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X) Distribution of amino acid substitutions in the three dimensional structure 

of K09H  

The K09H catalytic core and its N-terminal domain sequences were subjected to homology 

modeling against Tn501 MerA [146, 147]. The model presented in Fig. 18 shows the identical 

monomers (Fig. 18A; and the homodimeric structure of the enzyme (Fig. 18B). The 3D structure 

of the 25 residue linker (positions 70 to 95, boxed in Fig. 8) that connect the N-terminal domain 

with the catalytic core has not been determined and is not included in Fig. 18. MerA has five β-

strands (overlined in blue in Fig. 8, see also Fig. 19) within its dimerization domain (underlined in 

black Fig.8) which is preserved in the family of homodimeric pyridine nucleotide disulfide 

oxidoreductases [154]. It is interesting to note that all the substitutions observed in K09H are 

located outside of this domain (Fig. 18A and B). A plausible explanation for this observation is 

the fact that MerA functions as a dimer, in which the cysteine pair 558/559 in one subunit binds 

Hg2+ and transfers the ion to cysteines 136/141 in the active site of the other subunit [70, 148]. 

Spontaneous mutations in the dimerization domain may then interfere with the dimerization 

process and may result in a defective enzyme and defective detoxification process of Hg2+. In 

environments in which levels of mercury are high, microorganisms harboring such mutations will 

be subject to negative selection.  

The amino acid substitutions that located on the surface of the dimer are also shown in Fig. 

18C. Of the 38 found in K09H, 10 are located within the 25 residue stretch that connects the 

NmerA domain with the catalytic domain.The remaining 28 substitutions map to the NmerA and 

catalytic domains, and 26 were found to be located on the surface of the enzyme. The two that are 

buried in the molecule are Val219 and Ile298. Based on the homology model, none of the 28 amino 

acid substitutions in the NmerA and catalytic domains are in a position to form ionic bonds. So 
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            Figure 19: Locations of the β-strand structures present in the dimerization domain   
             The five antiparallel β-sheet structures present in the dimerization domain are circled with 

discontinuous red lines in the monomer shown in the diagram on the right. Magnified views of each 

of the five antiparallel β-sheet structures are shown on the left. For details refer to Figure 17 and  

Experimental Procedures 
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Figure 20: 3D structure homology modeling of the homodimer K09H: 

Panel A shows the top view of the homodimer ribbon model, while panel B shows the space filing 

model of the homodimer. Yellow spheres represent the cysteine amino acids that participate in 

Hg2+ binding and reduction; amino acids shown in purple in panel A replace the corresponding 

residues in K35NH, while the purple amino acids in the space filling model (panel B) are located 

on the surface of the molecule. For details refer to Figure 8 and 18 and Experimental Procedures.   
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CHAPTER 4: CONCLUSION  

Red Sea Kebrit Brine possess unique environmental conditions, characterized by high 

salinity 4 M, temperature 23.4°C, elevated concentration of heavy metals, extream hyboxic 

condition, and high hydrostatic pressure Studing two structurally homologous but catalytically 

distinct metagenomic mercuric reductases from the Kebrit Deep brine in the Red See highlights 

the molecular adaptations that enable microorganisms to cope simultaneously with extreme 

salinity and high levels of mercury. One is inhibited, the other activated by elevated concentrations 

of NaCl. These two isoforms are most probably expressed by microorganisms that use the salt out 

and the salt in mechanisms, to survive in their hypersaline environments. The result also indicates 

that if the abundance of these different isoforms can be associated with the approach used by 

microorganisms to live in high salt environment, the salt­out approach is the one preferentially 

adapted evolutionary to prevail. However, in the salt-dependent form, distinct amino-acid 

substitutions are found in areas that are critical for stability in high salt. The work provides insights 

into how two environmental stressors have shaped the structure of orthologous enzymes through 

selection and adaptation, enabling them to retain their catalytic function in two very different 

cellular contexts.These molecular and catalytic features of K09H indicate that the enzyme has a 

potential for many industrial and bioremediation applications 

The Red Sea is singular among all other world’s seas because it has some of the most 

“saltiest and hottest” waters [156] . Around twenty-five brine pools were identified in the bottom 

of the Red Sea. These environments are hyper-saline, under huge hydrostatic pressure, anoxic, and 

highly concentrated in heavy metal [154, 156]. Microbes dwelling in these habitats can be amongst 

the most diverse and exotic in their characteristics and consequently their physiological and 

biochemical processes have to adapt to this duress [157, 158]. Therefore, mining for novel 
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biocatalysts like mercuric reducatses in this exotic environment is attractive and may provide a 

plenty of versatile enzymes possessing temperature-resistance, salt-tolerance, pH-plasticity, un-

inhibition by heavy toxic metals and thus they would be potentially suited for many industrial and 

bioremediation applications  [159]. 
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Figure 21: Multiple sequence alignment of non-redundant MerA clones. of Kebrit Deep. 

Multiple sequence alignment of 28 non redundant sequences obtained from randomly selected 

clones  from  the Kebrit environmental metagenome MerA gene library. All MerA sequences are 

compared to K35NH. Dots refere to amino acids that are identical with K35NH, while those 

highlighted in red difere from K35NH.   
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