metric in terms of the accuracy of reliability evaluation. 

3.6.1. Experimental Set-up 

Consider the layout of an international airport terminal shown in Fig. 3.5 in which 

surveillance WSN is to be designed to cover part of it. Target points, marked on the Fig. 3.5 

in red, represent the vital locations that need to be placed under image/video surveillance 

such as arrival checkpoints, entrances and staircases. The sink node to which all SNs in the 

WSN should be connected is marked in black. 

To obtain test deployments of the WSN for different number of target points, we use the 

𝑖VLGA proposed in [75] and discussed in Section 2.4.1 in Chapter 2. This optimization 

algorithm is designed to obtain cost-optimized deployments for heterogeneous WSNs that 

provide coverage for all designated target points in the RoI, i.e. providing full-coverage of the 

set 𝑻 = {𝑡𝑗} for 𝑗 = 1,… ,𝑚. However, since a well-designed surveillance WSN should be 

functional in terms of coverage and connectivity, we modified the 𝑖VLGA in [75] to add 

network connectivity to the design objectives. To achieve this we modify the fitness function 

of the algorithm expressed in (2.27), which is used to evaluate the fitness of the candidate 

deployments or chromosomes in [75], as follows: 

 

𝑓(𝑐(𝑙)) = −(∑𝑝𝑖

𝑙

𝑖=1

+ 𝑤1 ∗ (𝑚 − 𝑐𝑜𝑣) + 𝑤2 ∗ 𝑐𝑜𝑛_𝑡𝑒𝑠𝑡  ) (3.19) 
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Fig. 3.5   Schematic of an international airport terminal with the marked positions of the target points, 

possible deployment points and sink node of layout 5 in Table 3.5.  

 

where  ∑ 𝑝𝑖
𝑙
𝑖=1  is the total cost of the deployment 𝑐(𝑙),  𝑐𝑜𝑣 is the number of target points 

that are covered by 𝑐(𝑙), 𝑐𝑜𝑛_𝑡𝑒𝑠𝑡  is a binary variable that is equal to unity when 𝑐(𝑙) is a 

disconnected deployment (i.e. has isolated SNs from the sink node) and zero otherwise, 𝑤1 is 

the penalty imposed on the fitness for failing to cover a single target point and 𝑤2 is a penalty 

for violating the connectivity constraint. For further details on the VLGA and the settings of 

its parameters, we refer the reader to the study in [75].  

To demonstrate the ability of the proposed metric to evaluate the reliability of 

heterogeneous deployments, we assume that there are two types of image/video SNs 

available for the deployment of the WSN with different operational parameters. 

3.6.2. Results and Discussion for the 3-mode, 2-Par SN model  

In this section we compare the proposed reliability metric using the 3-mod, 2-par SN 

model as expressed in (3.11) to the existing reliability metric in [107] which uses the 

conventional 2-mode SN model. The operational parameters of the two types of SNs used in 

this experiment are listed in Table 3.4. Although the exact reliability figures for commercial 

SNs such as Tmote2 and Iris nodes are not publicly available, we estimated the given 

probabilities of failure using the reliability figures available for Texas Instrument CC2420 

IEEE 802.15.4 transceiver [116] as a reference point, assuming a WSN mission time of five 

years. We also used the fact that sensor hardware is the SN component most prone to failure 

[8]. Using the modified 𝑖VLGA, we obtain five WSN deployments for five sets of target 

points of different sizes. Table 3.5 lists the data of the five deployments, including the 

number of target points 𝑚, the number of deployed SNs of type 1 and type 2, denoted by 𝑛1, 
and 𝑛2, respectively, and the total number of deployed SNs in the given deployment denoted 

by 𝑛.  

For each deployment in Table 3.5, the reliability is assessed using three different 

methods. The first and second methods apply the proposed reliability metric 𝑅(𝑺) expressed 

in (3.11) and its lower bound  𝑅𝑙𝑏(𝑺)  expressed in (3.14) for 𝜂𝑙𝑏 = 10-3 respectively. The 

third method assesses the reliability using the reliability metric proposed in [107]. For a fair 

comparison, we use the same WSN functionality definition (in terms of both network 

coverage and connectivity) expressed in (3.9) for all the three methods. Since the metric 
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in [107] adopts the conventional two-mode SN model in which a given SN is either in a fully 

functional or failed state, SNs cannot contribute to the WSN functionality as relays. In this 

case, the corresponding probability of failure of a given SN is equal to 1 − (1 − 𝜆𝑠
𝑖 )(1 − 𝜆𝑡

𝑖 ). 

Fig. 3.6 shows the performance of the three reliability assessment methods in the 

computed reliability value for the five deployments in Table 3.5. Fig. 3.7 shows the number 

of tolerable SN failure combinations contributing to the value of reliability (i.e. |𝑭|) obtained 

from the three methods. As can be observed from Fig. 3.6, the reliability values computed 

using the metric in [107] are significantly lower than those computed using the proposed 

metric and its lower bound for all the deployments of Table 3.5, with the difference reaching 

around 5% for the fifth deployment. This behavior can be attributed to the fact that the 

conventional 2-mode SN model adopted in [107] does not take into account the ability of an 

SN with a failed sensor to contribute to the functionality of the WSN as a relay. 

Consequently, the reliability of a given deployment is underestimated. The difference 

between both metrics in the computed reliability value is directly proportional to the number 

of SNs with redundant coverage, i.e. number of SNs that can be in the relay mode without 

compromising the functionality of the network. Fig. 3.6 and Fig. 3.7 show that the reliability 

values computed using the three reliability assessment methods decrease steadily with the 

increase in the size of the WSN, i.e. the increase in the number of deployed SNs 𝑛, while the 

value of  |𝑭| increases. This behavior can be explained as follows. For the deployments in 

Table 3.5, as 𝑛 increases, the number of redundant SNs (both complete redundancy and 

coverage redundancy) increases as well. This is because it is more likely for a larger WSN to 

be able to tolerate the failure of a few SNs than a smaller one, especially in terms of 

coverage, given that both deployments are cost-optimized (i.e. characterized by a low level of 

SN redundancy). The value of |𝑭|, in turn, increases with the level of SN redundancy, 

especially for the proposed metric 𝑅(𝑺) which reflects the SN coverage redundancy. 

However, the rate of increase in the number of redundant SNs is less than the rate of increase 

of 𝑛 itself. This means that the relative SN redundancy level decreases with the increase 

in 𝑛 and hence the reliability decreases. 

Fig. 3.6 also shows that 𝑅(𝑺) and  𝑅𝑙𝑏(𝑺) are very close in value. The difference 

between them increases slightly with the increase of 𝑛, but does not exceed 2% for the fifth 

deployment. This is because the contribution of the omitted probability terms from the 

expression of  𝑅𝑙𝑏(𝑺) to the exact value of 𝑅(𝑺) is very small in value compared to the 

included terms. From Fig. 3.7 we can observe that as 𝑛 increases, the value |𝑭| increases as 

well as the number of tolerable SN failure combinations with probabilities less than 𝜂𝑙𝑏.  

Table   3.4   Parameters of the SN types used in the deployments listed in Table 3.5 

 FoV 𝑟𝑠 𝑟𝑐 𝜆𝑆 𝜆𝑡 Price($) 

Type 1 90° 20 m 40 m 1.0× 10−2 5.0 × 10−3 150  

Type 2  60° 30 m 40 m 2.0 × 10−2 1.5× 10−2 100  

 

Table   3.5   Data of the obtained deployments for the case-study surveillance WSN  

 𝑚 𝑛1 𝑛2 𝑛 𝐶 $ 

Deployment 1 15 0 11 11 1100 

Deployment 2 20 5 13 18 2050 

Deployment 3 25 6 17 23 2600 

Deployment 4 30 11 17 28 3350 

Deployment 5 35 12 22 34 4000 
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Therefore, the difference between the number of terms which goes into the calculation of 

𝑅(𝑺) and  𝑅𝑙𝑏(𝑺)  increases as well. Hence, the difference between the values of 𝑅(𝑺) and 

 𝑅𝑙𝑏(𝑺) for a given WSN deployment is inversely proportional to the threshold 𝜂𝑙𝑏 and is 

directly proportional to the level SN redundancy in that deployment. This means that for cost- 

optimized WSN deployments characterized by low SN redundancy level, the lower bound 

can serve as a good approximation for the exact reliability. On the other hand, if the level of 

redundancy is high, the neglected terms increase in number and causes the difference 

between 𝑅(𝑺) and  𝑅𝑙𝑏(𝑺)  to become higher. 

Fig. 3.8 shows a comparison between the computation time incurred by the three 

reliability assessment methods for the five deployments in Table 3.5. It can be readily 

observed that the computation time incurred by 𝑅(𝑺) is notably higher than that incurred by  

 

Fig. 3.6   Comparison among the existing reliability metric in [107], the proposed metric 𝑅(𝑺) and its 

lower bound 𝑅𝑙𝑏(𝑺). 

 

Fig. 3.7   Comparison in terms of the number of SN failure combinations contributing to the value of 

reliability among the existing reliability metric in [107], the proposed metric 𝑅(𝑺) and its lower 

bound 𝑅𝑙𝑏(𝑺). 
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Fig. 3.8   Comparison in terms of computation time incurred by the existing reliability metric in [107], 

the proposed metric 𝑅(𝑺) and its lower bound 𝑅𝑙𝑏(𝑺). 

 

the metric proposed in [107], with the difference between them increasing with the increase 

in the deployment size 𝑛. This can be attributed to the use of the 3-mode SN model in the 

proposed metric, which raises the number of the network components subject to failure 

to 𝑛2 instead of 𝑛 in case of the 2-mode SN model used in [107]. This significantly increases 

the value of  |𝑭| (and consequently the number of structure function evaluations), which 

causes the gap in the computation time. However, it can be observed from Fig. 3.7 and Fig. 

3.8 that  𝑅𝑙𝑏(𝑺) offers a very good approximation for 𝑅(𝑺) at a fraction of the computation 

time incurred in computing 𝑅(𝑺). The computation time of the lower bound is also 

comparable to the computation time incurred by the metric in [107] for all five deployments 

in Table 3.5. This result can be attributed to the efficiency of the BFS of tolerable SN failure 

combinations employed in our proposed algorithm in Table 3.2. This approach enables the 

proposed algorithm to find the tolerable SN failure combinations of relatively higher 

probability before those of lower probability. Hence, the proposed algorithm finds all the 

tolerable SN failure combinations of probability greater than the set value of  𝜂𝑙𝑏 in a 

computation time comparable to that of the algorithm in [107].  

  

3.6.3. Results and Discussion for the 3-mode, 4-par SN model  

In this section we compare the proposed reliability metric using the 3-mode, 4-par SN 

model as expressed in (3.18) to the existing reliability metric in [107]. We also evaluate the 

computational efficiency of the reliability metric calculation algorithm outlined in Table 3.3 

and examine the sensitivity of the computed reliability for a given deployment to the changes 

in the probabilities of failure of its constituent SNs. 

The operational parameters of the two types of SNs used in this experiment are listed in 

Table 3.6. We assume that both SN types have a coverage range and a communication range 

of 30 and 40 meters, respectively. Similar to the parameters settings in Table 3.4, we use the 

reliability figures available for Texas Instrument CC2420 IEEE 802.15.4 transceiver [116] as 

a reference point, assuming a WSN mission time of five years and the fact that sensor 

hardware is the SN component most prone to failure [8]. In addition, we considered that the 
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premature battery failure rate for the highly durable lithium thionyl chloride batteries recently 

used for SNs to be very low [99]. 

Table 3.6   Parameters of the SNs types used in the deployments listed in Table 3.7 

 FoV 𝑟𝑠 𝑟𝑐 𝜆𝑆 𝜆𝑡 𝜆𝑝 𝜆𝑏 Price($) 

Type 1 90° 30 m 40 m 1.0× 10−2 5.0 × 10−3 2.0 × 10−3 1.0 × 10−3 150  

Type 2  60° 30 m 40 m 1.5 × 10−2 5.5× 10−3 2.5 × 10−3 1.5 × 10−3 100  

 

To evaluate computational efficiency, it is crucial to assess the effect of the deployment 

size and complete paths set size |𝚷1| on the computation time of the proposed algorithm 

outlined in Table 3.3. Similar to the experiment in Section 3.6.2, we apply the modified 

𝑖VLGA to obtain functional cost-optimized deployments. We consider five target points sets 

of sizes  𝑚 = 15, 20, 25, 30 and 35. For each deployment scenario, i.e. for each value of  𝑚, 

we obtain five deployments of different sizes (i.e. different values of 𝑛), with the deployment 

of the smallest size being the most cost-optimal and the deployment with the largest size 

being the least cost-optimal.  Each deployment fulfills the coverage and connectivity network 

functionality conditions in the case of no SN failures. It has a different level of SN 

redundancy, where the higher 𝑛, the higher the redundancy level and the larger the complete 

paths set  𝚷1 and vice versa. Data of the resulting twenty five deployments, including the size 

of the deployment (𝑛), the number of SNs of each type (𝑛1 and 𝑛2) and the total deployment 

cost (𝐶) are presented in Table 3.7. 

To evaluate the computational efficiency of the proposed algorithm outlined in Table 3.3, 

we use the algorithm to evaluate the reliability of the twenty five deployments in Table 3.7. 

For each deployment, Table 4 shows the value of the reliability  𝑅(𝑺) , the total number of 

possible network states  |𝚷|, the size of the deployment complete paths set  |𝚷𝟏| , the number 

of network structure function evaluations  𝐹𝐸  performed by the algorithm and the value of 

the ratio  𝐹𝐸/|𝚷|  in percentage points. The latter ratio is used as a measure of the 

computational efficiency of the proposed algorithm. This is because the most computationally 

expensive sub-routine in the algorithm is the evaluation of the network structure function 

expressed in (3.17). For each structure function evaluation, checking the two network 

functionality conditions, i.e. checking the network coverage of the set of target points and the 

connectivity to the sink, has a computational complexity of 𝑂(𝑛.𝑚) and 𝑂(𝑛3) respectively. 

Therefore, the computation time of the algorithm is mainly determined by the number of 

structure function evaluations 𝐹𝐸. It should be noted that although the theoretical total 

number of network states is equal to 24𝑛, the total number of possible network states is equal 

to 3𝑛 since each deployed SN only has three possible states, namely, on, relay and off. 

It can be readily observed that the values of  𝑅(𝑺) , |𝚷𝟏| and   increase steadily with the 

increase of 𝑛 in each deployment scenario. This behavior is expected and is attributed to the 

increase in the level of SN redundancy in the deployment as 𝑛 increases in each deployment 

scenario. An increase in the level of SN redundancy translates to an exponential increase in 

the number of the deployment’s paths |𝚷𝟏|and hence the number of structure function 

evaluations 𝐹𝐸 performed by the search algorithm to identify these paths. Naturally, as the 

SN redundancy level increases, the reliability 𝑅(𝑺) increases as well.  
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Table 3.7    Data of the obtained deployments for the case-study surveillance WSN  

Deployment # 𝑛 𝑛1 𝑛2 𝐶 ($) 𝑅(𝑺) |𝚷| |𝚷𝟏| 𝐹𝐸 𝐹𝐸/|𝚷| (%) 

Scenario 1 

𝑚 = 15 

S1-D1 9 0 9 900 0.829 39 4 45 0.229 

S1-D2 10 1 9 1050 0.849 310 28 164 0.278 

S1-D3 11 2 9 1200   0.870 311 196 723 0.408 

S1-D4 12 3 9 1350 0.891 312  1.37× 103 4.16× 103 0.783 

S1-D5 13 4 9 1500 0.912 313  9.60× 103 3.01× 104 1.888 

Scenario 2 

𝑚 = 20 

S2-D1 16 3 13 1750 0.731 316 16 256 5.947× 10−4 

S2-D2 17 4 13 1900 0.748 317 112 881 6.822× 10−4 

S2-D3 18 4 14 2000 0.756 318 560 3.08× 103 7.950× 10−4 

S2-D4 19 5 14 2150 0.774 319  3.92× 103 1.46× 104 1.256× 10−3 

S2-D5 20 6 14 2300 0.793 320  2.74× 104 9.08× 104 2.604× 10−3 

Scenario 3 

𝑚 = 25 

S3-D1 21 1 20 2150 0.657 321 64 1.24× 103 1.185× 10−5 

S3-D2 22 2 20 2300 0.673 322 448 4.16× 103 1.326× 10−5 

S3-D3 23 3 20 2450 0.696 323  5.38× 103 1.97× 104 2.093× 10−5 

S3-D4 24 4 20 2600 0.703 324  3.23× 104 7.49× 104 2.652× 10−5 

S3-D5 25 5 20 2750 0.720 325  2.26× 105 5.37× 105 6.338× 10−5 

Scenario 4 

𝑚 = 30 

S4-D1 25 8 17 2900 0.630 325 128 2.91× 103 3.434× 10−7 

S4-D2 26 6 20 2900 0.612 326 192 4.51× 103 1.774× 10−7 

S4-D3 27 6 21 3000 0.633 327  2.30× 103 1.61× 104 2.111× 10−7 

S4-D4 28 7 21 3150 0.649 328  1.61× 104 6.61× 104 2.889× 10−7 

S4-D5 29 8 21 3300 0.665 329  1.13× 105 3.55× 105 5.173× 10−7 

Scenario 5 

𝑚 = 35 

S5-D1 28 4 24 3000 0.553 328 32 876 3.829× 10−9 

S5-D2 29 6 23 3200 0.555 329 48 1.34× 103 1.952× 10−9 

S5-D3 30 7 23 3350 0.568 330 336 4.36× 103 2.118× 10−9 

S5-D4 31 8 23 3500 0.589 331  6.38× 103 3.04× 104 4.922× 10−9 

S5-D5 32 9 23 3650 0.597 332  4.47× 104 1.57× 105 8.473× 10−9 

 

On the other hand, the value of the ratio 𝐹𝐸/|𝚷| decreases rapidly with the increase of 

the network size across the five tested scenarios. For example, examining the values of the 

ratio 𝐹𝐸/|𝚷| for the deployments in scenarios 4 and 5 shows that there is approximately a 

two orders of magnitude difference in favor of the deployments in scenario 5.  In all the 

tested deployments, the value of  𝐹𝐸/|𝚷|  does not exceed 2% and for the majority of the 

tested deployments is a small fraction of this value. In each scenario, the ratio 𝐹𝐸/|𝚷| 
increases with the increase of the SN redundancy level due to the exponential increase of the 

number of the deployment’s paths |𝚷𝟏|. However, it can be observed that the ratio |𝚷𝟏|/ 𝐹𝐸 

generally increases with the increase of the level of SN redundancy in each of the five tested 

scenarios. For example, the value of |𝚷𝟏|/ 𝐹𝐸 is 27% for deployment S3-D3 and 43% for 

S3-D4. This means that the computational efficiency of the proposed algorithm becomes 

more prominent with the increase of the SN redundancy level due to the efficiency of its 

search method for the deployment’s paths.  
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It is instructive to examine the two deployments S4-D1 and S4-D2 which are the only 

exception in Table 3.7 to the trend of the increase of the reliability level with the increase of 

the redundancy level in each tested scenario. Although S4-D2 has more SNs than S4-D1 and 

a larger number of paths |𝚷𝟏|, it is approximately 2% less reliable than S4-D1. This can be 

attributed to the higher ratio of more reliable SNs of type 1 to the less reliable SNs of type 2 

in the S4-D1 compared to S4-D2. It can also be observed that the value of  𝑅(𝑺) decreases 

with the increase of the number of target points in the deployment scenarios, i.e. with the 

increase of  𝑚. This behavior can be explained as follows. The value of  𝑅(𝑺) depends mainly 

on the SN redundancy level (i.e. the value of  |𝚷𝟏|) relative to the total number of deployed 

SNs 𝑛 (which controls the value of the probability of occurrence of the paths in  𝚷𝟏). Since 

the increase in  𝑛 in each deployment scenario is similar, the value of   |𝚷𝟏| for the 

deployments of the same order in the different scenarios (e.g. S4-D3 and S5-D3) is 

comparable. This means that the SN redundancy level relative to 𝑛 actually decreases with 

the increase of deployment scenario order, i.e. with the increase of 𝑚, resulting in a steady 

decrease in  𝑅(𝑺). 
We now compare the computed reliability values for the deployments shown in Table 3.7 

using the proposed metric expressed in (3.18) to the reliability metric proposed in [107]. 

Since the reliability metric proposed in [107] adopts the conventional 2-mode SN model, this 

comparison is carried out to demonstrate the significance of modeling the SNs as three-mode 

(on, relay and off) devices. For a fair comparison, we use our proposed network structure 

function expressed in (3.17) (which defines the WSN functionality in terms of both network 

coverage and connectivity as opposed to network coverage only in [107]). Since the two-

mode SN model assumes that a given SN is either in a fully functional (on state) or failed (off 

state) state, SNs cannot contribute to the network functionality as relays. Hence, the 

corresponding probability of the off state for a given SN 𝑠𝑖  is equal to the probability that any 

of the four SN components fail, i.e. is equal to unity minus the probability that all of the four 

SN components are functioning simultaneously (i.e.  1 − (1 − 𝜆𝑠
𝑖 )(1 − 𝜆𝑡

𝑖 )(1 − 𝜆𝑝
𝑖 )(1 − 𝜆𝑡

𝑖 )). 

As can be observed from Fig. 3.9 (a) – (e), the value of  𝑅(𝑺) evaluated using the 2-mode 

SN model is significantly smaller than that using the proposed 3-mode model for all the 

deployments in Table 3.7, exceeding 6% for some deployments. This behavior is expected 

and can be attributed to the fact that the 2-mode SN model is an unrealistic model that does 

not take into account the ability of an SN with a failed sensor to contribute to the 

functionality of the WSN in practice as a relay. Consequently, the size of the resulting paths 

set is drastically reduced which in turn reduces the value of  𝑅(𝑺). It should be explained that 

the difference between both models in  𝑅(𝑺) value for a given deployment is primarily 

dependent on the number of the tolerable combinations of SNs in the relay mode, i.e. the 

number of SNs with redundant coverage. Since this coverage redundancy is not accounted for 

in calculating  𝑅(𝑺) using the 2-mode SN model, the difference in 𝑅(𝑺)  between the two 

models increases with the increase of the level of coverage redundancy. For example, the 

deployment S2-D5 has a higher level of coverage redundancy than S5-D5. This is reflected in 

their difference in  𝑅(𝑺)  value between the two models, which is 5.4% for the former and 

3.9% for the latter. The difference in the value of the computed reliability between the two 

models, although relatively limited, can adversely affect the deployment cost of a reliable 

WSN as will be addressed in Chapter 4, since deployment cost is the objective of the SDP 

while reliability is the constraint. In other word, under-evaluating the reliability of a WSN 

deployment can potentially lead to an increase in the deployment cost of a reliable cost-

iotimal network.  

In order to examine the sensitivity of  𝑅(𝑺)  of a given deployment to changes in the 

probabilities of failure of its constituent SNs, we arbitrarily choose one of the deployments in 

to 0.01 for each of the four SN components, assuming the remaining components have the   
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Fig. 3.9   Comparison between the reliability of WSN deployments in Table 3.7 evaluated using the 

proposed 3-mode and the 2-mode SN model adopted in the existing metric in [107] for the 

deployment scenarios 1 through 5 shown in (a) – (e). 

default probabilities of failure given in Table 3.6.  The results obtained are shown in Fig. 

