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I. ABSTRACT 

Introduction: The prevalence of hepatocellular carcinoma (HCC) in Africa is higher compared 

to the rest of the world due to the high incidence of chronic infection with hepatitis C virus 

(HCV). In Egypt, HCV infection is the leading cause for the high HCC incidence, which is 

usually diagnosed at late stages. Due to the absence of reliable and accurate biomarkers for early 

detection of liver cancer, circulating microRNAs have recently emerged as great candidates for 

early diagnosis of HCC. These small non-coding RNA molecules are responsible for regulating 

gene expression and RNA stability. Therefore, the aim of this study is to investigate the potential 

of liver-specific circulating microRNAs as an accurate non-invasive diagnostic tool for the early 

detection of HCV-induced HCC.     

Methods: Eight main miRNAs (miR-16, miR-34a, miR-122a, miR-125a, miR-139, miR-145, 

miR-199a, and miR-221) were selected due to their expression patterns in HCC as well as their 

contribution to the development of hepato-carcinogenesis. A total of 165 patients were enrolled 

in this study, from which serum samples were collected and categorized into four main patient 

groups: 42 chronic hepatitis C (CHC) without cirrhosis, 45 CHC with cirrhosis (LC), 38 HCC 

with HCV patients, and 40 healthy controls. The expression profile of the eight miRNAs was 

analyzed using TaqMan real-time reverse transcription-polymerase chain reaction. Additionally, 

the conventional markers for HCC α-fetoprotein (AFP) and des-γ-carboxyprothrombin (DCP) 

were measured using commercial kits.  

Results: Serum levels of miRNA-122a, miRNA-125a, miRNA-139, miRNA-145 and miRNA-

199a were significantly lower (p<0.01) in HCC than in both CHC and LC groups. On the other 

hand, no significant difference was shown in the expression of miR-16, miR-34a, and miR-221 

between the CHC, LC, and HCC groups. MiR-16, miR-34a, and miR-221 were significantly 

elevated in the HCC group compared to the control group. MiR-122a showed the highest 

specificity and sensitivity, followed by miR-125a, which had the second highest specificity, 

indicating its significance in diagnosis.  
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Conclusions: The results indicated that measurement of serum levels of miR-122a, miR-125a, 

miR-139, miR-145, and miR-199a can help to differentiate HCC from CHC and LC. 

Measurement of serum levels of miR-16, miR-34a, and miR-221 were shown to have a 

prognostic value. Highly significant correlation was established between different miRNAs 

within the same patient group or between two different groups, indicating a great diagnostic 

value for the early detection of HCC. MiR-122a had the highest specificity and sensitivity, 

indicating that serum miR-122a might serve as a novel and potential non-invasive biomarker for 

HCV-induced HCC.  
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II. INTRODUCTION 

The significance of reliable biomarkers is usually illustrated by their usefulness during the 

course of a certain disease. In other words, biomarkers are evaluated based on their ability to be 

easily detected at the early onset of the disease, their efficacy in risk classification, and their 

sensitivity and specificity for disease progression and prognosis (Schöler et al., 2010). A 

biomarker is defined as a molecule that can be measured and assessed, one that indicates the 

proper functioning of biological processes, normal pathologies, or the pharmacological response 

to therapeutic drugs. Therefore, a reliable and accurate biomarker must lack limitations such as 

low sensitivity and specificity, low predictive power, and robustness, in addition to exerting 

noninvasiveness characteristics (Schöler et al., 2010).  

In 1993, Lee et al. was the first to discover the small noncoding RNA lin-4 in Caenorhabditis 

elegans, which is now known to be the founding member of 17341 annotated mature 

microRNAs (miRNAs) in 142 species, out of which 1048 are human mature miRNAs (Lee, 

Feinbaum, & Ambros, 1993; Wang, Chen, & Sen, 2016). Approximately 20% of all annotated 

miRNAs are highly conservative between organisms like C. elegans and Homo sapiens. 

MiRNAs are assumed to target more than 60% of the human genes, hence their high abundance 

in mammalian cells. Several research groups have illustrated the deregulation of miRNAs in 

various pathological processes, which was evident in the development of many diseases as well 

as malignancies (Schöler et al., 2010).  

 Measuring the levels of circulating miRNAs to be used as biomarkers for malignancies 

has recently been researched and investigated. This diagnostic approach shows a lot of promise 

due to the high stability of miRNAs in human formalin-fixed tissue, serum, and plasma, in 

addition to their tissue specific expression pattern shown in human malignancies (Qu et al., 2011 

& Barger et al., 2016). The hepatocellular carcinoma (HCC) conventional biomarkers are usually 

able to detect large tumors, which was evident with the relatively high sensitivity when 3 HCC 

biomarkers were used to detect HCC in patients with large tumors. However, for an aggressive 

cancer such as HCC, early detection is key to a better therapeutic response and prognosis (Qu et 

al., 2011).    
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 A microarray chip identifying the global normal levels of each member of the miRNome 

has been developed in order to enable the comprehensive and efficient profiling of all miRNA 

genes (Liu et al., 2004). With more research being conducted on the subject, more technologies 

became available, such as quantitative reverse transcription PCR, macroarrays, and bead-based 

flow cytometric miRNA expression. Together, these technologies have illustrated the differential 

expression of human miRNAs in tissues and helped in identifying crucial miRNA genes that play 

key roles in the development of human diseases (Aqeilan et al., 2010). Researchers have been 

working in the hope of identifying unique miRNA signatures in human tumors that will help in 

better understanding cancer pathways and carcinogenesis in general, thus facilitating the proper 

design of effective diagnostic, therapeutic, and prognostic tools. Number of miRNAs were 

shown to play a crucial role in cancer development. MiRNAs that are found to be upregulated in 

tumors function as oncogenes, while other miRNAs have been described as tumor suppressors 

due to their loss or down-regulation. Moreover, some miRNAs have been identified for their 

function in metastasis and angiogenesis (Aqeilan et al., 2010).  
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III. LITERATURE REVIEW 

The liver is known to be the largest internal organ, it is divided into two main lobes, right and 

left, and it is located under the right ribs and beneath the right lung, with a weight of 

approximately three pounds. It is a major vascular organ that receives approximately up to 25% 

of the entire cardiac output, which is substantially more than the rest of the body’s organs 

combined. It has two blood supplies divided between the hepatic artery, which is responsible for 

25% to 30% of the blood supply to the liver, and the portal vein which supplies the other 70% to 

75% (Abdel-Misih & Bloomston, 2010). The liver has several significant functions that support 

other organs, impacting all physiologic systems. One of the main liver functions is metabolism 

and protein synthesis, in addition to metabolizing amino acids, lipids, carbohydrates, and 

vitamins. The liver also performs the crucial function of detoxifying the systematic circulation 

through the removal of pathogens and exogenous antigens (Bogdanos et al., 2013). It has a 

significant immunological function, since its reticuloendothelial ability is responsible for 

phagocytosis and clearance of endotoxins and microorganisms from the portal blood. Bile 

secretion is a crucial end point of liver function; hence bile production immediately stops when 

liver perfusion is halted. The unique location of the liver as well as its special vasculature allows 

it to perform the degradation of waste products and toxins (Hoekstra et al., 2013).  

A. Hepatitis C Virus 

Hepatitis C infection is a disease that infects the liver as a result of hepatitis C virus (HCV) 

infection, an RNA virus discovered in 1989 that belongs to the Flaviviridae family. HCV 

infection leads to acute hepatitis C, which develops into a chronic infection in 50-80% of HCV 

patients. HCV chronic infection activates a chronic inflammatory disease response, which leads 

to the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma (Manns et al., 2017). 

The HCV virions are enveloped in a lipid bilayer with a diameter of 45-65 nm. The non-

icosahedral nucleocapsid is located inside the envelope, and is made up of the positive-strand 

RNA as well as several copies of the basic HCV core protein (Penin, Dubuisson, Rey, 

Moradpour, & Pawlotsky, 2004). Phylogenetic analyses of HCV strains collected from different 

geographical regions revealed that HCV has seven different genotypes, thus making it a very 

heterogeneous virus. Additionally, HCV genotypes include multiple subtypes that are 
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represented by lower-case letters. The severity of the disease as well as the response to antivirals 

depend on the genotype (Figure 1) (Simmonds, 2013). 

The global prevalence of HCV patients who are positive for anti-HCV antibodies was 

estimated to be 1.6%, which is equivalent to approximately 115 million patients (Gower, Estes, 

Blach, Razavi-Shearer, & Razavi, 2014). However, not all these individuals currently have HCV; 

some have cleared the virus after receiving treatment or spontaneously. Therefore, the global 

prevalence for patients with HCV RNA is approximately 71 million patients. This incidence is 

based on mega epidemiological studies that have been conducted in 100 countries. Global 

statistical data is limited since the HCV prevalence is only reported by 29% of the low-income 

countries and 60% of high-income countries (The Polaris Observatory HCV Collaborators, 

2017). The prevalence of HCV infection varies globally, in which the countries with the highest 

prevalence are those with highest rates of iatrogenic infections. Iatrogenic infection is the major 

risk factor for the high prevalence of HCV in countries like Gabon, Nigeria, Egypt, Mongolia, 

Georgia, and Uzbekistan, where the prevalence is >5% in the adult population (Figure 2) 

(Gower, Estes, Blach, Razavi-Shearer, & Razavi, 2014).  

The percentage of the global HCV infection in Western countries is small compared to that 

of countries like Russia, China, Egypt, India, and Pakistan where half of the total viraemic HCV 

infections is located (Manns et al., 2017). In Egypt, the high prevalence of HCV is attributed to 

the schistosoma intravenous injections in the 1960-1970s (Figure 3) (Arafa et al., 2005; Ministry 

of Health and Population, El-Zanaty and Associates, & ICF International, 2015). Intravenous 

injections of anti-schistosomal therapy were nationwide under the supervision of the Egyptian 

Ministry of Health (MOH) and the World Health Organization (WHO). An average of 250,000 

patients received more than 2 million injections annually. Approximately 36 million injections 

were given to >6 million patients over a period of 18 years, in which the majority of needles and 

syringes were not properly sterilized or disposed (Frank et al., 2000; Rao et al., 2002).  

In Egypt, HCV infection is the major cause of liver diseases, such HCC. Approximately 1-

5% of cirrhotic patients develop liver cancer, in which 3-6% may decompensate during a period 

of 20-30 years. One year after decompensation the risk of death is 15-20% (Westbrook & 

Dusheiko, 2014). A systematic review based on 13 studies that included 2,386 patients 
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demonstrated that the annual percentage of death/transplantation, decompensation, and HCC 

among compensated HCV cirrhotic patients is 4.58%, 6.37%, and 3.36%, respectively (Alazawi, 

Cunningham, Dearden, & Foster, 2010).   

 

Figure 1. Distribution of HCV Genotypes. Six of the seven genotypes are shown here according to their 

distribution, which is different between countries based on the categories of the World Bank income. In Europe, 

the Americas, Australia, Central and East Asia, and New Zealand, genotype 1 is shown to be the most 

prevalent. Genotype 4 is the most predominant genotype in Egypt and Central sub-Saharan Africa, while 

genotype 3 is predominant in India and Pakistan. In South Africa, genotype 5 is responsible for more than one-

third of HCV infections, while South East Asia is where genotype 6 is most commonly found. Adapted with 

permission from Manns et al., 2017.      

 

Figure 2. Global Prevalence of HCV. A geographical representation of the prevalence of viraemic hepatitis C 

virus (HCV) and the estimated total HCV infections per country. Adapted with permission from Manns et al., 

2017.      
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Figure 3. Prevalence of HCV in Egypt. The percentage among men and women in Egypt with hepatitis C 

antibody in 2015. Adapted with permission from Gomaa et al., 2017.      

B. Fibrosis and Cirrhosis  

Over the past few decades, liver fibrosis has evolved from being a laboratory discipline into a 

field of significant clinical relevance to hepatologists. This progress not only reflects the growing 

understanding of fibrosis molecular basis, but also of its natural history as well as the detection 

methods of chronic liver diseases (Friedman, 2003). Such advances have illustrated that cirrhosis 

can be changed, in which antifibrotic therapy can greatly change the management and prognosis 

of liver disease patients. Cirrhosis is known as the final stage of fibrosis of the hepatic 

parenchyma as a result of nodule formation as well as the change in hepatic functions (Friedman, 

2003).  

Fibrosis and cirrhosis are defined as the progression of a continuous wound healing response 

to chronic liver disease from different etiologies like viral, drug induced, cholestatic, 

autoimmune, and metabolic diseases. The clinical symptoms of cirrhosis usually range from no 

sign of symptoms to liver failure, which is usually determined by the nature and the extent of the 

liver disease etiology in addition to the magnitude of the hepatic fibrosis (Fattovich et al., 1997). 

Approximately 40% of cirrhotic patients remain asymptomatic for more than a decade; however, 

rapid deterioration is unavoidable as soon as complications such as encephalopathy, ascites, or 

variceal hemorrhage start to develop. Patients who suffer such complications have a 50% 5-year 

mortality, in which around 70% of them are as a result of the liver disease (Fattovich et al., 

1997). Cirrhosis affects hundreds of millions of individuals around the world where it is the most 



19 

 

common non-malignant cause of death among digestive and hepatobiliary diseases in the United 

States (El-Serag & Mason, 2000; Befeler & Di Bisceglie, 2002). 

The molecular makeup of the cirrhotic scar tissue is the same regardless of the underlying 

liver disease, it is composed of the constituents of the extracellular matrix, glycoproteins, 

collagen types I and III, and sulfated proteoglycans (Schuppan et al., 2001). Over time, these 

scar components accumulate due to the increase in their deposition in the liver. Although the 

most visible form of scarring is the cirrhotic bands surrounding nodules, it is in fact the 

accumulation of matrix molecules in the subendothelial space of Disse that results in the 

deterioration of liver function (Friedman, 2003).          

C. Hepatocellular Carcinoma (HCC) 

Hepatocellular carcinoma is categorized worldwide as the third most common cause of 

cancer-related death as well as the major cause of deaths among patients suffering from liver 

cirrhosis (Tinkle & Haas-Kogan, 2012). Additionally, it is the fifth most common cancer type in 

men and the seventh for women worldwide. The incidence of HCC in men is two to four times 

higher than it is in women. HCC is usually presented around the age of 40 years, where it reaches 

its peak at the age of 70 years (Ding & Wang, 2014). Every year, more than half a million 

individuals are diagnosed with HCC worldwide, with an estimate of 20,000 new cases only in 

the United States. Around 85% of the burden of the disease falls on the shoulders of developing 

countries. The highest reported rates of hepatitis B virus (HBV) are in Southeast Asia and sub-

Saharan Africa (El-Serag, 2011). HCC resulting from hepatitis C virus is becoming a fast-rising 

cause of cancer related deaths in the United States, in which the incidence has seen to be tripled 

during the past two decades while the 5-year survival rate still remained less than 12% (El-Serag, 

2011). Additional risk factors for HCC include non-alcoholic fatty liver disease, high alcohol 

intake, alpha1-anitrypsin deficiency, Wilson’s disease, hemochromatosis, and autoimmune 

hepatitis. Aside from the genetic factors, the majority of HCC cases result from chronic 

inflammation and persistent liver injury (Ding & Wang, 2014). Over the past decades, there has 

been evidence demonstrating that hepatitis B and C viral proteins can directly stimulate 

oncogenic effects or increase the risk of hepatocellular transformation with hyperproliferative 

response as a result of chronic inflammation. Thus, regardless of the etiology, a proliferative 
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tissue and inflammatory microenvironment is a common preneoplastic liver feature (Ding & 

Wang, 2014). Symptoms related to HCC are typically absent, patients usually show symptoms 

related to cirrhosis, which is a condition found in 80-90% of HCC patients. As a result, the 

majority of HCC patients are diagnosed with an advanced stage of the disease, which excludes 

potentially curative approaches. This partially led to the 5-year overall rate of survival of 12% 

and an average survival post diagnosis of 6 to 20 months (Tinkle & Haas-Kogan, 2012). The 

absence of accurate diagnostic tools for early HCC detection as well as curative therapy, resulted 

in very poor patient prognosis. HCC morbidity and mortality are almost the same due to the fact 

that the majority of HCC patients are diagnosed at late stages of the disease where the cancer is 

significantly advanced for good therapeutic options (Ding & Wang, 2014).   

Approximately more than 700,000 HCC cases are diagnosed annually all over the world, 

with more than 600,000 deaths yearly due to HCC (Dhanasekaran et al., 2012). When HCC is 

presented with symptoms it is usually associated with nonspecific illnesses, such as pain in the 

right upper abdominal area, malaise, early satiety, and weight loss. The presentation of 

encephalopathy, jaundice, ascites, or variceal bleeding in patients suffering from liver cirrhosis 

raises doubts of HCC. It is rare that patients may complain of hypotension, severe abdominal 

pain and distension, and a severe drop in hematocrit as a result of the tumor rupturing as well as 

intraperitoneal bleeding.  HCC is known to be linked to several paraneoplastic syndromes that 

lead to cutaneous manifestations, erythrocytosis, hypercalcemia, hypoglycemia, severe watery 

diarrhea, and hypercholesterolemia. The most common sites of metastasis resulting from HCC 

include the adrenal gland, bone, lung, and regional lymph node regions (Tinkle & Haas-Kogan, 

2012).  