3.10. As expected, the highest value of  𝑅(𝑺) is obtained when the probabilities of failure of 

the four SN components are at their minimum value. Fig. 3.10 also shows that  𝑅(𝑺)  is less 

sensitive to changes in the sensor probability of failure than to changes in the other 

threecomponents probabilities of failure. This can be attributed to the adopted three-mode SN 

model, for which the SN can contribute to the network functionality in both the on and relay 

modes. In the relay mode, the SN sensor is not functional. However, for both modes the SN 

battery, processor and transceiver must be functioning. Hence, the reliability of a given  
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Fig. 3.10   Reliability 𝑅(𝑺) for the deployment S3-D1 in Table 3.7 at different probabilities of failure 

of the sensor, transceiver, processor and battery, assuming all deployed SNs are of type 1. 

deployment is less affected by the change in the sensor probability of failure compared to 

those of the other components. 

3.6.4. Comparison between the 3-mode, 2-par and 4-par SN models 

In this section, we will compare the proposed reliability metric expressed in (3.11) in 

Section 3.5.2, to the metric expressed in (3.18) in Section 3.5.3. To carry out the comparison, 

we compute the reliability of the five deployments of scenario 3 in Table 3.7 using both 

metrics. For the 3-mode, 4-par SN model, the four failure probabilities for both types of SNs 

listed in Table 3.6 are used. For the 3-mode, 2-par SN model, only the sensor and transceiver 

failure probabilities for both types of SNs from the same table are used. The comparison is 

shown in Fig. 3.11. It can be observed from Fig. 3.11 that the computed reliability values 

using the 3-mode, 2-par SN model is higher than the values computed using the 3-mode, 4-

par SN model. This result is expected since the latter model factors in the probabilities of 

failure of the battery and processor modules of the SNs and hence SNs have a higher 

probability of failure. The effect of using the more accurate 4-par model can be significant in 

the computed value of a given deployment reliability even for the relatively very low failure 

probabilities for the processor and battery modules shown in Table 3.6. For example, the 

relative/percentage difference between the computed reliability values from both models is 

approximately 9% for the deployment S3-D1. 

It should be noted that the increased accuracy in calculating the reliability 𝑅(𝑺) using the 

4-par model does not incur an increase in the computational cost compared to two-parameter 

model. This is because in both models, SNs have the same three modes of operation, which 

means that the total number of possible network states |𝚷| is the same for both models. The 

two search algorithms outlined in Tables 3.1 and 3.3 use the same search methodology for 

finding all the tolerable failure combinations (i.e. the complete network’s paths set 𝚷𝟏) 

although each of them follows a different order in the search steps. Therefore, the number of 

structure function evaluations 𝐹𝐸 performed by the two algorithms, and hence their 

computational cost, is equal.  

1 2 3 4 5 6 7 8 9 10

x 10
-3

0.59

0.62

0.65

0.68

0.71

0.74

0.77

0.8

0.83

0.86

Probability of component failure 

R
el

ia
b

il
it

y
 

 

 

Sensor

Transceiver

Processor

Battery



  Chapter 3 

72 

 

 

Fig. 3.11   Comparison between the reliability of WSN deployments of scenario 3 in Table 3.7 

evaluated using the 3-mode, 2-par SN model and the 3-mode, 4-par SN model. 

3.7. Chapter Summary 

In this chapter, we identified the key SN related and non-SN related issues that affect the 

reliability of a WSN. We reviewed the existing studies in the literature on the reliability and 

fault tolerance of WSNs and highlighted their limitations. Based on the presented review, we 

proposed a novel reliability metric for WSNs subject to random SN failures. Compared to the 

existing reliability evaluation and estimation approaches, the strengths of our proposed metric 

can be summarized in the following points: 

 Network functionality is defined in terms of both network coverage of a predefined set 

of target locations in the RoI and connectivity to the designated sink node. 

 No specific network deployment configuration is assumed in the proposed model. We 

assume an arbitrary deployment configuration where each deployed SN may monitor 

multiple target locations in the RoI and that each target location may be monitored by 

multiple SNs. All SNs can communicate wirelessly with its neighbors, i.e. no specific 

communication hierarchy is imposed.  

 The WSN can be heterogeneous; it can consist of more than one type of SN, where each 

type is characterized by a different coverage profile and a set of capabilities. 

 A more accurate SN model is adopted in the derivation of the proposed metric where an 

SN has three modes of operation instead of the two-mode model used in the previous 

studies. 

 Each SN type can be characterized by two or four different probabilities of constituent 

module failure during the mission time of the network instead of a single SN probability 

of failure, as it is the case in the previous studies.  

 A search algorithm is developed to calculate the proposed reliability metric in a 

computationally efficient manner for each SN model. 

We applied the proposed metrics and search algorithms experimentally to several 

deployments of a surveillance WSN under different operational conditions. Results 

demonstrated the computational efficiency of the developed search algorithms. Moreover, the 

significance of adopting the proposed 3-mode SN model on the evaluated value of WSN 

reliability as opposed to the conventional simplistic 2-mode SN model adopted in existing 
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studies can be observed in the results. Using the 2-mode SN model can significantly 

underestimate the reliability of a WSN deployment since it does not account for the relay SN 

state as in the 3-mode SN model. 
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Chapter 4 

 

Reliable Cost-Optimal Wireless Sensor Network 

Deployment 

 

4.1. Introduction 

 Some of the important IoT applications in which WSNs play a pivotal role place 

stringent reliability requirements on the WSN. Reliability of the WSN is therefore considered 

one of the most essential design attributes.  In such applications, the failure of the network to 

carry out its required tasks can have serious effects and hence cannot be tolerated.  

As previously discussed, a reliable WSN provides a connected cover of the targeted RoI 

throughout its mission time.  However, the deployment of reliable WSNs is a challenging 

problem due to the random failures of the SNs. Hence, to guarantee the reliable operation of a 

WSN during its intended mission time, the presence of redundant SNs in the network 

becomes essential. However, for many applications for which SNs are equipped with 

expensive hardware, minimizing the total deployment cost remains a primary concern. 

Therefore, the level of SN redundancy in the WSN must be carefully quantified, such that the 

network meets the minimum reliability requirements imposed by the application while 

avoiding an unnecessary increase in the network deployment cost.   

In this chapter, we formally define the problem of deploying a WSN that meets a 

specified minimum level of reliability defined over a given mission time in such a way that 

result in the minimum network deployment cost. In Chapter 1, we coined this problem the 

MCRC-SDP. We formulate the MCRC-SDP as a combinatorial optimization problem and 

prove that it is NP-Complete. The performance of GAs and ACO has proven to be promising 

in solving complex combinatorial NP-Complete optimization problems [117] - [121] and in 

solving the MCC-SDP as demonstrated in Chapter 2. Therefore, we propose a GA-based and 

an ACO-based method to solve the defined MCRC-SDP. Both methods are coupled with a 

Local Search (LS) procdeure to improve the method’s search capability and increase its speed 

of convergence. To measure the reliability of the network, we adopt the reliability metric 

proposed in Chapter 3. To benchmark the performance of both methods in solving the 

problem at hand in terms of the quality of the obtained solutions, we also present a GH which 

is designed to solve the MCRC-SDP. Finally, we present extensive experimental results 

which we use to compare the two proposed methods, in terms of both the quality of the 

obtained solutions and the computational cost. We then discuss their strengths and 

limitations. 

4.2. Minimum-Cost Reliability-Constrained SDP 

In this section, we formally define the MCRC-SDP as a combinatorial optimization 

problem. We start by defining the WSN model in Section 4.2.1. We then mathematically 

formulate the MCRC-SDP in Section 4.2.2. Finally we prove that the MCRC-SDP is NP-

Complete in Section 4.2.3. 
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4.2.1. WSN Model 

We adopt here the same WSN model used in formulating the WSN reliability metric 

presented in Section 3.5 in Chapter 3. We assume that the RoI is modeled as a two-

dimensional area in which there is a finite set of locations that require some form of 

monitoring (e.g. motion, image...etc.) using static SNs.  These locations are called target 

points and they represent the vital locations or assets that require monitoring in the RoI.  We 

denote the set of target points  𝑻 = {𝑡1, 𝑡2, … , 𝑡|𝑻|}. We assume that there is a finite set of 

possible deployment locations for SNs, which we call deployment points, at which SNs may 

be deployed. This assumption is valid for most critical WSN applications, where the topology 

or layout of the targeted RoI is known prior to the WSN deployment. Hence, careful 

examination of that RoI yields a finite set of feasible possible deployment locations, i.e. 

deployment points. We denote the set of deployment points 𝑫 = {𝑑1, 𝑑2, … , 𝑑|𝑫|}. 
All SNs available for deployment are assumed to be able to communicate wirelessly and 

have the same fixed communication range denoted by 𝑟𝑐. Sensed data acquired by the 

deployed SNs are relayed to a sink node with an arbitrary fixed position in the RoI denoted 

by  𝑑0. 

4.2.2. Problem Formulation 

We address the problem of deploying a WSN that meets a specified minimum level of 

reliability, denoted by 𝑅𝑚𝑖𝑛, defined over a given mission time at the minimum network 

deployment cost. The reliability requirement of the MCRC-SDP implicitly includes three 

sub-requirements. The first two sub-requirements are the fulfillment of the coverage and 

connectivity functionality aspects according to the WSN model and the network functionality 

definition presented in Section 3.5.1 in Chapter 3. The third sub-requirement is that the WSN 

must possess a certain level of robustness against the random failures of its constituent SNs 

such that the network can fulfill the coverage and connectivity functionality conditions 

throughout the network mission time despite random SN failures. This robustness, in turn, 

requires introducing a certain level of SN redundancy in the network deployment. However, 

the introduction of redundant SNs in a WSN can significantly increase the energy 

consumption of the network, the demand on its limited bandwidth and its level of internal 

interference [100] under the assumption that all the deployed SNs are activated at the same 

time. This introduces non-SN related issues (e.g. excessive packet collisions in WSNs 

adopting contention-based medium access control) which negatively affect the reliability of 

the message delivery in the network, thus defeating the purpose of introducing the 

redundancy in the first place. Therefore, SN activity planning is required to increase the 

robustness of the WSN against SN failures without introducing significant degradation in its 

performance. 

As such, we can restate  the MCRC-SDP to be the problem of finding a number of non-

overlapping minimal connected covers of the targeted RoI such that the combined reliability 

level of these minimal connected covers would meet or exceed the specified minimum level 

of reliability 𝑅𝑚𝑖𝑛 and the total number of deployed SNs (i.e. the  deployment cost) is 

minimized. A minimal connected cover is defined as a connected cover which contains no 

completely redundant SNs. These minimal connected covers are activated in an orthogonal 

manner as follows: a single minimal connected cover is activated at any given point in time 

during 𝑇𝑚 while the SNs belonging to the remaining connected covers are put in sleep mode. 

Since there are no completely redundant SNs in a minimal connected cover, energy 

consumption, bandwidth usage and internal interference are kept at a minimum. This 

activated minimal connected cover remains active until its functionality is compromised due 
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to the expected random failures of its constituent SNs. At that point, the remaining functional 

SNs belonging to this minimal connected cover are put in sleep mode and another minimal 

connected cover is activated. This procedure is continued until either the mission time of the 

network 𝑇𝑚 elapses or there are no remaining deployed minimal connected covers of 

uncompromised functionality.  The first event means the WSN deployment remained 

functional throughout 𝑇𝑚 while the second event means that the WSN has failed. According 

to the statement of the problem, the probability of the first event is equal to  𝑅𝑚𝑖𝑛 and that of 

the second event is equal to 1 − 𝑅𝑚𝑖𝑛. 

Let 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} be the superset of 𝑁 non-overlapping connected covers in a 

given WSN deployment. For simplicity, we assume here that the WSN is homogeneous, i.e. 

composed of the same type of SNs. The MCRC-SDP can then be formulated as follows: 

 

 𝑚𝑖𝑛 {|𝓢| = ∑|𝑺𝑘|

𝑁

𝑘=1

}, (4.1) 

subject to:  

𝑺𝑘 ⊆ 𝑫    ∀ 𝑘 = 1,…𝑁, 𝑁 ≤ 𝑁𝑈𝐵 , (4.2) 

𝑺𝑘⋂𝑺𝑘′ = 𝜙,         ∀ 𝑘, 𝑘′ = 1,… ,𝑁, 𝑘 ≠ 𝑘′ , (4.3) 

𝑅(𝓢) = 𝑅(𝑺1, 𝑺2, … , 𝑺𝑁) = 1 − ∏(1 − 𝑅(𝑺𝑘))

𝑁

𝑘=1

≥ 𝑅𝑚𝑖𝑛  , (4.4) 

Φ( 𝑺𝑘  ) = 0   ∀ 𝑘 = 1,… ,𝑁. (4.5) 

 

Equation (4.1) is the objective function of the MCRC-SDP, which is the minimization of 

the total number of the deployment points (i.e. deployed SNs) belonging to all 𝑁 disjoint 

minimal connected covers, i.e. |𝓢|. This is equivalent to the minimization of the network 

deployment cost. Equations (4.2) - (4.5) are the constraints of the problem. In (4.2), all the 

connected covers are constrained to be subsets of the deployment points set 𝑫 in the targeted 

RoI. Equation (4.2) also sets the number of connected covers in the solution 𝓢 denoted by 𝑁 

to be less than or equal to 𝑁𝑈𝐵, which is defined as the the upper bound on the number of 

connected covers for a given MCRC-SDP instance, i.e. for a given {𝑻,𝑫} tuple. The process 

of estimating this upper bound is detailed in Section 4.2.3. Equation (4.3) expresses the 

condition that the 𝑁 minimal connected covers constituting 𝓢 must be disjoint, i.e. have no 

deployment points in common. Equation (4.4) expresses the reliability constraint of the 

problem. In (4.4), the total reliability of the WSN deployment, i.e. of  𝓢, is calculated in terms 

of the reliability of the 𝑁 connected covers assuming they are activated orthogonally. We will 

measure the reliability of the connected covers using the reliability metric presented in 

Section 3.5.3. Finally, (4.5) constrains each of the 𝑁 connected covers in 𝓢 to be a minimal 

connected cover, where Φ( 𝑺𝑘 ) is a binary function that returns 0 if the connected cover  𝑺𝑘 

is a minimal connected cover and 1 otherwise. Note that if  𝑺𝑘 is a minimal connected cover, 

there would be no completely redundant SNs in 𝑺𝑘. This means that there would be no 

combinations of SNs in the off-mode that would correspond to a unity network structure 

function (𝑓(𝝅) = 1), i.e. 𝑭𝑜 = {𝜙}. However, this does not mean that there would not be 

coverage redundant SNs in a minimal connected cover 𝑺𝑘. That is, it is possible for  𝑺𝑘 to 

have one or more combinations of SNs in the relay-mode that would correspond to a unity 

network structure function which means that 𝑭𝑟 ≠ {𝜙}. 
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4.2.3. Estimation of the Upper-Bound of the Number of Connected 

Covers 

To estimate the upper bound of the number of connected covers denoted by 𝑁𝑈𝐵  in a 

given MCRC-SDP instance represented by a given {𝑻,𝑫} tuple, we make use of the fact that 

the upper bound for the number of connected covers cannot exceed the upper bound for the 

number of covers. A cover in a given MCRC-SDP instance is a subset of 𝑫 which meet the 

coverage constraint only. Thus the upper bound of the covers can be used as the upper bound 

of the number of connected covers 𝑁𝑈𝐵. Although finding the maximum number of covers 

for a given MCRC-SDP instance is an NP-complete problem, we can estimate the upper 

bound of the number covers with the following method [121]. Assume that all the 

deployment points in 𝑫 have SNs deployed on them. Then, locate the least covered target 

point in 𝑻, i.e. the target point(s) with the smallest number of SNs covering it. We will call 

this target point a critical target point(s). The number of SNs covering the critical target 

point(s) represents the upper bound on the number of covers and hence connected covers 

denoted by  𝑁𝑈𝐵. This is because a cover of the RoI cannot provide full coverage of 𝑻 

without providing coverage of the critical target point(s). Hence, the maximum number of 

covers cannot exceed the number of SNs covering the critical target point(s). To illustrate 

this, Fig. 4.1 shows a problem instance where 𝑻 = {𝑡1, 𝑡2, 𝑡3} and  𝑫 =
{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. We will assume here that the SNs available for deployment have a 

disk-coverage profile. As can be observed from the figure, three SNs provide coverage for 

target points 𝑡1 and 𝑡3. For 𝑡1 the SNs are located on deployment points {𝑑1, 𝑑2, 𝑑6} while for 

𝑡3 they are located on {𝑑2, 𝑑3, 𝑑5}. Target point 𝑡2, on the other hand, is covered by only two 

SNs deployed on deployment points {𝑑3, 𝑑4}. As such, 𝑡2 is the critical target point and the 

upper bound of the number of connected covers 𝑁𝑈𝐵 for this problem instance is equal to 2. 

Although the authors in [121] did not comment on the tightness of the above method in 

estimating 𝑁𝑈𝐵, it can be deduced that the estimate 𝑁𝑈𝐵 can actually be equal to the exact 

value in the case where 𝑟𝑐 ≫ 𝑟𝑠 such that all SNs are within as single hop of the sink node. In 

all other cases, the difference between 𝑁𝑈𝐵 and the actual value of the maximum number of 

connected covers depends on the relative spatial positions among the deployment points, 

target points and the sink node. 

 

 

Fig. 4.1   A RoI containing three target points 𝑻 = {𝑡1, 𝑡2, 𝑡3}  and six deployment points 𝑫 =
{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. Target point 𝑡2 is the critical target point and the upper bound for connected 

covers is 𝑁𝑈𝐵 = 2. 

4.2.4. Proof that MCRC-SDP is NP-Complete 

To prove that the MCRC-SDP expressed in (4.1) - (4.5) is NP-complete, we start by 

considering the decision problem that corresponds to the MCRC-SDP. We will call this 
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decision problem the Reliability Constrained SN Deployment Problem (RC-SDP). The RC-

SDP can be expressed as follows. 

RC-SDP: given 𝑫, 𝑻, 𝑁𝑈𝐵( 𝑁𝑈𝐵 ∈ Ζ+), 𝑅𝑚𝑖𝑛 (𝑅𝑚𝑖𝑛 ∈ [0,1]), does a superset 𝓢 =
{𝑺1, 𝑺2, … , 𝑺𝑁} ⊆  𝑫 exist, such that the following conditions are true? 

1. 𝑺𝑘 ⊆ 𝑫    ∀ 𝑘 = 1,…𝑁,𝑁 ≤ 𝑁𝑈𝐵 

2. 𝑺𝑘⋂𝑺𝑘′ = 𝜑,         ∀ 𝑘, 𝑘′ = 1,… ,𝑁, 𝑘 ≠ 𝑘′ ;  

3. 𝑅(𝓢) = 1 − ∏ (1 − 𝑅(𝑺𝑘))
𝑁
𝑘=1 ≥ 𝑅𝑚𝑖𝑛; 

4. Φ( 𝑺𝑘 ) = 0   ∀ 𝑘 = 1,… ,𝑁. 

 

Theorem 1: RC-SDP is NP 

Proof: To prove that RC-SDP is NP, we need to prove that for any given superset 𝓢 =
{𝑺1, 𝑺2, … , 𝑺𝑁} ⊆  𝑫, we can check if 𝓢 fulfills the problem’s conditions in polynomial time. 

The computational complexity of checking each of the problem’s conditions is given, in 

order, as follows: 

1. 𝑂(|𝑫|), where ∑ | 𝑺𝑘|
𝑁
𝑘=1 = |𝓢| ≤ |𝑫| ; 

2. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
2}) , 𝑘 = 1,… ,𝑁 ; 

3. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
4} ) ; 

4. 𝑂(𝑚𝑎𝑥𝑘{| 𝑺𝑘|
4} ) . 

Checking the third and fourth conditions has the same computational complexity since 

checking whether a connected cover  𝑺𝑘 is minimal or not comes automatically through the 

process of calculating its reliability  𝑅( 𝑺𝑘). The computational complexity of 

calculating 𝑅( 𝑺𝑘) is dictated by the complexity of the structure function evaluation, which is 

the most computationally expensive routine in the reliability calculation algorithm presented 

in Section 3.5.3.3 in Chapter 3. To evaluate the network structure function 𝑓(𝝅) at a given 

network state 𝝅, the two network functionality conditions needs to be checked. Evaluating 

the network coverage of the set of target points 𝑻 and that of the connectivity to the sink at a 

given network state have a computational complexity of (| 𝑺𝑘| ∗ |𝑻|) and (| 𝑺𝑘|
3), 

respectively. This is valid under the assumption that in the presence of coverage redundancy, 

only a fixed number of maximum coverage functionality checks is allowed when evaluating 

the reliability in the third condition. This gives an overall computational complexity 

of  𝑂(𝑎𝑟𝑔𝑚𝑎𝑥𝑘 {| 𝑺𝑘|
3} ) , where  0 < | 𝑺𝑘 |  ≤ |𝑫|. 

Therefore, RC-SDP is NP ∎ 

 

Theorem 2: RC-SDP is NP-hard 

Proof: We use the method of restriction to prove that RC-SDP is NP-hard. For any given 

problem instance, i.e. for a given {𝑻,𝑫} tuple, let 𝑅𝑚𝑖𝑛 = 𝜖 ≪ 1. This means that we are 

looking for a deployment that consists of a single minimal connected cover deployment and 

that any non-zero value of reliability is acceptable. This restriction converts the RC-SDP to 

the problem of deciding whether there exists a single minimal connected cover 𝑺 ⊆  𝑫 of 

size/cardinality |𝑺| ≤ |𝑫| that provides full coverage of 𝑻 and is connected to the given sink 

node. This latter problem has been proved NP-complete in [122].  

Therefore, RC-SDP is NP-hard ∎ 

From theorems 1, 2  RC-SDP is NP-complete ∎ 

4.3. Proposed Optimization Algorithms for Solving the RCSDP 

Since the MSCRC-SDP is NP-Complete, solving instances of the MCRC-SDP of 

practical scale using exact optimization methods (such as Integer Linear Programming (ILP), 

the Branch and Bound method (B&B) and the Branch and Cut method (B&C)) is not 

computationally feasible. This is due to the fact that the calculation time for these 
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optimization methods increases exponentially with the problem size [123]. For example, an 

efficient implementation of the B&B for the famous Travelling Salesman Problem (TSP) has 

a computational time complexity 𝑂(𝑛2 ∗ 2𝑛)[124] where 𝑛 is the number of cities in the 

problem. On the other hand, heuristic or stochastic optimization methods offer a viable 

alternative to the exact optimization methods in solving complex large-scale optimization 

problems. Generally speaking, they are capable of reaching good solutions for these problems 

in a relatively short amount of calculation time. Although these methods do not guarantee 

reaching the global optimum solution of the problem, they can often lead to near-optimal 

solutions that are slightly worse than the global optimum if they are well designed. Moreover, 

a generic form of a stochastic optimization method can be tuned according to the special 

characteristics of an optimization problem, enabling the method to reach even better 

solutions, possibly even the global optimum solution [123].  

GAs and ACO algorithms are among the most widely used stochastic optimization 

methods. Their performance has proven to be promising in solving complex combinatorial 

NP-Complete optimization problems [125] - [131]. In the context of WSN deployment, their 

effective performance in solving the MCC-SDP has been demonstrated in Section 2.5.2 in 

Chapter 2. It should be noted that other first-order derivative iterative optimization methods 

such as gradient descent can be applied to the MCRC-SDP. However, the complex nature of 

the reliability constraint expressed in (4.4) makes it difficult to use. In this section, we present 

two reliable cost-optimal deployment algorithms using both methods and analyzing their 

obtained results to evaluate their performance according to the two aforementioned metrics: 

the quality of the obtained solutions and the computational speed/cost. Coupling both 

methods with an LS procedure has been reported to increase the method’s speed of 

convergence and enhances its search capability [117] - [121]. We therefore have each of the 

proposed algorithms apply an LS procedure suitable for its design.  For each of the proposed 

algorithms, we will discuss the design of the fundamental building blocks, the LS procedure 

and the termination conditions of the algorithm. 