D. MicroRNAs: 

The potential of miRNAs was recognized shortly after their discovery in 1993 in C. elegans, 

in which their significance in diagnosis and therapy was thoroughly investigated. MiRNAs 

regulate the process of protein translation through binding to the complementary sequences in 

the 3’ untranslated region (UTR) of the target mRNA. Currently, there are over 2,500 human 

miRNAs in the miRBase, a database containing all the published miRNAs and their annotation. 

(Hayes, Peruzzi, & Lawler, 2014). The miRNA names in miRBase are represented as has-mir-
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121, in which the first three letters refer to the organism from which the miRNA was identified. 

In the database and the literature, the mature miRNA is referred to as miR-121, while the 

miRNA gene is referred to as mir-121. Different precursor sequences as well as genomic loci 

expressing the same mature sequences are referred to as hsa-mir-121-1 and hsa-mir-121-2. On 

the other hand, letter suffixes indicate mature sequences that are closely related, such as hsa-

miR-121a and hsa-miR-121b. Finally, in the case of insufficient data it might be challenging to 

determine which sequence is the predominant one; therefore, 5p (from the 5’ arm) or 3p (from 

the 3’ arm) is denoted after the miRNA identification number (ex. miR-142-5p) (Hikmet, 

Reyyan, Melda, & Burcu, 2016).   

E. Synthesis of MiRNAs: 

 The synthesis of miRNA is mainly divided into two stages, one that takes place inside the 

nucleus, while the other takes place in the cytoplasm (Chu et al., 2014). The majority of miRNAs 

are transcribed by RNA polymerase II from intergenic regions, introns and exons. The first RNA 

transcript is an RNA precursor known as primary miRNA (pri-miRNA). Usually the pri-miRNA 

ranges in length from 200 to several thousand nucleotides, which forms a highly structured stem 

loop (Figure 1). After that, ‘Drosha’, the cellular RNase III enzyme, cleaves the stem loop 

structure with the assistance of, the cofactor DiGeorge syndrome critical region gene 8 (DGCR8) 

in vertebrates and ‘Pasha’ in invertebrates (Lee et al., 2003; Denli, Tops, Plasterk, Ketting, 

Hannon, 2004; & Gregory et al., 2004). The cleavage results in an RNA hairpin intermediate 

structure approximately 70 nucleotides in size, called the precursor-miRNA (pre-miRNA) that 

has two distinguished nucleotide 3’ overhang. The following step of the synthesis of miRNA is 

the exportation of the pre-miRNA hairpin from the nucleus by a heterodimer made of exportin 5 

and the GTP bound form of cofactor Ras-related nuclear protein (RAN) that identifies and binds 

the two 3’ overhand ends of the pre-miRNA (Yi, Qin, Macara, & Cullen, 2003; Lund, Guttinger, 

Calado, Dahlberg, & Kutay, 2004). After being transferred to the cytoplasm, another cellular 

RNase III enzyme known as Dicer, attaches to the structured RNA along with cofactor 

Transactivation response RNA binding protein (TRBP) to start a second cleavage. After the 

cleavage the resulting product is a double stranded RNA, with two nt 3’ overhang about 17-22 

bp long. Out of the dsRNA, one stays attached to the Dicer for the formation of the mature 

miRNA while the remaining strand usually degrades (Gupta et al., 2014).   
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 Finally, the mature single stranded miRNA is generated with the help of helicases like 

RCK/p54 or Gemin3. The RISC loading complex (RLC) is formed by the association of TAR 

RNA binding protein or TARBP2 (TRBP), Argonaute 2 (Ago2), and Dicer (Chu et al., 2014). 

One of the most important components in the RISC complex is the Argonaute-2 (Ago-2) protein, 

which is a catalytically active ribonucleoprotein (Liu et al., 2004; Meister et al., 2004). The 

mature miRNA attached to the active RISC complex binds at 3’ UTR of the target sites of a 

certain mRNA resulting either in immediate inhibition of translation or the degradation of the 

target mRNA by the Ago2 protein in the RISC complex (Figure 4). In the case of vertebrates, 

only partial complementary miRNA is needed to recognize the mRNA targets; however, it is 

crucial to have high complementarity of miRNA within the “seed sequence”, which is a region in 

the mature miRNA located in nucleotides 2-8 (Gupta et al., 2014).  

 

Figure 4. The synthesis and function of MicroRNAs. The transcription of microRNA (miRNA) genes is 

carried out by RNA polymerase II. The primary miRNA transcripts are processed into pre-miRNA by the 

microprocessor complex (Drosha/DGCR8). After that the pre-miRNA is exported from the nucleus to the 

cytoplasm by exportin-5 and Ran-GTP, then processed into a RNA duplex by ribonuclease Dicer with the 

help of TRBP. The final product is 22 bp dsRNA, in which one strand stays bound to dicer that later form 

the mature miRNA, while the other strand gets degraded. Finally, the remaining strand gets associated with 

RNA-induced silencing complex (RISC) and argonuate 2 (Ago2), which targets gene silencing by either 

cleavage or translation inhibition. Different proteins or protein complexes are shown in colored ovals. RNA 

is depicted by red and blue lines. Adapted from Hayes & Chayama, 2016, open access article, no 

permission.   
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i. Key enzymes in the processing stage of pri-miRNA to pre-miRNA: 

 As shown by several research studies, Drosha and DGCR8 are considered to be key 

enzymes in regulating the processing from pri-miRNA to pre-miRNA in different kinds of 

malignant cells. However, for some miRNAs the processing from pri-miRNA to pre-miRNA 

does not depend on the complex DGCR8 and Drosha. In the case of HCC, both Drosha and 

DGCR8 were shown to be over-expressed in the tumor cells (Chu et al., 2014). According to Liu 

et al. out of the genes involved in the synthesis of miRNAs, DROSHA was found to be the most 

differentially expressed in HCC induced by HBV infection (Liu et al., 2011). Similarly, unusual 

expression of Drosha can be seen in breast, ovarian, and cervical cancers, indicating the 

involvement of Drosha in different types of tumors. Few studies have shown HBV can inhibit the 

activity of Drosha, in which it inhibits its promoter activity through HBx and hence down-

regulating the expression of Drosha, also the transcription factors SP1 and AP2a might help in 

facilitating the down-regulation (Chu et al., 2014).  

ii. Key enzymes involved in the nuclear exportation of pre-miRNA: 

 The nuclear exportation of pre-miRNA primarily depends of XPO-5, whose defect in 

cancerous cells may lead to the down-regulation of the global mature miRNAs. It was found that 

in many cancers the pre-miRNAs are retained inside the nucleus; therefore, a gene mutation in 

the nuclear transporter of the pre-miRNAs might be a reason for human cancers (Chu et al., 

2014). As a matter of fact, XPO5-inactivating mutations are always identified in several human 

tumors, implying that XPO5 might be considered a haplo-insufficient tumor-suppressor gene. 

During the entry of the cell cycle, elevation in miRNA is crucial in order to control gene 

expression. It was illustrated by Lwasaki et al. (2013) that XPO5 is induced by a post-

translational mechanism that is PI3K-dependent, in which the suppression of XPO5 interferes 

with the miRNA elevation resulting in a defected cellular proliferation at the G1/S transition. 

Additionally, XPO5 is not only responsible for the exportation of pre-miRNA from the nucleus 

to the cytoplasm, but also for the exportation of other non-miRNA molecules (Wild et al., 2010).  
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iii. Key enzymes involved in regulating the processing from pre-miRNA to mature 

miRNA: 

 As mentioned before, Dicer is the enzyme responsible for dicing and creating mature 

miRNA. The majority of miRNAs are known to be Dicer dependent. However, some scientists 

have reported that in the case of miR-451, its dicing and maturation actually depends on Ago2 

rather than Dicer (Cheloufi et al., 2010; Cifuentes et al., 2010). In humans, the gene Dicerl codes 

for Dicer, which then functions as a haplo-insufficient tumor suppressor gene (McCarthy, 2010).  

F. Epidemiology:  

Even though HCC is known to be the most common primary hepatic tumor globally, there 

are major differences in its incidences among different parts of the world, with the majority of 

cases found in developing countries. According to the GLOBOCAN report, 746,300 newly 

diagnosed HCC cases were reported worldwide in 2008, while 659,900 of HCC related deaths 

were reported in the same year (Figure 5) (Dhanasekaran et al., 2012). Over one million new 

cases of HCC are diagnosed annually worldwide, making HCC as the fifth most common cancer 

globally (Raphael et al., 2012). HCC has a high incidence to mortality ratio of 1.07, which 

categorizes it as the third most common cause of cancer-related deaths around the world. The 

majority of these cases are found in developing countries where 84% of the total worldwide 

incidence and 83% of the total deaths have been recorded. The worldwide distribution of HCC 

cases is parallel to the global incidences of HBV and HCV infections, where the majority of 

HCC cases are located in the regions where these viral infections are endemic. Generally, HCC 

illustrates a male dominance, in which it is displayed in two to four times more in males than in 

females (Jemal et al., 2011).  

There are some unusual trends in the worldwide incidence of HCC, for example, the 

incidence in Asian regions like Korea and China is declining in population-based studies, which 

is attributed to the high number of vaccinations against hepatitis B as well as the aflatoxin 

preventive measures. Unlike the declining rates in Asian countries, several regions in the 

developing world have been showing an increase in the HCC incidence, particularly in Japan and 

the United States. This acceleration in the HCC incidence is related to large number of adults 

who showed signs of HCV infections as a result of blood transfusions and intravenous drug use 

between the period of the 1960s until the 1980s (El-Serag & Mason, 2000). In Egypt, liver 
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cancer is one of the most common tumors due to the high incidence of HCV infection. In men, 

both liver and bladder cancers represent approximately 44% of all malignancies, while in women 

liver and breast cancers represent 45% of all female malignancies (Figure 6) (Ibrahim, Khaled, 

Nabiel, Baraka, & Kamel, 2014). In addition, the rapidly increasing incidence of diabetes, 

nonalcoholic steatohepatitis (NASH), obesity are suspected to have contributed to the increasing 

numbers of HCC patients worldwide. However, regardless of the etiology, the main risk factor in 

the majority (80-90%) of HCC cases worldwide is the existence of the preneoplastic cirrhotic 

liver. According to the current statistics, the HCC incidence in the United States will continue to 

increase over the next two or three decades (Dhanasekaran et al., 2012).  

G. HCC Molecular Classification:  

 Great expectations were anticipated from the field of molecular medicine to unravel the 

mysteries of the molecular pathogenesis of cancer for the great benefit of the patients (Bruix et 

al., 2014). Biomedical research aimed at achieving several goals, such as easily identifying 

patients with high risk factors, detecting common oncogenic pathways, and developing the 

personalized and targeted medicine approach. For various types of cancers goals outlined above 

have been achieved, however for other types these goals have been marred by a slow rate of 

progress. The process of carcinogenesis is far more complicated than what is already known due 

to the abundance of genetic heterogeneity and the difficulty of accurately mapping the numerous 

genetic pathways (Yap et al., 2012). Other factors which contribute to this complicated process 

include the changing of genetic information in nature and the need to study cancer pathways in 

comparison to those of the non-tumor tissue in order to identify the changes in the tumor tissue.  

Cancer changes over time as the disease progresses, and therefore, various genetic 

features important for carcinogenesis differ and develop during metastasis. Since human tissue 

used for genetic analysis is usually obtained from surgical specimens, this puts restriction on the 

research since only a relatively small number of patients are studied. The genetic heterogeneity 

of cancer can be notably intriguing since differences are not only found between patients, but 

even between nodules in a single patient or with the same nodule (Bruix et al., 2014). For 

example, Tao et al. (2011) carried out whole genome sequencing where three nodules in the 

same patient were examined in one patient showing two driver mutations in a single nodule as a 
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result of clonal evolution and separate driver mutations in the other two nodules. Therefore, not 

only each patient represents a unique cancer signature, but every single tumor nodule might be 

genetically different from the other within the same individual. Another reason for the genetic 

variations in HCC is due to the etiology of the liver disease as well as the genetic background of 

the patient. Even when genetic research identifies oncogenic pathways there is usually several 

obstacles to target them therapeutically since the current pharmacological technology is more 

efficient in synthesizing kinase inhibitors than in preventing the protein-protein interactions. For 

example, despite the extensive research of the WNT/β-catenin pathways in HCC, they still 

represent several challenges to be pharmacologically targeted. The dependence of the cancer cell 

on the intrinsic oncogene mutation for survival is known as oncogene addiction; one of the aims 

of genetic research is to identify the oncogenic mutations necessary for therapeutic targeting. 

Due to the difficulty of cancer genetics, the progress that has been made in research so far is not 

yet enough to unveil the complexity of carcinogenesis in HCC (Sharma & Settleman, 2007). 

 Number of genome-wide association studies (GWAS) studying the single nucleotide 

polymorphisms have been carried out, where they identified the affected pathways, such as, 

inflammation-cytokine-chemokine systems, oxidative stress and detoxifying pathways, iron 

metabolism, DNA synthesis and repair mechanisms. It has been shown that functional 

polymorphisms in the epidermal growth factor receptor (EGFR) is associated with an increased 

risk of HCC (Chan et al., 2011; Nahon & Zucman-Rossi, 2012). In addition, somatic mutations 

activating telomerase reverse transcriptase promoter have been identified in the cirrhotic 

preneoplastic macronodules and early stages of HCC, which implicates that these mutations in 

the liver tissue could be used a diagnostic tool for HCC to identify high risk individuals (Bruix et 

al., 2014).  

 As a matter of fact, one of the main obstacles towards HCC treatment is its high risk of 

recurrence. Expression profiling studies of HCC tissue as well as the non-tumor tissue has 

provided insight into the high recurrence risk as well as predicted the recurrence of the tumor. 

Such data showed that the majority of tumor recurrences in the post curative therapy has not 

metastasized from the original tumor but are actually new tumors originating in the cirrhotic 

liver. Additionally, another known risk factor for recurrence of HCC is microinvasion, which 

entails that the genetic signature predicting vascular invasion would help in determining the 
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patient’s risk of recurrence. Currently the alternative approach to predict the recurrence of HCC 

has been combining pathological, clinical, and gene expression data (Villanueva et al., 2011). A 

study by Nault et al. (2013) showed that the combination of the proliferative molecular 

expression signature and the pathological data of the satellite nodules could be used to efficiently 

predict the recurrence of the disease.  

 Several studies focused on mRNA expression and genome-wide methylation profiling, in 

which three main pathways were identified, WNT/β-catenin, a proliferation and a 

hepatoblastoma-like pathway. However, the molecular signatures that have been identified so far 

are general and do not overlap with other studies. Thus, although they are informative there is a 

very small chance that they would be helpful in clinical practice, especially that they have not 

explained specific and targetable oncogenic pathways. Also, same scenario applies to the 

genome-wide methylation profiles that have been published so far (Shen et al., 2012). Another 

approach in the molecular classification of HCC is through analyzing the expression patterns of 

miRNA, which showed dysregulation of different miRNAs. However, no functional studies have 

been carried out to illustrate the nature of the miRNA dysregulation (Bruix et al., 2014).  

 

Figure 5. Worldwide liver cancer incidence in 2008. Age-standardized incidence of liver cancer rates in different 

parts of the world in 2008 according to the International Agency for Research on Cancer, the 2008 GLOBOCAN 

report. Adapted with permission from Dhanasekaran et al., 2012.    
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Figure 6. Incidence of liver cancer among in Egypt. The age specific incidence of liver cancer in Egypt 2008-

2011. Adapted from Ibrahim, Khaled, Nabiel, Baraka, & Kamel, 2014, open access article, no permission.    

H. HCC Diagnosis: 

Despite the recent advances in treatment options for liver cancer, the survival rate still 

remains very poor among the majority of liver cancer patients especially those presented at a 

relatively late stage of the disease (van Meer et al., 2013). Screening of high risk patients who 

suffer from chronic liver disease might help in detecting HCC at early stages, hopefully leading 

to decreased mortality rate. However, surveillance and screening remain controversial due to the 

limited evidence available regarding their efficiency, sensitivity, and the potential risk factors 

(Lederle & Pocha, 2012; Sherman, Bruix, Porayko, & Tran, 2012). Therefore, new screening 

strategies are urgently needed in order to tackle severity of HCC.  

In order to lower the incidence of HCC, diagnose it early, and establish an efficient 

epidemiology, both proper screening and surveillance should be applied (Noda et al., 2010). 

Screening is running a particular test in order to detect a disease in a population that show no 

symptoms or signs of that diseases, while surveillance is periodically repeating that screening 

test on the same target population. The main goal of both screening and surveillance is to detect a 

certain disease before it starts becoming symptomatic, when treatment would be more effective, 

ultimately decreasing the disease mortality. In case of positive results of screening or 

surveillance tests there must be a clear protocol to identify true positive cases with a specific 

diagnostic plan (Giannini et al., 2013).   
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i. Screening and Surveillance Guidelines: 

The aim of surveillance for HCC is to detect small lesions that will respond to curative 

treatments and hence improve patient overall survival. One of the main guidelines for successful 

screening and surveillance is the disease being common with significant morbidity and mortality 

(Giannini et al., 2013). HCC is a very common malignancy worldwide, where its incidence is 

expected to increase in Western countries as a result of the aging of patients suffering from 

chronic HCV, which remains as the major etiological factor of HCC in the developed world (El-

Serag, 2004 & Kanwal et al., 2011). It has been shown that the rates of incidence and mortality 

are quite similar worldwide, therefore demonstrating the short term lethality of this tumor 

especially when diagnosed at late stages of the disease hindering methods of effective treatment. 

Also for a screening and surveillance program to be successful the target population must be 

easily identifiable (Bosetti et al., 2008; Bosetti et al., 2009; & Bertuccio et al., 2013). As 

mentioned before about 90% or more of all HCC patients progress from a cirrhotic liver, which 

is mainly caused by chronic liver diseases such as HBV and HCV, alcoholism, and non-alcoholic 

fatty liver disease. These liver diseases can be diagnosed using the patient history and/or 

serological tests, which would easily identify patients at risk of HCC and in need of surveillance 

(Fattovich, Stroffolini, Zagni, & Donato, 2004). 

 Characteristics such as low morbidity, high sensitivity and specificity are critical 

components of surveillance. According to the American and European guidelines for 

management of HCC, it is recommended that surveillance should be done by a liver ultrasound 

examination every 6 months. Such periodical surveillance is expected to have no morbidity, 

since when the ultrasound is carried out properly it has a relatively high specificity and 

sensitivity (Bruix & Sherman, 2011; European Association for The Study Of The Liver, 2012). 

In a meta-regression analysis by Singal et al. (2009), it was shown that ultrasound has the ability 

to detect subclinical HCCs with a 94%-95% sensitivity; however, the sensitivity is only 63% for 

early HCC detection, while the specificity was usually more than 90%. A semiannual ultrasound 

is considered an easy non-invasive procedure that is relatively low cost, which makes it possible 

for the patient to follow (Davila et al., 2010). Therefore, the demand is high for skillful 

sonographers to perform a reliable HCC surveillance using ultrasound. Additionally, serum 

alpha-fetoprotein (AFP) has been used as a surveillance tool with an acceptable specificity; 
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however, it has a low sensitivity for early HCC detection since only 10-20% of early 

malignancies is presented with high levels of serum AFP. Combining ultrasound and serum AFP 

shows slight increase in sensitivity of the surveillance test; however, it doubles the cost because 

of the high number of false positives. In Europe and the United States, it is recommended that 

patients with a HCC high risk like those suffering from cirrhosis and/or chronic hepatitis, 

undergo periodical surveillance (Trevisani et al., 2002; Bruix & Sherman, 2011; Sherman, 2011; 

European Association for The Study Of The Liver, 2012; & Giannini et al., 2012).  

ii. Biomarkers for HCC Screening: 

        The screening for HCC at the advanced or intermediate stage of the disease [according to 

the system of the Barcelona Clinic Liver Cancer Staging (BCLC)] could have a great 

significance for the TACE or sorafenib therapy. However, screening should be better in detecting 

the disease at its very early stages (one lesion ≤ 5 cm or 3 lesions each ≤ 3 cm with no metastasis 

or angiogenesis), and therefore allowing a better opportunity for potential curative therapy (van 

Meer et al., 2013). The serological biomarkers are considered cost effective and less physical 

burden for the patient. Many serological biomarkers have been investigated for early detection of 

HCC, usually for diagnostic purposes rather than surveillance and screening studies. For 

decades, AFP has been the most commonly used serological biomarker for HCC detection (van 

Meer et al., 2013).  

Alpha-fetoprotein is a glycoprotein expressed in the fetal hepatocytes or malignant HCC 

cells. However, AFP is not secreted into the circulation by all HCC cells; in addition, the levels 

of AFP have been shown to be elevated in chronic liver disease patients without HCC as well as 

in patients with other types of malignancies (Di Bisceglie et al., 2005). According to a report 

published by Gupta et al. (2003) studying patients with HCC at all stages of the disease with an 

underlying cirrhotic or non-cirrhotica HCV, AFP remains a weak biomarker for screening even 

with the highest sensitivity and specificity estimates. With the usual AFP cut-off of 20 ng/ mL, 

the sensitivity and specificity for HCC detection were 41%-65% and 80%-94%, respectively 

(Gupta et al., 2003). A recent large case-control study was performed that included 419 HCC 

cases and 417 cirrhotic controls with different etiologies, in which the efficiency of AFP in early 

HCC detection was compared with other serological biomarkers, such as lectin-bound AFP and 
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des-carboxyprothrombin (DCP) (Marrero et al., 2009). In this study, AFP sensitivity and 

specificity for early detection of HCC were 53% and 90%, respectively, using 20 ng/ mL as the 

recommended clinical cut-off point. In the receiver operating characteristics (ROC) curve a point 

with ideal sensitivity and specificity was used as cut-off of 10.9 ng/ mL, in which the sensitivity 

turned out to be 66% while specificity was 82%. This finding suggested that the usual cut-off 

point of 20 ng/ mL is too high for the optimum AFP screening (Marrero et al., 2009).    

Lectin-bound AFP is another potential serological biomarker for early detection of HCC. 

Lectin-bound AFP, is one of the three glycoforms of AFP, demonstrated by its reactivity in lectin 

affinity electrophoresis (Li, Mallory, & Satomura, 2001). A study investigated the accuracy in 

diagnosis comparing lectin-bound AFP and AFP in patients suffering from cirrhosis as a result of 

an HCV infection (Sterling et al., 2007). The incidence of HCC at reference point and during a 

two years was much higher in patients with high levels of lectin-bound AFP than patients with 

high AFP. In addition, patients with elevated AFP levels had higher levels of lectin-bound AFP, 

which suggests that the levels of lectin-bound AFP has clinical importance as another test for 

HCV patients with low AFP levels by categorizing a subgroup of patients with a high chance of 

HCC (Sterling et al., 2007). Other studies have reported even less encouraging results regarding 

the accuracy and efficiency of lectin-bound AFP. Numerous of studies have investigated the 

diagnostic efficiency of a combination of serological biomarkers; however, when AFP and DCP 

were combined there seemed to be little or no progress in the rates of sensitivity for early HCC 

detection (van Meer et al., 2013).      

 DCP is an abnormal protein produced as a result of a defect that is acquired during the 

post-transitional carboxylation of the prothrombin precursor in cancerous hepatocytes (Liebman, 

1989). Several studies have investigated the efficiency of DCP as a serological biomarker for 

early detection of HCC; however, the results were inconclusive (Ishii et al., 2000; Ikoma et al., 

2002; Marrero et al., 2003; & Lok et al., 2010). For example, a case-control study with 39 HCC 

cases and 77 controls, DCP was shown to be more accurate than AFP (Lok et al., 2010). DCP 

alone has sensitivity and specificity of 74% and 86%, respectively, with a cut-off value of 40 

mAU/ mL (Marrero et al., 2009).   
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 Recent studies have suggested new serum biomarkers for early HCC detection, such as 

the receptor of angiopoietins tyrosine kinase with Ig (immunoglobulin) and EGF (epidermal 

growth factor) homology domains 2 (TIE2). TIE2 expressing monocytes (TEMs) were recently 

discovered to be enriched in HCC as well as in other tumors where angiogenesis is essential for 

tumor development (van Meer et al., 2013). According to Matsubara et al. (2013) in a study that 

included 168 HCV patients, of which 89 had developed HCC registered a significantly higher 

abundance of TEMs in the peripheral blood independent of the tumor stage. TEMs were also 

elevated in a separate group of HCC patients without HCV. TEMs were more effective than AFP 

and DCP in discriminating HCC from cirrhosis or chronic hepatitis (Matsubara et al., 2013). On 

the other hand, it was shown in another study that circulating and intrahepatic TEMs were 

elevated in patients who did not develop HCC but had HCV infection (Rodríguez-Muñoz et al., 

2011). Although these findings represent a limited cohort of HCV-infected patients, they still 

might indicate that TEMs expansion and mobilization may not be strictly HCC related, but 

associated more with chronic liver infection (De Palma, Coukos, & Semela, 2013).  

Other research groups studied the role of Glypican-3 (GPC3), which is a surface protein 

expressed in the majority of HCC cases, yet it is undetectable in the hepatocytes of normal 

individuals as well as patients who are presented with a benign liver disease (Capurro et al., 

2003; Tangkijvanich et al., 2010; & Yasuda et al., 2010). Golgi protein 73 (GP73) is another 

potential biomarker, which is an amino acid that is usually found in the Golgi complex (van 

Meer et al., 2013). Marrero et al. (2015) showed that the levels of GP73 are elevated in the 

serum of HCC patients, with a 62% sensitivity for early detection of HCC.  

Interleukin-6 (IL-6) a cytokine associated with cell differentiation and growth, is another 

potential biomarker for HCC that has been investigated. The concentrations of serum IL-6 

appeared to be elevated in HCC patients compared to healthy individuals (Hsia et al., 2007 & 

Porta et al., 2008). The sensitivities of IL-6 for the differentiation between HCC patients and 

healthy control ranged from 46% to 73%, while the specificities ranged from 87% to 95% 

(Giannelli et al., 2005 & Hussein et al., 2008). Although extensive research has been conducted 

aiming to uncover the most reliable HCC biomarkers that would help in the early diagnosis of 

the disease, there is still a lot of work that needs to be done in order to discover the most specific, 

sensitive, non-invasive biomarker for HCC diagnosis. 
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iii. Imaging Techniques for HCC Screening: 

Currently, the most commonly used method for surveillance of HCC is ultrasonography 

(US). The main advantage of US is the lack of invasiveness; however, it is known to be time-

consuming, technician-dependent, and relatively expensive (van Meer et al., 2013). In addition, 

the method is not applicable for an overweight patient. It was shown in a meta-analysis by Singal 

et al. (2009) with 13 studies included, that the combined sensitivities and specificities were 94% 

for HCC detection at any stage. On the other hand, US was less accurate in detecting the 

potentially curable early stages of HCC, in which the combined sensitivity was 63%. Another 

systematic study by Colli et al. (2006) showed that US alone is inadequately sensitive for HCC 

screening. According to this study, sensitivities for HCC detection (all disease stages combined) 

in the 14 studies included, ranged from 30%-100%, while specificities ranged from 73%-100%. 

However, it is important to take note that noticeable variability between the studies can be due to 

the populations tested, the size of the tumors, and/or differences in technicians’ experience and 

skills. Additionally, Singal et al. (2009) studied combining AFP with US in a meta-analysis 

aiming at the early detection of HCC. There was a slight increase in the pooled sensitivities from 

63% to 69%; however, it was not statistically significant, which suggests that combining AFP 

with US is not very effective in HCC screening (van Meer et al., 2013). Clinical evidence 

suggests that the interval of tumor growth from undetectable to a lesion of 2 cm in diameter 

usually ranges from 4 to 12 months.  

Recently, computed tomography (CT) and magnetic resonance imaging (MRI) are now 

being used as good tools for HCC screening. However, these imaging techniques are mainly still 

used to further evaluate cases with abnormal findings from US results in order to determine the 

extent of the tumor. According to a comprehensive review by Colli et al. (2006), spiral CT 

imaging showed comparable sensitivities and specificities similar to US for HCC detection in 

patients presented with chronic liver disease. The combined sensitivities for US and spiral CT 

imaging were 60% and 68%, respectively, while the combined specificities were 97% and 93%, 

respectively (Colli et al., 2006).                           
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I. MicroRNAs and HCC: 

 MicroRNAs have been associated with the regulation of cellular processes that are known 

to be deregulated in cancer, such as proliferation, apoptosis, and differentiation. Changes in the 

expression of miRNAs in cancer have been demonstrated in several studies, suggesting the 

significant contribution of miRNAs to the characteristics of the tumor cells (Hermeking, 2010). 

Additionally, several miRNA-encoding genes have been categorized as either tumor suppressive 

or oncogenic according to the role they play during cell transformation and altered expression in 

cancers. MicroRNAs with tumor suppressive ability may act by downregulating the proto-

oncogenes products, such as in the case of miRNA family let-7 that targets the expression of 

KRAS, HMGA2, and NRAS oncogenes, and it is not expressed in lung tumors (Hermeking, 2010).  

i. MiR-34a: 

 The role of miR-34a has been frequently studied, which revealed its significant role in 

development of carcinogenesis in many different cancers. In HCC, miR-34a is known to inhibit 

the invasion and migration of the human HCC cells (Li et al., 2014). In a study by Li et al. 

(2009), the research group highlighted the important role miR-34a plays in regulating the 

scattering, migration, and invasion of tumor cells. In the study, 19 out of the 25 (76%) HCC 

human tissue samples showed down-regulation of miR-34a in comparison to adjacent normal 

tissue (Li et al., 2009). Additionally, normal and HCC tumor tissues of 25 patients showed an 

inverse correlation between the c-Met-protein and miR-34a. In HepG2 cells, the ectopic 

expression of miR-34a significantly inhibited the migration and invasion of tumor cells in a c-

Met-dependent manner (Li et al., 2009; Dang et al., 2013). Several studies back in 2007, 

reported that members of the miR-34 family are considered direct targets of p53, in which their 

upregulation is seen to induce cell-cycle arrest and apoptosis (Figure 7). In mammals, the miR-34 

family includes three mature miRNAs encoded by two different genes, in which miR-34a is 

encoded by its transcript, while miR-34b and miR-34c have the same common primary transcript 

(Figure 8) (Hermeking, 2010). In mice, miR-34a is abundantly expressed, where the brain tissue 

shows the highest expression, while miR-34b/c is highly expressed in the lungs. Recent studies 

demonstrated that the expression levels of miR-34a are higher than miR-34b/c, except for the 

lungs where miR-34b/c is mainly expressed. Thus, the two miR-34 genes are considered to have 

tissue-specific functions (Bommer et al., 2007). It was shown that miR-34 genes show liver 
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ectopic expression, which has significant impact on cellular proliferation and survival. For 

example, the ectopic expression of miR-34a and miR-34b/c induced cell-cycle arrest at the G1 

phase. Both proliferation and colony formation was inhibited in soft agar due to the expression of 

miR-34b/c. Several studies also showed that the re-expression of miR-34a induced apoptosis, and 

since apoptosis and cell-cycle arrest usually occur upon the activation of p53, it is hypothesized 

that miR-34 genes may act as effective mediators of p53 tumor suppression (Chang et al., 2007). 

The tumor suppressor protein, p53, is a transcription factor responsible for regulating stress 

response genes as well as facilitating different anti-proliferative processes (Vogelstein et al., 

2000). As a matter of fact, a number of p53 tumor suppressor functions are regulated by 

miRNAs. In 2007, more than one research group have shown that the members of the miR-34 

family are the most commonly p53-induced miRNAs (Bommer et al., 2007; Chang et al., 2007; 

He et al., 2007; Raver-Shapira et al., 2007). After that several studies demonstrated that the miR-

34 family members are crucial mediators of tumor suppression. Members of the miR-34 family 

have been associated with the regulation of different cancer-related processes, such as epithelial 

to mesenchymal transition (EMT), proliferation, migration, apoptosis, metastasis, and invasion 

(Figure 9) (Rokavec et al., 2014). Microarray analyses revealed that after the ectopic 

introduction of various members of the miR-34 family into different cell lines hundreds of miR-

34 targets were downregulated. It was revealed that mRNAs that function in cell-cycle control as 

well as the DNA damage response were among the majority of transcripts found to be 

downregulated by the miR-34 family. In addition, these downregulated mRNAs revealed an 

enrichment of miR-34 seed-matching sequences in their 3’-UTR regions (Hermeking, 2010).    

 MiR-34a is a highly conserved miRNA, which is recently identified as a significant tumor 

suppressor in a number of malignancies through its suppression of multiple targets (Li et al., 

2014). MiR-34a expression can mainly be regulated through epigenetic modification, genomic 

loss, and transcriptional regulation (Figure 10). MiR-34a is encoded on the distal region of 

chromosome 1p, where it has been reported that genomic loss of this particular region is found in 

different malignancies; thus, the loss of the miR-34a gene that acts as a tumor suppressor is 

logical. Although the mechanism through which miR-34a is dysregulated in human malignancies 

is not well understood yet, there remains substantial evidence suggesting that epigenetic changes 

are involved in the process of carcinogenesis (Nagai, Negrini, Carter, Gillum, Rosenberg, 1995; 

Attiyeh et al., 2005; Zhang et al., 2010).  
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Transcriptional silencing through the methylation of CpG islands is considered one of the 

most significant processes through which tumor suppressor genes are inactivated. In addition, 

inactivation by CpG methylation can result in clonal growth with a selective advantage during 

tumorigenesis (Li et al., 2014). Silenced expression of miR-34a has been reported in a number of 

malignancies, such as colon, breast, lung, bladder, kidney, pancreatic cancers due to the 

hypermethylation of CpG islands in the miR-34a gene promoter region. Additionally, upon 

treatment with DNA methyltransferase inhibitor, 5-aza-2’deoxycytidine, there was a decline in 

CpG methylation of miR-34a, leading to the reactivation of the miR-34a gene. The promoter 

region far away from the transcription start site was analyzed to reveal that it contains uniformly 

increased CpG methylation. Thus, silencing the expression of miR-34a is believed to be 

facilitated by CpG methylation of a certain region 100-500 base-pairs upstream of the 

transcription start of miR-34a (Lodygin et al., 2008).  