4.3.1. Proposed Memetic Algorithm  

In this Section, we present the proposed Memetic Algorithm (MA) for solving the 

MCRC-SDP problem expressed in (4.1) - (4.5). The term Memetic Algorithm is used in 

literature to refer to a combination of an evolutionary-based algorithm, such as a GA, with a 

LS procedure customized to the problem at hand, also known as a meme [118]. This 

combination is also referred to as a Hybrid GA (HGA). In the following sub-sections, we 

discuss the different building blocks of the proposed MA, namely, the chromosome-encoding 

scheme, the fitness function, the chromosome selection schemes, the variation operators, the 

applied LS procedure and finally, the termination conditions of the algorithm. 

4.3.1.1. Chromosome Encoding Scheme 

We select to use an integer-encoding scheme for the MA chromosome encoding. Each 

chromosome is composed of |𝑫| genes, where each gene represents one of the deployment 

points in the set  𝑫 with an ordered one-to-one correspondence.  The value given to each gene 

varies between 0 and 𝑁𝑈𝐵. The value of the gene indicates whether an SN is deployed at the 

corresponding deployment point (if it takes a non-zero value between 1 and 𝑁𝑈𝐵) or not (if it 

is null). If a given gene takes a non-zero integer value, then this value indicates the index of 

the SN set which the corresponding deployment point (and hence the actual SN deployed on 

it) belongs to.  Each SN set represented in a chromosome is a potential connected cover of the 

targeted RoI, i.e. the set of target points 𝑻, if that SN set fulfills the coverage and connectivity 

conditions defined in Section 3.5.1 in Chapter 3. Therefore, the maximum number of SN sets 
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represented in any given chromosome is 𝑁𝑈𝐵 and hence the upper bound for the number of 

connected covers is equal to 𝑁𝑈𝐵 as well.  The ordered one-to-one correspondence between 

the genes of the chromosome and the deployment points in 𝑫 ensures that all the represented 

connected covers in a given chromosome are disjoint and hence the MCRC-SDP constraints 

expressed in (4.2) and (4.3) are always satisfied.  

For example, consider the problem instance illustrated in Fig. 4.1 where  𝑻 = {𝑡1, 𝑡𝟐, 𝑡𝟑} , 
𝑫 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6} and 𝑁𝑈𝐵 = 2. Fig. 4.2 shows a possible chromosome encoding 

using the proposed scheme and how it is decoded to a possible solution to the problem at 

hand. Since |𝑫|  = 6 in this example, the number of genes in the chromosome is 6. The genes 

in the chromosome take integer values between 0 and 2 since  𝑁𝑈𝐵 = 2 as explained in 

Section 4.2.3. The chromosome in Fig. 4.2 corresponds to two SN sets, the first one is 

composed of deployment points 𝑑1, 𝑑3 and 𝑑4 and the second one is composed of 

deployment points 𝑑2 and 𝑑6. For simplicity, we will assume that in this example that all six 

deployment points are within 𝑟𝑐 of the sink node, i.e. any cover of  𝑻 = {𝑡1, 𝑡2, 𝑡3} is 

automatically a connected cover. It is clear that the first SN set is a connected cover while the 

second one is not. Therefore the chromosome in Figure 2 corresponds to one connected 

cover 𝑺1 = {𝑑1, 𝑑3, 𝑑4}. It is important to point out that the problem’s reliability and 

redundancy constraints expressed in (4.4) and (4.5) are not automatically met in each 

chromosome, since it is possible that a given chromosome does not represent enough 

connected covers to meet the specified minimum reliability 𝑅𝑚𝑖𝑛 or that one or more of the 

connected covers is not a minimal connected cover. For example, the connected cover 

represented by the chromosome in Fig. 4.2 is not a minimal connected cover since 𝑑4 is 

completely redundant. Hence, only a part of the genotypic space corresponds to feasible 

solutions to the MCRC-SDP. Therefore, these constraints must be incorporated in the fitness 

function of the proposed MA as discussed in the next sub-section. 

 

 

Fig. 4.2   Chromosome decoding for the proposed MA: the chromosome corresponds to two SN sets, 

the first set includes  𝑑1, 𝑑3 and 𝑑4 and the second set includes 𝑑2 and 𝑑6. The value of the fifth gene 

is null, therefore 𝑑5 is not assigned to a SN set. Since only the first SN set covers  𝑻 = {𝑡1, 𝑡2, 𝑡3} , the 

chromosome corresponds to a single connected cover  𝑺1 = {𝑑1, 𝑑3, 𝑑4}. 

4.3.1.2. Fitness Function 

Since the objective function of the MCRC-SDP expressed in (4.1) is minimizing the total 

deployment cost of the WSN, the fitness of any given chromosome must be inversely 

proportional to the total number of deployment points (i.e. deployed SNs) belonging to all the 

connected covers represented in the chromosome. However, since only a part of the 

genotypic space corresponds to feasible solutions that satisfy the minimum reliability and 

redundancy constraints expressed in (4.4) and (4.5), the fitness function must also incorporate 
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these two constraints by the means of penalty terms. This is a common practice in using GAs 

to solve constrained optimization problems [130]. The penalty terms work by dampening the 

fitness of unfeasible solutions that do not meet one or more of the constraints in order to 

direct the search away from the neighborhoods of these solutions in the genotypic space.  

Let 𝑐(𝑁) be a chromosome representing 𝑁 disjoint connected covers, i.e. a chromosome 

that corresponds to a WSN deployment 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, where  1 ≤ 𝑁 ≤ 𝑁𝑈𝐵. The 

fitness value given to 𝑐(𝑁), denoted by ℱ(𝑐(𝑁)), is calculated using the following fitness 

function: 

  

ℱ(𝑐(𝑁)) = −(∑ |𝑺𝑘|
𝑁
𝑘=1 + 𝜔1 ∑ Φ( 𝑺𝑘  )

𝑁
𝑘=1  + 𝜔2[𝑅𝑚𝑖𝑛  − (1 − ∏ (1 − 𝑅(𝑺𝑘))

𝑁
𝑘=1 )]

+
),     (4.6) 

 

where the first term of the function represents the total deployment cost which is equal to the 

total number of the deployment points belonging to the 𝑁 disjoint connected covers (i.e. |𝓢|) 
represented in 𝑐(𝑁). The second term penalizes the fitness of the chromosome for every non-

minimal connected cover in 𝓢, for which Φ( 𝑺𝑘) is equal to unity, by a value equal to the 

constant weight, 𝜔1. The third term penalizes the fitness of the chromosome if the collective 

reliability of the disjoint connected covers represented in the chromosome is less than the 

specified minimum reliability level, 𝑅𝑚𝑖𝑛. The value of the penalty is equal to the difference 

between the two reliability levels multiplied by the constant weight, 𝜔2. The constant weights 

𝜔1 and 𝜔2 are set such that fitness values assigned to the chromosomes follow the following 

scale. All the chromosomes which meet both the reliability and redundancy constraints 

expressed in (4.4) and (4.5) respectively have higher fitness values than all the chromosomes 

that fail to meet either constraint. On the other hand, all the chromosomes which meet the 

reliability constraint have higher fitness values than all the chromosomes which do not meet 

the reliability constraint, whether they meet the redundancy constraint or not. This approach 

in assigning fitness will direct the MA search to the most promising regions in the genotypic 

space which correspond to high quality feasible solutions to the MCRC-SDP. Since the 

maximum value for ∑ | 𝑺𝑘 |
𝑁
𝑘=1  (i.e. the deployment cost) is |𝑫| and the upper bound for the 

number of connected covers is 𝑁𝑈𝐵, it is easy to verify that setting 𝜔1 to the value |𝑫| + 1 

and 𝜔2 to (|𝑫| + 1)(𝑁𝑈𝐵 + 1) ∗ 10𝓃 will fulfill the required fitness scaling described above, 

where 𝓃 is the number of significant decimal places in both 𝑅𝑚𝑖𝑛 and 𝑅( 𝑺𝑘). 

4.3.1.3. Variation Operators 

The traditional variation operators, i.e. crossover and mutation operators, for integer 

encoded GAs are applicable for the proposed chromosome encoding scheme. In the proposed 

MA, we adopt a simple single-point crossover and creep mutation [130]. For each pair of 

parent chromosomes, the single-point crossover operator chooses the crossover point at 

random in the interval [1, |𝑫|] and creates two offspring by exchanging parts of the parent 

chromosomes. The creep mutation simply changes the value of a gene in an offspring 

chromosome to a value in the interval [0, 𝑁𝑈𝐵]. 
We adopt an additional variation operator to the standard genetic operators called 

scattering [131], which is applied to the offspring population directly after crossover and 

mutation. This operator is used to help the proposed MA in avoiding regions in the genotypic 

space that correspond to infeasible solutions to the MCRC-SDP. To explain how the operator 

works, we define the term critical deployment points, which refer to the deployment points 

which have the critical target point in the RoI (as defined in Section 4.2.3) within their 

coverage region. For example, consider the problem instance illustrated in Fig. 4.1, where the 

critical target point is 𝑡2 and hence the critical deployment points are 𝑑3 and 𝑑4. The 

scattering operator distributes the critical deployment points on the different possible SN sets 
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in each chromosome. Since a connected cover must include at least one critical deployment 

point to provide full coverage, the scattering operator increases the chance of the creation of 

connected covers in each chromosome. This, in turn, increases the chance of the 

chromosomes translating to feasible solutions to a given instance of the MCRC-SDP.  

The scattering operator works as follows. It checks the genes which correspond to the 

critical deployment points for the given MCRC-SDP instance, i.e. for a given {𝑻 , 𝑫} tuple. If 

it finds that two or more of these genes are given same value, it changes the repeated genes to 

other values such that each of these genes is given a unique integer value in the 

interval [1, 𝑁𝑈𝐵]. For example, applying the scattering operator on the chromosome 

illustrated in Fig. 4.2 will change the value of the fourth gene, which represents the critical 

deployment point  𝑑4 from 1 to 2 , since the other critical deployment point  𝑑3 is already set 

to 1. Accordingly, the altered chromosome will now represent two connected covers, namely 

 𝑺1 = {𝑑1, 𝑑3} and  𝑺2 = {𝑑2, 𝑑4 , 𝑑6 } as shown in Fig. 4.3. 

 

 

 

Fig. 4.3   The scattering operator in the proposed MA: the value of the fourth gene in the chromosome 

in Fig.  4.2 is changed from 1 to 2. The altered chromosome now represents two connected 

cover 𝑺1 = {𝑑1, 𝑑3} and  𝑺2 = {𝑑2, 𝑑4 , 𝑑6 }. 

4.3.1.4. Chromosome Selection Methods 

Two types of chromosome selection methods are required in the design of the proposed 

MA. The first one is the parent selection method, which dictates how the parent 

chromosomes in a current population are chosen to undergo crossover. In our proposed MA, 

we adopt the widely-known Roulette Wheel parent selection method [130]. Assuming the 

number of chromosomes in a population is µ, the Roulette Wheel method is applied to the 

entire population to select µ/2 pairs of parents and hence µ offspring chromosomes are 

produced after the crossover, mutation and scattering operators are applied. The second 

selection method is the survivor selection method, which determines which chromosomes in 

the aggregated pool of parents and offspring populations of size 2µ will survive to the next 

generation/iteration of the algorithm. We adopt a fitness-based survivor selection which 

selects the µ chromosomes with the highest fitness from that pool to constitute the next 

generation/iteration. This selection method is also known as the µ + λ selection 

scheme [130]. 

4.3.1.5. Local Search Procedure 

As explained earlier, the proposed MA is composed of a GA coupled with a LS 

procedure that helps the GA fine tune its search for high quality solutions to the problem at 
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hand in the promising regions of the genotypic space. In each iteration of the proposed MA 

after the selection of the surviving chromosomes for the following generation/iteration, we 

apply an LS procedure to a fraction of the chromosome population denoted by 𝑃𝐿𝑆. The 

chromosomes which undergo the LS in each generation/iteration are selected at random. To 

strike the best balance between the global and the local search and to avoid the premature 

convergence of the proposed MA, we adopt a gradual increase in 𝑃𝐿𝑆 with the number of the 

performed generations/iterations of the algorithm [132]. Fig. 4.4 shows the adopted 

scheduling scheme for the application of the LS procedure in our proposed MA, where 𝑛𝐿𝑆 

denotes the number of iterations at which the entire chromosome population undergoes the 

LS procedure, i.e. 𝑃𝐿𝑆 = 1. 

 

Fig. 4.4   The LS procedure scheduling scheme in the proposed MA: the fraction of the chromosome 

population undergoing the LS procedure 𝑃𝐿𝑆 versus the number of performed iterations of the 

algorithms. 

Table 4.1 shows the pseudo-code of the LS procedure in the proposed MA. The 

operation of the LS procedure can be described as follows. The LS is applied on the input 

chromosome 𝑐(𝑁) that has a fitness of  ℱ(𝑐(𝑁)), which corresponds in the phenotypic space 

to the solution  𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} with a combined reliability 𝑅(𝓢). The first step of the LS 

procedure (line 2) is to initialize the resulting chromosome of the LS and its fitness, denoted 

by 𝑐𝐿𝑆(𝑁) and ℱ(𝑐𝐿𝑆(𝑁)) respectively, to the input chromosome and its fitness. In this LS 

procedure, we adopt a Lamarckian approach, in which both the fitness and the genotypic 

representation of the solution, i.e. the chromosome, are changed by the LS procedure [132]. 

In the second step (lines 4 − 10), the LS checks if any of the connected covers in 𝓢 violates 

the redundancy constraint in (4.5), i.e. Φ(𝑺𝑘) = 1, for any 𝑘 = 1,… ,𝑁. If one or more of the 

connected covers are non-minimal connected covers, the LS attempts to enhance the quality 

of the solution (and the fitness of the chromosome)  by converting these connected covers to 

minimal connected covers. This step is carried out as follows. For each non-minimal 

connected cover  𝑺𝑘, the LS procedure prunes 𝑺𝑘 by removing redundant deployment points 

and hence converting  𝑺𝑘 to a minimal connected cover denoted by  𝑺𝑘
𝑚. A redundant 

deployment point in 𝑺𝑘 is a deployment point whose removal from the connected cover will 

not compromise its coverage or connectivity. For example, consider the chromosome 

illustrated in Fig. 4.3. The second connected cover represented in the chromosome,   𝑺2 =
{𝑑2, 𝑑4 , 𝑑6 } is a non-minimal connected cover because the deployment point 𝑑6  is 

completely redundant. The LS identifies redundant deployment points by examining the 

tolerable failure combinations of SNs in the off-mode.  
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Table 4.1   Pseudo-code of the LS procedure in the proposed MA 

Procedure LOCAL_SEARCH 

1 Input: 𝑐(𝑁), ℱ(𝑐(𝑁)). Decode input: 𝑐(𝑁) ↔ 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁},  1 ≤ 𝑁 ≤ 𝑁𝑈𝐵 , 𝑅(𝓢) 

2 Initialize: 𝑐𝐿𝑆(𝑁) ← 𝑐(𝑁), ℱ(𝑐𝐿𝑆(𝑁)) ← ℱ(𝑐(𝑁)) , 𝓢𝐿𝑆 ← 𝓢 , 𝑅(𝓢𝐿𝑆) ← 𝑅(𝓢) 

3 𝓢𝑡𝑒𝑚𝑝 ← 𝓢𝐿𝑆, 𝑅(𝓢𝑡𝑒𝑚𝑝) ← 𝑅(𝓢𝐿𝑆) , 𝑺′
𝑝𝑟𝑢𝑛𝑒 ← ∅ 

4 For 𝑘 = 1:𝑁 

5  If Φ( 𝑺𝑘  ) ≠ 0 , i.e.  𝑺𝑘 is a non-minimal connected cover 

6   Prune  𝑺𝑘   until there is no redundancy. Denote pruned  𝑺𝑘 by 𝑺𝑘
𝑚 

7   𝑺′
𝑝𝑟𝑢𝑛𝑒 ← 𝑺′

𝑝𝑟𝑢𝑛𝑒 ∪ [ 𝑺𝑘 − 𝑺𝑘
𝑚] 

8   Update  𝓢𝑡𝑒𝑚𝑝:   𝑺𝑘 ← 𝑺𝑘
𝑚 

9  End If 

10 End For 

11 Update 𝑅(𝓢𝑡𝑒𝑚𝑝) 

12 If 𝑅(𝓢𝑡𝑒𝑚𝑝) ≥ 𝑅𝑚𝑖𝑛 

13  Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ←  𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to 𝑺′
𝑝𝑟𝑢𝑛𝑒 to 0 

14 Else (i.e. if reliability constraint is not met) 

15  Let incomplete SN sets in 𝑐(𝑁), if any, be denoted 𝑺𝑙
′ , where  1 ≤ 𝑙 ≤ (𝑁𝑈𝐵 − 𝑁) 

16  For 𝑙 = 1: (𝑁𝑈𝐵 − 𝑁) 

17   Augment 𝑺𝑙
′:  𝑺𝑙

′ ← 𝑺𝑙
′  ∪ 𝑺′

𝑝𝑟𝑢𝑛𝑒. Test functionality of augmented SN set 𝑺𝑙
′ 

18   If 𝑺𝑙
′ after augmentation became a connected cover, i.e. 𝑺𝑁+1 ← 𝑺𝑙

′  

19    Prune 𝑺𝑁+1  until there are no redundant deployment points. Denote pruned 𝑺𝑁+1 by 𝑺𝑁+1
𝑚  

20    Update 𝓢𝑡𝑒𝑚𝑝:  𝑺𝑁+1 ←  𝑺𝑁+1
𝑚 , 𝓢𝑡𝑒𝑚𝑝 ← 𝓢𝑡𝑒𝑚𝑝 ∪  𝑺𝑁+1  

21    Break For 

22   End If 

23  End For 

24     If  𝑺𝑁+1 ≠ ∅ (i.e. if one of the incomplete SN sets became a connected cover) 

25   Update 𝑅(𝓢𝑡𝑒𝑚𝑝) 

26   Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ←  𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to  

   [ 𝑺𝑁+1 −  𝑺𝑁+1
𝑚 ] to 0 

27  Else  

28   Update 𝑐𝐿𝑆(𝑁): 𝓢𝐿𝑆 ← 𝓢𝑡𝑒𝑚𝑝 , 𝑅(𝓢𝐿𝑆) ←  𝑅(𝓢𝑡𝑒𝑚𝑝). Set genes corresponding to 𝑺′
𝑝𝑟𝑢𝑛𝑒 to 0 

29  End If 

30 End If 

31 Update ℱ(𝑐𝐿𝑆(𝑁)) 

32 If ℱ(𝑐𝐿𝑆(𝑁)) ≥  ℱ(𝑐(𝑁)) 

33  𝑐(𝑁) ← 𝑐𝐿𝑆(𝑁), ℱ(𝑐(𝑁)) ←  ℱ(𝑐𝐿𝑆(𝑁)) 

34 End If 

35 Output: 𝑐(𝑁), ℱ(𝑐(𝑁)) 

 

produced by the search algorithm used to calculate 𝑅(𝑺𝑘) described in Section 3.5.3.3 in 

Chapter 3. We denote the set of all the pruned deployment points by 𝑺′
𝑝𝑟𝑢𝑛𝑒

. 

After the application of the second step of the LS procedure, all the connected covers 

belonging to 𝓢 are guaranteed to be minimal connected covers. The updated solution is 

denoted by 𝓢𝑡𝑒𝑚𝑝 and the updated combined reliability is denoted by 𝑅(𝓢𝑡𝑒𝑚𝑝). Note that if 

all the connected covers in 𝓢 are minimal, the second step of the LS procedure will affect no 
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change in 𝓢 or 𝑅(𝓢) , i.e. 𝓢𝑡𝑒𝑚𝑝 = 𝓢 and 𝑅(𝓢𝑡𝑒𝑚𝑝) = 𝑅(𝓢). In the third step of the LS 

procedure (lines 11 − 30), 𝑅(𝓢𝑡𝑒𝑚𝑝) is compared to the specified minimum reliability 𝑅𝑚𝑖𝑛. 

If the reliability constraint is met, i.e. 𝑅(𝓢𝑡𝑒𝑚𝑝) ≥  𝑅𝑚𝑖𝑛, no further steps are performed on 

the solution. Accordingly, the resulting chromosome of the LS 𝑐𝐿𝑆(𝑁) is updated to reflect 

the pruning applied to the non-minimal connected covers in the second step. On the other 

hand, if the reliability constraint is not fulfilled, the LS attempts to further enhance the quality 

of the solution by attempting to construct an additional minimal connected cover, i.e.  𝑺𝑁+1, to 

increase the combined reliability of the solution. This step is carried out as follows. For every 

SN set represented in 𝑐(𝑁) which does not amount to a connected cover, denoted by 𝑺𝑙
′ 

for 𝑙 = 1,… , (𝑁𝑈𝐵 − 𝑁), the LS procedure checks if augmenting any of these SN sets by the 

pruned deployment points in the set 𝑺′
𝑝𝑟𝑢𝑛𝑒 would result in an additional connected cover. If 

an additional connected cover was successfully constructed, it is pruned to a minimal 

connected cover  𝑺𝑁+1
𝑚  (if necessary) and added to the updated solution  𝓢𝑡𝑒𝑚𝑝. The resulting 

chromosome of the LS procedure 𝑐𝐿𝑆(𝑁) is then updated to reflect the changes made 

to 𝓢𝑡𝑒𝑚𝑝. On the other hand, if none of the SN sets was successfully converted to a connected 

cover,  𝓢𝑡𝑒𝑚𝑝 remains unchanged and 𝑐𝐿𝑆(𝑁) is updated accordingly. In the fourth and final 

step (lines 31 − 35), the fitness of the resulting chromosome ℱ(𝑐𝐿𝑆(𝑁)) is updated after the 

possible changes made to 𝑐𝐿𝑆(𝑁) in steps 2 and 3. It is then compared with the fitness of the 

input chromosome ℱ(𝑐(𝑁)). If the LS procedure produces an enhancement in fitness (i.e. the 

condition ℱ(𝑐𝐿𝑆(𝑁)) ≥  ℱ(𝑐(𝑁)) holds), then 𝑐𝐿𝑆(𝑁)  and ℱ(𝑐𝐿𝑆(𝑁)) are returned to replace 

the input chromosome and its corresponding fitness. Otherwise, the input chromosome and its 

corresponding fitness are returned unchanged. 

4.3.1.6. Termination Conditions  

The proposed MA is terminated if one of possible termination conditions occurs. The 

first termination condition is the algorithm going through a predetermined maximum number 

of generations denoted by  𝑛𝑚𝑎𝑥. The second condition is the algorithm going through a 

predetermined number maximum number of generations with no enhancement in the value of 

the best fitness discovered by the algorithm denoted by 𝑛𝑐𝑜𝑛𝑣. The second termination 

condition signals that the algorithm has indeed converged to a solution and no further 

enhancement of fitness can be expected. 

4.3.1.7. Measures to Reduce Computational Cost 

The fitness function  ℱ(𝑐(𝑁)) of the proposed MA, presented in Section 4.3.1.2 and 

expressed in (4.6), is in essence a complex and computationally expensive function to 

evaluate. This stems primarily from the third term of the fitness function, which requires the 

calculation of the reliability of the connected covers represented by a given chromosome. The 

proposed MA needs to evaluate the fitness function ℱ(𝑐(𝑁)) for every generated 

chromosome, both before and after mutation and during the proposed LS procedure. This 

poses a computational challenge. This is because the algorithm needs to evaluate the 

reliability of a large number of connected covers with varying levels of SN redundancy. To 

address this computational challenge, we apply the following two measures to reduce the 

computational cost associated with the fitness function: 

 We terminate the search for the paths of 𝑺𝑘 carried out by the search algorithm (outlined 

in Table 3.3 in Chapter 3) if a complete redundancy is discovered in step 3 of the 

algorithm, i.e. if the set 𝑭𝑜
1 ≠ {𝜙}. If this occurs, then Φ( 𝑺𝑘 ) is set to unity. The 

corresponding reliability 𝑅(𝑺𝑘) used to evaluated the fitness function in (4.6) is the 
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lower bound of the exact reliability value calculated using the paths set of 𝑺𝑘 discovered 

by the search algorithm before the search terminates. Although this measure may 

decrease the fitness of the chromosome to which the connected cover 𝑺𝑘 belongs, this 

potential decrease is less significant for connected covers with a low redundancy level 

since the calculated lower bound will be a good estimation for the exact value. On the 

other hand, if a given connected cover is a minimal connected cover, the reliability is 

calculated exactly.  