 The expression of miR-34a is regulated by multiple transcription factors, such as ETS-

like protein 1, which was shown to increase the miR-34a expression (Antonini et al., 2010). MiR-

34a is negatively regulated by a member of the p53 family; p63, which is associated with the 

progression of the cell cycle through the direct repression of miR-34a transcription. When p63 is 

absent, it was observed that the levels of miR-34a were elevated in epidermal cell through the 

direct binding to p53-consensus sites in the regulatory regions of miR-34a, thus inhibiting its 

activity (Siemens et al., 2011).  

 As the functions of miRNAs in human diseases are being gradually understood, several 

research groups are currently investigating the role of miRNAs in cancer therapy. Generally, 

upregulation of miRNAs occurs through the administration of synthetic miRNAs or miRNA-

expressing vectors. On the other hand, miRNAs are downregulated through the addition of anti-

sense nucleotides. It has been observed that in the majority of tumors, the levels of miR-34a are 

downregulated, which categorizes this miRNA as a tumor suppressor. The significance of miR-

34a is evident by the numerous factors responsible for its regulation. This complicated network 

of regulatory mechanisms and transcription factors lead to miR-34a’s tissue-specific expression 

in various types of tumors (Li et al., 2014). 
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Figure 7. The miR-34 family as a facilitator of tumor suppression by p53. After double-strand breaks take place, 

p53 gets activated through ATM-kinases and transactivates other target genes through consensus binding sites. 

Primary transcripts of the activated miR-34 genes are then processed by DROSHA and DICER complexes. After 

that the mature miRNA is incorporated in the RISC complex to either inhibit translation or degrade RNA of specific 

targets. Adapted with permission from Hermeking, 2010. 

 

 

Figure 8. A detailed structure of the genomic loci of human miR-34a and miR-34b/c genes. The white boxes 

represent exons, while the miRNA hairpins are represented by the black boxes. The hatched boxes represent the 

p53-binding sites, whereas the thick black lines indicate the CpG islands location Adapted with permission from 

Hermeking, 2010. 



38 

 

 

Figure 9. miR-34 regulation in cancer. The regulation of multiple cancer-related processes and pathways by the 

miR-34 family through the targeting of key factors. Down-regulated proteins due to miR-34 direct targeting are 

grouped according to their function. The net regulation effect of miR-34 on each pathway is shown by a green 

arrow (activation) or a red inhibitory sign. Adapted with permission from Rokavec et al., 2014.  
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Figure 10. miR-34a regulation. A diagram showing the means through which the expression of miR-34a is 

regulated. Inhibition is indicated by the red arrows, while green arrows represent activation. Adapted with 

permission from Li et al., 2014.                       

ii. MiR-221:  

MiR-221/222 are homologous highly conserved miRNAs in vertebrates encoded in 

tandem on the X chromosome, in which they act as tumor promoters due to their upregulation in 

human malignancies (Di Martino et al., 2016). Number of studies have shown the role miR-

221/222 play in tumor development either as an oncomiR or oncosuppressor-miRs (Garofalo et 

al., 2012).  MiR-221 was shown to be overexpressed in human cancers, such as glioblastoma, 

breast cancer, and colorectal cancer. Additionally, it was recently reported that miR-221 

stimulates the onset of tumorigenesis and promotes the progression of the tumor, hence 

shortening the lifespan of mouse models with liver cancer (Li et al., 2011). In 2007, Galardi et 

al. (2007), discovered the cell cycle regulator, p27Kip1, as the target for the miR-221/miR-222 

family. They demonstrated that in pancreatic cells, the expression levels of p27Kip1 and miR-

221/miR-222 are inversely correlated, and showed that overexpression of miR-221/222 

significantly affected proliferation and the distribution of the cell cycle phase. These findings 

were then confirmed in thyroid papillary carcinomas, breast cancer, glioblastomas, lung cancer, 

and hepatocellular carcinoma.  
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A study by Li et al. (2011) revealed that in the 46 HCC samples tested, miR-221 was 

significantly elevated in the sera of 35 samples compared to the normal controls. Additionally, it 

was shown that the significant upregulation of miR-221 was directly correlated with the size of 

the tumor, tumor stage, and cirrhosis. Also, it was observed that the expression of miR-221 

increases as the TNM (Classification of Malignant Tumors) stage progresses (Figure 11) (Li et 

al., 2011). However, no correlation has been established between the expression of miR-221 and 

other clinical factors, such as gender, age, HBV infection, and alcohol abuse. It was concluded 

that, the more advanced the tumor, the more up-regulated miR-221 expression is, and hence the 

expression of miR-221 could directly affect the patients’ prognosis. As shown in Figure 12, the 

overall survival rate of HCC patients with high miR-221 expression is significantly lower 

compared to patients with low miR-221 expression (Li et al., 2011).    

Another study by Pineau et al. demonstrated that the dysregulation of miR-221 is 

associated with the progression of liver tumorigenesis, in which they function through the 

targeting of CDK inhibitors p27 and p57 at the protein level. It was concluded that the 

expression profiles of certain miRNAs change during the progression of liver tumorigenesis, in 

which some act as real oncomiRs, such as miR-221 (Pineau et al., 2010). Additionally, Fornari et 

al. (2008) showed that CDKN1C/p57 is a direct target of miR-221 in the liver, proving further 

the oncogenic function of miR-221 in hepatocarcinogenesis. As expected, the transfection of 

miR-221 in Hep3B cells resulted in 1.8-fold decrease of CDKN1C/p57, while the transfection of 

SNU449 cells with antimiR-221 there was a 1.3-fold increase in the protein levels of 

CDKN1C/p57 when compared to negative control miRNA inhibitors (Garofalo et al., 2012). 

In another study, patients with chronic HCV infection had elevated levels of miR-122a 

expression as well as AST and ALT, which were positively correlated with the upregulation of 

miR-221. The elevated levels of miR-221 may reflect the liver damage caused during the course 

of the chronic HCV infection; and thus, the levels of circulating miR-221 can be an indicator of 

the disease activity (Ding et al., 2015). This study showed the significant upregulation of miR-

221 in the serum of chronic HCV patients, which is suggested to be through the association of 

miR-221 with the NF-κB cascade. Several studies have demonstrated the activation of NF-κB-

dependent inflammatory pathways in chronic viral hepatitis, cirrhosis, and HCC (Figure 13). NF-

κB has a binding site at the promoter region of miR-221, in which the upregulation of miR-221 
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could be completely blocked by NF-κB inhibitor (PDTC), suggesting that the upregulation of 

miR-221 during HCV infection occurs in a NF-κB dependent manner (Ding et al., 2015). 

 

 

Figure 11. MiR-221 Expression. MiR-221 expression pattern in normal controls compared to different clinical 

stages of HCC serum samples. Significant differences were evident between the different groups (p < 0.05). 

Adapted with permission from Li et al., 2011. 

 

Figure 12. Kaplan-Meier survival curves of HCC patients. The 5-year overall survival rate of HCC patients 

with high serum expression of miR-221 was considerably lower compared to HCC patients with low expression of 

miR-221. Adapted with permission from Li et al., 2011. 



42 

 

 

Figure 13. MiR-221 Regulation. The regulatory mechanisms of the miR-221/222 family in hepatocarcinogenesis. 

Adapted from Matsuzaki & Suzuki, 2015, open access article, no permission.    

iii. MiR-199a: 

MiR-199a is located on chromosome 19 in the dynamin-2 gene within intron 14. MiR-

199a is one of the most highly expressed miRNAs in the normal liver (Song et al., 2014). Several 

studies have shown that the expression on miR-199a is down-regulated in several types of 

cancer, including HCC. MiR-199a was shown to be down-regulated in prostate, ovarian, colon, 

renal, bladder cancers, and oral squamous cell carcinoma, while it was up-regulated in gastric 

cancer, bronchial squamous cell carcinoma, and cervical carcinoma (Song et al., 2014). In a 

study by Li et al. (2016), systematic analysis revealed that miR-199a is significantly decreased in 

HCC cases, and hence it functions as a tumor suppressor through the inhibition of the 

oncogenesis thus preventing tumor development. As a tumor suppressor, miR-199a was shown 

to negatively regulate cMet, which is an important oncogene that plays a role in invasion and 

metastasis of HCC. Therefore, in HCC cell lines it was shown that overexpression of miR-199a 

decreases invasion and proliferation. Moreover, in gastric cancer, miR-199a is known to regulate 

the tumor suppressor mitogen-activated protein kinase kinase kinase 11 (Li et al., 2016). In 

another by study by Song et al. (2014), qRT-PCR results demonstrated that miR-199a is 
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involved in the regulation of human hepato-carcinogenesis, in which its expression levels were 

decreased by 82.5% in HCC tissues compared adjacent non-neoplastic liver tissue. Additionally, 

the cell line expression displayed a similar pattern to that found in tissues. Further analysis also 

revealed that the low expression of miR199a correlated with worse HCC patients’ prognosis, in 

which clinical features analysis of 40 HCC patients showed decreased expression of miR-199a in 

association with the TNM stage of patients and tumor metastasis. After that, survival analysis 

revealed that the down-regulation of miR-199a was significantly correlated with poor prognosis 

for HCC patients (Song et al., 2014).  

The members of the miR-199 family include, miR-199a-5p, miR-199a-3p, and miR-

199b, which are all known to be down-regulated in HCV-induced HCC cases when compared to 

healthy controls and cases with post-hepatitis cirrhosis and liver failure (El-Abd et al., 2015). 

The strong association of miR-199a/b with HCC, regardless of the etiology, is very evident in all 

expression analysis profiles especially that it the third most highly expressed miRNA in liver 

tissue (Diaz et al., 2013). The expression of miR-199a/b has always been down-regulated in 

HCC patients with different etiologies, such as HBV, HCV, and high alcohol consumption. As 

previously mentioned, the strong correlation between HCC and miR-199a/b has been 

demonstrated through the poor rate of survival, short time to tumor recurrence, growth inhibition 

of HCC in vivo and in vitro following administration of miR-199a/b, and the down-regulation of 

tumor-promoting pathways such as mTOR, c-MET, and PAK4/Raf/MERK/ERK (Diaz et al., 

2013).   

iv. MiR-16: 

  In 2002, Calin et al. demonstrated that miR-16 is located within a small region of the 

13q14 chromosome, which was found to be deleted in more than 65% of chronic lymphocytic 

leukemia (CLL) cases. Their study showed that allelic loss in this chromosomal region is 

associated with the down-regulation of miR-15 and miR-16 suggesting that these genes are 

inactivation targets by allelic loss found in CLL, which was one of the first pieces of evidence to 

suggest the importance of miRNA genes in tumorigenesis. The mapping of the miR-15a and 

miR-16-1 genes in a region usually altered in cancer served as evidence that these two miRNAs 

could be the 13q14.3 target genes. Number of studies of CLL as well as solid tumors have 
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demonstrated the deletion or down-regulation of miR-15a and miR-16-1 in malignant cells, 

implicating that these two miRNAs could be ‘hot spots’ in tumor transformation (Calin & Croce, 

2006). Expression analysis of miR-15a and miR-16-1 in prostate cancer showed consistent down-

regulation of these two genes in approximately 80% of tumor tissue samples compared to that of 

normal tissues. Additionally, no association has been reported between the loss of RB, which is 

located in the same area, and the down-regulation of miR-15a and miR-16-1, thus suggesting that 

miR-15a and miR-16-1 down-regulation or loss is independent of the absence of the RB encoding 

gene (Figure 14). Additionally, lower expression of miR-15a and miR-16-1 was shown in 

pituitary adenomas compared to normal pituitary tissues. Collectively, these data suggested that 

miR-15a and miR-16-1 function as tumor suppressors where their inactivation by allelic loss 

contributes to carcinogenesis (Bottoni et al., 2005).    

 It was found that the sequences of miR-15a and miR-16-1 and the BCL2 mRNA have a 

complementary homology, hence suggesting that the oncoprotein Bcl2 might be a post-

transcriptional repression target by the tumor suppressors, miR-15a and miR-16-1 (Cimmino et 

al., 2005). Bcl2 has a critical role in the eukaryotic cell genetic program, in which it favors 

survival through cell death inhibition. Therefore, the up-regulation of Bcl2 has been shown in 

several types of human tumors, such as carcinomas, leukemias, and lymphomas (Figure 14) 

(Sanchez-Beato, Sanchez-Aguilera, & Piris, 2003). In a study by Qu et al. (2011), where they 

investigated the expression levels of liver-specific miRNAs in the sera of HCC patients and 

chronic liver disease (CLD) patients, the data revealed that the serum levels of miR-16 were 

noticeably lower in HCC patients compared to CLD and normal individuals. As a matter of fact, 

miR-16 was identified in 76 out of 105 HCC patients, which as a single marker had the highest 

sensitivity of all other miRNAs investigated. Additionally, combining miR-16 with other 

conventional HCC biomarkers such as, AFP, AFP-L3, and DCP resulted in great diagnostic 

accuracy, with a specificity of 78.5% and sensitivity of 92.4% (Qu et al., 2011). Additionally, Qu 

et al., investigated the miRNA expression in the sera of patients with tumor size ≤ 3 cm, where 

miR-16 was identified in 34 out of the 43 patients with small tumor size, which was a more than 

the number identified with the conventional serum HCC markers (Qu et al., 2011). On the other 

hand, in another study by Tan et al., although miR-16 was significantly down-regulated in HCC 
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patients compared to the controls, yet it did not meet the candidate miRNA selection criteria set 

by the research team at the microarray level (Tan et al., 2014). 

 

Figure 14. MiR-16 Regulation. Through the regulation of Cdk4/6-cyclin D complexes and Cdk2-cyclin E 

complexes, the miR-16 family facilitates the G1/S transition. The transition of G1/S is mainly regulated by 2 

complexes, D-type cyclins with CDK4/CDK6 and E-type Cyclins with CDK2. The two complexes are responsible 

for the phosphorylation and inhibition of Rb and E2F binding, resulting in the activation of E2F-mediated 

transcription and transitioning the cells from the G1 to the S phase. The inactivation of Cdk2/4/6 as well as the 

expression levels of Cyclin E1, Cyclin D1, Cyclin D3, and CDK6 are controlled by the miR-16 family, and hence 

preventing the Rb proteins phosphorylation. Additionally, miR-16 is responsible for inducing apoptosis through 

the downregulation of Bcl-2, an anti-apoptotic protein. Adapted from Liu et al., 2008, open access article, no 

permission.    

v. MiR-122a: 

MiR-122a is undetectable in the majority of tissues, while it accounts for approximately 70% of 

the total liver microRNA population. MiR-122a has critical functions in the regulation of 

hepatocyte development, lipid metabolism, stress response, and differentiation (Nakao, Miyaaki, 

& Ichikawa, 2014). The expression of miR-122a is determined by liver-enriched transcription 

factors (LETFs), that also include hepatocyte nuclear factor (HNF) 4a and 6, that also regulates 

the dosage of miR-122a in vivo during liver development (Xu et al., 2010; Laudadio et al., 2012; 

Deng et al., 2014). As a matter of fact, during liver development, the increased expression of 

miR-122a and LETFs is believed to maintain the balance between cellular differentiation and 

proliferation in cholangiocyte and hepatocyte lineages. This sequential regulation of the 

expression of miR-122a is crucial since miR-122a plays a role in hepatobiliary segregation while 

maintaining a hepato-specific phenotype. In mouse models for liver development, miR-122a is 

responsible for the terminal liver differentiation through gradually repressing the transcription 
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factor cut-like homeobox 1 (CULT1) (Figure 10) (Xu et al., 2010). The function of miR-122a in 

liver development and differentiation was studied further by demonstrating that miR-122a 

antisense-mediated inhibition delayed the development of the liver in zebrafish models, and 

resulted in the expression of suppressed genes in the liver of adult mouse models. Additionally, 

this was proven further by that fact that in primary HCC with poor prognosis, miR-122a 

repression was associated with hepatic phenotype suppression (Krützfeldt et al., 2005; 

Coulouarn, Factor, Andersen, Durkin, & Thorgeirsson, 2009).       

In the case of liver disease, the use of germline knock-out (KO) mice and liver-specific KO 

mice has been extremely helpful in demonstrating the key role miR-122a plays in the 

development and progression of liver disease (Bandiera et al., 2015). It was demonstrated that 

the genetic loss of miR-122a not only severely impacts lipid metabolism, but initiates 

inflammation and microsteatosis that led to the development of steatohepatitis and fibrosis as the 

mice got older. Additionally, carbon tetrachloride-induced mouse model of liver fibrosis showed 

a low expression of miR-122a (Hsu et al., 2012; Tsai et al., 2012). As a matter of fact, restoring 

the levels of miR-122a in miR-122a KO mice caused liver inflammation to be partially reversed, 

through the repression of miR-122a targets, the chemokine Ccl2 responsible for the intrahepatic 

recruitment of CD11bhiGr1+ inflammatory cells, and the pro-fibrogenic Krüppel-like factor 6 

(KLF6) that is up-regulated in the miR-122a KO mouse liver. These findings demonstrated 

clearly the anti-fibrotic and anti-inflammatory functions of miR-122a in the liver (Hsu et al., 

2012; Tsai et al., 2012).  

MiR-122a stimulates the replication of HCV through the direct binding to the HCV RNA on 

the HCV 5’UTR, while it inhibits HBV replication through the p53-mediated inhibition of HBV 

transcription. MiR-122a functions as a tumor suppressor as it inhibits the development of HCC 

through binding to target genes responsible for HCC cellular proliferation, differentiation, 

migration, angiogenesis, and apoptosis (Nakao, Miyaaki, & Ichikawa, 2014). It has been reported 

in several studies that miR-122a is down-regulated in HCC tissue in comparison to adjacent 

normal tissue, in which loss of miR-122a expression has been associated with HCC metastasis 

and poor prognosis. Coulouarn et al. (2009) reported that in HCC tissue, loss of expression was 

associated with low apoptotic index and high proliferation. MiR-122a down-regulation has also 

been observed in several HCC human cell lines, even though the miR-122a expression levels 

vary with more than 1000-fold differences among various cell lines (Coulouarn et al., 2009).   



47 

 

MiR-122a serum expression levels have been studied in patients with HCC as well as other 

chronic liver diseases (Nakao, Miyaaki, & Ichikawa, 2014). The miR-122a serum levels were not 

significantly different between HCC patients compared to patients without HCC; however, they 

correlated positively with liver transaminases and were negatively correlated with the Model for 

End-Stage Liver Disease (MELD) score, which indicates that circulating serum miR-122a is a 

reliable biomarker for liver injury but not necessarily for HCC (Nakao, Miyaaki, & Ichikawa, 

2014).      

Several research groups have identified different target genes of miR-122a that play a role in 

hepatocarcinogenesis and epithelial mesenchymal transition (EMT). For example, the expression 

of cyclin G1 is directly down-regulated by miR-122a, resulting in an inverse relationship 

between the expression of cyclin G1 and miR-122a in HCC tissue (Gramantieri et al., 2007). 

Deregulation of cyclin G1 has been shown to be associated with genomic instability, where the 

over-expression of cyclin G1 has been demonstrated in leiomyoma, breast, and colorectal cancer. 

Additionally, laboratory evidence from cancer cell lines and tumor xenografts demonstrated that 

loss of cyclin G1 leads to tumor growth inhibition by decreasing proliferation and inducing 

apoptosis. For example, in experimental hepatocarcinogenesis, loss of cyclin G1 is correlated 

with a noticeably low tumor incidence following a carcinogenic incident, in which cyclin G1-

null hepatocytes enter the S phase at a slower rate (Gramantieri et al., 2007). MiR-122a is also 

known to up-regulate the p53 expression and its transcriptional functions through the negative 

regulation of cyclin G1 of p53 protein’s stability that acts on the B’ subunit of phosphatase 2A 

(Nakao, Miyaaki, & Ichikawa, 2014).    

Finally, the down-regulation of miR-122a was shown to be associated with poor prognosis 

and liver cancer metastasis. Additionally, number of miR-122a targets have been shown to be 

associated with tumorigenesis, such as cyclin G1, ADAM10, IGF1R, SRF, and Wnt1, in which 

they contribute to hepatocarcinogenesis, angiogenesis, and epithelial-mesenchymal transition 

(Bandiera et al., 2015). All these data compiled together provide the evidence that miR-122a 

functions as a tumor suppressor in the liver. Furthermore, by experimenting on a mouse model 

that developed a tumor without inflammation, it has been shown that miR-122a functions as an 

anti-tumor molecule that acts independently of its other functions of liver disease prevention and 

inflammation. Therefore, besides miR-122a being a specific and sensitve diagnostic biomarker, it 



48 

 

also has the potential of being used as a therapeutic tool for the treatment of HCC (Bandiera et 

al., 2015).    

 

Fig. 15. MiR-122 is a crucial regulator of liver development and disease. An illustration showing the various 

roles of miR-122 in hepatogenesis and metabolism (red boxes) and its involvement in viral hepatitis and liver 

disease. Also shown is the effect of miR-122 on the activation (+) or inhibition (-) of specific processes. Viral 

origins miR-122 targets are shown in grey boxes, while the host miR-122 targets are illustrated outside boxes. 

Adapted with permission from Bandiera et al., 2015.    

vi. MiR-125a: 

MiR-125a is located on chromosome 19q13, that has been shown to be frequently deleted in 

several types of human cancers. In a study by Scott et al. (2007) it was shown that over-

expression of miR-125a decreased the anchorage-dependent growth, invasion, and migration of 

breast cancer cells through the down-regulation of ERBB2 and ERBB3 in the ERBB2-dependent 

SKBR3 cell line.  Additionally, studies showed that during treatment with trastuzumab, miR-

125a plays a role in inhibiting the proliferation of human gastric cancer cells (Bi et al., 2012). 

MiR-125a was also shown to be down-regulated in non-small cell lung cancer, in which it had 

reverse impact on the invasion and migration of the lung tumor cells. On the other hand, in the 
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case of ovarian cancer, miR-125a over-expression promotes the conversion of very invasive 

tumor cells from a mesenchymal origin to an epithelial morphology, indicating that miR-125a 

negatively regulates EMT (Figure 16) (Jiang et al., 2010).  

In HCC, miR-125a was shown to be frequently down-regulated when compared to normal 

adjacent liver tissue, and it is associated with the tumor progression in HCC patients (Bi et al., 

2012). In HCC cell line, miR-125a ectopic expression could also repress proliferation and 

metastasis in vivo and in vitro. MiR-125a can arrest the translation of the mRNA of the tumor 

suppressor gene, p53, which hinders the expression of HBV surface antigen. Using the miRanda 

and Pic Tar algorithms for analyses showed number of cancer-associated genes, such as ERBB2, 

EDN1, MMP11, ERBB3, MMP14, VEGF-A, and BCL-2L as potential miR-125a target genes. 

In fact, the over-expression of miR-125a did not suppress the ERBB2 or ERBB3 expression, 

which are key players in inhibiting breast cancer proliferation and metastasis. In a study by Bi et 

al., it was found that the expression of MMP11 and VEGF-A is inversely correlated with miR-

125a in HCC tissues. According to these findings, Bi et al. speculated that miR-125a could play 

a role in the inhibition of HCC proliferation and metastasis through the partial down-regulation 

of MMP11 and VEGF-A (Bi et al., 2012).   

Zheng et al. (2015) reported noticeable increase in the expression of miR-125a-5p in 

different fibrotic stages, between F1 and F6, which demonstrated that up-regulation in serum 

miR-125a-5p is associated with the progression of liver disease. Using multivariate logistic 

regression analysis, liver miR-125a-5p was identified as an independent indicator of the 

progression of liver disease. Additionally, Zheng et al. (2015) showed that the serum levels of 

miR-125a-5p were significantly down-regulated in the HCC patient group when compared to 

fibrotic patients and healthy controls. Moreover, serum miR-125a-5p was up-regulated in 

patients with HBsAg (hepatitis B surface antigen) (+) HCC, which highlights the correlation 

between the expression levels of serum miR-125a-5p and hepatitis virus infection. Zheng et al. 

(2015) also reported the correlation between the low expression levels of serum miR-125a-5p 

and poor patient prognosis, which indicates that serum miR-125a-5p could be a good prognostic 

marker for HCC. They also found that changes in serum miR-125a-5p expression levels were 

similar to the expression patterns in liver tissue, suggesting that miR-125a-5p in the serum could 
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be released from liver tissue since the serum miR-125a-5p expression was higher in liver fibrotic 

patients and lower in HCC patients.       

 

Figure 16. MiR-125 Targets. A schematic representation of the involvement of miR-125 in the pathogenesis of 

different diseases. MiR-125 can function either as a cancer repressor or promoter. Adapted from Sun, Lin, & 

Chen, 2013, open access article, no permission.    

vii. MiR 139: 

MiR-139 is located on chromosome 11q13.4 within the second intron of the 

phosphodiesterase 2A (PDE2A) gene. MiR-139-5p is the mature miRNA resulting from a miR-

130 precursor (Qiu et al., 2015). Decreased miR-139 expression has been shown before in 

several digestive malignant tumors, such as gastric, colorectal, parathyroid cancers and 

adrenocortical and squamous cell carcinomas (Li et al., 2014). Wong et al. was the first to report 

that down-regulation of miR-139 in HCC may play a role in suppressing metastasis and cancer 

cells progression through the down-regulation of Rho-kinase 2, a promoting gene for invasion 

and metastasis. Additionally, they demonstrated that the down-regulation of miR-139 was 

significantly correlated with the invasiveness of HCC, in which miR-139 re-expression in HCC 

impacted cell migration and invasion in vitro and in vivo (Wong et al., 2011). On the other hand, 

miR-139 had no effect on HCC cellular proliferation in vitro, and it only slightly reduced tumor 

growth in orthotopic tumors. All evidence demonstrated that the function of miR-139 is 

primarily an anti-metastatic miRNA in HCC (Wong et al., 2011). In 2014, Li et al. used miRNA 
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microarray analysis to show that the expression of miR-139 was significantly lower in 

hepatocellular carcinoma tissues when compared to adjacent peritumoral non-malignant tissues. 

Additionally, expression analysis revealed that the average miR-139 expression in the HCC 

group was 0.009, that was significantly lower than that of the chronic HBV group of 3.516.  

In another study by Gu et al. (2014), they studied miR-139 as a potential HCC miRNA anti-

oncogene. Their results revealed that expression levels of miR-139 were significantly lower in 

HCC tissues compared to normal liver tissue, indicating that miR-139 may play a role in 

hepatocarcinogenesis. They also showed that over-expression of miR-139 suppressed cellular 

proliferation and invasion in HCC. Additionally, apoptosis was significantly induced after miR-

139 transfection. Therefore, they inferred that miR-139 may work as an anti-cancer gene and has 

an important function in inhibiting cell growth and invasion in HCC. They then used miRanda 

algorithm, which identified TCF-4 as a potential tumor suppressor target of miR-139. After 

running a 3’UTR luciferase assay, it was detected that the luciferase activity has increased after 

the miR-139 inhibitor and a 3’UTR vector with the TCF-4 miR-139 target sequence was co-

transfected. The expression of the TCF-4 protein has significantly increased in Hep3B and 

HepG2 cells that experienced miR-139 inhibitor transfection, therefore signifying that miR-139 

uses TCF-4 as a direct target (Gu, Li, & Wang, 2014). Another study by Qiu et al. (2015) 

showed that the increased expression of miR-139-5p suppressed invasion and migration of 

Hep3B and SMMC7721 cells, in addition to controlling EMT-related gene expression. 

Additionally, they found two potential miR-139-5p targets, ZEB1 (zinc finger E-box binding 

homeobox 1) and ZEB2, in which their interaction with miR-139-5p was confirmed through 

conducting luciferase reporter assays. They concluded that the over-expression of ZEB1 and 

ZEB2 in SMMc7721 and Hep3B cells resulted in reversing the miR-139-5p inhibitory effects.       

viii. MiR-145: 

MiR-145 is 22-nt long that a genomic site located in a fragile region of chromosome 5q, 

which shows a frequent loss of heterozygosity (LOH) associated with hepatocarcinogenesis. The 

down-regulation of miR-145 has been shown in different types of cancer such as, lung 

adenocarcinoma, hepatocellular carcinoma, ovarian, colon, and bladder cancers (Wang et al., 

2014). Several transcription factors have been identified that control miR-145 expression, in 
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which it was shown that the silencing of miR-145 is modulated by an epigenetic mechanism. 

Post transcription, before its maturation the pri-miR-145 passes through processing steps that 

involve several factors essential at the post-transcriptional level (Cui, Wang, & Chen, 2014). 

Several studies have shown number of miRNAs regulated by p53, such as miR-107, miR-34a, 

miR-192/215, and miR-145. Sachdeva et al. (2009) reported that p53 could upregulated miR-145 

through the direct binding to the p53 response elements-2 (p53RE-2) in the miR-145 promoter 

(Figure 17). Low levels of miR-145 were shown in laser capture microdissected prostate tissues 

and 47 cancer cell lines to be associated with p53 mutations (Suh et al., 2011). Shi et al. (2012) 

demonstrated that in cervical cancer when glucocorticoid-induced human papillomavirus 

oncoprotein E6 (HPV-E6) is activated, it resulted in the suppression of p53 and miR-145 

expression.  

It was demonstrated that miR-145 inhibits the proliferation of cancer cells and might function 

as a tumor suppressor. It was previously shown in miRNA profiling of HCV-induced HCC that 

miR-145 was down-regulated progressively from cirrhosis through dysplastic nodules to HCC, 

that progresses further to metastasis. Also, the down-regulation of miR-145 in hepatocellular 

carcinoma was shown to be correlated with poor prognosis and histological grade (Wang et al., 

2014). Therefore, it is postulated that miR-145 plays a role in HCC development with a 

malignant potential. It has been reported that in HCC cells, miR-145 was associated with several 

mediators of insulin-like growth factor (IGF) signaling, which is an oncogenic pathway that is 

usually over-activated in HCC (Wang et al., 2014). Wang et al. demonstrated that the down-

regulation of miR-145 happened frequently in human HCC from different etiologies. Restoring 

the expression of miR-145 resulted in inducing cell cycle arrest and inhibiting cell proliferation 

in HCC cells, suggesting that miR-145 functions as a tumor suppressor. 

The down-regulation of miR-145 was shown to be significantly correlated with the TNM 

stage, tumor size and grade, intrahepatic metastasis, and vascular invasion. miR-145 also impairs 

the invasion of HCC cell lines and could potentially target a disintegrin and metalloprotease 17 

(ADAM17), which suggests miR-145 might be used as a target and novel anti-cancer therapy 

tool (Yang et al., 2014). According to Yang et al. the over-expression miR-145 significantly 

down-regulates ADAM17 expression, while the suppression of miR-145 increases ADAM17 

expression. ADAM17 over-expression has been shown in prostate cancer cell lines, gastric 
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tumors, leukemia cell lines, and mammary cancer. ADAM17 is also responsible for inducing 

growth and invasion of HCC and glioma cells (Yang et al., 2014). ADAM17 functions by 

releasing important cell surface molecules, such as tumor necrosis factor-α, EGFR, and adhesion 

molecules, which all play crucial roles in carcinogenesis and metastasis. Yang et al. showed that 

invasion of SMMC-7721 was significantly increased through the inhibition of miR-145 using an 

anti-miR145, suggesting the inhibitory function miR-145 plays in HCC cell invasion. On the 

other hand, the knockdown of ADAM17 using siRNA could cause partial inhibition of invasion 

in SMMC-7721 cells through the induction by anti-miR-145. This finding suggested that 

maintain positive control levels of ADAM17 is a critical component of the tumor-suppressor 

functionality of miR-145 in HCC (Yang et al., 2014).     

 

Figure 17: The down-stream targets of miR-145 and its upstream regulation. Transcription of pri-miR-145 

is promoted by p53 and FoxO1/3, while its transcription is inhibited by RREB1 and C/EBP-β. MiR-145 

processing is regulated at the post-transcriptional level by p53, BRCA1, BCDIN3D and DDX6. IRS-1, EGFR, 

c-Myc, MUC1, FSCN1, OCT4 and SOX2 are the downstream target genes of miR-145. MiR-145 controls 

various cellular processes, such as apoptosis, differentiation, proliferation, angiogenesis, and invasion, through 

the modulation of several oncogenes. Adapted from Cui, Wang, & Chen, 2014, open access article, no 

permission. 
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IV. AIM OF THE STUDY  

HCC is the third cancer-related cause of death globally, due to several risk factors, of which 

HCV is a major one. The increasing incidence of mortality among HCC patients is attributed to 

delayed diagnosis, recurrence, and metastasis. The current diagnostic tools used to detect HCC, 

such as imaging techniques and serological tumor markers, are not accurate enough to detect 

HCC at early stages. Therefore, accurate, non-invasive, sensitive, and specific diagnostic tools 

are needed to detect HCC at early stages of carcinogenesis. Therefore, the aims of this study 

were to: 

1. Investigate the expression profiles of 8 specific miRNAs: miR-16, miR-34a, miR-122a, 

miR-125a, miR-139, miR-145, miR-199a, and miR-221 in the sera of Egyptian patients 

with HCV-induced HCC.  

2. Evaluate the potential of using these miRNAs as promising non-invasive biomarkers to 

differentiate between normal, fibrotic, cirrhotic, and HCC patients. 