 A list of every connected cover the MA comes across and their calculated reliability is 

kept over all the generations/iterations of the algorithm. Every time the reliability of a 

given connected cover needs to be evaluated, the list is checked to see if this connected 

cover has been encountered before. If it has, the stored reliability value is used thus 

saving the reliability re-calculation time.  

4.3.2. Proposed ACO Algorithm 

In this section, we present our proposed ACO approach for solving the MCRC-SDP. 

First, we discuss how the MCRC-SDP is represented as a connected graph for ACO 

application, i.e. define the construction graph of the problem. Then, the ants’ tour 

construction procedure is described, including the ants’ neighborhood definitions and 

heuristic information. This is followed by the formulation of the cost function used for 

evaluating the quality of the solutions obtained by the ants. We then describe the pheromone 

management scheme followed by the LS procedure which we propose to be coupled with the 

ACO algorithm to enhance the quality of the obtained solutions. Finally, we summarize the 

steps of the proposed algorithm.   

4.3.2.1. Construction Graph 

In any ACO algorithm designed to solve a given optimization problem, ants build 

solutions incrementally by executing randomized walks or tours through a connected 

graph 𝐺(𝑽, 𝑬), where 𝑽 is the set of the graph’s vertices and 𝑬 is the set of all the edges 

between the vertices in 𝑽. Therefore, the first step in designing an ACO algorithm to solve a 

given optimization problem is to represent the problem as a connected graph 𝐺(𝑽, 𝑬) by 

defining the sets 𝑽 and 𝑬 in terms of the problem’s variables. For the MCRC-SDP at hand, 

the ACO construction graph is identical to the problem’s graph defined by the set of 

deployment points 𝑫 and the location of the sink node in the RoI denoted by 𝑑0. Hence, 𝑽 

corresponds to the set of deployment points and the sink node location (i.e.  𝑽 ≡ { 𝑑0, 𝑫} =
{ 𝑑0, 𝑑1, 𝑑2, … , 𝑑|𝑫|}) and 𝑬 corresponds to the set of undirected arcs/links connecting the 

deployment points and the sink node in 𝑽 with each other. 

4.3.2.2. Tour Construction 

The ants’ search behavior in a given construction graph is primarily influenced by a 

probabilistic transition rule, which controls how each ant selects its next vertex (i.e. 

deployment point) to visit during the construction of its tour (i.e. its solution to the problem). 

The probabilistic transition rule is in turn defined by three elements: the neighborhood 

definition(s), the heuristic information used by the ant and the pheromone trail values 

between the vertices of the construction graph. In this section we will discuss the first two 

elements while the pheromone management is discussed in Section 4.3.2.5. 
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A. Basic Idea: 

Each ant 𝑎, 𝑎 = 1,… ,𝑚, starts its tour at the sink node location 𝑑0, which is an arbitrary 

location inside the boundaries of the RoI. Let the solution to the problem at hand which 

corresponds to the ant’s tour be denoted by 𝓢𝑎
, initialized by an empty superset, i.e.  𝓢𝑎 = 𝜑. 

Ant 𝑎 then starts constructing a solution to the problem by consecutively building connected 

covers through transitioning among the deployment points in the construction graph. Let the 

index of the connected covers built by ant 𝑎 be denoted by 𝑘, where 𝑘 = 1 in the beginning 

of the ant’s tour. An SN is deployed at each deployment point visited by ant 𝑎 and the 

deployment point is added to the connected cover that ant 𝑎 is currently building, denoted 

by 𝑺𝑘
𝑎. The connectivity of 𝑺𝑘

𝑎
 to the sink node is maintained in each ant’s transition by 

selectively defining the neighborhood of the ant’s probabilistic transition rule (i.e. the 

candidate deployment points selected for the next transition), which will be discussed in the 

next sub-section. The building of 𝑺𝑘
𝑎
 concludes when complete coverage of the target points 

in set 𝑻 is achieved. The completed connected cover 𝑺𝑘
𝑎
 is then added to the ant’s solution 

superset 𝓢𝑎
. To check if the ant’s tour is complete, 𝑅( 𝓢𝑎) is calculated using (4.4) and 

compared to the given minimum reliability level 𝑅𝑚𝑖𝑛. If 𝑅( 𝓢𝑎) ≥  𝑅𝑚𝑖𝑛, then ant  𝑎’s tour is 

concluded. Otherwise, the index 𝑘 is incremented and ant 𝑎 starts building a new connected 

cover through transitioning between the deployments points in the construction graph, 

excluding the points belonging to the connected cover(s) the ant built and added to 𝓢𝑎
 so far. 

Ant 𝑎 continues building connected covers until  𝑅( 𝓢𝑎) meets or exceeds 𝑅𝑚𝑖𝑛. At this point 

the solution corresponding to ant  𝑎’s tour is denoted 𝓢𝑎 = {𝑺1
𝑎, 𝑺2

𝑎, … , 𝑺𝑁𝑎

𝑎 }.  

B. Heuristic Information and Neighborhood Definitions 

At each tour construction step, ant 𝑎 applies a probabilistic transition rule to select which 

deployment point it will visit next. The probability that ant 𝑎, currently at deployment 

point 𝑑𝑖 , 𝑖 = 0,1,… , |𝑫|, will select deployment point 𝑑𝑗, 𝑗 = 1,2, . . . |𝑫|, to visit next is given 

by: 

𝑝𝑖𝑗
𝑎 = {

[𝜏𝑖𝑗]
𝛼[𝜂𝑗

𝑎]𝛽

∑ [𝜏𝑖𝑙]
𝛼[𝜂𝑙

𝑎]𝛽𝑑𝑙∈𝓝𝑖
𝑎

  ,   𝑖𝑓 𝑑𝑗 ∈ 𝓝𝑖
𝑎

0  ,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , 

   

(4.7) 

where  𝜏𝑖𝑗 is the pheromone trail value between deployment points 𝑑𝑖 (or sink node if 𝑖 = 0 at 

the beginning of the tour) and 𝑑𝑗, 𝜂𝑗
𝑎 is the heuristic value of adding the deployment point 𝑑𝑗 

to the connected cover currently being built by ant 𝑎 , i.e.  𝑺𝑘
𝑎 , 𝓝𝑖

𝑎 is the feasible 

neighborhood of ant 𝑎 at its current position in the construction graph at 𝑑𝑖, and 𝛼 and 𝛽 are 

the parameters that control the influence of the pheromone trail values and heuristic 

information on 𝑝𝑖𝑗
𝑎 , respectively.  

The definition of the feasible neighborhood 𝓝𝑖
𝑎 of ant 𝑎 at a given current position 𝑑𝑖 

depends on whether the next transition the ant is making is an intra-connected cover 

transition or inter-connected cover transition. Ant 𝑎 makes an intra-connected cover 

transition when the current connected cover its building, i.e. 𝑺𝑘
𝑎 , is not yet complete after the 

addition of the deployment point  𝑑𝑖 at which the ant is currently present, i.e. 𝑺𝑘
𝑎 ≠ 𝜑. On the 

other hand, ant 𝑎 makes an inter-connected cover transition when its previous transition has 

completed 𝑺𝑘
𝑎 but its tour is not yet complete, i.e. 𝑅(𝓢𝑎) < 𝑅𝑚𝑖𝑛. In this case, the next 

transition of 𝑎 is the start of a new connected cover, i.e. 𝑘 = 𝑘 + 1 and  𝑺𝑘
𝑎 = 𝜑. 

For an intra-connected cover transition, the feasible neighborhood 𝓝𝑖
𝑎 of ant 𝑎 at a given 

current position 𝑑𝑖 is defined as follows: 
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 𝓝𝑖
𝑎 = {

𝓝𝑖𝑒𝑓𝑓 
𝑎 ,𝓝𝑖𝑒𝑓𝑓 

𝑎 ≠ 𝜑

𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎 ,𝓝𝑖𝑒𝑓𝑓 

𝑎 = 𝜑 
,   (4.8) 

 

where 𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎 is defined as the set of deployment points within the communication range 𝑟𝑐 of 

any deployment point belonging to  𝑺𝑘
𝑎 . Let the set  𝑫− be the set of deployment points not 

visited so far by ant 𝑎 in its current tour. The set 𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎 can then be expressed as follows: 

 

𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎 = {𝑑𝑗 ∈ 𝑫− ∶  ‖𝑑𝑗𝑑𝑗′‖ ≤ 𝑟𝑐, for any 𝑑𝑗′ ∈ 𝑺𝑘

𝑎},   (4.9) 

 

The set  𝓝𝑖𝑒𝑓𝑓 
𝑎 , on the other hand, is a subset of deployment points belonging to 𝓝𝑖𝑓𝑢𝑙𝑙 

𝑎  

that would offer a coverage gain for 𝑺𝑘
𝑎, i.e. the addition of any of the deployment points 

belonging to 𝓝𝑖𝑒𝑓𝑓 
𝑎  to  𝑺𝑘

𝑎 would result in  the coverage of uncovered target points in 𝑻 by 

𝑺𝑘
𝑎. Let the coverage gain of a deployment point 𝑑𝑗 ∈ 𝓝𝑖𝑓𝑢𝑙𝑙 

𝑎  be denoted by ℊ𝑗
𝑎. We define 

the coverage gain ℊ𝑗
𝑎 as the number of uncovered target points by  𝑺𝑘

𝑎 that would be covered 

if an SN is deployed at  𝑑𝑗, i.e. if 𝑑𝑗 is added to the current connected cover 𝑺𝑘
𝑎. Hence, the set 

𝓝𝑖𝑒𝑓𝑓 
𝑎 can be expressed as follows: 

 

𝓝𝑖𝑒𝑓𝑓 
𝑎 = {𝑑𝑗 ∈ 𝓝𝑖𝑓𝑢𝑙𝑙 

𝑎 : ℊ𝑗
𝑎 ≠ 0}, (4.10) 

 

For an inter-connected cover transition, on the other hand, the feasible neighborhood 𝓝𝑖
𝑎 

of ant 𝑎 at a given current position 𝑑𝑖 is defined as: 

 

 𝓝𝑖
𝑎 =   𝓝𝑠𝑖𝑛𝑘 

𝑎
, (4.11) 

 

where  𝓝𝑠𝑖𝑛𝑘 
𝑎  is defined as the set of deployment points belonging to  𝑫− which are within a 

distance equal to the SN communication range 𝑟𝑐. Note that at the beginning of the tour, 𝑖 =
0 and  𝑫− = 𝑫. Accordingly, we can express 𝓝𝑠𝑖𝑛𝑘 

𝑎 as follows: 

 

  𝓝𝑠𝑖𝑛𝑘 
𝑎 = {𝑑𝑗 ∈ 𝑫− ∶  ‖𝑑𝑗𝑑0‖ ≤ 𝑟𝑐}, (4.12) 

 

The neighborhood definitions in (4.8) and (4.11) are designed to achieve two goals. The 

first goal is to guarantee the connectivity of each cover built by ant  𝑎. Since all ants start 

their tours at 𝑑0, the neighborhood definitions guarantee that each added deployment point to  

𝑺𝑘
𝑎 will be connected to the sink node via single or multi-hop communication. The second 

goal is to minimize the probability of adding redundant deployment points to any of the 

connected covers built by the ants, i.e. minimize the probability of ants constructing tours that 

correspond to infeasible solutions to the MCRC-SDP that violate the redundancy constraint 

expressed in (4.5). This goal is achieved specifically through the neighborhood definition in 

(9). The neighborhood definition restricts the candidate deployment points for the ant’s next 

transition to points which belong to the set 𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎  and have a non-zero coverage gain, i.e. 

𝓝𝑖𝑒𝑓𝑓 
𝑎 . In the case where  𝓝𝑖𝑒𝑓𝑓 

𝑎 = 𝜑, however, adding a redundant deployment point to 𝑺𝑘
𝑎 

may occur.   

The heuristic value of adding deployment point  𝑑𝑗 to the current connected cover 𝑺𝑘
𝑎 

being built by ant 𝑎, denoted by  𝜂𝑗
𝑎, is directly proportional to its coverage gain ℊ𝑗

𝑎 and is 

defined as: 
𝜂𝑗
𝑎 = ℊ𝑗

𝑎 +1 (4.13) 
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Equation (4.13) applies to both types of ant’s transitions, namely, the intra- and inter-

connected cover transitions, where in the latter case the uncovered target points are the entire 

set 𝑻, since the current connected cover 𝑺𝑘
𝑎 in this case is empty, i.e. 𝑺𝑘

𝑎 = 𝜑. Table 4.2 

summarizes the ants’ tour construction procedure. 

Table 4.2   Pseudo code of the tour construction procedure in the proposed ACO algorithm 

Procedure TOUR_CONSTRUCTION  

1 Input: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛, , 𝜆,  𝜏𝑖𝑗 for 𝑖 = 0,1,… , |𝑫| , 𝑗 = 1,2,… , |𝑫| 

2 Initialize:  𝓢𝑎 = 𝜑 , 𝑅( 𝓢𝑎) = 0, 𝑘 = 0,𝑫− = 𝑫, ant starts tour at 𝑑0(𝑖 = 0) 
3 While 𝑅( 𝓢𝑎) < 𝑅𝑚𝑖𝑛 

4   Build a new connected cover: 𝑘 ← 𝑘 + 1, 𝑺𝑘
𝒂 = 𝜑 , 𝑻𝑐𝑜𝑣 = 𝜑 

5   While 𝑻𝑐𝑜𝑣 ≠ 𝑻 (i.e. 𝑺𝑘
𝑎 is not a complete connected cover) 

6      Identify   𝓝𝑖
𝑎 using (9) and (12) 

7      Calculate coverage gain ℊ𝑗∀𝑑𝑗 ∈  𝓝𝑖
𝑎 

8      Apply transition rule in (8) to choose next deployment point  

9      Update 𝑺𝑘
𝑎 

10      Update 𝑻𝑐𝑜𝑣 (i.e. update coverage of 𝑺𝑘
𝑎) 

11    End While 

12    Update  𝓢𝑎 :  𝓢𝑎 ← { 𝓢𝑎 , 𝑺𝑘
𝑎} 

13    Calculate 𝑅(𝑺𝑘
𝑎) and Update 𝑅( 𝓢𝑎) 

14    Update 𝑫− : 𝑫− ← 𝑫− − 𝑺𝑘
𝑎 

15 End While 

16 Output:  𝓢𝑎 = {𝑺1
𝑎 , 𝑺2

𝑎 , … , 𝑺𝑁𝑎

𝑎 }, 𝑅( 𝓢𝑎) 

 

4.3.2.3. Cost Function 

To evaluate the quality of the solution to the MCRC-SDP corresponding to the tour 
constructed by ant  𝑎 , i.e. 𝓢𝑎 = {𝑺1

𝑎, 𝑺2
𝑎, … , 𝑺𝑁𝑎

𝑎 }, the following cost function is used: 

 

𝒞(𝓢𝑎) = 𝜔1 ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 + 𝜔2 ∑ Φ𝑁𝑎

𝑘=1 (𝑺𝑘),  (4.14) 

 

where the first term of the cost function, ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 = |𝓢𝑎|,  represents the total number of 

deployment points (i.e. deployed SNs) belonging to the 𝑁𝑎  connected covers in 𝓢𝑎 

multiplied by a constant weight 𝜔1. The second term of the cost function penalizes every 

connected cover that contains complete redundancy i.e. that is not a minimal connected cover 

by a penalty equal to the constant weight  𝜔2.  

Since the objective of the MCRC-SDP is to minimize the total deployment cost of the 

network, i.e. minimize  ∑ |𝑺𝑘|
𝑁𝑎
𝑘=1 = |𝓢𝑎|, the weights 𝜔1 and 𝜔2 are set such that the cost 

assigned to the solutions follow the following criterion.  All the solutions which meet both 

the reliability and the redundancy constraints expressed in (4.4) and (4.5), respectively, have 

a lower cost than all the solutions that meet the reliability constraint but fail to meet the 

redundancy constraint, i.e. solutions that have one or more non-minimal connected covers. As 

such, if 𝜔1 is set to unity such that the first term of the cost function is equal to the total 

number of deployed SNs (i.e. the deployment cost), then 𝜔2 must be greater than |𝑫| (since 

the maximum value of |𝓢𝑎| is |𝑫|). Accordingly, we set 𝜔1 = 1 and 𝜔2 = |𝑫| + 1.  
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4.3.2.4. Local Search Procedure 

As stated earlier, the proposed ACO algorithm for solving the MCRC-SDP is coupled 

with an LS procedure that helps the algorithm find higher quality solutions to the problem. 

Similar to the study in [119], after the ants have completed the construction of their 

tours/solutions in every ieteration, the LS procedure is applied to each of the constructed 

solutions with the objective of reducing its cost as evaluated by the cost function in (4.14). 

Table 4.3 shows the pseudo code of the proposed LS procedure. 

The operation of the LS procedure can be described as follows. Assuming the LS is applied 

on the solution 𝓢𝑎 = {𝑺1
𝑎, 𝑺2

𝑎, … , 𝑺𝑁𝑎

𝑎 } constructed by ant 𝑎, the first step of the LS procedure 

is to determine whether any of the connected covers in 𝓢𝑎 violates the redundancy constraint 

in (4.5), i.e. Φ(𝑺𝑘
𝑎) = 1,  for any 𝑘 = 1,… ,𝑁𝑎. If all the connected covers are minimal 

connected covers, i.e. 𝓢𝑎 is a feasible solution, the LS procedure returns 𝓢𝑎 and its 

corresponding reliability 𝑅( 𝓢𝑎) unchanged. On the other hand, if one or more of the 

connected covers in 𝓢𝑎 have redundant deployment points, the LS attempts to reduce the cost 

𝒞(𝓢𝑎) by converting these connected covers to minimal connected covers. This procedure is 

carried out as follows. For each non-minimal connected cover 𝑺𝑘
𝑎, the LS procedure prunes 

 𝑺𝑘
𝑎 by removing completely redundant deployment points in the same method used in the LS 

procedure in the proposed MA presented in Section 4.3.1.5. Let the pruned connected cover 

be denoted 𝑺𝑘𝑝
𝑎 . The LS procedure then updates the combined reliability of 𝓢𝑎 accordingly 

(i.e. substituting 𝑅( 𝑺𝑘
𝑎) with 𝑅( 𝑺𝑘𝑝

𝑎 ) in (4.4)). If the updated combined reliability 

of  𝓢𝑎 exceeds or meets  𝑅𝑚𝑖𝑛, the pruned connected cover  𝑺𝑘𝑝
𝑎  replaces  𝑺𝑘

𝑎 in the 

solution  𝓢𝑎, otherwise  𝑺𝑘
𝑎 is kept without change in   𝓢𝑎. The same above steps are repeated 

for every non-minimal connected cover in  𝓢𝑎. Accordingly, for every pruned connected 

cover that replaces a non-minimal connected cover in  𝓢𝑎, the cost 𝒞(𝓢𝑎 ) is reduced by the 

value of 𝜔2 = |𝑫| + 1. 

Table 4.3   Pseudo code of the LS procedure for the proposed ACO algorithm 

Procedure LOCAL_SEARCH  

1 Input:  𝓢𝑎 = {𝑺1
𝑎 , 𝑺2

𝑎 , … , 𝑺𝑁𝑎

𝑎 } , 𝒞(𝓢𝑎) , 𝑅( 𝓢𝑎) 

2 Initialize: 𝒞𝐿𝑆( 𝓢
𝑎) ← 𝒞(𝓢𝑎),  𝓢𝑎

𝐿𝑆 ←  𝓢𝑎 , 𝑅( 𝓢𝑎
𝐿𝑆) ← 𝑅( 𝓢𝑎) 

3 𝓢𝑎
𝑡𝑒𝑚𝑝 ←  𝓢𝑎

𝐿𝑆, 𝑅( 𝓢𝑎
𝑡𝑒𝑚𝑝) ← 𝑅( 𝓢𝑎

𝐿𝑆) 
4 For 𝑘 = 1,… ,𝑁𝑎 
5   If Φ(𝑺𝑘

𝑎) = 1   , i.e. if 𝑺𝑘
𝑎 is not a minimal connected cover 

6     Prune  𝑺𝑘
𝑎   until there are no redundant deployment points. Let    

     pruned  𝑺𝑘
𝑎   be denoted  𝑺𝑘𝑝

𝑎  

7     Update  𝓢𝑎
𝑡𝑒𝑚𝑝: 𝑺𝑘

𝑎 ←  𝑺𝑘𝑝
𝑎  

8     Update  𝑅( 𝓢𝑎
𝑡𝑒𝑚𝑝) 

9     If  𝑅( 𝓢𝑎
𝑡𝑒𝑚𝑝) ≥ 𝑅𝑚𝑖𝑛  

10       Update  𝓢𝑎
𝐿𝑆 : 𝑺𝑘

𝑎 ←  𝑺𝑘𝑝
𝑎  . 𝑅( 𝓢𝑎

𝐿𝑆) ← 𝑅( 𝓢𝑎
𝑡𝑒𝑚𝑝) 

11       𝒞𝐿𝑆( 𝓢
𝑎) ← 𝒞𝐿𝑆( 𝓢

𝑎) − 𝜔2 
12     Else  
13        𝓢𝑎

𝐿𝑆 remains unchanged → 𝒞𝐿𝑆( 𝓢
𝑎) remains unchanged 

14        𝓢𝑎
𝑡𝑒𝑚𝑝 ←  𝓢𝑎

𝐿𝑆, 𝑅( 𝓢𝑎
𝑡𝑒𝑚𝑝) ← 𝑅( 𝓢𝑎

𝐿𝑆) 

15     End If 

16   End If 

17 End For 

18 Output: 𝒞𝐿𝑆( 𝓢
𝑎) , 𝒞𝐿𝑆( 𝓢

𝑎) 
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4.3.2.5. Pheromone Management 

After all the ants have constructed their tours and the LS procedure has been applied to 

the corresponding solutions, pheromone trail values are updated according to the MAX-MIN 

Ant System (MMAS) [68] updating rule which can be expressed as follows: 

 

𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 + ∆𝜏𝑖𝑗
𝑖𝑏 ,    (4.15) 

 

where 𝑖 = 0,1,… , |𝑫|, 𝑗 = 1,… , |𝑫|, 𝜌 ∈ (0,1) is the pheromone evaporation factor and the 

added pheromone trail ∆𝜏𝑖𝑗
𝑖𝑏 can be given by the following equation: 

 

∆𝜏𝑖𝑗
𝑖𝑏 = {

1/𝒞𝑖𝑏 , 𝑖𝑓𝑑𝑗 ∈ 𝓢𝑖𝑏

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  (4.16) 

 

where 𝓢𝑖𝑏
 is the best solution found by the ants in the current iteration of the algorithm (i.e. 

iteration-best solution) and 𝒞𝑖𝑏 
is its cost evaluated by the cost function expressed in (4.13). 

According to the MMAS pheromone update rule, only the ant which found the solution with 

the highest quality (i.e. the lowest cost) gets to deposit pheromone on the arcs of the 

construction graph. 