3.  Pick the miRNAs with the highest sensitivity and specificity as potential biomarkers to 

diagnose HCV-induced HCC at early stages of the disease.  
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V. MATERIALS AND METHODS 

A. Sample Collection 

Hundreds of patients are regularly admitted at the Hepato-Gastroenterology Department, 

Theodor Bilharz Research Institute (TBRI), Giza, Egypt, for evaluation of their HCV-related 

chronic liver disease, out of which 165 patients were selected to be enrolled in this study based 

on specific screening criteria. All participants signed informed consents before participating in 

the study, according to the guidelines of TBRI Institute's Human Research Ethics Committee and 

in compliance with the guidelines of the 1975 Declaration of Helsinki as reflected by approval of 

the TBRI and AUC’s human research ethics committee.  

After acquiring the patients’ full medical history, they were subjected to thorough clinical 

examination and assessed by: (a) laboratory testing; including urine and stool analysis, liver 

function tests, serological diagnosis of schistosomiasis and viral hepatitis PCR (which were 

performed routinely for the patients upon admission), (b) ultrasonography, and (c) liver biopsy 

using ultrasound-guided Menghini needle. All procedures, including liver biopsy, were 

medically indicated for patient management. 

Patients were enrolled in the study if they had:  

■ Clinical and laboratory evidences of chronic hepatitis C virus 

■ Circulating anti-HCV (genotype-4) antibodies detected by ELISA 

■ HCV-RNA viraemia detected by nested RT-PCR 

■ Histopathological features of chronic hepatitis C in liver biopsy specimens 

■ Focal hepatic lesion indicative of malignancy detected by abdominal ultrasonography and 

was confirmed to be HCC by histologic assessment  

Patients were disqualified from participating in this study if they had: 

■  Parasitological, serological, histopathological, or ultra-sonographic findings suggestive of 

other etiologies of chronic liver disease, such as:  

– Schistosoma infection 

– Hepatitis B virus infection or dual B and C viral infection 

– Biliary disorders 

– Other malignancies 
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■ HCV-infected patients receiving immunomodulatory interferon-α therapy were excluded as 

well from the study.  

Based on previously published work, patients were divided into three groups. 1) chronic 

hepatitis C (CHC) virus infection group (n= 42), 2) liver cirrhosis (LC) group (n= 45), and 3) 

patients with histopathological findings consistent with HCC (n= 38). Age- and sex-matched 

individuals (n=40) who had undergone laparoscopic cholecystectomy were included in this study 

as controls. After receiving their written consent, wedge liver biopsies were obtained from these 

cases as well as from the control subjects to serve as the control specimens for the 

histopathological studies. All procedures were medically indicated for patient management.  

B. Histopathologic Study 

Assessment of grade of inflammation and stage of fibrosis was carried out in 5 µm thick 

serial sections of formalin-fixed, paraffin-embedded blocks, stained with hematoxylin/eosin and 

Masson trichrome stains. The stage of hepatic fibrosis was determined according to the Metavir 

scoring system (F0, F1, F2, F3 & F4) (Lawrie et al., 2008). The Metavir scoring system is used 

to evaluate the extent of liver inflammation and fibrosis through the histopathological 

examination of liver tissue of HCV patients. The stage indicates the extent of the fibrosis of the 

scarring. The fibrosis stages are as follows: 

 F0: no fibrosis 

 F1: portal fibrosis with no septa 

 F2: portal fibrosis with few septa 

 F3: several septa with no cirrhosis 

 F4: cirrhosis  

  We collected the F0, F1, F2 & F3 in one group, the chronic hepatitis C (CHC) without 

cirrhosis and the F4 only in another group, the CHC with cirrhosis (LC) group. 

C. Urine Analysis 

Mid-afternoon urine samples were collected and centrifuged for 5 minutes at 670x g. After 

centrifugation, drops of the sediment were added onto microscopic slides and examined by light 

microscopy (El-Shafei, 1962). 
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D. Stool Analysis 

Stool analysis was done at TBRI using the merthiolate-iodine-formaldehyde (MIF) method 

for detection of helminthes eggs and protozoal cysts in patients' stool samples (Blagg et al., 

1955). Briefly, 4 ml of stock solution A (merthiolate 0.1%, formaldehyde-glycerin solution 36-

40%) were mixed with 1 ml of stock solution B (iodine 5%, iodied solution 10%) and added to a 

half gram of stool. Mixed samples were filtered through stainless steel sieves and 7 ml of cold 

ether were added. After thorough mixing, test tubes were allowed to stand for 2 minutes and 

centrifuged for 5 minutes at 4200X g. Following centrifugation, drops of the sediments were 

added onto microscopic slides and examined by light microscopy.     

E. Collection of Sera 

Blood samples were collected under complete aseptic conditions by clean venipuncture using 

sterile disposable syringes. About 5 ml of blood were withdrawn from each patient as well as 

controls. Blood was delivered into clean dry test tubes and allowed to clot at room temperature.  

5 ml of whole blood was centrifuged at 1600 rpm for 5 min and the serum was aliquoted into 1.7 

ml eppendorf tubes. Serum samples were stored in tightly closed vials at -80℃ until used.  

F. Liver Function Tests 

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin were 

measured using the Synchron CX5 (Beckman Coulter, Inc., Fullerton, California, USA). The 

levels of alpha-fetoprotein (AFP) were measured using the platinum ELISA kit (R&D Systems, 

Minneapolis, USA). Additionally, the prothrombin time (PT) concentration and des-γ-

carboxyprothrombin (DCP) were assessed in the serum samples using commercially available 

reagents and standard kits.  

G. Detection of Circulating Anti-Schistosoma Antibodies  

An indirect ELISA based on the method of Voller et al. (1976) was applied. Wells of 

microtiter plate (Immulon II, Dynatech Laboratories, USA) were coated with 100 μl/well of 10 

µg/ml of S. mansoni SEA in 0.06 M carbonate buffer, pH 9.6. After overnight incubation at 

room temperature, the plate was thoroughly washed with 0.01 M phosphate buffer saline (PBS). 

Free sites were blocked with 200 ml/well of 1% bovine serum albumin (Sigma Chemicals, St. 
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Louis, USA), in carbonate buffer and incubated for one hour at 37°C. Following incubation, the 

plate was thoroughly washed with PBS. Sera were diluted 1:256 in 0.01 M PBS, and 100 µl were 

delivered/well and the plate was incubated for 30 minutes at 37°C. After incubation, the plate 

was washed as before and 100 µl of 1:1000 dilution of polyclonal goat anti-human horseradish 

peroxidase-labeled IgG antibody (Sigma Chemicals, St. Louis, USA) were added/well. The plate 

was incubated for 30 minutes at 37°C and then washed with PBS. Ortho-phenylenediamine-H2O2 

substrate solution (100 µl/well) was added and the plate was covered and incubated in the dark 

for 20 minutes at room temperature. The reaction was stopped by the addition of 50 µl/well of 8 

N H2SO4. The absorbance of each well was read at 492 nm wavelength using the ELISA 

microplate reader. The cut-off value to differentiate sero-positive from sero-negative samples 

was based on the mean value of healthy subjects + 3 SD and was found to be 0.23. 

H. Detection of Hepatitis B Surface Antigen (HBsAg)    

It was necessary to detect hepatitis B surface antigen in order to rule out contamination with 

HBV that may affect the miRNA expression profile. Hepatitis B surface antigen was detected in 

patients' sera using the HBsAg solid phase sandwich ELISA kit (Axiom Diagnostics, Burstadt, 

Germany). In this assay, wells of a microtiter plate coated with antibody specific to HBsAg were 

incubated with unknown serum samples and a mixture of anti-HBs Ag horseradish peroxidase-

conjugated mouse monoclonal antibodies. After thorough washing to remove excess unbound 

material, a substrate solution containing 3, 3', 5, 5' tetramethylbenzidine and H2O2 was added to 

the wells. Wells containing HBsAg in serum samples developed purple color which changed to 

orange when the enzyme/substrate reaction was terminated with 8 N H2SO4. The amount of color 

in the wells was determined photometrically at 450/620 nm wavelength using the ELISA 

microplate reader and was directly proportional to the amount of bound conjugate and hence the 

concentration of HBsAg in serum samples.  

I. Detection of Anti-HCV (genotype 4) Antibodies 

For the purpose of this study, the focus is on HCV genotype 4 since it is the predominant 

genotype in Egypt. Antibodies to HCV were detected using Version V anti-HCV solid phase 

indirect ELISA kit (Axiom Diagnostics, Burstadt, Germany). In the anti-HCV antibody test, 

serum samples were incubated in micro-wells coated with highly purified antigens containing 
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sequences from the putative core, NS3, NS4 and NS5 regions of HCV. Following thorough 

washing, the captured anti-HCV antibodies were incubated with goat anti-human peroxidase-

labeled IgG antibody. After washing to remove excess unbound conjugate, the bound enzyme 

was visualized by the addition of a substrate solution containing 3, 3', 5, 5'-tetramethylbenzidine 

and H2O2. A purple color developed in the wells containing anti-HCV positive samples. The 

enzyme/substrate reaction was terminated with 8 N H2SO4 to give orange color. The absorbance 

of each well was read photometrically at 450 nm wavelength using the ELISA microplate reader. 

The amount of bound conjugate and hence the color in the wells was directly proportional to the 

concentration of anti-HCV antibody in serum samples.  

J. Detection of HCV (genotype 4)-RNA  

Viral RNA was extracted using the QIAamp Viral RNA kit (Qiagen, Valencia, CA) and 

stored at −80 °C. The serum HCV-RNA level was measured using the One-Step Real Time RT-

PCR according to manufacturer’s protocol (Carlsbad, CA, USA). 

K. RNA Extraction 

The miRNeasy extraction kit (Qiagen, Valencia, CA) was used for the extraction of total 

RNA including miRNAs. For RNA isolation from serum, 200 µl of serum was mixed with 1000 

µl of QIAzol lysis reagent according to the manufacturer’s protocol. Then 200 µl of chloroform 

was added to the sample and the mixed solution was centrifuged for 15 minutes at 12,000 x g at 

4℃. Following the centrifugation, the upper aqueous phase was transferred to a new Eppendorf 

tube. Then, upper aqueous phase was pipetted in the RNeasy MinElute spin column and 

centrifuged at 8000x g for 15 seconds at room temperature. After that, the column was washed 

twice with RWT and RPE buffers; respectively. The RNeasy MinElute spin column was washed 

later with 80% ethanol and centrifuged for 2 minutes at 8000x g. The column was centrifuged for 

5 minutes at full speed in order for the membrane to dry. Finally, for the RNA precipitation, 15 

µl of RNase-free water were added to the column and centrifuged at full speed for 1 minute, and 

the same step was repeated in order to obtain a final elution volume of 30 µl. DNase treatment 

(Qiagen, Valencia, CA) was carried out to remove any contaminating DNA. The RNA 

concentration and quality was determined using the NanoDrop2000 (Thermo Scientific, USA). 

In general, the concentration obtained was ~300 ng/µl of RNA. 



60 

 

L. MicroRNA Selection Criteria  

Eight miRNAs were selected for this study: miR-16, miR-34a, miR-122a, miR-125a, miR-

139, miR-145, miR-199a, and miR-221. PubMed search engine was used in order to search for 

the expression profiles of different miRNAs in HCC. The miRNAs were selected based on the 

literature previously published that investigated the expression profiles of serum miRNAs in 

HCC patients as a result of an HCV infection.   

M. Evaluating Serum MicroRNA Expression 

RT (reverse transcription) and qPCR (quantitative PCR) kits made specifically for accurate 

miRNA analysis (Applied Biosystems, Foster City, CA, USA) were used to evaluate expression 

of the 8 chosen miRNAs from serum samples. RT reactions were performed using a TaqMan® 

microRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA).  Each 15 µL 

RT reaction included 7 µL of the RT master mix, 3 µL of the specific miRNA RT primer, and 5 

µL of the total extracted RNA with a concentration ranging between 1 to 10 ng. All RT reactions 

were incubated for 30 min at 16°C, 30 min at 42°C, 5 min at 85°C, and then maintained at 4°C.  

For qPCR, 1.33 µL of the RT product were mixed with 10 µl of TaqMan 2X Universal PCR 

master mixture (No AmpErase UNG), 1 µl of the specific TaqMan MicroRNA assay (Table 1), 

and 7.67 µl of nuclease-free water to bring the final reaction volume of 20 µl according to 

manufacturer protocol. All reactions were run on the StepOnePlusTM Real-Time PCR System 

(Applied Biosystems, Foster City, CA, USA) using the following conditions: 95°C for 10 min, 

followed by 40 cycles at 95°C for 15 sec, and 60°C for 1 min. qPCR was done in duplicates, 

including no-template controls. Relative expression of miRNA was calculated using the 

comparative cycle threshold (Ct) (2−ΔΔCT) method (Schmittgen & Livak, 2008), with miR-39 as 

the endogenous control to normalize the data. The Ct is known as the number of cycles needed 

for the fluorescent signal to cross the threshold in qPCR. ΔCt was calculated by subtracting the 

Ct values of miR-39 from the Ct values of the investigated miRNA. On the other hand, ΔΔCt 

was then calculated by subtracting mean ΔCt of the control samples from ΔCt of the tested 

samples. Fold change of the miRNA was calculated by the equation 2−ΔΔCT while using healthy 

controls as a reference. 
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Table 1. The Assay identifications (IDs) representing the primers and probes for the 8 

microRNAs 

MicroRNA Assay ID Target Sequence 

miR-16 000391 UAGCAGCACGUAAAUAUUGGCG 

miR-34a 000426 UGGCAGUGUCUUAGCUGGUUGU 

miR-122a 000445 UGGAGUGUGACAAUGGUGUUUGU 

miR-125a 002198 UCCCUGAGACCCUUUAACCUGUGA 

miR-139 005364 UCUACAGUGCACGUGUCUCCAGU 

miR-145 002278 GUCCAGUUUUCCCAGGAAUCCCU 

miR-199a 000498 CCCAGUGUUCAGACUACCUGUUC 

miR-221 000524 AGCUACAUUGUCUGCUGGGUUUC 
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VI. STATISTICAL ANALYSIS 

Data were analyzed using Statistical Package for the Social Science (SPSS) version 24 (IBM 

SPSS, Chicago, IL, USA). Continuous variables are expressed as the mean ± standard deviation. 

The analysis of variance (ANOVA) test and the Mann-Whitney (U-test) were used for 

comparisons of continuous (non-discrete) variables. In the current study, Mann-Whitney was 

used because the data is considered nonparametric, since the data does not have a normal 

distribution. ANOVA was used to evaluate expression differences of the chosen miRNAs 

between patients and controls, while the Mann-Whitney was used for the analysis and 

comparison of the patient demographic and biochemical data.  

Finally, Pearson correlation was used to determine the correlation between the miRNA 

expression pattern and the patient group. A significant level of p < 0.05 was used in this test. To 

evaluate the diagnostic accuracy of the 8 miRNAs, a receiver operating characteristic (ROC) 

curve analysis was carried out. The area under the ROC curve (AUC) as well as the 95% 

confidence interval (CI) were calculated for each miRNA in order to determine the specificities 

and sensitivities. For the probability (p) value: p < 0.05 was considered significant, while p < 

0.001 was considered highly significant.      
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VII. RESULTS 

A. Demographic, laboratory investigations, and clinical features of the patients 

Clinically and biochemically healthy, roughly age and gender matched individuals (n=40) 

served as a control population for patients with HCV related liver fibrosis, cirrhosis, and primary 

HCC. Table 2 summarizes the demographic data of both the control subjects and patients, i.e. 

number, age, and gender. The biochemical parameters, i.e. AST, ALT, albumin, alkaline 

phosphatase, PT concentration, AFP, and DCP, are as expected, within the reference range for 

control subjects but significantly elevated in the three patient groups (CHC, LC, and HCC).  

Both the demographic and biochemical profiles of the 42 patients with chronic hepatitis 

C (CHC), 45 patients with liver cirrhosis (LC), 48 patients with HCC, and 40 healthy controls 

enrolled in this study are illustrated in detail in Table 2. Normal controls were age and sex 

matched to the patient group. Serum HCV-RNA revealed that all patients were genotype 4a. All 

enrolled patients had increased ALT, AST, albumin, alkaline phosphatase, PT concentration, 

AFP, and DCP (p<0.001) compared to the control group, in which the AFP and DCP serum 

levels were significantly increased in the HCC patients compared to the CHC and LC patient 

groups (p<0.001). 
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Table 2. Demographic and laboratory data of all patients and controls 

Variables Controls 

(n=40) 

CHC (n=42) LC (n=45) HCC (n=38) 

Age  47.0±3.5 46.4±7.3 51.3±4.7 48.1±4.1 

Gender (M:F) 3:1 3:2 7:5 6:4 

Liver Function Tests (mean±SD) 

AST (U/L) 21.32±1.07 46.14±4.77 a 50.84±5.00 a 76.40±7.34 b 

ALT (U/L) 23.16±1.95 44.12±5.50 a 50.84±5.00 a 76.40±7.34 b 

Alkaline phosphatase (U/L) 189±41 331± 36 a 336±48 a 420±33 b 

Albumin (g/dL) 4.4±0.5 3.60±0.74 3.8±0.72 3.08±0.48 

Prothrombin Concentration  95.6±3.4 89.6±4.8 41.5±11.1 b 69.4±3.7 a 

Alpha-fetoprotein (IU/mL) 3.12±0.08 8.86±0.11 a 10.11±0.11 a 55.18±0.44 b 

DCP (mAU/ ml) 30.42±0.70 121.49±0.59 a 123.62±0.38 a 456.52±0.66 b 

Data are expressed as mean± standard deviations (SD). 