Note that pheromone is deposited on all the arcs leading to the deployment point 𝑑𝑗 ∈

𝓢𝑖𝑏. This is because the proposed algorithm rewards the inclusion of a deployment point in 

the iteration-best solution, regardless of its position in the solution (i.e. regardless of the 

connected cover to which it belongs). The reasoning behind this is that the inclusion of such 

advantageous deployment points in different connected covers can lead to different but 

equally good solutions to the problem. Thus, exploring different permutations of these 

deployment points is essential to finding high quality solutions. 

Since the MMAS pheromone update rule strongly exploits the best solution found in 

each iteration, upper and lower limits, denoted 𝜏𝑚𝑎𝑥 and  𝜏𝑚𝑖𝑛, are imposed on the 

pheromone trail value on each arc of the construction graph. This strategy is called 

pheromone constraining and is followed to avoid a stagnation situation where the algorithm 

converges prematurely to good but sub-optimal solutions. This is due to the excessive 

increase of the pheromone trails on the arcs leading to the deployment points belonging to 

those solutions. Pheromone constraining ensures that the probability of an ant 𝑎 on 

deployment point 𝑑𝑖 selecting a deployment point  𝑑𝑗 ∈  𝓝𝑖
𝑎 is always greater than zero. The 

value of 𝜏𝑚𝑎𝑥 is given by: 

 

𝜏𝑚𝑎𝑥 = 1/𝜌𝒞𝑏𝑠 ,  (4.17) 

 

where 𝒞𝑏𝑠 
is the best solution found so far by the algorithm (i.e. best-so-far solution). Note 

that every time a higher quality solution is found and 𝒞𝑏𝑠 
 is updated, the value of 𝜏𝑚𝑎𝑥 is 

updated accordingly. On the other hand, the value of 𝜏𝑚𝑖𝑛 is given by (4.18), where 𝒷 is a 

constant that is set by experimentation.  

 

𝜏𝑚𝑖𝑛 = 𝜏𝑚𝑎𝑥/𝒷, (4.18) 
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4.3.2.6. Summary of the proposed ACO algorithm 

Table 4.4 summarizes the different steps in the proposed ACO algorithm for solving the 

MCRC-SDP. The input to the proposed ACO algorithm includes all the MCRC-SDP instance 

parameters (𝑫, 𝑻, 𝑑0 , 𝜆 , 𝑅𝑚𝑖𝑛,  𝑁𝑈𝐵 , 𝑟𝑠 , 𝑟𝑐  ) and the ACO related parameters (𝑚 , 𝜌,  𝑖𝑡𝑚𝑎𝑥 

, 𝑖𝑡𝑐). The ACO parameters  𝑖𝑡𝑚𝑎𝑥 and 𝑖𝑡𝑐 are defined as the maximum allowed number of 

iterations the algorithm can carry out and the number of successive iterations the algorithm 

can carry out with no enhancement in the best so far solution cost 𝒞𝑏𝑠 
 before it is terminated, 

i.e. before it is decided that the algorithm has converged. 

In the first step of the proposed algorithm, the best-so-far solution cost 𝒞𝑏𝑠 
is initialized 

to a high value in order to ensure that it is replaced by the best solution cost found in the first 

iteration. All Pheromone trails are initialized to unity to ensure that they are constrained to 

the upper limit calculated at the end of the first iteration using (4.17).  Then, each ant 𝑎, 
for 𝑎 = 1, … ,𝑚, constructs its tour/ solution 𝓢𝑎

 according to the tour construction procedure 

presented in Section 4.3.2.2 and summarized in Table 4.2. The cost of ant  𝑎’s solution 

𝒞( 𝓢𝑎) is evaluated using (4.14). Then the LS procedure presented in Section 4.3.2.4 and 

summarized in Table 4.3 is applied to 𝓢𝑎
. Note that if the LS procedure produced no 

reduction in the value of  𝒞( 𝓢𝑎), it returns the original solution and cost unaltered.  

After these steps are applied for each ant, the iteration-best solution  𝓢𝑖𝑏
 and the 

corresponding cost 𝒞𝑖𝑏
 are identified and used to update the pheromone trail values using 

(4.15) and (4.16). Next, the best-so-far solution is updated if 𝒞𝑖𝑏
 is less than the current 

𝒞𝑏𝑠 
and the values of 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 are updated accordingly using (4.17) and (4.18). The 

pheromone constraining procedure follows as described in Section 4.3.2.5.  Finally, the 

algorithm is terminated if it goes through  𝑛𝑚𝑎𝑥 iterations or if it goes through 𝑛𝑐𝑜𝑛𝑣 

iterations with no enhancement in the best-so-far solution cost  𝒞𝑏𝑠 . 

Table 4.4   Pseudo code of the proposed ACO algorithm 

Ant Colony Optimization Algorithm for Solving MCRC-SDP 

1 Input: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛, 𝜆 , 𝑁𝑈𝐵  , 𝑟𝑠 , 𝑟𝑐  , 𝑚 , 𝜌,  𝑛𝑚𝑎𝑥 , 𝑛𝑐𝑜𝑛𝑣 

2 Initialize:  𝑖𝑡 = 0 , 𝒞𝑏𝑠 = ∞, 𝓢𝑏𝑠 = 𝜑, 𝜏0 = 1 

3 While (𝑖𝑡 < 𝑛𝑚𝑎𝑥 & 𝑛𝑐𝑜𝑛𝑣 > 0) 

4   Increment iterations counter: 𝑖𝑡 ← 𝑖𝑡 + 1 

5   For 𝑎 = 1,… ,𝑚 
6     Apply TOUR_CONSTRUCTION in Table 4.2 procedure to build 𝓢𝑎 

7     Calculate tour cost 𝒞(𝓢𝑎) using (4.14) 

8     Apply LOCAL_SEARCH procedure in Table 4.3: 𝓢𝑎 ← 𝓢𝑎
𝐿𝑆 , 

    𝒞( 𝓢𝑎) ←    𝒞𝐿𝑆( 𝓢
𝑎), 𝑅( 𝓢𝑎) ← 𝑅(𝓢𝑎

𝐿𝑆) 
9   End For 

10   Identify iteration-best solution 𝓢𝑖𝑏 and cost 𝒞𝑖𝑏 

11   Update pheromone trails using (4.15) , (4.16)  

12   If 𝒞𝑖𝑏 < 𝒞𝑏𝑠  
13     Update best solution so far: 𝓢𝑏𝑠 ← 𝓢𝑖𝑏 , 𝒞𝑏𝑠 ← 𝒞𝑖𝑏 

14     Re-initialize convergence counter 𝑛𝑐𝑜𝑛𝑣 to starting value 

15   Else 

16     Decrement convergence counter: 𝑛𝑐𝑜𝑛𝑣 ← 𝑛𝑐𝑜𝑛𝑣 − 1 

17   End If 

18   Apply Pheromone constraining to  𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 (4.17) , (4.18) 

19 End While 

20 Output: 𝓢𝑏𝑠 = {𝑺1
𝑏𝑠, 𝑺2

𝑏𝑠, … , 𝑺𝑁𝑏𝑠

𝑏𝑠 }, 𝒞𝑏𝑠  
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4.3.2.7. Measures to Reduce Computational Cost 

The same two measures discussed in Section 4.3.1.7, which are applied in the proposed 

MA, are applied in the proposed ACO algorithm to reduce the computational cost associated 

with the cost function expressed in (4.14). 

4.4. Experimental Results and Discussion 

In this section, the performance of the proposed MA and ACO algorithms in solving the 

MCRC-SDP expressed in (4.1) - (4.5) is evaluated in terms of two main performance metrics, 

namely, the quality of the obtained solutions and the computational cost. Since, to the best of 

our knowledge, the proposed algorithms are the first algorithms to solve the MCRC-SDP, we 

benchmark their performance using a simple GH which attempts to find feasible solutions of 

good quality to the MCRC-SDP by successively building connected covers until the 

reliability constraint is met.  

4.4.1. Experimental Setup 

For the conducted experiments, several instances of the MCRC-SDP of different scales 

and different values of the minimum reliability 𝑅𝑚𝑖𝑛 are generated. We assume that the RoI 

is a two-dimensional square area equal to 100 × 100 m2. The set of target points  𝑻, the set 

of deployment points 𝑫 and the location of the sink node 𝑑0 are all generated randomly inside 

the perimeter of the RoI. The scale of the problem is identified by the sizes of the sets  𝑫 

and  𝑻, denoted by |𝑫| and |𝑻| respectively. For each problem scale, the upper bound of the 

number of connected covers 𝑁𝑈𝐵 is calculated using the procedure presented in Section 4.2.3. 

We denote each problem scale a test case. Since the value of 𝑅𝑚𝑖𝑛 affects the difficulty level 

of the problem instance (the higher the value the more difficult it is to solve the problem 

instance), three values for 𝑅𝑚𝑖𝑛 are considered, specifically 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999, 

for each test case. That is, each test case generates three problem instances, one for each of 

the three  𝑅𝑚𝑖𝑛 values. Table 4.5 shows the data pertinent to each test case, namely the values 

of |𝑫|, |𝑻| and 𝑁𝑈𝐵. For all problem instances, we assume the following SN-related 

parameters: disk-coverage model, sensing range  𝑟𝑠 = 30 m, communication range 𝑟𝑐 = 50 m 

and probabilities of failure of sensor, transceiver, processor and battery, 

𝜆𝑠 = 1.0× 10−2 , 𝜆𝑡 = 5.0× 10−3 , 𝜆𝑝 = 2.0 × 10−3  and 𝜆𝑏 = 1.0 × 10−3, respectively. 

Table 4.5   Data of test cases used to evaluate the proposed MA and ACO algorithm 

Test Case |𝑫| |𝑻| 𝑁𝑈𝐵 

TC1 30 15 4 

TC2 40 25 4 

TC3 50 35 5 

TC4 60 45 5 

TC5 70 55 6 

TC6 80 65 6 

TC7 90 75 7 

 

4.4.2. Parameter Settings of the Proposed Algorithms 

In this section, we discuss how the different parameters of the proposed MA and ACO 

algorithm are set. 
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4.4.2.1. Parameter Settings of the Proposed MA 

Selecting the MA parameters, including the population size, the crossover rate, the 

mutation rate and the LS procedure scheduling, carefully is an important task in optimizing 

its performance in solving the optimization problem at hand [133].  However, it is also a 

difficult task since a wide range of numbers for each of these parameters have been 

recommended in the literature [134], i.e. there are no optimal parameter settings that can be 

applied to all optimization problems. Therefore, it is advised that general guidelines for GA 

parameters setting are followed along with an initial parameter sensitivity testing on the 

problem at hand, which reveals the parameter(s) by which the algorithm performance is most 

affected.  

For the MCRC-SDP at hand, the initial parameter sensitivity testing revealed that the 

performance of proposed MA is most sensitive to the LS procedure schedule, especially in 

terms of the computational cost, which is measured by the total CPU run time in seconds for 

the algorithm to converge or perform the set maximum number of iterations. Since the ratio 

𝑃𝐿𝑆 follows a gradual linear increase as shown in Fig. 4.4, the parameter 𝑛𝐿𝑆 controls the 

speed by which this increase occurs during the progress of the MA. According to the study 

in [132], this speed is highly dependent on the combination of both the optimization problem 

nature (i.e. objective function, constraints, and the design of the MA fitness function) and the 

used LS procedure. On one hand, decreasing the value of 𝑛𝐿𝑆 decreases the speed of the LS 

procedure application and hence decreases the overall number of chromosomes undergoing 

the procedure throughout a given number of iterations. This in turn results in a decrease in the 

additional computational cost of the LS procedure and may result in decreasing the overall 

computational cost/run time of the algorithm. On the other hand, decreasing the speed of the 

LS procedure application may also decrease the speed of convergence of the algorithm, i.e. 

increase the number of iterations the algorithm requires to converge and hence increase the 

overall computational cost/run time. Similarly, decreasing the value of 𝒏𝑳𝑺 increases the 

speed of the LS procedure application and its effect on the overall computational cost/ run 

time of the algorithm may be positive or negative as well. It may also cause the algorithm to 

quickly get trapped in local minima and converge prematurely. Hence, setting the value of the 

parameter 𝑛𝐿𝑆  requires tuning using experimental results. The remainder of the proposed 

MA parameters are set as follows [135], [136]: µ = 2|𝑫| (where |𝑫| represents the length of 

the integer-encode chromosome), crossover rate is set to 1.0 and the mutation rate is set to 

2 |𝑫|⁄ .  

In order to tune the LS procedure scheduling to produce the best performance of the 

proposed MA in terms of the quality of solutions and the computational cost, we selected two 

MCRC-SDP instances at random from the twenty one problem instances generated from the 

seven test cases in Table 4.5, namely, TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 at 𝑅𝑚𝑖𝑛 = 0.999. For 

both selected problem instances, the proposed MA is applied using seven different values 

for  𝑛𝐿𝑆 , specifically, 5,10,20,30,40,50,100. For each value of   𝑛𝐿𝑆 ten independent runs of 

the proposed MA are performed to account for the algorithm’s stochastic nature. Since this 

experiment involves a significantly large number of runs, we adopted the conventional two-

mode SN model in all reliability calculations in this experiment. This significantly decreases 

the computational cost of calculating the fitness function expressed in (4.6) as can be inferred 

from the discussion in Section 3.6.2 in Chapter 3.  This implicit simplification of the fitness 

function has no effect on the outcome of this experiment since the effect of the value of   𝑛𝐿𝑆  

on the performance of the proposed MA is independent of the accuracy of the SN model 

adopted in reliability calculations. Results of the experiment are shown in Fig. 4.5 and Fig. 

4.6.  
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Fig. 4.5 shows the quality of the obtained solutions, measured by the average number of 

deployment points in the solutions (i.e. the deployment cost) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and for 

TC5 at 𝑅𝑚𝑖𝑛 = 0.999. Fig. 4.6 shows the computational cost, measured by the average CPU 

run time in seconds, for both problem instances. From Fig. 4.5 we see that the effect of 

varying the speed of the LS procedure application for the tested range of values for  𝑛𝐿𝑆 on 

the quality of the obtained solutions does not appear to be significant in both tested problem 

instances. However, Fig. 4.6 shows that in both tested problem instances, the lowest overall 

computational cost of applying the proposed MA occurs at the slowest LS procedure 

schedule, i.e. at  𝑛𝐿𝑆 = 100. At that setting, the rate of increase of the number of 

chromosomes undergoing the LS procedure per iteration, which is equal to ⌊µ/ 𝑛𝐿𝑆⌋, is equal 

 

Fig. 4.5   Average deployment cost of the solutions obtained by the proposed MA for different LS 

procedure schedules (different values of  𝑛𝐿𝑆) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 at 𝑅𝑚𝑖𝑛 = 0.999. 

 

Fig. 4.6   Average computational cost , measured by the CPU run time in seconds, of the proposed 

MA for different LS procedure schedules (different values of  𝑛𝐿𝑆) for TC4 at 𝑅𝑚𝑖𝑛 = 0.99 and TC5 

at 𝑅𝑚𝑖𝑛 = 0.999. 

to unity for both tested problem instances. This slow speed of LS procedure application 

progression does not negatively affect the ability of the solution to obtain relatively good 

quality solutions but significantly decrease the overall computational cost of the proposed 
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MA by decreasing the additional computational cost of the LS procedure. Hence, we will use 

 𝑛𝐿𝑆 = 100 for all tested problem instances in the MA experiments presented later in this 

chapter. Table 4.6 shows the settings of the different parameters of the proposed MA. 

Table 4.6   Parameters of the proposed MA 

Parameter Setting 

Population Size µ 2|𝑫| 

Parent Selection Roulette Wheel 

Crossover Operator Single-point with rate 1.0 

Mutation Operator Creep with rate 2 |𝑫|⁄  

Survivor Selection µ + 𝜆 scheme 

Heuristics Scattering + LS procedure in Table 4.1 

LS Procedure Schedule 𝑛𝐿𝑆 100 

Maximum No. of Generations 𝑛𝑚𝑎𝑥 100 

No. of Generations for Convergence 𝑛𝑐𝑜𝑛𝑣 20 

 

4.4.2.2. Parameters Setting of the Proposed ACO Algorithm 

To set the different parameters of the proposed ACO algorithm, we follow the general 

guidelines in  [68], which suggests that for a wide variety of optimization problems, the 

number of ants 𝑚 and the pheromone evaporation rate ρ can be set to 30 and 0.5, to achieve 

optimal results. For a fair comparison with the proposed MA in the following experiments, 

we set 𝑛𝑚𝑎𝑥 = 100 and 𝑛𝑐𝑜𝑛𝑣 = 20. However, the optimal values of the ACO parameters α 

and β vary depending on the problem at hand. It is therefore important to find their optimum 

configuration that would result in the best average solution quality obtained by the ACO 

algorithm for the MCRC-SDP. In the ACO literature, values of both α and β can vary 

between 1 and 5, with the optimum configuration largely depending on the type of problem 

the ACO algorithm is designed to solve and whether or not the algorithm is coupled with an 

LS procedure [68]. 

Similar to the method followed in tuning 𝑛𝐿𝑆 in the proposed MA, we selected two 

problem instances at random from the twenty one problem instances generated from the 

seven test cases in Table 4.5, namely test case TC3 for  𝑅𝑚𝑖𝑛 = 0.9999 and TC6 for 𝑅𝑚𝑖𝑛 =
0.99,  in order to find the optimum configuration of α and β for the problem at hand. For both 

selected problem instances, the proposed ACO algorithm is applied using twenty-five 

possible combinations of α and β, with each parameter ranging between 1 and 5. To account 

for the heuristic nature of the ACO algorithm, the algorithm is run ten independent times at 

each of the twenty-five parameters’ settings. Since this experiment involves a significantly 

large number of runs, we adopted the conventional two-mode SN model in all reliability 

calculations in this experiment. This significantly decreases the computational burden of 

calculating the fitness function expressed in (4.6) as can be inferred from the discussion in 

Section 3.6.2 in Chapter 3. Similar to the previous section, we use the conventional two-mode 

SN model in all reliability calculations to decrease the computational cost of this experiment 

without affecting its outcome.  

Fig. 4.7 and Fig. 4.8 show the average value of the total number of deployment points, 

i.e. the average deployment cost, in the obtained solutions the versus α and β. Fig. 2 shows 

that there is an advantage in setting  𝛼 = 1 and 𝛽 = 3, at which the minimum average 

deployment cost is obtained. Fig. 3 also shows that the minimum average deployment cost is 

obtained by setting 𝛼 = 1 and 𝛽 = 3 in addition to setting 𝛼 = 2 and 𝛽 = 5. Hence, in the 
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following experiments we set 𝛼 = 1 and 𝛽 = 3. Table 4.7 shows the settings of the different 

parameters of the proposed ACO algorithm. 

 

 

Fig. 4.7    The average deployment cost obtained from applying the proposed ACO algorithm on test 

case TC3 at 𝑅𝑚𝑖𝑛 = 0.9999. The best combination of α and β is (1,3). 

 

 

Fig. 4.8   The average deployment cost obtained from applying the proposed ACO algorithm on test 

case TC6 at 𝑅𝑚𝑖𝑛 = 0.99. The best combinations of α and β are (1,3) and (2,5). 
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Table 4.7   Parameters of the proposed ACO algorithm 

Parameter Setting 

Number of ant 𝑚 30 

Pheromone influence parameter α 1 

Heuristic info influence parameter β 3 

Pheromone levels update rule MMAS 

Pheromone evaporation rate ρ 0.5 

Pheromone constraining parameter 𝒷 10 

Heuristics LS procedure in Table 4.4 

Maximum No. of Generations 𝑛𝑚𝑎𝑥 100 

No. of Generations for Convergence 𝑛𝑐𝑜𝑛𝑣 20 

 

4.4.3. A GH for Benchmarking the Proposed Algorithms 

Since, to the best of our knowledge, the proposed MA and ACO algorithms are the first 

algorithms for solving the MCRC-SDP, a benchmark approach is required to evaluate their 

performance.  Similar to the studies in [121], [94] and [73], we benchmark the performance 

of the proposed algorithms using a GH. The GH uses the same heuristic information adopted 

in the proposed ACO algorithm. It also follows the same basic idea of constructing solutions 

to the MCRC-SDP by consecutively building connected covers until the combined reliability 

of the connected covers meets or exceeds the specified minimum reliability 𝑅𝑚𝑖𝑛. The pseudo 

code of the GH is given in Table 4.8. 

The input to the GH includes all the MCRC-SDP instance 

parameters: 𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛 , 𝑟𝑠 , 𝑟𝑐 , 𝜆𝑠, 𝜆𝑡 , 𝜆𝑝 and 𝜆𝑏. The GH is initialized by an empty 

solution superset (i.e.  𝓢 = 𝜑) and a connected cover index  𝑘 = 0. The GH then proceeds in 

rounds. In each round, a deployment point is added to the connected cover with the current 

index 𝑘, denoted by  𝑺𝑘. Similar to the proposed ACO algorithm, connectivity to the sink 

node located at 𝑑0 is achieved by constricting the candidate deployment points for inclusion 

to 𝑺𝑘 in a given round to the set 𝓝𝑛𝑒𝑥𝑡. Similar to the neighborhood set 𝓝𝑖
𝑎 defined in 

Section 4.3.2.2 and expressed in (4.8) and (4.11), the definition of the set 𝓝𝑛𝑒𝑥𝑡 depends on 

whether the current round is an intra- or inter- connected cover round. For an intra-connected 

cover round, 𝓝𝑛𝑒𝑥𝑡 has a similar definition to the set 𝓝𝑖𝑓𝑢𝑙𝑙 
𝑎 expressed in (4.9), which 

includes all the deployment points which have not been added in previous rounds to the 

solution and are within the communication range 𝑟𝑐 of any of the deployment points 

belonging to 𝑺𝑘. For an inter-connected cover round (which includes the first round, i.e. the 

start of the first connected cover), on the other hand, 𝓝𝑛𝑒𝑥𝑡 has a similar definition to the 

set 𝓝𝑠𝑖𝑛𝑘 
𝑎 , which includes all the deployment points which have not been added in previous 

rounds to the solution and are within the communication range 𝑟𝑐 of the sink node located at 

𝑑0. For both types of rounds, the GH calculates the coverage gain  ℊ𝑗, as defined in Section 

4.3.2.2, of all the deployment points 𝑑𝑗 ∈  𝓝𝑛𝑒𝑥𝑡 and adds the point with the highest gain, 

denoted by ℊ𝑚𝑎𝑥, to  𝑺𝑘. In the case where more than one deployment point have the 

maximum gain or if none of the deployment points belonging to 𝓝𝑛𝑒𝑥𝑡 have a non-zero 

coverage gain, the GH chooses a deployment point from 𝓝𝑛𝑒𝑥𝑡 randomly. The GH 

terminates when the combined reliability of the constructed connected covers meets the 

reliability constraint, i.e. 𝑅(𝓢) ≥  𝑅𝑚𝑖𝑛. 
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Table 4.8   Pseudo code of the GH used for benchmarking the performance of the proposed 

algorithms for solving the MCRC-SDP 

Procedure GREEDY_HEURISTIC 

1 Input:  𝑫, 𝑻, 𝑑0, 𝑅𝑚𝑖𝑛 , 𝑟𝑠 , 𝑟𝑐  , 𝜆𝑠, 𝜆𝑡 , 𝜆𝑝 and 𝜆𝑏 

2 Initialize: 𝓢 = 𝜑 , 𝑅(𝓢) = 0, 𝑘 = 0,𝑫− = 𝑫 

3 While 𝑅(𝓢) < 𝑅𝑚𝑖𝑛 

4   Build a new connected cover: 𝑘 ← 𝑘 + 1, 𝑺𝑘 = 𝜑 , 𝑻𝑐𝑜𝑣 = 𝜑 

5   While 𝑻𝑐𝑜𝑣 ≠ 𝑻 (i.e. 𝑺𝑘 is not a complete connected cover) 

6      If 𝑺𝑘 = 𝜑 , i.e. the beginning of  𝑺𝑘 

7        𝓝𝑛𝑒𝑥𝑡 = {𝑑𝑗 ∈ 𝑫−: ‖𝑑𝑗𝑑0‖ ≤ 𝑟𝑐} 

8      Else  

9        𝓝𝑛𝑒𝑥𝑡 = {𝑑𝑗 ∈ 𝑫−: ‖𝑑𝑗𝑑𝑗′‖ ≤ 𝑟𝑐 for any 𝑑𝑗′ ∈ 𝑺𝑘} 

10     End If 

11     Calculate coverage gain ℊ𝑗∀𝑑𝑗 ∈ 𝓝𝑛𝑒𝑥𝑡 

12     Update  𝑺𝑘 by adding 𝑑𝑗 ∈ 𝓝𝑛𝑒𝑥𝑡 with ℊ𝑗 = ℊ𝑚𝑎𝑥 

13     Update 𝑻𝑐𝑜𝑣 (i.e. update coverage of 𝑺𝑘) 

14   End While 

15    Update 𝓢 : 𝓢 ← 𝓢 ∪ 𝑺𝑘 

16    Calculate 𝑅(𝑺𝑘) and Update 𝑅(𝓢) 

17    Update 𝑫− : 𝑫− ← 𝑫− − 𝑺𝑘 

18 End While 

19 Output: 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁}, 𝑅(𝓢) 

 

4.4.4. Comparison and Discussion 

To carry out our evaluations, we apply the three algorithms, MA, ACO and GH, to the 

twenty one MCRC-SDP problem instances generated from the seven test cases in Table 4.5 at 

a minimum required reliability 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999. For each problem instance, 

ten independent runs of each of the three algorithms are performed. For the MA and ACO 

algorithm, the parameters settings listed in Tables 4.6 and 4.7, respectively, are used. The 

algorithms are run on a workstation with the following specs:  an Intel Xeon processor, CPU 

E5620, 2.4 GHz and 24 GB RAM.  