Chronic hepatitis C (CHC); liver cirrhosis (LC); hepatocellular carcinoma (HCC). 

Normal range for alanine aminotransferase (ALT) and aspartate aminotransferase (AST) is up to 

40 IU/L. 

Normal range for alkaline phosphatase is up to 250 U/L. 

Normal range for albumin is 3.5-5 g/dl. 

Normal range for prothrombin concentration is 80-100%. 

Normal range for alpha-fetoprotein is 0.1-9.6 IU/mL. 

mAU/ml =milli-absorbance unit/ml. 

Normal range for des-γ-carboxyprothrombin (DCP) ≤40 mAU/ml.  
ap<0.001 significant increase than control group. 
bp<0.001 significant increase than CHC and LC groups. 
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B. MicroRNAs expression profiles by qPCR 

All miRNAs showed significant increase than control in both the CHC and LC groups 

(p<0.01). Serum levels of miRNA-122a, miRNA-125a, miRNA-139, miRNA-145 and miRNA-

199a were significantly lower (p<0.01) in HCC than in both CHC and LC groups. MiR-34a 

showed significant decrease (p<0.01) in LC compared to the CHC and HCC groups. On the other 

hand, miR-16 was significantly decreased (p<0.01) in the HCC group compared to the CHC 

group. MiR-139 was also significantly decreased (p<0.01) in the LC group compared to the CHC 

group (Table 3; Figures 18 & 19).  

Table 3. The qPCR expression levels of the 8 serum microRNAs in the studied groups 

miRNAs Normal CHC LC HCC 

miRNA-16 14.26±0.69 24.09±0.44** 23.29±0.46** 22.35±0.54** a 

miRNA-34a 27.32±0.19 32.69±0.34** 30.01±0.54** b 32.50±0.94** 

miRNA-122a 19.69±0.33 545.83±0.79** 520.94±0.77** 16.13±0.38c d 

miRNA-125a 20.57±0.54 96.01±4.36** 100.54±0.81** 29.96±0.57** d 

miRNA-139 29.96±0.57 94.63±0.38** 86.02±0.40** e 30.03±0.43d 

miRNA-145 20.65±0.52 85.31±0.53** 80.74±0.59** 20.64±0.57d 

miRNA-199a 80.23±0.72 330.38±0.74** 311.98±0.72** 66.16±0.44c d 

miRNA-221 22.82±0.38 27.17±1.44** 28.22±0.41** 28.51±0.46** 

 **p<0.01 significant increase than control; ap<0.01 significant decrease than CHC; bp<0.01 

significant decrease than CHC and HCC; cp<0.01 significant decrease than control; dp<0.01 

significant decrease than CHC and LC; ep<0.01 significant decrease than CHC 
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Figure 18. Box Plots- Part 1. Box plot diagrams of the expression of miR-16, miR-34a, miR-122a, and miR-

125a, in Hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) patients. The box indicates the 25th 

and 75th percentile of the data and the middle line indicates the median. A line extends from the minimum to the 

maximum value, excluding outliers that are displayed as separate points.  
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Figure 19. Box Plots- Part 2. Box plot diagrams showing the expression of miR-139, miR-145, miR-199a, and 

miR-221 in Hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) patients. The box indicates the 25th 

and 75th percentile of the data and the middle line indicates the median. A line extends from the minimum to the 

maximum value, excluding outliers that are displayed as separate points.  
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C. Diagnostic performance of circulating MicroRNAs in predicting HCC 

To assess the efficacy of the investigated serum miRNAs for predicting HCC, the AUC 

values (Table 4) were analyzed in order to calculate the sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) for each microRNAs. The 

sensitivity and specificity of miR-16, miR-34a, miR-122a, miR-125a, miR-139, miR-145, miR-

199a, and miR-221 are (80.95%, 70.59%), (96.77%, 81.82%), (95%, 84.21%), (86.67%, 

83.33%), (85.71%, 64.29%), (90.91%, 77.78%), (87.10%, 72.73%), and (90.32%, 81.82%); 

respectively (Table 5). Table 5 displays the sensitivities and specificities of the 8 miRNAs, 

which were calculated from the ROC curves in order to evaluate the diagnostic potential of the 8 

miRNAs. Out of the 8 miRNAs, miR-122a had the highest sensitivity and specificity, indicating 

that it is a promising biomarker for the early detection of liver cancer. Additionally, miR-125a 

showed the second highest specificity (83.33), therefore indicating its significance in diagnosis, 

but not in screening due to the low sensitivity (86.67).  

Table 4. Area Under the Curve (AUC), Confidence Interval (CI), and p-values for all 8 

circulating miRNAs 

MicroRNAs AUC CI 95% p-value 

miRNA-16 0.716±0.05 0.604 - 0.829 <0.01 

miRNA-34a 0.791±0.04 0.695-0.888 <0.001 

miRNA-122a 0.814±0.04 0.721 - 0.908 <0.001 

miRNA-125a 0.806±0.04 0.729-0.884 <0.001 

miRNA-139 0.863±0.05 0.763-0.962 <0.001 

miRNA-145 0.941±0.02 0.902-0.980 <0.001 

miRNA-199a 0.805±0.03 0.704-0.906 <0.001 

miRNA-221 0.633±0.06 0.510-0.757 <0.05 
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Table 5. The sensitivity and specificity of the 8 microRNAs.  

MicroRNAs Sensitivity Specificity PPV NPV 

miR-16 80.95 70.59 87.18 60.00 

miR-34a 96.77 81.82 93.75 90.0 

miR-122a 95.00 84.21 92.68 88.89 

miR-125a 86.67 83.33 92.86 71.43 

miR-139 85.71 64.29 82.76 69.23 

miR-145 90.91 77.78 93.75 70.00 

miR-199a 87.10 72.73 90.0 66.67 

miR-221 90.32 81.82 93.33 75.0 

PPV: Positive Predictive value       NPV: Negative Predictive Value   
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Figure 20. ROC Curves- Part 1. Receiver operator characteristic (ROC) curve analysis displaying the diagnostic 

power of the miRNAs studied in the hepatocellular carcinoma (HCC) group. Specificities and sensitivities were 

calculated from the ROC curves, in order to determine which of the miRNAs can be used for diagnosis and which is 

important for screening.    
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Figure 21. ROC Curves- Part 2. Receiver operator characteristic (ROC) curve analysis displaying the diagnostic 

power of the miRNAs studied in the hepatocellular carcinoma (HCC) group. Specificities and sensitivities were 

calculated from the ROC curves, in order to determine which of the miRNAs can be used for diagnosis and which is 

important for screening.  
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D. Correlations 

The relationship between certain miRNAs of the 8 investigated, was assessed among the three patient groups (CHC, LC, and 

HCC) using the Pearson correlation. Certain pairs of miRNAs within the same patient group or between two different groups, yielded 

the Pearson correlation coefficient, r, which is a value ranging from +1 to -1 indicating whether the correlation between the two 

certain miRNAs is a positive or negative correlation.    

Table 6. The correlation between miR-16 and miR-34a in the three patient groups 

 HCC16 LC16 CHC16 CHC34a LC34a HCC34a 

HCC16 Pearson 

Correlation 

   r= -0.668**   

Sig. (2-tailed)    .001   
LC16 Pearson 

Correlation 

      

Sig. (2-tailed)       
CHC16 Pearson 

Correlation 

   0.722**   

Sig. (2-tailed)    0.000   
LC34a Pearson 

Correlation 

 0.705**     

Sig. (2-tailed)  0.000     
HCC34a Pearson 

Correlation 

  0.520**    

Sig. (2-tailed)   0.013    

MiR-16 in the HCC group was shown to be negatively correlated with miR-34a in the CHC group. Positive correlation has been 

shown in the CHC group between miR-16 and miR-34a, in the LC group between miR-16 and miR-34a, and in the HCC group for 

miR-34a and CHC group for miR-16.  
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Table 7. The correlation between miR221, miR-122a, and miR-125a in the three patient groups 

 CHC221 LC221 HCC221 CHC122a LC122a HCC122a CHC125a LC125a HCC125a 

CHC221 Pearson 

Correlation 

 0.629**    r=0.508*    

Sig. (2-tailed)  p<0.001    p<0.01    

LC221 Pearson 

Correlation 

       -0.765**  

Sig. (2-tailed)        p<0.000  

CHC122a Pearson 

Correlation 

        0.598** 

Sig. (2-tailed)         p<0.001 

LC122a Pearson 

Correlation 

      -0.452*   

Sig. (2-tailed)       p<0.05   

CHC125a Pearson 

Correlation 

    -0.452*    0.489* 

Sig. (2-tailed)     p<0.05    p<0.05 

Negative correlations were shown between miR-221 and miR-125a in the LC group, and miR-122a in the LC group and miR-125a in 

the CHC group. miR-221in the LC and CHC groups, miR-122a in the HCC group and miR-221 in the CHC group, miR-125a in HCC 

and miR-122a in CHC, and miR-125a in HCC and CHC groups, were all positively correlated.  
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 Table 8. The correlation between miR139, miR-145, and miR-199a in the three patient groups 

 

 
CHC139 LC139 HCC139 CHC145 LC145 HCC145 CHC199a LC199a HCC199a 

CHC139 Pearson 

Correlation 

     r=0.492*    

Sig. (2-tailed)      0.020    
HCC139 Pearson 

Correlation 

       -0.577**  

Sig. (2-tailed)        0.005  
LC145 Pearson 

Correlation 

      r=0.532*   

Sig. (2-tailed)       0.011   
HCC145 Pearson 

Correlation 

0.492*         

Sig. (2-tailed) 0.020         
LC199a Pearson 

Correlation 

         

Sig. (2-tailed)          

*Correlation is significant at the 0.05 level 

**Correlation is significant at the 0.01 level 

 

MiR-199a in the LC group and miR-139 in HCC were the only two groups negatively correlated. On the other hand, the positively 

correlated groups were, miR-145 in HCC and miR-139 in CHC, and miR-199a in CHC and miR-145 in LC.  
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VIII. DISCUSSION  

HCV infection is a serious global health issue. It has been estimated that more than 80 

million individuals suffer from HCV chronic infection worldwide, and that 3-4 million new cases 

are infected annually, in addition to approximately 350,000 HCV-related deaths. Egypt is known 

to be the country with the highest prevalence of HCV infection worldwide, with genotype 4 

being the most common (Mahmoud et al., 2013; Kandeel et al., 2017). In 2008, the Egyptian 

government conducted the Egyptian Demographic Health Survey (EDHS) on a big nationally 

representative sample, which estimated the incidence among the 15-59 years age group of HCV 

antibodies as well as HCV RNA to be 14.7 and 9.8%; respectively. According to the population 

survey and the EDHS conducted in 2008, it was predicted that more than 6.8 million patients 

between the age of 15-59 years had HCV antibodies, out of which more than 4.5 million patients 

showed active HCV infection (Kandeel et al., 2017). HCV infection is mainly asymptomatic 

with only minor symptoms at the acute stage of the disease. HCV infection usually results in 

fibrosis, cirrhosis, eventually leading to the development of HCC (Elgharably et al., 2017).  

HCC represents a major health issue worldwide, which is characterized by varied prognosis 

as well as its biological and clinical heterogeneity, due to different management approaches 

(Cabibbo et al., 2016). HCC is still an extremely poor prognostic cancer that remains one of the 

most common and aggressive human malignancies worldwide. The early diagnosis of HCC is of 

great clinical desirability, since it promises good prognosis if the patient could get early surgical 

treatment. Currently, α-AFP is one of the main biomarkers used clinically for diagnosing primary 

HCC; however, its sensitivity and specificity are not satisfying (Aubé et al., 2017); therefore, 

novel non-invasive biomarkers for early HCC diagnosis are greatly needed. 

Research from recent studies revealed that circulating miRNAs are potential diagnostic 

biomarkers and prognostic factors in various kinds of diseases, especially in the field of cancer. 

Mitchell et al. (2008) demonstrated the presence of circulating tumor-derived miRNAs in blood 

by using a mouse prostate cancer xenograft model system, in which he showed measurements 

obtained from plasma were strongly correlated with those obtained from sera, suggesting that 

both serum and plasma samples would be adequate for measuring specific miRNA expression 

levels. In another study, Chen et al. (2008) demonstrated that by using serum directly or by 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028486#s2
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extracting RNA from the serum, it is possible to identify unique miRNA expression profiles for 

lung cancer, colorectal cancer and diabetic patients compared with healthy subjects. Circulating 

miRNAs have also been postulated as novel biomarkers for ovarian cancer (Resnick et al., 2009; 

Taylor, 2008), pancreatic cancer (Ho et al., 2010), and colorectal cancer (Huang et al., 2010; Ng 

et al., 2009). Although the clinical significance of these findings has not been elucidated in 

detail, those findings demonstrated that circulating miRNAs could be used as non-invasive 

diagnostic or prognostic biomarkers for cancer. 

Several studies have demonstrated the significant association of miR-16 in 

hepatocarcinogenesis, Qu et al. (2011) showed that when combining miR-16 expression with the 

traditional liver biomarkers, the diagnostic accuracy is highly improved. As was shown in the 

results, miR-16 was significantly up-regulated in the HCC patient group. However, according to 

Qu et al. miR-16 is down-regulated in HCC patients, in which HCV infection was the underlying 

etiology in the study subjects. In 2014, Ge et al. also showed that miR-16 is down-regulated in 

the sera of HCC patients, which in combination with let-7f and miR-21 they can be used 

biomarkers for estimating the tumor size as well as recurrence (Ge et al., 2014). As a matter of 

fact, in 2009 Huang et al. revealed through microarray analysis that miR-16 was up-regulated in 

HCC patients with mixed etiologies compared to normal subjects (Huang et al., 2009). 

Also, unlike what has been described in the literature, in the current study, miR-34a was up-

regulated in HCC patients compared to the healthy subjects. Both Miao et al. (2014) and Yu et 

al. (2014) have shown that miR-34a was down-regulated in HCC. The conflicting results 

between the current study and what has been published in the literature might be attributed to a 

number of factors that impact the expression pattern of miRNAs in different studies. Such factors 

include the heterogeneity of the cancer patients, such as the tumor stage, treatment, and etiology. 

The type of specimen is also a major factor since different samples are continuously studied, like 

serum, plasma, paraffin-embedded tissue, or formalin-fixed tissue (Shen et al., 2016). 

Additionally, the differences in sample collection, processing, and preservation are all factors 

that might impact the outcome of the expression analysis. Different RNA isolation techniques, 

the quality and concentration of the isolated RNA, and the detection methods, are all additional 

factors that might impact the miRNA expression profile. Even if the study was meticulously 

designed, using various methods and housekeeping transcripts for miRNA expression 
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normalization might result in experimental bias and therefore yielding different miRNA 

expression profiles. Thus, normalization is essential in eliminating most of the non-biological 

variations in order to ensure accurate miRNA expression profiles (Shen et al., 2016).     

In the current study, miR-221 was up-regulated as well with a sensitivity and specificity of 

90.32 and 81.82; respectively. MiR-221 is known to be up-regulated in HCC and it plays 

important roles in hepatocarcinogenesis, responsible for proliferation, migration and invasion, 

apoptosis, clonogenicity, and G1 arrest, while targeting the following genes: BMF, BBC3, and 

ANGPTL2 (Shen et al., 2010). In 2011, Li et al. demonstrated that miR-221 was highly 

expressed in the sera of HCC patients; however, it was concluded that it was not statistically 

significant and might not serve as a reliable diagnostic biomarker for HCC (Li et al., 2011). On 

the other hand, Turchinovich et al. (2011) showed that the up-regulation of miR-221 in the sera 

of HCC patients was associated with decreased survival rate.  

The expression of miRNA-122a is specific to the liver, in which it is considered 70% of the 

entire miRNA expression in the liver. Current studies have shown that the expression levels of 

miRNA-122a have declined during the process of hepatocarcinogenesis; hence miRNA-122a can 

function as a tumor suppressor. Our findings were consistent with previous studies (Luo et al., 

2013; Ezzat et al., 2014; Motawi et al., 2016), in which we observed decline in the levels of 

miRNA-122a in HCC patients with HCV infection compared to the control individuals. On the 

other hand, the levels of miRNA-122a increased significantly in the CHC and LC groups 

suggesting that during the process of hepatocyte injury miRNA-122a levels increase drastically, 

and then decline significantly after the liver has entered carcinogenesis. On the contrary, 

according to a study by Jiang et al. (2015), the serum levels of miRNA-122a have been shown to 

be elevated in HCC patients compared to healthy individuals. Also, as presented in our results, 

the ROC curve has demonstrated that out of the eight miRNAs investigated, miRNA-122a has 

the highest specificity and sensitivity making it an eligible candidate as a liver tumor marker.  

Coulouarn et al. (2009) showed that the overall survival of patients with high and low 

expression of miR-122a was 83.7 ± 10.3 and 30.3 ± 8.0 months, respectively, while the 

inhibition of miR-122a was also associated with low status of differentiation and large tumor 

size. Halász et al. (2015) revealed a reduced level of miR-122a in stage F4 fibrosis as compared 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Luo%20J%5Bauth%5D


 

78 

 

to stage F0, in which miR-122a showed a negative correlation with fibrosis stage in fibrotic liver 

samples and intriguingly, also with liver stiffness (LS) values. These findings are supported by 

reports of a negative correlation between miR-122a and fibrotic stage in chronic HCV infection, 

HCV-based HCC, and cirrhosis (Marquez et al., 2010; Morita et al., 2011), in addition to 

observations of a decreased level of miR-122a in non-alcoholic fatty liver disease (NAFLD) 

(Kerr et al., 2011; Lakner et al., 2011) and in HCC studies (Borel et al., 2012).  

Loss of miR-122a seems to be a frequent event in hepatoblastoma (Gyugos et al., 2014), 

which correlates with migration, invasion and in vivo tumorigenesis, whereas HCC cells 

expressing miR-122a retain an epithelial phenotype (Karakatsanis et al., 2013). MiR-122a is 

considered a differentiation marker for hepatocytes (Cairo et al., 2010) and a lower level of miR-

122a might also reflect a lower degree of differentiation in the embryonal component. In 

addition, reduced expression of miR-122a is essential for the normal function of hepatocytes; 

which positively regulates cholesterol, triglyceride accumulation, and fatty acid metabolism (Hu 

et al., 2012), constituting 70% of the total miRNA pool of the liver. 

The majority of studies that focused on the expression profiles of miRNA in HCC have 

shown that in most cases the progression of the malignancy is correlated with the down-

regulation of the miRNAs. However, it needs to be taken into consideration that at the post-

transcriptional level, miRNAs regulate hundreds of targets that are part of many signal 

transduction pathways, which makes the role of miRNAs in the process of hepatocarcinogenesis 

very complicated. Bi et al. (2012) showed that the expression of miR-125a is lower in HCC 

malignant tissue compared to non-tumor adjacent liver tissue, and that the low expression level 

of miR-125a was associated with the progression of the disease as well as poor prognosis. In 

addition to the lower expression observed in tissues, also low expression of miR-125a was seen 

in HCC cell lines. In fact, it has been shown that the in vitro and in vivo ectopic expression of 

miR-125a can lead to inhibition of proliferation, migration, and invasion of the HCC cells (Bi; et 

al., 2012).  

Unlike what the literature and other studies have shown, the expression level of miR-125a in 

our study was significantly higher in the HCC patient samples compared to the control group, 

which might be due to the fact that HCC was a result of a genotype 4 HCV infection. In addition, 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gyugos%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24570391
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bi%20Q%5Bauth%5D
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the ancestral background and the gene pool of the current study is different than that of the other 

studies that demonstrated the down-regulation of miR-125a. Therefore, factors such as the 

genotype of HCV as well as the ancestral background of the study group might have had an 

impact on the expression profile of miR-125a. On the other hand, very high expression levels of 

miR-125a were observed in the CHC and LC patient groups. However, very low expression of 

miR-125a was reported in the HCC group, 29.96±0.57, compared to that of the CHC and LC 

groups, 96.01±4.36 and 100.54±0.81; respectively. Same as miR-122a, miR-125a showed high 

sensitivity and specificity, 86.67 and 83.33; respectively, suggesting its diagnostic value. 

Therefore, both miR-122a and miR-125a can be used together for the early detection of HCC 

induced HCV due to their high sensitivities and specificities.  

Same as miR-125a, according to previous studies the expression level of miR-139 has been 

shown to be significantly lower in HCC patient samples compared to control individuals. MiR-

139 was shown to play an important role in the hepatocarcinogenesis, in fact high expression 

levels of miR-139 were shown to inhibit cellular proliferation and invasion in malignant liver 

cells. In addition, in miR-139 transfected cells, apoptosis was shown to be highly induced, which 

suggests that miR-139 can act as a tumor suppressor through the inhibition of cell proliferation 

and invasion in HCC (Gu, Li, & Wang, 2014; Wang et al., 2014). As shown in our results, the 

expression levels of miR-139 have increased in the HCC patient group compared to the control 

group, which contradicts what has been reported in other studies, while the CHC and LC patient 

groups showed significant increase of miR-139 expression. As a matter of fact, a possible 

explanation for the elevated expression levels for miR-125a and miR-139 in the HCC patient 

group can be due to the fact that HCV infection is the underlying cause for the HCC patients in 

the study, which might have an effect on the expression level of the two miRNAs. Although 

according to the literature, the HCV infection should not be affecting the expression levels after 

the patient develops HCC; however, no study has examined that with HCV genotype 4. All 

patients in our study have developed HCC as a result of a genotype 4 HCV infection, which may 

have resulted in the high expression level of miR-125a and miR-139 contradicting other studies. 

As a matter of fact, since tumor cells are smaller in number compared to the rest of the cells in 

the body, most of the changes in the expression levels of specific circulating miRNAs result from 
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the body’s response to carcinogenesis, thus making it difficult to generate unique miRNA 

signatures for the detection of specific types of tumors (Qi et al., 2016). 

MiR-145, was another miRNA tested among the miRNAs panel investigated, in which its 

expression level showed no difference between the normal controls and the HCC patient group. 

Same as the rest of the miRNAs investigated, miR-145 in the CHC and LC groups showed 

significant increase compared to the control and HCC groups. Among several studies, Wang et 

al. (2014) demonstrated that miR-145 was significantly down-regulated in HCC patient samples 

as well as HCC cell lines. As a matter of fact, the down-regulation of miR-145 was greatly 

linked to intrahepatic metastasis, tumor size, vascular invasion, and tumor grade, all suggesting 

that miR-145 acts as tumor suppressor and its decreased expression results in the progression of 

the hepatocarcinogenesis (Wang et al., 2014; Yang et al., 2014). Therefore, determining the 

tumor size and grade in the HCC patients enrolled in the current study will be a key factor in 

understanding the such contradicting expression profiles between what has been reported in the 

literature versus the current study.  

The last miRNA we investigated was miR-199a, which was down-regulated in the HCC 

patient group compared to the control group, while it was significantly upregulated in the CHC 

and LC groups. The down regulation of miR-199a has been reported in several studies; in fact, 

miR-199a has been one of the most consistently reported miRNAs to be involved in HCC. MiR-

199a is the third highly expressed miRNA in the liver, and in the case of HCC it has been shown 

to be down-regulated especially in patients with HCV, HBV infections, and alcohol abuse (Diaz 

et al., 2013). The down-regulation of miR-199a in HCC patients has been associated with poor 

prognosis. The identification of miRNAs associated with HCC is crucial to developing new 

diagnostic and therapeutic tools with high specificity and sensitivity in order to combat this 

vicious human cancer.   

Correlation is a technique often used to study the relationship between two quantitative and 

continuous variables. In the current study, we used Pearson correlation to calculate the Pearson’s 

correlation coefficient (R), a value between +1 and -1 that indicates the strength of the 

association between two variables (Chen et al., 2008). The correlation between miR-16 and miR-

34a was investigated among the three patient groups, in which miR-34a and miR-16 in CHC and 
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LC were positively correlated as well as miR-34a in HCC and miR-16 in CHC. On the other 

hand, miR-34a in CHC and miR-16 in HCC showed a highly significant negative correlation. 

More positive correlations were shown among the following groups: miR-221 in LC and CHC, 

miR-122a in HCC and miR-221 in CHC, miR-125a in HCC and miR-122a in CHC, miR-125a in 

HCC and CHC, indicating for example if there is low expression of miR-122a in HCC, then 

miR-221 will be down-regulated as well in CHC. miR-125a in CHC and miR-122a in LC, and 

miR-125a and miR-122a in LC were shown to be negatively correlated, meaning that if one is 

over-expressed the other will automatically show a decreased expression. Finally, miR-145 in 

HCC and miR-139 in CHC as well as miR-199a in CHC and miR-145 in LC were positively 

correlated, while miR-199a in LC and miR-139 in HCC were negatively correlated. Establishing 

the Pearson correlation between different miRNAs among the patient groups has a significant 

diagnostic value because it indicates if two miRNAs were for example positively correlated in 

one or more patient group, then only one of these miRNAs is needed to be investigated. For 

example, in the CHC group, the r value for the correlation between miR-34a and miR-16 was 

shown to have a positive correlation of 0.722, which means that if miR-34a is up-regulated, then 

miR-16 will be up-regulated as well, and vice versa. Therefore, from a diagnostic perspective, if 

for instance miR-34a was found to be elevated, then it can be inferred that miR-16 will be 

elevated as well.  

Finally, circulating miRNAs in liver cancer patients represent promising biomarkers that 

possess great stability and reproducibility in peripheral blood. MiRNAs have the potential to be 

used in several clinical aspects of cancer management, such as cancer screening and early 

diagnosis, evaluating the malignancy in order to choose a surgical or a non-surgical approach, 

and to check for recurrence and cancer dynamics (Kawaguchi et al., 2016). Additionally, 

circulating miRNAs can be versatile, as it is anticipated that they will be used as efficient 

therapeutic agents in human tumors. MiRNAs possess a major advantage as therapeutic agents, 

which is the fact that a single miRNA targets several genes that function in the same pathway 

(Aqeilan et al., 2010). Due to their non-invasive and reproducible nature, it is anticipated that in 

the future circulating miRNAs will be efficient biomarkers and reliable indicators in pretreatment 

options.  
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IX. CONCLUSION  

As was shown in the results, measurement of serum levels of miR-122a, miR-125a, miR-

139, miR-145, and miR-199a can help to differentiate HCC from CHC and LC. The serum 

levels of miRNA-122a, miRNA-125a, miRNA-139, miRNA-145 and miRNA-199a were 

significantly lower (p<0.01) in HCC than in both CHC and LC groups; therefore, this panel of 

miRNAs provide high accuracy for the early detection of HCC. On the other hand, measurement 

of serum levels of miR-16, miR-34a, and miR-221 were shown to have a prognostic rather than 

a diagnostic value since they did not significantly differentiate the HCC group from the CHC 

and LC groups. Moreover, according to their expression patterns among the patient groups, 

miR-16, miR-34a, and miR-221, can be used to detect liver injury, such as fibrosis and cirrhosis, 

due to their significant elevation in comparison to the control subjects. Additionally, highly 

significant correlation was established between different miRNAs within the same patient group 

or between two different groups, indicating a diagnostic potential for the early detection of 

HCC. MiR-122a showed the highest specificity and sensitivity, indicating that serum miR-122a 

is a novel and potential non-invasive biomarker for HCV-induced HCC. Finally, following miR-

122a, miR-125a was shown to be a great potential HCC biomarker as well since it showed the 

second highest specificity, indicating its significance in diagnosis, but not in screening due to 

the low sensitivity.  
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X. FUTURE PERSPECTIVES  

After years of extensive research, there is no doubt that miRNAs play a critical role in 

carcinogenesis and control the development and progression of human cancers. Although 

scientists in the last decade have managed to answer a lot of questions regarding the contribution 

of miRNA to carcinogenesis, there still remains number of unanswered questions before using 

miRNA profiling in the clinical practice. One of the major challenges that will be faced in the 

future is establishing specific cancer miRNA signatures that are extremely reproducible and 

independently predictive of the tumor in order to improve cancer diagnosis and therapy (Leva & 

Croce, 2013). Therefore, major research is being conducted to overcome such challenges in order 

to utilize miRNAs as an accurate diagnostic tool for the early detection of human cancers as well 

as an effective therapeutic tool.    

Using circulating miRNAs as biomarkers in cancer patients presents several challenges. First 

of all, the expression profile of a single miRNA cannot be used as a biomarker of one specific 

tumor, due to the fact that several miRNAs are highly expressed in more than one tumor as well 

as other diseases. Several miRNAs display opposite expression patterns in different types of 

cancers, such as the family of miR-200 (Kawaguchi et al., 2016). Therefore, using the expression 

patterns of several miRNAs rather than one and different miRNA signatures might serve as a 

more reliable biomarker depending on which tumor type is being diagnosed. Large-scale studies 

with well-defined methods are in demand in order to clinically implement the use of circulating 

miRNAs in diagnosing patients with liver cancer (Kawaguchi et al., 2016).    

In order to establish an accurate diagnostic tool using miRNAs, the diagnostic panel should 

include the following (Qi et al., 2016 & Carter et al., 2017): 

1) Unique miRNA signatures with specificity and sensitivity for each type of human cancer 

2) Precise variations triggered by extrinsic and intrinsic factors 

3) Specific procedures for standard normalization along with accurate internal controls 

4) Well-defined reference range of specific circulating miRNAs in healthy individuals 

5) Specified concentration kinetics of individual circulating miRNAs  
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 الموافقة المستنيرةمقترح 
 

 عنوان البحث )الدراسة(:
وقىد شفى    يعتبر فيروس الالتهاب الكبدى الوبائى سىى مىا ابسىباب الرئيسىية المسىببة بمىراد الكبىد المزمنىة  ملخص موجز: 

ذلك  نسان بما فىالدراسات الحديثة مساهمة ابحماد النووية الدقيقة فى الاليات المرضية للعديد ما ابمراد التى تصيب الا
يىىة أمىراد الكبىد  وبنىىالا علىى تلىىك المعلومىات يماىا اسىىتخداي هى ا التيييىىرات الاينيىة وابحمىاد النوويىىة فىى الىىدي شم  ىرات حيو 

 للكفف عا ابمراد 
 

  أ د/ منى شامل زهيرى   الباحث الرئيسى:
  

 أ د/ محمىىد عبىىاس ٬د/ هىىدى أطولالىىب ٬صىىى ى نىىاجىأ د/ فىىاتا م٬د/ لبنىىى مىىراد  ٬أ د/ ايمىىان ابهىىوانى ٬: البىىاحثون المفىىارشون 
  د/ مروة حسا ٬ ٬ ميس

 ابحمىاد النوويىة الدقيقىة ومقارنتهىىاو نحىىا نقىوي طدراسىة  التليىف الكبىىدى الوبىائى النىاتف عىا فيىروس سىىأنى  تعىانى مىا مىرد 
حماد النووية الدقيقىة مريض لإماان التوصل الى معرفة عدد معيا ما اب 165وسوف نستعيا بعدد  بماموعة ما ابصحال

السابحة فى الدي حيث يماا استخدامها شم  ر لتفخيص وتىور المرد قبل البدل فى افراز النسيف الضاي فى الكبد وذلك فىى 
 حالات الالتهاب الكبدى الوبائى سى المنتفر فى مصر 

 المىلوب ما المفارك فى ه ا الدراسة:
 ملليليتر  5ة ، سوف نقوي بأخ  التاريخ المرضى وأخ  عينة دي لو وافق  على الا تراك معنا فى ه ا الدراس 

 لمرد قبل تىورا استخداي التيييرات الاينية وابحماد النووية فى الدي شم  رات حيوية للكفف عا ا: ال ائدة

 : لاتوجدالاعراد الاانبية
 اماانية قبول أو رفض المفارشة:

أن  غير مابر اللاقا على المفارشة و ش لك ما حقك الانسىحاب مىا الدراسىة وقتمىا تفىال بعىد اطىلاب الىبيىب المسى ول طىدون  
 أن ي ثر قرارك على الرعاية الىبية التي تحصل عليها  

 ما سيعلم بمفارشتك فى البحث : 
الحرية فى اطلاب مىا تريىد مىا أهلىك و أصىدقائك  ابلبال المس ولون عا البحث و ش لك الممرضات المعاونون لهم و لك مىلق

للمسى وليا  كما أن المعلومات الخاصة بحالتك المرضية وعلاجك ستكون مح وظة بىريقة آمنة غير مسموح بىالإللا  عليهىا  لا
 عا البحث 

 هل لديك أى است سارات أخرى ؟ 
 01115387880تور الباحث الرئيسى تلي ون : فى حالة رغبتك فى لرح أى س ال أثنال الدراسة يمانك توجيهه  لى الدش
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فىىى حالىىة رغبتىىك فىىى لىىرح أى  ىىاوى أثنىىال الدراسىىة يمانىىك توجيههىىا  لىىى الاسىىتاذ الىىدشتور رئىىيس لانىىة أخلاقيىىات البحىىث العلمىىى 

   01008009411بمعهد تيودور طلهارس للأبحاث  تلي ون: 
 فارشة فى الدراسة على الم قرأت و فهم  ووافق أقر أنا الموقع أدناا،أننى قد 

 توقيع المفارك :
 عنوان المفارك :

 التاريخ :                           الرقم القومى : 
 تلي ون المفارك :

 التاريخ :  توقيع الفاهد : 
 التاريخ :  : توقيع الباحث
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i. The American University in Cairo 

 



 

114 

 

ii. Theodor Bilharz Research Institute 

 


	Expression analysis of liver-specific circulating micrornas in hcv-induced hepatocellular carcinoma in Egyptian patients
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1592431923.pdf.JnkY0