Tables 4.9, 4.10 and 4.11 summarize the results, in terms of the quality of 

solutions/deployment cost obtained by the three algorithms for the seven test cases at 𝑅𝑚𝑖𝑛 =
0.99, 0.999 and 0.9999, respectively. The tables show the lowest (‘Best’), highest (‘Worst’) 

and the average (‘Avg.’) deployment cost obtained from each algorithm. The tables also 

show the success rate (‘SR’) in percentage of each method in finding a solution to each 

MCRC-SDP instance that fulfills all the constraints of the problem, i.e. a feasible solution. 

For each problem instance, the best result(s)/lowest deployment cost obtained among the 

three algorithms is written in bold. To provide a statistically accurate comparison in terms of 

the averages of the obtained results, a set of pair-wise Wilcoxon Signed-Rank test [137] is 

performed to confirm the initial observations drawn from the results in Tables 4.9 – 4.11. 

Tables 4.12 – 4.14 show the resulting p-values of the performed statistical test and the 

corresponding conclusion for each problem instance. Values less than the specified statistical 

significance, α=0.01, indicate that the null hypodissertation of equal averages is rejected. The 

alternative hypodissertation of the test is therefore true with a 99% confidence level, where 

“A<B” means B performs better than A (the true mean of the obtained deployment cost from 

B is lower than from A), while “A≈B” means A and B perform almost similarly.  
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Table 4.9   Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained 

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.99 

Test 

Case 

Greedy Heuristic Proposed  MA Proposed ACO Algorithm 

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%) 

TC1 10 11 10.1 40 8 10 8.4 100 8 8 8 100 

TC2 11 12 11.1 70 8 10 9.1 100 8 8 8 100 

TC3 11 19 12.5 30 10 11 10.2 100 10 10 10 100 

TC4 12 22 15.8 50 10 11 10.8 100 10 10 10 100 

TC5 19 22 20.4 40 18 19 18.4 100 18 18 18 100 

TC6 20 24 21.8 40 19 20 21.8 100 18 19 18.4 100 

TC7 21 23 22.2 70 20 21 20.7 100 19 20 19.2 100 

 

Table 4.10   Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained 

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.999 

Test 

Case 

Greedy Heuristic Proposed  MA Proposed ACO Algorithm 

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%) 

TC1 15 17 15.6 30 13 14 13.2 100 13 13 13 100 

TC2 15 18 16.7 40 14 15 14.4 100 13 13 13 100 

TC3 18 29 23.3 20 16 17 16.8 100 16 16 16 100 

TC4 18 26 21.4 40 17 18 17.3 100 16 16 16 100 

TC5 26 29 27.4 30 25 26 25.3 100 24 24 24 100 

TC6 28 31 29.7 20 26 28 27.1 100 25 26 25.7 100 

TC7 30 32 31 20 27 29 28.4 100 26 27 26.1 100 

 

Table 4.11   Comparison among the GH, MA and ACO algorithms in terms of quality of the obtained 

solutions for the test cases in Table 4.5 at 𝑅𝑚𝑖𝑛 = 0.9999 

Test 

Case 

Greedy Heuristic Proposed  MA Proposed ACO Algorithm 

Best Worst Avg. SR(%) Best Worst Avg. SR(%) Best Worst Avg. SR(%) 

TC1 21 22 21.8 20 18 19 18.3 100 18 18 18 100 

TC2 22 26 23.5 10 20 22 20.8 100 18 18 18 100 

TC3 27 38 34.3 0 23 24 23.7 100 22 23 22.6 100 

TC4 24 34 30 30 23 25 23.8 100 22 22 22 100 

TC5 33 37 35.7 10 31 34 32.8 100 30 31 30.8 100 

TC6 36 40 37.7 10 34 35 34.2 100 32 33 32.4 100 

TC7 38 42 38.9 10 34 36 35.4 100 33 34 33.5 100 

 

Table 4.12   Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.99 at 

99% confidence level 

Test Case GH vs. MA1 MA vs. ACO2 Conclusion 

TC1 9.69 × 10−5 3.88× 10−2 GH < MA ≈ ACO 

TC2 2.93 × 10−5 7.83 × 10−5 GH < MA < ACO 

TC3 1.11 × 10−4 8.37 × 10−2 GH < MA ≈ ACO 

TC4 5.03 × 10−5 2.20 × 10−4 GH < MA < ACO 

TC5 2.97× 10−4 1.68× 10−2 GH < MA ≈ ACO 

TC6 1.42 × 10−4 1.27 × 10−4 GH < MA < ACO 

TC7 1.28 × 10−4 8.92 × 10−5 GH < MA < ACO 
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Table 4.13   Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.999 at 

99% confidence level 

Test Case GH vs. MA1 MA vs. ACO2 Conclusion 

TC1 4.52 × 10−5 8.37 × 10−2 GH < MA ≈ ACO 

TC2 3.06 × 10−4 2.28 × 10−5 GH < MA < ACO 

TC3 5.43 × 10−5 2.20 × 10−4 GH < MA < ACO 

TC4 2.09 × 10−4 2.02 × 10−5 GH < MA < ACO 

TC5 1.37 × 10−4 2.02 × 10−5 GH < MA < ACO 

TC6 8.03 × 10−5 1.15 × 10−4 GH < MA < ACO 

TC7 6.04 × 10−5 4.18 × 10−5 GH < MA < ACO 

 

Table 4.14   Results of the pairwise Wilcoxon signed-rank tests on the test cases at 𝑅𝑚𝑖𝑛 = 0.9999 at 

99% confidence level 

Test Case GH vs. MA1 MA vs. ACO2 Conclusion 

TC1 3.68 × 10−5 3.84 × 10−2 GH < MA ≈ ACO 

TC2 9.09 × 10−5 2.38 × 10−5 GH < MA < ACO 

TC3 6.31 × 10−5 4.82 × 10−4 GH < MA < ACO 

TC4 7.18 × 10−4 2.38 × 10−5 GH < MA < ACO 

TC5 2.64 × 10−4 1.36 × 10−4 GH < MA < ACO 

TC6 4.71 × 10−5 4.09 × 10−5 GH < MA < ACO 

TC7 6.39 × 10−5 2.20 × 10−4 GH < MA < ACO 

 
All tests are carried out at a 99 percent confidence interval, i.e. α = 0.01 

“A<B” means B performs better than A, i.e. the true mean of B is lower than A, while “A≈B” means A and B perform similarly, i.e. there 
is no sufficient evidence to reject the null hypodissertation of equal true means. 

1. 𝑝 −values of the Wilcoxon signed-rank test of the alternative hypodissertation that the mean of the proposed MA is lower than the mean 
of the GH. 

2. 𝑝 −values of the Wilcoxon signed-rank test of the alternative hypodissertation that the mean of  the proposed ACO algorithm is lower 
than the mean of the proposed MA. 

 
 

Results in Tables 4.9 - 4.11 demonstrate that the proposed MA and ACO algorithms are 

consistently capable of finding fully feasible solutions to the problem at hand with a success 

rate of 100% for all the twenty one problem instances under consideration. This proves that 

the underlying design of the different building blocks of the two proposed algorithms is 

indeed appropriate for the problem at hand. For the MA, the demonstrated ability to converge 

to feasible solutions to the MCRC-SDP with a success rate of 100% for all the tested problem 

instances is attributed to the design of the chromosome fitness function expressed in (4.6). As 

discussed in Section 4.3.1.2, the reliability and redundancy constraints of the MCRC-SDP 

expressed in (4.4) and (4.5) are not automatically met in each chromosome. This in turn 

means that only a part of the genotypic space corresponds to feasible solutions to the MCRC-

SDP. However, both of these constraints are incorporated in the fitness function by means of 

the two penalty terms which dampen the fitness of the chromosomes that correspond to 

solutions which violate one or both constraints. As a result, the MA search is directed 

towards the regions in the genotypic space which correspond to fully feasible solutions. This 

process is accelerated by the application of the LS procedure which aims to increase the 

fitness of the chromosomes to which it is applied by attempting to remove the redundancy 

and reliability constraints’ violations in the corresponding solutions. For the proposed ACO 

algorithm, the demonstrated ability to consistently find feasible solutions is attributed to the 

design of the cost function expressed in (4.14). Some ants may construct infeasible tours due 
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to the violation of the redundancy constraint if one or more of the connected covers in the 

corresponding solutions are non-minimal. However, the cost function penalizes these 

infeasible tours and consequently the pheromone trail levels will reinforce feasible tours and 

increase the proportion of ants which construct feasible solutions over that of ants which 

construct non-feasible ones. This process is accelerated by the use of the proposed LS 

procedure outlined in Table 4.3.  

On the other hand, the success rate of the GH does not exceed 70% and is, on average, 

considerably lower than 70%. For all the problem instances under consideration, the GH was 

able to construct solutions that satisfy the constraints expressed in (4.2) - (4.4). However, it 

failed in a considerable number of runs in obtaining solutions that satisfy the redundancy 

constraint expressed in (4.5), i.e. solutions that consist only of minimal connected covers and 

hence are feasible solutions. The failure of the GH in consistently constructing feasible 

solutions to the MCRC-SDP problem which consist only of minimal connected covers can be 

attributed to its ‘greedy’ method it follows in constructing the connected covers. This method 

aims at reducing the chance of adding redundant deployment points to the connected covers 

but fails to eliminate it completely. A redundant deployment point or points can be added to a 

given connected cover  𝑺𝑘 in the following case. At any given stage in constructing  𝑺𝑘, all 

the deployment points belonging to the set 𝓝𝑛𝑒𝑥𝑡 may happen to have a zero coverage gain. 

In this case, the GH selects a deployment point at random from 𝓝𝑛𝑒𝑥𝑡 to maintain the 

connectivity of  𝑺𝑘. Hence, the selected deployment point is redundant to  𝑺𝑘 in terms of 

coverage but non-redundant in terms connectivity thus far. However, depending on the 

deployment points selected by the GH in the following rounds till the completion of 𝑺𝑘,  this 

redundant deployment point(s) in terms of coverage may become redundant in terms of 

connectivity as well, meaning that its elimination from 𝑺𝑘 would not compromise its 

coverage or connectivity. Hence, such a deployment point(s) becomes fully redundant and 

consequently 𝑺𝑘 becomes a non-minimal connected cover.  

It can also be observed from the GH results shown in Tables 4.9 - 4.11 that for each of 

the seven test cases, the success rate of the GH declines as the value of 𝑅𝑚𝑖𝑛 increases. This 

behaviour is expected since the number of connected covers required to satisfy the reliability 

constraint increases with the increase of the value of  𝑅𝑚𝑖𝑛. As the number of connected 

covers the GH has to construct to meet 𝑅𝑚𝑖𝑛  increases, the probability that a non-minimal 

connected cover is constructed increases as well. Consequently, this increases the probability 

that the GH obtains a non-feasible solution with one or more non-minimal connected covers 

which constitutes a failure. 

Examining the results in Tables 4.9 - 4.11 also reveals that the two proposed algorithms 

significantly outperform the GH in terms of the deployment cost in all tested problem 

instances. For the proposed MA, in all instances, the algorithm obtained a minimum 

deployment cost (i.e. ‘Best’ solution) solution which is lower than that obtained by the GH. 

The difference between the averages of both algorithms is also significant in favour of the 

proposed MA. For the proposed ACO, results relative to those of the GH are even better. In 

all the problem instances, the highest deployment cost (i.e. ‘Worst’ solution) obtained by the 

ACO algorithm is lower than the lowest total number of deployment points in the solutions 

(i.e. ‘Best’ solution) obtained by the GH. This implies that even for the problem instances 

where the GH succeeded in obtaining solutions consisting only of minimal covers (i.e. 

feasible solutions) with a success rate higher than null, the proposed MA and ACO 

algorithms were capable of finding feasible solutions with significantly higher quality, i.e. 

solutions of a lower deployment cost. These observations are confirmed by the statistical tests 

carried out and summarized in Tables 4.12 - 4.14. These tests conclude that for all the tested 

problem instances, the two proposed algorithms outperform the GH with a confidence level 

of 99%. This proves that the two algorithms are appropriately designed and tuned for the 
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MCRC-SDP. It is also worth mentioning that for the majority of the test problem instances, 

the MA and ACO algorithm solutions consistently have a higher combined reliability levels 

than those of the feasible GH solutions. This is because the reliability of a minimal connected 

cover is inversely proportional to its size, provided that it has no coverage redundancy. The 

reliability in this case is equal to the probability of the existence of a single event that all the 

deployed SNs are in the on state. This probability increases when there are fewer deployed 

SNs, i.e. when there are fewer deployment points in the minimal connected cover. Therefore 

for the used problem instances, where the feasible solutions obtained from the three 

algorithms consist of minimal connected covers with no coverage redundancy, the lower the 

deployment cost, the higher the combined reliability level of the connected covers. 

 Results of test cases TC3 and TC4 show a greater advantage of the proposed MA and 

ACO algorithm over the GH in terms of solution quality as compared to the rest of the test 

cases at the three considered levels for 𝑅𝑚𝑖𝑛. This can be explained as follows. In these 

problem instances, some of the GH obtained solutions (both feasible and partially feasible) 

consisted of an entire additional connected cover when compared to the solutions obtained by 

the MA and ACO algorithms. This is because in these problem instances the GH constructed 

one or more minimal connected covers of non-optimal size (i.e. with lower reliability) in its 

earlier rounds, i.e. at the beginning of constructing a solution to the problem. This has caused 

the GH to have to construct an additional connected cover to meet the reliability constraint. 

This situation does not occur in the solutions obtained by the proposed MA and ACO due to 

their search efficiency. 

  As far as the comparison between the MA and ACO algorithms is concerned, the results 

in Tables (4.9) - (4.11) suggest that the ACO algorithm outperforms the MA in the majority 

of the tested problem instances.  In terms of the average of the obtained solutions, this 

conclusion is further confirmed by the results of the statistical tests performed and which are 

presented in Tables (4.12) - (4.14). In terms of the lowest deployment cost (i.e. ‘Best’ 

solution), the MA exhibits a similar performance to the ACO algorithm in almost half of the 

tested problem instances. However, the MA’s performance in that aspect deteriorates with the 

increase of 𝑅𝑚𝑖𝑛, i.e. deteriorates with the increase of the difficulty level of the problem. 

Furthermore, the MA results show a higher level of variation, i.e. a higher standard deviation, 

than the results obtained by the ACO algorithm. This behaviour can be attributed to the fact 

that the framework of the ACO is better suited to the MCRC-SDP. Specifically, the design of 

the ACO tour construction ensures that for every ant tour, the reliability constraint expressed 

in (4.4) is met by the constructed solution. Also, the neighbourhood definitions expressed in 

(4.8) - (4.12) ensure that for every ant tour, the level of SN redundancy in each constructed 

connected covers is non-existent at best or very low at worst. Hence, especially as the ACO 

algorithm progresses and the pheromone levels reinforce the feasible solutions, a significant 

portion of the ants in each iteration build feasible solutions. Furthermore, for those ants that 

build infeasible solutions, the LS procedure may convert that infeasible solution to a feasible 

one if the reliability constraint can still be met after pruning.  

On the other hand, the chromosome encoding scheme in the proposed MA cannot 

guarantee that the reliability or the redundancy constraints are met in each chromosome. 

Therefore, only a fraction of the genotypic space correspond to feasible solutions. This in turn 

decreases the efficiency of the search performed by the MA in comparison with the ACO 

algorithm, especially with the increase on 𝑅𝑚𝑖𝑛. As  𝑅𝑚𝑖𝑛 increases it becomes a more 

difficult task to find high quality feasible solutions and a higher chance that the MA will 

converge to a local minimum. This conclusion is supported by the following pattern in the 

results shown in Tables 4.9 - 4.11. At  𝑅𝑚𝑖𝑛 = 0.99, the MA was able to find the minimum 

deployment cost (i.e. ‘Best’ solution) in five out of the seven test cases. At  𝑅𝑚𝑖𝑛 = 0.999 it 
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was able to do that in only two test cases. At  𝑅𝑚𝑖𝑛 = 0.9999 it was able to do that in only 

one test case. 

It can also be observed from Tables 4.9 - 4.11 that the solutions obtained by the MA 

have a significantly higher variability, i.e. a higher standard deviation, than the solutions 

obtained from the ACO algorithm. This behaviour can be explained as follows. According to 

the ant tour construction procedure, all ants start their tours at the sink node location in the 

RoI, which is generated randomly for every test case. Their choice of the first deployment 

point to add to every constructed connected cover, including the first one, is stochastic since 

it is governed by the probabilistic transition rule expressed in (4.7). However, these 

deployment points are constricted by the feasible neighborhood 𝓝𝑖
𝑎 expressed in (4.11). On 

the other hand, the solution obtained by the MA in each run is highly affected by the fitness 

of the chromosomes in the initial generation/population which is randomly selected. Hence, 

the results obtained from the ACO algorithm have a lower sensitivity to the random 

initialization which originates from the transition rule in (4.7) than the sensitivity of the 

results obtained by the MA to the random initialization of its first population.  

Fig. 4.9(a), 4.10 (a) and 4.11(a) show a comparison between the MA and ACO algorithm 

in terms of the computational cost, measured by the CPU run-time in seconds, for 𝑅𝑚𝑖𝑛 =
0.99, 0.999 and 0.9999, respectively. Fig. 4.9(b), 4.10 (b) and 4.11(b) show a comparison 

between the MA and ACO algorithm in terms of the total number of performed structure 

function evaluations in the reliability calculations of the fitness and cost functions, 

for 𝑅𝑚𝑖𝑛 = 0.99, 0.999 and 0.9999 respectively. The 95% confidence interval is indicated in 

both sets of figures.  

Examining Fig. 4.9(a), 4.10 (a)  and 4.11(a) shows that for each test case and for both the 

MA and the ACO algorithm, the increase in the value of 𝑅𝑚𝑖𝑛 causes an increase in the 

computational cost, i.e. the run-time of the algorithm. This is an expected behavior since 

increasing 𝑅𝑚𝑖𝑛 raises the difficulty level of the problem as solutions are expected to contain 

a higher number of minimal connected covers. Examining Fig. 4.9(b), 4.10 (b) and 4.11(b) 

confirms this conclusion. For each test case, as  𝑅𝑚𝑖𝑛 increases, the average number of total 

performed structure function evaluations increases significantly. 

Results illustrated in Fig. 4.9, 4.10 and 4.11 also show that the computational cost of the 

two algorithms is affected differently by the increase in the problem scale. For the proposed  

 

(a)  (b) 

Fig. 4.9   Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5 

at  𝑅𝑚𝑖𝑛 = 0.99 measured using (a) CPU run-time in seconds, (b) Total number of performed network 

structure function evaluations. 
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(a) (b) 

Fig. 4.10   Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5 

at  𝑅𝑚𝑖𝑛 = 0.999 measured using (a) CPU run-time in seconds, (b) Total number of performed 

network structure function evaluations. 

 (a)  (b) 

Fig. 4.11   Computational cost of the proposed MA and ACO algorithm for test cases in Table 4.5 

at  𝑅𝑚𝑖𝑛 = 0.9999  measured using (a) CPU run-time in seconds, (b) Total number of performed 

network structure function evaluations. 

MA, increasing the value of  |𝑫| consistently increases the computational cost of the 

algorithm. This can be attributed to the chromosome encoding scheme in which the 

chromosome length is equal to |𝑫| to preserve the one-to-one correspondence between the 

chromosome genes and the deployment points in a given test case. The size of the population 

is also directly proportional to the problem scale as µ = 2|𝑫|. For the proposed ACO 

algorithm, the correlation between |𝑫| and the computational cost is less drastic compared to 

the MA. This is primarily because the number of ants 𝑚 remains unchanged for all the test 

cases under consideration.  

Results in Fig. 4.9, 4.10 and 4.1 also show that for all the tested instances, the ACO 

algorithm has a significantly lower computational cost than the MA. This behavior can be 

attributed to two main factors. The first factor is the higher population size of the MA 

compared to the number of ants in the ACO algorithm. The second factor is the fact the 

execution time of a structure function evaluation directly proportional to the size of the 

connected cover for which the evaluation is carried out. Due to the chromosome encoding 

scheme used in the MA, chromosomes may represent connected covers with high levels of 

redundancy, especially in the earlier iterations of the algorithm. On the other hand, the ant 
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tour construction procedure and the feasible neighborhood definitions are designed to 

minimize the chance of ants constructing non minimal connected covers. Hence, during the 

execution of both algorithms, the average size of the connected covers the MA calculates 

reliability for is higher than that in the case of the ACO algorithm. This in turn means that the 

average execution time of a structure function evaluation is higher in the case of the MA than 

the ACO algorithm. 

4.5. Chapter Summary 

In this chapter, we considered the problem of deploying a WSN that meets a specified 

minimum level of reliability during its mission time at a minimum network deployment cost. 

To minimize the internal interference, bandwidth usage and energy consumption throughout 

the network’s mission time, we defined the problem as the problem of finding a number of 

non-overlapping minimal connected covers of the targeted region of interest such that the 

combined reliability level of these connected covers meets or exceeds the specified minimum 

level of reliability while the deployment cost is kept at a minimum. We coined this problem 

the MCRC-SDP and proved that it is NP-complete. To measure the reliability of the network, 

we used the reliability metric proposed in Section 3.5.3 in Chapter 3. We proposed two 

stochastic optimization algorithms to solve the defined MCRC-SDP, namely, a MA (i.e. 

HGA) and an ACO each coupled with a LS procedure. For each of the proposed algorithms, 

we discussed the design of the different building blocks of the algorithm. To benchmark the 

performance of both algorithms in terms of the quality of the obtained solutions, we 

presented a GH which attempts to find good quality solutions for the MCRC-SDP by using 

the same underlying idea of building solutions and heuristic information adopted in the 

proposed ACO algorithm. Finally, we presented and discussed our experimental results of 

applying the three algorithms to twenty one MCRC-SDP problem instances with different 

scales and required minimum reliability levels. Experimental results showed that for all the 

tested problem instances, the proposed MA and ACO algorithm significantly outperform the 

GH in terms of the quality of the obtained solutions, which validates the design of both 

algorithms. Experimental results also showed that the ACO algorithm outperforms the MA in 

the majority of the tested problem instances in terms of quality/optimality and in all the tested 

problem instances in terms of the computational cost. Results also suggest that the proposed 

ACO algorithm exhibits better scalability to the dimensions of the MCRC-SDP (determined 

by |𝑫| and  |𝑻|) than the proposed MA.  
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Chapter 5 

 

A Practical Realization of the Proposed Reliable 

Cost-Optimal Deployment Technique 

 

5.1. Introduction 

Each of the minimal connected covers belonging to the solution of the MCRC-SDP 

problem provides complete coverage of the target locations in RoI and forms a connected 

network with the sink node. According to the formulation of the MCRC-SDP presented in 

Section 4.2.2 in Chapter 4, these minimal connected covers are assumed to be activated in an 

orthogonal manner. This assumption is adopted to minimize the level of internal interference 

in the network during its mission time and is fundamental to the formulation of the reliability 

constraint expressed in (4.5). There is therefore a need to coordinate the sleep and active 

cycles of the SNs belonging to these connected covers based on the dynamic state of the 

overall deployment throughout the network mission time. This type of SN activity 

coordination is known in the WSN literature as topology control.  

The goal of a topology control protocol designed for a reliable WSN deployment 

obtained from solving the MCRC-SDP defined by (4.1) - (4.5) is to activate the deployed 

minimal connected covers in the assumed orthogonal manner as follows. A single minimal 

connected cover is activated at any given point in time during the network mission time while 

the SNs belonging to the remaining connected covers are put in sleep mode. This activated 

minimal connected cover remains active until its functionality is compromised due to random 

failures of one or more of its constituent SNs. At that point, the remaining functional SNs 

belonging to this minimal connected cover are put in sleep mode till the end of the network 

mission time and another minimal connected cover is activated. This procedure is repeated 

until either the mission time of the network elapses or there are no remaining functional 

deployed minimal connected covers. According to the statement of the MCRC-SDP, the 

probability of the first event is equal to  𝑅𝑚𝑖𝑛 and that of the second event is equal to 1 −
𝑅𝑚𝑖𝑛. 

In this chapter, we propose a topology control protocol for reliable cost-optimal WSN 

deployments obtained from solving the MCRC-SDP using the proposed algorithms presented 

in Chapter 4. We implement the proposed protocol on a WSN simulator and apply the 

proposed protocol on different deployment scenarios. We present and discuss the 

experimental results in terms of two protocol performance metrics: the incurred overhead and 

the time required to detect and repair the functionality of the WSN due to potential SN 

failures. The different factors which affect each of these performance metrics are also 

highlighted. 

5.2. Previous Work on WSN Topology Control 

In WSN literature, the term topology control protocol encompasses any protocol that 

controls some aspect of the deployed SNs in a WSN deployment (e.g. SN state (sleep/active), 

transmission range (radio power level), mobility (if the WSN contains mobile SNs)) to affect 

the network’s level of coverage and/or connectivity  [138]. In the context of problem at hand, 

we will focus on the topology control protocols which manage the states of the deployed SNs 
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in WSNs, which are termed Temporal Topology Control Protocols (TTCP). The concept of 

temporal topology control is based on the premise that WSNs, either deployed in a planned or 

a random fashion, can have a certain level of SN redundancy, i.e. the number of deployed 

SNs in the network may greatly exceed the number required to form a single connected-cover 

of the RoI.  To manage this redundancy, a TTCP pushes a subset of the deployed SNs in the 

WSN into sleep mode while keeping the other SNs active to fulfil the coverage and 

connectivity requirements of the network in an adaptive fashion [139]. An SN in sleep mode 

will conserve its energy expenditure by turning off its sensor(s) and most or all of its 

transceiver circuitry (depending on whether the SN will be activated by an internal timer or 

an external WAKEUP message). Hence, it will not be able to sense the environment or 

communicate wirelessly. As a direct consequence, TTCPs can enhance the WSN energy-

efficiency and hence prolong the network lifetime (in case of a random deployment). TTCPs 

are also used to counteract internal interference within the WSN, specifically those adopting a 

contention-based medium access control scheme (e.g. non-beacon enabled mode of the IEEE 

802.15.4). Internal interference occurs mainly due to packet collisions, which in turn 

increases with the increase of the number of active SNs in the network. By minimizing the 

number of active SNs in the network at any given time without compromising the network 

functionality in terms of coverage and connectivity, a TTCP decreases packet collisions by 

decreasing the amount of redundant traffic. This results in increasing the overall WSN 

throughput [36], [100]. 

TTCPs can be classified according to where they are executed in the network, i.e. can be 

classified as either centralized or distributed protocols  [140]. A centralized TTCP is 

executed in the sink node(s) of the WSN and requires global information on the SNs such as 

their relative location from the sink node and their current state and mode (i.e. in sleep or 

active mode, functional or failed state) at any time instant. Distributed TTCP is executed 

concurrently on the SNs and required only local information (i.e. information obtained from 

the neighbors of each SN). Topology control protocols can also be classified according to 

how they are executed, iteratively or non-iteratively.  The general approach of an iterative 

TTCP is to periodically compute a single connected-cover of the RoI from the pool of 

functional deployed SNs. In other words, the protocol divides time into equal periods or 

rounds. At the beginning of each round, the protocol, either in a centralized or distributed 

fashion, is responsible for activating only a subset of the deployed SNs such that this subset 

forms a connected-cover of the RoI. After the current round elapses, this procedure is 

repeated, where possibly a different subset of SNs is activated, based on the states of the 

deployed SNs at the beginning of the new round. This scheme continues until the mission 

time of the WSN has elapsed or until there are not enough functional SNs left to construct a 

connected-cover. On the other hand, the general approach adopted by a non-iterative TTCP is 

to pre-divide the deployed SNs into non-overlapping connected-covers before actually 

controlling their sleep/active cycles. Consequently, the original topology control problem of 

minimizing the number of active SNs is transformed into an optimization problem with the 

objective of maximizing the number of the non-overlapping connected covers. A given 

connected-cover is said to be active when all the SNs belonging to it are put in active mode. 

The aim of this approach is to apply an orthogonal sleep-wake scheme on the obtained non-

overlapping connected covers.  

Examples of iterative TTCPs are presented in [36], [141] - [149]. In  [36], the authors 

propose the Optimal Geographical Density Control (OGDC) protocol. OGDC protocol runs 

periodically, i.e. in rounds, in a distributed fashion. The objective of OGDC is to activate the 

minimum number of SNs in each round such that the selected active SNs completely cover 

the targeted RoI. The protocol is based on the assumptions that all deployed SNs are 

homogeneous, have a binary disk coverage profile and a communication range that is equal to 
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or exceeds twice the sensing range. This latter assumption is used to prove that connectivity 

of WSN during any round is maintained if the targeted RoI is fully covered. The protocol 

assumes that each SN can have three states: on, off or undecided. In the beginning of each 

round, SNs go through the decision phase of the protocol, during which all the functional 

deployed SNs assigned to an undecided state. A SN in the undecided state has its transceiver 

in a fully functional state, i.e. it can send and receive messages. Then the process of selecting 

the active SNs proceeds by randomly assigning one or more of the SNs to be “starting SNs”. 

These starting SNs change their state to the on state and broadcast “power-on” messages to 

the network. A SN in the on state will remain active throughout the current round after the 

decision phase elapses. Each SN still in the undecided state utilizes the information provided 

by the “power-on” messages it receives to carry out local computations to decide whether it 

change its state to the on or off state or remain undecided to wait for more “power-on” 

messages. These local computations factor in the relative location of current on SNs, the 

residual energy of the SN, the coverage gain it will contribute (if any) if it becomes active. 

This process continues until all SNs are either in the on or off states, which marks the end of 

the decision phase of the protocol. Simulation results show that OGDC outperforms existing 

protocols presented in [146] and [147] in terms of the average percentage of active SNs in a 

given round and provides almost the same level of coverage as the best protocol. Results also 

show that applying OGDC to a given deployment results in a longer lifetime of the network 

when compared to the protocol in [147].  

In [141], the authors present a distributed token-based iterative TTCP named Coverage-

Centric Active Nodes Selection (CCANS). Similar to OGDC in  [36], CCANS runs in rounds 

and each round has a protocol decision phase. During the protocol decision phase, a SN can 

assume three states, namely active, sleep or unset. However, throughout the decision phase of 

CCANS all SNs have their transceivers in a fully functional state regardless of their state. At 

the beginning of the decision phase of each round, all SNs are in the unset state and they are 

required to construct a list of 1-hop neighbor SNs using “hello” messages. The proposed 

CCANS protocol is then executed in two separate stages. In both stages the protocol assigns 

the token to a single SN at any time instant during its execution and that SN is called the 

token node. Stage 1 is given the name sensing coverage evaluation. In this stage, the token 

node performs a set of coverage calculations based on its local information to decide a 

temporary change from its unset state to either an active or sleep states. This change is 

temporary because the state decision is taken while some of the other SNs are in the unset 

state and hence the state of a given SN may be changed again in stage 2 of the protocol. The 

current token node then sends a “state” message to its neighbors and passes the token to one 

of its neighbors based on specific criteria. The steps are repeated until all SNs are either in 

active or sleep states. This marks the conclusion of stage 1 and initiates stage 2 of the 

protocol. Stage 2 is given the name node state and connectivity checking and is only executed 

by SNs assigned to a sleep state during stage 1. Using the same token approach as in stage 1, 

a token node repeats its coverage calculations with no neighbor SNs now in the unset state. It 

also checks if any of its active neighbor SNs is not connected to the sink node. Based on 

these two steps, the token node decides its final state for the current round sends an “update” 

message to its neighbors and passes the token on. Stage 2 is completed when all SNs finalize 

their state decision (either active or sleep throughout the current round), which marks the end 

of the decision phase. Simulation results show that CCANS protocol increases the average 

percentage of sleeping SNs in a given round when compared to similar existing protocols 

presented in [142] and [148]. 

In [143], the authors argue that an iterative TTCP designed for p-percent coverage (PPC) 

instead of full coverage provides the network operator with the ability to dynamically specify 

and tune the required level of network coverage, specifically for applications where 
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extending the network lifetime is the primary objective and not reliability. Based on this 

argument, the authors propose a distributed iterative TTCP named Distributed 𝑝−Percent 

Coverage Protocol (DPCP). Each round of DPCP consists of three stages, namely discover, 

construct and connect. Each stage has a fixed time interval. It is assumed that at the 

beginning of each round, all SNs are in the active state, and that they remain active 

throughout the execution time of the three stages of DPCP. In the discover stage, each 

functional deployed SN discovers its neighbors using 1-hop “hello” messages. In the 

construct stage, a subset of SNs sufficient to achieve PPC decide to join the active set for the 

current round depending on a set of local coverage calculations and 1-hop message 

exchanges with neighbors. In the connect stage, possibly more SNs decide to join the active 

set for the current round to ensure its connectivity by the means of both broadcast messages 

(sent by the SNs belonging to the active set thus far) and more local calculations. After DPCP 

concludes, all SNs not belonging to the active set finalized in the last stage are put to sleep 

until a new round begins. A test bed using Java is built to simulate the operation of DPCP. 

Simulation results show that that DPCP outperforms the Greedy Selection (GS) protocol 

presented in [149] in prolonging the lifetime of the network. 

Similar to [143], the study in [144] proposes an iterative distributed TTCP designed for 

p-percent coverage (PPC). However, the authors in [144] assume that the deployed SNs can 

have different sensing and communication ranges, i.e. the WSN is heterogeneous and that the 

SNs are deployed in a uniform (i.e. random) dense deployment in the RoI. They also define 

the term redundancy degree of a SN, which is defined as the percentage of overlap in 

coverage area between the SN and its first-hop neighbors of different types.  Based on this 

definition and the stated assumptions, the authors derive an analytical expression for 

redundancy degree of a SN, which depends on the SN type, the number of the SN first-hop 

neighbors and their types. This analytical expression is used to compute a redundancy table 

for each SN type, which provides the redundancy degree for different combinations of first-

hop neighbors’ numbers and types. The authors assume that this table is either stored in the 

SNs off-line or sent to the SNs by the sink node after deployment as a control message. In the 

proposed TTCP, SNs can assume three states: active, wait and sleep. At the beginning of each 

round of the protocol, all SNs are in the active state and they broadcast “hello” messages to 

the network. Each SN uses the “hello” messages it received to construct a neighbor table 

which contains the ID, type and current state of its first-hop neighbors (the table is updated 

using periodic “hello” messages during the decision phase of each round). Based on the 

required percentage of coverage, each SN decides whether it’s potentially redundant in this 

round or not using the redundancy and neighbor tables. If it is potentially redundant, it 

changes its state to the wait state and invokes a random back-off timer. If the SN is still 

redundant at the end of the back-off time (i.e. the SN still has sufficient neighbors in the 

active or wait states), it sends a “sleep” message to its neighbors and switches to the sleep 

state till the end of the current round. Otherwise it switches to the active state. Simulation 

experiments are carried out using ns 2.34. Simulation results shows that the proposed 

protocol is more capable than the protocol proposed in [145] in prolonging the lifetime of the 

network since it requires a smaller average number of active SNs. 

On the other hand, examples of non-iterative TTCPs are presented in [150] -

 [152], [121]. In [150], the authors consider the problem of maximizing the number of the 

non-overlapping covers in a dense randomly deployed WSN. They coin the problem the 

Disjoint Sets Cover (DSC) problem. The authors assume that for a set to be functional, only 

the complete coverage of a given set of target points in a specified RoI is required. 

Connectivity was not considered in this study. The authors assume that an orthogonal sleep-

wake scheme is applied to the non-overlapping covers such that only one cover is activated at 

any point in time while the other covers are put in sleep mode. This cover remains active for 
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a fixed amount of time, after which another cover is activated in a round robin fashion. The 

authors argue that following this scheme will prolong the SNs’ battery lifetime and minimize 

internal interference in the network. They proceed to solve the DSC problem by first proving 

that it is NP-complete. They then transform the DSC problem into a Maximum-Flow problem 

(MFP), which is then formulated and solved as a Mixed-Integer-Programming (MIP) 

problem. Finally, using the output of the formulated MIP, a heuristic named Maximum 

Covers using MIP (MC-MIP) is used to carry out the actual partitioning of the deployed SNs 

into the required non-overlapping covers. They propose that a central node (i.e. sink node) 

performs the computation of the non-overlapping covers, i.e. solves the DSC, once shortly 

after the network deployment. The authors assume that the deployed SNs have the ability to 

localize themselves and that they would send their location to the central node to enable it to 

carry out the computation of the non-overlapping covers.  The central node would then send 

each SN its membership information so each SN can compute its own sleep-wake schedule 

(assuming SNs are time-synchronized using on-board GPS receivers or through periodic 

beacon messages). Presented results show that the proposed MC-MIP heuristic outperforms 

the heuristic proposed in [151] in terms of the number of non-overlapping covers obtained in 

various instances of the DSC problem.  

Similar to [150] and [151], the authors in [152] also consider the problem of maximizing 

the number of the non-overlapping covers in a dense randomly deployed WSN, i.e. Disjoint 

Sets Cover (DSC) problem. As in [150], the authors assume that an orthogonal sleep-wake 

scheme is applied to the non-overlapping covers with the difference being that an activated 

cover remains activated until its coverage of the target locations in the RoI is compromised. 

No other details on how the non-overlapping covers are to be managed are provided.  The 

authors critique the heuristic algorithm MC-MIP proposed in [150]. They point out that MC-

MIP involves solving a MIP problem using an implicit exhaustive search which, although 

enhances the optimality of the MC-MIP heuristic, requires a computation time which in the 

worst case increases exponentially with the number of deployed SNs and hence is impractical 

to use for medium to large WSN layouts. Based on their critique, they propose a GA called 

GA for Maximum Disjoint Sets Cover (GAMDSC) as a more scalable alternative to MC-MIP 

and provide analysis of the time complexity of the algorithm in the worst case. To evaluate 

the performance of GAMDSC in terms of optimality (measured by the average number of 

obtained sets) in comparison to MC-MIP, the authors apply both algorithms on several WSN 

layouts with different number of deployed SNs but for the same set of target points. Results 

show that GAMDSC has a comparable performance to that of MC-MIP, with a small 

advantage for MC-MIP. However, GAMDSC offers significant saving in computation time 

compared to MC-MIP. 

 In [121], the authors consider a variation of the DSC problem in [150] - [152]. They 

assume that a number of sink nodes are deployed in the WSN and that the deployed SNs can 

only communicate with sink nodes. Consequently, the DSC problem is converted into the 

problem of maximizing the number of the non-overlapping connected covers in a dense 

randomly deployed WSN, where each connected cover is composed of a subset of the 

deployed SNs and a subset of the deployed sink nodes. Each connected cover must fulfil 

three constraints: namely the coverage constraint, the collection constraint and the routing 

constraint. The coverage constraint is simply that the SNs belonging to the connected cover 

provide full coverage of the RoI. The collection constraint is that all the SNs belonging to the 

connected cover must be able to communicate directly (1-hop) with at least one of the sink 

nodes belonging to the same connected cover. The collection constraint is that the sink nodes 

belonging to the same connected cover must form a connected network with each other.  The 

authors propose an ACO algorithm named ACO-MNCC to solve the above variation of the 

DSC problem. Since the proposed approach is the first algorithm proposed for solving this 
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variation of the DSC problem, the authors also propose a greedy algorithm that uses the same 

heuristic information as MDS-MCC to compare ACO-MNCC against. Experimental results 

show that ACO-MNCC consistently outperforms the greedy algorithm for all tested sizes of 

the WSN. No details were provided in [121] on how an orthogonal sleep-wake scheme 

should be applied to the non-overlapping connected covers obtained by the proposed ACO-

MNCC algorithm. 

5.3. Proposed Topology Control Protocol for Reliable WSN 

Deployments 

From the literature survey presented in Section 5.2, it is clear that iterative TTCPs are 

applied to WSNs that are characterized by a dense random deployment to increase the 

lifetime of such WSNs. This is done by activating only a subset of the functioning deployed 

SNs which form a connected cover of the RoI during each time round. However, iterative 

TTCPs also introduce a significant amount of SN processing and control traffic overhead 

during their decision phase(s) at the beginning of each round. This is because each SN must 

carry out local computations to decide its state and exchange this with its neighbors for state 

decision making purposes. This implies an energy cost on SNs during the decision phase(s) 

of each round [147]. This also implies an increase in the internal interference in the network 

as well. The shorter the duration of the round, the higher the incurred control traffic overhead 

and added internal interference that is experienced by the network. Increasing the duration of 

the rounds to decrease these undesired effects of the iterative TTCPs is not a practical 

solution since it decreases the network responsiveness to potential SN failures. This is 

because if one or more SN failures occur during a given round, the functionality of the WSN 

would remain compromised until the beginning of the next one. For example, the study 

in[140] proposes a round duration of 1000 seconds. In the situation where the reliability of 

WSN operation is a primary concern, such relatively large durations are not acceptable. 

 On the other hand, a TTCP based on a non-iterative approach can be applied easily to 

reliable cost-optimal deployments obtained from solving the MCRC-SDP. In the context of 

the defined MCRC-SDP, a reliable WSN deployment represented by 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} 
consists of a number of non-overlapping minimal connected covers of the targeted RoI under 

the assumption that these minimal connected covers are activated orthogonally. Hence, the 

main objective of a non-iterative TTCP designed for 𝓢 is to control the orthogonal activation 

of the minimal connected covers that comprises 𝓢 with the lowest possible additional control 

overhead.  

We will coin the proposed non-iterative TTCP the Reliable Deployment TTCP (RD-

TTCP). Table 5.1 shows the pseudocode of the RD-TTCP functionality executed by the sink 

node while Table 5.2 shows the pseudocode of the RD-TTCP functionality executed by the 

SNs. The main idea of the RD-TTCP can be summarized as follows. The protocol runs 

periodically, i.e. the mission time of the network is divided into equal time intervals of 

duration 𝑡𝑝 seconds. Similar to the studies in [141] - [149], we assume that SNs are time-

synchronized. The information about the specific SNs in the 𝑁 connected covers of 𝓢 and the 

order of connected covers’ activation is pre-programmed in the sink node. We will assume 

that the order of activation is based on the reliability of the connected covers in a descending 

order. In the beginning of each interval, i.e. at 𝑡 = 𝑛𝑡𝑝, 𝑛 = 0, 1, 2, …, all deployed SNs of all 

functional connected-covers self-activate and remain in the active state for the duration of a 

listening period of duration 𝑡𝑙 seconds, where  𝑡𝑙 < 𝑡𝑝. This means that SNs during the 

listening period of each interval can exchange packets with each other and with the sink node. 

At the beginning of the mission time of the network, i.e. at  𝑡 = 0, the sink node checks the 

stored membership information on the deployed connected-covers and sends an “on”  
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Table 5.1   Pseudocode of the proposed RD-TTCP functionality executed by the sink node 

RD-TTCP: SINK_NODE 

1 Input: 𝓢 = {𝑺1, 𝑺2, … , 𝑺𝑁} , timer values 𝑡𝑝 , 𝑡𝑙, 𝑡ℎ , 𝑡𝑎𝑐𝑘, network mission time 𝑇𝑚 

2 Initialize: 𝑺𝑜𝑛 = ∅ , connected-cover counter 𝑘 = 1, network time 𝑡 = 0  

3 While {𝑡 < 𝑇𝑚 && 𝑘 ≤ 𝑁}  

4   If {𝑡 = 𝑛𝑡𝑝 , 𝑛 = 0,1, 2, …   && 𝑺𝑜𝑛 = ∅ } // at the beginning of each interval when a new     

  connected cover needs to be activated 

5     Send “on” msgs to all SNs 𝑠𝑖 ∈ 𝑺𝑘 , 𝑖 ∈ [1,2, … , |𝑺𝑘|] ; Set ack. timer to 𝑡𝑎𝑐𝑘 

6     If  { ACK received from 𝑠𝑖 ∈ 𝑺𝑘  ∀ 𝑖 = 1,2. . , |𝑺𝑘|  = TRUE  before ack. timer expires } 

7        𝑺𝑜𝑛 = 𝑺𝑘 ;  Set HB#[𝑗] = 0 , 𝑗 = 1,2, . . , |𝑺𝑜𝑛|   // current active set is 𝑺𝑘 

8       Send “off” msgs to remaining functional SNs 𝑠𝑖 ∈ 𝑺𝑘−1 , 𝑖 ∈ [1,2, … , |𝑺𝑘−1|]  
9     Else  // the connected cover 𝑺𝑘 being activated is compromised 

10       𝑘 = 𝑘 + 1  //  activate the next connected cover in the order of activation in the next  

     listening period 

11     End If 

12   If {𝑺𝑜𝑛 ≠ ∅} // if there is a functional activated connected cover 

13     While { |𝑚𝑎𝑥 (HB#) − 𝑚𝑖𝑛(HB#)|  < 4} //while current connected cover is still 

    functional  

14        Listen: “hear-beat” msgs received from 𝑠𝑗 ∈  𝑺𝑜𝑛 → HB#[𝑗] ≡ “heart-beat” msg index of 𝑠𝑗 

15     End While 

16     𝑺𝒐𝒏 = ∅  // current connected cover  𝑺𝑜𝑛 has failed 

17      𝑘 = 𝑘 + 1 // activate the next connected cover in the order of activation in the next listening    

    period 

18   End If 

19 End While 

20 If {𝑘 > 𝑁} // If there are no more functional connected covers in the deployment 

21   Output: “Network Failed”  

22   Else 

23   Output: “Network Mission Time Elapsed”   

23 End If  
24 End RD-TTCP: SINK_NODE 

 

message to the SNs which belong to the first connected cover in the order of activation. 

Based on this step, if an SN receives an “on” message from the sink node stamped with its 

own ID as the destination, it replies with an ACK message after a short random back-off 

timewithin the time interval 𝑡𝑎𝑐𝑘. It will keep its active status until it receives an “off” 

message from the sink node at a later time. The short random back-off time associated with 

the ACK message is used to decrease the probability of packet collision due to several SNs 

sending ACK messages to the sink node after being activated by their “on” messages. At the 

end of the listening period, i.e. at  𝑡 = 𝑛𝑡𝑝 +  𝑡𝑙, the sink node will decide whether the 

connected cover it attempted to activate is indeed activated. It bases its decision on whether it 

received an ACK message from every SN belonging to this connected cover. On the other 

hand, if an SN does not receive an “on” message during the listening period of a given 

interval, it switches itself (i.e. transceivers and sensors) off and maintains that state until its 

internal timer signals the start of the listening period of the next interval.  

We will denote the current active connected cover at any given time during the mission 

time of the network by 𝑺𝑜𝑛. As a result of the above steps, only the SNs of the first connected 

cover in the order of activation, denoted 𝑺1, remain active after the elapse of the listening 

time of the first interval, i.e.  𝑺𝑜𝑛 = 𝑺1. For the sink node to be able to monitor the 

functionality/health of the currently activated connected cover 𝑺𝑜𝑛, SNs which belong to  𝑺𝑜𝑛 

will periodically send a “heart-beat” message to the sink node every 𝑡ℎ seconds directly 

following the end of the listening period. To minimize packet collisions, each SN of  𝑺𝑜𝑛 will 

send its “hear-beat” message at a random time during each 𝑡ℎ interval, i.e. the sink node will  
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Table 5.2   Pseudocode of the proposed RD-TTCP functionality executed by the SNs 

RD-TTCP: SENSOR_NODE 

1 Input: timer values 𝑡𝑝 , 𝑡𝑙, 𝑡ℎ , 𝑡𝑎𝑐𝑘, network mission time 𝑇𝑚 

2 Initialize: 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓 , 𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE , 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE, network time 𝑡 = 0  

3 While { 𝑡 < 𝑇𝑚} 

4   Process I // if SN is neither activated or deactivated 

5   If { (𝑛𝑡𝑝  ≤ 𝑡 ≤ 𝑛𝑡𝑝 + 𝑡𝑙 , 𝑛 = 0,1, 2, …  ) && 𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE}        

6     Listen: 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑛  // turn sensor and transceiver on 

7     If { “on” msg received from sink node with local ID = TRUE} 

8       𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE ; record activation round index 𝑛𝑎; set “hear-beat” msg index HB#←1 

9       Send ACK msg to sink node with a random back back-off time within 𝑡𝑎𝑐𝑘    

10       Break & GO TO Process II 
11     Else 

12      𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓 // SN goes to sleep at the end of the listening period if it was not activated 

13     End If 

14 End If 

15 Process II //  begins when the SN is activated by an “on” msg from the sink node during round 𝑛𝑎 

16   While {𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE  && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE}  

17     Set “heart-beat” timer to 𝑡ℎ at 𝑡 =  𝑛𝑎𝑡𝑝 + 𝑡𝑙 

18     Send “heart-beat” msg  with index HB# to sink node with a random back-off before “heart-beat”  

    timer expires 

19     If {“heart-beat” timer expires = TRUE && 𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = FALSE} 

20        Reset “heart-beat” timer to 𝑡ℎ ; HB# ← HB# + 1 

21       GOTO line 18 
22     End If 

23     If {“off” msg received from sink node with local ID = TRUE} // SN is now part of a compromised  

    connected cover that is being set to sleep mode 

24        𝑑𝑒𝑎𝑐𝑡_𝑓𝑙𝑎𝑔 = TRUE ; 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑓𝑓 

25     End If 

26   End While // end Process II since SN is now deactivated 

27 End While // end Process I and II because network mission time 𝑇𝑚 has elapsed 

28 End RD-TTCP: SENSOR_NODE 

 

receive a “heart-beat” message from each functioning SN once every 𝑡ℎ seconds. Since all 

the deployed connected covers are minimal, i.e. contain no completely redundant SNs, the 

total failure of any of the SNs which belong to  𝑺𝑜𝑛 will compromise its functionality in terms 

of coverage or/and connectivity. Therefore, if the sink node does not receive three 

consecutive “heart-beat” messages from one or more of the SNs of 𝑺𝑜𝑛, it will assume that a 

SN has failed and the next connected cover in the order of activation needs to be activated 

while the remaining functional SNs in the current 𝑺𝑜𝑛 needs to be put to sleep. Hence, the 

sink node looks up the next connected cover in its list of the activation order, i.e. 𝑺2, and 

sends an “on” message to the SNs belonging to it in during the listening period of the next 

interval. After the sink node receives confirmation that the SNs which belong to 𝑺2 have 

received their “on” messages via the ACK messages sent by the SNs, the sink node sends an 

“off” message to the remaining functional SNs in 𝑺𝑜𝑛 and changes the index pointer of 𝑺𝑜𝑛 to 

the newly activated connected cover, i.e.  𝑺𝑜𝑛 = 𝑺2. The above procedure continues until the 

mission time of the network elapses or there are no more functional connected covers to 

activate. Fig. 5.1 illustrates the RD-TTCP functionality executed by both the sink node and 

the SNs as detailed above in the form of a state diagram. 

5.4. Experimental Results and Discussion 

In this section, we present the experimental results obtained from implementing the 

proposed RD-TTCP on the wireless sensor network simulator COOJA [153],  [154]. COOJA  
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Fig. 5.1   A state diagram describing the proposed RD-TTCP functionality 

 

is a flexible Java-based simulator designed for simulating networks of SNs running the 

Contiki operating system [155],  [156]. COOJA is capable of emulating a wide variety of 

commercial wireless sensor nodes. The main advantage in using COOJA to simulate 

protocols proposed for WSNs is that it enforces the hardware limitations of the selected SN 

type (including memory, number of internal timers, speed of processing, etc.). Moreover, the 

developed code to be executed by each type of SN in a simulated WSN in COOJA is the 

exact same code that can be uploaded to a physical SN of the same type. Hence, using 

COOJA to develop and simulate new protocols for WSNs running the Contiki operating 

system enables a precise/realistic inspection and debugging of the developed code before 

implementing the code/protocol on physical SNs [157].  

To implement the proposed RD-TTCP, two custom mote types are developed, namely, a 

sink node and a sensor node, each capable of performing the proposed protocol steps outlined 

in Tables 5.1 and 5.2 respectively. For both mote types, the Tmote sky hardware platform is 

selected. Tmote sky is a commercial ultra-low power IEEE 802.15.4 compliant (non-beacon 

enabled/contention based MAC) wireless sensor module [158]. The underlying routing 

protocol used in this experiment is the IPv6 Routing Protocol for Low Power and Lossy 

Networks, which is known in the literature as RPL. RPL is a distance-vector routing protocol 

designed by the Routing over Low-power and Lossy networks (ROLL) Working Group  in 

order to cater to the specific needs of low-power and lossy networks such as WSNs designed 

for different IoT applications. It is specified in the Internet Engineering Task Force (IETF) 

standards document RFC 6550 [159]. It is worth mentioning that the implementation of the 

proposed RD-TTCP is independent of the underlying routing protocol. 

To evaluate the performance of the proposed RD-TTCP, we test the protocol on several 

network scenarios. Each scenario represents a different reliable cost-optimal deployment. 

Specifically, we use a reliable cost-optimal deployment for each of the seven test cases 

presented in Table 4.5 at the minimum required reliability 𝑅𝑚𝑖𝑛 = 0.99 obtained by the 

proposed ACO algorithm (i.e. we use one of the obtained solutions characterized by the best 

quality/lowest deployment cost) as summarized in Table 4.9. Table 5.3 summarizes the data 

pertinent to these deployments, where each is used to set up a simulation scenario in COOJA. 

The RoI is a two-dimensional square 100 × 100 𝑚2 area. The location of the sink node 𝑑0 in 
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the RoI is different for each test case as it was generated randomly as explained in Section 

4.4.1 in Chapter 4. 

 Two performance metrics are considered: the communications overhead incurred by the 

proposed RD-TTCP and the time it takes the protocol to repair the WSN after an SN failure 

occurs, i.e. Time To Repair (TTR). The overhead is measured as the percentage of the RD-

TTCP traffic (measured in bytes) out of the total RPL control traffic within the network.  In 

this experiment, we assume that there is no traffic generated from the deployed SNs to 

convey sensory data to the sink node and hence the sources of traffic in the network are the 

proposed protocol and the RPL routing protocol. The second performance metric is measured 

using two time variables. The first time variable is the total time it takes the RD-TTCP to 

activate a new functional connected cover (i.e. to repair the WSN), measured from the instant 

the functionality of the current connected cover is compromised by a SN failure, which we 

will denote by TTR1. The second time variable is the time it takes RD-TTCP to activate a 

new functional connected cover (i.e. to repair the WSN), measured from the instant the sink 

node discovers that the functionality of the current connected cover is compromised, which 

we will denote by TTR2. For each simulation scenario, ten independent runs are by the 

simulator. Simulation and protocol parameters are summarized in Table 5.4. 

Fig. 5.1 shows the proposed protocol communication overhead for each of the simulated 

deployments. For each deployment, the 95% confidence interval of the corresponding set of 

runs is indicated. Fig. 5.1 suggests that the proposed protocol have a low overhead, with 

averages that do not exceed 3.5% for all the tested deployments. The relatively low overhead 

of the proposed protocol is due to its simplicity and the fact that only the SNs which belong 

to the currently activated connected cover communicate with the sink node through sending 

the periodic heartbeats. SNs belonging to non-activated and failed connected covers do not 

generate any protocol traffic. Fig. 5.1 also shows a large variation in the measured protocol 

overhead, indicated by the wide confidence intervals. This can be attributed to the fact that 

the amount of both the RD-TTCP traffic and the RPL control traffic are highly sensitive to 

changes in the topology of the WSN due to the SN failure events during the course of the 

simulation. An SN failure event can either trigger a repair action in the network (i.e. the 

activation of a new connected cover) or not. The first case occurs when the failed SN belongs 

to the currently activated connected cover and hence its functionality as well as the network’s 

functionality is compromised. The latter case occurs when the failed SN belongs to one of the 

connected covers that have not been activated yet while the currently activated connected 

cover remains functional. 

The lowest measured values of the proposed protocol overhead occurred in simulation 

runs in which there were no SN failure events or in which the SN failure events do not trigger 

a repair action. In these simulation runs the amount of traffic generated by the RD-TTCP is at 

its lowest since only one connected cover is activated in the beginning of the simulation and 

only the SNs which belong to that connected cover communicate periodically with the sink 

node by sending their “heart-beat” messages. On the other hand, the amount of control traffic 

generated by the RPL is at its highest since all or most of the deployed SNs are functional 

until the end of the simulation time. This in turn means that all or most of the deployed SNs 

generate routing control traffic during the simulation time. For all simulated deployments, the 

RD-TTCP overhead for these simulation runs is roughly 1%. 

On the other hand, the higher measured values of overhead occurred in simulation runs 

in which SN failure events triggered repair actions. In these cases, the RD-TTCP traffic 

increases since additional protocol messages are generated, namely, the activation messages 

required to activate a new connected cover and the “off” messages sent to the remaining 

functional SNs in the failed connected cover. On the other hand, the RPL control traffic 
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Table 5.3   Data of the reliable cost-optimal deployments used to create the COOJA simulation 

scenarios  

Test Case 
Total number 

of SNs (|𝓢|) 

Number of 

connected 

covers (𝑁) 

Connected 

Covers 

Distribution 

TC1 8 2 {4,4} 

TC2 8 2 {4,4} 

TC3 10 2 {4,6} 

TC4 10 2 {5,5} 

TC5 18 3 {6,6,6} 

TC6 18 3 {6,6,6} 

TC7 18 3 {6,6,6} 

 
Table 5.4   Simulation and Protocol Parameters 

Parameter Setting 

Simulation time  30 minutes 

SN hardware platform Tmote Sky 

PHY + MAC 802.15.4 non-beacon enabled 

Routing Protocol IPv6 RPL 

SN failure probability λ  0.08 

SN failure time distribution uniform 

Protocol round duration 𝑡𝑝 120 seconds 

Protocol listening period  𝑡𝑙 30 seconds 

Protocol heart-beat message frequency 𝑡ℎ 30 seconds 

 

 

Fig. 5.2   Traffic overhead incurred by the proposed RD-TTCP, measured as ratio between RD-TTCP 

and routing traffic in percentage points.  

TC1 TC2 TC3 TC4 TC5 TC6 TC7

1

2

3

4

5

6

7

P
ro

to
co

l 
O

v
er

h
ea

d
 (

%
)



  Chapter 5 

118 

 

 

Fig. 5.3   Boxplots of the proposed RD-TTCP time to repair metric, measure by the time variables 

TTR1 and TTR2  

 

decreases significantly since in these cases several SNs which belong to the failed connected 

cover are forced to sleep. Hence, these SNs stop generating any RPL control traffic until the 

end of the simulation run. It follows that the time at which the repair action is taken during 

the simulation run affects the value of the protocol overhead: the earlier the repair action is 

taken, the lower the total RPL control traffic generated during the simulation run and hence 

the higher the overhead. However, Fig. 5.1 shows that the upper confidence interval of the 

proposed protocol overhead does not exceed 5% for all the simulated deployments which 

means that even when one or more repair action is carried out during the network mission 

time, the overhead incurred by the proposed protocol remains relatively low. 

Fig. 5.2 shows the box plots for the TTR time variables, TTR1 and TTR2, for all the SN 

failure events that triggered a repair action/event in the seventy simulation runs performed 

(10 runs for each of the seven deployments). The time variable TTR2 represents the response 

time of the proposed protocol to an identified SN failure which compromises the 

functionality of the current connected cover. The average response time (i.e. the average 

value of TTR2) is primarily dependent on the protocol interval duration 𝑡𝑝. This is because 

once the sink node discovers that a SN failure that requires a repair action has occurred, it 

needs to wait until all the SNs which belong to the other functional (yet not yet activated) 

connected covers emerge from sleep mode at the beginning of the listening period of the next 

protocol interval. Fig. 5.2 indicates that the median of TTR2 is equal to 57 seconds which is 

an expected value since in this experiment 𝑡𝑝 is set to 120 seconds. Values of TTR2 higher 

than the set value of 𝑡𝑝 (i.e. higher than 120 seconds) can occur in cases where the next 

connected cover in the order of activation has already suffered a complete SN failure and 

hence it functionality is compromised. In this case, the proposed protocol will require an 

additional protocol interval to discover that the functionality of the connected cover it is 

trying to activate it compromised through not receiving an ACK message from one or more 

of the member SNs. This event, however, has a low probability of occurrence as its 

probability is only half the probability that two consecutive connected covers fail (the higher 

the number of connected covers in the deployment, the lower that probability will be for a 

given SN failure probability). It should be pointed out that although decreasing the protocol 

round duration can decrease the average response time of the proposed protocol, it can also 

increase the RPL routing traffic since it will increase the frequency at which the RPL 
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structure is disrupted (through SNs alternating between sleep and active modes at a higher 

frequency). Hence, the setting of the protocol round duration 𝑡𝑝 requires careful tuning 

according to the type of routing protocol used in the WSN to keep the routing overhead at a 

reasonable level.  

On the other hand, the relationship between time variables TTR1 and TTR2 indicates the 

speed at which the sink node discovers/identifies SN failures in the currently activated 

connected cover. This speed is primarily dependent on two factors. The first factor is the 

frequency at which “heart-beat” messages are sent, which is set by the timer value 𝑡ℎ. The 

second factor is the number of the “heart-beat” messages the sink node has to miss from one 

or more of the SNs in the active connected cover before it decides that the connected cover 

has failed. In this experiment, 𝑡ℎ is set to 30 seconds and the number of missed “heart-beat” 

messages is set to 3. Accordingly, the minimum amount of time required for the sink node to 

discover a SN failure in the active connected cover is three times the value of 𝑡ℎ or 90 

seconds. Fig. 5.2 indicates that the difference between the medians of TTR1 and TTR2 is 106 

seconds which is an expected value for the selected values of the protocol parameters. It 

should be pointed out that configuring the number of missed “heart-beat” messages to take a 

lower value may decrease the TTR1 and hence the speed of network repair. However, this 

may also lead to misdiagnosing, unnecessary repairs and an unnecessary increase in overhead 

especially if the WSN is deployed in lossy environments where the link quality and hence the 

Packet Delivery Ratio (PDR) is low. Hence, the setting of the protocol parameter requires 

careful tuning according to the expected link quality and the conditions of the environment in 

which the WSN is to be deployed.  

It should be noted that a comparision with one or more of the existing iterative TTCPs 

proposed in [36], [141] – [145], [147] , [149] was not possible. This because the objective of 

these protocols as explained earlier is to prolong the lifetime of dense randomly-deployed 

WSN. This is in contrast with the proposed RD-TTCP which designed to manage the 

minimal connected covers in a relaible cost-optimal planned WSN deployment. As such, the 

performance parameters for iterative TTCPs and the proposed non-iterative RD-TTCP are 

different. For example, in [36], [141] , [142], [144], [145], [147] and [149] the primary 

performance metric is the percentage of the sleeping nodes to the total number of nodes in the 

WSN after the execution of the protocol in a single round. Additional performance metrics 

such as the ratio of the RoI area actually covered to the total area, the lifetime of the network 

and rate of SN energy consumption were evaluated in [36], [142] - [145] and [149]. The only 

study that commented on the overhead of the iterative TTCP is [147], where overhead was 

calculated as the average percentage of the energy spent on protocol messages to the total 

energy expenditure of  SNs. However, the results provided in [147] can not be used as a 

benchmark since many of the simulation parameters and assumptions are different, primarily 

the fact that in [147], SNs are assumed to periodically send data messages whereas in our 

simulation no data traffic was generated. 

 

5.5. Chapter Summary 

In this chapter, we introduced a practical realization of the reliable deployment 

algorithms that we proposed earlier. For this purpose, we defined the concept of temporal 

topology control in WSNs as a method for controlling the sleep/active cycles of the SNs 

deployed in a WSN. We highlighted the importance of TTCPs, specifically in minimizing 

excessive traffic in the WSN, which in turn reduces packet collisions. We discussed why 

existing TTCPs are not suitable for WSN designed for critical applications. Accordingly, we 

proposed a TTCP suitable for managing the disjoint connected covers which constitute the 
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reliable cost-optimal WSN deployments obtained by solving the MCRC-SDP. The proposed 

non-iterative TTCP was coined the RD-TTCP. The proposed RD-TTCP was implemented on 

the WSN simulator COOJA and applied to several different reliable cost-optimal WSN 

deployments. Simulation results suggest that the overhead incurred by the proposed protocol 

and the average TTR are relatively low and hence the proposed protocol is applicable in 

practice.  
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Chapter 6 

 

Conclusions 

 

6.1. Dissertation Summary 

In this dissertation, we presented our research contributions on the topic of reliable cost-

optimal deployment of static WSNs. We defined the dissertation problem as the problem of 

deploying a static WSN that meets an application-specific reliability level at a minimum 

network deployment cost. We coined this problem the Minimum-Cost Reliability-

Constrained SN Deployment Problem (MCRC-SDP). We highlighted the significance of this 

problem to the body of research on WSN deployment. Based on the problem definition, we 

identified the different research objectives associated with it. We then presented the work 

carried out to address each of the identified research objectives. 

We presented a survey and classification of the existing WSN deployment algorithms 

based on their underlying mathematical approach. The presented classification contains four 

major mathematical approaches: Genetic Algorithms (GAs), Computational Geometry (CG), 

Artificial Potential Fields (APFs) and Swarm Intelligence (SI). We discussed the strengths 

and limitations of the four approaches in terms of different WSN design factors. We 

concluded that GAs and Ant Colony Optimization (ACO) are the most suitable approaches 

for deploying static WSNs with multiple design objectives. We presented an experimental 

comparison among three of the existing WSN deployment algorithms based on these two 

approaches. Their performance was evaluated in terms of optimality, speed of convergence 

and scalability. 

We then identified the key SN related and non-SN related issues that affect the reliability 

of a WSN. We discussed the existing WSN reliability metrics in the literature. Based on this 

discussion, we proposed a novel WSN reliability metric to address some of the limitations of 

the existing metrics. The proposed metric adopts practical assumptions concerning the 

operation and configuration of the WSN. It also adopts a more accurate SN model compared 

to the simplistic model adopted in the existing metrics. A search algorithm is presented to 

calculate the proposed metric in a computationally efficient manner. Extensive experimental 

results on the proposed metric are presented and discussed. The experimental results 

demonstrated the computational efficiency of the developed search algorithm. They also 

showed that the proposed metric has a significantly higher accuracy in measuring WSN 

reliability compared to the most-relevant existing metric in the literature.  

Based on this metric, we presented the mathematical formulation of the dissertation 

problem, i.e. the MCRC-SDP. The MCRC-SDP is formulated as a constrained combinatorial 

optimization problem which we prove to be NP-Complete. We proposed two heuristic 

optimization algorithms that are designed to find high quality solutions for the MCRC-SDP. 

The first algorithm is a Memetic Algorithm (MA), which is also known in the literature as a 

Hybrid GA (HGA). The second algorithm is an ACO algorithm coupled with a Local Search 

(LS) heuristic. For each algorithm, the design of the different basic building blocks is 

discussed. Extensive experimental results are presented, analyzed and discussed to highlight 

the strengths and limitations of each algorithm. Results show that the ACO algorithm 

outperforms the MA in the majority of the tested problem instances in terms of optimality 

and in all the tested problem instances in terms of the computational cost.  
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Finally, we reviewed some of the significant studies presented in the literature on the 

topic of WSN topology control. We discussed why existing WSN Topology Control 

Protocols (TCPs) are not suitable for managing the reliable cost-optimal deployments 

obtained from solving the MCRC-SDP. Accordingly, we proposed a practical TCP that is 

suitable for managing the non-overlapping minimal connected covers which constitute such 

deployments. We presented experimental results obtained from implementing the proposed 

TCP and applying it to several deployments. Results suggest that the overhead incurred by 

the proposed protocol is relatively low and hence is the proposed protocol is applicable in 

practice as a realization of our optimized deployment techniques. 

6.2. Future Work 

The work presented in this dissertation can be further extended in the following directions:  

 Other heuristic optimization techniques can be applied to solve the MCRC-SDP. For 

example, Differential Evolution (DE) [160]  (which is an evolutionary algorithm that 

shares the same foundations as the GAs) and Bee Colony Optimization (BCO) [161] 

(which has recently been introduced as a new direction in SI) are good candidates.  

 The proposed MA and ACO algorithm can be extended to allow for the deployment of 

heterogeneous reliable cost-optimal WSNs (i.e. WSNs composed of different types of 

SNs with varying capabilities).  

 The MCRC-SDP can be extended to be a multi-objective constrained optimization 

problem by considering other design objectives such as minimizing routing cost.   

 An original GH capable of consistently finding feasible solutions to the MCRC-SDP can 

be designed. 

 The SN probabilities of failure due to other non-SN related issues such as attacks on the 

deployed SNs by external malicious forces can be included/considered in the WSN 

reliability metric. 

 The performance of the proposed TCP for managing the MCRC deployments can be 

implemented and studied in conjunction with other routing protocols such as Adhoc-On 

Demand Distance Vector (AODV) [162]. 
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